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Abstract

Serially acquired medical imagery plays an important role in the computational study of

human anatomy. In this work, we describe the development of novel algorithms set in the

large deformation diffeomorphic metric mapping framework for analyzing serially acquired

imagery of two general types: spatial image series and temporal image series. In the for-

mer case, a critical step in the analysis of neural connectivity from serially-sectioned brain

histology data is the reconstruction of spatially distorted image volumes and registration

into a common coordinate space. In the latter case, computational methods are required for

building low dimensional representations of the infinite dimensional shape space standard

to computational anatomy. Here, we review the vast body of work related to volume re-

construction and atlas-mapping of serially-sectioned data as well as diffeomorphic methods

for longitudinal data and we position our work relative to these in the context of the com-

putational anatomy random orbit model. We show how these two problems are embedded

as extensions to the classic random orbit model and use it to both enforce diffeomorphic

conditions and analyze the distance metric associated to diffeomorphisms. We apply our
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new algorithms to histology and MRI datasets to study the structure, connectivity, and

pathological degeneration of the brain.
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Chapter 1

Introduction

The acquisition of series of images is ubiquitous throughout the anatomical medical imaging

setting. Imaging has become a critical tool for exploring and understanding the structural-

to-functional relationship of complex organs like the brain, as well as the disruption of that

relationship by disease. This is particularly true in the cases of neuro and cardiac imaging,

where imaging in both spatial and temporal dimensions can provide valuable clinical insight.

However, the traditional random orbit model of computational anatomy has focused primar-

ily on the generation of single variants of an exemplar under diffeomorphic transformations

governed by the large deformation diffeomorphic metric mapping (LDDMM) framework [1].

As modern imaging tasks become more complex, high-dimensional, and high-resolution, the

need rises for new computational methods to handle these datatypes. In this work, we

describe the development of methods to analyze spatial and temporal series of brain and

1



CHAPTER 1. INTRODUCTION 2

heart imagery, and we present our work in the context of the random orbit model of human

anatomy and as extensions to the general LDDMM framework.

1.1 Diffeomorphic Mapping

The large deformation diffeomorphic metric mapping framework is well suited to the study

of variation in human anatomy. In this model, shapes and images are acted on by the group

of diffeomorphisms φ ∈ Diff, or smooth, 1-to-1, invertible transformations. Diffeomorphic

flows are controlled by the evolution φ̇t = vt ◦ φt, t ∈ [0, 1] with φ
.
= φt for smooth vector

fields v ∈ V in a smooth reproducing kernel Hilbert space. This ensures that the flows are

diffeomorphisms, making the LDDMM framework ideal for the study of the smooth and

continuous structure of human anatomy.

Solving for the flows and correspondences between two structures is generally posed as

an image registration problem, or as registration between parameterized representations of

objects in images. In the case of images, diffeomorphisms can be parameterized as time-

varying velocity fields vt, t ∈ [0, 1] → RN . Computing the optimal vt that solves this flow

generally involves minimizing a functional that takes the form:

Et =

∫︂ 1

0

||vt||2V dt+
1

σ2
M(φ1 · I, J) (1.1)

where I and J are two images or parametric representations andM is some function defining
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the distance between deformed template φ1 · I and target image J . In the case of dense

images, M is classically the sum of squared error such that:

M(φ1 · I, J) = ||φ1 · I − J ||2L2
(1.2)

The Euler-Lagrange equations have been solved by Beg [1], giving solutions to the minimiza-

tion problem:

∇vEt = 2vt −K
(︃

2

σ2
|Dφt,1|∇(I ◦ φ1,0) (δtM(I ◦ φ1,0, J) ◦ φt,1)

)︃
(1.3)

Diffeomorphic mapping of brain volumes has been a central focus in the field of Com-

putational Anatomy [2–18]. Mapping methods initially followed the small deformation and

elasticity methods of Bajcsy and others [19–24]. Subsequently Christensen et al [25] in-

troduced large deformation flows for topology preservation in dense volume matching [26].

Since these early inceptions many methods have been developed based on both landmark and

triangulated surface based spline deformations [27–29] as well as large deformation methods

[30–34]. For dense images (i.e. 3D voxelized image volumes) with multiple modalities and

tensor fields such as Diffusion track imaging (DTI), these methods were further developed

and form the basis of the multiple contrast, multi-scale algorithmic framework that is well-

described in the literature, but note that much of this work has focused on MRI volumes [1,

35–51].
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1.2 Random Orbit Model

We model the observed medical imagery or anatomical structures as arising from the com-

putational anatomy [52] random orbit model [53]. The random orbit model is a generative

representation of anatomical imagery in which individual observations are probabilistically

modeled as arising from deformations of some exemplar. Here, we specify these deformation

as diffeomorphisms due to their suitability for studying human anatomy.

This model frames the optimization of Eqn (1.1) as a log likelihood maximization problem

where the observed images are modeled as a conditional Gaussian random field with mean

field I ◦φ−1 for dense images. This is a powerful representation which has enabled algorithms

such as the Bayesian template estimation algorithm and other methods based on Bayesian

statistics.

Much of the existing body of work regarding the random orbit model in computational

anatomy has dealt with independent observations and their relation to an exemplar. Here,

we develop several algorithms intended to handle series of images and we present them

as extensions to the classic random orbit model. We also take advantage of the random

orbit model setting to quantitatively analyze the distance metric between diffeomorphisms

cross-sectionally.
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Figure 1.1: The computational anatomy random orbit model is depicted where the structure
in the template coordinate space is a sphere. Six observations generated from deformations
Φ(i) on the template are shown.
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1.3 Spatial Image Series

The first type of image series dealt with in our work are spatial image series. In anatomic

and medical imaging, this can include histology, serial section MRI, and many other settings.

1.3.1 Connectomics

Understanding the basic structure and function of the brain remains one of the most im-

portant and challenging tasks in neuroscience despite its fundamental nature. It is generally

understood that the brain is composed of a complex network of structures and connections

which defines neural function [54]. These connections are not only fundamental to the basic

function of the brain [55], but also deeply related to the pathology of neurodegenerative

diseases [56] and to better understanding of artificial neural networks used in machine learn-

ing. The study of these networks in tandem with the physical structure of the brain has

given rise to the field of connectomics. Studying the brain connectome remains challenging

in part due to the size of the data – the human brain has an estimated 100 billion neurons

[57] and several orders of magnitude more connections. Although modern developments in

high-resolution brain imaging [58, 59], methods to label neurons [60], computational meth-

ods have been able to visualize the brain at the neuron level, investigation of the whole brain

at this microscale remains difficult within current computational limits. As a result, much

of the related work in human and primate brains has focused on the mesoscale resolution, a

level between the macroscale of fiber bundles and the microscale of individual synapses [61].
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1.3.2 Brain Histology

Neurohistology is a classical method for visualizing the brain and has greatly benefited from

advancements in imaging technologies and neural tracing technologies to become one of the

foremost methods to study the mesoscale neural architecture. Viral tract tracing (in which

fluorescently tagged viruses designed to transport between neurons are injected into the

brain and replicate) remains one of the most common methods for studying neural circuits

at high resolution [62]. Figure 1.2 shows examples of serial section histology as observed in

the clinic or laboratory. Individual sections of the image can be distorted by the sectioning

process, the placement of the tissue under the imager, tissue damage, tissue warping due to

chemical staining processes, and more. These settings involve additional degrees of freedom

whereas the traditional random orbit model generally deals with coherent image volumes

or structures. In the case of brain histology, the additional degrees of freedom are the

transformations required to reconstruct a coherent volume from independently observed

sections. This is a well studied problem with over 30 years of prior work in the literature,

and at present there exists no general solution.

1.3.3 Histological Reconstruction

Circuit mapping is technique limited, and falls into three broad scales corresponding to dis-

tinct imaging modalities - indirect mapping at a macroscopic scale corresponding to MRI-

based methods [63], and direct mapping at light (LM) and electron microscopic (EM) scales.
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Figure 1.2: Sample histology slides. Common histology stains and modalities are shown.
From left to right: Nissl stain, fluorescence imaging, myelin stain, Cholera toxin B stain.

For MRI and LM data, atlas mapping is an important step in the analysis. Several ap-

proaches exist for gathering LM data at the whole brain level [64–66]. For some of these

approaches (two-photon serial block-face imaging, knife edge scanning microscopy and light

sheet microscopy for cleared brains) two-dimensional (2D) optical sections are acquired in

three-dimensional (3D) registry with each other, so that the only computational step required

is 3D volumetric registration of the individual brain data set to a canonical atlas. However,

for classical neurohistological approaches using tissue sectioning followed by histochemical

processing, the 2D sections are gathered independently and each section can undergo an

arbitrary rotation and translation compared to the block face. This may be considered

a disadvantage of the classical neuroanatomical workflow, however the physical sectioning

method followed by conventional histochemical analysis has certain important advantages.

This allows for the full spectrum of histochemical stains, acquisition of physical sections for

downstream molecular analyses, and processing for larger brains (upto and including whole

human brains). Therefore it is necessary to perform an intermediate 2D to 3D registra-
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tion step, where the individually acquired 2D sections are mutually co-registered into a 3D

volume.

The histological reconstruction problem has been explored by several groups previously.

Malandain first described the ill-posedness of reconstructing 3D sections and object curvature

without prior knowledge of the shape of the object [67]. Rigid transformations for stack

reconstruction have been estimated via block-matching of histological sections in [68], with

point information based on landmarks introduced to guide volume reconstruction [69]. Dense

external reference information such as MRI has been applied to guide reconstruction via

registration of corresponding block-face photographs and for histology to MRI mapping [70,

71].

1.3.4 Analysis of Histology-Associated Deformations

Deformation of brain tissue caused by histological procedures is well known and has been

reported in the previous literature and is a factor that must be considered in downstream

image analysis. The chemical composition of the fixation solution and duration of exposure

have been previously shown to cause significant tissue shrinkage [72–74]. More recently,

histological distortions have been quantified with imaging techniques like MRI or computed

tomography using variables such as total brain volume and the distance between hand-

selected landmarks, in comparisons before and after mouse brain histology [75]. Others

have assessed dense local deformative effects of extraction and fixation by examining the
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strain resulting from a non-rigid displacement field [76]. Comparison of the total tissue

area of imaged histological sections with block-face images can quantify the global in-plane

shrinkage caused by sectioning, and neuronal density in the cutting axis has been used to

quantify the non-uniformity of shrinkage in that direction [77].

1.3.5 Cardiac Shape Analysis

A second setting in which spatial image series analysis is innately involved is cardiac shape

analysis. Complex shape changes in the chambers of the heart have long been associated

with cardiomyopathy, particularly in the case of the left ventricle [78]. These shape changes

have clinical implications for diagnosis and treatment as well as for the study of the patho-

logical mechanisms of cardiomyopathy, for instance in treatment planning for hypertrophy

of patients without the identifying genetic mutation [79].

Cardiac magnetic resonance imaging is commonly used in diagnostic and investigative

imaging for studying ventricular shape and function due to the lack of ionizing radiation.

However, due to the constant motion of the heart and the relatively long acquisition times

of MRI, there is a resolution-to-acquisition-time tradeoff [80]. Images are generally acquired

in 2D sections along the apex-base axis with each section acquired during subsequent phases

of the cardiac cycle. Due to this acquisition scheme, sections are usually acquired sparsely

in order to reduce total patient scanning times. This results image volumes that are highly

anisotropic, reminiscent of histology stacks.
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1.3.6 Shape Interpolation

General interpolation of shapes is a well-explored field of study. Traditional shape interpo-

lation involves computing smooth trajectories between defined correspondences [81]. Other

groups have proposed interpolation of longitudinal datasets and registration of time series

[82], interpolation by geodesic flows [83, 84], population models [85], or joint modeling of

shape and image intensity [86]. These methods generally involve extraction of image features

and segmentation [87] or pairwise optical flow from neighbor to neighbor [88, 89].

Several studies have focused on developing methods to perform 3D reconstruction of

the cardiac left ventricle (LV) from sparse MR imagery. These methods either employ

interpolation [90] or surface-fitting to endocardial and epicardial contours using some pre-

defined geometry [91]. Other approaches rely on diffeomorphic mapping of a high-resolution

LV surface mesh to a set of sparse 2D short axis LV contours [92]. More recently, constrained

neural network approaches have been used to incorporate prior anatomical knowledge to

enhance sparsely collected 2D cardiac MR imagery [93]. These methods mostly rely on

population-based atlases, predefined geometry (prolate-spheroidal) or training on ground

truth data sets to reconstruct the 3D LV shape.

1.3.7 Our Contributions

In this work, we will explore the problem of curvature-preserving volume reconstruction

without prior knowledge of the shape of the object. The lack of a shape prior places this work
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into the random orbit model setting and is a common condition in brain histology settings.

We will show that the classic volume-based random orbit model can be extended to serially-

sectioned imagery and the solutions to image reassembly and registration problems can be

solved variationally as with LDDMM. We will also use the techniques of diffeomorphometry

as enabled by our embedding of serially-sectioned imagery into the random orbit model

to quantify the deformative effects of histology processing on the brain. We will further

extend our volume reconstruction algorithms by proposing a new method for interpolating

shapes in order to upsample a sparsely acquired serial-section image stack using diffeomorphic

transformations. We apply this methodology to upsample stacks of sparse 2D magnetic

resonance cross-sections through live mouse hearts.

1.4 Longitudinal Image Series

In addition to adding spatial dimensions to our models of shape, we also turn to the study

of longitudinal image series, in which multiple observations are made of the same set of indi-

viduals over time. We will investigate this problem in the context of a longitudinal imaging

study of Alzheimer’s Disease patients, specifically the Alzheimer’s Disease Neuroimaging

Initiative.
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1.4.1 Alzheimer’s Disease

Alzheimer’s Disease is an incurable neurodegenerative disease which causes memory loss

and personality/behavioral changes in elderly patients. It eventually leads to complications

causing an estimated 122,000 deaths per year in the United States, making it the 6th leading

cause of death in the US [94]. Alzheimer’s is characterized by cortical and subcortical atrophy

in the medical temporal lobe of the brain, particularly in the hippocampus and other nearby

structures. However, atrophy is also associated with normal aging and Alzheimer’s Disease

patients are generally over 60 years of age. The challenge of studying the mechanism of

neurodegeneration in Alzheimer’s Disease is disentangling the shape change caused by normal

aging versus the disease process.

1.4.2 Diffeomorphometry in Longitudinal Imaging

The study of shape in longitudinal neuroimaging data is a complex task that is gener-

ally approach by statistical methods in a field known as brain morphometry. We employ

methods from a subfield known as diffeomorphometry, in which diffeomorphic mappings are

used to quantify differences between shapes and trajectories of shapes and to to define the

relationship between elements of the random orbit model. Diffeomorphic trajectories that

longitudinally map individuals can also be placed into the context of the random orbit model.

As well, atrophy and growth have been studied for understanding cohorts of shapes under

transformation [8], in which time plays a role in simulation time for generating diffeomor-
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phisms as well as in understanding the space-time phenomena of developmental and degener-

ative disease [95–105]. This field has progressed quickly and numerous groups have mapped

populations of anatomical structures to common coordinate spaces in multiple contexts.

Several formalized models of longitudinal shape analysis have been put forth to disentangle

individual processes from population processes [82, 103, 106]. These mappings have been

studied largely using mixed-effects modeling with statistical permutation testing [107–110]

or linear operations on parameterized deformation fields [11, 111–115]. The motivation is

to understand the typical representative shape change of populations as well as to make

decisions concerning large deviations away from typical shape.

At the same time, the representation of population statistics in terms of high dimen-

sional shape models has lagged behind. The mentioned examples have described methods

for encoding means and variances of mapped populations in low dimensional statistical repre-

sentations. However, little work has been done on directly encoding diffeomorphic modeling

with typical population shape. The work proposed here is motivated by this goal.

1.4.3 Our Contributions

In this work, we will propose new models for determining the deviation of the shape change of

brains with Alzheimer’s Disease from normally aging brains, under the random orbit model

framework. We base our model off the classical models of Brownian motion with drift, in

which the motion of particles is affected by a background ”drift”. Once again, we embed
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our work into the random orbit model, this time extending the longitudinal dimension such

that our template is no longer a single image but rather a trajectory over time. We take

advantage of the inherent properties of the random orbit model in order to manipulate these

trajectories, including operations such as averaging populations and computing deviations

of individuals from populations.

1.5 Outline of Thesis

The following thesis will discuss the two main topics of image reconstruction of spatial image

series and diffeomorphometry of a population of longitudinal image series. In the Chapter

2, we will discuss the motivation of our approach to the serial section image reconstruction

problem. We will propose an extension to the classic random orbit model which allows

for this computation under the same framework. We further expand our model to allow

interpolation between sections under the Bayesian template estimation probabilistic model.

Then, we show experimental results and implementation details on a dataset of mouse brain

histology and cardiac MRI.

In Chapter 3, we will discuss the background of the longitudinal diffeomorphometry

problem. We will propose our novel drift-based model for computing differences between

two longitudinal diffeomorphic trajectories. In doing so, we will describe the computation

of ”biased geodesics”, an augmentation of the classic geodesic shooting algorithm. Finally,

we will show experimental results on simulated data and data from the Alzheimer’s Disease
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Neuroimaging Initiative study.



Chapter 2

Volume Reconstruction of Spatial

Image Series

We first turn to the problem of volume reconstruction in serially sectioned or serially acquired

imagery. This is a well studied problem in both the brain histology and cardiac MRI contexts

and is a critical task for understanding the structure and function of the brain and the heart.

In this chapter, we will first discuss a novel histology reconstruction and atlas mapping

algorithm. We will show the results of implementing our algorithm for the Mouse Brain

Architecture Project and the Marmoset Brain Architecture Project, as well as a quantitative

analysis of the deformative properties of the histology process. Finally, we will show a further

extension of the model to interpolation of anisotropic imagery. Some of the following text is

taken from our publications ([116], [117] c⃝IEEE, selections reprinted with permission from

17
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Lee BC et al., Diffeomorphic Upsampling of Serially Acquired Sparse 2D Cross-Sections in

Cardiac MRI, Proceedings of the 2019 IEEE EMBC, 2019), [118] c⃝Wiley Periodicals 2020).

First, we develop a joint stack reconstruction and atlas mapping procedure that simul-

taneously restacks the 2D histology sections, applying a sequence of rigid motions to the

sections, and estimates the diffeomorphic correspondence between the registered histology

stack and a 3D atlas. We rigorously solve the problem when an external resource of identical

geometry (such as an MRI of the same mouse) is not available, while accommodating for

the innate anatomical variation from atlas to subject. The lack of a same-subject reference

volume is often the standard in mouse brain histology and other large scale histology studies.

This places us into the computational anatomy (CA) orbit problem for which constraints

are inherited from an atlas that is diffeomorphic but not geometrically identical. With the

availability of dense brain atlases at many resolution scales [119–122], methods to map atlas

labels onto target coordinate systems are being ubiquitously deployed across neuroscience

applications. Since Christensen’s early work [25], diffeomorphic transformation has become

the de-facto standard as diffeomorphisms generate one-to-one and onto correspondences be-

tween coordinate systems. Herein we focus on the diffeomorphometry orbit model [53] of

computational anatomy [2], where the space of dense volume imagery is modelled as a Rie-

mannian orbit of an atlas under the diffeomorphism group. We use the large deformation

diffeomorphic metric mapping algorithm first derived for dense imagery to retrieve the un-

known high-dimensional reparameterization of the template coordinates.
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We build on this work by extending our model to settings where the reconstruction

process is informed by the ex-vivo MRI or other same-subject reference image of the brain

prior to histology as well as an image intensity smoothness prior. We also incorporate multi-

modal similarity metrics to order to accomodate cross-registration of multiple stains and

imaging modalities. For instance, in our setting, we are generally interested in synchronizing

the fluorescence microscopy imaging which reveals the viral tract tracing data with the Nissl

stained imagery which clearly shows the anatomical structure. Importantly, we are able to

quantify the 3D tissue distortion caused by two major parts of the histology procedure –

the “sectioning” process (cryoprotection, freezing, sectioning) captured by the ex-vivo MRI

to histology mapping and “preparatory” process (injection, incubation, perfusion, fixation)

captured by the in-vivo MRI to ex-vivo MRI mapping.

As a final extension, we propose a method to upsample serially-acquired sparse serially-

sectioned imagery based on a definition of a weighted mean derived from the well-known

statistical template estimation [123] framework in computational anatomy. This method

relies solely on the intrinsic constraint provided by the geometry of acquired sparse 2D

images and does not require training or model fitting. The definition of a sliding windowed

average of image slices with arbitrary center along an axis of a 3D image volume provides

a flexible but robust framework for computing trajectories between shapes in neighboring

image sections.
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2.1 Methods

The novel aspect of the volume reconstruction method we propose is the augmentation of

the random orbit model with transformations that describe serially-sectioned imagery. The

extension to the model that allows the generation of this data is shown in Figure 2.1, where a

slicing/sampling procedure along with some transformation R(i) produces the observed data.

Figure 2.1: The random orbit model and serial section imagery. The computa-
tional anatomy random orbit model of Figure 1.1 is extended here for generation of serially-
sectioned imagery distorted by some transformation R(i), i = 1, 2, . . . , n for n serial sections.

At 20 µm, this implies as many as 500 sections through the brain, augmenting the high-

dimensionality of the diffeomorphism space to include as many as 1500 extra dimensions for

planar rigid motions for restacking. Here lies the crux of the challenge. To accomodate the

high-dimensionality of the unknown rigid motions, the space of stacked targets is modelled
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to have finite-squared energy Sobolev norm, which enters the problem as a prior distribution

restricting the roughness of the allowed restacked volumes. The variational method jointly

optimizes over the high-dimensional diffeomorphism associated to the atlas reparameteriza-

tion and the high-dimensional concatenation of rigid motions associated to the target.

2.1.1 The Log-Likelihood Model of the Histology Sectioning Prob-

lem

Fig 2.2 shows the components of the model for the histology stacking problem. Here, we

discuss our work in the context of reconstructing brain histology stacks, particularly in

mouse models which are the foremost high-throughput animal model for studying the brain.

However, this work generalizes to any serially-sectioned imagery. We define the mouse brain

to be sectioned as a dense three-dimensional (3D) object I(x, y, z), (x, y, z) ∈ R3, modelled

to be a smooth deformation of a known, given template I0 so that I = I0 ◦ φ−1 for some

invertible diffeomorphic transformation φ. The Allen Institute’s mouse brain atlas [124]

(CCF 2017) is taken as the template.
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Figure 2.2: The histological sectioning model. The template I0, the mouse brain in the
orbit I ∈ I and observed histological sections Ji, i = 1, . . . , n are illustrated. The Sobolev
image intensity prior and the shape prior are depicted in the top row. The model shows the
template and mouse brain as elements of the same orbit I0, I ∈ I, such that there exists
diffeomorphism I = I0 ◦ φ−1, φ ∈ Diff.

Distinct from volumetric imaging such as MRI which delivers a dense 3D metric of the

brain, the histology procedure (bottom row, Fig 2.2) consisting of sectioning, staining, and

imaging generates a jitter process which randomly translates and rotates the stack sections.
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Denote the rigid motions acting on the 2D sectioning planes Ri : R2 → R2,

Ri(x, y) = (cos θix+ sin θiy + txi ,− sin θix+ cos θiy + tyi ) , (x, y) ∈ R2 , (2.1)

with θi the rotation angle and (txi , t
y
i ) ∈ R2 the translation vector in section i. The histology

stack Ji(x, y), (x, y) ∈ R2, i = 1, . . . , n, is a sequence of 2D image sections with jitter under

smooth deformation of the atlas in noise:

Ji ◦Ri(x, y) = I0 ◦ φ−1(x, y, zi) + noise(x, y), (x, y) ∈ R2 . (2.2)

Modeling the photographic noise as Gaussian and conditioning on the sequences of jitters

Ri, i = 1, . . . , n and atlas deformation I = I0 ◦ φ−1, φ ∈ Diff, the photographic sections Ji

are a sequence of conditionally Gaussian random fields with log-likelihood (with constants

removed that are not a function of the parameters):

ℓ(v,R; J) =
∑︂
i

(︃
−αi

∫︂
R2

|Ji ◦Ri(x, y)− I0 ◦ φv,−1(x, y, zi)|2dxdy
)︃
. (2.3)

Here αi is a weighting factor dependent on the noise of each section such that damaged

sections can be weighted; v denotes the vector field which indexes the deformation as a

diffeomorphic flow (see below).
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2.1.2 The Priors: Diffeomorphisms and Sobolev Smoothness of

Images

The parameterization of the histology pipeline augments the standard random orbit model

of computational anatomy with the rigid-motion dimensions of the random jitter sectioning

process. The unknowns to be estimated become (R1, . . . , Rn, φ) ∈ R3n×Diff for n−sections.

At 20 µ m then n = 500 implying the nuisance rigid motions are of high dimension O(1500).

The solution space must be constrained. We use priors on the deformations and on the rigid

motion stacking of the images.

The Diffeomorphism Prior: The histological stacking constrains the brains as smooth

transformations of the template, where the diffeomorphisms are generated as diffeomorphic

flows φt ∈ Diff [2], solving the ordinary differential equation

φ̇t = vt ◦ φt, t ∈ [0, 1], φ0 = identity , (2.4)

with vt the Eulerian velocity taking values in R3, identity the identity mapping. The top

row of Fig 2.2a shows that each φ has an inverse and that the random orbit model assumes

any individual brain I ∈ I can be generated from the exemplar under the action of the

diffeomorphism, so that for some φ ∈ Diff, I = I ◦ φ−1.

To score the distances between mouse brain coordinate systems and reject outlier solu-



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 25

tions we use geodesic flows minimizing metric length [125]. Large deviations as measured

by the diffeomorphometry metric [53] from template atlas to target mouse brain are thus

removed from the solution space. The vector fields are modeled to be in a reproducing

kernel Hilbert space (RKHS) (V, ∥ · ∥V ), supporting one continuous spatial derivative, and

having geodesic length between coordinate systems determined by the norm-square ∥v∥2V of

the RKHS:

∥v∥2V =
3∑︂
i=1

∫︂
R3

((−∇2 + 1)2vi(x, y, z))
2dxdydz <∞ . (2.5)

This square-metric is used as a quadratic potential for the smoothness prior between images

I, I ′ ∈ I [4, 126] minimizes the action

ρ2(I, I ′) = min
φ:φ0=id ,φ1·I=I′

∫︂ 1

0

∥vt∥2V dt . (2.6)

and is used to determine the reproducing kernel Hilbert space norm for calculating the metric

distance between images in the orbit. See Appendix A (Reproducing Kernel Hilbert Space

and Green’s Kernel) for the matrix Green’s kernel and Appendix B (Geodesics solving Euler-

Lagrange Equations) for the explicit equations for geodesics satisfying the Euler-Lagrange

equations [6, 125].

We use the notation φv to emphasize the dependence of the diffeomorphism and the

geodesic metric on the vector field v. Strictly speaking, the group generated by integrating

(2.4) with finite norm ∥ · ∥V is both dependent on the norm of V as well as a subgroup of all
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diffeomorphisms; we shall suppress that technical detail in the notation.

The Prior Distribution on Image Smoothness: To score the maximum a-posteriori

(MAP) reconstruction of the rigid motions acting on the stack, we exploit a smoothness

prior on the reconstructed histology stack which enforces the fact that anatomical structures

are smooth and continuous. We model the images as arising from a smooth “Sobolev” or

RKHS I ∈ Hk supporting derivatives ∂hf = ∂h1+h2+h3

∂xh1∂yh2∂zh3
f that are square integrable, with

norm:

∥I∥2Hk =
∑︂

h1,h2,h3:|
∑︁3

i=1 hi|≤k

∫︂
R3

|∂hI(x, y, z)|2dxdydz . (2.7)

This is a quadratic form for a Gaussian random field prior on the dense histology stack

with zero mean and covariance dependent on the squared norm ∥I∥2
Hk . For the purpose of

stacking, the z-axis sections are sparse 20-40 µ m; the differential operators ∂h are imple-

mented via the difference operator along the sectioning z-axis (see Eqn. (2.8)). The Gaussian

field has covariance determined by the difference operators; see [127] for example. We de-

fine the mixed differential-difference operator Dh as the centered difference for the z-partial

derivatives,

Dhf(x, y, z) = ∂h1,h2

(︃
f(x, y, z +∆/2)− f(x, y, z −∆/2)

∆

)︃
. (2.8)

The gradient is forced to 0 at the boundaries of the image.
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2.1.3 MAP, Penalized-Likelihood Reconstruction

Model the random sectioning with section-independent jitter as a product density π(R) =∏︁
i π(θi, t

x
i , t

y
i ), the priors centered at identity, with the priors on θ circular Gaussian with

standard-deviation σθ and translation with means µxc , µ
y
c at the center of the sections with

σxc = σyc :

π(θ, tx, ty) =
1√
2πσθ

e
− θ2

2σ2
θ

1√
2πσxc

e
− (tx−µxc )2

2σ2
c

1√
2πσyc

e
− (ty−µ

y
c )2

2σ2
c . (2.9)

We choose our standard-deviations so that they are small relative to the center of the image,

and a small rotation, roughly 5 percent of the total range of each. Generating MAP estimates

of the rigid motions generates the MAP estimator of the histology restacking problem denoted

as

IR(x, y, zi) = Ji ◦Ri(x, y), (x, y) ∈ R2, i = 1, . . . , n .

Since the diffeomorphisms are infinite dimensional, the maximization of the log-likelihood

function with respect to a function with the deformation penalty is termed the ”penalized-

likelihood estimator”. Conditioned on the known atlas, the augmented random variables to

be estimated are (R1, . . . , Rn, φ) ∈ (R3n × Diff).

Problem 1 (MAP, Penalized-Likelihood Estimator).

Given histology stack Ji(x, y), (x, y) ∈ R2, i = 1, . . . and reconstructed stack IR(·, zi) =

Ji ◦Ri(·), i = 1, . . . , n modelled as conditionally Gaussian random fields conditioned on jitter

and smooth dormation of the template. The joint MAP, Penalized-Likelihood estimators



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 28

argmaxR,v log π(R, v|J) given by

argmaxR,v −1

2

∫︂ 1

0

∥vt∥2V dt−
1

2

∑︂
i

∥DhI
R(·, zi)∥22 (2.10)

+
∑︂
i

(︁
log π(Ri)− αi∥IR(·, zi)− I0 ◦ φv,−1(·, zi)∥22

)︁
.

The MAP, Penalized-Likelihood estimators satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R∗ = argmaxRi,i=1,...

∑︁
i

(︁
log π(Ri)− 1

2
∥DhI

R(·, zi)∥22

−αi∥IR(·, zi)− I0 ◦ φv
∗,−1(·, zi)∥22

)︁
,

v∗ = argmaxv −
1

2

∫︂ 1

0

∥vt∥2V dt−
∑︂
i

αi∥IR
∗
(·, zi)− I0 ◦ φv,−1(·, zi)∥22

with ∥ · ∥22 denoting the norm per z-axis section:

∥f(·, zi)∥22 =
∫︂
R2

f(x, y, zi)
2dxdy . (2.11)

We call this the atlas-informed model. The first two prior terms of (2.10) control

the smoothness of template deformation and the realigned target image stack, with the

third keeping the rigid motions close to the identity. The last term is the “log-likelihood”

conditioned on the other variables.

The optimization for the R∗ rigid-motions is not decoupled across sections because of the

smooth diffeomorphism of the LDDMM update and the Sobolev metric represented through
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the difference operator across the z− sections. Clearly, the smooth diffeomorphism is able

to interpolate through the measured target sectioning data when the restacking solution

gives a relatively smooth target, as diffeomorphisms are spatially smooth with at least one

derivative. The optimization of the vector field v∗ corresponds to the LDDMM solution of

Beg [1].

The principal algorithm used for solving this joint MAP-penalized likelihood problem al-

ternates between fixing the rigid motions and solving LDDMM and fixing the diffeomorphism

and solving for the rigid motions. This is described below in the following section.

When there is no atlas available this is equivalent to setting αi small and becomes a MAP

rigid motion restacking of the sections:

argmaxRi,i=1,...

∑︂
i

(︃
log π(Ri)−

1

2
∥DhI

R(·, zi)∥22
)︃
.

We term this the atlas-free model. The gradient of the rigid motions with respect to the

components of translations tx, ty and rotation θ is defined in Gradients for Atlas Free Model.

The registration is not independent across sections due to coupling through the Sobolev

metric.
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2.1.4 Iterative Algorithm for Joint Penalized Likelihood and MAP

Estimator

Here we describe the details of the algorithm used for solving for the MAP/penalized–

likelihood problem described above. The algorithm alternately fixes the set of rigid motions

while updating LDDMM and fixes the diffeomorphism while updating the rigid motions.

Algorithm 1.

0. Initialize φnew, Rnew ← φinit, Rinit, Iold ← J ◦Rinit:

1. Update φold ← φnew, Rold
i ← Rnew

i , Iold(·, zi)← Inew(·, zi), i = 1, . . . .

2. Update LDDMM for diffeomorphic transformation of atlas coordinates:

vnew = argmaxv −
1

2

∫︂ 1

0

∥vt∥2V dt−
∑︂
i

αi∥IR−old(·, zi)− I0 ◦ φv−1
1 (·, zi)∥2 , (2.12)

φnew =

∫︂ 1

0

vnewt ◦ φnewt dt+ id .

3. Deform atlas I0 ◦ φnew−1 and generate new histology image stack:
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Rnew = arg max
Ri,i=1,...

∑︂
i

(log π(Ri) (2.13)

−1

2
∥DhI

R(·, zi)∥22 − αi∥IR(·, zi)− I0 ◦ φnew−1(·, zi)∥22
)︃

;

IR−new(·, zi) = Ji ◦Rnew
i (·) , i = 1 . . .

4. Return to Step 1 until convergence criterion met.

The form of the gradients for the rigid motions is given in the following two sections for

the atlas-free and atlas-informed models. The LDDMM update solutions are given by Beg

[1].

2.1.5 Gradients for Atlas Free Model

We can write the gradient of E, the function to be maximized in Eqn. (2.10), with respect

to the components of R (translation vector t and rotation matrix r parametrized by rotation

angle θ and section number z), where ∇X is the 2D in-plane gradient, σJJ is the weighting

factor on the image smoothness prior. Rotations and translations are penalized by a regular-

ization prior centered at identity ( θ
σ2
θ
and t(zi)

σ2
t
, respectively), where σθ and σt are weighting

factors on the rotation and translation priors arising as standard-deviations of the Gaussian
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priors written out in Eqn. (2.9).

∇rE = −α(zi)
d2

dz2
(J(r(θ, zi)x+ t(z)))∇XJ(r(θ, zi)x+ t(zi))δr(θ, zi)x+

θ

σ2
θ

(2.14)

∇tE = −α(zi)
d2

dz2
(J(r(θ, z)x+ t(zi))) r(θ, z),∇XJ(r(θ, zi)x+ t(zi))+

t(zi)

σ2
t

(2.15)

Here the weight αi plays the role of controlling the step size in the gradient algorithm rather

than controlling the weight relative to the prior of the likelihood function as it does in the

atlas-informed case. For image planes that are noisy, the step-size is small, approximately

zero. These are derived more generally in the following section on the atlas-informed model’s

gradients.
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2.1.6 Gradients for Atlas Informed Model

The minimization of the energy Ev of (2.12) in terms of the vector field is the LDDMM

gradient of Beg [1]:

∇vEv(x, y) =
∑︂
i

∫︂
R2

K(x− x′, y − y′, z − zi)|Dφt,1|
(︁
I ◦ φt1 − I0 ◦ φ−1

t )

∇(I0 ◦ φ−1
t )(x′, y′, zi)

)︁
dx′dy′ . (2.16)

Variation of the Image Matching Term: The variation of
∫︁
(I−I0 ◦φ−1)2dx via pertur-

bation φ→ φε = φ+ εδφ requires the inverse perturbation δφ−1 = −(dφ)−1
φ−1δφ|φ−1 , derived

in (B.2) above. Then we have

d

dε

∫︂
R3

(I − I0 ◦ φε−1)2dx|ε=0 = 2

∫︂
X

(I − I0 ◦ φ−1)∇(I0)|φ−1 · (dφ)−1
|φ−1δφ|φ−1)dx

= 2

∫︂
X

(I ◦ φ− I0)(dφ)−1T∇I0|dφ| · δφdx .

Rigid motion variations: Rigid motion minimization is standard for rigid registration in

2D and 3D images. Denoting ∥fθ,t,zi∥2 = ∥JR(·, zi)−I0 ◦φv
∗−1(·, zi)∥22 to represent each rigid

registration norm-square minimization within each histological plane, then

∇θ∥fθ,t,zi∥2 =
∫︂
R2

2fθ,t,zi(·)
∂θfθ,t,zi
∂θ

dxdy ;

∇t∥fθ,t,zi∥2 =
∫︂
R2

2fθ,t,zi(·)∇tfdxdy .
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Here, we derive gradients for the energy functional with respect to rotation and transla-

tion parameters as these are generally relevant for tape-transfer histology. However, we note

that this model is generalizable to any class of transforms in the restacking plane. The energy

functional is written for target serially-section stack J , template I, r is a rotation matrix, t is

the translation vector, σJI is a weighting factor on the matching term between template and

target, σJJ is a weighting factor on the Sobolev term, and σr and σt are weighting factors

on the rigid motion regularization that centers them at identity:

ER =

∫︂
X(z)

∫︂
Z

1

2σ2
JI

|Iφ−1(x)− J(r(θ, z)x+ t(z))|2+

1

2σ2
JJ

⃓⃓⃓⃓
d(J(r(θ, z)x+ t(z)))

dz

⃓⃓⃓⃓2
dxdz +

1

2

∫︂
Z

t(z)2

σ2
t

dz +
1

2

∫︂
Z

θ(z)2

σ2
r

dz (2.17)

For simplicity, we write Iφ−1 = I ◦ φ−1. We again apply the method of coordinate descent

and compute the gradient of this expression with respect to r and t. Take a perturbation on

translation t(z) such that tεη → t(z) + εη(z):

ER =

∫︂
Y (z)

∫︂
Z

1

2σ2
JI

|Iφ−1(x)− J(r(θ, z)x+ t(z) + εη(z))|2+

1

2σ2
JJ

⃓⃓⃓⃓
d(J(r(θ, z)x+ t(z) + εη(z)))

dz

⃓⃓⃓⃓2
dxdydz +

1

2

∫︂
Z

(t(z) + εη(z))2

σ2
t

dz +
1

2

∫︂
Z

θ(z)2

σ2
r

dz

(2.18)
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Take the Gateaux derivative with respect to ε:

d

dε

⃓⃓⃓⃓
ε=0

ER =

∫︂
X(z)

∫︂
Z

1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z)))∇XJ(x+ t(z))η(z)

− 1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z))) (DJ)(r(θ, z)x+ t(z))η(z)dxdz +

∫︂
Z

t(z)

σ2
t

η(z)dz (2.19)

=

∫︂
X(z)

1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z)))∇XJ(r(θ, z)x+ t(z))

− 1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z))) r(θ, z)∇XJ(r(θ, z)x+ t(z))dx+

t(z)

σ2
t

dz (2.20)

Above, we observe that (DJ)(r(θ, z)x+t(z)) = D(J(r(θ, z)+t(z)))r(θ, z)T = r(θ, z)∇XJ(r(θ, z)x+

t(z)) by the derivative chain rule. Therefore, the gradient with respect to the translation

parameters is:

∇R,tE(v,R; J) =
⟨︂ 1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z)))− 1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z))) r(θ, z),

∇XJ(r(θ, z)x+ t(z))
⟩︂
+
t(z)

σ2
regt

(2.21)

Now we solve for the gradient with respect to rotation parameters. Take a perturbation on
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rotation r(θ, z) such that rεη(θ, z) → r(θ + εη(z), z). Note that for 2D rotation matrices,

r(θ + εη(z), z) = r(θ, z)r(εη(z), z):

ER =

∫︂
X(z)

∫︂
Z

1

2σ2
JI

|Iφ−1(x)− J(r(θ, z)r(εη(z), z)x+ t(z))|2+

1

2σ2
JJ

⃓⃓⃓⃓
d(J(r(θ, z)r(εη(z), z)x+ t(z)))

dz

⃓⃓⃓⃓2
dxdydz +

1

2

∫︂
Z

t(z)2

σ2
t

dz +
1

2

∫︂
Z

(θ + εη(z))2

σ2
r

dz

(2.22)

Take the Gateaux derivative with respect to ε:

d

dε

⃓⃓⃓⃓
ε=0

ER =

∫︂
X(z)

∫︂
Z

1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z))(DJ)(r(θ, z)x+ t(z))

d

dε
r(θ, z)r(εη(z))x− 1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z)))(DJ)(r(θ, z) + t(z))

d

dε
r(θ, z)r(εη(z))xdx

+

∫︂
Z

θ

σ2
r

η(z)dz (2.23)

Observing that d
dε
r(θ, z)r(εη(z))x = r(θ, z)xη(z) where the perturbation direction η(z) →

δr(θ, z) and that the XY gradient term is derived from the chain rule (DJ)(r(θ, z)x +

t(z))r(θ, z) = D(I(r(θ, z)x+ t(z))):

=

∫︂
X(z)

∫︂
Z

1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z))∇XJ(r(θ, z)x+ t(z))δr(θ, z)x−

1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z)))∇XJ(r(θ, z) + t(z))δr(θ, z)xdx+

θ

σ2
r

(2.24)
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Therefore, the gradient with respect to the rotation parameters is:

∇R,rE(v,R; J) =
⟨︂ 1

σ2
JI

(Iφ−1(x)− J(r(θ, z)x+ t(z)))− 1

σ2
JJ

d2

dz2
(J(r(θ, z)x+ t(z))) ,

∇XJ(r(θ, z)x+ t(z))R

⎡⎢⎢⎣ 0 1

−1 0

⎤⎥⎥⎦x⟩︂+
θ

σ2
regr

(2.25)

Where the X gradient term is expanded in matrix form for 2D sections as:

∇XJ(r(θ, z)x+ t(z))δr(θ, z)x =

(︃
− d

dy
J,

d

dx
J

)︃⎛⎜⎜⎝ x

y

⎞⎟⎟⎠ (2.26)

2.1.7 Distances for Variational Methods

The variational methods described above require building distances between the mean fields

and the histology stacks. In general, we perform guided histology reconstruction as de-

scribed in the estimation problem above using the nissl-stained histology sections due to

their anatomical clarity. The guiding image, I0, is generally an atlas image of the same

modality but in some cases may be a different modality like ex-vivo MRI, in which case

φ can be restricted to simpler transforms like rigid or affine deformations. Cross-modality

matching is also required in 2D when co-registering structural Nissl-stained stacks with con-

nective fluorescent imaging, or other stains. In the former case, as matching is performed
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within modalities, we define a similarity metric based on squared error of intensities. In the

latter case, cross-modal matching is driven by a mutual information similarity metric. The

transformations for the additional stains/modalities are driven by the cross-modal metric.

To build correspondences between the histological stack of 2D sections IR(·, zi) and sec-

tions of the Nissl atlas or cross-modality MRI image I0(·, zi) we use a similarity metric based

on either squared-error (same modality) as described in the above algorithm or mutual in-

formation (cross modality) as described by Kutten et al [128].

Squared-error within modality Define the error function between images d : (I, J)→ R+

a positive squared-error function between images can be defined as the square of the Eu-

clidean distance;

d(I, J) =
1

2
∥J(·)− I(·)∥22 =

1

2

∑︂
x,y.z

|I(x, y, z)− J(x, y, z)|2 .

Mutual information Across modalities, pI,J is the empirical estimate of the joint histogram

density and pI , pJ are the corresponding marginals. The mutual information d(I, J) is given

by

d(I, J) = −
∑︂
η

∑︂
ψ

pI,J(η, ψ) log

(︃
pI,J(η, ψ)

pI(η)pJ(ψ)

)︃
. (2.27)
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2.1.8 Diffeomorphometry of Histological Procedures

The embedding of our algorithms into the diffeomorphic random orbit model described here

allows the quantification of metric distances between trajectories and shapes within the same

orbit. We demonstrate the advantage of this property by performing the first localized quan-

titative analysis of deformative effects at each stage of the histology process (the prepara-

tory and the sectioning processes). Using Beg’s volume-to-volume LDDMM model with the

cross-modal metric defined in the previous section, we compute transformations between

the different coordinate spaces associated to in-vivo, ex-vivo, and histology stack produced

by guided reconstruction, thus separating the deformative effects of the preparatory process

from the sectioning process. In order to quantify the non-linear distortion between these

coordinate spaces, we examine the first fundamental form of the mapping computed by the

above method determines how vectors are transformed under mapping between coordinate

systems and is specified by the Jacobian matrix (∂Xφ).

∂Xφ(x, y, z) =

⎛⎜⎜⎜⎜⎜⎜⎝
∂φ1(x,y,z)

∂x
∂φ2(x,y,z)

∂x
∂φ3(x,y,z)

∂x

∂φ1(x,y,z)
∂y

∂φ2(x,y,z)
∂y

∂φ3(x,y,z)
∂y

∂φ1(x,y,z)
∂z

∂φ2(x,y,z)
∂z

∂φ3(x,y,z)
∂z

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.28)

The determinant | det ∂Xφ| and its logarithm are fundamental measures of coordinate change

and in the comparative study of the in-vivo, ex-vivo, and histology coordinate spaces, di-

rectly measures the amount of metric distortion within the same subject, and the change
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in measure across coordinate systems of different subjects. Naturally, the mapping between

each coordinate space may contain a rigid 3D component which we exclude from our morpho-

metric measurement. The non-rigid component of the 3D distortion caused by the histology

processing is isolated by performing affine registrations between each coordinate space as

a pre-processing step to diffeomorphic registration. The scale change assocated with the

determinant of the affine transform matrix is included in the reported percent scale change.

2.1.9 Serial Section Shape Interpolation

We make one final extension of our model to enable estimation of diffeomorphic trajecto-

ries along the sectioning axis of our reconstructed volumes. This can be a useful tool for

upsampling highly anisotropic image volumes like histology or serial-section MRI. We can

view this problem as equivalent to estimation of a statistical average of shapes in images.

This becomes a natural extension as it is a direct application of the computational anatomy

random orbit model framework of Bayesian template estimation, first described in [123].

Template estimation is traditionally employed to compute atlas images which are minimally

distant (in terms of some similarity metric) from a sample of some population of images.

We take the same maximum a posteriori approach here, where our population subjects or

observations Ii are the neighboring sections to a desired position to be upsampled.

We define our estimate of the data at an unobserved position as a Jacobian-weighted mean

of the population along their diffeomorphic trajectories. The diffeomorphic trajectories are
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solved by the minimization in Eqn. (2.12). In the classic template estimation case, these

minimizations are performed iteratively such that population subjects are mapped to an

iterative estimate of the population’s centroid or mean. The per-iteration estimate of the

mean image is given by a weighted sum at the endpoints of these trajectories:

Ī
(k+1)

=

∑︁N
i=1 Ii ◦ φv(k)i

|Dφ
v
(k)
i
|∑︁N

i=1 |Dφv(k)i
|

(2.29)

where φ
v
(k)
n

is the diffeomorphism of the velocity field v for observation i at iteration k, N

is the number of population subjects, and D indicates the Jacobian determinant of φ in

space. The notion of weighting by the Jacobian determinant |Dφ
v
(k)
i
| is a natural one as

the Jacobian encapsulates the change of coordinates from each observation to the mean.

It is, in a sense, weighting the importance of the observations - for instance, if a pixel in

the mean/centroid space maps to many pixels in an observation, that pixel should be more

heavily weighted in the computation of the average image by a degree commensurate to its

importance. In the original expectation-maximization formulation, this process is repeated

until the mean image converges to the desired minimally distant population mean.

In the case of image slice upsampling, the two observed slices neighboring the z-position

where we want to upsample the volume are the only two population “subjects” or “observa-

tions”. The mean along the diffeomorphic trajectory between a pair of images is a simpler

problem which does not require the notion of a large population’s centroid and can be com-
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puted in a single shot without an iterative procedure. As such, we define a weighted mean

Īr =
I0(φ

0, r
R

0 )|Dφ0, r
R

0 |(1− r
R
) + I1(φ

1, r
R

1 )|Dφ1, r
R

1 | rR
|Dφ0, r

R
0 |(1− r

R
) + |Dφ1, r

R
1 | rR

(2.30)

where R is the z-axis distance between two observed slices I0 and I1 and r is the z-axis

distance from I0 at which to estimate the interpolation between the observations. We use

Eqn. (2.30) to directly compute the the midpoint (or any arbitrary point) along the trajec-

tory between I0 and I1 in a single iteration. We expect the flow to be symmetric in time,

so we constrain φ as in [38]. This formulation is a modification of the Jacobian-weighted

mean of Eqn (2.29) where the population observations are averaged at an intermediate point

determined by the diffeomorphic trajectory rather than the estimation of a population’s

centroid. Here, φa,b0 is the diffeomorphism computed from the time-varying velocity field vt

parameterizing (2.12) from time t = a to time t = b for the mapping of I0 to I1 (φa,b1 being

the same for I1 to I0).

2.1.10 Software Implementation

A software pipeline that performs start-to-finish volume reconstruction operations was orig-

inally implemented in C++ and MATLAB for processing on a high performance computing

cluster. This pipeline was later upgraded to a full implementation in PyTorch, optimized on

run on GPU or CPU (open-source version available at https://github.com/brianlee324/

torch-lddmm). To date, the pipeline has been used to reconstruct thousands of mouse brains

https://github.com/brianlee324/torch-lddmm
https://github.com/brianlee324/torch-lddmm
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and tens of marmoset brains as well as perform registration into common coordinate spaces.

The general pipeline workflow is illustrated in Fig 2.3. The general order of operations in-

Figure 2.3: Histology registration pipeline workflow. Reconstruction pipeline workflow
from multi-modality histological image sections to segmented data and connectivity analysis.
The proposed workflow starts with disassembled multimodal histology and reconstructs 3D
Nissl-stained volumes using either MRI or atlas guidance. Cross-modal reconstructions are
then achieved by registration to the corresponding Nissl reconstruction. Segmentations are
obtained as a side product of atlas registration. In the final step, connectivity-related features
are extracted from the 3D volumes in a common coordinate space.

volves first performing the volume reconstruction operations on the anatomic Nissl stack,

using either atlas guidance or same-subject reference guidance. The reconstruction process

simultaneously produces the curvature-preserved Nissl volume as well as the segmentations

inherited from the joint atlas-mapping component. Then, the reconstructed Nissl volume is

used as a reference to cross-modally reconstruct all other modalities, such as fluorescence mi-

croscopy, bringing all modalities into a common coordinate space with segmentations where

further downstream analysis can occur.

The run-time/complexity for the volume LDDMM algorithm has complexity order nTNvoxlog(Nvox),

where nT is the number of steps for integrating the time varying velocity field, and Nvox is the
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total number of voxels. The slice based portion of the code is order Nvox. While the FFTs

are order NlogN , in practice most computation time is spent during linear interpolation

(order N). A start-to-finish example Jupyter notebook of GPU-accelerated MRI-guided re-

construction has been posted at https://github.com/brianlee324/torch-lddmm/blob/

master/examples/8_Section_Alignment_to_Reference.ipynb in which processing time

was a total of 47 minutes for image volumes of dimension 323x473x340 (51,944,860 voxels).

In contrast, the same operations performed on a 16-core CPU would consume over 30 hours.

2.2 Results

We apply the algorithms described here for volume reconstruction in a number of datasets,

including simulated data, the Mouse Brain Architecture Project mouse histology dataset,

the Brain/MINDS marmoset brain histology dataset, a mouse cardiac MRI dataset, and

human brain histology. In each section below we will describe the data and show results of

volume reconstruction.

2.2.1 Evaluation of Reconstruction Accuracy

Binary Phantom with Curvature Distortion

The model was applied to binary image phantoms in order to examine the “curvature” prob-

lem in which a 3D curved object cannot be accurately reconstructed after being sectioned.

https://github.com/brianlee324/torch-lddmm/blob/master/examples/8_Section_Alignment_to_Reference.ipynb
https://github.com/brianlee324/torch-lddmm/blob/master/examples/8_Section_Alignment_to_Reference.ipynb
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This is illustrated in Fig 2.4. We produced sections through the 3D phantom, applying the

atlas-free and the atlas-informed models. The results from the atlas-free algorithm in which

the sections are aligned based on the Sobolev smoothness followed by mapping of the atlas

via LDDMM are summarized in Fig 2.4c. The atlas-free section alignment reconstructs the

target stack, demonstrating a cylindrical reconstruction rather than the curved template

shape, followed by LDDMM alignment I0 ◦ φ−1. This illustrates the curvature issue. The

atlas coordinate grid is transformed significantly (bottom right of Fig 2.4c) in order to match

the target. Despite this significant deformation, there is some residual error in the atlas-to-

target mapping with the remaining tendrils where the ends of the phantom did not shrink

inwards. Here, the energy required to push the ends of the atlas inwards was greater than

the potential image matching improvement.

Shown in Fig 2.4d is the atlas-informed solution. The bottom row shows that simultane-

ously solving for reconstruction and registration parameters allows for more consistent stack

reconstruction of the target resulting from the influence of the smooth deformation of the

template onto the target in the joint solution.
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Figure 2.4: Comparison of atlas-free and atlas-informed models in simulated bi-
nary phantom. a) An illustration of the classic curvature reconstruction problem. b)
The unobserved 3D-phantom is randomly sectioned and observed as Ji, i = 1, . . . , n. c) Re-
construction of the histological stack using the atlas-free method. The top row shows the
histological stack and atlas. The bottom row shows the reconstructed histological stack IR̂

alongside the deformed phantom atlas I = I0 ◦ φ−1 which has been mapped to histological
sections, and the diffeomorphic change of coordinates φ̂−1. d) Reconstruction of phantom
using the atlas-informed model. Each row depicts iterations of the reconstructed histological
stack IR̂ alongside the deformed atlas I = I0 ◦ φ̂−1 and deformed coordinates. The bottom
row is the convergence point of the algorithm.

These results are depicted by the motions of the atlas coordinate grids when deforming
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onto the targets in Fig 2.5. Tandem optimization of section alignment parameters and

diffeomorphisms produces a nonlinear mapping with lower metric cost (Fig 2.5c is less warped

than Fig 2.5b).

Figure 2.5: Comparison of resulting diffeomorphic transformation of atlas phan-
toms. The warped coordinate grids illustrate the difference in the mapping deformation
from the atlas-free methods from (A) to histology stack target (B) versus the atlas-informed
algorithm which produces (C).
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Simulated jitter on the Allen Atlas

A similar experiment was performed using the Allen mouse brain atlas as the 3D phantom.

A target histology stack was generated by sectioning the Allen atlas in simulation and ap-

plying random rigid transforms to its coronal sections. The atlas images were sampled at

40 mu m isotropic voxels. This is depicted in Fig 2.6a. A simulated atlas was generated by

applying a given random diffeomorphism to the Allen atlas. This random diffeomorphism is

depicted in Fig 2.6c. The histology stacks were then reconstructed and diffeomorphic trans-

formations generated between the atlas and target stacks using both models, intending to

recover both the unknown rigid transforms from Fig 2.6a and the unknown diffeomorphism

from Fig 2.6c. Fig 2.6b shows the atlas-free method method (bottom left) compared to the

atlas-informed method (bottom right). The atlas-informed method nearly reproduces the

original coordinates whereas the atlas-free method drifts away from the original coordinates.

Note that although the diffeomorphisms are not identical, this does not necessarily indi-

cate segmentation error as small differences in stack alignment can be compensated for by

nonlinear registration during atlas-mapping.
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Figure 2.6: Atlas phantom simulation to validate recovery of sectioning parame-
ters and diffeomorphic shape difference. a) The ground truth target I is sectioned to
generate the observed target Ji. b) Transformed grids illustrating the brain phantom atlas
(top) shown mapped onto the histological stack using the atlas-free algorithm (bottom left)
and the atlas-informed algorithm (bottom right). c) The ground truth diffeomorphism to be
recovered.
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Simulated Bias and Variance Statistics

Figs 2.7 and 2.8 show results quantifying the bias and viarance of the joint estimation of

the diffeomorphism transformation and the rigid motion jitter in simulation. Eqn. (2.2) was

simulated over a range of Gaussian white noise selections while simultaneously varying the

jitter rigid motions of the sections along with multiple deformations of shearing applied to

the template I0. Shearing produced images where each section was successively offset by

0.25 pixels in both x and y directions, cumulatively producing the “shear” effect illustrated

in Fig 2.7. Fig 2.8a keeps the stack jitter fixed and varies the noise levels; Fig 2.8b varies

the stack jitter. The random rigid motion jitter was normally distributed (tx, ty) ∼ N (µ =

0, σ2 = 36), θ ∼ N (µ = 0, σ2 = 100) in pixel units. The RMSE, bias, and standard deviation

of the estimated parameters were computed in each experiment and plotted as a function of

error units versus noise level. 500 simulations per experiment were performed.



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 51

Figure 2.7: Simulated noise on a binary image phantom. Left column shows phantom
for identity, shearing, and jitter of sections (successive rows); right column shows Gaussian
white noise added to the atlas at various standard deviations.
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Figure 2.8: Evaluation of estimator MSE, variance, and bias. a) Statistics on the
translation-rotation estimators for noise levels varying initial conditions. b) Statistics on the
rigid motion estimators where the section jitter was added in a random fashion.
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In each experiment, estimator accuracy is preserved up to high noise levels. At typical

noise levels (σ ≤ 0.5), we observe subpixel RMSE and small bias. Fig 2.8b shows that the

rotation estimator is virtually unbiased whereas the translation estimator does have small

subvoxel bias. It is likely that more rotational error is accounted for by section realignment

than deformable mapping, whereas both play a relatively balanced role in translation correc-

tion. Small motions are ill-posed in that small rigid-motions can accommodate small atlas

deformation. Fig 2.8c (top row) shows the case where there is jitter in the target stack.

Estimator statistics are computed in each of these cases showing similar subpixel errors.

A similar analysis was performed for the Allen atlas brain phantom simulations. The

reconstruction RMSE observed in the brain phantom simulation (bottom row of Fig 2.8c)

is lower than that observed in the simple curved phantom in pixels. It is likely that this is

due to the presence of more contour lines in grayscale images versus binary images. These

additional features allow for more accurate distinction of matching error than simpler images

with small numbers of distinct level lines. This is consistent with the demonstration in [125]

showing that the stabilizer of the group corresponding to vector fields tangent to the level

lines of the image cannot be uniquely identified or retrieved via any mapping methods that

look at color or contrast of the image as the identifying feature.



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 54

2.2.2 Evaluation of Registration Accuracy

Although the performance of LDDMM is well described in the literature, we additionally

evaluate the accuracy of our multi-modal 3D-to-3D registration model by identifying eight

landmarks in our marmoset brain dataset drawn from the Brain/MINDS study described

below (see Table 2.1 for summary of landmarks and description of their identification, see

Section 2.2.4 for description of dataset), six of which are drawn from the Brain/MINDS study

[129]: center of the anterior commissure, mid-sagittal anterior corpus callossum, mid-sagittal

posterior corpus callossum, left and right anterior dorsal lateral geniculate nucleus. We

identify two additional landmarks of our own, the meeting of the left and right lateral sulcus

with the cortical surface at the anterior-most point. These eight landmarks are manually

identified across all in-vivo MRI, ex-vivo MRI, and nissl reconstructions in our distortion

quantification dataset.

The Brain/MINDS dataset is ideal for this analysis as it includes four coordinate spaces:

in-vivo, ex-vivo, histology reconstruction, and atlas. We evaluate the accuracy of all three

mappings that connect these coordinate spaces. An analysis of mean landmark transfer

accuracy across all 15 subjects is performed on the three mappings. We report an average

transfer accuracy across all eight landmarks of 0.2602 mm for the atlas to nissl reconstruction

mapping, 0.2319 mm for the ex-vivo MRI to nissl reconstruction mapping, and 0.3487 mm for

the in-vivo MRI to ex-vivo MRI mapping. Both mappings used to quantify tissue distortions

have landmark transfer error of 1-2 voxels for all landmarks, which we consider to be within
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the error range expected for human landmark identification and transform interpolation.

Sample image overlaps resulting from registration warps are displayed in Figure 2.9.

Figure 2.9: Image overlap after volume to volume registration. Registration accuracy
was measured to validate quantitative distortion measurements. The top row shows overlap
of a subject’s in-vivo MRI (magenta) mapped to the ex-vivo MRI (green) and the bottom
row shows overlap of a subject’s ex-vivo MRI (magenta) mapped to the nissl reconstruction
(green). Landmarks located near the mid-sagittal plane from the landmark transfer analysis
are overlayed on each image: posterior and anterior corpus callossum, anterior commissure,
and the fastidium of the fourth ventricle.
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Landmark
Location

Description

Transfer Accuracy:
In-vivo to

Ex-vivo (mm)

Transfer Accuracy:
Ex-vivo to
Nissl (mm)

Transfer Accuracy:
Atlas to

Nissl (mm)

Dorsal lateral

geniculate
nucleus (left)

Posterior-most point of
left dorsal lateral geniculate

nucleus in coronal view
0.2432 0.1615 0.1789

Dorsal lateral

geniculate
nucleus (right)

Posterior-most point of
right dorsal lateral geniculate

nucleus in coronal view
0.2411 0.1372 0.2106

Anterior commissure
Mid-sagittal anterior-
most point of the

anterior commissure
0.3632 0.1302 0.1866

Corpus callossum,

anterior

Anterior-most point of
the corpus callossum in

mid-sagittal plane
0.4326 0.2859 0.1625

Corpus callossum,

posterior

Posterior-most point of
the corpus callossum in

mid-sagittal plane
0.2875 0.3486 0.2648

Lateral sulcus (left)
Posterior-most intersection

of left lateral sulcus
with cortical surface

0.4939 0.3290 0.4156

Lateral sulcus (right)
Posterior-most intersection

of right lateral sulcus
with cortical surface

0.5201 0.3578 0.4887

Fastidium of

fourth ventricle

Mid-sagittal point
of the fastigium of
the fourth ventricle

0.2083 0.1053 0.1742

Table 2.1: Summary of landmarks selected for registration accuracy evaluation alongside
mean landmark transfer accuracy across 15 subjects.
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2.2.3 Atlas-Informed Volume Reconstruction of Mouse Brain Ar-

chitecture Project Data

Our method was implemented to support the Mouse Brain Architecture Project based at

Cold Spring Harbor Laboratory, which contains thousands of mouse brain histology volumes.

Here, we use the Allen Institute’s mouse brain atlas [124] (CCF 2017) as the template

coordinate space. The experimental workflow generating the data utilizes a tape transfer

technique [130], allowing for the sections to maintain geometrical rigidity within section and

also allowing for physically disjoint components to maintain their spatial relations. The tape

method ensures that the number of missing sections is minimal, with serial sections cut at a

thickness of 20 µm and alternate sections subjected to Nissl staining alongside staining with

histochemical or fluorescent label. These Nissl stained sections form the basis of alignment

to a Nissl whole-brain reference atlas.

We selected specific targets which were prone to poor registration due to image intensity

local minima. In particular, structures like the cerebellum tend to be difficult to register

accurately due to their folded nature; one fold can easily be mistaken for the adjacent fold,

and if the target and atlas are not well initialized, the deformation required to flow one fold

onto another can have a high metric cost. We are also interested in inspecting lower-contrast

structures like the corpus callossum, which may be poorly registered due to local minima in

other nearby bright structures. We also evaluate our mapping quality in the hippocampal

region, which is one of the most relevant regions for the study of neurodegenerative diseases.
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Figure 2.10: Comparison of reconstruction and mapping using atlas-free and atlas-
informed models on data from the MBAP database. a) Reconstruction of an MBA
Nissl-stained brain histological stack using the atlas-free method. Top row shows the histo-
logical stack and Allen mouse brain atlas. Bottom row shows the reconstructed histological
stack IR̂ alongside the deformed phantom atlas I, and the diffeomorphic change of coordi-
nates φ̂−1. b) Reconstruction using the atlas-free method. Top row shows the histological
stack and Allen mouse brain atlas. Middle row depicts intermediate iterations of the recon-
structed stack IR̂ alongside the deformed atlas I0 ◦ φ̂−1 and coordinate grid. Bottom row
shows the convergence point of algorithm.
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The reconstructed histological target stack in the atlas-informed model shown in Fig 2.10a

takes on the shape of the atlas but is prone to reconstruction artifacts. The deformation grids

produced by the atlas-informed mapping is much smoother and has many fewer wrinkles than

the atlas-free mapping. This is seen clearly in Fig 2.11.

Figure 2.11: Comparison of diffeomorphic transformation recovered from atlas-free
and atlas-informed models. The warped grids illustrate the difference in the mapping
deformation from atlas (top) to target using the atlas-free method (bottom left) versus the
atlas-informed method (bottom right), performed on real brain data from the MBA Project.

Fig 2.12 shows examples of improved segmentations in selected regions of the brain. The

atlas-informed model generates more accurate segmentation results and produces smoother

mappings as exhibited by the less wrinkled and distorted grids (bottom row b), showing
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more consistent results throughout the MBAP dataset.

Figure 2.12: Selected regions of the brain segmented by the atlas-informed and
atlas-free models carry the label map from the Allen atlas under the computed
diffeomorphism. The bottom row shows several examples where optimization of the atlas-
free solution is trapped in false minima due to folded or low-contrast structures. The top
row shows correction by the atlas-informed algorithm. A) The corpus callossum and lateral
ventricle. B) The dentate gyrus, corpus callossum, and lateral ventricle. C) The cerebellar
white matter.

2.2.4 MRI-Guided Volume Reconstruction of Brain/MINDSMar-

moset Histology Data

We additionally construct a pipeline to support analysis of the Brain/MINDS Marmoset

Brain Architecture Project. We apply our methodology to a dataset of marmoset brains

obtained as part of the RIKEN Brain/MINDS project and demonstrate solutions to the

multi-modal stack reconstruction problem as well as robust atlas mapping results across
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four modalities. The Brain/MINDS dataset was prepared using a high throughput histo-

logical and image processing pipeline, described in [131]. Briefly, each individual marmoset

brain dataset consists of high resolution (9.4T) MRI scans (both in-vivo and ex-vivo post

perfusion/extraction/fixation preparations) and high resolution images of a series of brain

sections that have undergone histological processing to stain for Nissl substance, Myelin,

Fluoroscent neuronal tracers and the expression of Cholera toxin B (CTB). The in-vivo MRI

was acquired from the marmosets prior to any experiments at a resolution of 0.269 mm *

0.269mm * 0.539 mm per voxel. The ex-vivo MRI was acquired after the injection of tracers,

the incubation period, perfusion, and fixation at a resolution of 0.1 mm * 0.1 mm * 0.2mm

per voxel. The histological sections were imaged after sucrose cryoprotection, freezing, and

cryo-sectioning. For simplicity, we refer to the procedures that occur between the in-vivo

and ex-vivo MRI acquisitions as the “preparatory processes” and the procedures that occur

between ex-vivo MRI acquisition and histology as the “sectioning process”. The histolog-

ical image data was originally acquired at 0.46 µm in-plane resolution with 20 µm section

thickness (alternating through four stains resulting in 80 µm gap between sections of a single

modality, resulting in a ∼174x factor of anisotropy between XY and Z directions) and was

downsampled to 80 µm in-plane resolution for computational purposes. We additionally use

the Brain/MINDS marmoset brain atlas [129] which includes a nissl-stained 3D volume as

the template coordinate space in our processing pipeline.

The histological restacking was guided by a same-subject ex-vivo MRI scan where avail-
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able. These informed variational solutions were optimized for each of fifteen brains in the

Brain/MINDS dataset and we observed accurate estimates of the reconstructed stacks con-

sistent with simulations previously reported in the above sections and in previous work [132].

Segmentations were projected from the registered Brain/MINDS atlas as an auxiliary output

of the reconstruction workflow and sample segmentation and process detection results are

depicted in Fig 2.13 for an individual marmoset brain. Segmentation of the fluorescence,

myelin, and CTB images was achieved using the same reconstruction framework that was

applied to the original Nissl stack, by using the corrected Nissl stack as an exact shape prior

with only rigid in-plane cross-registration connecting the two series and using the cross-

modality similarity metrics of Section 2.3. Fig 2.13 shows examples of fluorescent image

stacks being reconstructed by transferring the segmentation computed on the Nissl stack.

The top two rows of Fig 2.13 show the computed transforms applied to the full resolution

fluorescence image stack. Major connections and fiber tracts originating from the fluoroscent

tracer injections (Red: TRE3-tdTomato anterograde; Green:TRE3-Clover anterograde; Blue:

Fast Blue retrograde) can be identified from the color-coded stains in 3D. The bottom row

of Fig 2.13 shows 3D reconstructions of the tracings.
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Figure 2.13: Sample Nissl-stained and fluorescent data displayed with segmented
and reconstructed tracer detections. Top two rows: Nissl and fluorescent reconstructed
segmented volumes. NB: the sections are originally cut in the coronal section; a sagittal vir-
tual cut of the 3D reconstructed brain is shown. The upsampled reconstruction transforms
are applied to the full resolution fluorescent tracer images where tract tracing can be per-
formed. Here, the three injected tracers are labeled in the high resolution image (mid left).
Bottom row: 3D visualization of the Nissl stack reconstruction overlayed with the red, green,
and blue tagged tracer paths detected from the registered fluorescence volumes.
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2.2.5 Effect of Model Priors on Curvature Preservation

The constraint of anatomical smoothness within a brain volume is critical to producing accu-

rate reconstructions, particularly in cases with missing data or tissue damage (for instance,

the cross-modality registration presented here in the case where the Nissl stack is damaged

or has missing sections). As previously introduced in our reconstruction and registration

model, we incorporate a smoothness prior in the form of a Sobolev derivative norm to pro-

vide robustness and control the dimension during the diffeomorphic mapping and restacking

solution, as well as a shape prior in the form of an atlas/reference similarity function. The

Sobolev prior couples adjacent sections and results in continuity of the reconstruction. It

is particularly noticeable in the registration of multiple subject modalities to one another

where sections are missing or damaged. The importance of this prior is visible in panels A-C

of Fig 2.14.
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Figure 2.14: Reconstruction examples depicting the effect of the smoothness prior.
When the Nissl stack (c) has missing or noisy sections, reconstruction to the next-best Nissl
section contains small distortion accumulations (a). Inclusion of a smoothness constraint
corrects this error (b). Additionally, highly damaged Nissl stacks can still be reconstructed
despite major differences between damaged Nissl sections to corresponding MRI sections.
For instance, ex-vivo MRI of a particular subject marmoset brain prior to sectioning (d) and
successful Nissl reconstruction of the same marmoset brain despite major damage caused by
sectioning process (e).

The effect of the image intensity smoothness prior also manifests during Nissl-to-MRI

stack reconstruction when there is significant damage to the Nissl brain. An example of

our framework’s ability to achieve accurate reconstruction when there is significant tissue

damage (such as cutting and folding in particular sections) to the sections is shown in panels

D and E of Fig 2.14.

Our pipeline also allows for the correction of curvature artifacts associated with the histo-
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logical restacking unguided by same-subject MRIs. Fig 2.15 shows examples of the curvature

artifacts associated with 2D-3D reconstructions unguided by a reference brain [133]. These

figures demonstrate that the MRI guided registration pipeline solves the curvature issue. An

example of this problem is shown in Fig 2.15. The left 2 columns show the unguided stacking

alignment which results in a large curvature artifact (highlighted within the yellow bounding

box). The third and fourth columns show the guided restacking using our current pipeline.

The yellow bounding boxes depict the areas with highest curvature bias effects. The curva-

ture of the coordinate grid depicted in Figure 2.15 is encoded by the 2D component of the

3×3 Jacobian matrix of the transformation. Notice the curvature of the grid is more extreme

for the unguided reconstruction which has no MRI to guide it globally. The Malandain cur-

vature artifact is present in the warping of the grids in the uncorrected restacking case due

to the higher metric cost of φ required to map an atlas onto the accumulated distortions of

an unguided reconstruction.
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Figure 2.15: Histology restacking examples from Brain/MINDS dataset. Columns
1 and 2 depict sections exhibiting Malandain curvature artifact (notice cortical bend) as-
sociated to the unguided alignment with column 2 showing deformation of the underlying
coordinate associated to the atlas-to-target warping; columns 3 and 4 show the Nissl his-
tological stackings which are guided via the template based deformation. Regions of large
artifact compared to none are highlighted via yellow boxes.
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2.2.6 Quantification of Metric Distortions in Brain/MINDs Data

The diffeomorphometric models described here uniquely place this work in a position to

quantitatively study the metric distortions caused by the histology processing. We examine

the first fundamental form, or determinant of the metric tensor, of the diffeomorphic mapping

as described in Eqn (2.28). We do this to quantify the distortion caused by the histological

process. Several preparatory processes occur in between the in-vivo MRI acquisition and the

ex-vivo MRI acquisition – we interpret the Jacobian determinant of the mapping between

these coordinates spaces as the combined deformative effect of tracer injection, extraction,

perfusion, and tissue fixation. We report the “percent scale change factor” which is computed

as | det ∂Xφ|
1
3 , the cube root of the Jacobian determinant, and which represents the per-axis

local scale change. Similarly, the freezing and sectioning processes occur between the ex-vivo

MRI acquisition and the histological imaging. Under our informed histological reconstruction

model we can interpret the scale change between these two coordinate spaces as the combined

deformative effect of freezing/sectioning.

We illustrate the quantitative properties of the Jacobian matrix as a first-order description

of the map. Four sample measurements (two of the sectioning process, A and B, and two of

the preparatory process, C and D) from the dataset are shown in Fig 2.16. These demonstrate

that there is minimal metric scale change away from the identity map for the ex-vivo MRI to

sectioned histology maps. However, the measured metric scale was much higher for the in-

vivo pre-preparatory MRI to ex-vivo post-preparatory MRI maps. Panels A and B show the
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percentage metric change away from the identity of the cube-root of the Jacobian between

ex-vivo MRI and the Nissl reconstructed brains. Shown as a heat-map superimposed over

the gray level images is the cubed root of the Jacobian determinant for the central sagittal

section of each subject for each of two brains for mapping ex-vivo to histology stack section.

Figure 2.16: Local scale factor change in two ex-vivo to histology mappings and
two in-vivo to ex-vivo mappings. Shown is the percent scale change away from the
identity of the mapping as measured by the cube-root of Jacobian determinant; blue depicts
shrinkage, red expansion. Panels A and B show two examples of ex-vivo MRI mapped to
Nissl histological stack; panels C and D show the same for the ex-vivo to in-vivo MRI. Yellow
boxes depict intense scale changes which are depicted via grid deformation shown in Fig 2.18.

As depicted by the color bar, the maximum value of blue represents 20 percent expansion



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 70

in a dimension, with the red implying contraction. Panels C and D show similar analyses

for two brains corresponding to ex-vivo to in-vivo MRI maps, indicating several areas of

significant contraction and expansion. Overall, we report the mean across 15 subjects of the

median absolute percent scale change as 1.97 ± 0.38 % for the sectioning process (ex-vivo

MRI to reconstructed histology mapping) and 6.90 ± 2.08 % for the fixation process (ex-vivo

MRI to in-vivo MRI mapping).

Shown in Fig 2.17 are histograms of the percent scale change factor between the ex-vivo

to Nissl histological stack (A & B) and the ex-vivo to in-vivo spaces (C & D) for the same

brains shown in Fig 2.16.

As seen in Fig 2.16 and Fig 2.17, the change in measures between the ex-vivo post-

preparatory and in-vivo MR-measured coordinate systems are large and mostly contractive in

each dimension as measured by the cubed-root of Jacobian determinant. In comparison, the

corresponding metric change due to the sectioning process are small, and are almost symmet-

ric around zero (so that both shrinkage and expansion occurs in roughly equal proportions).

The histograms of Fig 2.17 demonstrate that the range of the ex-vivo post-preparatory to

in-vivo MR maps are nearly three times in terms of median absolute scale change. Fig 2.18

shows that scale change can be as much as 20-25 percent in a single axis dimension as mea-

sured by the cubed-root of Jacobian determinant. Shown are sample in-plane deformations

for magnified brain regions from Fig 2.16. Notice that the intense blue indicates 25 percent

expansion, and intense red indicates 25 percent contraction along a single axis dimension.
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Figure 2.17: Histograms of local percent scale factor change in two ex-vivo to
histology mappings and two in-vivo to ex-vivo mappings. Shown are histograms of
the percent scale in single axis dimension as measured by cube-root of Jacobian determinant
of maps shown in Fig 2.16. Panels A and B show the ex-vivo MRI mapped to Nissl histological
stack; Panels C and D show the ex-vivo MRI to in-vivo MRI histograms.
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Figure 2.18: Metric scale change associated with subvolume sections between in-
vivo and ex-vivo MRIs. Maximum blue indicates 25 percent expansion, maximum red
indicates 25 percent contraction as measured by the cubed-root of Jacobian determinant.
Right column shows the how a uniform square grid on the in-vivo brain deforms when
mapping to the ex-vivo brain. This helps visualize the scale factor change from identity.
Both grid expansion (top row blue) and grid contraction (bottom row red) is seen.

A closer examination of the brain-wide distribution of changes in tissue volume due to

the preparatory process between the in-vivo and the ex-vivo MR images is shown in Fig 2.19.

The heat map of the percent scale change factor of one mapping from in-vivo to ex-vivo MRI
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is shown in sagittal and transverse sections of the same brain, with maximal red depicting

8 percent shrinkage along a single scale dimension. Delineation of cortical and subcortical

structures (lines in Fig 2.19) from the atlas mapping shows that the distortions are not

uniformly distributed across the cortex.

Figure 2.19: Metric scale change of in-vivo to ex-vivo mapping in atlas coordi-
nates. Percent scale factor heat map is superimposed on olfactory bulb, cortical areas,
septum, thalamus, epithalamus, pretectum, brainstem, hypothalamus, cerebellum, cranial
nerve, entorhinal cortex. Panels A & B show section outlines of structures in the Paxi-
nos/Hasikawa atlas in sagittal and transverse views. Panels C & D show the metric scale
change for the same sections. The color bar depicts maximum red of percent scale contraction
in a single axis dimension.

Thus, in future work quantifying cell or process densities, it would be important to
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take into account these local scale changes, rather than relying on an overall scale factor

which may or may not reflect what is going on at a specific location in the brain. Note the

importance of acquiring an in-vivo and an ex-vivo MRI scan, without which this analysis is

not possible.

The ex-vivo to histology coordinate mapping captures the deformative effects of the

“sectioning” process. This mapping enables not only the histological reconstruction but

also the segmentation of brain regions which allows the quantitative measurements of scale

factor change. In an analysis of the dataset of 15 brains, the cerebral cortical areas, thalamus,

brainstem and the cranial nerves showed a local scale change of < 1% per axis as measured by

the percent scale change factor. The hippocampus, basal ganglia, pretectum and cerebellum

showed a local change of 2-3% and the hypothalamus showed a local change of 4% per

axis. The in-vivo to ex-vivo coordinate mapping encompassing the extraction, perfusion,

and fixation procedures shows much higher levels of distortions when averaged across the

dataset. The cerebral cortical areas, thalamus, brain stem and the cranial nerves show

a significantly larger absolute scale change of 5-6% per axis. For the hippocampus, basal

ganglia, pretectum, cerebellum, the difference was 6-8% for the in-vivo to ex-vivo maps. The

hypothalamus showed a large change of 10% per axis.
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2.2.7 Volume Reconstruction in Mouse Cardiac MRI

As a final example, we apply our proposed shape interpolation algorithm (Section 2.1.9) to

upsample a sparsely acquired cardiac MRI dataset. As a part of ongoing project and work

we have previously published [117] ( c⃝2019 IEEE, selections reprinted with permission from

Lee BC et al., Diffeomorphic Upsampling of Serially Acquired Sparse 2D Cross-Sections

in Cardiac MRI, Proceedings of the 2019 IEEE EMBC, 2019), in-vivo heart images of 5

adult male wild type (n = 2) and Galectin-3 knockout (n = 3) mice were acquired using

Bruker NMR/MRI spectrometer equipped with a 11.7T magnet and a gradient set capable

of developing gradient strengths of 740mT/m (Bruker Biospin, Germany). The mice were

positioned on the MRI 4-channel surface coil and an MRI gating trigger was established via

ECG leads and a respirator pillow was used. Cine MRI was collected (15 frames, echo time

(TE) = 1.9708 ms, repetition time (TR) = varied according to the heart rate, slice thickness

of 0.8 mm, in plane resolution of 0.1307 x 0.1307 mm2, flip angle = 12, NEX = 6) at 6-8

short axis slices through the LV. Figure 2.20 shows some examples of the dataset.
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Figure 2.20: Sample images from the mouse cardiac MR dataset. a) A long axis section
interposed with short axis sections. b) Short-axis cine with manual segmentation. c) Short-
axis image stack resliced along the long axis at native resolution. d) True long-axis cine
image.

As a first step, we apply the proposed algorithm of Section 2.1.9 to the 0.1307 mm x

0.1307 mm x 0.8 mm short-axis image stack of Figure 2.20 in order to upsample the volume

by a factor of six along the imaging axis to 0.1307 mm x 0.1307 mm x 0.1333 mm. The

resulting upsampled volume is resliced along the given acquisition’s long-axis image plane
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and compared against the ground truth acquisition alongside other interpolation methods in

Figure 2.21. Because corresponding long-axis acquisitions were not available for all subjects,

we present comparison of long-axis reslicing for visual comparison only. Nearest-neighbor

interpolation produces the expected step artifacts, and while linear interpolation somewhat

smooths these artifacts, they are still evident in panel b of Figure 2.21. Unlike linear interpo-

lation, the proposed model is capable of modeling physical fluid-like deformations, producing

the profile most similar to the ground truth.

Figure 2.21: Long axis view through left ventricle, resampled from several interpolation
methods applied to short-axis image stack alongside ground truth long axis image. a) Nearest
neighbor interpolation applied to short-axis stack. b) Linear interpolation applied to short-
axis stack. c) Our proposed shape-based interpolation applied to short-axis stack. d) Ground
truth long axis scan.



CHAPTER 2. VOLUME RECONSTRUCTION OF SPATIAL IMAGE SERIES 78

To quantitatively evaluate the proposed shape interpolation method, we perform a short-

axis estimation experiment and evaluation. We apply the proposed algorithm to our mouse

cardiac MR dataset and evaluate the accuracy of our estimations by excluding an interior

short-axis slice and comparing our estimate with the excluded ground truth. For example,

in a heart with 10 slice acquisitions along the left ventricle, we estimated slice 2 using only

slice 1 and 3, then we estimated slice 3 using only slice 2 and 4, and so on. In total, the

dataset contains 68 such unique triplets of neighboring slices. We evaluate the mean squared

error of the grayscale image produced by our estimated with the ground truth image and

we compare against traditional linear interpolation. An independent expert has also hand-

segmented all estimated slices from end-systole and end-diastole time points for both the

proposed method and linear interpolation, and we report the resulting segmentation Dice

[134, 135] score against the ground truth.

We perform this evaluation for the end-systole and end-diastole time points for all sub-

jects. A sample series of three acquired short-axis end-systole sections from a single subject

are shown in Figure 2.22. For every triplet of sections, the central section is hidden from

the proposed model and reconstructed using its neighbors. Figure 2.23 shows an example

of this process in which section 7 from Figure 2.22 is estimated by both linear interpolation

and the proposed diffeomorphic interpolation method.
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Figure 2.22: Sample of three consecutive 0.8 mm thickness short-axis sections acquired at
end-systole from a single subject. Sections move closer to the apex as section # increases.

Figure 2.23: Estimation of an intermediate section (section 7 from Figure 2.22) by linear
interpolation (left) and the proposed model (center). The ground truth is shown on the
right. The images are zoomed to the left ventricle for clarity.

Here, the power of the proposed interpolation model becomes evident: obvious ghosting

artifacts are present in the linearly interpolated image while the proposed model produces a

coherent image with left ventricular boundaries that closely match the ground truth image.

Beyond the heart itself, the proposed model clearly produces more accurate estimations in
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regions with thin features, such as the ventral chest surface on the right side of the panels

of Figure 2.23.

We first quantify the accuracy of our estimation by comparing the absolute intensity

difference between our estimated images and the ground truth. Figure 2.24 shows the dif-

ference image for the estimation of section 7 from Figure 2.23 for both linear interpolation

and the proposed model. The difference image shows a close estimate of the ground truth

image intensity by the proposed method. Averaged over the entire dataset, we report a mean

percent reduction in absolute intensity error of 12.7%± 3.26%. We also report that 100% of

slices estimated by the proposed model showed lower absolute intensity error compared to

linear interpolation. We performed a one-sided Wilcoxon rank-sum test between the sets of

individual error values for slice between the two methods and report a p-value of 1.31×10−8,

indicating that our method produces significantly more accurate intensity estimates.

Figure 2.24: Sample absolute intensity difference image zoomed to the left ventricle between
a) ground truth slice and linearly interpolated estimation, and b) ground truth slice and
diffeomorphically interpolated estimation. Colorbar has units of % mean intensity of the
ground truth image.
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In addition to comparing raw intensity, we evaluate our model by comparing manual seg-

mentations of estimated slices by an independent expert against segmentations of the ground

truth by the same expert. We evaluate the Dice coefficient of each dense 2D segmentation

and observe marked improvement in estimation of the LV boundary when comparing our

model (mean Dice score across slices of 0.87±0.085) to linear interpolation (mean Dice score

across slices of 0.79± 0.11). We again performed a Wilcoxon rank-sum test between the two

groups of Dice scores and report a p-value of 1.53× 10−4, indicating significantly improved

accuracy in the left ventricular region using the proposed method. Sample segmentations

for each model overlayed with the ground truth segmentations are shown in Figure 2.25.

The right column of this figure shows close alignment between the ground truth (green) and

proposed model (red), whereas linear interpolation (blue) is generally less accurate.
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Figure 2.25: Sample manual segmentations of linearly interpolated estimations (left, blue),
diffeomorphically interpolated estimations (left center, red), ground truth (right center,
green), and all three overlayed on the ground truth (right).

Alongside improved upsampling accuracy, an additional benefit of the proposed deformation-

based model is its ability to carry information associated to the sparse observations into the
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upsampled region. For instance, we can apply each section’s computed Jacobian-weighted

averaging to the associated sparse segmentations to produce a densely segmented and up-

sampled volume; this is not possible by linear or nearest-neighbor interpolation. Figure 2.26

shows an example of this effect on a long-axis reslicing of an upsampled short-axis stack.

Figure 2.26: Comparison of sparse segmentations upsampled by a&b) the proposed model,
c&d) nearest neighbor interpolation, e&f) linear interpolation, alongside upsampled grayscale
intensity images. Segmentation by linear and nearest neighbor methods are identical in the
case of 50% thresholding.

In addition to upsampling of cardiac MRI, we show that this method is also relevant for

brain histology data which has a similarly high degree of anisotropy in image resolution. In

Figure 2.27, an example of an upsampled brain histology volume from a sectioned human
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brain chunk is shown. A comparison is made between linear interpolation and the proposed

method.

Figure 2.27: Interpolation of sections from human brain histology chunk. A stack of sections
from human brain histology is reconstructed and upsampled using linear interpolation and
the proposed method, before being sliced at an angle oblique to the sectioning plane. The
resampled oblique plane is shown for linear (left) and shape (right) interpolation.

2.3 Discussion

Here, we have examined the computational anatomy random orbit model at the mesoscale

for the stacking of sectioned whole brains coupled with mapping to annotated atlases. The

standard CA model has been expanded to include the O(3×n) extra rigid motion dimensions

representing the planar histology sections. The estimation procedure solved here simultane-

ously estimates the diffeomorphic change of coordinates between atlas and target histological

stack, as well as the “nuisance” rigid motion parameters for each section in stack space. This

requires the introduction of a smoothness constraint on the target jitter simultaneous with
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LDDMM, which is enforced via a Sobolev metric, encouraging the reconstructed stack to be

smooth by controlling the derivative along the cutting axis.

Dense large deformation diffeomorphic image matching is being used extensively for mag-

netic resonance imaging in the brain at 1 millimeter scale for both T1 and DTI [1, 39, 114,

136] as well as for human anatomy [53] including for transferring the geometries of Cardiac

fibers in dense Cardiac imaging [9, 45] and for radiation treatment planning [43]. These

technologies form the basis of many implementations such as Ashburner’s important SPM

[14, 137]. The aforementioned applications have not included complex prior distributions to

encode distortions such as the Sobolev derivative prior introduced here that may have be

required due to the distortions introduced in the imaging and stacking process.

Our results generally demonstrate that the introduction of an atlas into the estimation

scheme and simultaneous accomodation for the nonlinear atlas-to-target shape difference via

diffeomorphism solves several of the classic problems associated with volume reconstruction,

including the recovery of the curvature of extended structures. Since the atlas gives a priori

indication of the global shape, the tendency to remove distortions along the section axis is

balanced against the desire to minimize the amount of deformation of the atlas onto the

reconstruction. The algorithm is shown to mediate this tension well.

When the shape prior is a same subject reference volume, the guided reconstruction

acts as an improved initialization for nonlinear image registration, placing the voxels of

the subject volume closer to their corresponding voxels in the atlas volume. As with any
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gradient-based optimization framework, LDDMM benefits from improved initialization as

this reduces the likelihood of falling into a local minimum in the objective function. As

shown in Fig 2.15 the sample maps generated by registration of the Brain/MINDS atlas to

an unguided reconstruction versus a guided reconstruction reveals an increased curvature of

the underlying coordinate grid warp associated with the atlas mapping in the unguided case,

indicating a displacement field with higher magnitudes and less homogeneity.

The addition of the smoothness prior via the Sobolev norm is valuable for providing

robustness in the presence of noise or missing data or when the shape prior is not an exact

reference volume. The driving intuition behind the smoothness prior is that in addition to

the subject brain taking the shape of the reference volume, its image should be continuous

and smooth. The effect of this prior is particularly noticeable in the registration of multiple

subject modalities to one another where sections are missing or damaged. This is visible in

the top row of Fig 2.14.

Our quantitative study of the histology-induced distortions (Fig 2.16) reveal that the

general deformation effect caused by the histological process is shrinkage in certain areas

of the brain, and also expansion in other regions. The shrinkage is not surprising as it is

generally well-known that some tissue shrinkage is caused by the histology procedures [72].

Examination of the mean image (Fig 2.19) shows that shrinkage is not uniform throughout

the brain but is generally located in the central and inferior regions of the brain, and near the

ventricles. However, we note that some areas of the brain also showed expansions as depicted
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in the almost symmetric histogram of scale changes. More importantly, the methodology

provides a quantitative measure for every brain voxel of the associated scale factor.

Our 3D volume reassembled maps from the tape transfer assisted histological sections

matched very closely with the ex-vivo MRI maps. When the reassembled volumes from

sections using the tape transfer technique [130] were compared with the ex-vivo post perfusion

MRI, the efficiency of the technique in preserving the tissue becomes evident.

In contrast, quantification of the impact of the preparatory processes which was achieved

by mapping the in-vivo MRIs to the ex-vivo MRIs, confirms the large, uni-directional shrink-

age of brain tissue that has been reported in the literature. We believe that this is the first

time that there has been a detailed quantification of these changes brain-wide. We show that

this shrinkage is not uniform across the brain and different brain areas show quite different

levels of change.

Finally, the embedding of our proposed algorithms into the computational anatomy ran-

dom orbit model enables the application of many existing algorithms based on the random

orbit model to our serially-sectioned datasets. We demonstrate one example by performing

shape interpolation, a derivative of template estimation, on serially-sectioned imagery in

order to upsample them along the sectioning axis.



Chapter 3

Diffeomorphometry for Longitudinal

Shape Analysis

Describing longitudinal morphometric differences between populations and individuals is a

critical task in computational anatomy. Having described methods based on the random

orbit model of computational anatomy for spatial image series in the previous chapter, we

now turn to the study of models for longitudinal image data. In the context of the random

orbit model, this often implies study of the variation of individual shape trajectories asso-

ciated to some mean field, as well as longitudinal morphological differences as encoded by

similar subjects from representative populations. In this chapter, we present a new method

for computing the deviation of individual subjects from models of flow. We demonstrate es-

timation of the infinitesimal drift representing the mean flow of a population and its entrance

88
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into the Eulerian vector field controlling that flow. Each individual is studied longitudinally

by modeling another associated individual drift which acts as the personalized control of

the flow. We provide an augmentation of the classic LDDMM equations to generate “biased

geodesics” for trajectory shooting algorithms, allowing for direct computation of the individ-

ual’s deviation under the influence of a mean drift. Our new model is inspired by diffusion

models from stochastic processes in which the personalized control is a non-stochastic term

representing the additive Brownian component on top of the infinitesimal drift representing

the population. We present results of our model on entorhinal cortical surfaces extracted

from a patient population of the Alzheimer’s Disease Neuroimaging Initiative. Parts of the

following text are selected from our publication on this subject [138] ( c⃝2020 IEEE, selections

reprinted with permission from Lee BC, Tward DJ, Hu Z, Trouvé A, Miller MI. Infinitesimal

Drift Diffeomorphometry Models for Population Shape Analysis. IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 5th International Workship on Differential

Geometry in Computer Vision and Machine Learning, July 2020.).

3.1 Methods

3.1.1 Brownian Motion and Hamiltonian Flows

The work proposed in this chapter is motivated by the goal of developing methods for

encoding diffeomorphic modeling with typical population shape. We explicitly define the
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population shape as represented by the mean vector field encoding the flow of the cohort, and

we associate to each individual in the population a deviation encoding another personalized

vector field. Viewing the diffeomorphism as the state in a dynamical system, then the

typical flow encodes the overall average control; the individual is encoded by the deviation

via an additional personalized control. These high dimensional trends directly encode typical

growth, atrophy, and neurodevelopmental or neurodegenerative disease. We embed into our

new algorithms the estimation of the vector field which is in common to the population as

well as the per subject estimation of the individual deviation.

In describing the model, we use the language of the diffusion and stochastic differential

equations studied in the classical stochastic process literature of Brownian motion with drift

[139]. Of course, we appreciate that in our setting, the state is infinite dimensional. The

infinitesimal drift in our model is the differential change in state given by the diffeomorphic

flow; we associate the mean flow or ”mean drift” representing the population to the infinites-

imal mean of Brownian motion, and likewise associate the personalized infinitesimal motion

or ”personalized control” to the infinitesimal variance. For us the personalized deviation is

not stochastic, but is another deterministic drift term replacing the explicit Brownian term.

Holm [140] has examined diffeomorphic flows in the context of the stochastic term in this

infinite dimensional setting.

Our focus on the infinitesimal mean to encode the population of typical shape as a method

to study individual deviations is motivated by the success of representing population means
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in the field of machine learning and data science. The conditional mean as an estimator is

remarkably efficient and ubiquitous. Examples abound in the literature for representation of

the expected value of moments via the use of maximum entropy models for speech and image

representation [141–148]. The drift term in stochastic optimization and random sampling

for inference in high dimensional spaces has seen a plethora of successful applications, where

drift guides a process towards a particular set of explanations as represented by the posterior

distribution [149–151]. As well, our representation is highly reminiscent of the principles em-

bedded in mixed-effect modeling of what are usually lower dimensional statistics. Here, our

goal is to build into the diffeomorphic flow model itself the typicality of shape as represented

by the population mean as well as the variance of the individual by associating it to the

individual deviation element.

We approach this problem from the Hamiltonian flow perspective. We generally describe

diffeomorphisms by computing geodesics parameterized by initial momentum. This is a

natural representation as geodesics are often described as the motion of a particle through a

curved space when no force acts on it other than the initial impulse. However, in our case, we

seek to model diffeomorphisms controlled by “biased geodesic” flows, in which the particle is

influenced by some external force, here termed the “infinitesimal drift”. This interpretation

makes clear the inspiration that we take from models of particle movement as controlled by

Brownian motion with drift.
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3.1.2 Drift Model for Longitudinal Shape Analysis

Our basic model for longitudinal shape is a mechano-dynamical system in which structures

are viewed as being embedded in a condensed matter continuum where advection and trans-

port hold [2, 14, 152]. In the following text, we will refer to the infinitesimal mean as

the mean drift and the individual deviation as the personalized control for simplic-

ity. The model of dynamics for a given subject i is a dense space-time flow of the state

t → φ
(i)
t (x) ∈ R3, x ∈ R3 with control t → v

(i)
t given as the superposition of drift µ

(i)
t (·)

representing typicality and personalized or individual mechano-dynamics w
(i)
t (·):

dφ
(i)
t

dt
(x) = v

(i)
t ◦ φ

(i)
t (x) , φ

(i)
0 (x) = x (3.1a)

with v
(i)
t = µ

(i)
t + w

(i)
t (3.1b)

where the mean drift µt in an exemplar coordinate system (see Figure 3.1) is transported

into the coordinate system specific to subject i to produce µ
(i)
t , and w

(i)
t is the personalized

control. The Eulerian vector fields v
(i)
t ∈ R3 are modeled as elements of a Hilbert space

of smooth and 1-time differentiable functions of space. In the continuum, this smoothness

corresponds to the motions seen for transport and advection as associated to growth and

atrophy from millimeter to meso-scale. We model the dense vector fields v ∈ V as being
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generated via differentiable scale-space kernels k(·, ·) acting on L2 functions:

V = {v =

∫︂
k(x, y)h(y)dy, ∥h∥22 =

∫︂
|h|2dx <∞} . (3.2)

A diagram of the proposed generative model is displayed in Figure 3.1. The model is

similar to that proposed in [82] in which there is a normalization of of each individual flow of

the population relative to the template which essentially defines the initial condition of each

individual flow, denoted as Φ(i), i = 1, . . . , N . To define the mean flow of the normalized

population within each individual’s time series, we coadjointly transport [153] it and denote

it as µ
(i)
t , i = 1, . . . , N .

Figure 3.1: Diagram of infinitesimal mean drift model. The black curve represents the flow
generated by the population mean drift µt, while individual subject observations’ flows are
governed by φ̇(i). The red curve represents transport Φ(i) of the personalized controls w

(i)
t

into the coordinate space of the mean drift.
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3.1.3 Estimating Personalized Control under Drift

The dynamics space is huge. We select the parsimonious ones based on what we term ”biased

geodesic flow” via Hamilton’s principle and the principle of least action. We term it biased

because we add an infinitesimal mean drift to the standard geodesic equations of LDDMM,

where the mean drift represents the population statistics. We adopt a Hamiltonian control

systems model for flows of human anatomy [126]. Given the mean drift µ
(i)
t in an individual’s

coordinates, we define the Hamiltonian of our dynamical system according to

H(p, φ(i), w(i), t) =

∫︂
p · ((µ(i) + w(i)) ◦ φ(i))dx− 1

2
∥w(i)∥2V (3.3)

where φ̇(i) = (µ(i) + w(i)) ◦ φ(i) is a dynamical constraint, and p is termed the Hamiltonian

momentum acting as a Lagrange multiplier on the constraint. Our dynamical systems model

becomes the following:

φ̇
(i)
t = (µ

(i)
t + w

(i)
t ) ◦ φ(i)

t

ṗ
(i)
t = −d(µ(i)

t + w
(i)
t )T ◦ φ(i)

t p
(i)
t (3.4)

w
(i)
t (·) =

∫︂
K(·, φ(i)

t (x))p
(i)
t (x)dx

The initial momentum p
(i)
0 driving the time-varying velocity field w

(i)
t can be computed under

this constrained optimization scheme and represents the deviation or personalized control of
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individual i from the background mean drift µ
(i)
t . We model p

(i)
0 as being initially seeded on

a set of k discrete control points q(i) such that p
(i)
0 (x) =

∑︁
k w

(i)
k δ(x−q

(i)
k ). Notably, µ

(i)
t does

not appear in the regularization term of (3.3) and thus this formulation does not produce

the same w
(i)
t as for the more classical LDDMM. Classic geodesic shooting initialized at µt

does not produce this result for any non-zero regularization weight. The proposed model

treats the drift as being in a space where it is identity, and deviations from the drift in any

direction have the same metric distance.

3.1.4 Derivation of Dynamics Equations

The diffeomorphic flow is controlled by the governing differential equation (of typical LD-

DMM).

dφt = vt ◦ φtdt (3.5)

We define our velocity field vt as the sum of µt the drift and wt the personalized control:

vt = µt + wt (3.6)

The diffeomorphic flow is governed by:

φṫ = (µt + wt) ◦ φt (3.7)
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We define the augmented Hamiltonian:

H̃(pt, φt, wt, t) =

∫︂
pt · ((µt + wt) ◦ φt − φṫ )dx−

1

2
∥wt∥2V (3.8)

The first equation in the dynamical system which governs φṫ is given.

Solve for ṗt

We solve for ṗt by taking a perturbation of φt in the Hamiltonian by some amount ε:

d

dε

∫︂
pt · ((µt + wt) ◦ (φt + εδφt)− (φṫ + εδφ̇t))dx

⃓⃓⃓⃓
ε=0

= 0

d

dε

∫︂
pt · ((µt + wt) ◦ (φt + εδφt))− pt · (φṫ + εδφ̇t)dx

⃓⃓⃓⃓
ε=0

= 0

Apply the chain rule:

∫︂
pt · d(µt + wt) ◦ φt · δφt − pt · δφṫ dx = 0

Take the integral over simulation time and do integration by parts:

∫︂ ∫︂
pt · d(µt + wt) · φtδφtdxdt−

∫︂
ptδφ̇tdz|t=1

t=0 +

∫︂ ∫︂
ṗt · δφtdxdt = 0
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The boundary condition specified by the second term of the left hand side plays a role in the

matching problem and it balances the forcing term coming from the longitudinal matching

problem. We ignore this term for now.

ṗt = −d(µt + wt)
T ◦ φt pt

Solve for wt

Take a perturbation of Wt in the Hamiltonian by some amount ε. Here we write the regu-

larization term in matrix form where A is the inverse of some smoothing kernel K.

d

dε

∫︂ ∫︂
(pt · (µt + wt + εδwt)(x)− φṫ )δ(x− φt)dx

− 1

2

∫︂
(wt + εδwt)

T (x)A(wt + εδwt)(x)dx

⃓⃓⃓⃓
ε=0

= 0 (3.9)

Perform a change of variables such that z = u+ εδu.

∫︂ ∫︂
pt · δwt(x)δ(x− φṫ )dx−

1

2

∫︂
zT (x)Az(x)dx

⃓⃓⃓⃓
ε=0

= 0 (3.10)

Apply the chain rule:

∫︂ ∫︂
pt · δwt(x)δ(x− φṫ )dx−

∫︂
zT (x)A

dz

dε
dx

⃓⃓⃓⃓
ε=0

= 0 (3.11)
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Change variables back:

∫︂ ∫︂
pt · δwt(x)δ(x− φṫ )dx−

∫︂
wTt (x)Aδwtdx

⃓⃓⃓⃓
ε=0

= 0 (3.12)

Recall that pt and φt are functions of x. Apply integration by parts where y = φt(x),

x = φ−1
t (y), dx = |Dφ−1

t (y)|dy.

∫︂ [︃∫︂
pt · δ(x− φt)− wTt A

]︃
δwt(x)dx = 0 (3.13)

Here, we recognized that the terms within the square brackets are set equal to zero.

(︃∫︂
pt · δ(x− φt)

)︃
− wt(x)TA = 0 (3.14)

Solve for wt:

wt(·) =
∫︂
K(·, φt(x))pt(x)dx (3.15)

3.1.5 Surface Matching Algorithm

For the experiments shown below, we assume that the infinitesimal mean drift µt of a given

population is generated offline and is transported from the population space to the indi-

vidual subjects’ longitudinal trajectory µ
(i)
t , i = 1, . . . , N . To estimate the mean drift, we

model populations of time series of surfaces Stj , tj ∈ {t1, t2, . . . , tm} viewed as longitudinal
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observations from members of labeled cohorts undergoing disease modeling processes. In our

setting, we have triangulated mesh cortical surfaces associated to studies such as ADNI [154]

and BIOCARD [155]. We use current matching for surfaces [33] as adopted for LDDMM to

generate the initial momentum fitting through the time-series [107, 114]. We solve for the

variational solutions as an optimal control problem, defining the state t ↦→ qt = φt · S and

the control t ↦→ vt satisfying the dynamical equations of (3.4).

The time series of surfaces enters as input data with matching term given by the smooth

energy U : qt → R+, t ∈ [0, 1] which drives the state through the target surfaces with

pre-defined mean drift µt, t ∈ [0, 1]. We pose the following control problem:

Control Problem :

φ̇
(i)
t = (µ

(i)
t + w

(i)
t .) ◦ φ

(i)
t ,

q
(i)
t = φ

(i)
t ◦ S0, q

(i)
0 = S0, (3.16)

min
vt,t∈[0,1]

E(v) :=
1

2

∫︂ 1

0

∥w(i)
t ∥2V dt+

∫︂ 1

0

Ut(q
(i)
t )dt .

The Hamiltonian momentum satisfies Eqn. (3.4) with forces:

ṗ
(i)
t = −d(µ(i)

t + w
(i)
t )T ◦ φ(i)

t p
(i)
t +

∂U
(i)
t

∂q
(q

(i)
t ) . (3.17)

The energy Ut, t ∈ [0, 1] is defined by the current matching norm on surfaces (see Sup-
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plementary A) denoted as ∥ · ∥S :

U
(i)
t (q

(i)
t ) =

∑︂
tj

δ(t− tj)
1

σ2
m

∥q(i)tj − S
(i)
tj )∥

2
S . (3.18)

We solve the minimization of this new control problem following the traditional method of

matching onto surfaces which has been previously described for this class of problems [152].

3.1.6 Estimating Mean Drift of a Population

We now describe our method for computing the mean drift µt from a population of shapes.

Figure 3.2 depicts the setting for our model assuming two populations, disease and control,

each with their own mean drift representing their cohort. More generally, there can be any

number of subpopulations.

The basic idea is to generate for each subject’s time-series i ∈ 1, 2, ..., N the optimal

momentum p
(i)
0,sub by geodesic shooting of a single trajectory through a time-series, followed

by transport of the trajectory’s initial momentum into the common population coordinates

where we average the momentum of each of the subjects to generate p̄0. Each subject’s

LDDMM flow and initial momentum is transported into the population template coordinate

space by computing the diffeomorphism Φ(i) of the subject time-series onto the population

template, and then coadjointly transporting [153] the initial momentum into the template

population coordinates.
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Figure 3.2: Estimating mean drifts associated to the two subpopulations of surfaces cor-
responding to labeled subjects forming the control (µc) and disease (µd) subgroups where
subjects 1 and 2 belong to the control group and subjects 3-5 belong to the dementia group.

For all experiments shown we assume the time series are synchronized allowing us average

the initial momentum of all subjects transported into population template coordinates. The

average momentum p̄0 encodes the population drift µt for which we generate Hamiltonian

equations for momentum evolution associated to the principles of least action.

To derive the mean drift in subject coordinates we coadjointly transport p̄0 back to

the coordinates of each subject defined by the diffeomorphism Φ(i) mapping the subject

i to population coordinates. The coadjoint transport of any initial momentum seeded on

discrete control points along Φ(i) multiply used above is defined by the following (shown here
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for transport of p̄0 into the coordinate space of subject i along Φ(i),−1):

p̄
(i)
0 = D[Φ(i)]−1(Φ(i))T p̄0([Φ

(i)]) . (3.19)

The coadjoint transport is derived from the classic EPDiff equation (Euler-Poincare equa-

tion) [156] and is written for continuous functions of p (i.e. for images):

p̄
(i)
0 = D[Φ(i)]−1(Φ(i))T p̄0(Φ

(i))|DΦ(i)| . (3.20)

See Appendix C for proof of Eqn (3.20) from EPDiff. We arrive at (3.19) by taking the

discrete representation in the case of surfaces and points. We note that other transport

equations exist, such as parallel transport described for moving structures along geodesics

[157], which may exhibit better properties than coadjoint transport. However, our focus here

is not on the novelty of transport so we use coadjoint transport for its simplicity.

Φ(i) can be determined in several ways – in our examples, we choose to compute Φ(i) by

mapping the first observation of each subject (for instance the first MRI in a longitudinal

series of scans, hereafter termed the ”baseline”) to the template surface at the corresponding

time point in the mean flow. Thus each subject’s individual trajectory parameterized by p
(i)
0,sub

lies in the reference frame of the baseline but is seeded at control points corresponding to

vertices of the template surface triangulation, ensuring p
(i)
0,sub exists at corresponding points

for all subjects.
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Algorithm 1 Estimating Infinitesimal Mean Drift Representing Population Shape

Given: time-series surface S
(i)
t , t ∈ {t1, . . . , tm} and mappings Φ(i) to population template,

i = 1, . . . , N :
Geodesic shoot p

(i)
0,sub through time-series, i = 1, . . . , N .

Transport p
(i)
0,sub, i = 1, . . . , N into population template using Eqn. (3.19) and average:

p̄0 =
1

N

N∑︂
i=1

DΦ(i)([Φ(i)]−1)Tp
(i)
0,sub([Φ

(i)]−1) .

Generate population inifinitesimal mean µ solving conservation laws from p̄0.
Coadjoint transport template-space initial momentum into subject i coordinate space:

p̄
(i)
0,sub = D[Φ(i)]−1(Φ(i))T p̄0(Φ

(i)) .

Generate mean flow in subject-specific coordinates for each subject i = 1, . . . , N from
initial conditions p̄

(i)
0 :

d

dt
p̄
(i)
t = −d(µ(i)

t )T p̄
(i)
t , i.c. p

(i)
0 (3.21a)

µ
(i)
t =

∫︂
K(·, φ(i)

t (x))p̄
(i)
t (x)dx . (3.21b)

3.2 Results

3.2.1 Simulations based on Geodesic Shooting

We first apply our proposed model to simulated triangulated surface data. Illustrated in

Figure 3.3, a disc-like surface and a cube-like surface are observed deforming over time by

their own subject specific trajectories parameterized by p
(i)
0,sub. Each p

(i)
0,sub is transported

into the template coordinate space where the template is represented by a sphere. Here, the
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momenta are averaged, producing p̄0 (purple vectors), the momentum parameterizing the

mean drift. For simplicity, we show simulated data that are synchronized in time by their

baseline observations with surface triangulations that have corresponding vertices.

Figure 3.4 shows examples of subject-specific deviations from the simulated drift of Figure

3.3. In this example, a pyramid-like subject changes longitudinally by expanding in the

horizontal plane along an axis between two corners of the pyramid. The drift p̄0 can be

transported into the space of this subject, producing p̄
(i)
0,sub (shown in purple vectors on the

pyramid). The method described in (3.17) is used to compute the personalized control,

shown in the bottom row. Naturally, because the pyramid expands from corner to corner

with no change in any other direction while the drift expands in all directions, the resulting

personalized control shows sharp expansion from corner to corner and shrinkage in all other

directions. Shrinkage of a surface can be measured by several metrics. We choose to examine

the log determinant of the jacobian of the deformation of the transported template surface

in directions tangent to the surface, hereafter referred to as the ”surface atrophy measure”.
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Figure 3.3: Longitudinal LDDMM shooting on simulated data computes the independent
subject trajectories parameterized by initial momentum p

(i)
0,sub shown as red and blue vectors

in the left column of panel (a). The subject surface at time 0 is transported by p
(i)
0,sub,

following the rightwards arrows for two subjects in panel (a) where subject 1 uniformly
expands and subject 2 expands along a single axis. Panel (b) shows the initial momenta

p
(i)
0,sub transported into the template coordinate space by coadjoint transport along Φ(i) for
both subjects, where the template is chosen as a sphere. The transported momenta are
averaged in template space in panel (c) to produce p̄0 in purple and the template surface is
shown being transported by the mean drift resulting from p̄0.
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Figure 3.4: Personalized controls are shown for a simulated surface from the mean drift of
Figure 3.3. The top row shows an individual subject’s longitudinal trajectory, in which a
pyramid-like surface expands in one direction across two corners. The middle row shows the
initial momentum parameterizing the mean drift µ

(i)
t in purple arrows (transported into the

subject coordinate space) of Figure 3.3 and the baseline (t = 0) subject surface deformed

by the flow resulting from the transported drift. The bottom left panel shows p
(i)
0 computed

for this subject, the initial momentum parameterizing w
(i)
t , computed by (3.17). The panels

to the right show the subject baseline surface deformed by the flow resulting from w
(i)
t

overlayed with the surface atrophy measure associated with the personalized control where
red indicates shrinkage tangent to the surface.



CHAPTER 3. DIFFEOMORPHOMETRY FOR LONGITUDINAL SHAPE ANALYSIS107

3.2.2 Alzheimer’s Disease Neuroimaging Initiative

We apply our model to neuroimaging data from the Alzheimer’s Disease Neuroimaging Ini-

tiative dataset, a longitudinal imaging study of neurodegeneration in a patient population at

risk for Alzheimer’s. The dataset contains 3T MRI scans for 57 patients (22 controls and 35

who developed dementia) over the course of two years with intervals at baseline, 6 months,

12 months, and 24 months and the patient cohorts have been examined by multiple prior

studies. We extend our model to study the drift of two populations as illustrated in Figure

3.2.

For simplicity of demonstration we choose to chronologically synchronize all subjects to

their baseline scan date, however we note that under our proposed framework any arbitrary

synchronization can be used with no requirement for perfect temporally overlapped data.

We then demonstrate the computation of the deviation of dementia patient group members

from the mean drift of the normal population.

3.2.3 Surface Representation of Subcortical Structures in ADNI

We choose to examine longitudinal shape changes in the entorhinal and transentorhinal cor-

tex (hereafter referred to as the entorhinal cortex) of the brain, a region which has previously

been linked to Alzheimer’s Disease.
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Figure 3.5: Surface generation process. (left) Sagittal view of 3T brain MRI in a section
passing through the entorhinal cortex. (middle) Manual voxel-wise segmentations of the
entorhinal and transentorhinal cortex are performed by anatomical experts. (right) Smooth
triangulated surfaces are seeded on the segmentations.

Figure 3.5 illustrates the process of seeding triangulated surfaces onto the combination of

these regions in MR. Manual voxel-wise binary segmentations of the entorhinal cortex were

performed by anatomists and these segmentations were used to build smooth triangulated

surfaces for each subject at every time point.

3.2.4 Computing the Drift of ADNI Populations

Bayesian template estimation [123] was performed on the baseline surfaces for the 57 subjects

in order to build a template coordinate space at the baseline timepoint (t=0). The template

surface T was then mapped to each subject baseline surface using diffeomorphic surface

matching using a data attachment term based on currents [33], producing the transform Φ(i)

for i ∈ 1, 2, ..., 57. Then, at each baseline timepoint for each subject, we have Φ(i) ·T which is

then mapped longitudinally through each subject’s subsequent surfaces in a single trajectory
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optimized to minimize the sum of currents between the deformed template and the subject’s

triangulated surface at each time point, producing p
(i)
0,sub for i ∈ 1, 2, ..., 57.

The initial momenta p
(i)
0,sub parameterizing each independent subject specific trajectory

are then transported into the template space using coadjoint transport and averaged to

produce the population drift. We produce two population drifts: 1) the 22 control subjects

who did not develop dementia and 2) the 35 subjects who did develop dementia.

In order to visualize the mean flow of each population, we transport the template surface

along each computed drift. Snapshots of the deformed template sampled at selected time

points along the continuous drift trajectory are shown in Figure 3.6 with each surface face

colored by the log determinant of jacobian of the drift deformation tangent to the surface

(where red indicates shrinkage).
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Figure 3.6: Population mean drift of ADNI patient cohort separated by control group and
dementia group. The left column displays initial momentum vectors at each vertex of the
template surface parameterizing the mean drift of each population. The right columns show
the template surface deformed by the resulting flow of each population drift, sampled at
baseline, one year, and two years. The surface atrophy measure is plotted on the flowing
surfaces where red represents shrinkage tangent to the surface and blue represents expansion.

As expected, the mean drift of the control population fluctuates around identity. On

the other hand, the mean drift of the dementia population shows obvious atrophy as evi-

denced by the red region in the bottom row of Figure 3.6. Measurements on our transported

templates showed 1.6% volume loss in the control population and 8.3% volume loss in the

dementia population. These values are in line with previous studies of entorhinal cortex
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atrophy in Alzheimer’s Disease [107] and notably, the atrophy pattern measured by the drift

qualitatively matches that observed in those studies.

3.2.5 Computing the Personalized Controls of ADNI Subjects

Having computed the drift of populations in the dataset, we can now apply our new biased

geodesic shooting algorithm to compute the deviation or personalized control of individuals

from the mean drift. For understanding biomarkers of Alzheimer’s Disease and dementia,

we are interested in examining the deviation of entorhinal cortex atrophy of patients in

the dementia group from the mean drift of the control group. This would inform us about

the additional deformation imposed on each subject’s entorhinal cortex on top of the shape

change associated with normal aging.

We apply the model of (3.4) in order to compute the personalized control of each indi-

vidual. First, we transport the drift into the coordinate space of the subject. Since the drift

is specified by the initial momentum p̄0 in our case, we once again coadjointly transport p̄0

into each subject coordinate space to obtain p̄
(i)
0,sub. From there we can apply Eqn (3.17) to

compute w
(i)
t for each subject. Figure 3.7 shows two sample deviations from the drift from

the dementia patient population overlayed with the surface atrophy measurement at selected

time intervals.
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Figure 3.7: Personalized controls for two selected subjects from the dementia patient group.
The left column shows the mean control population drift initial momentum p̄0 (in purple
vectors, scaled linearly for visibility) along with the additional deviation computed to match

the subject-specific observations p
(i)
0 transported to template space (in red vectors, scaled

by the same linear factor). The right column shows the baseline surface of each subject
deformed by the flow resulting from the personalized control only. The surface atrophy
measure is plotted on the flowing surfaces where red represents shrinkage tangent to the
surface and blue represents expansion.

In order to summarize the individual deviations for the entire patient population, we com-

pute the individual deviations for all 37 subjects in the dementia patient group, as described

above. The initial momenta parameterizing the flows associated to their personalized con-
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trols are then coadjointly transported back into the template space and averaged using the

same method of Algorithm 1 (Chapter 3). The resulting flow describes the average deviation

in the shape of the entorhinal cortex of dementia patients from the mean drift characterizing

the normal population. Figure 3.8 shows this mean deviation sampled at several time points.

As expected, we generally observe a trend towards shrinkage of the entorhinal cortex in de-

mentia patients away from the normal population drift. Our model shows precisely where

this deviation occurs in specific patients as well as on the average.

Figure 3.8: Mean personalized control parameterized by initial momentum vectors are
shown in the left column. The template flowed along the trajectory defined by the mean
personalized control is shown to the right, overlayed with the surface atrophy measure where
red represents shrinkage.

3.3 Discussion

Here, we have introduced a new method for computing biased geodesics that describe devi-

ations of subject-specific longitudinal trajectories, or ”personalized controls”, from a given
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drift. We have described the dynamical systems framework that governs our model as well as

an algorithm to solve for the personalized controls. Our biased geodesic shooting algorithm

is inspired by physical modeling of the motion of particles, particularly related to the move-

ment of particles along Hamiltonian flows. Where classic geodesic shooting can be viewed

as describing the movement of a particle through space unperturbed by outside forces, we

needed to model the movement of a particle influenced by a background drift. A simple

analogy is to consider throwing a baseball across a field at a target on a windless versus a

windy day.

Although other groups have examined linear subtractions of flows from one another to

quantify differences between geodesic trajectories, our motivation was to estimate the de-

viation directly and in a more theoretically rigorous fashion. Our derivation of the biased

geodesic shooting algorithm is motivated by this intention. Indeed, the deviant flows com-

puted by our algorithm would not be the same as flows produced by linear subtraction of two

flows to be compared, nor would they be the same as flows produced by initializing classic

geodesic shooting by our drift term. We believe that our formulation is the natural one,

primarily because the drift should not be penalized by regularization and should instead be

treated as having no metric cost (like identity). For instance, consider an example where

the drift is a trajectory with a high metric cost (less smoothness) and the target individual’s

longitudinal trajectory is identity. Classic geodesic shooting would exactly match the target

trajectory with a regularization cost of zero. This could produce trajectories that are not
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properly regularized, biasing all other estimations towards identity. Our method is unbiased

with respect to the drift, and all transformations are properly regularized with respect to

smooth deformations away from the drift. From a generative perspective, we would expect

random observations in a longitudinal population to be centered around the drift and not

around identity.

We solve the control problem of mapping a template onto members of a population

using surface matching of triangulated meshes onto targets. One of the strengths of the

method’s design is that it can be generalized to include volumes or landmarks, as well as

to simultaneously optimize the mean flow along with each individual’s personalized flow.

Although we pre-compute the mean drift in this work, the natural extension is to optimize

the drift jointly with the personalized controls. Such an extension would be motivated

by the ideas behind the template estimation algorithm – that is, that the mean drift of a

population should be the one that minimizes the personalized controls of its own population.

This would be an expansion of the template estimation algorithm where instead of estimating

the template at a single timepoint, the template coordinate space would be represented as a

time-varying flow. Our biased geodesic shooting algorithm could enable this computation.



Chapter 4

Conclusion

In this work, we developed algorithms for two related classes of problems: spatial image

analysis and longitudinal image analysis. Our work was grounded in the computational

anatomy random orbit model. Our use of the random orbit model allowed us to generatively

model the observations of serially sectioned imagery with random distortions, as well as

longitudinal imagery from a population.

We first discussed our extension to the random orbit model to accomodate imagery that is

serially acquired in space. We present a variational framework for dense diffeomorphic atlas-

mapping serially sectioned image volumes. The observed sections are modelled as Gaussian

random fields conditioned on a sequence of unknown section by section rigid motions and

unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the

high-dimensionality of our parameter space (which is a product space of the rigid motion

116
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dimensions and the diffeomorphism dimensions), the 2D stacks are modelled as arising from

a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori,

penalized-likelihood estimator of our high dimensional parameter space emerges as a joint

optimization interleaving rigid motion estimation for volume reconstruction and large defor-

mation diffeomorphic metric mapping to atlas coordinates. We show that joint optimiza-

tion in this parameter space solves the classical curvature non-identifiability of the volume

reconstruction problem. The algorithms are demonstrated on a collection of whole-brain

histological image stacks from the Mouse Brain Architecture Project and the Brain/MINDS

marmoset imaging study. The advantage of embedding our algorithms in the random or-

bit model is the immediate accessibility of diffeomorphometric measurements between any

subject that has been mapped into common coordinates. We demonstrate the power of this

method by providing the most localized quantitative analysis of tissue deformation caused

by the histological processing procedure to date.

This work has been developed into a comprehensive pipeline currently being used by

members of the NIH Brain Initiative’s Cell Consensus Network working group. Our pipeline

has been used to reconstruct and map thousands of brains, and initial connectivity matrices

have been developed based on our work in mouse and marmoset models. We believe that fu-

ture work in this area will focus on the problem of interpreting the high-resolution and dense

connectivity information present in our reconstructions for the purpose of understanding

the basic function of the brain as well as understanding how pathologies disrupt these con-
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netions. Additionally, the issue of computational time is highly relevant to our work, where

there is a need to reconstruct and register thousands of tera-voxel image volumes. Towards

this end, we have developed comprehensive software packages to perform GPU-accelerated

diffeomorphic registration and reconstruction operations in Python, and we expect future

work will contribute to even more efficient processing.

The second half of this work extended the random orbit model to computing differences

between geodesic trajectories in a longitudinally imaged population. The study of morphom-

etry in longitudinal populations has been an active area of study for decades. Prior work

focused on statistical methods such as linear mixed-effects modeling, whereas our model was

the first to directly embed the estimation of individual deviations from a mean into the

diffeomorphism model. Our model is inspired by models of Brownian motion with drift, in

which the motion of particles through space is modeled as being from two sources. We extend

the concept of Hamiltonian flows that define geodesics to what we term ”biased geodesics”,

or trajectories that result from particles moving through space acted on by an outside drift

as well as their own momentum. We solve the control problem of mapping a template onto

members of a population using surface matching of triangulated meshes onto targets. This

method can be generalized to include volumes or landmarks, as well as to simultaneously

optimize the mean flow along with each individual’s personalized flow. We emphasize that

there is no penalty on the drift generated from the population as we assume the drift is of di-

mension consistent with that of the population from which it was estimated. Our algorithm
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treats the mean drift as having no metric cost like identity, and as a result, deviations from

that drift are more naturally penalized. For this reason, we use LDDMM shooting onto the

population to control the initial dimensions of the mean drift as the order of the database is

limited.

In our experiments on entorhinal cortical surfaces from the ADNI dataset, we show that

we are able to compute a realistic mean drift of two diagnostic groups within the patient

cohort under our model, and that we are able to compute the deviations of dementia group

individuals from the normal population drift as well as compute the mean deviation in a

common coordinate space. Our work here is intended as a methodological demonstration

and the clear limitation is that our results may not necessarily be clinically relevant due

to our simplifications, such as the choice of time synchronization. We expect that future

work will refine these choices in order to draw clinical conclusions about Alzheimer’s, for

instance by selecting a more intelligent synchronization that aligns subjects based on the

true onset and progression of the disease. Additionally, we propose that the model can

easily be generalized in a scheme similar to Bayesian template estimation in order to jointly

optimize the mean drift itself, potentially further improving the accuracy of the model.

Understanding the structure of the neural circuitry and how it governs the function of

the brain and is disrupted by pathological neurodegeneration is a monumental task with

high clinical relevance. Our work in medical imaging and shape analysis is just one part of

the tremendous effort that goes into making discoveries in this field. We believe that the
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algorithms we developed are among the state-of-the-art for studying the brain constrained by

the smoothness and continuity of human anatomy. The algorithms here have been presented

in a generative fashion which we believe most closely models real life observations, and we

are hopeful that such methods will contribute to the understanding of the human brain.



Appendix A

Reproducing Kernel Hilbert Space

and Green’s Kernel.

The Green’s kernel is translation invariant and takes the form

K(x, y, z) = k(x, y, z)Id3 ,

with Id3 the 3× 3 identity matrix, for the Green’s function continuously differentiable:

k(x, y, z) = 4
(︂
3 + 3

√︁
x2 + y2 + z2 + 3(x2 + y2 + z2)

)︂
e−
√
x2+y2+z2 .

This Green’s function satisfies (−∇2+1)4k(x, y, z) = δ(x, y, z), where (−∇2+1)4 is referred

to as A. The reproducing kernel Hilbert space (RKHS) with this Green’s kernel corresponds

121
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to vector fields satisfying

∥v∥2V =
3∑︂
i=1

∫︂
R3

((−∇2 + 1)2vi(x, y, z))
2dxdydz <∞ .



Appendix B

Geodesics solving Euler-Lagrange

Equations.

The explicit equations for geodesics associated to the RKHS norm ∥v∥V and the geodesics

satisfy the Euler-Lagrange equations [6, 125] given by the triple of equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̇t = vt ◦ φt

ṗt = −(dvt)T ◦ φtpt

vt =
∫︁
R3 K(x, φt(y))pt(y)dy , Av0 = p0 .

(B.1)

To prove the Hamiltonian momentum evolution, the second equation ṗ = −(dv)T ◦ φp

of (B.1) for Av a classical function we use the inner product notation ⟨·, ·⟩ to calculate the
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Lagrangian:

L(φ, φ̇) =
1

2
⟨Aφ̇ ◦ φ−1, φ̇ ◦ φ−1⟩ = 1

2

∫︂
R3

A(φ̇ ◦ φ−1(x)) · φ̇ ◦ φ−1(x)dx ,

with the variation giving the Euler-Lagrange equations:

d

dt
∂φ̇L(φ, φ̇)⏞ ⏟⏟ ⏞
Ham. mom. p

−∂φL(φ, φ̇) = 0.

To get the Hamiltonian momentum p = ∂φ̇L(φ, φ̇), we take variation with respect to La-

grangian velocity φ̇→ φ̇ε = φ̇+ εδφ̇ and φ→ φ+ εδφ giving

d

dε
L(φε, φ̇ε)|ε=0 =

d

dε

1

2
⟨A(φ̇ε ◦ φ−1), φ̇ε ◦ φ−1⟩|ε=0

=
d

dε

1

2

(︁
⟨Av, φ̇ε ◦ φ−1⟩+ ⟨A(φ̇ε ◦ φ−1), v⟩

)︁
|ε=0

Combining gives the Hamiltonian momentum :

⟨Av, d
dε

(φ̇+ εδφ̇) ◦ φ−1⟩ = ⟨ Av ◦ φ|dφ|⏞ ⏟⏟ ⏞
∂φ̇LHam. mom.

, δφ̇⟩ .

The variation φ→ φε = φ+ εδφ requires the inverse:

(φ−1 + εδφ−1) ◦ (φ+ εδφ) ≃ id + ε(dφ−1)|φδφ+ εδφ−1
|φ
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which gives first order perturbation

δφ−1 = −(dφ−1)δφ|φ−1 = −(dφ)−1
φ−1δφ|φ−1 . (B.2)

Taking a similar variation of the Lagrangian as above but with respect to the Lagrangian

velocity gives

⟨Av, d
dε

(φ̇ ◦ (φ−1 − ε(dφ)−1
|φ−1δφ|φ−1))⟩ = −⟨Av, (dv)(dφ)|φ−1(dφ)−1

|φ−1δφ|φ−1⟩

= −⟨(dv)TφAv ◦ φ|dφ|⏞ ⏟⏟ ⏞
∂φL

, δφ⟩ (B.3)

The third equation of (B.1) follows from p = Av ◦φ|dφ|. Integrating with the Green’s kernel

gives the expression vt(·) =
∫︁
K(·, φt(y))pt(y)dy.



Appendix C

Coadjoint Transport

We show the coadjoint transport property for initial momentum p0 and diffeomorphism Phit,

partially derived from [153, 158]:

pt = DΦt(Φ
−1
t )Tp0(Φ

−1
t )|DΦ−1

t | (C.1)

This can also be written:

pt(x) = [DΦ−1
t ]Tp0(Φ

−1
t )|DΦ−1

t | (C.2)

Compose:

pt(Φt) = [DΦ−1
t (Φt)]

Tp0|DΦ−1
t (Φt)| (C.3)
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pt(Φt) = [DΦt]
−Tp0|DΦ−1

t | (C.4)

|DΦt|pt(Φt) = [DΦt]
−Tp0 (C.5)

Take derivative of the right side with respect to time:

d

dt
[DΦt]

−1 = −[DΦt]
−1 d

dt
[DΦt][DΦt]

−1 (C.6)

= −[DΦt]
−1D[vt(Φt)][DΦt]

−1 (C.7)

= −[DΦt]
−1Dvt(Φt)DΦt[DΦt]

−1 (C.8)

= −[DΦt]
−1Dvt(Φt) (C.9)

This gives from (C.5):

|DΦt|pt(Φt) = −Dvt(Φt)
T [DΦt]

−Tp0 (C.10)

Take derivative of the left side with respect to time:

d

dt
[|DΦt|pt(Φt)] = |DΦt|div[vt](Φt)pt(Φt) + |DΦt|

d

dt
pt(Φt) + |DΦt|Dpt(Φt)vt(Φt) (C.11)
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Equate the two sides:

|DΦt|div[vt](Φt)pt(Φt) + |DΦt|
d

dt
pt(Φt) + |DΦt|Dpt(Φt)vt(Φt) = −Dvt(Φt)

T [DΦt]
−Tp0

(C.12)

Multiply by Jacobian:

div[vt](Φt)pt(Φt) +
d

dt
pt(Φt) +Dpt(Φt)vt(Φt) = −Dvt(Φt)

T [DΦt]
−Tp0|[DΦt]

−1| (C.13)

Compose with Φ−1
t :

div[vt]pt +
d

dt
pt +Dptvt = −DvTt [DΦt(Φ

−1
t )]−Tp0(Φ

−1
t )|[DΦt(Φ

−1
t )]−1| (C.14)

The Jacobian of the RHS is |DΦ−1
t |. Recover pt on the right to get:

div[vt]pt +
d

dt
pt +Dvtpt = −DvTt pt (C.15)

Rearrange to recover the EPDiff equation:

d

dt
pt = −Dptvt − div[vt]pt −DvTt pt (C.16)
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[20] R Bajcsy and S Kovačič. “Multiresolution elastic matching”. In: Computer Vision,

Graphics, and Image Processing 46 (1 1989), pp. 1–21.

[21] Y Amit, U Grenander, and M Piccioni. “Structural Image Restoration through De-

formable Templates”. In: Journal of the American Statistical Association 86.414

(1991), pp. 376–381.

[22] James C Gee, Martin Reivich, and Ruzena Bajcsy. “Elastically Deforming a Three-

Dimensional Atlas to Match Anatomical Brain Images”. In: University of Pennsyl-

vania Institute for Research in Cognitive Science Technical Report No. IRCS-93-37

(1993).

[23] M I Miller et al. “Mathematical textbook of deformable neuroanatomies”. In: Pro-

ceedings of the National Academy of Sciences 90.24 (1993), pp. 11944–11948. issn:

0027-8424. doi: 10.1073/pnas.90.24.11944. eprint: http://www.pnas.org/

content/90/24/11944.full.pdf.

https://doi.org/10.1073/pnas.90.24.11944
http://www.pnas.org/content/90/24/11944.full.pdf
http://www.pnas.org/content/90/24/11944.full.pdf


BIBLIOGRAPHY 133

[24] Mapping of hyperelastic deformable templates using the finite element method. Vol. 2573.

1995, pp. 2573 –2573 –14. doi: 10.1117/12.216419.

[25] Gary Christensen, Michael I. Miller, and Richard D. Rabbit. “Deformable templates

using large deformation kinematics”. In: IEEE Transactions of Medical Imaging 5 (10

1995), pp. 1435–1447. doi: 10.1109/83.536892. url: http://en.scientificcommons.

org/43056763.

[26] Gary E. Christensen, Sarang C. Joshi, and Michael I. Miller. “Volumetric Transfor-

mation of Brain Anatomy”. In: IEEE TRANSACTIONS ON MEDICAL IMAGING

16.6 (1997), pp. 864–877.

[27] F. L. Bookstein. “Principal Warps: Thin-Plate Splines and the Decomposition of De-

formations”. In: IEEE Trans. Pattern Anal. Mach. Intell. 11.6 (June 1989), pp. 567–

585. issn: 0162-8828. doi: 10.1109/34.24792. url: http://dx.doi.org/10.1109/

34.24792.

[28] Fred L Bookstein. “Thin-plate splines and the atlas problem for biomedical images”.

In: Biennial International Conference on Information Processing in Medical Imaging.

Springer. 1991, pp. 326–342.

[29] F.L. Bookstein. “Biometrics, Biomathematics and the Morphometric Synthesis”. In:

Bulletin of Mathematical Biology 58.2 (1996), pp. 313–365.

https://doi.org/10.1117/12.216419
https://doi.org/10.1109/83.536892
http://en.scientificcommons.org/43056763
http://en.scientificcommons.org/43056763
https://doi.org/10.1109/34.24792
http://dx.doi.org/10.1109/34.24792
http://dx.doi.org/10.1109/34.24792


BIBLIOGRAPHY 134

[30] SC Joshi and MI Miller. “Landmark matching via large deformation diffeomorphisms”.

In: IEEE Trans Image Process 9.8 (2000), pp. 1357–70. issn: doi: 10.1109/83.855431.

[31] Vincent Camion and Laurent Younes. “Geodesic interpolating splines”. In: Energy

Minimization Methods in Computer Vision and Pattern Recognition. Springer Berlin/Heidelberg.

2001, pp. 513–527.
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[104] Alexandre Bône et al. “Deformetrica 4: an open-source software for statisticalshape

analysis”. In: ShapeMI @ MICCAI 2018, Lecture Notes in Computer Science. Vol. 11167.

2018.
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[156] I.J. Arnold. “Sur la géomérie différentielle des groupes de Lie de dimension infinie et
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