1,346 research outputs found

    Coexistence of Terrestrial and HAP 3G Networks during Disaster Scenarios

    Get PDF
    The aim of this paper is to show the possible coexistence of an HAP and a terrestrial component of 3G networks at a single carrier frequency. The main goal is to compare the basic parameters of terrestrial and HAP com-ponent 3G networks modeled in suburban (macrocell) and urban (macro/microcell) areas and to demonstrate the way they impact on each other. This study should present what we assume are the better capabilities of HAP 3G networks compared to their terrestrial counterparts. The parameters of the HAP and terrestrial component of 3G networks, were the terrestrial cells to be disabled during disasters, are also presented

    ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz

    Full text link
    Communications at mmWave frequencies will be a key enabler of the next generation of cellular networks, due to the multi-Gbps rate that can be achieved. However, there are still several problems that must be solved before this technology can be widely adopted, primarily associated with the interplay between the variability of mmWave links and the complexity of mobile networks. An end-to-end network simulator represents a great tool to assess the performance of any proposed solution to meet the stringent 5G requirements. Given the criticality of channel propagation characteristics at higher frequencies, we present our implementation of the 3GPP channel model for the 6-100 GHz band for the ns-3 end-to-end 5G mmWave module, and detail its associated MIMO beamforming architecture

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS

    WiMAX HAPS-based downlink performance employing geometrical and statistical propagation channel characteristics

    Get PDF
    The evolution to a well-expected technology in wireless-communications maturity is in progress. Complementary applications are being suggested for such purposes, which might be possibly effective from the already ongoing research on high-altitude-platform systems. Herein, we introduce a HAPS-based system for delivering broadband communications intended to be operational at L band. A physical-statistical channel model for the HAPSto-fixed-terrestrial terminal provision is derived from urban geometrical radio-coverage considerations with a simple diffraction theory. The stratospheric broadband channel model is fulfi lled with the two channel-state situations related to the direct and specular rays, plus multipath. The fi rst state consists of predicting the performance for which the line-of-sight path can exist between HAPS and the still terminal at street level. The second channel state refers to modeling the statistical fading characteristics for the shadowing condition. The system implementation is approximated and analyzed by performing intensive simulation-aided modeling. The proposed hypotheses use empirical data derived from land-mobile-satellite communication-system records. Because the systems require robust, reliable, and future standardization results, IEEE 802.16™-2004 PHYlayer technical specifi cations are used to accomplish the WiMAX HAPS-based downlink performance evaluation.Peer ReviewedPostprint (published version

    Pathloss Measurements and Modeling for UAVs Connected to Cellular Networks

    Get PDF

    Predictor Antenna: A Technique to Boost the Performance of Moving Relays

    Get PDF
    In future wireless systems, a large number of users may access the networks via moving relays (MRs) installed on top of vehicles. One of the main challenges of MRs is rapid channel variation which may make channel estimation, and its following procedures, difficult. To address these issues, various schemes are designed, among which predictor antenna (PA) is a candidate. The PA setup refers to a system with two (sets of) antennas on top of a vehicle, where the PA(s) positioned in front of the vehicle is(are) utilized to predict the channel state information required for data transmission to the receive antennas (RAs) aligned behind the PA. In this paper, we introduce the concept and the potentials of PA systems. Moreover, summarizing the field trials for PAs and the 3GPP attempts on (moving) relays, we compare the performance of different PA and non-PA methods for vehicle communications in both urban and rural areas with the PA setup backhauled through terrestrial or satellite technology, respectively. As we show, with typical parameter settings and vehicle speeds, a single-antenna PA-assisted setup can boost the backhaul throughput of MRs, compared to state-of-the-art open-loop schemes, by up to 50%

    Building penetration losses at 3.5 GHz: dependence on polarization and incidence angle

    Get PDF
    We measured and analyzed the building penetration losses for four different kinds of facades as a function of the incidence angle and polarization at 3.5 GHz, which is a frequency of interest for fifth generation (5G) communication systems. Results show that the attenuation may vary up to 8 dB with the incidence angle, which justifies the need for an angular characterization of the penetration losses, going beyond the simpler characterization used for normal incidence. We also found that there is a relevant polarization dependence of this attenuation, as electromagnetic theory predicts for wave transmission across flat discontinuities and even across flat dielectric slabs. Results would be of interest for the network design of future 5G base stations using orthogonal polarizations.Xunta de Galicia | Ref. ED431C 2019/26Ministerio de Ciencia e Innovación | Ref. PID2020-112545RB-C52Fundação para a Ciência e a Tecnologia | Ref. UIDB/EEA/50008/202

    成層圏飛翔体通信における無線通信路及びその性能に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:甲2383号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2007/3/15 ; 早大学位記番号:新447
    corecore