97 research outputs found

    Design and implementation of haptic interactions

    Get PDF
    This thesis addresses current haptic display technology where the user interacts with a virtual environment by means of specialized interface devices. The user manipulates computer generated virtual objects and is able to feel the sense of touch through haptic feedback. The objective of this work is to design high performance haptic interactions by developing multi-purpose virtual tools and new control schemes to implement a PUMA 560 robotic manipulator as the haptic interface device. The interactions are modeled by coupling the motions of the virtual tool with those of the PUMA 560 robotic manipulator;The work presented in this dissertation uses both kinematic and dynamic based virtual manipulators as virtual simulators to address problems associated in both free and constrained motions. Both implementations are general enough to allow researchers with any six degree-of-freedom robot to apply the approaches and continue in this area of research. The results are expected to improve on the current haptic display technology by a new type of optimal position controller and better algorithms to handle both holonomic and nonholonomic constraints;Kane\u27s method is introduced to model dynamics of multibody systems. Multibody dynamics of a virtual simulator, a dumbbell, is developed and the advantages of the Kane\u27s method in handling the non-holonomic constraints are presented. The resulting model is used to develop an approach to dynamic simulation for use in interacting haptic display, including switching constraints. Experimental data is collected to show various contact configurations;A two-degree of freedom virtual manipulator is modeled to feel the surface of a taurus shape. An optimal position controller is designed to achieve kinematic coupling between the virtual manipulator and the haptic display device to impose motion constraints and the virtual interactions. Stability of the haptic interface is studied and proved using Lyapunov\u27s direct method. Experimental data in various positions of the robotic manipulator is obtained to justify theoretical results. A shift mechanism is then implemented on the taurus shape, thus the motions of the robotic manipulator is further constrained. The difficulties in handling the motion constraints are discussed and an alternative approach is presented

    분산형 통신 및 구동부족 로봇시스템 을 위한 분할기법 기반의 반자율 원격제어 프레임워크 개발

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2018. 2. 이동준.The framework of stable bilateral teleoperation has been well established during decades. However, the standard bilateral teleoperation framework could be a baseline for a successful telerobotics but not sufficient for real-application because they usually concentrate on only the bilateral stability. The least considered in the previous research is how to apply a complex robot systems such as multiple mobile robots or a large degree of freedom mobile manipulators for real applications. The main challenges of teleoperation of complex robotic systems in real-world are to achieve two different control objectives (i.e., follow the human command and the coordination/ stabilization of the internal movement) of the slave robots simultaneously, while providing intuitive information about the complicated features of the system. In this thesis, we develop decomposition-based semi-autonomous teleoperation framework for robotic systems which have distributed communication and underactuation property, consisting of three steps: 1) decomposition step, where the human command is defined, and the robotic system is split into the command tracking space and its orthogonal complement (i.e., internal motion)2) control design of the slave robot, in which we design the slave controller for human command tracking and stabilization/coordination of internal motion spaceand 3) feedback interface design, through which we propose a multi-modal feedback interface (for example, visual and haptic) designed with the consideration of the task and the characteristics of the system. Among numerous types of robots, in this thesis, we focus on two types of robotic systems: 1) multiple nonholonomic wheeled mobile robots (WMRs) with distributed communication requirement and 2) manipulator-stage over vertical flexible beam which is under-actuated system. The proposed framework is applied to both case step by step and perform experiments and human subject study to verify/demonstrate the proposed framework for both cases. For distributed WMRs, we consider the scenario that a single user remotely operates a platoon of nonholonomic WMRs that distributively communicate each other in unknown environment. For this, in decomposition step, we utilize nonholonomic passive decomposition to split the platoon kinematics into that of the formation-keeping aspect and the collective tele-driving aspect. Next, in control design step, we design the controls for these two aspects individually and distribute them into each WMR while fully incorporating their nonholonomic constraint and distribution requirement. Finally, in the step of feedback interface design, we also propose a novel predictive display, which, by providing the user with the estimated current and predicted future pose informations of the platoon and future possibility of collision while fully incorporating the uncertainty inherent to the distribution, can significantly enhance the tele-driving performance and easiness of the platoon. The second part is the manipulator-stage over vertical flexible beam which is under-actuated system. Here, the human command defines the desired motion of the end-effector (or the manipulator), and the vibration of the beam should be subdued at the same time. Thus, at the first step, we utilize the passive decomposition to split the dynamics into manipulator motion space and its orthogonal complement, in which we design the control for the suppression of the vibration. For human command tracking, we design the passivity-based control, and, for the suppression of the vibration, we propose two controls: LQR-based control and nonlinear control based on Lyapunov function analysis. Finally, visuo-haptic feedback interface is preliminarily designed for successful peg-in-hole tasks.1 Introduction 1 1.1 Background and Contribution 1 1.2 Related Works 4 1.2.1 Related Works on Distributed Systems 5 1.2.2 Related Works on Manipulator-Stage System 6 1.3 Outline 6 2 Preliminary 7 2.1 Passive Decomposition 7 2.1.1 Basic Notations and Properties of Standard Passive Decomposition 7 2.1.2 Nonholonomic Passive Decomposition 9 3 Semi-Autonomous Teleoperation of Nonholonomic Wheeled Mobile Robots with Distributed Communication 11 3.1 Distributed Control Design 11 3.1.1 Nonholonomic Passive Decomposition 11 3.1.2 Control Design and Distribution 19 3.2 Distributed Pose Estimation 25 3.2.1 EKF Pose Estimation of Leader WMR 25 3.2.2 EKF Pose Estimation of Follower WMRs 28 3.3 Predictive Display for Distributed Robots Teleoperation 29 3.3.1 Estimation Propagation 31 3.3.2 Prediction Propagation 34 3.4 Experiments 38 3.4.1 Test Setup 38 3.4.2 Performance Experiment 39 3.4.3 Teleoperation Experiment with Predictive Display 40 3.4.4 Human Subject Study 44 4 Semi-Autonomous Teleoperatoin of Stage-Manipulator System on Flexible Vertical Beam 49 4.1 System Modeling 49 4.1.1 System Description 49 4.1.2 Assumed Mode Shapes 51 4.1.3 Exact Solution under Given Boundary Conditions 51 4.1.4 Euler-Lagrangian Equation 61 4.2 LQR-based Control Design 62 4.2.1 Passive Decomposition 63 4.2.2 Vibration Suppression Control Design 64 4.2.3 Joint Tracking Control Design 66 4.3 Lyapunov-based Control Design 68 4.3.1 Twice Passive Decomposition for Input Coupling 69 4.3.2 Interconnected System Description 70 4.3.3 Passivity-based Manipulator Motion Control 74 4.3.4 Dissipative Control for Vibration Suppression 74 4.4 Experiments 78 4.4.1 Test Setup 78 4.4.2 Joint Tracking and Vibration Suppression Experiment 81 4.4.3 Comparison Experiment between the LQR and the Nonlinear Control 82 5 Conclusion 83 5.1 Summary 83 5.2 Future Works 83 A Appendix 85 A.1 Internal Wrench Representation 85Docto

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generadasPostprint (published version

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generada

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 8, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory. Edited by Thomas Lindsay

    Haptic Device Design and Teleoperation Control Algorithms for Mobile Manipulators

    Get PDF
    The increasing need of teleoperated robotic systems implies more and more often to use, as slave devices, mobile platforms (terrestrial, aerial or underwater) with integrated manipulation capabilities, provided e.g. by robotic arms with proper grasping/manipulation tools. Despite this, the research activity in teleoperation of robotic systems has mainly focused on the control of either fixed-base manipulators or mobile robots, non considering the integration of these two types of systems in a single device. Such a combined robotic devices are usually referred to as mobile manipulators: systems composed by both a robotic manipulator and a mobile platform (on which the arm is mounted) whose purpose is to enlarge the manipulator’s workspace. The combination of a mobile platform and a serial manipulator creates redundancy: a particular point in the space can be reached by moving the manipulator, by moving the mobile platform, or by a combined motion of both. A synchronized motion of both devices need then to be addressed. Although specific haptic devices explicitly oriented to the control of mobile manipulators need to be designed, there are no commercial solution yet. For this reason it is often necessary to control such as combined systems with traditional haptic devices not specifically oriented to the control of mobile manipulators. The research activity presented in this Ph.D. thesis focuses in the first place on the design of a teleoperation control scheme which allows the simultaneous control of both the manipulator and the mobile platform by means of a single haptic device characterized by fixed base and an open kinematic chain. Secondly the design of a novel cable-drive haptic devices has been faced. Investigating the use of twisted strings actuation in force rendering is the most interesting challenge of the latter activity

    Haptic Guidance for Extended Range Telepresence

    Get PDF
    A novel navigation assistance for extended range telepresence is presented. The haptic information from the target environment is augmented with guidance commands to assist the user in reaching desired goals in the arbitrarily large target environment from the spatially restricted user environment. Furthermore, a semi-mobile haptic interface was developed, one whose lightweight design and setup configuration atop the user provide for an absolutely safe operation and high force display quality

    Master of Science

    Get PDF
    thesisIncreased demand for powered wheelchairs and their inherent mobility limitations have prompted the development of omnidirectional wheelchairs. These wheelchairs provide improved mobility in confined spaces, but can be more difficult to control and impact the ability of the user to embody the wheelchair. We hypothesize that control and embodiment of omnidirectional wheelchairs can be improved by providing intuitive control with three degree of freedom (3-DOF) haptic feedback that directly corresponds to the degrees of freedom of an omnidirectional wheelchair. This thesis introduces a novel 3-DOF Haptic Joystick designed for the purpose of controlling omnidirectional wheelchairs. When coupled with range finders, it is able to provide the user with feedback that improves the operator's awareness of the area surrounding the vehicle and assists the driver in obstacle avoidance. The haptic controller design and a stability analysis of the coupled wheelchair joystick systems are presented. Experimental results from the coupled systems validate the ability of the controller to influence the trajectory of the wheelchair and assist in obstacle avoidance
    corecore