9 research outputs found

    Patient Specific Dosimetry Phantoms Using Multichannel LDDMM of the Whole Body

    Get PDF
    This paper describes an automated procedure for creating detailed patient-specific pediatric dosimetry phantoms from a small set of segmented organs in a child's CT scan. The algorithm involves full body mappings from adult template to pediatric images using multichannel large deformation diffeomorphic metric mapping (MC-LDDMM). The parallel implementation and performance of MC-LDDMM for this application is studied here for a sample of 4 pediatric patients, and from 1 to 24 processors. 93.84% of computation time is parallelized, and the efficiency of parallelization remains high until more than 8 processors are used. The performance of the algorithm was validated on a set of 24 male and 18 female pediatric patients. It was found to be accurate typically to within 1-2 voxels (2ā€“4ā€‰mm) and robust across this large and variable data set

    Expansion of the 4D XCAT Phantom Library with Anatomical Texture

    Get PDF
    <p>Computational phantoms are set to play an important role in imaging research. As medicine moves increasingly towards providing individualized, patient-specific care, it is imperative that simulations be completed on patient-specific anatomy, rather than a reference standard. To that end, there is need for a variety of realistic phantoms for clinical studies.</p><p> This work adds to the existing extended cardiac and torso (XCAT) adult phantom series (two phantoms based on visual human data) by building new models based on adult patient computed tomography (CT) image data. These CT datasets were obtained from Duke University's patient CT database. </p><p>Each image-set was segmented using in-house segmentation software, defining bony structures and large organs within the field of view. 3D non-uniform rational b-spline (NURBS) surfaces were fitted to the segmented data. Using the multi-channel large diffeomorphic deformation metric mapping (MC-LDDMM) network, a transform was calculated to morph an existing XCAT model to the segmented patient geometry. Fifty-eight adult XCAT models were added to the phantom library. </p><p>In addition to the expanding the XCAT library, the feasibility of incorporating texture was investigated. Currently, the XCAT phantom structures are assumed to be homogeneous. This can lead to unrealistic appearance when the phantoms are combined with imaging simulations, particularly in CT. The purpose of this project was to capture anatomical texture and test it in a simulated phantom. Image data from the aforementioned patient CT database served as the source of anatomical texture. </p><p>The images were de-noised using anisotropic diffusion. Next, several regions of interest (ROIs) were taken from the liver and lungs of CT images. Using the ROIs as a source of texture, a larger stochastic texture image-set was created using the Image Quilting algorithm. </p><p>The visual human adult male XCAT phantom was voxelized at the same resolution as the texture image. The voxels inside the liver were directly replaced by the corresponding voxels of texture. Similarly for the lung, the voxels between the existing lung bronchi/blood vessels and the lung wall were replaced by texture voxels. This procedure was performed using ten different patient CT image-sets as sources of texture. </p><p>To validate the similarity of the artificial textures to the source textures, reconstructions of the adult male XCAT phantom with added textures were compared to the clinical images via receiver operator characteristic (ROC) analysis, a two-sample t-test, equivalence test, and through comparing absolute differences between scores. </p><p>It was concluded that this framework provides a valuable tool in which anatomical texture can be incorporated into computational phantoms. It is anticipated that this step towards making many anatomically variable virtual models indicative of a patient populace and making these models more realistic will be useful in medical imaging research, especially for studies relating to image quality.</p>Thesi

    Proceedings Virtual Imaging Trials in Medicine 2024

    Get PDF
    This submission comprises the proceedings of the 1st Virtual Imaging Trials in Medicine conference, organized by Duke University on April 22-24, 2024. The listed authors serve as the program directors for this conference. The VITM conference is a pioneering summit uniting experts from academia, industry and government in the fields of medical imaging and therapy to explore the transformative potential of in silico virtual trials and digital twins in revolutionizing healthcare. The proceedings are categorized by the respective days of the conference: Monday presentations, Tuesday presentations, Wednesday presentations, followed by the abstracts for the posters presented on Monday and Tuesday

    On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model

    Get PDF
    This paper presents a variational framework for dense diffeomorphic atlas-mapping onto high-throughput histology stacks at the 20 mum meso-scale. The observed sections are modelled as Gaussian random fields conditioned on a sequence of unknown section by section rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the high-dimensionality of our parameter space (which is a product space of the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are modelled as arising from a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parameter space emerges as a joint optimization interleaving rigid motion estimation for histology restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We show that joint optimization in this parameter space solves the classical curvature non-identifiability of the histology stacking problem. The algorithms are demonstrated on a collection of whole-brain histological image stacks from the Mouse Brain Architecture Project

    Personalised body counter calibration using anthropometric parameters

    Get PDF
    This book describes the development of a new method for personalisation of efficiency factors in partial body counting. Its achieved goal is the quantification of uncertainties in those factors due to variation in anatomy of the measured persons, and their reduction by correlation with anthropometric parameters. The method was applied to a detector system at the In Vivo Measurement Laboratory at Karlsruhe Institute of Technology using Monte Carlo simulation and computational phantoms

    Anatomical Image Series Analysis in the Computational Anatomy Random Orbit Model

    Get PDF
    Serially acquired medical imagery plays an important role in the computational study of human anatomy. In this work, we describe the development of novel algorithms set in the large deformation diffeomorphic metric mapping framework for analyzing serially acquired imagery of two general types: spatial image series and temporal image series. In the former case, a critical step in the analysis of neural connectivity from serially-sectioned brain histology data is the reconstruction of spatially distorted image volumes and registration into a common coordinate space. In the latter case, computational methods are required for building low dimensional representations of the infinite dimensional shape space standard to computational anatomy. Here, we review the vast body of work related to volume reconstruction and atlas-mapping of serially-sectioned data as well as diffeomorphic methods for longitudinal data and we position our work relative to these in the context of the computational anatomy random orbit model. We show how these two problems are embedded as extensions to the classic random orbit model and use it to both enforce diffeomorphic conditions and analyze the distance metric associated to diffeomorphisms. We apply our new algorithms to histology and MRI datasets to study the structure, connectivity, and pathological degeneration of the brain

    Singular geodesic coordinates for representing diffeomorphic maps in computational anatomy, with application to the morphometry of early Alzheimer's disease in the medial temporal lobe

    Get PDF
    In this work we develop novel algorithms for building one to one correspondences between anatomical forms by providing a sparse representation of dense registration information. These sparse parameterizations of complex high dimensional data allow robustness in the face of noise and anomalies, and a platform for inference that is effective in the face of multiple comparisons. We review background in the theory of generating smooth, invertible transformations (the diffeomorphism group), and build our parameterization as a function supported on surfaces bounding anatomical structures of interest. We show how dimensionality can be reduced even further and still provide a rich family of mappings using principal component analysis or Laplace Beltrami eigenfunctions supported on the surface. We develop algorithms for surface matching and image matching within this model, and demonstrate the desired robustness by working with published large neuroimaging datasets that include many low quality examples. Finally we turn to addressing challenges associated with some specific data types: images with multiple labels, and longitudinal data. We use the mapping tools developed to draw conclusions about the progression of early Alzheimer's disease in the medial temporal lobe
    corecore