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Abstract
Decomposition-Based Semi-Autonomous Teleoperation Frameworks for Robotic

Systems with Distributed Communication and Under-actuation

by Changsu Ha

Department of Aerospace and Mechanical Engineering

College of Engineering

Seoul National University

The framework of stable bilateral teleoperation has been well established during

decades. However, the standard bilateral teleoperation framework could be a baseline

for a successful telerobotics but not sufficient for real-application because they usu-

ally concentrate on only the bilateral stability. The least considered in the previous

research is how to apply a complex robot systems such as multiple mobile robots

or a large degree of freedom mobile manipulators for real applications. The main

challenges of teleoperation of complex robotic systems in real-world are to achieve

two different control objectives (i.e., follow the human command and the coordina-

tion/stabilization of the internal movement) of the slave robots simultaneously, while

providing intuitive information about the complicated features of the system.

In this thesis, we develop decomposition-based semi-autonomous teleoperation

framework for robotic systems which have distributed communication and under-

actuation property, consisting of three steps: 1) decomposition step, where the human

command is defined, and the robotic system is split into the command tracking space

and its orthogonal complement (i.e., internal motion); 2) control design of the slave

robot, in which we design the slave controller for human command tracking and

stabilization/coordination of internal motion space; and 3) feedback interface design,

through which we propose a multi-modal feedback interface (for example, visual and

haptic) designed with the consideration of the task and the characteristics of the

system.

Among numerous types of robots, in this thesis, we focus on two types of robotic

systems: 1) multiple nonholonomic wheeled mobile robots (WMRs) with distributed
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communication requirement and 2) manipulator-stage over vertical flexible beam

which is under-actuated system. The proposed framework is applied to both case step

by step and perform experiments and human subject study to verify/demonstrate the

proposed framework for both cases.

For distributed WMRs, we consider the scenario that a single user remotely oper-

ates a platoon of nonholonomic WMRs that distributively communicate each other in

unknown environment. For this, in decomposition step, we utilize nonholonomic pas-

sive decomposition to split the platoon kinematics into that of the formation-keeping

aspect and the collective tele-driving aspect. Next, in control design step, we design

the controls for these two aspects individually and distribute them into each WMR

while fully incorporating their nonholonomic constraint and distribution requirement.

Finally, in the step of feedback interface design, we also propose a novel predictive

display, which, by providing the user with the estimated current and predicted future

pose informations of the platoon and future possibility of collision while fully incor-

porating the uncertainty inherent to the distribution, can significantly enhance the

tele-driving performance and easiness of the platoon.

The second part is the manipulator-stage over vertical flexible beam which is

under-actuated system. Here, the human command defines the desired motion of the

end-effector (or the manipulator), and the vibration of the beam should be subdued at

the same time. Thus, at the first step, we utilize the passive decomposition to split the

dynamics into manipulator motion space and its orthogonal complement, in which we

design the control for the suppression of the vibration. For human command tracking,

we design the passivity-based control, and, for the suppression of the vibration, we

propose two controls: LQR-based control and nonlinear control based on Lyapunov

function analysis. Finally, visuo-haptic feedback interface is preliminarily designed for

successful peg-in-hole tasks.

Keywords: Semi-autonomous teleoperation, distributed systems, underactuated sys-

tems, decomposition-based control
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Chapter 1

Introduction

1.1 Background and Contribution

Telerobotics has enjoyed enriching results for decades because the area is one of the

earliest and most important fields of research in robotics. It is still inevitable to use

a remote control (i.e., teleoperation) to use robotic systems in dangerous environ-

ments or where people can not remain despite recent significant advances in systems,

algorithms, and techniques for autonomous robots In other words, it is still challeng-

ing, and often impossible, to perform the task in a complete autonomous fashion,

particularly when the task takes places in unstructured, uncertain and dynamic envi-

ronments. For such real-world tasks in unstructured/dynamic environments, teleop-

eration is often the only viable solution, where human can solve many crucial tasks

(e.g., remote manipulation even with fairly limited information, navigation/opera-

tion in unstructued/unmapped environment with dynamic obstacles, etc.), which are

typically very difficult or even impossible to be addressed by fully-autonomous robots.

Many researchers in telerobotics attack two main goals in control theoretic view:

stability and transparency [1, 2]. Particularly, one of major issue in telerobotics have

been the the interaction stability problem of bilateral teleoperation with or without

communication imperfectness (e.g., [3–10]). Although the bilateral stability problem

is fundamental for the long-distance application between the master and the slave,

such as space-robotics, the solution for the stability problem is not sufficient for tasks
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Figure 1-1: Overview of a telerobotic system consisting of master, slave, and commu-
nication channel

in the real world for which the slave robotics should have more functionalities or

degree-of-freedom (DoF). Since complex robotic systems have many DoFs and and

complicated kinematics/dynamics, standard teleoperation framework in which the

master and the slave are simple cannot be applicable for these systems.

For complex robotic systems, we believe that several areas, from slave control

design to feedback design, should be seamlessly incorporated into the adoption of

advanced telerobotic systems for such complex slave robots in real-world applications.

In other words, since it is difficult for a user to manipulate each DoF of the system,

the user must be able to operate the slave robots at a high level and the human should

intuitively recognize rich information including the state of the environment and the

system such as singularity or joint limits. Therefore, the decomposition of the space

of the slave robot is necessary for the separation between the human command space

and the space of the remaining DoFs (i.e., internal movement). In addition, another

important factors for effortless human operation is the rich feedback information

provided in a way that does not confuse the user.
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The main contribution of this thesis is to develop a novel framework of decomposition-

based semi-autonomous teleoperation for robotic systems with distributed communi-

cation and under-actuation. The framework consists of three steps: 1) decomposition

step, where the human command is defined, and the robotic system is split into the

command tracking space and its orthogonal complement (i.e., internal motion); 2)

control design of the slave robot, in which we design the slave controller for human

command tracking and stabilization/coordination of internal motion space; and 3)

feedback interface design, through which we propose a multi-modal feedback inter-

face (for example, visual and haptic) designed with the consideration of the task and

the characteristics of the system.

We apply this framework to the distributed WMRs and manipulator-stage over

vertical flexible beam due to the following usefulness of these systems due to their

usefulness and potential for real applications. For instance, multiple mobile robots

are suitable for exploration and reconnaissance in an unknown environment. In par-

ticular, distributed robotics have advantages for many applications such as transport

of materials and goods; 2) search, exploration and sensor network; and 3) collective

manipulation and assembly. In addition, the manipulator with an extendable struc-

ture or an aerial manipulator system is ideal for working in a high place. However,

aerial manipulator systems are hard to perform a task which needs a large torque

capability in complicated environment, for example, nuclear power plant. Thus, the

manipulator-stage on the flexible vertical beam could be a promising solution for the

tasks which needs large torque task in a high place, such as nuclear power plant or

warehouse.

In the decomposition step, although we deploy the previous results [11], passive

decomposition, this technique has not been applied to the distributed and underac-

tuated system. Furthermore, by applying the passive decomposition to two systems,

we can greatly simplify the uncertainty propagation computation for the predictive

display in Sec. 3.3 and reveal the dynamic relation between the stage and the vi-

brational motion, which facilitates the control design. In control step, we design the

two explicitly distinct controls for two different control objectives, i.e., human com-
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mand tracking and stabilize/coordinate the internal motion. In particular, in Chap.

3, we design the distributed and cascade form of the controls that guarantees the

desired internal motion and command tracking of the collective motion of the pla-

toon of the WMRs. In Chap. 4, we design the vibration suppression control whose

closed loop is exponentially stable so that it is robust to the external disturbance, for

example, dynamic effect of the movement of the manipulator. Finally, we propose a

novel predictive display in Sec. 3.3 which, by providing the user with the estimated

current and predicted future pose informations of the platoon and future possibility

of collision while fully incorporating the uncertainty inherent to the distribution, can

significantly enhance the tele-driving performance and easiness of the platoon. We

also perform a peg-in-hole experiment with the manipulator-stage system by using

properly designed haptic feedback. We believe that the proposed seamless framework

for the robotic systems with distributed communication and underactuation can push

the boundary of the telerobotic research field.

1.2 Related Works

As far as we know, research on systematic framework of teleoperation of complex

robotic systems has not studied much, compared to the results of the stability prob-

lem. A semi-autonomous teleoperation for multiple mobile robots is studied in [12],

in which only the control aspect is studied. Another research on semi-autonomous

teleoperation are [13–15] However, these results do not clearly distinguish the system

in two subspaces, so a user teleoperates one or some of the agents directly and the

other agents simply follow the ordered agents. These frameworks are applicable for

multi mobile robot systems but not clear for a single large-DoFs system such as mo-

bile manipulator or manipulator-stage with extendible structure as shown in Chap.

4. The authors also assume availability of some reasonably good trajectory tracking

control law for each mobile robot, which then allow to abstract the first order system

(directly driven by the input). This framework is not applicable distributed/nonholo-

nomic systems as presented in Chap. 3 and underactuated systems as presented in
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Chap. 4. Furthermore, the results do not systematically consider the feedback inter-

face but deploy typical assume haptic force feedback with the assumption that global

view is possible. In such case, the feedback is not so crucial because visual information

is rich enough for the user to recognize both the robot status and the environment.

However, in real applications, the global scene is usually not available so that another

forms of feedback are necessary for successful teleoperation.

Meanwhile, multi-modal interface is studied in [16], which has been recently evolved

into the teleoperation system of the humanoid robot [17]. Another related multi-modal

teleoperation systems were proposed in [18,19]. However, all these studies are limited

to anthropomorphic slave robots (exact mapping of the human motion into the slave

robot’s motion) and the issue of control aspect is not considered therein. Further-

more, the results do not consider the abstracted command scenario so that seem not

applicable for general and complex robotic systems.

1.2.1 Related Works on Distributed Systems

Numerous techniques have been proposed for the formation control of multiple dis-

tributed nonholonomic WMRs, some experimentally demonstrated with onboard sens-

ing and estimation (e.g., [20–23]). On the other hand, many results have been reported

for the teleoperation of multiple mobile robots (e.g., centralized [12,24,25], distributed

[14, 15]) and also for the teleoperation with predictive display (e.g., [26–29]). Yet, to

our knowledge, there has been no result so far, which systematically utilizes the pre-

dictive display for the teleoperation of multiple distributed mobile robots to allow the

user to better handle with the complex kinematics of their collective while fully taking

into account the uncertainty inherently arising from their sensing, computation and

communication being distributed. In fact, we believe our framework proposed here is

the very first predictive display teleoperation result of distributed mobile robots with

the distribution-induced uncertainty fully incorporated and its efficacy fully man-

ifested by human subject study. The holistic framework for the distributed robot

teleoperation, encompassing the behavior decomposition, the control design distribu-

tion, the distributed estimation and the predictive display, to our knowledge, is also
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proposed in this thesis for the first time.

1.2.2 Related Works on Manipulator-Stage System

As for the passive decomposition, authors in [30, 31] use the passive decomposition

for the fully-actuated and rigid-body systems in, yet, none of them has been demon-

strated for underactuated and flexible systems. Many studies have dealt with the

control problem of manipulators on flexible supports from mid of 90’s. Macro/micro-

manipulators can be considered as one of these types of problems due to the flexibility

of the macro manipulator [32–34]. Another researches consider the compliant base

problem in [35–37]. However, most of the above use the mixed control method that

are put the two different control inputs into one control channel by assuming that the

time scale of vibration and tracking is different. To avoid this one-channel control ap-

proach, redundant systems are utilize in [38]. In [38], the vibration suppression is first

designed, and null-space motion is used for tracking control. However, this control is

also capable of either tracking or vibration suppression. Also, whereas we model the

flexibility as rigorous as possible, in most cases the flexible base is simplified to model

as a single DOF, such as a spring and damper system.

1.3 Outline

The outline of this thesis is as follows. Chapter 1, provides an introduction and state-

ment of the contributions with review of some related works. In chapter 2, we briefly

review the passive decomposition which plays a important role in this thesis. Chap-

ter 3 is devoted to the semi-autonomous teleoperation of distributed nonholonomic

WMRs including distributed control design based on nonholonomic passive decompo-

sition, distributed estimation, and the design of the predictive display. In chapter 4,

we present the framework applied to the manipulator-stage on vertical flexible beam

from the derivation of the dynamics to the control and interface design. In chapter 5,

we make concluding remarks and state possible directions of future research.
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Chapter 2

Preliminary

2.1 Passive Decomposition

Passive decomposition plays a crucial role in this thesis by dividing the original sys-

tems into subsystems according to the given control objectives. The following subsec-

tion is brief review of [11] and [39].

2.1.1 Basic Notations and Properties of Standard Passive De-

composition

Let us start with the dynamics of mechanical systems

𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔(𝑞) = 𝜏

where 𝑞, 𝑞, 𝜏 ∈ R𝑛 are the configuration, velocity, and control, 𝑀,𝐶 ∈ R𝑛×𝑛 are the

inertia and Coriolis matrices with 𝑀̇ − 2𝐶 being skew symmetric. Suppose that the

motion coordination or formation requirements can be represented by the mapped

point of a (holonomic) map

ℎ : R𝑛 → R𝑛, 𝑚 ≤ 𝑛

7



Following the latter application of ℎ, we call this map ℎ coordination map and its

range space 𝒩 ≈ R𝑚 formation manifold. We further assume that this formation

map ℎ is a smooth submersion (i.e., its Jacobian is full rank). Then, the level set of

ℎ is defined by

ℋℎ(𝑞) := {𝑞 ∈ R𝑛|ℎ(𝑞) = 𝑐, 𝑐 ∈ R𝑚}(8) (2.1)

Then, we can split the tangent space of the system s.t.,

∆⊤ := {𝑞 ∈ R𝑛|ℒ𝑞ℎ(𝑞) = ℒ𝑞𝑞𝑓 = 0} = null(𝜕𝑞𝑓/𝜕𝑞)

∆⊥ := {𝑣 ∈ R𝑛|𝑣𝑇𝑀(𝑞)𝜉 = 0, ∀𝜉 ∈ ∆⊤}

where ℒ𝑞 is the Lie derivative of ℎ(𝑞) along 𝑞. This then implies that the tangent

space of the system splits s.t.,

𝑇𝑞ℳ = ∆⊤ ⊕ ∆⊥

where ⊕ is the direct sum, 1) ∆⊤ is called tangent distribution (i.e., parallel to the

level set of ℎ(𝑞)), and 2) ∆⊥ is called normal distribution (i.e., orthogonal complement

of ∆⊤ w.r.t. the inertia matrix 𝑀(𝑞). We call the dynamics projected on the tangent

distribution locked system and the system on ∆⊥ shape system.

Then, we can write 𝑞 by

𝑞 =
[︁
∆⊤ ∆⊥

]︁
⏟  ⏞  

:=Δ(𝑞)

⎡⎣𝑣𝐿
𝑣𝐸

⎤⎦
⏟  ⏞  
:=𝜈

where the matrices ∆⊤ ∈ R𝑛×(𝑛−𝑚) and ∆⊥ ∈ R𝑛×𝑚 identify their respective spaces.

Using ∆𝑇
⊤𝑀∆⊥ = 0, 𝑞 = ∆𝜈, and 𝑞 = ∆𝜈̇ + ∆̇𝜈, we can then decompose the
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original dynamics into⎡⎣𝑀𝐿 0

0 𝑀𝐸

⎤⎦⎡⎣𝑣̇𝐿
𝑣̇𝐸

⎤⎦+

⎡⎣ 𝐶𝐿 𝐶𝐿𝐸

𝐶𝐿𝐸 𝐶𝐸

⎤⎦⎡⎣𝑣𝐿
𝑣𝐸

⎤⎦+

⎡⎣𝑔𝐿
𝑔𝐸

⎤⎦ =

⎡⎣𝜏𝐿
𝜏𝐸

⎤⎦ (2.2)

where 𝑀𝐿 = ∆𝑇
⊤𝑀∆⊤, 𝑀𝐸 = ∆𝑇

⊥𝑀∆⊥, and

⎡⎣ 𝐶𝐿 𝐶𝐿𝐸

𝐶𝐿𝐸 𝐶𝐸

⎤⎦ = ∆𝑇
(︁
𝑀∆̇ + 𝐶∆

)︁

The decomposed dynamics (2.2) satisfies the following.

∙ 𝑀𝐿 and 𝑀𝐸 are symmetric and positive definite.

∙ 𝑀̇𝐿`2𝐶𝐿 and 𝑀̇𝐸`2𝐶𝐸 are skew symmetric.

∙ 𝐶𝐿𝐸 = `𝐶𝑇
𝐸𝐿

∙ Kinetic energy and power are decomposed s.t.

𝜅(𝑡) = 𝜅𝐿(𝑡) + 𝜅𝐸(𝑡), 𝜏𝑇 𝑞 = 𝜏𝑇𝐿 𝑣𝐿 + 𝜏𝑇𝐸 𝑣𝐸

where 𝜅𝐿 = 1
2
𝑣𝑇𝐿𝑀𝐿𝑣𝐿 and 𝜅𝐸 = 1

2
𝑣𝑇𝐸𝑀𝐸𝑣𝐸 and

2.1.2 Nonholonomic Passive Decomposition

In our scenario, multiple nonholonomic WMRs are under the mixed constraint, i.e.,

the physical/nonholonomic constraint (i.e., unconstrained distribution 𝒟⊤) and the

artificial/holonomic requirement (i.e., tangential and normal distributions ∆⊤,∆⊥).

The unconstrained distribution 𝒟⊤ characterizes the sub-space of velocity respecting

the nonholonomic Pfaffian constraint given by

𝐴(𝑞)𝑞 = 0
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To facilitate the analysis and control synthesis for the two WMRs under this mixed

constraint, we utilize the kinematic version of the nonholonomic passive decomposi-

tion [11,40]. We also refer readers to [11,40] for more details and explanations of the

nonholonomic passive decomposition.

The nonholonomic passive decomposition of general robotic systems is given by

[11,40]:

𝒟⊤ = (𝒟⊤ ∩△⊤) ⊕ (𝒟⊤ ∩△⊥) ⊕𝒟𝑐 (2.3)

where (𝒟⊤ ∩△⊤) and (𝒟⊤ ∩△⊥) are called (unconstrained) locked and shape distri-

butions, respectively representing the tangential (i.e., ℎ(𝑞) locked) and normal (i.e.,

ℎ(𝑞) changing) components to the level set ℋℎ(𝑞) (2.1) among the permissible robot

motion in 𝒟⊤ (i.e., satisfying nonholonomic constraint). The distribution 𝒟𝑐 is called

quotient distribution, which is still permissible, yet, contains both the tangential and

normal components to the level set ℋℎ(𝑞) and cannot be split either into tangential

or normal direction only. As to be shown below, for the cooperative WMRs, 𝒟𝑐 ̸= ∅,

implying weak decomposability [11].
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Chapter 3

Semi-Autonomous Teleoperation of

Nonholonomic Wheeled Mobile

Robots with Distributed

Communication

3.1 Distributed Control Design

3.1.1 Nonholonomic Passive Decomposition

Here, our goal is to design the control action for each WMR in such a way that the

platoon can maintain the 𝑛-trailer formation (i.e., line graph topology) regardless

of (arbitrary) user command while fully respecting the nonholonomic constraint and

the distribution requirement. For this, we consider the kinematic equation of the 𝑛-

WMRs, which we find adequate as shown in Sec. 3.4, as the WMR operation speed in

this thesis is not so fast with both the dynamics effect and the wheel-ground slip/drift

effect rather negligible.

Let us denote the inertial frame by {𝒪} and the body-fixed frame of the 𝑗-th

WMR by {𝒢𝑗} with 𝑗 = 1 being the “smart” leader WMR and 𝑗 = 2, ..., 𝑛 for the

“simple” follower WMRs. Here, we attach the origin of {𝒢𝑗} at the axle-center each

11



Figure 3-1: Platoon of distributed nonholonomic WMRs: one “smart” leader WMR
(with LiDAR, IMU and FPV camera) and three “simple” follower WMRs (with
monocular camera and IMU) (top). Peer-to-peer communication architecture among
the WMRs and the information flowing through it (bottom).
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Figure 3-2: Platoon of distributed WMRs navigating in a large-hall with array of plant
pots (top); and predictive display view with LiDAR-SLAM map, current and future
pose estimates of the WMRs with uncertainty (i.e., size ellipsoids and direction cone)
(bottom). Possible collision of a WMR will be indicated by white circular shade, if
its future pose estimate collides with non-traversable scanned regions of the SLAM
map (see bottom middle two pictures of Fig. 3-11.

13



𝑗-th WMR. See Fig. 3-3. The pose of each WMR in SE(2) can then be parameterized

by its axle-center position 𝑝𝑗 := (𝑥𝑗, 𝑦𝑗) ∈ ℜ2 and heading angle 𝜑𝑗 ∈ S of {𝒢𝑗} w.r.t.

{𝒪}. Define the configuration of the 𝑗-th WMR by 𝑞𝑗 = [𝑥𝑗; 𝑦𝑗;𝜑𝑗] ∈ ℜ3. It is then

well-known that the no-slip/drift condition can be written by the following Pfaffian

constraint:

𝐴𝑗(𝑞𝑗)𝑞𝑗 = 0

with 𝐴𝑗(𝑞𝑗) :=
[︁

sin𝜑𝑖 − cos𝜑𝑖 0
]︁
∈ ℜ1×3, which is well-known to be completely

nonholonommic [41].

Here, we aim to design the formation control to be distributed to each pair of two

fore-running and following WMRs. For this, let us define the configuration of the pair

of the 𝑗-th and (𝑗 + 1)-th WMRs by

𝑞𝑗,𝑗+1 :=
[︁
𝑞𝑗; 𝑞𝑗+1

]︁
=
[︁
𝑥𝑗; 𝑦𝑗; 𝜑𝑗; 𝑥𝑗+1; 𝑦𝑗+1; 𝜑𝑗+1

]︁
∈ ℜ6

with their no-slip/drift conditions given by

𝐴𝑗,𝑗+1𝑞𝑗,𝑗+1 = 0 (3.1)

with 𝐴𝑗,𝑗+1(𝑞𝑗,𝑗+1) := diag[𝐴𝑗(𝑞𝑗), 𝐴𝑗+1(𝑞𝑗+1)] ∈ ℜ2×6. The unconstrained distribu-

tion 𝒟⊤
𝑗,𝑗+1(𝑞) [11], which characterizes the sub-space of the velocity respecting the

nonholonomic constraint (3.1), can then be identified by

𝒟⊤
𝑗,𝑗+1 :=

⎡⎢⎢⎢⎢⎢⎢⎣
c𝜑𝑗 s𝜑𝑗 0 0 0 0

0 0 1 0 0 0

0 0 0 c𝜑𝑗+1 s𝜑𝑗+1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

∈ ℜ6×4

where c𝜑𝑗 := cos𝜑𝑗 and s𝜑𝑗 := sin𝜑𝑗. Here, note that 𝒟⊤
𝑗,𝑗+1 identifies the null-space

of 𝐴𝑗,𝑗+1 ∈ ℜ2×6 in (3.1). Evolution of the two WMRs under the nonholonomic con-
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straint (3.1) can then be written by the following drift-less nonlinear control equation:

𝑞𝑗,𝑗+1 = 𝒟⊤
𝑗,𝑗+1𝑢𝑗,𝑗+1 (3.2)

where 𝑢𝑗,𝑗+1 := [𝑣𝑗;𝑤𝑗; 𝑣𝑗+1;𝑤𝑗+1] ∈ ℜ4 is the control input, with 𝑣𝑗, 𝑤𝑗 ∈ ℜ being

the forward and angular velocity commands of the 𝑗-th WMR. The constraint (3.1)

is also completely nonholonomic [41].

The control objective to render the 𝑛-WMRs as a 𝑛-trailer system (i.e., line graph

topology) can be written by the following pairwise/distributed virtual constraint:

ℎ𝑗,𝑗+1 :=

⎛⎝𝑥𝑗 − 𝑥𝑗+1 − 𝐿𝑗 c𝜑𝑗+1

𝑦𝑗 − 𝑦𝑗+1 − 𝐿𝑗 s𝜑𝑗+1

⎞⎠ = 0 (3.3)

where 𝐿𝑗 > 0 is the desired distance between the 𝑗-th WMR and the (𝑗+1)-th WMR.

This constraint (3.3) implies that the distance between the two WMRs’ axle-centers is

maintained to be 𝐿𝑗 with the camera of the ensuing WMR always pointing to the axle-

center of the fore-running WMR. This then means that, if ℎ𝑗,𝑗+1 = 0, the axle-center

of the fore-running WMR will always be within the limited FOV (field-of-view) of the

following WMR’s camera regardless of the platoon formation shape and curvature.

This further implies that, if ℎ𝑗,𝑗+1 = 0, with the omni-directional fiducial markers

(e.g., cube with tags on each side) attached at those axle-centers, each following

WMR can always measure the relative distance and bearing from its fore-running

WMR with their onboard camera, while the platoon moves/undulates as a 𝑛-trailer

system. See Fig. 3-3. This ℎ(𝑞) is called formation map [11]. The control objective

ℎ𝑗,𝑗+1 = 0 needs to be attained while respecting the distribution requirement.

For this, following [39], we define tangential distribution ∆⊤
𝑗,𝑗+1 of ℎ𝑗,𝑗+1 to be the

15



Figure 3-3: Geometry of platoon of the distributed nonholonomic WMRs, when they
collectively behave as the 𝑛-trailer system under the virtual constraint ℎ(𝑞𝑗,𝑗+1) = 0,
that is, each following WMR maintains the distance 𝐿𝑗 from, and also faces toward
the axle-center of, their respective fore-running WMR.
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null-space of the one-form 𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1
∈ ℜ2×6 as identified by the following matrix:

∆⊤
𝑗,𝑗+1 :=

⎡⎢⎢⎢⎢⎢⎢⎣
𝐿𝑗 s𝜑𝑗+1 −𝐿𝑗 c𝜑𝑗+1 0 0 0 −1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

∈ ℜ6×4

and normal distribution ∆⊥
𝑗,𝑗+1(𝑞𝑗,𝑗+1), which is the orthogonal complement of ∆⊤

𝑗,𝑗+1

w.r.t. the Euclidean metric s.t.,

∆⊥
𝑗,𝑗+1 :=

⎡⎣1 0 0 −1 0 𝐿𝑗 s𝜑𝑗+1

0 1 0 0 −1 −𝐿𝑗 c𝜑𝑗+1

⎤⎦𝑇

∈ ℜ6×2

with ∆⊥
𝑗,𝑗+1 =

(︁
𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1

)︁𝑇
. As explained in [39], the velocity component in ∆⊤

𝑗,𝑗+1

characterizes the motion of the two WMRs tangential to the (current) level set:

ℋℎ𝑗,𝑗+1
(𝑞𝑗,𝑗+1) := {𝑞′ ∈ ℜ6 | ℎ(𝑞′) = ℎ(𝑞𝑗,𝑗+1)} (3.4)

(i.e., collective motion of the two WMRs with ℎ𝑗,𝑗+1 kept intact); whereas that in

∆⊥
𝑗,𝑗+1 the motion normal to the level set ℋℎ𝑗,𝑗+1

w.r.t. the Euclidean metric (i.e.,

internal motion of the two WMRs changing the inter-WMR coordination ℎ𝑗,𝑗+1).

Following [42], we can then achieve the nonholonomic passive decomposition of

the two WMRs under the physical nonoholonomic constraint (3.1) and the virtual

holonomic constraint (3.3) s.t.,

𝑞𝑗,𝑗+1 =
[︁

(𝒟⊤
𝑗,𝑗+1 ∩△⊤

𝑗,𝑗+1) 𝒟𝑐
𝑗,𝑗+1

]︁
⏟  ⏞  

=:𝑆𝑗,𝑗+1(𝑞𝑗,𝑗+1)∈ℜ6×4

⎛⎝𝑢𝐿𝑗,𝑗+1

𝑢𝐶𝑗,𝑗+1

⎞⎠ (3.5)
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where

(𝒟⊤
𝑗,𝑗+1 ∩ ∆⊤

𝑗,𝑗+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c𝜑𝑗 0

s𝜑𝑗 0

0 1

c(𝜑𝑗 − 𝜑𝑗+1) c𝜑𝑗+1 0

c(𝜑𝑗 − 𝜑𝑗+1) s𝜑𝑗+1 0

1
𝐿𝑗

s(𝜑𝑗 − 𝜑𝑗+1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℜ6×2 (3.6)

is the (unconstrained) locked distribution, representing the motion tangential to the

level set ℋℎ𝑗,𝑗+1
(3.4) (i.e., collective motion with ℎ𝑗,𝑗+1 locked) among the permissible

motion in 𝒟⊤
𝑗,𝑗+1 (i.e., satisfying the nonholonomic constraint (3.1)); and

𝒟𝑐
𝑗,𝑗+1 = 𝒟⊤

𝑗,𝑗+1 ∖ (𝒟⊤
𝑗,𝑗+1 ∩ ∆⊤

𝑗,𝑗+1) = (3.7)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c𝜑𝑗 0

s𝜑𝑗 0

0 0

− c(𝜑𝑗 − 𝜑𝑗+1) c𝜑𝑗+1 s(𝜑𝑗 − 𝜑𝑗+1) c𝜑𝑗+1

− c(𝜑𝑗 − 𝜑𝑗+1) s𝜑𝑗+1 s(𝜑𝑗 − 𝜑𝑗+1) s𝜑𝑗+1

−𝐿𝑗 s(𝜑𝑗 − 𝜑𝑗+1) −𝐿𝑗 c(𝜑𝑗 − 𝜑𝑗+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the quotient distribution with 𝒟𝑐

𝑗,𝑗+1 /∈ ∆⊤
𝑗,𝑗+1 and 𝒟𝑐

𝑗,𝑗+1 /∈ ∆⊥
𝑗,𝑗+1 (i.e., weakly

decomposable [11]) and also (𝒟⊤
𝑗,𝑗+1 ∩ ∆⊥

𝑗,𝑗+1) ⊂ 𝒟𝑐
𝑗,𝑗+1 (see [42]). This then means

that, for the two WMRs under the control objective (3.3): 1) we can ensure the inter-

WMR coordination ℎ𝑗,𝑗+1 = 0 simply by stabilizing the motion of the WMRs in this

𝒟𝑐
𝑗,𝑗+1; yet, 2) it is not possible to adjust the inter-WMR coordination ℎ𝑗,𝑗+1 without

affecting the collective motion (i.e., tele-driving) aspect, since 𝒟𝑐
𝑗,𝑗+1 contains both the

normal and tangential components. Complete decoupling between these two aspects

can be attained only if strong decomposability is granted [11], which is not the case

here.
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3.1.2 Control Design and Distribution

The matrix 𝑆𝑗,𝑗+1 in (3.5) is called the decomposition matrix. In (3.5), 𝑢𝐶𝑗,𝑗+1
=

[𝑢1
𝐶𝑗,𝑗+1

;𝑢2
𝐶𝑗,𝑗+1

] ∈ ℜ2 and 𝑢𝐿𝑗,𝑗+1
= [𝑢1

𝐿𝑗,𝑗+1
;𝑢2

𝐿𝑗,𝑗+1
] ∈ ℜ2 are respectively the control

inputs of the quotient and locked systems, with the former to be utilized to regulate

the inter-WMR coordination (i.e., ℎ𝑗,𝑗+1 → 0) while the latter to tele-drive the two

WMRs while not perturbing the inter-WMR coordination aspect ℎ𝑗,𝑗+1. These con-

trols (𝑢𝐿𝑗,𝑗+1
, 𝑢𝐶𝑗,𝑗+1

) ∈ ℜ4 should also be distributable to each WMR according to

their sensing, computing and communication architecture (see Fig. 3-1).

The fact that 𝒟𝑐
𝑗,𝑗+1 contains some components in ∆⊥

𝑗,𝑗+1 implies that, by using

𝑢𝐶𝑗,𝑗+1
, we can affect/regulate the inter-WMR coordination ℎ𝑗,𝑗+1. For this, we design

𝑢𝐶𝑗,𝑗+1
∈ ℜ2 s.t.,

𝑢𝐶𝑗,𝑗+1
= −𝒟𝑐𝑇

𝑗,𝑗+1(𝑞𝑗,𝑗+1) ·
[︂
𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1

]︂𝑇 [︂𝜕𝜙ℎ𝑗,𝑗+1

𝜕ℎ𝑗,𝑗+1

]︂𝑇
(3.8)

where 𝜙ℎ𝑗,𝑗+1
(ℎ𝑗,𝑗+1) ≥ 0 is a suitably defined positive-definite potential function to

enforce ℎ𝑗,𝑗+1 = 0 (i.e., 𝜙ℎ𝑗,𝑗+1
= 0 iff ℎ = 0 and positively quadratic around ℎ = 0

with
𝜕𝜙ℎ𝑗,𝑗+1

𝜕𝜕ℎ𝑗,𝑗+1
= 0 iff 𝜙ℎ𝑗,𝑗+1

= 0 in a neighborhood of ℎ𝑗,𝑗+1 = 0). We then have:

𝑑𝜙ℎ𝑗,𝑗+1

𝑑𝑡
=

𝜕𝜙ℎ𝑗,𝑗+1

𝜕ℎ𝑗,𝑗+1

𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1

𝑞𝑗,𝑗+1

=
𝜕𝜙ℎ𝑗,𝑗+1

𝜕ℎ𝑗,𝑗+1

𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1

𝒟𝑐𝑗,𝑗+1
𝑢𝐶𝑗,𝑗+1

= −||𝑢𝐶𝑗,𝑗+1
||2 ≤ 0 (3.9)

where we use the fact that 𝜕ℎ𝑗,𝑗+1

𝜕𝑞𝑗,𝑗+1
· [𝒟⊤

𝑗,𝑗+1 ∩ ∆⊤
𝑗,𝑗+1] · 𝑢𝐿𝑗,𝑗+1

= 0 ∀𝑢𝐿𝑗,𝑗+1
from the

geometric construction of (3.5). This then means that 𝜙ℎ𝑗,𝑗+1
(𝑡) ≤ 𝜙ℎ𝑗,𝑗+1

(0), ∀𝑡 ≥ 0,

that is, if the inter-WRM coordination error starts small (i.e., ||ℎ𝑗,𝑗+1(0)|| ≈ 0), it

will stay small (i.e., ||ℎ𝑗,𝑗+1(𝑡)|| ≈ 0, ∀𝑡 ≥ 0). Further, this error 𝜙ℎ𝑗,𝑗+1
will be strictly

decreasing as long as 𝑢𝐶𝑗,𝑗+1
̸= 0. This also implies that, if we start with small enough

ℎ𝑗,𝑗+1(0) with |𝜑𝑗(0)−𝜑𝑗+1(0)| < 𝜋, |𝜑𝑗(𝑡)−𝜑𝑗+1(𝑡)| < 𝜋 ∀𝑡 ≥ 0 (i.e., heading angle 𝜑𝑗

in Fig. 3-3 will not flip around), since, if not, 𝜙ℎ𝑗,𝑗+1
(𝑡) should increase, contradictory
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to 𝜙ℎ𝑗,𝑗+1
(𝑡) ≤ 𝜙ℎ𝑗,𝑗+1

(0), ∀𝑡 ≥ 0. Here, note that the control 𝑢𝐶𝑗,𝑗,+1
is distributed, as

it is a function of only 𝑞𝑗,𝑗+1.

With the inter-WMR coordination ||ℎ𝑗,𝑗+1|| → 0 for each pair among the 𝑛-WMRs

attained by 𝑢𝐶𝑗,𝑗+1
in (3.8), the remaining task is then to tele-drive the collective of

those pairs without perturbing ℎ𝑗,𝑗+1 → 0 in a distributed fashion. This can be done

if (and only if) by driving them via the locked system control 𝑢𝐿𝑗,𝑗+1
as can be seen

from the nonholonomic passive decomposition (3.5). Here, note that, if ℎ𝑗,𝑗+1 → 0,

𝑢𝐶𝑗,𝑗+1
→ 0 from the construction of 𝜙ℎ𝑗,𝑗+1

; and, if 𝑢𝐶𝑗,𝑗+1
→ 0, 𝑢𝐿𝑗,𝑗+1

→ (𝑣𝑗, 𝑤𝑗)

from (3.5) with (3.6). To design 𝑢𝐿𝑗,𝑗+1
, let us start with the leader WMR with 𝑗 = 1.

This leader WMR serves as the “eyes” of the remote user and will be directly tele-

controlled by them. This means that (𝑣1, 𝑤1) is given. From (3.5) with (3.6)-(3.7), we

then have

𝑣1 = 𝑢1
𝐿1,2

+ 𝑢1
𝐶1,2

𝑤1 = 𝑢2
𝐿1,2

from which we can define 𝑢𝐿𝑗,𝑗+1
s.t.,

⎛⎝𝑢1
𝐿1,2

𝑢2
𝐿1,2

⎞⎠ =

⎛⎝𝑣1 − 𝑢1
𝐶1,2

𝑤1

⎞⎠ (3.10)

where recall that 𝑢𝐶𝑗,𝑗+1
is already specified by (3.8) as a function of only 𝑞𝑗,𝑗+1.

Now, suppose that the control input (𝑣𝑗, 𝑤𝑗) of the 𝑗-th WMR is given. Then,

from (3.5) with (3.6)-(3.7), similar to (3.10), the locked system control 𝑢𝐿𝑗,𝑗+1
can be

obtained by ⎛⎝𝑢1
𝐿𝑗,𝑗+1

𝑢2
𝐿𝑗,𝑗+1

⎞⎠ =

⎛⎝𝑣𝑗 − 𝑢1
𝐶𝑗,𝑗+1

𝑤𝑗

⎞⎠ (3.11)

where again 𝑢𝐶𝑗,𝑗+1
is fully specified by (3.8) as a function of only 𝑞𝑗,𝑗+1. With

(𝑢𝐿𝑗,𝑗+1
, 𝑢𝐶𝑗,𝑗+1

) now both determined, again from (3.5) with (3.6)-(3.7), we can com-
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pute the forward and angular velocity inputs of the (𝑗 + 1)-th WMR by

𝑣𝑗+1 =𝑢1
𝐿𝑗,𝑗+1

c(𝜑𝑗 − 𝜑𝑗+1) −
[︁

c(𝜑𝑗 − 𝜑𝑗+1) − s(𝜑𝑗 − 𝜑𝑗+1)
]︁
𝑢𝐶𝑗,𝑗+1

(3.12)

𝑤𝑗+1 =
1

𝐿𝑗

𝑢1
𝐿𝑗,𝑗+1

s(𝜑𝑗 − 𝜑𝑗+1) − 𝐿𝑗

[︁
s(𝜑𝑗 − 𝜑𝑗+1) c(𝜑𝑗 − 𝜑𝑗+1)

]︁
𝑢𝐶𝑗,𝑗+1

(3.13)

Given (𝑣𝑗+1, 𝑤𝑗+1) of the (𝑗 + 1)-th WMR, we can also compute 𝑢𝐿𝑗+1,𝑗+2
for the pair

of the (𝑗 + 1)-th WMR and (𝑗 + 2)-th WMR similar to (3.11) by

⎛⎝𝑢1
𝐿𝑗+1,𝑗+2

𝑢2
𝐿𝑗+1,𝑗+2

⎞⎠ =

⎛⎝𝑣𝑗+1 − 𝑢1
𝐶𝑗+1,𝑗+2

𝑤𝑗+1

⎞⎠ (3.14)

where, again, 𝑢𝐶𝑗+1,𝑗+2
is already specified by (3.8) as a function of only 𝑞𝑗+1,𝑗+2.

By repeating this process down to the 𝑛-th WMR, we can specify the control input

(𝑣𝑗, 𝑤𝑗) for all the WMRs, 𝑗 = 1, ..., 𝑛, which will ensure the (𝑗+1)-th WMR to follow

the 𝑗-th WMR (moving with (𝑣𝑗, 𝑤𝑗)) while enforcing the inter-WMR coordination

requirement (i.e., ℎ𝑗,𝑗+1 → 0) regardless of the user command (𝑣1, 𝑤1) of the leader

WMR.

Here, note that the control (3.12)-(3.13) of the (𝑗 + 1)-th WMR is only a function

of 𝑞𝑗,𝑗+1 = [𝑞𝑗; 𝑞𝑗+1] and 𝑢1
𝐿𝑗,𝑗+1

, where 𝑞𝑗 and 𝑢1
𝐿𝑗,𝑗+1

are already known by the 𝑗-th

WMR (with (3.11)), thus, can be transmitted to the (𝑗+1)-th WMR via the peer-to-

peer communication, and 𝑞𝑗+1 can be estimated by using the onboard sensor of the

(𝑗 + 1)-th WMR with 𝑞𝑗 received from the 𝑗-th WMR via the communication. This

then shows that the control (3.12)-(3.13) is indeed distributed, requiring only onboard

sensing and peer-to-peer communication. Here, we also assume the transmission delay

between two WMRs via their peer-to-peer communication (with the data loss also

included) be negligible as compared to the operation speed of the WMRs. This is

necessary for the properly working of the distributed control (3.12)-(3.13), and granted

for our experimental setup as well (i.e., WMR speed slower than 0.5m/s with 250Hz

communication rate and near zero data loss - see Sec. 3.4). This transmission delay

effect will be substantial though for the predictive display, when the number of the

WMRs is large - see Sec. 3.3.
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Figure 3-4: Simulation result of the platoon of 30 WMRs making a triangular forma-
tion under the distributed control (3.12)-(3.13) and the modified formation map (3.18)
with the camera-heading offset angle 𝛼𝑗 to slant the two branches of the formation
from each other.
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Now, suppose that we start with ||ℎ𝑗,𝑗+1(0)|| ≈ 0 for all 𝑗 = 1, ..., 𝑛− 1. Then, as

stated before (3.11), 𝑢𝐶𝑗,𝑗+1
≈ 0 as well, ∀𝑗 = 1, 2, ..., 𝑛 − 1. This then implies from

(3.5) with (3.6)-(3.7) that

𝑢1
𝐿𝑗,𝑗+1

≈ 𝑣𝑗, 𝑢2
𝐿𝑗,𝑗+1

≈ 𝑤𝑗

which, from (3.12), further implies that

𝑣𝑗+1 ≈ 𝑣𝑗 c(𝜑𝑗 − 𝜑𝑗+1), 𝑤𝑗+1 ≈
𝑣𝑗
𝐿𝑗

s(𝜑𝑗 − 𝜑𝑗+1) (3.15)

or, equivalently,

𝑣𝑗+1 ≈ 𝑣1 ·
𝑗∏︁

𝑝=1

c(𝜑𝑝 − 𝜑𝑝+1) (3.16)

𝑤𝑗+1 ≈
𝑣1
𝐿𝑗

s(𝜑𝑗 − 𝜑𝑗+1) ·
𝑗−1∏︁
𝑝=1

c(𝜑𝑝 − 𝜑𝑝+1) (3.17)

Here, note that if all the WMRs are aligned (i.e., 𝜑𝑗 = 𝜑𝑗+1), 𝑣𝑗 → 𝑣1 with 𝑤𝑗 = 0

∀𝑗 = 1, 2, .., 𝑛, i.e., pulling the straight-line platoon by its leader WMR. One the other

hand, if 𝜑𝑗 − 𝜑𝑗+1 = 𝜋/2, 𝑤𝑗+1 =
𝑣𝑗
𝐿

with 𝑣𝑗+1 = 0, i.e., pulling the upright stem of

the reversed “L”-shape normal to its bottom horizontal line with only the (𝑗 + 1)-th

WMR (i.e., horizontal line end) instantaneously rotating to keep its heading directed

to the axle-center of the 𝑗-th WMR (i.e., stem end). This is in a stark contrast with

the work of [42], where a pair of two WMRs is “pushed” by the follower WMR in a

centralized manner with external MOCAP (motion capture system).

Although developed here only for the line graph topology for simplicity, our frame-

work can also incorporate any directed tree graph topology among the WMRs, by

attaching line branch to its preceding stem branch with the leader WMR as the glob-

ally reachable root of the whole tree graph [43, 44]. For this, separation among the

branches can easily be achieved by using the same formation map ℎ𝑗,𝑗+1 (3.3), yet,

with some offset between the onboard camera direction and the heading direction of
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the WMR, i.e.,

ℎ𝑗,𝑗+1 :=

⎛⎝𝑥𝑗 − 𝑥𝑗+1 − 𝐿𝑗 c(𝜑𝑗+1 + 𝛼𝑗+1)

𝑦𝑗 − 𝑦𝑗+1 − 𝐿𝑗 s(𝜑𝑗+1 + 𝛼𝑗+1)

⎞⎠ = 0 (3.18)

where 𝛼𝑗+1 ∈ ℜ is the constant offset angle. If ℎ𝑗,𝑗+1 = 0, the branch will then be

“slanting” by the angle of 𝛼𝑗+1 from its stem branch. See Fig. 3-4, where this slanting

is used to attain a triangular formation among the WMRs. Note also that, since

the sensing, computation and communication are all distributed and also the control

(3.12)-(3.13) is uni-directional, any tree sub-graph can be removed or added from the

downstream of the platoon without influencing at all the performance of its upstream

WMRs. This implies scalability of our proposed framework.

The nonholonomic passive decomposition and its behavior decomposition (e.g.,

(3.12)-(3.13)) turns out to greatly simplify the uncertainty propagation computation

for the predictive display in Sec. 3.3, as it allows us to consider only the collective

driving aspect (i.e., with 𝑢𝐿𝑗,𝑗+1
), not the inter-WMR coordination aspect, which is

regulated locally by 𝑢𝐶𝑗,𝑗+1
. This is in a stark contrast to [20], where the same control

objective (3.3) is attained for distributed nonholonomic WMRs, yet, without such

a behavior decomposition. Thus, for the uncertainty propagation computation, the

full kinematics both with the collective and coordination aspects should be used,

which can substantially increase computation complexity as the closed-loop kine-

matics contains many nonlinearity therein. The passive decomposition was also used

in [24] (centralized holonomic robots), [30] (partially-distributed holonomic robots),

[31] (distributed holonomic robots), [12] (nonholonomic, yet, centralized), and in [42]

(nonholonomic, yet, only two WMRs and centralized). However, its application to

distributed nonholonomic WMRs is done for the first time in this thesis.
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3.2 Distributed Pose Estimation

3.2.1 EKF Pose Estimation of Leader WMR

The leader WMR runs the SLAM algorithm of [45, 46] with the LiDAR sensor. This

LiDAR-SLAM is running at 40Hz with the LiDAR scanning period. For smoother

and more accurate pose estimation, we fuse this LiDAR-SLAM pose information

with the IMU data via extended Kalman filtering (EKF). For this, following [47,48],

we utilize the IMU data (only (𝑥, 𝑦)-accelerometer and yaw gyroscope used) for the

EKF propagation step (with 250Hz), while the LiDAR-SLAM data for the EKF

measurement update (with 40Hz). We also adopt the technique of error-state EKF

for faster and more robust estimation performance.

More precisely, we define the state for this LiDAR-IMU sensor fusion s.t.,

𝜒1 :=
[︁
𝑝1; 𝜉1; 𝜑1; 𝑏𝑎1 ; 𝑏𝑔1

]︁
∈ ℜ8 (3.19)

where 𝑝1 := [𝑥1; 𝑦1] ∈ ℜ2, 𝜉1 := [𝑥̇1; 𝑦̇1] ∈ ℜ2, and 𝑏𝑎1 = [𝑏𝑎1,𝑥; 𝑏𝑎1,𝑦] ∈ ℜ2 and 𝑏𝑔1 ∈ ℜ

are the biases of the accelerometer and gyroscope measurements, each modeled as

random-walk processes driven by zero-mean white Gaussian noise 𝑛𝑤𝑎1 ∈ ℜ2 and

𝑛𝑤𝑔1 ∈ ℜ, respectively. The continuous-time state equation is then given by

𝑝̇1(𝑡) = 𝜉1(𝑡), 𝜉1(𝑡) = 𝑎1(𝑡), 𝜑̇1(𝑡) = 𝜔1(𝑡)

𝑏̇𝑎1(𝑡) = 𝑛𝑤𝑎1(𝑡), 𝑏̇𝑔1(𝑡) = 𝑛𝑤𝑔1(𝑡)
(3.20)

where 𝑎1(𝑡) ∈ ℜ2 is the acceleration of the leader WMR expressed in {𝒪}. The

accelerometer and gyroscope sensor models are also given by

𝑎𝑚1(𝑡) = 𝑅𝒢1
𝒪 (𝜑1(𝑡))𝑎1(𝑡) + 𝑏𝑎1(𝑡) + 𝑛𝑎1(𝑡)

𝜔𝑚1(𝑡) = 𝜔1(𝑡) + 𝑏𝑔1(𝑡) + 𝑛𝑔1(𝑡)
(3.21)

where 𝑛𝑎1(𝑡) ∈ ℜ2 and 𝑛𝑔1(𝑡) ∈ ℜ are the zero mean, white Gaussian measurement

noise of the accelerometer and gyroscope sensing, and 𝑅𝒢1
𝒪 ∈ SO(2) is the rotation
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matrix from the inertial frame {𝒪} to the body-fixed frame of leader WMR {𝒢1}.

Let us define the error state for the EKF s.t.,

𝜒̃1 :=
[︁
𝑝1; 𝜉1; 𝜑1; 𝑏̃𝑎1 ; 𝑏̃𝑔1

]︁
∈ ℜ8

where (̃·) = (·) − (̂·) is the difference between the true state (3.19) and the esti-

mated state (obtained by applying the expectation to (3.20)). Then, the linearized

continuous-time error state equation is given by

˙̃𝜒1 = 𝐹1(𝑡)𝜒̃1 + 𝐺1(𝑡)𝑛1 (3.22)

where 𝑛1 =
[︁
𝑛𝑎1 ; 𝑛𝑤𝑎1 ; 𝑛𝑔1 ; 𝑛𝑤𝑔1

]︁
∈ ℜ6 is the system noise vector, and

𝐹1(𝑡) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×2 𝐼2 02×1 02×2 02×1

02×2 02×2 𝑆𝑎̂1(𝑡) −𝑅𝒪
𝒢1

(𝜑1(𝑡)) 02×1

01×2 01×2 0 01×2 −1

02×2 02×2 02×1 02×2 02×1

01×2 01×2 0 01×2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℜ8×8

𝐺1(𝑡) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×2 02×2 02×1 02×1

−𝑅𝒪
𝒢1

(𝜑1(𝑡)) 02×2 02×1 02×1

01×2 01×2 −1 0

02×2 𝐼2 02×1 02×1

01×2 01×2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ ℜ8×6

with 𝑎̂1(𝑡) := 𝑅𝒪
𝒢1

(𝜑1(𝑡))(𝑎𝑚1(𝑡)−𝑏̂𝑎1(𝑡)) and 𝑆 := [0,−1; 1, 0] ∈ ℜ2×2. This continuous-

time equation (3.22) can then be discretized at time 𝑡𝑘 by using 𝜒̃1,𝑘+1−𝜒̃1,𝑘

𝑑𝑡
= ˙̃𝜒1,𝑘,

𝑑𝑡 = 𝑡𝑘+1 − 𝑡𝑘, with the IMU information (3.21) as done in [47, 48]. From this dis-

cretized equation, we can further obtain the error state covariance propagation equa-
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tion s.t.,

𝑃 𝜒1

𝑘+1|𝑘 ≃ (𝐼8 + 𝐹1,𝑘𝑑𝑡)𝑃
𝜒1

𝑘|𝑘(𝐼8 + 𝐹1,𝑘𝑑𝑡)
𝑇 + (𝐺1,𝑘𝑑𝑡)𝑄1(𝐺

𝑇
1,𝑘𝑑𝑡)

where 𝐹1,𝑘 := 𝐹1(𝑡𝑘) and 𝐺1,𝑘 := 𝐺1(𝑡𝑘) are the matrices at the time 𝑡𝑘, 𝑃 𝜒1

𝑘|𝑘 is the

priori covariance of the leader WMR at 𝑘, 𝑃 𝜒1

𝑘+1|𝑘 is its posteriori covariance at 𝑘, and

𝑄1 := 𝐸[𝑛1𝑛
𝑇
1 ] is the covariance of the noise vector 𝑛1. As a measurement for EKF,

we use the pose measurement obtained by the LiDAR-SLAM, i.e.,

𝑧SLAM =

⎛⎝𝑝1

𝜑1

⎞⎠+

⎛⎝𝑛𝑝1

𝑛𝜑1

⎞⎠
where (𝑛𝑝1 ,𝑛𝜑1) are the zero mean, white Gaussian noise of the LiDAR-SLAM pose

measurement. Then, the measurement model of the error state is given by

𝑧SLAM =

⎛⎝𝑝1

𝜑1

⎞⎠+

⎛⎝𝑛𝑝1

𝑛𝜑1

⎞⎠ =

⎡⎣ 𝐼2 02×2 02×1 02×3

01×2 01×2 1 01×3

⎤⎦
⏟  ⏞  

=:𝐻1

𝜒̃1 +

⎛⎝𝑛𝑝1

𝑛𝜑1

⎞⎠

which defines the update equation for (3.22). To correct the error state 𝜒̃1 with this

measurement 𝑧SLAM received at 𝑘 + 1, the Kalman gain 𝐾𝑘+1 is computed s.t.,

𝐾𝑘+1 = 𝑃 𝜒1

𝑘+1|𝑘𝐻
𝑇
1 𝑆

−1
𝑘+1 (3.23)

where 𝑆𝑘+1 = 𝐻1𝑃
𝜒1

𝑘+1|𝑘𝐻
𝑇
1 + 𝑅1 is the covariance of the residual, and 𝑅1 is the

covariance of the measurement. We then update the propagated error state and its

covariance s.t.,

𝜒̂1,𝑘+1|𝑘+1 = 𝜒̂1,𝑘+1|𝑘 + 𝐾𝑘+1𝑧SLAM,𝑘+1

𝑃 𝜒1

𝑘+1|𝑘+1 = 𝑃 𝜒1

𝑘+1|𝑘 − 𝑃 𝜒1

𝑘+1|𝑘𝐻
𝑇
1 𝑆

−1
𝑘+1𝐻1𝑃

𝜒1

𝑘+1|𝑘

(3.24)
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3.2.2 EKF Pose Estimation of Follower WMRs

For the pose estimation of the “simple” follower WMRs, we use only low-cost sensors

(e.g., monocular camera and IMU). Each follower WMR obtains relative position and

bearing measurement from the fore-running WMR by using the monocular camera

and fiducial markers similar to [49] attached on the fore-running WMR. This camera

information is then fused with IMU via the error-state EKF as done for the leader

WMR in Sec. 3.2.1. For this, similar to (3.19), define the sensor fusion state of the

𝑗-th follower WMR s.t.,

𝜒𝑗 :=
[︁
𝑝𝑗; 𝜉𝑗; 𝜑𝑗; 𝑏𝑎𝑗 ; 𝑏𝑔𝑗

]︁
∈ ℜ8

The propagation step of the error-state EKF is then the same as that of the leader

WMR. Only the difference is the update step, where the measurement of the camera

and the pose estimate of the (𝑗 − 1)-th WMR received from the communication are

used.

First, the camera measurement model is given by

𝑧𝑗,camera =

⎛⎝𝑧𝑝

𝑧𝜑

⎞⎠+

⎛⎝𝑛𝑝𝑗

𝑛𝜑𝑗

⎞⎠
where 𝑧𝑝 := 𝑅

𝒢𝑗

𝒪 (𝜑𝑗) (𝑝𝑗−1 − 𝑝𝑗) ∈ ℜ2 and 𝑧𝜑 := (𝜑𝑗−1 − 𝜑𝑗) ∈ ℜ are the relative

position and bearing of the (𝑗 − 1)-th WMR from the 𝑗-th WMR expressed in the

𝑗-th WMR frame {𝒢𝑗}, and 𝑛𝑝𝑗 ∈ ℜ2 and 𝑛𝜑𝑗
∈ ℜ are the zero mean, white Gaussian

noise of the camera measurement. Then the pose measurement of the 𝑗-th WMR

expressed in {𝒪} is given by

𝑧𝑗,pose =

⎛⎝𝑝𝑗−1

𝜑𝑗−1

⎞⎠−

⎛⎝𝑅𝒪
𝒢𝑗

(𝜑𝑗)(𝑧𝑝 + 𝑛𝑝𝑗)

𝑧𝜑 + 𝑛𝜑𝑗

⎞⎠
where (𝑝𝑗−1, 𝜑𝑗−1) is the pose of the fore-running WMR (to be received from the

communication). The measurement output can then be rewritten for the error state
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s.t.,

𝑧𝑗,pose =

⎛⎝𝑝𝑗−1

𝜑𝑗−1

⎞⎠−

⎛⎝𝑅𝒪
𝒢𝑗

(𝜑𝑗)𝑛𝑝𝑗

𝑛𝜑𝑗

⎞⎠ =

⎡⎣ 𝐼2 02×2 02×1 02×3

01×2 01×2 1 01×3

⎤⎦
⏟  ⏞  

=:𝐻𝑗

𝜒̃𝑗 −

⎛⎝𝑅𝒪
𝒢𝑗

(𝜑𝑗(𝑡))𝑛𝑝𝑗

𝑛𝜑𝑗

⎞⎠

with its measurement covariance given by

𝑅𝑗 : = 𝐸[𝑧𝑗,pose𝑧
𝑇
𝑗,pose] =

⎡⎣𝑃 𝜒𝑗−1
𝑝𝑝 + 𝑅𝒪

𝒢𝑗
(𝜑𝑗)𝑅𝑝𝑗(𝑅

𝒪
𝒢𝑗

(𝜑𝑗))
𝑇 𝑃

𝜒𝑗−1

𝑝𝜑

𝑃
𝜒𝑗−1

𝜑𝑝 𝑃
𝜒𝑗−1

𝜑𝜑 + 𝑅𝜑𝑗

⎤⎦
where (𝑃

𝜒𝑗−1
𝑝𝑝 , 𝑃

𝜒𝑗−1

𝑝𝜑 , 𝑃
𝜒𝑗−1

𝜑𝑝 , 𝑃
𝜒𝑗−1

𝜑𝜑 ) are the covariance of the (𝑗−1)-th WMR pose esti-

mate (received from the communication), and 𝑅𝑝𝑗 := 𝐸[𝑛𝑝𝑗𝑛
𝑇
𝑝𝑗

] and 𝑅𝜑𝑗
:= 𝐸[𝑛𝜑𝑗

𝑛𝑇
𝜑𝑗

]

are the covariance of the relative position and bearing measurements obtained from

the monocular camera, respectively. When the measurement is received, we can then

update the state and covariance of the error state EKF of the 𝑗-th WMR as done

in (3.23) and (3.24). The covariance 𝑃
𝜒𝑗

𝑘+1|𝑘+1 plays a crucial role for the predictive

display developed in Sec. 3.3 via its propagation through the kinematics of the WMR

and their communication.

3.3 Predictive Display for Distributed Robots Tele-

operation

Even if the 𝑛-WMRs is reduced to the (familiar) 𝑛-trailer platoon by the distributed

control of Sec. 3.1, it is still difficult for typical users to tele-navigate this platoon to

wiggle through an obstacle-laden environment, as this platoon can exhibit complex

internal serpentine articulation, particularly when it experiences a large curvature

change. See Fig. 3-4. To assist a remote user to overcome this difficulty, here, we

propose a novel predictive display, which, by providing the user with the estimated

current and predicted future pose information of each WMR along with the possi-

bility of collision, can significantly enhance the user tele-driving performance while
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substantially reducing their cognitive loads as manifested by the human subject study

in Sec. 3.4.4. Into this predictive display, we also fully incorporate the uncertainty in-

herent to the distributed robots with the sensing, computation and communication

distribution, that is, 1) local pose estimation uncertainty of each WMR starting from

that of the leader WMR with the relative pose measurement uncertainty accumu-

lated downstream to the last WMR; and 2) current pose estimation uncertainty of

each WMR stemming from the uncertainty of their motions during the transmission

delay accumulated upstream to the leader WMR.

To address this complex platoon motion and the distribution-inherent uncertainty,

here, we design our predictive display to be composed of the following two stages: 1)

estimation propagation stage, where the (old) pose estimate of each WMR, received

at the current time 𝑡𝑘, is propagated through their transmission delay, so that we can

probabilistically estimate its pose at the current time 𝑡𝑘 with the associated uncer-

tainty; and 2) prediction propagation stage, where the estimated current pose of each

WMR at 𝑡𝑘, obtained via the above estimation propagation, is forward-propagated

with the current user command so that we can predict the future course of the platoon

motion over the prediction time horizon. See Fig. 3-5.

For this, we assume that all the delays (e.g., processing, data conversion, etc.)

are lumped into the transmission delay, which is still small enough as compared

to the WMR speed (for the distributed control (3.12)-(3.13) to properly work) and

also can be made constant with some suitable buffering algorithm. Note that this

assumption can easily be granted, at least approximately, if the communication rate

is much faster than the WMR speed with negligible data loss rate. This is in fact

true for our experimental setup in Sec. 3.4, where all the estimation, control and

communication run at 250Hz with near-zero data loss, which is much faster than the

WMR operation speed (≤ 0.5m/s). Thus, below, we assume the transmission delay

and the computation time be the same (i.e., 𝑡𝑘+1 − 𝑡𝑘 = 4ms for the setup in Sec.

3.4). Of course, the below derivation can be easily extended when the transmission

delay is constant, yet, longer than the computation time. We also assume the LiDAR-

SLAM map uncertainty be much less than that of the pose estimation of each WMR,
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implying that, for collision detection, we should consider the uncertainty only of the

pose estimate of the WMRs.

3.3.1 Estimation Propagation

Note that the pose information of the 𝑗-th WMR received at the current time 𝑡𝑘 by

the MCS (main control station) is given by

𝑞𝑗,𝑘−𝑗 ≈ 𝒩 (𝑞𝑗,𝑘−𝑗, 𝑃𝑗,𝑘−𝑗)

i.e., the estimated state 𝑞𝑗(𝑡𝑘−𝑗) computed via the EKF-sensor fusion by the 𝑗-th

WMR and transmitted via the 𝑗-hops peer-to-peer communication, first to the (𝑗−1)-

th WMR and all the way to the leader WMR and the MCS. Following the EKF sensor

fusion of Sec. 3.2, this estimated state 𝑞𝑗,𝑘−𝑗 is characterized by Gaussian distribution

with the mean 𝑞𝑗,𝑘−𝑗 and the covariance 𝑃𝑗,𝑘−𝑗. Given this “delayed” information, we

then attempt to estimate the pose of the WMRs at the current time 𝑡𝑘 by using the

unscented transformation as follows.

Let us start with the leader WMR, from which, at the time 𝑘, the MCS receives

its estimated pose

𝑞1,𝑘−1 ≈ 𝒩 (𝑞1,𝑘−1, 𝑃1,𝑘−1)

which is assumed to be Gaussian as above. During the interval [𝑡𝑘−1, 𝑡𝑘), the control

input for the leader WMR is simply given by (𝑣1,𝑘−1, 𝑤1,𝑘−1), which is directly received

from the MCS. We then use the following equation to estimate 𝑞1,𝑘:

𝑞1,𝑘 = 𝑞1,𝑘−1 + 𝑑𝑡 ·

⎡⎢⎢⎢⎣
c𝜑1,𝑘−1 0

s𝜑1,𝑘−1 0

0 1

⎤⎥⎥⎥⎦
⏟  ⏞  

=:𝐴(𝑞1,𝑘−1)

⎛⎝𝑣1,𝑘−1

𝑤1,𝑘−1

⎞⎠ (3.25)
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Figure 3-5: Predictive display consists of the two propagation stages: 1) estimation
propagation stage to estimate the pose of each WMR at the current time from its
reception with the transmission delay; and 2) prediction propagation stage to pre-
dict the future course of platoon motion over prediction time horizon via forward
propagation.

32



which can be written by the following nonlinear map

𝑞1,𝑘 = 𝑔(𝑞1,𝑘−1, 𝑣1,𝑘−1, 𝑤1,𝑘−1)

Here, note that, via this nonlinear map, the random variable 𝑞1,𝑘−1 propagates to

another random variable 𝑞1,𝑘. This can in fact be computed by using unscented trans-

formation (UT) s.t.,

𝑞𝑢𝑡1,𝑘 := UT𝑔,𝑣1,𝑘−1,𝑤1,𝑘−1
(𝑞1,𝑘−1) ≈ 𝒩 (𝑞𝑢𝑡1,𝑘, 𝑃

𝑢𝑡
1,𝑘)

where UT𝑔,⋆ is the unscented transformation via the nonlinear map 𝑔(·, ⋆).

Let us then move on to the second WMR, for which the MCS receives its estimated

pose s.t.,

𝑞2,𝑘−2 ≈ 𝒩 (𝑞2,𝑘−2, 𝑃2,𝑘−2)

at the time instance 𝑡𝑘. We then first propagate the kinematics of this second WMR

from 𝑡𝑘−2 to 𝑡𝑘−1 using (3.25). For this, from (3.15), we have

𝑞2,𝑘−1 = 𝑞2,𝑘−2 + 𝑑𝑡 · 𝐴(𝑞2,𝑘−2)

⎛⎝𝑣1,𝑘−2 c(𝜑1,𝑘−2 − 𝜑2,𝑘−2)

𝑣1,𝑘−2

𝐿
s(𝜑1,𝑘−2 − 𝜑2,𝑘−2)

⎞⎠
where 𝜑1,𝑘−2 is available at the MCS, since it is received from the leader WMR at

the (past) time instance 𝑡𝑘−1. Then, we can do the “estimation propagation” via the

unscented transformation s.t.,

𝑞𝑢𝑡2,𝑘−1 := UT𝑔,𝑣1,𝑘−2,𝜑
𝑘−2
1,2

(𝑞2,𝑘−2)

where 𝜑𝑘−2
1,2 := 𝜑1,𝑘−2 − 𝜑2,𝑘−2. To estimate-propagate from 𝑘 − 1 to 𝑘, we also use:

𝑞2,𝑘 = 𝑞𝑢𝑡2,𝑘−1 + 𝑑𝑡 · 𝐴(𝑞𝑢𝑡2,𝑘−1)

⎛⎝𝑣1,𝑘−1 c(𝜑1,𝑘−1 − 𝜑𝑢𝑡
2,𝑘−1)

𝑣1,𝑘−1

𝐿
s(𝜑1,𝑘−1 − 𝜑𝑢𝑡

2,𝑘−1)

⎞⎠
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from which we estimate 𝑞𝑢𝑡2,𝑘 via the unscented transformation s.t.,

𝑞𝑢𝑡2,𝑘 := UT𝑔,𝑣1,𝑘−1,𝜑
′,𝑘−1
1,2

(𝑞𝑢𝑡2,𝑘−1)

where 𝜑𝑢𝑡′,𝑘−1
1,2 := 𝜑1,𝑘−1−𝜑𝑢𝑡

2,𝑘−1 with 𝜑1,𝑘−1 and 𝑣1,𝑘−1 available via the communication

from the leader WMR to the MCS at 𝑡𝑘.

We can then generalize this for the 𝑗-th WMR as the following sequential estimation-

propagation procedure: with (3.15),

𝑞𝑢𝑡𝑗,𝑘−𝑗+1 := UT𝑔,𝑣1,𝑘−𝑗 ,𝜑
𝑘−𝑗
1,2 ,...𝜑𝑘−𝑗

𝑗−2,𝑗−1,𝜑
𝑘−𝑗
𝑗−1,𝑗

(𝑞𝑗,𝑘−𝑗)

𝑞𝑢𝑡𝑗,𝑘−𝑗+2 := UT
𝑔,𝑣1,𝑘−𝑗+1,𝜑

𝑘−𝑗+1
1,2 ,...𝜑𝑘−𝑗+1

𝑗−2,𝑗−1,𝜑
𝑢𝑡′,𝑘−𝑗+1
𝑗−1,𝑗

(𝑞𝑢𝑡𝑗,𝑘−𝑗+1)

𝑞𝑢𝑡𝑗,𝑘−𝑗+3 := UT
𝑔,𝑣1,𝑘−𝑗+2,𝜑

𝑘−𝑗+2
1,2 ,...𝜑𝑢𝑡′,𝑘−𝑗+2

𝑗−2,𝑗−1 ,𝜑𝑢𝑡,𝑘−𝑗+2
𝑗−1,𝑗

(𝑞𝑢𝑡𝑗,𝑘−𝑗+2)

...

𝑞𝑢𝑡𝑗,𝑘 := UT
𝑔,𝑣1,𝑘−1,𝜑

𝑢𝑡′,𝑘−1
1,2 ,...𝜑𝑢𝑡,𝑘−1

𝑗−2,𝑗−1,𝜑
𝑢𝑡,𝑘−1
𝑗−1,𝑗

(𝑞𝑢𝑡𝑗,𝑘−1) (3.26)

where 𝜑𝑢𝑡′,𝑘
𝑗,𝑗+1 := 𝜑𝑢𝑡

𝑗,𝑘 − 𝜑𝑢𝑡
𝑗+1,𝑘, and all the terms are available at the time 𝑘 with the

same procedure already done from the leader WMR to the (𝑗 − 1)-th WMR. Here,

note that the nonholonomic passive decomposition and its behavior decomposition

(i.e., (3.15)) greatly simplifies this estimation-propagation computation, as it allows

us to consider only the collective motion behavior. This computation will be more

complex if we use the scheme of [20], which require us to consider both the collective

motion and the inter-WMR coordination behaviors.

3.3.2 Prediction Propagation

Once we obtain the current pose estimate (𝑞𝑢𝑡1,𝑘, 𝑞
𝑢𝑡
2,𝑘, ..., 𝑞

𝑢𝑡
𝑛,𝑘) of all the 𝑛-WMRs via

the estimation propagation, we then perform the “prediction propagation”, that is,

predict the pose of each WMR when the same current human command (𝑣1,𝑘, 𝑤1,𝑘) is

kept being applied during the prediction horizon [𝑡𝑘, 𝑡𝑘𝑝). For this, similar as above,

we also perform the forward propagation sequentially from the leader WMR to the
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𝑛-th WMR and from [𝑡𝑘, 𝑡𝑘+1) to [𝑡𝑘𝑝−1, 𝑡𝑘𝑝) using the unscented transformation. More

precisely, first, for the leader WMR, we have: using (3.15) with 𝑢𝐶1,2 ≈ 0 as assumed

above,

𝑞𝑢𝑡1,𝑘+1 := UT𝑔,𝑣1,𝑘,𝑤1,𝑘
(𝑞𝑢𝑡1,𝑘)

𝑞𝑢𝑡1,𝑘+2 := UT𝑔,𝑣1,𝑘,𝑤1,𝑘
(𝑞𝑢𝑡1,𝑘+1)

...

𝑞𝑢𝑡1,𝑘𝑝 := UT𝑔,𝑣1,𝑘,𝑤1,𝑘
(𝑞𝑢𝑡1,𝑘𝑝−1)

On the other hand, for the second WMR, we have: again, with 𝑢𝐶1,2 ≈ 0 and (3.16)-

(3.17),

𝑞𝑢𝑡2,𝑘+1 := UT𝑔,𝑣1,𝑘,𝜑
𝑢𝑡,𝑘
1,2

(𝑞𝑢𝑡2,𝑘)

𝑞𝑢𝑡2,𝑘+2 := UT𝑔,𝑣1,𝑘,𝜑
𝑢𝑡,𝑘+1
1,2

(𝑞𝑢𝑡2,𝑘+1)

...

𝑞𝑢𝑡2,𝑘𝑝 := UT
𝑔,𝑣1,𝑘,𝜑

𝑢𝑡,𝑘𝑝−1
1,2

(𝑞𝑢𝑡2,𝑘𝑝−1)

and, similarly, for the 𝑗-th WMRs,

𝑞𝑢𝑡𝑗,𝑘+1 := UT𝑔,𝑣1,𝑘,𝜑
𝑢𝑡,𝑘
1,2 ...,𝜑𝑢𝑡,𝑘

𝑗−2,𝑗−1,𝜑
𝑢𝑡,𝑘
𝑗−1,𝑗

(𝑞𝑢𝑡2,𝑘)

...

𝑞𝑢𝑡𝑗,𝑘𝑝 := UT
𝑔,𝑣1,𝑘,𝜑

𝑢𝑡,𝑘𝑝−1
1,2 ...,𝜑

𝑢𝑡,𝑘𝑝−1

𝑗−2,𝑗−1,𝜑
𝑢𝑡,𝑘𝑝−1

𝑗−1,𝑗

(𝑞𝑢𝑡2,𝑘𝑝−1)

where 𝜑𝑢𝑡,𝑘′

𝑝−1,𝑝 := 𝜑𝑢𝑡
𝑘′,𝑝−1 − 𝜑𝑢𝑡

𝑘′,𝑝 with 𝜑𝑢𝑡
𝑘′,𝑝 known ∀𝑘′ ∈ {𝑘, 𝑘 + 1, ..., 𝑘𝑝} and ∀𝑝 ∈

{1, 2, ..., 𝑗 − 1} from performing this prediction-propagation sequentially from the

leader WMR to the (𝑗 − 1)-th WMR each for [𝑡𝑘, 𝑡𝑘𝑝). Similar as above, the nonholo-

nomic passive decomposition (i.e., (3.15)) greatly simplifies this prediction-propagation

computation as well, which will be more complex if we use the result of [20], as it

requires to include the full kinematics with both the collective motion and the inter-
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Figure 3-6: Predictive display with estimated current and predicted future poses of
WMRs. Uncertainty of pose estimate is denoted by enlarged size of the WMR and
the heading angle cone, with their nominal size and center angle determined by the
means: 1) uncertainty is the largest for the last WMR (left); and 2) uncertainty still
substantial even with fairly precise sensors if the WMRs are many (right).

WMR coordination behaviors.

We then present these estimated current pose 𝑞𝑢𝑡𝑗,𝑘 ≈ 𝒩 (𝑞𝑢𝑡𝑗,𝑘, 𝑃
𝑢𝑡
𝑗,𝑘) and the predicted

future pose 𝑞𝑢𝑡𝑗,𝑘𝑝 ≈ 𝒩 (𝑞𝑢𝑡𝑗,𝑘𝑝 , 𝑃
𝑢𝑡
𝑗,𝑘𝑝

) to the user by overlaying them on the LiDAR-

SLAM map. We also render their position and orientation estimation uncertainties

by enlarging the size and the heading angle cone of each WMR, with their center

position and angle corresponding to the estimation means and the sweeping size and

angle to their covariances. See Fig. 3-2. By seeing this predictive display, human

users can predict the procession of the distributed 𝑛-WMRs in the obstacle-cluttered

environment, examine the likelihood and location of collisions, and adjust their tele-

driving command if, e.g., collision is likely to occur. This predictive display turns

out crucial here: if it were not for, it is fairly difficult for human users to predict

and properly control the motion of the platoon with complex internal serpentine

articulation throughout obstacles while avoiding collisions, even if their number is

only four - see Sec. 3.4.
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Here, note that the uncertainty in both the current and future pose estimation is

the largest for the last WMR. This is because the pose estimation uncertainty of the

leader WMR is propagated through the platoon with the uncertainty of the relative

pose measurements of each WMR all added up on that downstream to the very last

WMR. This uncertainty of the last (and each) WMR further increases through the

estimation propagation (over the transmission delay) and the prediction propagation

(over the prediction time horizon). If this pose uncertainty (e.g., 3𝜎-value) of the

last WMR becomes larger than the minimum inter-obstacle distance on the course of

operation, the user cannot rely on the predictive display to tele-drive the platoon any

more. Note that this limitation of our predictive display would be severer with 1) less

precise onboard sensors; 2) longer transmission delay; 3) larger number of the WMRs;

4) larger size of the WMRs; and 5) narrower gap among the obstacles. Theoretical

analysis to elucidate analytical relations among these factors of our predictive display

is a topic for future research. See also Fig. 3-6, where some of these relations are

shown.

Our proposed predictive display can be applied to general distributed robot sys-

tems as well, as it fully incorporates the uncertainty inherently arising from any

systems with distributed sensing, computation and communication. Our predictive

display framework may also be useful for the problem of driving a platoon of au-

tonomous vehicles with a human driver sitting on the first vehicle while monitoring

the state of the vehicles and environment. The idea of predictive display may also be

expanded for the general problem of “teleoperation with uncertainty”, by indicating

the best possible control direction (e.g., more precise pushing direction for peg-in-hole

task) given the sensor uncertainty, parameter estimation error, actuation inaccuracy,

etc. All of these constitute interesting topics for ensuing research of our framework

presented here.
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3.4 Experiments

3.4.1 Test Setup

We implement one “smart” leader WMR and three “simple” follower WMRs as shown

in Fig. 3-1. All of them are based on unicycle-type nonholonomic platforms, each with

one passive front caster to prevent tipping-over and two rear differential-drive wheels.

The wheels are driven by Maxonr BLDC motors under velocity control mode with

the command received from Arduino Uno MCU (micro-controller unit). The leader

WMR has a LiDAR sensor (Hokuyo UTM-30LX-EW, scan rate 40Hz) and an IMU

sensor (PhidgetSpatial Precision 3/3/3 IMU, 250Hz, only (𝑥, 𝑦)-accelerometer and

yaw gyroscope used). The LiDAR-SLAM and all the other computations (i.e, EKF

sensor fusion, control computation, predictive display propagation) are run on Intel-

NUCi7 on this leader WMR respectively with 40Hz and 250Hz. The three follower

WMRs have a front-view monocular web-cam (Logitech C922, 640×480, 30Hz) and

the same IMU sensor as the leader WMR. Known patterns similar to [49] are also

attached at the rear of each WMR for the relative pose sensing via the monocular

camera. The follower WMRs run this relative pose measurement with 30Hz and all

the other computations with 250Hz on its Intel-NUCi7.

Robot Operating System (ROS) is deployed as OS of all the WMRs and OpenCV

is used for the pattern recognition. We also use RVIZ (3D visualization tool of ROS)

to render the LiDAR-SLAM map with 1Hz. On this map, we also render the current

and future pose estimates of the WMRs at 50Hz. This predictive display and the

LiDAR-SLAM map are rendered on intel-NUCi7 of the leader WMR, which is then

remotely accessed by the master PC. Peer-to-peer communication among the WMRs

and with the MCS is implemented in UDP protocol with 250Hz. We also attach a

CONNEX ProSight HD to the leader WMR as the FPV camera. We also use the

Omega3 haptic device as the commanding device with the following position-velocity
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mapping: ⎛⎝𝑣1

𝑤1

⎞⎠ =

⎛⎝𝜂1 · 𝑦ℎ
𝜂2 · 𝑥ℎ

⎞⎠
where 𝜂1, 𝜂2 > 0 are the scaling factors and 𝑥ℎ, 𝑦ℎ are the device position. The desired

inter-WMR distance is also set to be: (𝐿1, 𝐿2, 𝐿3) = (1, 0.8, 0.8)m - see Fig. 3-2.

Haptic feedback of the device is turned off during the experiment - it is used as a

commanding device.

3.4.2 Performance Experiment

We first evaluate the performance of our distributed estimation and control with

MOCAP (VICON, 240Hz). Due to the limited size of the MOCAP environment, we

conduct this experiment only one leader WMR and two follower WMRs. Total ten

experiments are performed, five with the circular trajectory and five with the s-shape

curve. The results of one trial of those five experiments are shown in Fig. 3-7 and Fig.

3-8.

First, as shown in Fig. 3-7, the RMSE (root mean square error) between the

MOCAP data and our estimation data of the leader WMR and the two follower

WMRs (for all the ten experiments) are found to be 2.11cm, 2.19cm and 2.56cm for

the circular trajectory and 1.86cm, 2.18cm, and 3.32cm for the s-curve trajectory.

This level of estimation performance is precise enough for our experiments given the

size of the platoon formation (i.e., (𝐿1, 𝐿2, 𝐿3) = (1, 0.8, 0.8)m). Here, note the effect

of downward accumulation of uncertainty as stated in Sec. 3.3.

To evaluate the combined performance of our distributed estimation and control,

we also measure the inter-WMR coordination error ||ℎ𝑗,𝑗+1(𝑡)|| as shown in Fig. 3-8.

We have similar trend for all the ten experiments as this Fig. 3-8. We then observe

that the maximum of this coordination error is less than 4cm, which is again deemed

precise enough given the size of the platoon and the environment. This also shows that,

thanks to the (distributed) quotient control 𝑢𝐶𝑗,𝑗+1
(3.8), the inter-WMR coordination
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aspect can be maintained fairly well regardless of the collective platoon motion (e.g.,

tele-driving).

Figure 3-7: Circular and s-shape trajectories of the three WMRs during the perfor-
mance experiments: dotted lines are the ground truth position measured by MOCAP
and solid lines the estimated position computed by the distributed estimation of Sec.
3.2.

3.4.3 Teleoperation Experiment with Predictive Display

We conduct teleoperation experiment with the predictive display and the FPV in a

real office environment with no MOCAP. The four WMRs as shown in Fig. 3-1 are

used. The environment is shown in Fig. 3-9, consisting of the hall, the office room,
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Figure 3-8: Inter-WMR coordination error ||ℎ𝑗,𝑗+1|| among the three WMRs during
the performance experiments with the circular and s-shape trajectories.

and the corridor connecting them. The task goal is to check the four markers via

the FPV camera: one on the corridor wall and three in the office. For this, a human

user tele-drives the platoon starting from the hall, passing the corridor with three

obstacles, going around the office room while avoiding a table in the middle of it, and

returning to the start point. One obstacle in the corridor is too short for the LiDAR

to detect - the user must rely on the FPV camera for this. Collision is prohibited

throughout this teleoperation experiment.

The master interface consists of one monitor and one haptic device as depicted

in Fig. 3-10. The monitor displays the FPV camera view and the LiDAR-SLAM

map. The haptic device is used only as a pointing device with haptic feedback turned

off. The predictive display shows the current pose and future pose estimates of all

the WMRs as explained in Sec. 3.3. The orientation of these predictive display and
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Figure 3-9: The environment map for the teleoperation experiment and human subject
study test: yellow boxes indicate four markers that the user should check; the green
boxes are obstacles, with the dotted green box a short obstacle that cannot be detected
by the LiDAR but should be noticed by the FPV camera. The blue dotted path
presents the trajectory of the leader WMR of a successful trial.

LiDAR-SLAM map are also rotated to be consistent with that of the FPV camera

view to avoid the user confusion. We scale-up the size of these WMRs in the predictive

display according to their uncertainty obtained as explained in Sec. 3.3. For this, we

use the 3𝜎-value of the covariance, which is corresponding to the 99.7% probability. We

measure the distance between these “future sized-up” WMRs to the LiDAR-SLAM

map, and notify the user of possible (future) collision when any of these distances

becomes less than a certain threshold. We do this by overlaying a white circular shade

on top of the colliding WMRs. This collision notification is not provided when the

future/sized-up WMR hits the regions missing the LiDAR scans, as they may still be

traversable. To decide if these “blank” regions are traversable or not, the user instead

needs to rely on the FPV camera information. We choose the prediction horizon to

be 15 seconds, which is corresponding to 2m distance from the “current” WMRs given
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Figure 3-10: Teleoperation master interface consisting of predictive display with
LiDAR-SLAM map and FPV camera video-feed, and haptic device (used only as
positioning device without haptic feedback).

the average operation speed of about 0.15m/s. This level of prediction horizon turns

out to be adequate for our teleoperation. Of course, depending on the complexity of

the environment and the driving speed, this value should be adjusted.

The results of this teleoperation experiment are shown in Fig. 3-11. Throughout

this teleoperation experiment, we observe that: 1) both the FPV camera and the

predictive display with the LiDAR-SLAM information are necessary to successfully

complete the teleoperation task, as they provide complementary information (e.g.,

detecting the short obstacle in the corridor); 2) the predictive display is crucial to

complete this teleoperation task, particularly for such challenging operation as navi-

gating through the (narrow) door of the office room from the corridor, which requires

a large change of the platoon curvature so that the platoon serpentine motions be-

come difficult to understand and control for the human user; and 3) the platoon

of the four nonholonomic WMRs keeps behaving as a 4-trailer system throughout
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Figure 3-11: Snapshots of the office-corridor teleoperation experiment: (Top row)
External camera third person view of the environment with scattered box obstacles
and the table in the middle of the office room; (Bottom row) Predictive display with
LiDAR-SLAM map, showing the current (solid) and future (opaque) pose estimate of
the WMRs and possible collision (white circular shade) along with the FPV camera
video-feed.

the teleoperation experiment, even if they are driven by arbitrary human command.

For more rigorous justification on the importance of the predictive display, we then

perform the human subject study as stated in the next Sec. 3.4.4.

3.4.4 Human Subject Study

To rigorously verify the efficacy of the predictive display, here, we perform human

subject study. For this, we use the same setting as the teleoperation experiment of

Sec. 3.4.3. Two groups of the subjects are formed: 1) experimental group, where the

subjects perform the same teleoperation task twice, first with the predictive display

and then without the predictive display; and 2) control group, where the subjects

perform the same teleoperation task twice, yet, both with the predictive display. This

is to nullify the learning effect, that is, if the performance improvement for the second

trial of the experimental group is less than that of the control group, the efficacy of

the predictive display can be concluded.
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Figure 3-12: Number of successful/failed trials and average completion time across
the subjects of each Task for the experimental group (eight subjects) and control
group (five subjects).

Participants

Thirteen right-handed subjects (one female) with the age from 21 to 27 participate

this study with no known neurological disorders. The experimental group is formed

with eight subjects, whereas the control group with five subjects. None of them have

contributed to the design or implementation of the experiment. The experiments are

conducted in accordance with the requirements of the Helsinki Declaration.

Task

Motivated by the office or factory material transport scenario, we consider the same

scenario as for the teleoperation experiment of Sec. 3.4.3. The subjects in the ex-

perimental group perform this task with the predictive display (Task E1: w/ PD)

and then without predictive display (Task E2: w/o PD); whereas those in the control

group perform the same task with the predictive display twice successively (i.e., Task

C1: w/ PD, Task C2: w/ PD).

45



Procedure

First, the supervisor explains each subject of the purpose of the experiment and

the system configuration. He also explains them about the behavior of the 𝑛-trailer

system, i.e., their behavior under the condition of ℎ𝑗,𝑗+1 = 0 in (3.3). Then, each

subject is allowed to play with the test setup as much as they want before performing

the actual trials. During this time, the predictive display is turned on. The WMRs

are confined within the hall of Fig. 3-9 though. The supervisor also takes each subject

briefly walking around the environment, since, without it, it is too difficult for the

subjects to perform the task while also constructing the environment information at

the same time. Although this provides partial information of the environment, we

believe the human subject study here can still clearly manifest the efficacy of the

predictive display for the teleoperation as stated below.

All the subjects start the trial with the predictive display (i.e., Task E1: w/ PD or

Task C1: w/ PD). If any WMR collides with the obstacles or environment during this

trial, the user stops the task, the operation time is recorded, and the subject starts

the new trial of the same task all over again from the start point in Fig. 3-9. If one

fails three successive trials, that task is aborted and moves to the next task or give

the seat to the next subject. When the Task E1 or C1 is completed (or three-trail

failed), the subject of the experimental group then moves on to the same task without

the predictive display (i.e., Task E2: w/o PD), whereas those in the control group

to the same task again with the predictive display (i.e., Task C2: w/ PD). For each

Task, the number of failed trials is recorded with that of the successful trial, which is

always one. During these experiments, each subject wears earplugs to further reduce

the (already fairly small) sound from the experiment. After the two Tasks of each

group are finished, each subject is asked to fill in the NASA TLX (Task Load indeX)

type questionnaire.
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Figure 3-13: NASA TLX questionairre result and the user disfavor (i.e., 1- prefer-
ence) rating with and without the predictive display for the human subject study
experiments.
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Results and Discussion

The results of this human subject study are summarized in Fig. 3-12 and Fig. 3-13.

First, note from Fig. 3-12 the substantial reduction of the failed trial ratio from Task

E2 to Task C2. Note also from Fig. 3-12 the substantial reduction of the ratio of

Task C2 complete time to Task C1 completion time as compared to that of Task E2

to Task E1. These all clearly manifest the importance and efficacy of the predictive

display.

On the other hand, the NASA-TLX result of Fig. 3-13 shows that, on top of the

objective performance improvement of Fig. 3-12, the predictive display also enhances

the tele-driving system from the subjective “feeling” as well, while also substantially

reducing cognitive loading of the human users. The predictive display is also advocated

by nearly all the subjects (except one).
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Chapter 4

Semi-Autonomous Teleoperatoin of

Stage-Manipulator System on

Flexible Vertical Beam

4.1 System Modeling

To model the flexible beam, we utilize Euler-Bernoulli theory with a modal approx-

imation. Then, we rigorously consider the boundary condition of our system config-

uration to calculate the natural frequency of the assumed finite modes. The mode

shapes are considered as eigenfunctions of the flexible beam so that the orthogonality

condition between the mode shapes is enforced to specifically determine the mode

shapes. Finally, we use Euler-Lagrange equations to derive the dynamics model of

the whole system with the calculated mode shapes.

4.1.1 System Description

Let us define following six frames (See. Fig. 4-1): ground fixed frame {𝒪} which is

located in the bottom of the beam, the flexible moving frame {ℬ} which is attached

at the end of the beam, body frame of the linear stage {𝒮}, and body frame of each

joint {1}, {2}, and {3}. The position of the end of the beam expressed in {𝒪} are
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flexible boom

linear stage

manipulator

Figure 4-1: Test-bed model of slave robot of telerobotics project.

denoted by 𝑝𝑜𝑜𝑏 ∈ R2.

Since the deflection of the beam is assumed to be small, the deflection and rotation

of the beam can be written by

𝑝𝑜𝑜𝑏 ≈

⎡⎣ 𝑙𝑏

𝑤(𝑙𝑏, 𝑡)

⎤⎦ ∈ R2, 𝜃𝑏 = atan

(︂
𝑑𝑤

𝑑𝑥

)︂
≈
(︂
𝑑𝑤

𝑑𝑥

)︂
∈ R

where 𝑤(𝑙𝑏, 𝑡) is the deflection at the position 𝑙𝑏 along 𝑥-axis at time 𝑡 and 𝑙𝑏 is the

length of the beam. Here, note that the 𝑥-axis is the upper direction to define the

direction of the beam as 𝑥-axis. Among any two of these frames, we can then define

𝑝𝑎𝑎𝑏 is the position vector of the origin of {ℬ} from the origin of {𝒜} expressed in

{𝒜}. If 𝒜 and ℬ are same, 𝑝𝑎𝑎𝑏 = [0; 0].
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4.1.2 Assumed Mode Shapes

Based on Euler-Bernoulli theory, govern equation of the lateral vibrational motion of

beams and general solutions [50] are given by

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)

𝜕2𝑤

𝜕𝑥2

)︂
= 0 (4.1)

𝑤(𝑥, 𝑡) =
∞∑︁
𝑖=1

𝜑𝑖(𝑥) ≈
𝑛𝑑∑︁
𝑖=1

𝜑𝑖(𝑥)𝛿𝑖(𝑡)𝛿𝑖(𝑡) (4.2)

where 𝜌 is density, 𝐴 is intersection area, 𝐸 is Young’s modulus, 𝐼(𝑥) is second

moment of inertia of the beam, and 𝑛𝑑 is the the number of the assumed modes. For

simplicity, we assume that the beam has all parameters of the beam are constant.

The second equation presents separated variable solution where 𝜑𝑖(𝑥) is 𝑖-th time-

invariant mode shape and 𝛿𝑖(𝑡) is time-varying 𝑖-th mode’s amplitude. In this thesis,

we define 𝑛𝑑 = 3 because we empirically find that the three modes are sufficient

approximation of the deformation of our system because of the high-payload at the

tip, i.e. the stage-manipulator system.

It is well-known the explicit form of 𝑖-th mode shape is

𝜑𝑖 = 𝐶1 sin 𝛽𝑖𝑥 + 𝐶2 cos 𝛽𝑖𝑥 + 𝐶3 sinh 𝛽𝑖𝑥 + 𝐶4 cosh 𝛽𝑖𝑥

where 𝛽4
𝑖 = 𝜔2

𝛿𝑖
𝜌𝐴/𝐸𝐼, 𝜔𝛿𝑖 is natural frequency of 𝑖-th mode, and each 𝐶𝑖 is a coef-

ficient. Note that the mode shapes are time-invariant and determined by boundary

conditions, i.e. the structure and configurations of whole system. In order to obtain

the coefficients of the mode shapes 𝜑𝑖, we use the boundary conditions which are 1)

clamped ground-end and 2) lumped mass/inertia tip-end conditions.

4.1.3 Exact Solution under Given Boundary Conditions

Reasonable boundary conditions for our system are 1) clamped ground and 2) point

force/torque at end (i.e. lumped mass and inertia at the tip). ‘Clamped’ boundary

condition is the assumption that there is fixed deflection and orientation (i.e. slope).
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This condition can be represented by

𝑤(0, 𝑡) = 𝜑(0)𝛿(𝑡) = 0 → 𝐶4 + 𝐶6 = 0 (4.3)

𝜃𝑏|𝑥=0≈
𝑑𝑤

𝑑𝑥
(0, 𝑡) = 𝜑(0)′𝛿(𝑡) = 0 → 𝐶3 + 𝐶5 = 0 (4.4)

Figure 4-2: Lumped masses boundary conditions at the end of the boom

Lumped mass boundary condition represents the balance condition of force and

torque at the tip of the boom. First of all, the moment balance equation can be

expressed by

𝑀(𝑥 = 𝑙𝑏) = 𝐸𝐼
𝑑2𝑤

𝑑𝑥2

= −

(︃
𝐼𝑠 +

3∑︁
𝑖=1

(𝐼𝑖 + 𝐼𝑙𝑖)

)︃
⏟  ⏞  

:=𝐼0

𝜃𝑏

− 𝑤̈
(︀
𝑚𝑠[𝑝

𝑜
𝑏𝑠]1 + 𝑚1[𝑝

𝑜
𝑏1]1 + 𝑚𝑙1 [𝑝

𝑜
𝑏𝑙1

]1 + 𝑚2[𝑝
𝑜
𝑏2]1 + 𝑚𝑙2 [𝑝

𝑜
𝑏𝑙2

]1 + 𝑚3[𝑝
𝑜
𝑏3]1 + 𝑚𝑙3 [𝑝

𝑜
𝑏𝑙3

]1
)︀

− 𝑔
(︀
𝑚𝑠[𝑝

𝑜
𝑏𝑠]2 + 𝑚1[𝑝

𝑜
𝑏1]2 + 𝑚𝑙1 [𝑝

𝑜
𝑏𝑙1

]2 + 𝑚2[𝑝
𝑜
𝑏2]2 + 𝑚𝑙2 [𝑝

𝑜
𝑏21

]2 + 𝑚3[𝑝
𝑜
𝑏3]2 + 𝑚𝑙3 [𝑝

𝑜
𝑏𝑙3

]2
)︀

= −𝐼0𝜃𝑏 −𝑀𝑑𝑤̈ −𝑀𝑔𝑔

where 𝑔 = 9.81m/s2 is gravitational acceleration, [⋆]2 is the 𝑦-axis component of the

vector ⋆ ∈ R2, 𝑀𝑑 =
∑︀𝑙3

𝑖=𝑠𝑚𝑖[𝑝
𝑜
𝑏𝑖]1, and 𝑀𝑔 =

∑︀𝑙3
𝑖=𝑠 𝑚𝑖[𝑝

𝑜
𝑏𝑖]2

Next, the shear force (𝑦-direction in {𝒪}) at the tip of the boom can be written
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by

𝑉 (𝑥 = 𝑙𝑏) = −𝑑𝑀

𝑑𝑥
= −𝐸𝐼

𝑑3𝑤

𝑑𝑥𝑥

= −

(︃
𝑚𝑠 +

3∑︁
𝑖=1

(𝑚𝑖 + 𝑚𝑙𝑖)

)︃
⏟  ⏞  

:=𝑚0

𝑤̈

− 𝜃𝑏
(︀
𝑚𝑠[𝑝

𝑜
𝑏𝑠]1 + 𝑚1[𝑝

𝑜
𝑏1]1 + 𝑚𝑙1 [𝑝

𝑜
𝑏𝑙1

]1 + 𝑚2[𝑝
𝑜
𝑏2]1 + 𝑚𝑙2 [𝑝

𝑜
𝑏𝑙2

]1 + 𝑚3[𝑝
𝑜
𝑏3]1 + 𝑚𝑙3 [𝑝

𝑜
𝑏𝑙3

]1
)︀

= −𝑚0𝑤̈ −𝑀𝑑𝜃𝑏

where 𝑀𝑑 accounts for the contributions of masses of distal links, i.e., noncollocated

at the-end of the boom, weighted by the relative distance from 𝑦 axis in {ℬ}, (shearing

axis at the end of the boom). Incidentally, these contributions are often not included

in mode shape analyses [51].

Therefore, we have two more boundary conditions: 1) moment balance condition;

and 2) shear force balance condition. Furthermore, we can obtain two equations of

spatial solutions by using the fact of 𝛿(𝑡) = −𝜔2𝛿(𝑡).

𝐸𝐼
𝜕2𝑤

𝜕𝑥2
(𝑙𝑏, 𝑡) = −𝐼0𝜃𝑏 −𝑀𝑑𝑤̈(𝑙𝑏, 𝑡) −𝑀𝑔𝑔 (4.5)

⇒
[︀
𝐸𝐼𝜑′′(𝑙𝑏) − 𝜔2 (𝐼0𝜑

′(𝑙𝑏) + 𝑀𝑑𝜑(𝑙𝑏))
]︀
𝛿(𝑡) = −𝑀𝑔𝑔

𝐸𝐼
𝜕3𝑤

𝜕𝑥3
(𝑙𝑏, 𝑡) = 𝑚0𝑤̈(𝑙𝑏, 𝑡) + 𝑀𝑑𝜃𝑏 (4.6)

⇒
[︀
𝐸𝐼𝜑′′′(𝑙𝑏) + 𝜔2 (𝑚0𝜑(𝑙𝑏) + 𝑀𝑑𝜑

′(𝑙𝑏))
]︀
𝛿(𝑡) = 0

Since the first boundary condition (4.5) is nonhomogeneous, we cannot use modal

analysis for the response. In [50], the authors said that one way to solve the problem

which consists of homogeneous dynamics, one homogeneous boundary condition, and

the other nonhomogeneous boundary condition is to transforming it into a problem

defined by a nonhomogeneous dynamics and homogeneous boundary conditions. This

means that we can use the motion of forced vibration of the beam’ to deal with

the concentrated force or moment at the tip. Thus, from here, let me deploy the

differential equations of forced vibration.
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Forced Vibration of Beams

Even if the nonhomogeneity factor 𝑀𝑔𝑔 is concentrated moment at the tip, let us

consider the moment is distributed force over a very small segment of the boom given

by 𝑙−𝑏 < 𝑥 < 𝑙𝑏 where 𝑙−𝑏 denotes a point to the immediate left of 𝑥 = 𝑙𝑏 [52] and then,

we can express the moment as

𝑓(𝑥, 𝑡) = 𝑀𝑔(𝑡)𝑔Dirac(𝑥− 𝑙𝑏), 0 < 𝑥 < 𝑙𝑏

where Dirac(𝑥) is the Dirac delta function. The moment of force caused by the gravity

of the rigid system only acts on the boom regardless of the vibration. Other moment

and shear force terms such as 𝐼0𝜃𝑏, 𝑀𝑑𝑤̈(𝑙𝑏, 𝑡), 𝑀𝑔𝑥𝑔𝜃𝑏, 𝑚0𝑤̈(𝑙𝑏, 𝑡), and 𝑀𝑑𝜃𝑏 can be

considered in the boundary conditions (4.5) and (4.6) because they do not violate the

homogeneity property and act only in the vibration.

The differential equation of the vibration of forced beam is given by

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)

𝜕2𝑤

𝜕𝑥2

)︂
= 𝑓(𝑥, 𝑡) (4.7)

with the boundary conditions

at 𝑥 = 0, 𝑤(0, 𝑡) = 𝜑(0)𝛿(𝑡) = 0 and 𝜃𝑏|𝑥=0= 𝜑(0)′𝛿(𝑡) = 0 (4.8)

at 𝑥 = 𝑙𝑏,

⎧⎪⎨⎪⎩
𝐸𝐼 𝜕2𝑤

𝜕𝑥2 (𝑙𝑏, 𝑡) = −𝐼0𝜃𝑏 −𝑀𝑑𝑤̈(𝑙𝑏, 𝑡)

𝐸𝐼 𝜕3𝑤
𝜕𝑥3 (𝑙𝑏, 𝑡) = 𝑚0𝑤̈(𝑙𝑏, 𝑡) + 𝑀𝑑𝜃𝑏

(4.9)

Since we assume that the external force is applied to the segment 𝑙−𝑏 < 𝑥 < 𝑙𝑏, the

vibration of the boom at 𝑥 = 𝑙𝑏 is given by unforced vibration in (4.1). Therefore,

when we find the natural frequencies we can just consider the free vibration in (4.1).

Exactly, once we obtain the natural modes, we must solve the temporal solution 𝛿(𝑡)

which is excited by the external force under the forced vibration dynamics (4.7) and

given initial conditions [50]. However, in our case, we will determine the amplitude

𝛿(𝑡) in the complete dynamics which will be derived later. As a result, we ignore the
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moment generated by the gravity of rigid system by deploying the forced vibration.

The above approach could be thought as an approximation of natural modes. To

get exact natural modes, we need to consider complete dynamics which will be derived

later and more exact boundary conditions with consideration of reactive force/mo-

ment of actuations 𝜏𝑖(𝑡) at the tip. In this thesis, we will derive the natural modes

under the above consideration with non-zero 𝑀𝑑 and a part of gravity effect 𝑀𝑔𝑥𝑔𝜃𝑏

which depends on the motion of the boom.

Orthogonality and Normalization of Natural Modes

In this subsection, we will see the orthogonality property between each natural mode.

We assume that the solution of the motion can be written by 𝑤(𝑥, 𝑡) =
∑︀∞

𝑖=1 𝜑𝑖(𝑥)𝛿𝑖(𝑡).

Then, from the equation (4.2),

𝑑2

𝑑𝑥2

(︂
𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

)︂
= 𝜌𝐴𝜔2

𝑟𝜑𝑟(𝑥), 𝑟 = 1, 2, · · ·

where 𝐸 and 𝐼 are constant. Next, we multiply 𝜑𝑠(𝑥) to the both side and integrate

over the length of the boom.

∫︁ 𝑙𝑏

0

𝜑𝑠(𝑥)
𝑑2

𝑑𝑥2

(︂
𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

)︂
𝑑𝑥 = 𝜔2

𝑟

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑠(𝑥)𝜑𝑟(𝑥)𝑑𝑥 (4.10)

By using integration by parts, the left hand side can be rewritten by

RHS = 𝜑𝑠(𝑥)
𝑑

𝑑𝑥

(︂
𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

)︂⃒⃒⃒⃒𝑙𝑏
0

−
∫︁ 𝑙𝑏

0

𝑑𝜑𝑠

𝑑𝑥
(𝑥)

𝑑

𝑑𝑥

(︂
𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

)︂
𝑑𝑥

= 𝜑𝑠(𝑥)
𝑑

𝑑𝑥

(︂
𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

)︂⃒⃒⃒⃒𝑙𝑏
0

− 𝑑𝜑𝑠

𝑑𝑥
(𝑥)𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

⃒⃒⃒⃒𝑙𝑏
0

+

∫︁ 𝑙𝑏

0

𝑑2𝜑𝑠

𝑑𝑥2
(𝑥)𝐸𝐼(𝑥)

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)𝑑𝑥

For simplicity, let us use the notation primes to denote the differentiation, i.e. 𝑑𝜑𝑟(𝑥)/𝑑𝑥|𝑥=𝑙𝑏 =

𝜑′
𝑟(𝑙𝑏). In addition, if 𝐸 and 𝐼 are constant,

RHS = 𝐸𝐼

[︂
𝜑𝑠(𝑙𝑏)𝜑

′′′
𝑟 (𝑙𝑏) − 𝜑′

𝑠(𝑙𝑏)𝜑
′′
𝑟(𝑙𝑏) +

∫︁ 𝑙𝑏

0

𝜑′′
𝑠(𝑥)𝜑′′

𝑟(𝑥)𝑑𝑥

]︂
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Here, we use the boundary condition at the clamped end, thus 𝜑𝑖(0) = 𝑑𝜑𝑖(0)/𝑑𝑥 = 0.

The first and second terms in the RHS in the above equation can be replaced with

the boundary conditions of moment and shear force at the tip of the boom in (4.5)

and (4.6).

𝐸𝐼𝜑′′′
𝑟 (𝑙𝑏) = −𝜔2

𝑟 [𝑚0𝜑𝑟(𝑙𝑏) + 𝑀𝑑𝜑
′
𝑟(𝑙𝑏)] , −𝜔2

𝑟ℋ1

𝐸𝐼𝜑′′
𝑟(𝑙𝑏) = 𝜔2

𝑟 [𝐼0𝜑
′
𝑟(𝑙𝑏) + 𝑀𝑑𝜑𝑟(𝑙𝑏)] , 𝜔2

𝑟ℋ2

Finally, we can rewrite the equation (4.10) as follow

𝜔2
𝑟

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑠(𝑥)𝜑𝑟(𝑥)𝑑𝑥 = −𝜑𝑠(𝑙𝑏)
(︀
𝜔2
𝑟ℋ1

)︀
− 𝜑′

𝑠(𝑙𝑏)
(︀
𝜔2
𝑟ℋ2

)︀
+ 𝐸𝐼

∫︁ 𝑙𝑏

0

𝜑′′
𝑠(𝑥)𝜑′′

𝑟(𝑥)𝑑𝑥

Again, we can explicitly rewrite

𝜔2
𝑟

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑠(𝑥)𝜑𝑟(𝑥)𝑑𝑥 = −𝜔2
𝑟𝜑𝑠(𝑙𝑏) [𝑚0𝜑𝑟(𝑙𝑏) + 𝑀𝑑𝜑

′
𝑟(𝑙𝑏)] − 𝜔2

𝑟𝜑
′
𝑠(𝑙𝑏) [𝐼0𝜑

′
𝑟(𝑙𝑏) + 𝑀𝑑𝜑𝑟(𝑙𝑏)]

+ 𝐸𝐼

∫︁ 𝑙𝑏

0

𝜑′′
𝑠(𝑥)𝜑′′

𝑟(𝑥)𝑑𝑥 (4.11)

Through the same steps, we can easily change subscript 𝑟 and 𝑠 and obtain the

following equation

𝜔2
𝑠

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑟(𝑥)𝜑𝑠(𝑥)𝑑𝑥 = −𝜔2
𝑠𝜑𝑟(𝑙𝑏) [𝑚0𝜑𝑠(𝑙𝑏) + 𝑀𝑑𝜑

′
𝑠(𝑙𝑏)] − 𝜔2

𝑠𝜑
′
𝑟(𝑙𝑏) [𝐼0𝜑

′
𝑠(𝑙𝑏) + 𝑀𝑑𝜑𝑠(𝑙𝑏)]

+ 𝐸𝐼

∫︁ 𝑙𝑏

0

𝜑′′
𝑠(𝑥)𝜑′′

𝑟(𝑥)𝑑𝑥 (4.12)

Since all terms are scalar, all multiplications are commutative. If we subtract (4.11)

from (4.12), then the result equation is

(𝜔2
𝑟 − 𝜔2

𝑠)

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑠(𝑥)𝜑𝑟(𝑥)𝑑𝑥 =

− (𝜔2
𝑟 − 𝜔2

𝑠)

[︃
𝑚0𝜑𝑠(𝑙𝑏)𝜑𝑟(𝑙𝑏) + 𝐼0𝜑

′
𝑠(𝑙𝑏)𝜑

′
𝑟(𝑙𝑏) + 𝑀𝑑

𝑑

𝑑𝑥
(𝜑𝑠(𝑥)𝜑𝑟(𝑥))

⃒⃒⃒⃒
𝑥=𝑙𝑏

]︃
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Thus, we can obtain one condition such that

∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑠(𝑥)𝜑𝑟(𝑥)𝑑𝑥 +

[︃
𝑚0𝜑𝑠(𝑙𝑏)𝜑𝑟(𝑙𝑏) + 𝐼0𝜑

′
𝑠(𝑙𝑏)𝜑

′
𝑟(𝑙𝑏) + 𝑀𝑑

𝑑

𝑑𝑥
(𝜑𝑠(𝑥)𝜑𝑟(𝑥))

⃒⃒⃒⃒
𝑥=𝑙𝑏

]︃
= 0

Finally, once one apply the above condition to (4.11) or (4.12), the orthogonality

condition of the natural modes is

∫︁ 𝑙𝑏

0

𝑑2𝜑𝑟

𝑑𝑥2
(𝑥)

𝑑2𝜑𝑠

𝑑𝑥2
(𝑥)𝑑𝑥 = 0, 𝑟 ̸= 𝑠 (4.13)

This term implies the effective stiffness, consequently, there is no coupled spring

between each mode. This orthogonal property leads to a result of diagonal matrix

of structural spring term in dynamics in (4.18). Furthermore, if there is no lumped

mass and inertia, i.e. 𝑚0 = 𝐼0 = 𝑀𝑑 = 0, then another orthogonal property turns up,

that is
∫︀
𝜌𝐴𝜑𝑟(𝑥)𝜑𝑠(𝑥)𝑑𝑥 = 0. This means that there is no coupling in inertia matrix

because the integral terms of 𝜑𝑖(𝑥) appear in kinetic energy of the boom.

Furthermore, if 𝑟 = 𝑠,

𝜔2
𝑟

(︂∫︁ 𝑙𝑏

0

𝜌𝐴𝜑𝑟(𝑥)2𝑑𝑥 + 𝑚0𝜑𝑟(𝑙𝑏)
2 + 𝐼0𝜑

′
𝑟(𝑙𝑏)

2 + 2𝑀𝑑𝜑𝑟(𝑙𝑏)𝜑
′
𝑟(𝑙𝑏)

)︂
⏟  ⏞  

:=ℳ

= 𝐸𝐼

∫︁ 𝑙𝑏

0

(𝜑′′
𝑟(𝑥))

2
𝑑𝑥

We have five unknowns (four coefficients of mode shape and natural frequency) but

four boundary condition. This means that we can calculate the scaling factor rather

than exact mode shape, thus, normalization is usually performed. We can normalize

the natural mode to find 𝜑𝑟(𝑥) such that ℳ = 1, then

∫︁ 𝑙𝑏

0

(𝜑′′
𝑟(𝑥))

2
𝑑𝑥 = 𝜔2

𝑟/𝐸𝐼 (4.14)

I checked the properties of orthogonality (4.13) and normalization (4.14). In my

simulation, due to numerical error, the terms in (4.13) and difference between RHS

and LHS in (4.14) are order of 10−12 ∼ 10−15.

57



0 1 2 3 4 5 6
-5

0

5

D
1

0 1 2 3 4 5 6
-

-5

0

5

D
2

2nd mode 3rd mode

1st mode 2nd mode

1st mode

Figure 4-3: Solutions (𝛽1, 𝛽2, and 𝛽3) of the determinant 𝒟 with different parameters:
the first determinant 𝒟1 is calculated very large total inertia 𝐼0 which is 106 times
of real inertia. In this case, the determinant has the first local minimum around the
origin so that the first mode is also closed to the zero.

Frequency Equation and Coefficients

In this thesis, let us first derive the boundary conditions with non-zero 𝑀𝑑 to see the

structure of the equations. Once we put the spatial solution and its partial derivatives

into the boundary conditions (4.8) and (4.9), then we can obtain a system of linear

equations

[︁
ℱ
]︁⎡⎣𝐶3

𝐶5

⎤⎦ = 0 (4.15)

where [ℱ ] is 2 by 2 matrix. To exclude trivial solution, the determinant of [ℱ ] should

be zero. The determinant is usually called frequency equation and we can obtain 𝛽𝑖
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such that det(ℱ) = 0 and

ℱ11 =

(︂
−𝛽2 − 𝑀𝑑

𝜌𝐴
𝛽4

)︂
sin(𝛽𝑙𝑏) +

(︂
−𝛽2 +

𝑀𝑑

𝜌𝐴
𝛽4

)︂
sinh(𝛽𝑙𝑏) −

𝐼0
𝜌𝐴

𝛽5 cos(𝛽𝑙𝑏) +
𝐼0
𝜌𝐴

𝛽5 cosh(𝛽𝑙𝑏)

ℱ12 =
𝐼0
𝜌𝐴

𝛽5 sin(𝛽𝑙𝑏) +
𝐼0
𝜌𝐴

𝛽5 sinh(𝛽𝑙𝑏) +

(︂
−𝛽2 − 𝑀𝑑

𝜌𝐴
𝛽4

)︂
cos(𝛽𝑙𝑏) +

(︂
−𝛽2 +

𝑀𝑑

𝜌𝐴
𝛽4

)︂
cosh(𝛽𝑙𝑏)

ℱ21 =
𝑚0

𝜌𝐴
𝛽4 sin(𝛽𝑙𝑏) −

𝑚0

𝜌𝐴
𝛽4 sinh(𝛽𝑙𝑏) +

(︂
−𝛽3 +

𝑀𝑑

𝜌𝐴
𝛽5

)︂
cos(𝛽𝑙𝑏) +

(︂
−𝛽3 − 𝑀𝑑

𝜌𝐴
𝛽5

)︂
cosh(𝛽𝑙𝑏)

ℱ22 =

(︂
𝛽3 − 𝑀𝑑

𝜌𝐴
𝛽5

)︂
sin(𝛽𝑙𝑏) +

(︂
−𝛽3 − 𝑀𝑑

𝜌𝐴
𝛽5

)︂
sinh(𝛽𝑙𝑏) +

𝑚0

𝜌𝐴
𝛽4 cos(𝛽𝑙𝑏) −

𝑚0

𝜌𝐴
𝛽4 cosh(𝛽𝑙𝑏)

Then, the exact form of the determinant, denoted by 𝒟, is given by

𝒟 ,(𝐼0𝑚0 −𝑀2
𝑑 )𝛽4 (1 − cos(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) − (𝐴𝜌𝐼0)𝛽

3 (sin(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) + cos(𝛽𝑙𝑏) sinh(𝛽𝑙𝑏))

− 2𝐴𝜌𝑀𝑑𝛽
2 sin(𝛽𝑙𝑏) sinh(𝛽𝑙𝑏) − (𝐴𝜌)𝑚0𝛽 (sin(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) − cos(𝛽𝑙𝑏) sinh(𝛽𝑙𝑏))

+ 𝐴2𝜌2 (1 + cos(𝛽𝑙𝑏) + cosh(𝛽𝑙𝑏)) = 0

If we put 𝑀𝑑 = 0, then we can obtain the exactly same characteristic equation in [51]

as

𝛽4 (1 − cos(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) − (𝐴𝜌)𝐼0𝛽
3 (sin(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) + cos(𝛽𝑙𝑏) sinh(𝛽𝑙𝑏))

− (𝐴𝜌)𝑚0𝛽 (sin(𝛽𝑙𝑏) cosh(𝛽𝑙𝑏) − cos(𝛽𝑙𝑏) sinh(𝛽𝑙𝑏)) + 𝐴2𝜌2 (1 + cos(𝛽𝑙𝑏) + cosh(𝛽𝑙𝑏)) = 0

Let us calculate the natural frequencies with a fixed 𝑀𝑑 which is not zero. Par-

ticularly, I choose the maximum value of 𝑀𝑑 that is the case of zero configuration.

Since the determinant 𝒟 is transcendental function, we used vpasolve command in

Matlab which is a numerical solver to get the specific 𝛽. When we calculate the so-

lutions of the determinant, we applied physical parameters of our system (See, Sec.

4.4.1). The shape of the equation seem a unstable oscillation which is shown in Fig.

4-3. Numerical solutions of the determinant are

𝛽1 = 0.871166815557852, 𝛽2 = 5.050078226293192, 𝛽3 = 8.577533537496846

(4.16)
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To obtain the natural frequencies 𝜔𝑖, we use the relation between the 𝛽 and 𝜔

which is given by 𝛽4 = 𝜔2𝜌𝐴/(𝐸𝐼) for each 𝛽𝑖. Then the natural frequencies of the

boom are

𝜔1 = 8.860223458999329 rad/s. → 𝑓1 = 1.410148360398514 Hz

𝜔2 = 297.7407226680140 rad/s. → 𝑓2 = 47.386907772367557 Hz

𝜔3 = 858.9480079850540 rad/s. → 𝑓3 = 136.7058213297581𝑒 Hz

Here, we found that the reason of quite small number of the first mode in the pre-

vious calculation was miscalculation of moment of inertia of motors. More specifically,

I made a mistake during conversion of units. Please see the plots which compares the

shape of determinants under two different inertia parameters.

we re-calculated natural frequencies with non-zero 𝑀𝑑 at zero configuration, i.e.

𝜃𝑠 = 𝜃1 = 𝜃2 = 𝜃3 = 0. The first natural frequency is slightly faster than the real

experimental result. The reason of the slower behavior of the real system seems the

imperfect clamping at the end of the aluminium bar in our system. The base and

clamping vice part are currently being modified.
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x [m]

-0.5

0

0.5

1

1.5

2

φ
1

φ
2

φ
3

Figure 4-4: Three mode shapes
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4.1.4 Euler-Lagrangian Equation

In order to use Euler-Lagrange equation, we need to define kinetic and potential

energy of the system. First of all, total kinetic energy of the system is

𝑇 = 𝑇𝛿 + 𝑇𝑠 +

𝑙3∑︁
𝑖=1

𝑇𝑖

where 𝑇𝛿, 𝑇𝑠, and 𝑇𝑖 are the kinetic energy of the beam, stage, and the motor/link,

respectively. Each kinetic energy is specifically defined by

𝑇𝛿 =
𝜌𝐴

2

∫︁ 𝑙𝑏

0

𝑝̇𝑜𝑏(𝑥)𝑇 𝑝̇𝑜𝑏(𝑥)𝑑𝑥 =
𝜌𝐴

2

∫︁ 𝑙𝑏

0

𝑤̇(𝑥, 𝑡)2𝑑𝑥

=
𝜌𝐴

2

3∑︁
𝑖=1

3∑︁
𝑗=1

𝛿̇𝑖(𝑡)𝛿̇𝑗(𝑡)

∫︁ 𝑙𝑏

0

𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥⏟  ⏞  
:=𝑎𝑖𝑗

𝑇𝑠 =
1

2
𝑚𝑠𝑝̇

𝑇
𝑜𝑠𝑝̇𝑜𝑠 +

1

2
𝐽𝑠𝜃

2
𝑏

=
1

2
𝑚𝑠𝑝̇

𝑇
𝑜𝑠𝑝̇𝑜𝑠 +

1

2
𝐽𝑠

⎛⎜⎝ 3∑︁
𝑖=1

3∑︁
𝑗=1

𝜑′
𝑖(𝑙𝑏)𝜑

′
𝑗(𝑙𝑏)⏟  ⏞  

=:𝑏𝑖𝑗

𝛿̇𝑖𝛿̇𝑗

⎞⎟⎠
𝑇𝑖 =

1

2
𝑚𝑖𝑝̇

𝑜
𝑜𝑖
𝑇 𝑝̇𝑜𝑜𝑖 +

1

2
𝐽𝑖𝜔

2
𝑜𝑖,

where 𝜔𝑜𝑖 is angular velocity of 𝑖-th frame expressed in {𝒪} and 𝜑′
𝑖(𝑙𝑏) = 𝑑𝜑𝑖(𝑥)/𝑑𝑥

evaluated at 𝑥 = 𝑙𝑏. In addition, we can calculate 𝑎𝑖𝑗 and 𝑏𝑖𝑗 from the mode shapes

determined in Sec. 4.1.3.

In addition, potential energy can be similarly defined as follow

𝑈 = 𝑈𝛿𝑒 + 𝑈𝛿𝑔⏟  ⏞  
:=𝑈𝛿

+𝑈𝑠 +

𝑙3∑︁
𝑖=1

𝑈𝑖

where 𝑈𝛿𝑒 and 𝑈𝛿𝑔 are elastic and gravitational energy of the beam, respectively. The

other terms follow the same subscripts in the kinetic energy in the above equation.

61



Then, we can express each potential energy term as

𝑈𝛿𝑒 =
𝐸𝐼

2

∫︁ 𝑙𝑏

0

(︂
𝑑2𝑤(𝑥)

𝑑𝑥2

)︂2

𝑑𝑥 =
𝐸𝐼

2

3∑︁
𝑖=1

3∑︁
𝑗=1

𝑐𝑖𝑗𝛿𝑖(𝑡)𝛿𝑗(𝑡)

𝑈𝛿𝑔 = 𝜌𝐴g𝑇

∫︁ 𝑙𝑏

0

𝑝𝑜𝑜𝑏(𝑥)𝑑𝑥 = − (𝜌𝐴𝑙𝑏) 𝑔

(︂
1

2
𝑙𝑏

)︂
𝑈𝑠 = 𝑚𝑠g

𝑇𝑝𝑜𝑠, 𝑈𝑖 = 𝑚𝑖g
𝑇𝑝𝑜𝑖

where g = [−𝑔; 0] ∈ R2 is gravitational acceleration and, we have the following

equations from the orthogonality property.

𝑐𝑖𝑗 =

∫︁ 𝑙𝑏

0

𝜑′′
𝑖 𝜑

′′
𝑗𝑑𝑥 =

⎧⎨⎩ 0 𝑖 ̸= 𝑗

𝜔2
𝑖 /𝐸𝐼 𝑖 = 𝑗

(4.17)

Now we define generalized coordinate as 𝑞 := [𝑞𝑟; 𝑞𝑓 ] ∈ R7 where 𝑞𝑟 = [𝑞3; 𝑞2; 𝑞1]

and 𝑞𝑓 = [𝑞𝑠; 𝛿1; 𝛿2; 𝛿3]. With the definition of the generalized coordinate and the

Lagrangian 𝐿 = 𝑇 − 𝑈 of the system, we can obtain the dynamics as following⎡⎣𝑀𝑟 𝑀𝑟𝑓

𝑀𝑓𝑟 𝑀𝑓

⎤⎦⎡⎣𝑞𝑟
𝑞𝑓

⎤⎦+

⎡⎣𝐶𝑟 𝐶𝑟𝑓

𝐶𝑓𝑟 𝐶𝑓

⎤⎦⎡⎣𝑞𝑟
𝑞𝑓

⎤⎦+

⎡⎣𝑔𝑟
𝑔𝑓

⎤⎦+

⎡⎣0 0

0 𝐾

⎤⎦⎡⎣𝑞𝑟
𝑞𝑓

⎤⎦ =

⎡⎣𝜏𝑟
𝜏𝑓

⎤⎦ (4.18)

where 𝐾 = diag([0; 𝑐11; 𝑐22; 𝑐33]) ∈ R4×4 is structural spring which can be simplified

by the orthogonal property, 𝜏𝑟 = [𝜏3; 𝜏2; 𝜏1] ∈ R3, and 𝜏𝑓 = [𝜏𝑠; 0; 0; 0] ∈ R4.

4.2 LQR-based Control Design

In this section, we design two control laws: 1) vibration-suppression control in the

stage-vibration dynamics and 2) joint tracking control in its orthogonal complement.

To achieve two different control objectives separately, we first deploy passive decom-

position [11] to decompose the dynamics into the stage-vibration dynamics and its

orthogonal complement. Due to the dynamically decomposed stage-beam dynamics,

we can independently design the vibration suppression control by only using the stage
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motion. For the vibration suppression control, we use the LQR control based on the

controllability analysis of the linearized stage-beam dynamics. Finally, we design the

joint tracking control and show the tracking error convergence if the vibration is

sufficiently suppressed.

4.2.1 Passive Decomposition

In this thesis, what we want is to suppress the vibration of the flexible beam by using

the stage motion while the manipulator follows the desired trajectory. However, due to

the coupling terms in the inertia matrix, i.e. dynamic coupling, it is hard to separately

design each control. To address this problem, we utilize passive decomposition [11]

to decompose the dynamics (4.18) into stage-vibration dynamics and its orthogonal

complement. We also show that if the vibration is suppressed, then the orthogonal

complement dynamics is equivalent to the pure manipulator dynamics.

Following [11], let us first define the coordination map ℎ(𝑞) = 𝑞𝑓 which is the

generalized coordinate of the stage and the beam. From the definition of each distri-

bution, we can write the velocity of the system

𝑞 =
[︁
∆⊤ ∆⊥

]︁⎡⎣𝑣𝐿1

𝑣𝐸1

⎤⎦ =

⎡⎣ 𝐼3 𝑆𝐸1

04×3 𝐼4

⎤⎦
⏟  ⏞  

:=𝑆1(𝑞)

⎡⎣𝑣𝐿1

𝑣𝐸1

⎤⎦
⏟  ⏞  
:=𝜈1

where ∆⊤ = [𝐼3; 04×3] ∈ R7×3 and ∆⊥ = [𝑆𝐸1 ; 𝐼4] ∈ R7×4 are matrices identifying

∆⊤ and ∆⊥, respectively. 𝑣𝐿1 ∈ R3 is the locked system motion and 𝑣𝐸1 ∈ R4 is the

shape system motion which is same as the motion of the stage-beam, i.e. 𝑞𝑓 . We can

find 𝑆𝐸1(𝑞) = −𝑀−1
𝑟 𝑀𝑟𝑓 ∈ R3×4 from the relation ∆⊤𝑀(𝑞)∆⊥ = 0.

By multiplying 𝑆𝑇
1 to equation (4.18) with the relations 𝑞 = 𝑆1𝜈1 and 𝑞 = 𝑆̇1𝜈1 +

𝑆1𝜈̇1, we can obtain the decomposed dynamics given by⎡⎣𝑀𝐿1 0

0 𝑀𝐸1

⎤⎦⎡⎣𝑣̇𝐿1

𝑣̇𝐸1

⎤⎦+

⎡⎣ 𝐶𝐿1 𝐶𝐿1𝐸1

𝐶𝐸1𝐿1 𝐶𝐸1

⎤⎦⎡⎣𝑣𝐿1

𝑣𝐸1

⎤⎦+

⎡⎣𝑔𝐿1

𝑔𝐸1

⎤⎦+

⎡⎣ 0

𝐾𝑞𝑓

⎤⎦ =

⎡⎣𝜏𝐿1

𝜏𝐸1

⎤⎦ (4.19)
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where 𝑀𝐿1 = 𝑀𝑟, 𝑀𝐸1 = 𝑆𝑇
𝐸1
𝑀𝑟𝑓 + 𝑀𝑓 ,⎡⎣𝑔𝐿1

𝑔𝐸1

⎤⎦ =

⎡⎣ 𝑔𝑟

𝑆𝑇
𝐸1
𝑔𝑟 + 𝑔𝑓

⎤⎦ , and

⎡⎣𝜏𝐿1

𝜏𝐸1

⎤⎦ =

⎡⎣ 𝜏𝑟

𝑆𝑇
𝐸1
𝜏𝑟 + 𝜏𝑓

⎤⎦
The Coriolis terms is calculated by 𝑆𝑇

1 (𝑀(𝑞)𝑆̇1 + 𝐶(𝑞, 𝑞)𝑆1) where 𝐶(𝑞, 𝑞) is the

Coriolis matrix in (4.18).

The shape system still describes the dynamics of the stage and vibrational motion

which we can express as

𝑀𝐸1𝑞𝑓 + 𝐶𝐸1𝑞𝑓 + 𝐾𝑞𝑓 + 𝑔𝑓 = 𝜏𝑓 + 𝑓𝑛 (4.20)

where 𝑓𝑛 := −𝐶𝐸1𝐿1𝑣𝐿1 + 𝑆𝑇
𝐸1

(𝜏𝑟 − 𝑔𝑟) is the coupling force, and thus, we could

interpret dynamics above by the mass-spring-damping system of 𝑞𝑓 with the gravity

𝑔𝑓 excited by the stage motion and the coupling force.

If the shape system is stabilized, i.e. 𝑞𝑓 → 0, then the locked system converges to

the pure manipulator dynamics as follows

𝑀𝑟(𝑞𝑟)𝑞𝑟 + 𝐶𝑟(𝑞𝑟, 𝑞𝑟)𝑞𝑟 + 𝑔𝑟(𝑞𝑟) = 𝜏𝑟

Thus, one possible approach to achieve two different control objectives, vibration

suppression and tracking control, is to use the stage motion to subdue the vibration

in the shape system and to design the tracking control in the locked system.

4.2.2 Vibration Suppression Control Design

We aim to stabilize the stage-beam dynamics with only the stage control input 𝜏𝑠 ∈ R

regardless of the motion of the manipulator. However, since the stage-beam system

is underactuated, i.e. one DOF stage actuation and four DOF stage-beam states, we

cannot easily stabilize the stage-beam system through 𝜏𝑠, and should examine the

controllability of the system.

For the controllability analysis, let us define the state 𝑥 = [𝑥1;𝑥2] ∈ R8 where
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𝑥1 = 𝑞𝑓 and 𝑥2 = 𝑞𝑓 , and suppose that the manipulator is moving slowly enough to

enable linearization of the shape system (4.20) around the equilibrium point with a

fixed manipulator configuration. From the shape system dynamics, the equilibrium

points can be found as

𝑥*
2 = 0 (4.21)

𝑔𝐸1(𝑥
*
1, 𝑞𝑟) + 𝐾̄𝑥*

1 = 𝑆𝑇
𝐸1
𝜏𝑟 (4.22)

where 𝐾̄ = diag([𝑘𝑠; 𝑐11; 𝑐22; 𝑐33]) is the augmented stiffness with 𝑘𝑠. We assume that

the manipulator motion is fixed at 𝑞𝑟 under the steady-state control input 𝜏𝑟. This

augmented stiffness comes from the design of the stage input expressed by

𝜏𝑠 = −𝑘𝑠𝑞𝑠 − 𝑏𝑠𝑞𝑠 + 𝑢𝑠 (4.23)

where the first two terms are for stabilization of the stage since the stage must be

stable with the vibration suppressed. The last term 𝑢𝑠 is the auxiliary control in-

put for the vibration suppression. The second equilibrium equation (4.22) presents

some offset deformation induced by gravity force and manipulator torque at a certain

configuration of the manipulator.

Linearization of (4.20) at the equilibrium point gives the blocked matrices system

𝑥̇ = 𝐹𝑥̃ + 𝐺𝑢𝑠 =

⎡⎣04×4 𝐼4

𝐹1 04×4

⎤⎦⎡⎣𝑥̃1

𝑥̃2

⎤⎦+

⎡⎣04×1

𝐺1

⎤⎦𝑢𝑠 (4.24)

where 𝑥̃𝑖 = 𝑥𝑖 − 𝑥*
𝑖 . The system matrices 𝐹1 and 𝐹2 ∈ R4×4 and input distribution

matrix 𝐺1 ∈ R4 can be clearly expressed by

𝐹1 = −𝑀−1
𝐸1

(︂
𝜕𝑔𝐸1

𝜕𝑞𝑓
+ 𝐾̄ − 𝜕𝑆𝐸1

𝜕𝑞𝑓
𝜏𝑟

)︂
, 𝐺1 = 𝑀−1

𝐸1
e1

where e1 = [1; 0; 0; 0]. All matrices and vectors are evaluated at the equilibrium point

obtained from (4.21) and (4.22).
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We then numerically analyze the controllability of the linearized stage-beam sys-

tem for all manipulator’s configuration, and find that the linearized system in which

the control input is the only stage motion is controllable for every possible configura-

tion of the manipulator. The fact that the configurations of robotic system is not able

to affect the controllability seems reasonable because configurations mostly influence

on the change of the gravity vector 𝑔𝐸1 . When the manipulator is stretched out, the

gravity term is equal to zero (See (a) in Fig. 4-6). Even in this case, the linearized

system is controllable due to −𝑀−1
𝐸1

𝐾̄ term in 𝐹1.

Based on the controllability analysis, the LQR control can be used for the stage

input to suppress the vibration

𝑢𝑠 = −𝐾LQR𝑥̃ (4.25)

where 𝐾LQR ∈ R1×8 is the LQR gain and 𝑥̃ = [𝑥̃1; 𝑥̃2]. Therefore, by combining (4.23)

and (4.25), total input of the stage is given by

𝜏𝑠 = −𝑘𝑠𝜃𝑠 − 𝑏𝑠𝜃𝑠 −𝐾LQR𝑥̃ (4.26)

The controllability analysis and LQR control design are based on slower operator

behavior assumptions, i.e., 𝑞𝑟 ≈ 0, but our approach has been shown to work properly

as observed in the experiments in Sec. 3.4.

4.2.3 Joint Tracking Control Design

To attain the joint tracking control, consider the locked system:

𝑀𝐿1 𝑣̇𝐿1 + 𝐶𝐿1𝑣𝐿1 + 𝐶𝐿1𝐸1𝑞𝑓 + 𝑔𝐿1 = 𝜏𝐿1 (4.27)
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where again 𝑣𝐿 = 𝑞𝑟 − 𝑆𝐸1𝑞𝑓 ∈ R3. Since the locked system is fully-actuated, we can

easily design the tracking control s.t.,

𝜏𝐿1 = 𝑓𝑛
𝐿 + 𝑀𝐿1𝑞

𝑑
𝑟 −𝐵𝐿𝑒̇𝐿 −𝐾𝐿𝑒𝐿 (4.28)

where 𝑓𝑛
𝐿 = 𝑀𝐿𝑆̇𝐸1𝑞𝑓 + 𝐶𝐿1(𝑞

𝑑
𝑟 − 𝑆𝐸1𝑞𝑓 ) + 𝐶𝐿1𝐸1𝑞𝑓 + 𝑔𝐿1 is the cancel out terms,

𝑒𝐿 = 𝑞𝑟 − 𝑞𝑑𝑟 is the tracking error, and 𝑞𝑑𝑟 is the desired joint trajectory. Here, for the

control design, we use the passivity property of the dynamics, i.e. skew symmetric

property of 𝑀̇𝐿1 − 2𝐶𝐿1 . Then, it is possible to obtain the closed-loop dynamics by

𝑀𝐿1𝑒𝐿 + (𝐶𝐿1 + 𝐵𝐿)𝑒̇𝐿 + 𝐾𝐿𝑒𝐿 = −𝑀𝑟𝑓𝑞𝑓 (4.29)

which converges to

𝑀𝐿1𝑒𝐿 + (𝐶𝐿1 + 𝐵𝐿)𝑒̇𝐿 + 𝐾𝐿𝑒𝐿 = 0 (4.30)

as the vibration is suppressed as obtained in Sec. 4.2.2.

Theorem 1 Consider the linearized shape system (4.24) withe the vibration suppres-

sion control (4.26) and the locked system (4.27) with the controls (4.23) and (4.28).

Then the following are true:

1. vibration is suppressed, i.e. 𝑞𝑓 → 0

2. manipulator follows the desired trajectory, i.e. (𝑞𝑟 − 𝑞𝑑𝑟 ) → 0

Proof: Let us first consider the shape system dynamics (4.20) and the stage input

(4.23). Then, as explained in Sec. 4.2.2, the linearized system of the shape system

dynamics becomes

𝑥̇ = 𝐹𝑥̃ + 𝐺𝑢𝑠

Based on the controllability analysis in Sec. 4.2.2, we can design the stage motion

controller 𝑢𝑠 as defined in (4.25) such that the closed-loop system 𝑥̇ = (𝐹 −𝐺𝐾LQR)𝑥̃
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is stable, i.e. 𝑥̃ → 0. Thus, we can conclude that 𝑞𝑓 → 𝑞*𝑓 and 𝑞𝑓 → 0, i.e. the vibration

is suppressed.

Next, let us define the Lyapunove function candidate as

𝑊 =
1

2
𝑒̇𝑇𝐿𝑀𝐿1 𝑒̇𝐿 +

1

2
𝑒𝑇𝐿𝐾𝐿𝑒𝐿

where again 𝑒𝐿 = 𝑞𝑟 − 𝑞𝑑𝑟 , 𝑀𝐿 is the inertia matrix of the locked system, and 𝐾𝐿 is

the position feedback gain matrix in (4.28). Then we obtain the time derivative of 𝑊

𝑊̇ = 𝑒̇𝑇𝐿𝑀𝐿1𝑒𝐿 +
1

2
𝑒̇𝑇𝐿𝑀̇𝐿1 𝑒̇𝐿 + 𝑒̇𝑇𝐿𝐾𝐿𝑒𝐿

= −𝑒̇𝑇𝐿𝐵𝐿𝑒̇𝐿 + 𝑒̇𝑇𝐿𝑀𝐿1 (−𝑀𝑟𝑓𝑞𝑓 )

For the second line, we use the passivity property, that is, 𝑀̇𝐿1 − 2𝐶𝐿1 is skew sym-

metric. Furthermore, if the vibration is suppressed and the stage is stabilized so

that 𝑞𝑓 = 𝑞𝑓 ≈ 0, then we obtain 𝑊̇ = −𝑒̇𝑇𝐿𝐵𝐿𝑒̇𝐿. Then, according to Barbalat’s

lemma with the closed-loop dynamics (4.30), we can conclude that the equilibrium

𝑒̇𝐿 = 𝑒𝐿 = 0 is globally asymptotically stable.

4.3 Lyapunov-based Control Design

In the previous section, we decompose the original system into the stage-vibration

system and its orthogonal complement. The drawback of the approach is the lineariza-

tion for the vibration suppression, which means that the stabilization is locally valid

around the equilibrium point. However, when the manipulator motion is aggressive or

external disturbance is large, the LQR control could not stabilize the flexible part. For

this reason, in this section, we improved the control of vibration suppression in both

the theoretical and practical sense by using the control design based on Lyapunov

functions. To show the relation between the stage input and the vibration dynamics,

we first start with the decomposition with the different coordination map.
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4.3.1 Twice Passive Decomposition for Input Coupling

Here, we define the coordination map ℎ2(𝑞) = 𝑞𝑟 which is the generalized coordinate

of the manipulator. From the above definition of each distribution, we can write the

velocity of the system

𝑞 =

⎡⎣ 𝐼3 03×4

𝑆𝐸2 𝐼4

⎤⎦
⏟  ⏞  

:=𝑆2(𝑞)

⎡⎣𝑣𝐸2

𝑣𝐿2

⎤⎦
⏟  ⏞  
:=𝜈2

where 𝑆𝐸2 = −𝑀−1
𝑓 𝑀𝑓𝑟 ∈ R4×3, the shape system motion, in this case, is same as

the motion of the manipulator, i.e. 𝑣𝐸2 = 𝑞𝑟 ∈ R3, and the locked system motion is

defined by 𝑣𝐿2 = 𝑞𝑓 − 𝑆𝐸2𝑣𝐸2 = 𝑞𝑓 − 𝑆𝐸2𝑞𝑟 ∈ R4.

The decomposed dynamics is given by⎡⎣𝑀𝐸2 0

0 𝑀𝐿2

⎤⎦⎡⎣𝑣̇𝐸2

𝑣̇𝐿2

⎤⎦+

⎡⎣ 𝐶𝐸2 𝐶𝐸2𝐿2

𝐶𝐿2𝐸2 𝐶𝐿2

⎤⎦⎡⎣𝑣𝐸2

𝑣𝐿2

⎤⎦+

⎡⎣𝑔𝐸2

𝑔𝐿2

⎤⎦+

⎡⎣𝑆𝑇
𝐸2
𝐾𝑞𝑓

𝐾𝑞𝑓

⎤⎦ =

⎡⎣𝜏𝐸2

𝜏𝐿2

⎤⎦
(4.31)

where 𝑀𝐸2 = 𝑀𝑟 + 𝑆𝑇
𝐸2
𝑀𝑓𝑟, 𝑀𝐿2 = 𝑀𝑓 ,⎡⎣𝑔𝐸2

𝑔𝐿2

⎤⎦ =

⎡⎣𝑔𝑟 + 𝑆𝑇
𝐸2
𝑔𝑓

𝑔𝑓

⎤⎦ , and

⎡⎣𝜏𝐸2

𝜏𝐿2

⎤⎦ =

⎡⎣𝜏𝑟 + 𝑆𝑇
𝐸2
𝜏𝑓

𝜏𝑓

⎤⎦ .

The shape system is the dynamics of the manipulator in which the dynamics of

the stage-vibration part is included. Then, the tracking of the manipulator can be

easily achieved without the assumption of the suppression of the vibration because

there is no acceleration term of the stage-vibration term as (4.29).

On the other hand, the locked system is the nonlinear system that consists of the

motion not only of the stage-vibration but also of the manipulator. The challenge for

the control design of the locked system is the under-actuated property. To address

this problem, we design the nonlinear control based on Lyapunov function analysis,

which guarantees exponential stability for the nominal (pure) flexible dynamics. We
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also show the boundedness of the vibration with the boundedness of disturbance (in

this case, dynamic coupling force) under the tracking control of the manipulator.

To see the relation between the stage input and the dynamics of the vibration, we

further decompose only the locked system as follows⎡⎣𝑣1𝐿2

𝑣2𝐿2

⎤⎦ =

⎡⎣ 1 𝑆𝛿

03×1 𝐼3

⎤⎦⎡⎣𝑣𝑠
𝑣𝛿

⎤⎦
where 𝑆𝛿 = −𝑀−1

𝑠 𝑀𝑠𝛿 ∈ R1×3 with the locked system dynamics in (4.31)

⎡⎣𝑀𝑠 𝑀𝑠𝛿

𝑀𝛿𝑠 𝑀𝛿

⎤⎦⎡⎣𝑣̇1𝐿2

𝑣̇2𝐿2

⎤⎦+

⎡⎣ℎ1
𝐿2

ℎ2
𝐿2

⎤⎦+

⎡⎣ 0

𝐾𝛿𝑞𝛿

⎤⎦ =

⎡⎣ 𝜏𝑠

03×1

⎤⎦
If we assume the manipulator motion is fixed, for intuition, we can consider 𝑣1𝐿2

∈

R as the velocity of the stage and 𝑣2𝐿2
∈ R3 as the velocity of the deflection. Also, 𝑞𝛿 =

[𝛿1; 𝛿2; 𝛿3], 𝐾𝛿 = diag[𝑐11; 𝑐22; 𝑐33] in (4.17), and the nonlinear term ℎ𝐿2 = [ℎ1
𝐿2

;ℎ2
𝐿2

]

includes the Coriolis and gravity term.

The secondary decomposed system is given by⎡⎣𝑀𝑠 01×3

03×1 𝑀𝛿 + 𝑆𝑇
𝛿 𝑀𝑠𝛿

⎤⎦⎡⎣𝑣̇𝑠
𝑣̇𝛿

⎤⎦+

⎡⎣ℎ𝑠

ℎ𝛿

⎤⎦+

⎡⎣ 0

𝐾𝛿𝑞𝛿

⎤⎦ =

⎡⎣ 𝜏𝑠

𝑆𝑇
𝛿 𝜏𝑠

⎤⎦
Even if the lower part of the previous dynamic is a nonlinear dynamics, we can

simply express the system as mechanically flat (i.e., whose inertial matrix is constant)

by using the interconnected representation as described in the next subsection.

4.3.2 Interconnected System Description

If we consider the whole system as the interconnected system between the rigid part

(i.e., the manipulator and the stage) and the flexible part and define the internal
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wrench as 𝑓int, then the dynamics of the flexible part can be expressed as

𝑑

𝑑𝑡

(︂
𝜕𝐿𝛿

𝑞𝛿

)︂
− 𝜕𝐿𝛿

𝑞𝛿
= 𝑀̄𝛿𝑞𝛿 + 𝐾𝛿𝑞𝛿 = 𝐽𝑇

𝛿 (−𝑓int) (4.32)

where the Lagrangian of the flexible part is 𝐿𝛿 = 𝑇𝛿 − 𝑈𝛿. The inertia matrix 𝑀̄𝛿 ∈

R3×3 and structural spring 𝐾𝛿 ∈ R3×3 are constant, and Jacobian matrix 𝐽𝛿 is defined

as follow ⎡⎣ 𝜃𝑏

𝑝̇𝑦𝑜𝑏

⎤⎦ = 𝐽𝛿𝑞𝛿 =

⎡⎣𝜑′
1(𝑙𝑏) 𝜑′

2(𝑙𝑏) 𝜑′
3(𝑙𝑏)

𝜑1(𝑙𝑏) 𝜑2(𝑙𝑏) 𝜑3(𝑙𝑏)

⎤⎦ 𝑞𝛿 (4.33)

Remark 1 From the lower part of the secondary decomposed dynamics, we can rewrite

the driving force as

𝐽𝑇
𝛿 (−𝑓int) = 𝑆𝑇

𝛿 𝜏𝑠 + ℎ(𝑞, 𝑞, 𝑞) (4.34)

where ℎ(𝑞, 𝑞, 𝑞) is the dynamics coupling force.

Proof: The proof is straightforward. Let us first consider the dynamics of the flexible

part in (4.18). The last three rows are

𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕𝑞𝛿

)︂
− 𝜕𝐿

𝜕𝑞𝛿
= 0

⇒ 𝑑

𝑑𝑡

[︂
𝜕

𝜕𝑞𝛿
(𝐿𝑟 + 𝐿𝛿)

]︂
− 𝜕

𝜕𝑞𝛿
(𝐿𝑟 + 𝐿𝛿) = 0 (4.35)

Then, one can see that the inertia matrix corresponding to the flexible part 𝑀𝛿

consists of 𝑀̄𝛿 and 𝑀 𝑟
𝛿 (𝑞).

𝑀𝛿 , 𝑀̄𝛿 + 𝑀 𝑟
𝛿 (𝑞)

Note that 𝑀 𝑟
𝛿 (𝑞) is time-varying term different from the constant 𝑀̄𝛿.
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Now call the low part of the secondary decomposed dynamics with 𝑀𝛿 which is

given by

(︀
𝑀̄𝛿 + 𝑀 𝑟

𝛿 (𝑞) + 𝑆𝑇
𝛿 𝑀𝑠𝛿

)︀ 𝑑

𝑑𝑡

(︀
𝑞𝛿 + 𝑆2:4

𝐸2
𝑞𝑟
)︀

+ ℎ𝛿(𝑞, 𝑞)

+𝐾𝛿𝑞𝛿 = 𝑆𝑇
𝛿 𝜏𝑠

One can rewrite the above equation as

𝑀̄𝑞𝛿 + 𝐾𝛿𝑞𝛿 = 𝑆𝑇
𝛿 𝜏𝑠 + ℎ(𝑞, 𝑞, 𝑞)

Therefore, the exact representation of 𝑆𝛿 is necessary for the design of the control,

and we model the system as interconnected systems to reveal the term of 𝑆𝛿. The

connection between the rigid system and the flexible system is the internal wrench

𝑓ext. What we want to do is to stabilize the flexible system by using the stage input

𝜏𝑠. Since the internal wrench appears only in the dynamics of 𝜃𝑏 and 𝑝𝑦𝑜𝑏, we should

use the coupling force. However, using the dynamics coupling could be complicated

and not intuitive, so we use the passive decomposition to explicitly indicate how 𝜏𝑠

affects the dynamics of 𝜃𝑏 and 𝑝𝑦𝑜𝑏.

Let us define the coordination map as ℎ1(𝑞) := 𝑞𝑚 and following [11], we get

⎡⎣𝑞𝑚
𝑞𝑡

⎤⎦ =

⎡⎣ 𝐼3 0

𝑆𝐸 𝐼3

⎤⎦⎡⎣𝑣𝐸
𝑣𝐿

⎤⎦ (4.36)

where 𝑆𝐸 = −𝑀−1
𝑡 𝑀𝑡𝑚 ∈ R3×3 and the decomposed dynamics⎡⎣𝑀𝐸 0

0 𝑀𝐿

⎤⎦⎡⎣𝑣̇𝐸
𝑣̇𝐿

⎤⎦+

⎡⎣ 𝐶𝐸 𝐶𝐸𝐿

𝐶𝐿𝐸 𝐶𝐿

⎤⎦⎡⎣𝑣𝐸
𝑣𝐿

⎤⎦+

⎡⎣𝑔𝑚 + 𝑆𝑇
𝐸𝑔𝑡

𝑔𝑡

⎤⎦ =

⎡⎣𝜏𝑚 + 𝑆𝑇
𝐸𝜏𝑡

𝜏𝑡

⎤⎦+

⎡⎣ 0

𝐹int

⎤⎦
(4.37)
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where 𝑀𝐸 = 𝑀𝑚 −𝑀𝑚𝑡𝑀
−1
𝑡 𝑀𝑡𝑚, 𝑀𝐿 = 𝑀𝑡, and 𝐹int = [0; 𝑓int] = [0; 𝑓 𝑟

int; 𝑓
𝑦
int] ∈ R3.

One can see that the gravitational force the control input of the dynamics of 𝑞𝑡 remains

intact. Thus,

𝑀𝐿𝑣̇𝐿 + 𝐶𝐿𝐸𝑣𝐸 + 𝐶𝐿𝑣𝐿 + 𝑔𝑡 =

⎡⎣𝜏𝑠
0

⎤⎦+

⎡⎣ 0

𝑓int

⎤⎦
and 𝑣𝐿 = 𝑞𝑡 − 𝑆𝐸𝑞𝑚 from (4.36).

We decompose the dynamics further to see the direct affection of 𝜏𝑠 on 𝑓int by

defining ⎡⎣𝑣𝑠𝐿
𝑣𝑏𝐿

⎤⎦ =

⎡⎣1 𝑆𝐿

0 𝐼2

⎤⎦⎡⎣𝑣𝐿′

𝑣𝐸′

⎤⎦
where 𝑆𝐿 = −𝑀−1

𝐿1 𝑀𝐿12 ∈ R1×2, 𝑀𝐿1 is the (1,1) element of 𝑀𝐿, and 𝑀𝐿12 ∈ R1×2

is the (1,2:3) part of 𝑀𝐿. Then, the twice decomposed dynamics is

⎡⎣𝑀𝐿′ 0

0 𝑀𝐸′

⎤⎦⎡⎣𝑣̇𝐿′

𝑣̇𝐸′

⎤⎦+

⎡⎣ 𝐶𝐿′ 𝐶𝐿′𝐸′

𝐶𝐸′𝐿′ 𝐶𝐸′

⎤⎦⎡⎣𝑣𝐿′

𝑣𝐸′

⎤⎦+

⎡⎣ 𝑔1𝑡

𝑔23𝑡 + 𝑆𝑇
𝐿𝑔

1
𝑡

⎤⎦ =

⎡⎣ 𝜏𝑠

𝑆𝑇
𝐿 𝜏𝑠

⎤⎦+

⎡⎣ 0

𝑓int

⎤⎦
(4.38)

The second row of the doubly decomposed dynamics (4.38) can be written by

𝑀𝐸′ 𝑣̇𝐸′ + 𝐶𝐸′𝐿′𝑣𝐿′ + 𝐶𝐸′𝑣𝐸′ + 𝑔23𝑡 + 𝑆𝑇
𝐿𝑔

1
𝑡⏟  ⏞  

:=ℎ𝐸′

−𝑆𝑇
𝐿 𝜏𝑠 = 𝑓int

We can interpret the above equation to mean that the internal wrench consists of the

dynamics effect, ℎ𝐸′ , and the stage input 𝑆𝑇
𝐿 𝜏𝑠.

𝑓int = ℎ𝐸′ − 𝑆𝑇
𝐿 𝜏𝑠 (4.39)

Here, 𝑆𝐿 = 𝑆𝛿 in (4.34). Thus, we find 𝑆𝛿 = 𝑆𝐿 = −𝑀−1
𝐿1 𝑀𝐿12 ∈ R1×2.
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4.3.3 Passivity-based Manipulator Motion Control

The shape system of the first decomposed system (4.31) is given by

𝑀𝐸 𝑣̇𝐸 + 𝐶𝐸𝑣𝐸 + 𝐶𝐸𝐿𝑣𝐿 + 𝑔𝑚 + 𝑆𝑇
𝐸𝑔𝑡⏟  ⏞  

:=ℎ𝐸

= 𝜏𝑚 + 𝑆𝑇
𝐸𝜏𝑡 (4.40)

where 𝑣𝐸 = 𝑞𝑚.

Let us define the control 𝜏𝑚 for the trajectory tracking as follows

𝜏𝑚 = 𝑀𝐸𝑞
𝑑
𝑚 + 𝐶𝐸𝑞

𝑑
𝑚 + ℎ𝐸 − 𝑆𝑇

𝐸𝜏𝑡 −𝐵𝐸 𝑒̇𝐸 −𝐾𝐸𝑒𝐸

where 𝑒𝐸 = 𝑞𝑚 − 𝑞𝑑𝑚 and 𝑞𝑑𝑚 is the desired trajectory of the manipulator. Then the

closed-loop equation is

𝑀𝐸𝑒𝐸 + (𝐶𝐸 + 𝐵𝐸)𝑒̇𝐸 + 𝐾𝐸𝑒𝐸 = 0

which implies asymptotic stability of the closed-loop system.

4.3.4 Dissipative Control for Vibration Suppression

From (4.35) and (4.34), one observes that the flexible system is mass-spring system

with a single input and external disturbance. Although we do not rigorously develop

the mathematical model of the structural damping which physically exists, from now

on, we consider the structural damping in the dynamics of the flexible part.

𝑀𝛿𝑞𝛿 + 𝐵𝛿𝑞𝛿 + 𝐾𝛿𝑞𝛿 = 𝑆𝑇
𝛿 𝜏𝑠 + ℎ(𝑞, 𝑞, 𝑞) (4.41)

where 𝐵𝛿 ∈ R3×3 is the structural damping matrix and diagonal.

We can consider the dynamics coupling ℎ(𝑞, 𝑞, 𝑞) as the disturbance, then the
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nominal system is

𝑀𝛿𝑞𝛿 + 𝐵𝛿𝑞𝛿 + 𝐾𝛿𝑞𝛿 = 𝑆𝑇
𝛿 𝜏𝑠 (4.42)

Even if 𝑀𝛿, 𝐵𝛿, and 𝐾𝛿 are constant, the nominal system is nonlinear system because

of 𝑆𝛿(𝑞) = −𝑀−1
𝑠 𝑀𝑠𝛿. Therefore, the well-developed analysis and control framework

for linear system cannot be applicable. Furthermore, since 𝑆𝛿 includes the coordinate

of the manipulator, the system is nonlinear nonautonomous system. In fact, due to

𝑆𝛿, it is also difficult to make the system in triangular cascade form. Thus, we design

the control for the stabilize the flexible system by using Lyapunov function analysis.

Now our task is to design the control for the suppression of the vibration in (4.42).

We suppose that the control input 𝜏𝑠 has first-order dynamics such as

𝜏𝑠 = −𝜆𝜏𝑠 + 𝑢𝑠 (4.43)

where 𝜆 ∈ R is a positive constant. Let us define the PD-like control for the auxiliary

control input 𝑢𝑠 as

𝑢𝑠 = −𝑆𝛿 (𝐵𝑑𝑞𝛿 + 𝐾𝑑𝑞𝛿) (4.44)

where 𝐵𝑑 and 𝐾𝑑 are constant gain.

Proposition 1 Consider the nominal system of the flexible part in (4.42) and assume

that the control input 𝜏𝑠 is chosen as its dynamics is (4.43) with the auxiliary input 𝑢𝑠

in (4.44). Then, the configuration and velocity of the flexible system 𝑞𝛿, 𝑞𝛿 converges

exponentially to zero.

Proof: Let us construct the Lypunov candidate as

𝑉 =
1

2

⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦𝑇 ⎡⎣𝐵𝑑𝐾𝑓 + 𝐾𝑑𝐵𝑓 𝐾𝑑𝑀𝛿

(𝐾𝑑𝑀𝛿)
𝑇 𝐵𝑑𝑀𝛿

⎤⎦⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦+
1

2𝛾
𝜏𝑇𝑠 𝜏𝑠

Since 𝑀𝛿 ⪰ 0 and structural damping/spring are diagonal with positive constant
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elements, it is straightforward to verify that 𝑉 > 0.

Differentiating 𝑉 , one obtains

𝑉̇ =

⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦𝑇 ⎡⎣𝐵𝑑𝐾𝛿 + 𝐾𝑑𝐵𝛿 𝐾𝑑𝑀𝛿

(𝐾𝑑𝑀𝛿)
𝑇 𝐵𝑑𝑀𝛿

⎤⎦⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦+
1

𝛾
𝜏𝑇𝑠 𝜏𝑠

=

⎡⎣𝑞𝑇𝛿 (𝐵𝑑𝐾𝛿 + 𝐾𝑑𝐵𝛿) + 𝑞𝑇𝛿 (𝐾𝑑𝑀𝛿)
𝑇

𝑞𝑇𝛿 (𝐾𝑑𝑀𝛿) + 𝑞𝑇𝛿 𝐵𝑑𝑀𝛿

⎤⎦𝑇 ⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦+
1

𝛾
𝜏𝑇𝑠 𝜏𝑠

= 𝑞𝑇𝛿 (𝐵𝑑𝐾𝛿 + 𝐾𝑑𝐵𝛿)𝑞𝛿 + 𝑞𝑇𝛿 (𝐾𝑑𝑀𝛿)
𝑇 𝑞𝛿 + 𝑞𝑇𝛿 (𝐾𝑑𝑀𝛿)𝑞𝛿 + 𝑞𝑇𝛿 𝐵𝑑𝑀𝛿𝑞𝛿 +

1

𝛾
𝜏𝑇𝑠 𝜏𝑠

= 𝑞𝑇𝛿 (𝐵𝑑𝐾𝛿 + 𝐾𝑑𝐵𝛿)𝑞𝛿 + 𝑞𝑇𝛿 (𝐾𝑑𝑀𝛿)
𝑇 𝑞𝛿 + 𝑞𝑇𝛿 𝐾𝑑

(︀
−𝐵𝛿𝑞𝛿 −𝐾𝛿𝑞𝛿 + 𝑆𝑇

𝛿 𝜏𝑠
)︀

+ 𝑞𝑇𝛿 𝐵𝑑

(︀
−𝐵𝛿𝑞𝛿 −𝐾𝛿𝑞𝛿 + 𝑆𝑇

𝛿 𝜏𝑠
)︀

+
1

𝛾
𝜏𝑇𝑠 𝜏𝑠

= −𝑞𝑇𝛿 (𝐵𝑑𝐵𝛿 −𝐾𝑑𝑀𝛿) 𝑞𝛿 − 𝑞𝑇𝛿 𝐾𝑑𝐾𝛿𝑞𝛿 + 𝜏𝑇𝑠

[︂
𝑆𝛿 (𝐵𝑑𝑞𝛿 + 𝐾𝑑𝑞𝛿) +

1

𝛾
𝜏𝑠

]︂

= −

⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦𝑇 ⎡⎣𝐾𝑑𝐾𝛿 0

0 𝐵𝑑𝐵𝛿 −𝐾𝑑𝑀𝛿

⎤⎦⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦− 𝜆

𝛾
𝜏𝑇𝑠 𝜏𝑠

If 𝐾𝑑 is small enough, then the equilibrium 𝑞𝛿 = 𝑞𝛿 = 𝜏𝑠 = 0 is exponentially stable.

We should see the stability of the perturbed system (4.41). For this, we assume

that the manipulator converges to the desired trajectory which is given by bounded-

continuous function (𝑞𝑑𝑟 (𝑡), 𝑞𝑑𝑟 (𝑡), 𝑞𝑑𝑟 (𝑡)) with the control (4.40). This means that the

human arbitrary command is smooth. Then, we can assume that the disturbance

ℎ(𝑞, 𝑞, 𝑞) = ℎ(𝑞𝛿, 𝑞𝛿, 𝑡) is bounded.

Theorem 2 Let us first denote 𝑥(𝑡) = [𝑞𝛿(𝑡); 𝑞𝛿(𝑡); 𝜏𝑠(𝑡)] ∈ R7. Consider the nominal

system of the flexible part in (4.41) and assume that the control input 𝜏𝑠 is chosen as

its dynamics is (4.43) with the auxiliary input 𝑢𝑠 in (4.44). Suppose that the motion

of the manipulator converges to the desired trajectory 𝑞𝑑𝑟 (𝑡) ∈ 𝒞2 and ℒ2. Suppose

further that the perturbation term ℎ(𝑞, 𝑞, 𝑞) satisfies

ℎ(𝑞, 𝑞, 𝑞) ≈ ℎ(𝑞𝛿, 𝑞𝛿, 𝑡) ≤ 𝜅̄
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for all 𝑡 ≥ 0, all 𝑞𝛿 and 𝑞𝛿. Then, 𝑥(𝑡) of the perturbed system (4.41) satisfies

‖𝑥(𝑡)‖ ≤

√︃
𝜆max(𝑃 )

𝜆min(𝑃 )
‖𝑥(𝑡0)‖, ∀𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇

‖𝑥(𝑡)‖ ≤ 𝑐1𝜅̄

𝜃𝜆min(𝑄𝛿)

√︃
𝜆max(𝑃 )

𝜆min(𝑃 )
, ∀𝑡 ≥ 𝑡0 + 𝑇

Proof: We use the same V in Cor. 1 as a Lyapunov function candidate for the

perturbed system (4.41). The derivative of 𝑉 along the trajectories of (4.41) satisfies

𝑉̇ = −

⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦𝑇 ⎡⎣𝐾𝑑𝐾𝛿 0

0 𝐵𝑑𝐵𝛿 −𝐾𝑑𝑀𝛿

⎤⎦
⏟  ⏞  

:=𝑄𝛿

⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦
⏟  ⏞  
:=𝑥𝛿

−𝜆

𝛾
𝜏𝑇𝑠 𝜏𝑠 − ℎ𝑇

[︁
𝐾𝑑 𝐵𝑑

]︁⎡⎣𝑞𝛿
𝑞𝛿

⎤⎦

≤ −𝜆min(𝑄𝛿)‖𝑥𝛿‖2 −
𝜆

𝛾
‖𝜏𝑠‖2 − ‖ℎ‖max(𝐾𝑑, 𝐵𝑑)⏟  ⏞  

:=𝑐1

‖𝑥𝛿‖

≤ −(1 − 𝜃)𝜆min(𝑄𝛿)‖𝑥𝛿‖2 − 𝜃𝜆min‖𝑥𝛿‖2 − 𝑐1‖ℎ‖‖𝑥𝛿‖ −
𝜆

𝛾
‖𝜏𝑠‖2, 0 ≤ 𝜃 ≤ 1

≤ −(1 − 𝜃)𝜆min(𝑄𝛿)‖𝑥𝛿‖2 −
𝜆

𝛾
‖𝜏𝑠‖2, ∀‖𝑥𝛿‖ ≥ 𝑐1𝜅̄

𝜃𝜆min(𝑄𝛿)

To use the ultimate bound theorem in [53], we have to find the lower and upper

bound of the Lyapunov function. In our case, from the definition of 𝑉 , we have

𝜆min(𝑃 )‖𝑥‖22 ≤ 𝑉 =
1

2

⎡⎢⎢⎢⎣
𝑞𝛿

𝑞𝛿

𝜏𝑠

⎤⎥⎥⎥⎦
𝑇 ⎡⎢⎢⎢⎣

𝐵𝑑𝐾𝑓 + 𝐾𝑑𝐵𝑓 𝐾𝑑𝑀𝛿 0

(𝐾𝑑𝑀𝛿)
𝑇 𝐵𝑑𝑀𝛿 0

0 0 1/𝛾

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑞𝛿

𝑞𝛿

𝜏𝑠

⎤⎥⎥⎥⎦ :=
1

2
𝑥𝑇𝑃𝑥 ≤ 𝜆max(𝑃 )‖𝑥‖22

Then, the ultimate bound by using theorem 4.18 in [53] in is given by

‖𝑥(𝑡)‖ ≤ 𝑐1𝜅̄

𝜃𝜆min(𝑄𝛿)

√︃
𝜆max(𝑃 )

𝜆min(𝑃 )
, ∀𝑡 ≥ 𝑡0 + 𝑇
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Figure 4-5: Experiment setup consists of three DOF manipulator, one DOF linear
stage, and the flexible beam. Each actuator is torque-controllable

4.4 Experiments

We conduct experiments to verify the performance of the proposed controllers de-

signed in Sec. 4.2.2 and 4.2.3. The performances of the trajectory tracking and vibra-

tion suppression are provided. During the tracking, we excite the system to show the

robustness of the proposed controllers.

4.4.1 Test Setup

The system consists of three DOF manipulator, one DOF linear stage, and a vertical

flexible beam. See Fig. 4-5. First of all, we have chosen the Dynamixel Pro of Robotics

for the motors of the manipulator because of its compact size, acceptable torque level,

and torque-controllability. The resolution of encoders is 501,900 or 304,000 p/rev

according to the model of the motors. The Dynamixel Pro supports torque control
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Figure 4-6: The snapshots of the joint tracking experiment: (a) the manipulator starts
with the large initial error; (b) the manipulator converges to the desired configuration;
(c) the system is stabilized due to the vibration suppression control or the structural
damping (in the case of without the vibration suppression control); (d) the external
disturbance (human force) is applied; and (e) again, the system is stabilized.

Figure 4-7: The linear stage and the deflection of the flexible beam: the beam deflec-
tion is measured at the tip of the beam. At 15 sec. and 30 sec., we push the system
to show the performance of the suppression control against the unmodeled external
disturbance.

79



mode and the update rate is around 400Hz with three motors. For accurate actuate,

we calibrate the command-output force relation by using force sensor. Moreover, since

the motors has high gear-ratio (for instance, the H54-200 model used for the 𝜃1 has

500:1 ratio), we compensates the motor (static) friction for better performance.

Next, for the linear stage, we use SMC-LEFS series which is ball-screw type linear

actuator driven by 200W AC servo motor. The lead of the stage is chosen as 24mm

which is the longest option of the model for the fast motion. The resolution of the

stage encoder is 18 bit, i.e. 262,144 p/rev. We also calibrate by using force sensor to

find the relation between the analog input and the output linear force. The update

rate of the stage is around 1KHz.

Aluminium bars are used for the flexible beam. The length 𝑙𝑏 is 0.907m, thickness

is 0.012m, and the width is 0.05m. For the calculation of the natural frequencies

described in Sec. 4.1.3. We use the encoders to measure the motions of the manipulator

and stage system. And Optitrack, which is a motion capture system, is applied to

measure the beam deflections.

Figure 4-8: Performance comparison between the LQR controller in Sec. 4.2 and
nonlinear control in Sec. 4.3 against external disturbance
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Figure 4-9: Snapshots of the comparison experiment: the upper row is the experiment
with the LQR control where the large deflection due to the external disturbance cause
the the system instability. On the other hands, in the second row, the deflection of
the system with nonlinear control is still bounded.

4.4.2 Joint Tracking and Vibration Suppression Experiment

To verify the performance of the proposed controllers (4.26) and (4.28), we perform

joint tracking control experiments with large enough initial joint error to see the per-

formance of the vibration suppression control against dynamics coupling effect. At

the beginning, the manipulator starts with large enough configuration error and then

converges to the desired configuration as shown in (a) and (b) in Fig. 4-6. The conver-

gence motion of the manipulator causes the system oscillation due to the dynamics

effect. If we apply the vibration suppression control, then the system quickly becomes

stable. Otherwise, it takes much longer time to be stabilized. Furthermore, around

15 sec. and 30 sec. we push the system to see the robustness and the performance

against the unmodeled external disturbance. See (d) in Fig. 4-6.

Fig.6 clearly presents the performance of the vibration suppression control. If we

do not apply the vibration suppression control, then the the vibration caused by both

manipulator motion, i.e. dynamics effect, or the external force is attenuated by the

structural damping which is not modeled in this thesis. Since the unmodeled structural

damping is small, it takes long time (more than 30 sec.) to stabilize the system. On

contrary to this, if we apply the vibration suppression control, the vibration is actively

subdued in 5 sec.
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4.4.3 Comparison Experiment between the LQR and the Non-

linear Control

In this subsection, we conduct the experiment for the performance comparison be-

tween the LQR control in Sec. 4.2 and nonlinear control in Sec. 4.3. Since Both

controllers can stabilize the vibration under the steady state motion of the manipu-

lator, we push the system (force the large disturbance) to compare the margin of the

stability of both controllers. For small deflection in which the linearization might be

valid, LQR controller can stabilize the vibration. See. Fig. 4-8. However, if we excite

the system with large external force, then the LQR controller cannot stabilize the

system, and the system goes unstable. This might be the effect of the linearization

so that if the system is far away from the equilibrium point, then the stability of the

linear system is not valid any more. On the other hands, the nonlinear system can

sustain the stability against the large deflection.
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Chapter 5

Conclusion

5.1 Summary

Since, for complex robotic systems which has large DoFs or under-actuated property,

the standard teleoperation framework is not sufficient for successful task in real-

world environment, In this thesis, we develop decomposition-based semi-autonomous

teleoperation framework for robotic systems which have distributed communication

and under-actuation property. The proposed framework consists of three steps: 1)

decomposition step, 2) control design of the slave robot, and 3) feedback interface

design, which facilitates achievement of two different control objectives (i.e., follow

the human command and the coordination/stabilization of the internal movement) of

the slave robots simultaneously. We develop the framework for each case and perform

the experiments to show the efficacy of the framework under harsh scenario or in

real-world environment.

5.2 Future Works

For distributed WMRs, some possible future research topics include: 1) development

of teleoperation strategy for platoon reconfiguration by using the leader WMR (e.g.,

backward escape from dead-end); 2) extension of the proposed framework to other

types of distributed mobile robots (e.g., quadrotors [15, 54]); and 3) extension to
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dynamic environments and robustification against various system failures.

For stage-manipulator on vertical flexible beam, future works include: 1) rigorous

controllability analysis of the flexible part with only one stage input; and 2) exten-

sion to the larger DoFs system including advanced modeling approach such as finite

element method or elastic kinematic chain for the flexible part to deal with large

deformation.
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Appendix A

Appendix

A.1 Internal Wrench Representation

Let us only consider rigid part systems. Then our generalized coordination would be

𝑞𝑟 = [𝜃3; 𝜃2; 𝜃1; 𝜃𝑠; 𝜃𝑏; 𝑝
𝑦
𝑜𝑏] = [𝑞𝑟; 𝜃𝑏; 𝑝

𝑦
𝑜𝑏] ∈ R6 where 𝑝𝑦𝑜𝑏 is the 𝑦-directional component

of the vector 𝑝𝑜𝑏. The Lagrangian of the system is defined by kinetic and potential

energy as follows

𝐿𝑟 = 𝑇𝑟 − 𝑉𝑟

Then, we obtain the dynamics of the rigid part system

𝑑

𝑑𝑡

(︂
𝜕𝐿𝑟

𝜕 ˙̄𝑞𝑟

)︂
− 𝜕𝐿𝑟

𝑞𝑟
= 𝑀𝑟(𝑞𝑟)¨̄𝑞𝑟 + 𝐶𝑟(𝑞𝑟, ˙̄𝑞𝑟) ˙̄𝑞𝑟 + 𝑔𝑟(𝑞𝑟)

= 𝜏𝑟 + 𝐽𝑇
𝑟𝑏𝑓int + 𝐽𝑇

𝑟𝑒𝑓ext

where 𝜏𝑟 = [𝜏3; 𝜏2; 𝜏1; 𝜏𝑠; 0; 0] is control input, 𝑓ext = [𝑓𝑥
ext; 𝑓

𝑦
ext; 𝑓

𝑟
ext] ∈ R3 is external

force applied to the end-effector in {𝒪}, 𝑓int = [𝑓 𝑟
int; 𝑓

𝑦
int] ∈ R2 is internal force between

the boom and the rigid part system in {𝒪}, which is applied to the stage. Since we

assume that the vertical deflection can be negligible, internal force along the vertical

direction, i.e., 𝑓𝑥
int, does not appear in the above equation. In addition, Jacobian 𝐽𝑟𝑏
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and 𝐽𝑟𝑒 are defined by⎡⎣ 𝜃𝑏

𝑝̇𝑦𝑜𝑏

⎤⎦ , 𝑉𝑜𝑏 = 𝐽𝑟𝑏 ˙̄𝑞𝑟 and

⎡⎣𝑝̇𝑜𝑜𝑒
𝜃𝑜𝑒

⎤⎦ , 𝑉𝑜𝑒 = 𝐽𝑟𝑒 ˙̄𝑞𝑟

The dimensions of the Jacobian are both 2×7. The Jacobian 𝐽𝑟𝑏 is given by

𝐽𝑟𝑏 =

⎡⎣0 0 0 0 1 0

0 0 0 0 0 1

⎤⎦

The control input of the rigid system is 𝜏𝑟 = [𝜏3; 𝜏2; 𝜏1; 𝜏𝑠; 0; 0] ∈ R6. To verify

the control input, let us start with the virtual work of forces acting on a single rigid

body. We define 𝑓1, 𝑓2, · · · , 𝑓𝑛 as the forces acting on the points 𝑝1, 𝑝2, · · · , 𝑝𝑛 in a

rigid body. Then the velocity of the point 𝑝𝑖 are given by

𝑣𝑖 = 𝜔𝑜 × (𝑝𝑖 − 𝑝𝑜) + 𝑣𝑜 (A.1)

where 𝑝𝑜 is a reference point in the rigid body and 𝑣𝑜 is the time derivative of 𝑝𝑜, i.e.

𝑑/𝑑𝑡(𝑝𝑜). 𝜔𝑜 is the angular velocity of the body.

The virtual work is computed from

𝛿𝑊 =
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖 𝛿𝑝𝑖 =

𝑛∑︁
𝑖=1

𝑓𝑇
𝑖

(︃
𝑚∑︁
𝑗=1

𝜕𝑝𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗

)︃
=

𝑛∑︁
𝑖=1

𝑓𝑇
𝑖

(︃
𝑚∑︁
𝑗=1

𝜕𝑣𝑖
𝜕𝑞𝑗

𝛿𝑞𝑗

)︃

=

(︃
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖

𝜕𝑣𝑖
𝜕𝑞1

)︃
𝛿𝑞1 + · +

(︃
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖

𝜕𝑣𝑖
𝜕𝑞𝑚

)︃
𝛿𝑞𝑚

To simplify the equation, consider only the first term with eq. (A.1) (i.e., consider
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the rigid body can be specified by a single generalized coordinate 𝑞1)(︃
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖

𝜕𝑣𝑖
𝜕𝑞1

)︃
𝛿𝑞1 =

(︃
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖

𝜕(𝜔𝑜 × (𝑝𝑖 − 𝑝𝑜) + 𝑣𝑜)

𝜕𝑞1

)︃
𝛿𝑞1

=

⎛⎜⎝ 𝑛∑︁
𝑖=1

𝑓𝑇
𝑖

𝜕𝑣𝑜
𝜕𝑞1

+
𝑛∑︁

𝑖=1

((𝑝𝑖 − 𝑝𝑜) × 𝑓𝑖)
𝑇⏟  ⏞  

:=𝑚𝑇
𝑖

𝜕𝜔𝑜

𝜕𝑞1

⎞⎟⎠ 𝛿𝑞1

=

(︃
𝑛∑︁

𝑖=1

𝑓𝑇
𝑖

𝜕𝑣𝑜
𝜕𝑞1

+
𝑛∑︁

𝑖=1

𝑚𝑇
𝑖

𝜕𝜔𝑜

𝜕𝑞1

)︃
𝛿𝑞1 , 𝑄1𝛿𝑞1

Next, let us consider a mechanical system which is constructed from 𝑛 rigid bodies

and let the resultant applied forces and torques 𝐹𝑖 and 𝑇𝑖. Notice that these applied

forces do not include the reaction forces where the bodies are connected. If the me-

chanical system is defined by 𝑚 generalized coordinates, i.e. 𝑚-DoF, then the virtual

work is given by

𝛿𝑊 =
𝑚∑︁
𝑗=1

𝑄𝑗𝛿𝑞𝑗 =
𝑚∑︁
𝑗=1

(︃
𝑛∑︁

𝑖=1

𝐹 𝑇
𝑖

𝜕𝑣𝑖
𝜕𝑞𝑗

+
𝑛∑︁

𝑖=1

𝑀𝑇
𝑖

𝜕𝜔𝑖

𝜕𝑞𝑗

)︃
𝛿𝑞𝑗

In our rigid system, 𝑛 = 5 and 𝑚 = 6 because the rigid system consists of the

floating base, the linear stage, and the three links. Furthermore, as mentioned before,

the generalized coordinate of the rigid body is 6 DoF. Recall 𝑞𝑟 = [𝜃3; 𝜃2; 𝜃1; 𝜃𝑠; 𝜃𝑏; 𝑝
𝑦
𝑜𝑏].

Each resultant force-torque pair (𝐹𝑖 ∈ R2,𝑀𝑖 ∈ R) can be expressed by

[𝐹𝑏,𝑀𝑏] = [(𝑓𝑥
int + 𝜏𝑠 sin 𝜃𝑏, 𝑓

𝑦
int − 𝜏𝑠 cos 𝜃𝑏), 𝑓

𝑟
int − 𝑙𝑏𝑠𝜏𝑠],

[𝐹𝑠,𝑀𝑠] = [(−𝜏𝑠 sin 𝜃𝑏, 𝜏𝑠 cos 𝜃),−𝜏1],

[𝐹1,𝑀1] = [(0, 0), 𝜏1 − 𝜏2],

[𝐹2,𝑀2] = [(0, 0), 𝜏2 − 𝜏3],

[𝐹3,𝑀3] = [(0, 0), 𝜏3]
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From the definition of the generalized force, we can calculate

𝑄1 = 𝑀3
𝜕𝜔𝑜3

𝜕𝜃3
= 𝜏3

𝑄2 = 𝑀2
𝜕𝜔𝑜2

𝜕𝜃2
+ 𝑀3

𝜕𝜔𝑜3

𝜕𝜃2
= (𝜏2 − 𝜏3) + 𝜏3 = 𝜏2

𝑄3 = 𝑀1
𝜕𝜔𝑜1

𝜕𝜃1
+ 𝑀2

𝜕𝜔𝑜2

𝜕𝜃1
+ 𝑀3

𝜕𝜔𝑜3

𝜕𝜃1
= 𝜏1

𝑄𝑠 = 𝐹 𝑇
𝑠

𝜕𝑝̇𝑜𝑠

𝜕𝜃𝑠
= 𝐹 𝑇

𝑠 [− sin 𝜃𝑏; cos 𝜃𝑏] = 𝜏𝑠

𝑄𝜃𝑏 = 𝜏3 + (𝜏2 − 𝜏3) + (𝜏1 − 𝜏2) − 𝜏1 + 𝑓 𝑟
int + 𝑙𝑏𝑠𝜏𝑠 − 𝑙𝑏𝑠𝜏𝑠 = 𝑓 𝑟

int

𝑄𝑦 = 𝑓 𝑦
int − 𝜏𝑠 cos 𝜃𝑏 + 𝜏𝑠 cos 𝜃𝑏 = 𝑓 𝑦

int

The dynamics of the rigid part can be expressed⎡⎣𝑀𝑚 𝑀𝑚𝑡

𝑀𝑡𝑚 𝑀𝑡

⎤⎦⎡⎣𝑞𝑚
𝑞𝑡

⎤⎦+

⎡⎣𝐶𝑚 𝐶𝑚𝑡

𝐶𝑡𝑚 𝐶𝑡

⎤⎦⎡⎣𝑞𝑚
𝑞𝑡

⎤⎦+

⎡⎣𝑔𝑚
𝑔𝑡

⎤⎦ =

⎡⎣𝜏𝑚
𝜏𝑡

⎤⎦+ 𝐽𝑟𝑏𝑓int (A.2)

where 𝑞𝑚 = [𝜃3; 𝜃2; 𝜃1] ∈ R3, 𝑞𝑡 = [𝜃𝑠; 𝜃𝑏; 𝑝
𝑦
𝑜𝑏] ∈ R3, 𝜏𝑚 = [𝜏3; 𝜏2; 𝜏1], and 𝜏𝑡 = [𝜏𝑠; 0; 0; ].
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요지

본논문에서는분산형통신조건또는구동부족특성을가진로봇시스템을위한

분할기법기반의반자율원격제어프레임워크를개발한다.제안된프레임워크는다

음과 같은 3단계로 구분된다: 1) 사용자의 명령을 정의하고 이에 대해 기하적으로

수직인공간 (즉,내부움직임)으로구분하는분할단계; 2)분할된각공간에서명령

추종 및 내부움직임을 정합 혹은 안정화시키는 각각의 제어기를 설계하는 제어기

설계단계; 3)마지막으로사용자에게작업및로봇시스템의특성을고려하여다중

감각 피드백을 제공해주기 위한 인터페이스 디자인 단계이다. 다양한 종류의 로

봇시스템 중 본 학위논문에서는 분산통신을 따라는 다중 논홀로노믹 모바일로봇

시스템과 유연한 빔 위에 장착된 매니퓰레이터-스테이지 시스템을 고려하여 상기

프레임워크를적용한다.또한각시스템에대해서실험및사용자테스트를통하여

제안된 프레임워크의 성능을 검증한다.

Keywords: Semi-autonomous teleoperation, distributed systems, underactuated sys-

tems, decomposition-based control

94


	1 Introduction  
	1.1 Background and Contribution  
	1.2 Related Works  
	1.2.1 Related Works on Distributed Systems  
	1.2.2 Related Works on Manipulator-Stage System  

	1.3 Outline  

	2 Preliminary  
	2.1 Passive Decomposition  
	2.1.1 Basic Notations and Properties of Standard Passive Decomposition  
	2.1.2 Nonholonomic Passive Decomposition  


	3 Semi-Autonomous Teleoperation of Nonholonomic Wheeled Mobile Robots with Distributed Communication  
	3.1 Distributed Control Design  
	3.1.1 Nonholonomic Passive Decomposition  
	3.1.2 Control Design and Distribution  

	3.2 Distributed Pose Estimation  
	3.2.1 EKF Pose Estimation of Leader WMR  
	3.2.2 EKF Pose Estimation of Follower WMRs  

	3.3 Predictive Display for Distributed Robots Teleoperation  
	3.3.1 Estimation Propagation  
	3.3.2 Prediction Propagation  

	3.4 Experiments  
	3.4.1 Test Setup  
	3.4.2 Performance Experiment  
	3.4.3 Teleoperation Experiment with Predictive Display  
	3.4.4 Human Subject Study  


	4 Semi-Autonomous Teleoperatoin of Stage-Manipulator System on Flexible Vertical Beam  
	4.1 System Modeling  
	4.1.1 System Description  
	4.1.2 Assumed Mode Shapes  
	4.1.3 Exact Solution under Given Boundary Conditions  
	4.1.4 Euler-Lagrangian Equation  

	4.2 LQR-based Control Design  
	4.2.1 Passive Decomposition  
	4.2.2 Vibration Suppression Control Design  
	4.2.3 Joint Tracking Control Design  

	4.3 Lyapunov-based Control Design  
	4.3.1 Twice Passive Decomposition for Input Coupling  
	4.3.2 Interconnected System Description  
	4.3.3 Passivity-based Manipulator Motion Control  
	4.3.4 Dissipative Control for Vibration Suppression  

	4.4 Experiments  
	4.4.1 Test Setup  
	4.4.2 Joint Tracking and Vibration Suppression Experiment  
	4.4.3 Comparison Experiment between the LQR and the Nonlinear Control  


	5 Conclusion  
	5.1 Summary  
	5.2 Future Works  

	A Appendix  
	A.1 Internal Wrench Representation  



<startpage>14
1 Introduction   1
 1.1 Background and Contribution   1
 1.2 Related Works   4
  1.2.1 Related Works on Distributed Systems   5
  1.2.2 Related Works on Manipulator-Stage System   6
 1.3 Outline   6
2 Preliminary   7
 2.1 Passive Decomposition   7
  2.1.1 Basic Notations and Properties of Standard Passive Decomposition   7
  2.1.2 Nonholonomic Passive Decomposition   9
3 Semi-Autonomous Teleoperation of Nonholonomic Wheeled Mobile Robots with Distributed Communication   11
 3.1 Distributed Control Design   11
  3.1.1 Nonholonomic Passive Decomposition   11
  3.1.2 Control Design and Distribution   19
 3.2 Distributed Pose Estimation   25
  3.2.1 EKF Pose Estimation of Leader WMR   25
  3.2.2 EKF Pose Estimation of Follower WMRs   28
 3.3 Predictive Display for Distributed Robots Teleoperation   29
  3.3.1 Estimation Propagation   31
  3.3.2 Prediction Propagation   34
 3.4 Experiments   38
  3.4.1 Test Setup   38
  3.4.2 Performance Experiment   39
  3.4.3 Teleoperation Experiment with Predictive Display   40
  3.4.4 Human Subject Study   44
4 Semi-Autonomous Teleoperatoin of Stage-Manipulator System on Flexible Vertical Beam   49
 4.1 System Modeling   49
  4.1.1 System Description   49
  4.1.2 Assumed Mode Shapes   51
  4.1.3 Exact Solution under Given Boundary Conditions   51
  4.1.4 Euler-Lagrangian Equation   61
 4.2 LQR-based Control Design   62
  4.2.1 Passive Decomposition   63
  4.2.2 Vibration Suppression Control Design   64
  4.2.3 Joint Tracking Control Design   66
 4.3 Lyapunov-based Control Design   68
  4.3.1 Twice Passive Decomposition for Input Coupling   69
  4.3.2 Interconnected System Description   70
  4.3.3 Passivity-based Manipulator Motion Control   74
  4.3.4 Dissipative Control for Vibration Suppression   74
 4.4 Experiments   78
  4.4.1 Test Setup   78
  4.4.2 Joint Tracking and Vibration Suppression Experiment   81
  4.4.3 Comparison Experiment between the LQR and the Nonlinear Control   82
5 Conclusion   83
 5.1 Summary   83
 5.2 Future Works   83
A Appendix   85
 A.1 Internal Wrench Representation   85
</body>

