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The increasing need of teleoperated robotic systems implies more and more often to

use, as slave devices, mobile platforms (terrestrial, aerial or underwater) with integrated

manipulation capabilities, provided e.g. by robotic arms with proper grasping/manipu-

lation tools. Despite this, the research activity in teleoperation of robotic systems has

mainly focused on the control of either fixed-base manipulators or mobile robots, non

considering the integration of these two types of systems in a single device. Such a com-

bined robotic devices are usually referred to as mobile manipulators: systems composed

by both a robotic manipulator and a mobile platform (on which the arm is mounted)

whose purpose is to enlarge the manipulator’s workspace. The combination of a mo-

bile platform and a serial manipulator creates redundancy: a particular point in the

space can be reached by moving the manipulator, by moving the mobile platform, or

by a combined motion of both. A synchronized motion of both devices need then to be

addressed. Although specific haptic devices explicitly oriented to the control of mobile

manipulators need to be designed, there are no commercial solution yet. For this reason

it is often necessary to control such as combined systems with traditional haptic devices

not specifically oriented to the control of mobile manipulators.

The research activity presented in this Ph.D. thesis focuses in the first place on the de-

sign of a teleoperation control scheme which allows the simultaneous control of both the

manipulator and the mobile platform by means of a single haptic device characterized

by fixed base and an open kinematic chain. Secondly the design of a novel cable-drive

haptic devices has been faced. Investigating the use of twisted strings actuation in force

rendering is the most interesting challenge of the latter activity.
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Chapter 1

Introduction

1.1 Research goals

Teleoperation systems have been the first discipline to come to light in the scene

of robotics research back in the 40s. Since then, although the research in au-

tonomous robots has made great strides making robots more and more intelligent

and able to execute even very complex tasks without the need of human supervi-

sion, a costant growth of applications involving robots teleoperation has still been

recorded. Main reasons can be found in the native perception capabilities and

decision making skills of the human being that cannot be left aside when dealing

with operations in remote and unstructured environments.

Teleoperated robots permit the interaction with environments that are dangerous

or of di�cult access, e.g. space or underwater exploration, or with a di↵erent

scale with respect to the typical human perspective, as for example in the case of

microsurgery [3].

Control problems arises when a the master and the slave robots of a telerobotic

system present kinematically dissimilar mechanical structures as the case of the

slave robot is a mobile manipulators. A mobile manipulator represent the inte-

gration of traditional n-DoF (Degrees of Freedom) fixed-base robotic arm and a

standard (nonholonomic or omnidirectional) mobile robot in a single robotic de-

vice. Such a integration increases the manipulator’s working range potentially

to infinite, but also introduces redundancy, which means that there exist an infi-

nite set of solutions in the joint space of both the arm and the mobile base, for

a given end-e↵ector configuration. A properly combined motion of both devices

needs then to be addressed. Although specific haptic devices explicitly oriented to

the control of mobile manipulators need to be designed, there are no commercial

1



Introduction 2

solution yet. For this reason traditional fixed-base haptic devices not specifically

oriented to the control of mobile manipulators and in general with a lower number

of DoF need to be used.

The hybrid control algorithm for a standard mobile manipulator presented in

Chapter 4 tries to overcome the kinematic mishmach between the master and the

slave robots providing an intuitive interface to the operator who controls the 8

DoF of the slave robot by means of fixed-base 6 DoF haptic interface.

For a more detailed discussion on the issues related to mobile manipulators tele-

operation that have motivated this research please refer to Section 3.3.1.

The second part of the activity has focused on the design of a novel cable-driven

haptic inteface addressed to teleoperate generic robotic devices. Many researchers

have shown that the availability of haptic interfaces able provide the operator with

su�cient kinesthetic information about the interaction forces exchanged between

the slave robot and the remote environment can considerably improve the perfor-

mance of the teleoperation task.

The ideal haptic inteface is supposed to have low inertia, low friction, low torque

ripple, backdrivability, and low backlash in the actuation and transmission sys-

tems. Besides this, many applications requests considerable workspace of the

master device in order to properly mimic the slave characteristics. Commercial

(sensibly expensive) solutions do not guarantee all these features, which in general

are in contrast between each others.

Cable transmission may be promising candidates to solve these limitations because

it minimizes the actuators contribution to the haptic’s end-point inertia and en-

cumbrance, providing a considerable force-weight ratio.

Despite many solution of haptic interface embedding cable trasmission have been

proposed in literature, there seems to be a gap in the investigation of Twisted

String Actuation (TSA) in haptic force-rendering.

More details on the issues related to the topic that have motivated the design of

the UBHaptic see Section 3.3.2.

1.2 Thesis structure

The thesis is organized as follow:

• In Chapter 2 a bref introduction to robots teleoperation systems is presented.

In particular a general overview of the main features and components of a
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telerobotic system as well as brief hystorical perspective and main applica-

tions is provided. A particular focus has been reserved to the classification

of haptic devices and to the introduction of mobile manipulators;

• In Chapter 3 the main issues related telerobotics are introduced. In particular

Sec. 3.3.1 and 3.3.2 focus on the issues that have motivated the definition of

the hybrid control algorithm for a generic mobile manipulator and the design

of the UBHaptic respectevely;

• In Chapter 4 the hybrid control algorithm is presented and discussed as

well as the the experimental setup used to validate the proposed approach.

Experimental results are provided at the end of the chapter;

• In Chapter 5 the design of the haptic interface based on TSA is presented.

First the overall structure is discussed and the inverse and di↵erential kine-

matic models are introduced. A description of the criteria and the simulation

results used for the workspace dimensioning and actuation/trasmission sizing

is then provided as well as a preliminary design of the TSA module;

• In Chapter 6 the design of the new TSA module is discussed with a particular

focus on the design of the integrated optoelectronic force sensor. The problem

of the integration between the di↵erent system’s components is also addressed

and the structure of control system architecture is described. Experimental

results are proposed and discussed at the end of the chapter;

• In Chapter 7 the results of the research are summarized drawing guidelines

for further developments;



Chapter 2

Focus on Robotic Teleoperation

2.1 Introduction

Robots teleoperation (i.e. telerobotics) is perhaps the earliest field of application

of robotics. Literally meaning doing work at a distance [4], it is generally used to

refer to robotic systems with a human operator in control or human-in-the-loop

[1]. Any high-level, planning, or cognitive decisions are made by the human user,

while the robot is responsible for their physical/mechanical implementation (see

Fig. 2.1). In essence, the brain is removed or distant from the body. The inclusion

of the human operator makes telerobotics very attractive to handle unknown and

unstructured environments.

The term tele, which is derived from the Greek and means distant, implies the

idea to have a human operator controlling a robot operating in a remote location

as shown in Fig. 2.2.

Besides distance, barriers may be imposed by hazardous environments or scaling

to very large or small environments. All barriers have in common that the user

cannot (or will not) physically reach the environment.

From a functional point of view a teleoperation system can be divided in two main

parts: the local site with the human operator and all the hardware needed to im-

plement a physical connection with him/her (e.g joysticks, monitors, keyboards,

or other input/output devices), and the remote site, which contains the robot and

supporting sensors and control elements (i.e. the environment where the robot is

requested to operate) [1].

The local and remote robots are called master and slave, respectively, while the

system is referred to as a master–slave system. In the most common scenario,

the master and the slave robots are kinematically equivalent: the slave robot is

4
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(a) Direct interaction

(b) Remote interaction

Figure 2.1: Direct interaction with a local environment and interaction with a remote
environment by means of a telerobotic system.

Figure 2.2: Overview of a telerobotic system (from [1]).

programmed to follow the motions of the master robot, which is imposed by the

user (direct control).

Some master–slave systems provide the so called force feedback feature. In this

kind of systems the master robot is not only able to send motions command (im-

posed by the user) to the slave robot, but it is also able to provide some kind of

information related to the remote environment (where the slave robot operates)

back to the operator. This information are usually translated in terms of inter-

action forces. Such telerobotic systems are often called bilateral and the master

devices able to display force information to the user are often referred to as haptic

devices (discussed in Sec. 2.4).

The workflow of bilateral teleoperation systems is summarized in Fig. 2.3: the

human operator generated forces producing the motion of a master haptic device.

The motion signals of the master robot (generally position and/or velocity sig-

nals) are transmitted to the slave robot through a communication channel. The
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Figure 2.3: Bilateral teleoperation system: the user controls the position Xm of the
master haptic device which is sent to the slave robot in terms of motion commands. The
Interaction forces between the slave robot and the remote environment are transmitted

back and displayed to the user as a haptic force Fm (see [2]).

slave robot tracks the motion of the master. During the task execution, the slave

robot may exchanges interaction forces with the remote environment. The re-

action forces are transmitted back to the haptic master which is able to display

them to the human operator. Several researchers showed that the role of haptic

devices, able to provide kinesthetic feedback representing the remote mechanical

interaction, is essential to extend the information provided to the user beyond the

simple visual feedback [5], [6] and improve the sense of telepresence, intended as

the ideal of sensing su�cient information, and communicating this to the human

in a su�ciently natural way that the operator feels to be physically present at

the remote site [7]. In the field of telerobotics, the term telepresence is generally

used to refer bilateral teleoperation systems that, in addition to haptic interfaces,

also include computer vision, computer graphics and virtual reality (multi-modal

systems) [8].

The design and implementation of reliable bilateral teleoperation systems present

a number of challenges when there is a considerable physical distance between the

master robot and slave robot and the information transit back and forth through

a communication channel. The first problem is related to the transparency of the

teleoperation system [9] [10], i.e. the need to couple the human operator as good

as possible to the task requested to perform in the remote environment by pro-

viding a trusty transmission of the force, position and velocity signals. In other

words, the force feedback to the user has to faithfully represent the mechanical

interaction of the slave robot with remote objects.

Transparency of the teleoperation system is an important control design goal,

since the power requested to perform a certain task has to flow from the user

throughout each component before reaching the remote environment. To achieve

transparent position coordination the position of the slave robot should converge

to the position of the master robot if the forces developed by human operator

and the environment are zero. For transparent force reflection, in steady state the
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force developed by the environment on the slave robot should be equal to the force

developed by the master robot on the human operator [11].

Since the interaction involves power flows between each subsystem, it is impor-

tant that control algorithms can handle them in such a way that stability of the

interaction is preserved regardless of the particular remote environment. This req-

uisite is particularly important for systems that interact with human beings, that

have to be intrinsically safe. Stability problems in bilateral systems are related

to the presence of not negligible communication delay and package losses in the

communication channel.

2.2 Brief history

In this section a few references to the systems, that are seen to be milestones

within the history of telerobotics are given.

The first modern teleoperation system was developed between 1940’s and 1950’s

addressing the nuclear research by Raymond C. Goertz in the Argonne National

Laboratory where a master-slave manipulator addressed to chemical and nuclear

material handling in the first nuclear reactor [12] was developed. The need was

obvious. The radioactive nuclear material has to be manipulated safely. The nu-

clear material was placed in a ”hot cell” where the operator could manipulate it

from behind shielded walls. The visual contact with the target was through a

protective window and/or a mirror. The first teleoperation system was completely

mechanical. Master and slave were connected by gears, linkages, and cables these

systems allowed the operator to use natural hand motions and transmitted forces

and vibrations through the connecting structure. The system was clearly limited

by the distance between the operator and environment and required the use of

kinematically identical devices, see Fig. 2.4. Goertz quickly recognized the value

of electrically coupled manipulators. The mechanical manipulators were soon re-

placed by electro mechanical servos [13]. In 1954, Goertz’s team developed the

first electro mechanical manipulator controlled by an array of on–o↵ switches to

activate various motors and move various axes. The Goertz’s work laid the foun-

dations of modern telerobotics and bilateral force-reflecting positional servos.

After this, the teleoperation of manipulators and mobile vehicles extended rapidly

to new branches where the advantages of teleoperation techniques could be uti-

lized.

At the beginning of the 1960s the e↵ects of time delay on teleoperation started

to become a topic of research. The concept of supervisory control, that will be
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(a) (b)

Figure 2.4: Raymond C. Goertz in the early 1950s handling radioactive material using
the first (mechanical) teleoperator.

Figure 2.5: The telerobotic system CRL Model M2 developed by the Oak Ridge
National Laboratory and used by NASA in deep space assembly applications (1982).

detailed in Sec. 3.1.3 was introduced and inspired the next years of development

[1].

The first telerobotic system implementing force feedback with separated master

and slave electronics was the model M2 (1982), shown in Fig 2.5, of the Central

Research Laboratory. It was developed together with the Oak Ridge National

Laboratory and was used for some time for a wide range of demonstration tasks

including military, space or nuclear applications. NASA tested the model M2 for

remote assembly in space with excellent results.

Still in the field of space applications a dual-arm force reflecting telerobotic sys-

tem was developed by Bejczy et al. at the Jet Propulsion Laboratory (JPL). For
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Figure 2.6: JPL ATOP control station (early 1980s).

the first time in history kinematically and dynamically di↵erent master and slave

systems were used, requiring control in Cartesian space coordinates (the same

approach is used in the proposed teleoperation control schemes for mobile ma-

nipulators discussed in Chapter 4). Figure 2.6 shows the master control station

with its two back-drivable hand controllers. This system was used for simulating

teleoperation in space.

In the 1980s and 1990s, the attention of the research community on teleoperation

systems for space exploration was at the highest stage and started shifted also to

other areas such as medicine and undersea/deep-sea exploration. The deep oceans

are even today considered too hostile for humans so that most of the deep-sea op-

erations are made with teleoperated submarines called Remote Operated Vehicles

(ROV). Often ROVs are equipped with telemanipulators in order to perform un-

derwater work tasks. The growth of the Internet and its use as a communication

medium fueled further the trend of looking for new applications for telerobotics,

adding also new challenges. Novel commercial haptic devices (e.g. the Phantom

device [14], see Sec. 2.4.1) were introduced pushing up research activities in haptic

applications and virtual reality.

In 1993 the first telerobotic system was flown in space with the German Spacelab

Mission D2 on board the Space Shuttle Columbia. The robot technology experi-

ment (ROTEX) demonstrated remote control of a space robot by means of local

sensory feedback, predictive displays, and teleoperation [15]. The system could

not be considered a bilateral system since only a one-way communication was em-

bedded. The round trip delay was 6–7 s, such that it was not feasible to include

force feedback into the control loop.

Last but not least the first transatlantic telesurgery demonstration in 2001,



Chapter II. Focus on Robotic Teleoperation 10

Figure 2.7: ROTEX, the first remotely controlled robot in space (1993). Telerobot in
space and ground operator station. (Courtesy of the German Aerospace Center, DLR).

Figure 2.8: Operation Lindberg. The first transcontinental telerobotic surgery (2001).

Computer Motion demonstrated the feasibility of telerobotic systems even in the

delicate field of surgery [16]. A surgeon in New York (USA) used a ZEUS sys-

tem to perform a laparoscopic cholecystectomy on a patient located in Strasbourg

(France), as depicted in Fig. 2.8. The system did not include force feedback, so

the surgeon had to rely on visual feedback only.
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(a) Da Vinci surgical system

(b) Da Vinci master device

Figure 2.9: The Da Vinci surgical system.

2.3 Range of application

2.3.1 Telesurgery

A quick look to the history of telerobotics briefly summarized in Section 2.2 points

out that such systems can be applied to a variety of areas [17]. Telerobotic systems

have been motivated by issues of human safety in hazardous environments (e.g.

nuclear or chemical plants), the high cost of reaching remote environments (e.g.

space), scale (e.g. power amplification or position scaling in micromanipulation or

minimally invasive surgery), and many others. In the following some of the most

successful cases of use are provided. A typical modern application of teleoperated

robotic systems is represented by assisted surgery. In Fig. 2.9 the Da Vinci robot

developed by the Intuitive Surgical company is shown. The surgeon safely and

precisely controls the surgical tools by means of two haptic joysticks plugged to

the thumb and the index of both hands (avoiding in this way dangerous issues

related to human hand’s tremor, see Fig. 2.9(b)). The system also provides to

the user an immersive 3D view of the scene where the tools are operating.
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Nowadays a variety of minimally invasive surgical interventions are made by the

help of the Da Vinci system: it can perform a variety of laparoscopic surgeries

which involves scaling the surgeon’s actions into very small movements over a

very small communication-delay.

Telesurgery over great distances is still on an experimental stage. In 2001, a team of

surgeons from Johns Hopkins University in Baltimore (US) operated on 17 patients

at Rome’s Policlinico Casilino University (Italy). In seven of the 17 procedures,

the telesurgical connection was stopped and the operations were continued only

from the remote site. Two of the 17 were converted to open surgery and during

one of the kidney-related procedures problems arised with the manual control

of the robotic device. Therefore not all the cases were fully teleoperated and the

presence of a surgeon on site is needed in case unexpected problems arise. Anyway

it’s easy to image a not so far future in which surgeons could operate on a patient

from another location all around the world. Other examples of teleoperation in

transatlantic surgery can be found in [18], while other generic medical applications

in [19] and [20].

2.3.2 Underwater exploration

In the area of underwater applications, teleoperation is used in o↵shore oil ex-

ploration, inspection and maintenance on drill heads, oil platforms and pipelines,

marine biology experiments, geological surveys, archaeological search and recovery

and classified navy tasks [21]. Americans, British, Japanese have led in this area

[8]. ROV often are used in two-arms configurations: one fixed in the structure for

stability and the other to perform tests and maintenance [22]. One of the earlier

control architectures for underwater manipulator with force feedback is presented

in [23].

The Jason ROV shown in Fig. 2.10 that was controlled remotely to locate Ti-

tanic (but it was later lost at sea). This system was developed as Argo-Jason

project at the Woods Hole Oceanographic Institute and named after Jason and

his Argonauts of Greek mythology [24]. The name Argo identifies a heavy passive

assembly of high-energy sonar and photographic equipment suspended by up to

6000 m of cable from its support ship, while the telerobot Jason maneuvers on a

flexible cable within easy return range from Argo, all controlled from the surface.

Jason is programmed with a variety of supervisory control modes (see Chapter

3), and also makes use of some sophisticated techniques such as sliding-control to

compensate for unmodeled dynamics common in deep-sea environments.
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(a) The Jason ROV. (b) The Argo sonar and photographic equipment.

Figure 2.10: The remotely controlled Jason ROV (Fig. 2.10(a)) and the system of
television cameras and sonars Argo (Fig. 2.10(b)). Both were used to locate the Titanic

in 1985.

2.3.3 Space exploration

Space robotics is a classic application, in which distance is the dominating barrier

(see Sec. 2.1). The human operators can remotely control robots to perform dif-

ferent tasks in the outer space. It can significantly reduce the cost of operations

like assembly, maintenance, repairs. More importantly, it can reduce the risk of

safety issues for astronauts [25].

The NASA rovers on Mars are a famous example. Due to the time delay of several

minutes, the rovers are commanded using supervisory control (see Sec. 3.1.3),

in which the human operator is defining the goal of a movement and the rover

achieves the goal by local autonomy using sensory feedback directly [26].

The German technology experiment ROKVISS (Robot Component Verification on

ISS) is the most advanced telerobotic system [27]. Launched in 2004, it is installed

outside the Russian module of the international space station. In this experiment

advanced robot components of a slave system, including torque sensors and stereo

video cameras, are validated in real space conditions. Due to a direct communica-

tion link between the space station and the operator station at DLR (Germany),

the time delay was reduced to about 20 ms allowing a bilateral control architecture

with high-fidelity force feedback to the operator [28] (Fig. 2.11).

Figure 2.12, shows the telemanipulation system built by the German Aerospace

Research Center (DLR), conceived to support astronauts during maintenance op-

erations in the Space Station. [29].

The master (see Fig. 2.12(a)) is equipped with two anthropomorphic arms that

can be plugged to the wrists of the operator. An input device for the hands con-

trol is mounted to the flanges of the two arms. The operator can wear a mask
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Figure 2.11: ROKVISS, a space telerobotic system in which a ground operator by
means of stereo vision and haptic feedback controls a slave robot place in the proximity

of the ISS (International Space Station).

(a) Master: HUG

(b) Slave: SpaceJustin

Figure 2.12: The DLR telemanipulation system.
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with a binocular screen to fell immersed in the augmented reality. The slave (see

Fig. 2.12(b)) consists of two torque controlled anthropomorphic arm/hand sys-

tems and a actuated head. The head has two degrees of freedom and is equipped

with a stereo vision system that streams in realtime to the operator. The tele-

manipulation behavior is realized by means of a cascade of an admittance and an

impedance controller block [30].

The operator apply forces to the master arms that are acquired and converted to

joints references velocities for the master arms. The current poses of the master

TCPs are calculated by means of the forward kinematic and are used as references

for the slaves arms. The pose errors are evaluated as the di↵erences of the current

TCP poses of the master and the slaves arms. They are used as input for the

impedance controller block that translate the pose errors to torques for the joints

of the slave arms.

2.3.4 Other applications

Today telerobotics systems are applied to a variety of di↵erent fields that is im-

possible to list all the possible applications in this document.

Good results of teleoperation of mobile robots are addressed in [31–33]. The hu-

man operator can remotely control one or several mobile robots to performance

di↵erent tasks such as formation, co-transportation and multi-robot exploration.

There are also many other applications where teleoperation has been applied.

These applications include nano-manipulation [34], entertainment and education

[35], forestry [36], excavation [37] and many others.

2.4 Haptic devices

This section focuses on specific robotic devices, known as haptic interfaces that,

used as master in telerobotic systems, allow human operators to experience the

sense of touch in remote environments. As mentioned in Sec. 2.1, force feedback

can considerably improve the performance of a master-slave teleoperation system

providing the operator with su�cient kinesthetic information about the remote

environment.

There are two broad classes of haptic devices: admittance and impedance devices.
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Admittance devices sense the force applied by the operator and constrain the oper-

ator’s position according to the actual dynamics of the slave robot. This approach

is currently under investigation mainly in teleoperation of aerial vehicles [38, 39].

In contrast, an impedance haptic device senses the position of the operator, and

then applies a force vector according to the physical interaction occurring between

the slave robot and the remote environment. In the following we will only refer to

impedance-type haptic interfaces.

The force vector imposed by the slave robot on the remote environment is reflected

back and imposed by the master on the operator’s hand helping him/her to carry

out the requested manipulation task. Hannaford et al. [40] compared both task

completion time and level of force used for a variety of teleoperation tasks as well

as a variety of control modes:

• Position control with visual but no force feedback;

• Regular visual feedback plus force feedback by means of visual display;

• Visual plus kinesthetic (conventional bilateral force) feedback;

• ”Shared control” intended as: force feedback is imposed or suppressed as a

computer-based function of object contact, recent past forces applied in all

degrees of freedom;

• Bare-handed manual control;

Massimino and Sheridan (1994) [5] showed how mean completion time in such

tasks is significantly reduced by force feedback independently of visual parameters

such as frame rate and spatial resolution of the image.

While force reflection has been accepted in many applications like remote handling

of nuclear and toxic wastes, where master-slave positions are considerably close, in

all those applications where there is a significant time delay in the control loop (e.g.

space applications or transoceanic telesurgery), force feedback produces dangerous

instability e↵ects. In all those applications where force feedback is applied (in

order to augment the sense of telepresence and increase task performance) haptic

interfaces play a fundamental role as the master device. Such a device is able, not

only to send motion commands to the slave, but also to display force information

to the operator (see Fig. 2.3).

Generally speaking, from a kinematic point of view, there are two main types of

haptic interfaces:
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• Serial haptic devices: characterized by a serial-structured design. The end-

e↵ector is mechanically connected to the robot’s base by a single open kine-

matic chain;

• Parallel haptic devices: characterized by a parallel-structured design. The

en-e↵ector is connected to the base by a number of kinematic chains.

When applied to a teleoperation systems both have some advantages and disad-

vantages [41] that will be further discussed in Chapter 3.

In the following the state of the art of some well known commercial solutions

available on the market as well as research results for both serial and parallel

mechanisms is provided.

2.4.1 Serial kinematic structure

In 1977, Teleoperator System Corporation developed a bilateral force-reflecting

servo master-slave manipulator called SM-229. SM-229 was the first member of

a family of force-reflecting electric master-slave manipulators designed for pro-

duction and it was designed to be maintainable by the users [42]. In 1980, Jet

Propulsion Laboratory (JPL) and Stanford Research Institute (SRI) developed a

universal, bilateral force-reflecting six-DoF manual controller [43].

The 7-DOF electrical Force Reflecting EXoskeleton Master was developed for re-

search at Wright-Patterson Air Force Base. The system could provide an operator

25 N of force feedback at the handgrip using cables to transmit forces to the

user’s hand. The design, control, and evaluation of a hyper-redundant serial hap-

tic device is presented in [44]. A joystick-like general purpose haptic interface is

discussed in [45].

Several commercial solutions are also available on the market. The most widely

used haptic interface is probably the PHANToM Omni R� presented in [14], devel-

oped at MIT [14], and commercialized by Geomagic R� under the name Geomagic

Touch (formerly Sensable Phantom Omni) [46]. The device, shown in Fig. 2.13,

is characterized by a six DoF serial kinematic chain and is available in a variety

of sizes, three or six actuated DOF and allow interactions through a finger sled

or a stylus. The same company also produces an high-end research device called

Phantom Premium. It o↵ers low dynamic properties but also reduced range in

terms of force rendering and reduced workspace. This device has been used in a

variety of research experiments focused on robots teleoperation including the one

presented in Chapter 4.
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(a) PHANToM Haptic by SensAble Technologies (b) Touch Haptic by Geomagic

Figure 2.13: The Phantom Omni device by SensAble Technologies and the today’s
Geomagic Touch by 3D Systems. This low-cost device senses motion in six degrees of

freedom and can apply forces in the x, y, and z directions to the stylus tip.

Another serial-designed commercial haptic is the Freedom 7 [47]. One of the

disadvantages of such device is limited control sti↵ness due to the low physical

damping present in the joints. A commercial version of Freedom 7 has been re-

alized with the name Freedom 6S (MPB Technologies) [48]. The HapticMaster

by MOOG [49] is the only admittance controlled haptic interface on the market.

Other commercial solutions are distributed by Haption [50], MPB Technologies

[51].

2.4.2 Parallel kinematic structure

A Gimbal-based parallel device has been presented in [52] (floating actuators) and

[53] (non-floating actuators). In [54] a solution composed by a center handle con-

necting four commercial Phantom Omni devices is proposed in order to provide

six DoF force feedback while two 3 DoF parallel structures connected with a steer-

ing handle are presented in [55]. The device proposed in [56] adopts a separable

structure composed by lower and upper parallel mechanisms and it is specifically

meant to address teleoperation of mobile manipulators. Commercial solutions in-

clude the Force Dimension devices [57]: two series of haptic devices with parallel

structures (omega.x and delta.x ) and a 7 active DoF device, sigma.7 with an extra

force feedback DoF for grasping. The Novit Falcon [58] is a low-cost version of

omega.3 meant to target the game industry but widely used also in research (Fig.

2.14).
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Figure 2.14: Novit Falcon: commercial parallel haptic interface addressing the game
industry but widely used in research.

Other exaples are produced by Quanser [59] and Butterfly Haptics [60] that pro-

duced Maglev 200 : the only commercially available haptic interface based on the

principle of Lorentz magnetic levitation.

2.5 Mobile manipulators

The importance and popularity toward mobile manipulators has grown in recent

years [61]. In research, considerations have focused on the coordination of move-

ments of the robot and the base since redundant degrees of freedom (DoF) are

created by adding the moving base (as explained in the following).

In robotics the expression manipulator usually implies some sort of robotic arm

involved [62]. A standard serial manipulator consist of a number of links connected

with motor-driven joints, where at least one link is connected to the fixed base of

the serial kinematic chain. When used as slave in telerobotics systems, the ma-

nipulator make it it possible to manipulate objects in the remote environment and

exchange interaction forces with it. The joints can either translate or rotate the

links in order to place the end-e↵ector to a given position with a desirable orienta-

tion. The main drawback in such robotic devices is clearly the limited workspace.

Manipulators have been used in the industries since George Devol designed the

first programmable robot in the mid-1950s.

On the other hand mobile robots have the ability to freely move in the envi-

ronment making the available workspace potentially endless. The applications of

mobile robots ranges from underwater and aerial vehicles, to ground robots, and

are used both by the industry, military and civilian consumers. In the group of
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(a) Pioneer robot: one of the most
famous unicycle-like di↵erential drive
wheeled mobile robot widely used in
research.

(b) Pioneer robot with embed-
ded serial manipulator.

Figure 2.15: Figure 2.15(a) shows a standard di↵erential drive mobile robot while
Figure 2.15(b) shows the same robot equipped with manipulation capabilities.

ground vehicles the wheeled mobile robots are far the most common. A popular

mobile robot used in research is the Pioneer robot shown in Fig. 2.15(a). It is

driven by a di↵erential drive actuation system and presents a 3 DoF unicycle-like

kinematic model.

Mobile manipulators represent the integration of this two type of systems in a

single robotic device (Fig. 2.15(b)). Generally speaking it is composed by a mobile

platform with integrated manipulation capabilities, provided e.g. by robotic arms

with proper grasping/manipulation tools mounted on it. Such a combined robotic

devices make it possible to extend the manipulator’s workspace to infinite.

The integration of the two di↵erent robotic devices also introduces new challenges.

The combination of a mobile platform and a multi-link manipulator creates re-

dundancy because the sum of the degrees of freedom of the mobile base and the

manipulator is generally greater than six. This implies that a particular point in

the environment can be reached by the end-e↵ector by moving the manipulator,

by moving the mobile platform, or by a combined motion of both. In other words

there exists an infinite set of solutions in the joint space, for a given end-e↵ector

configuration. It is then possible to change the robot configuration without a↵ect-

ing the six DoF pose of the end-e↵ector. A complete modeling and control aspects

analisys related to mobile manipulators can be found in [63].

Other research challenges in mobile robots teleoperation are related to the di↵erent

kinematic models of the mobile platform and the manipulator. The manipulator



Chapter II. Focus on Robotic Teleoperation 21

Figure 2.16: Mobile robot with omnidirectional wheels.

is usually a holonomic system while the mobile platform may be subject to non-

holonomic constraints. A system subjected to nonholonomic constrains is limited

in the directions that an instantaneous act of motion can be performed. In other

words a constraint is said to be nonholonomic if there exists a limitation on the

velocity (velocities perpendicular to the wheel’s rolling direction are not allowed)

but not in the configuration vector (i.e. the configuration that the robot can rich

in the environment).

The end-point on a serial manipulator with six (or more) DoF instead, can apply a

linear (and/or rotational) velocity in any direction (around any axis in space), but

its configuration vector is limited by the dimension of its workspace. Mobile ma-

nipulators override the holonomic contraints proper of fixed-base manipulator ex-

tending their workspace to infinite. A mobile manipulator has the same reachable

area than an infinite numbers of fixed-base manipulators along the path where the

mobile base can move, which is insted still nonholonomically constrained. Many

studies have been conducted on the whole-body modeling and control of nonholo-

nomic mobile manipulators. There are commonly two ways to model the kinematic

system with nonholonomic constraints. One way is to directly add the constraints

to the velocity kinematic model [64, 65]. Another way is to model the system

to explicitly entail the admissible motions with respect to the nonholonomic con-

straints [66, 67].

The redundancy resolution methods for standard fixed-base manipulators can then

be extended to the nonholonomic mobile manipulator with methods like the Ex-

tended Jacobian method [68].

A common way to avoid nonholonomic constraints proper of mobile robots is the

use of omni-directional wheels, shown in Fig. 2.16. In this kind of wheel, a series of

rollers are attached to its circumference with axis of rotation placed at 45 degrees

to the plane of the wheel and at 45 degrees to the line through the centre of the

roller and parallel to the axis of rotation of the wheel.
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Considering a four-wheeled configuration, like the one shown in Fig. 2.16, alter-

nating wheels with left and right-handed rollers, in such a way that each wheel

applies force roughly at right angles to the wheelbase diagonal, the vehicle is sta-

ble and can move in any direction and turn by varying the speed and direction of

rotation of each wheel. The following actions related to the wheel’s actuations are

allowed:

• Moving all four wheels in the same direction causes forward or backward

movement;

• Moving the wheels on one side in the opposite direction to those on the other

side causes rotation of the vehicle (without causing any translation);

• Moving the wheels on one diagonal in the opposite direction to those on the

other diagonal causes sideways movements;

Combining these actions permits to obtain three completely decoupled DoF (trans-

lations along x and y axis and rotation ✓ around z axis) and allows the vehicle to

perform motions in any direction with any rotation.

The use of omni-wheels permits to obtain a mathematical model of the mobile ma-

nipulator in which the 3 decoupled DoF of the mobile platform are considered as

new joints and links of a standard redundant manipulators (two endless prismatic

joints and one infinite rotary joint) and to extend the traditional control methods

for the standard manipulators to the mobile manipulators. However, when imple-

menting these control methods to the actual mobile manipulators many problems

occur seriously a↵ecting the control performance of the mobile manipulators in

terms of motion accuracy [69]. These issues will be discussed in Sec. 3.3.1.

2.5.1 KUKA youBot

The KUKA youBot was introduced at the Automatica conference in 2010 in Mu-

nich. The hardware is entirely developed by KUKA. The software was created

as part of the European Best Practices in Robotics, or BRICS, project, funded

under the EU’s FP7 robotics framework. It is a mobile manipulator that was pri-

marily developed for education and research. As any other mobile manipulator, it

consists of two main parts [70]:

• Omni-directional mobile platform (Fig. 2.17(a)): consists of the robot chas-

sis, four omni-wheels (described in Sec. 2.5), motors, rechargeable battery
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(a) KUKA youBot mobile platform. (b) KUKA youBot arm.

Figure 2.17: The KUKA youBot mobile manipulator composed by a omni-directional
mobile platform Fig. 2.17(a) and a 5 DoF robotic manipulator Fig. 2.17(b).

and an on-board PC running Ubuntu Linux and ROS (Robot Operating

System). The wheels motor controllers of can be accessed via Ethernet and

EtherCAT both form the on-board PC and an external workstation. An

extra Ethernet slot can be used to connect the on-board PC to a LAN via

network cable. The overall mobile base weight is 20 Kg with a payload of 20

Kg as well. The geometric dimensions are: length 580 mm, width 380 mm

and height 140 mm. The velocity range goes from a minimum of 0.01 m/s

to a maximum of 0.8 m/s.

• The manipulator (Fig. 2.17(b)): it is characterized by a five DoF (defective)

serial kinematic chain (shown in Fig. 2.18) and a two-finger gripper with

a 20 mm stroke and a 70 mm range. Similar as for the base, the motor

drivers of each individual joint can be accessed via Ethernet and EtherCAT. If

connected to the mobile platform, the arm can be controlled by the on-board

PC. Alternatively, the arm can be controlled without the mobile platform by

using an external workstation connected via Ethernet cable. The total arm’s

weight is 5.3 Kg with a nominal payload of 0.5 Kg. The available workspace

is an ellipsoid-like portion of space with x and y axis equal to 540 mm and z

axis equals to 655 mm. The maximum joints rotational speed is 90 deg/s.

Additional sensors and general purpose hardware can be mounted on the robot.

The most common integrations involve the use of standard vision sensors (2D

cameras), range finders, laser scanners and 3D vision sensors.

The robot is available in a single-arm configuration with a metal plate installed

nearby the arm on the mobile base for holding objects and in a dual-arm con-

figuration for advanced bi-manual manipulation tasks. Both solutions are shown
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Figure 2.18: Overview of the serial kinematic chain of the KUKA youBot arm. The
figure illustrates joints limits and links length.

(a) KUKA youBot sigle-arm configuration (b) KUKA youBot dual-arm configuration

Figure 2.19: The KUKA youBot mobile manipulator available in single-arm config-
uration Fig. 2.19(a) and dual-arm configuration Fig. 2.19(b).

in Fig. 2.19. The single-arm configuration is the one used in the experiments

discussed in Chapter 4.



Chapter 3

Design and Control Issues in

Robotic Teleoperation

3.1 Degree of autonomy

Although the research in robotics has gone a long way towards making robots more

and more intelligent and able to execute complex tasks autonomously without the

help of human operators, the native perception capabilities and decision making

skills of the human being cannot be left aside when dealing with operations in

remote and unstructured environments. For this reason, teleoperation of robotic

systems still plays an important role in many applications (see Sec. 2.3). As a

matter of fact in recent years mainly two research lines have been followed up in

order to widen the fields of application of robots. First of all, a higher degree of

autonomy has been recognized as an essential requirement in order to reduce the

need for human supervision/control and to improve the capability of a robot to self-

react to external stimuli, (e.g. the presence of obstacles with unknown positions

and velocities) [6]. On the other hand, several tasks such as the manipulation of

radioactive materials require the constant supervision of a human operator, that

for safety reasons remotely operates an electro-mechanical device [71]. In this

situation, the perception by the user of the interaction between the robotic device

and the manipulated material is essential in order to successfully complete the

required operation.

Several control schemes have been proposed in the literature [72]. These control

methods are based on a number of di↵erent techniques for dealing with common

problems that arise in this area of telerobotics. In order to achieve di↵erent degree

of autonomy embedded in the slave robot (i.e. the ability to perform some kind

25
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Figure 3.1: Di↵erent types of control architectures for telerobotics system depending
on the degree of autonomy of the slave robot.

of operation in the remote environment without the intervention of the human

operator) mainly three control architectures can be considered (Fig. 3.1):

• Direct Control

• Shared Control

• Supervisory Control

Direct control or manual control falls at one extreme, indicating that the user is

controlling the motion of the robot directly and without any automated help. At

the other extreme, supervisory control implies that user’s commands and feedback

occur at a very high level and the robot requires substantial intelligence and/or

autonomy. Between the two extrema lie a variety of shared control architectures,

where some automated help is available to assist the user [1].

3.1.1 Direct control

The direct control architecture implies that the slave motion is directly controlled

by the human operator by means of the master device. In this case the slave robot

is usually referred to as telemanipulator (or teleoperator) and do not own any kind

of intelligence or local autonomy.

The motion commands sent from the master to the slave, related to the master

position displacement imposed by the user, can be computed and mapped on the

slave side by means of di↵erent strategies depending on the kinematics of the slave
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device. Roughly speaking, it is possible to define two main control approaches

strongly oriented to the type of robot to be controlled [73]. In case of fixed-base

manipulators, a common approach is the so called position-position while, in case

of mobile robots, the same master displacement is mapped into velocity commands

(position-velocity).

In the following, the two basic control schemes are briefly reported and discussed.

A combination of both schemes has been used in the hybrid scheme addressed to

mobile manipulators presented in Chapter 4.

3.1.1.1 Position-position control

The position-position teleoperation control scheme is among the most simple

schemes adopted in robots teleoperation (mostly applied to fixed-base manipu-

lators). It has been widely used to perform teleoperation tasks requiring object

manipulation and more in general involving interaction with remote environments.

This control scheme can be based on a direct kinematic mapping between master

and slave devices (involving control in the joint space, i.e. physically identical

devices) or can implies control in the workspace to overcome possible mismaches

in the master/slave kinematic structures. [74].

This control scheme maps the position displacement of the master device, directly

imposed by the operator, to a reference signal for the slave position controller. It

is particularly suited in control schemes where the human operator controls object

positions directly. The transfer function from human operator to the slave robot

movement in position control is a constant (i.e. a zero order transfer function,

see Fig. 3.2). A proper scaling factor may be used to overcome possible di↵erent

dimensions in master and slave workspaces.

3.1.1.2 Position-rate/acceleration control

Position-rate/acceleration control on the other hand, controls movement through

velocity or acceleration. In this scheme the displacement of the master device

defines the velocity or the acceleration of the slave: In other words the transfer

function from human input to the slave robot movement is an integral (or double

integral) (i.e. first order or second order transfer function, see Fig. 3.2). This type

of control architecture is particularly suited for mobile robots control (ground,

aerial or underwater vehicles) to overcome the mismatch between the master and

the slave workspaces dimension.
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For six-degree-of-freedom DoF applications, i. e., when the slave needs to be

controlled in translation and orientation, a 6D-Space Mouse or alternatively often

two joysticks are used as master device for translation and orientation respectively.

Acceleration and rate control can require considerable e↵ort for the operator to

reach and hold a given target location. Obviously, users can more accurately

position a system under rate control than under acceleration control [75]. Indeed

acceleration control necessitates users to regulate a second-order system versus a

first-order system for rate control.

3.1.1.3 Comparison

In the following a comparison between position-position and position-rate controls

is taken into consideration. In general, position control has been proven to be more

e�cient in task where short and precise movements are involved, (i.e. manipu-

lation tasks) [76].In [77] the authors found out that the position-position scheme

can be 1.5 times faster than the position-rate control when the master and slave

workspaces are similar. As illustrated in Fig. 3.2, the input control patterns for

rate control are more complex than for position control. As a matter of fact in

order to cause a change of state from one level to another, a pair of reversal actions

has to be given. This might result in being less intuitive then the position-position

scheme in case of small displacements.

The position-rate scheme gives better performance when the slave workspace is

(much) larger than the master’s one. and therefore this control scheme is very

suitable in case of teleoperation of mobile robots with infinite workspace. Posi-

tion control also has its conceivable disadvantages relative to rate control. First, it

transfers all human limb movements, whether voluntary or involuntary, to the ma-

nipulation task. In contrast, the low pass filtering e↵ect introduced by the integral

function in a rate control scheme will suppress many high frequency involuntary

noises. Second, by definition, rate control lets the user control the velocity of the

controlled robot, resulting in smoother movement. With position control, on the

other hand, it is more di�cult to maintain control of the velocity of the move-

ment, increasing the likelihood of jerky motions. Third, with position control, the

maximum operating range is limited while rate control has an e↵ectively unlimited

operational range.

Hybrid position-position and position-rate schemes, that try to take advantage

from both approaches, have been proposed in the literature. For example, the case

of mobile robots has been addressed in [78], while [76, 79] considers a fixed-base
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Master Transfer function Slave

Position
control

Velocity
control

Figure 3.2: Transfer function between master and slave in position-position and
position-velocity control schemes.

simulated manipulator, and [80, 81] a virtual environment interaction. The idea

behind hybrid position-position and position-rate controllers is obviously to ex-

ploit the precision of the first and the ability to cover large distances of the latter

scheme.

3.1.2 Shared control

Direct control may became impractical in case of not negligible time delays in

the communication channel of the telerobotic system (e.g. space or internet-based

applications) or in case it is desired to reduce operator workload. To enable telep-

resence in long-distances telerobotics systems, a so called shared autonomy control

[82, 83] appears to be convenient, as it lightens the e↵ort required to the operator

[84]. Shared control is based on local autonomous sensory feedback loops [85] at

the slave site. The human operator can produce gross motion commands using

a kinesthetic haptic device (Sec.2.4), which are fine-tuned by the teleoperator.

In applications with large time delays the shared autonomy concept can be even

related to a so called task-directed approach [86]. The intelligence is distributed

between the operator and the slave robot such that each controls his specific sub-

task independently. An example can be seen in the telesurgery system shown in

Fig. 3.3 [1], where the autonomous skills of the slave robot controls and compen-

sates the patients movement, while the surgeon controls the operation itself on a

virtual stabilized patient [87].

In other application of shared control, like the execution of an anthropomorphic

grasp task, the user could, for example, simply manifest the intention to grasp
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Figure 3.3: An example of application of the shared control concept in telesurgery.

an object, while the system autonomously plan the grasp configuration of the an-

thropomorphic hand. This can be done based on the actual relative pose of the

arm with respect to the object, the object shape and the hand kinematic. The

implementation of such technique becomes much more feasible if a reactive and

accurate vision system able to retrieve objects and obstacles informations, is avail-

able on the slave robot [30].

Virtual elements, such as virtual surfaces or generic virtual constraints, can be

also imposed to the user. These fixtures help the operator perform manipulation

tasks by limiting movement into restricted regions and/or influencing movement

along desired paths. Control is thus shared at the master site, taking advantage

of a priori-knowledge of the system or task to modify the user’s commands and/or

to combine them with autonomously generated signals.

3.1.3 Supervisory control

An even higher-level approach, compared to shared control, is the superisory con-

trol [88]. In supervisory control the operator is limited to act as a supervisor of the

telerobotic system and decides if/when/how to act and what to do. The intelli-

gence is truly distributed between the operator and the slave robot [89]. The user

specifies only high-level task operations, local sensory feedback loops are used by

the robot system, while global task-level jobs have to be specified interactively by

a human operator. In this approach the robot can be teleprogrammed on a task

directed level. The teaching of a robot system occurs not on the joint or Cartesian
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manipulator level but on a higher language level, i. e. the operator plans activities

at a level and the slave robot independently perform the task.

Such a control architecture sometimes includes two control loops working in paral-

lel. One loop running on the real remote system, which contains internal feedback

for local autonomy. The other loop, running on the local site, implements a sim-

ulated environment which is structurally equivalent to the real system. Since the

simulated environment is not a↵ected by any delay in the communication channel,

it is predictive with respect to the real system. The main feature of this telerobotic

concept is to replace the time-delayed visual feedback with predictive stereo graph-

ics including sensor simulation, providing a supervisory control technique that will

allow a shift of more and more autonomy and intelligence to the robot system.

This provides the operator with an e�cient interface to setup task to configure

the task control parameters and debug an entire job execution. Such a telerobotic

architecture requires unique tools to implement the required functionality. A so-

phisticated simulation system has to be provided to emulate the real robot system

(including the simulation of sensory perception within the real environment).

In all those applications with large time delays, e.g. in space and undersea appli-

cations, this approach has advantages because under time delays of a few seconds,

is not feasible for the human operator to handle the robot’s movements using a

standard direct control approach.

3.2 Master/Slave kinematics comparison

3.2.1 Kinematically equivalent mechanisms

Considering a telerobotics system running under a position-position direct control

modality (described in Sec. 3.1.1.1), the simplest scenario involves a master-slave

system kinematically equivalent between the two robots. In this case the control

of the slave device can be based on a direct mapping between the joint state vector

q

m

of the master robot (imposed by the user) sent to the slave device as a joint

state vector position setpoint q
sd

for the slave’s joints position controllers:

q

sd

= q

m

(3.1)

Depending on the controllers architecture, the joint velocities of the master and

the slave robots may be similarly related, taking derivatives of eq 3.1.
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3.2.2 Kinematically unequal mechanisms

Master and slave robots may, in many cases, present completely di↵erent kinemat-

ics structures. This is a common situation when the slave robot is a mobile robot

or in particular a mobile manipulator. The master is connected to the human

operator which usually has a limited available workspace with respect to the slave

workspace. As a result a direct mapping in the joint space between the two robots

is not feasible.

In such scenarios a usual solution is to implement a master-slave mapping in the

workspace as stated by the following equation:

x

sd

= � · x
m

(3.2)

R

sd

= R

m

(3.3)

where x

sd

and x

m

are the desired 3D position of the slave robot and the actual

3D position of the master (imposed by the user) and � is a proper scaling factor

needed to overcome the di↵erent dimension between the master and the slave

workspace. R

sd

and R

m

represent the desired rotation matrix of the slave device

and the current rotation matrix of the master (imposed by the user) respectively.

Again velocities and angular velocities may be connected if needed.

It is important to remark that, in case of the slave device presents a lower number

of DoF with respect to the master device, the di↵erent kinematics may introduces

Cartesian configurations of the master that are not physically reachable by the

slave. Hybrid approaches between joint space mapping and workspace mapping

can then be used. This is the case of the teleoperation algorithm proposed in

Chapter 4.

3.3 Motivation and related issues

3.3.1 Mobile Manipulators teleoperation

As described in Sec. 2.3, the range of application of telerobotic systems is consid-

erably extended. The native perception capabilities and decision making skills of

the human being cannot be left aside when dealing with operations in remote and

unstructured environments (such as space, surgery or nuclear materials handling).

Mobile manipulators like the KUKA youBot (presented in Sec.2.5.1) are promising

solutions because they significantly increase the workspace of the slave manipulator
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(potentially to infinite) as to be worthy of attention from the research community.

However, many complications may arise when studying teleoperation solutions in

such combined systems.

An important aspect to be considered in this context is that the research activity in

controlling teleoperation systems has mainly focused on the control of either stan-

dard fixed-base manipulators [6] or mobile robots [31] [11, 90, 91], non considering

the integration of these two types of systems in a single device. The increasing

of complexity of such robotic systems introduces new DoF in the controlled slave

robot that need to be properly managed. The combination of a mobile platform

and a multi-link manipulator creates redundancy (see Sec. 2.5): a particular point

in the environment can be reached by the end-e↵ector by moving the manipula-

tor, by moving the mobile platform, or by a combined motion of both. There

exist then an infinite set of solutions in the joint space, for a given end-e↵ector

configuration. Many researchers defined unified whole-body approaches in order

to include the wheel’s nonholonomic constrains of standard wheels directly in the

velocity kinematic model of the mobile manipulator [64, 65, 92, 93].

Another solution includes the use of omni-directional wheels in order to overcome

the nonholonomic constraints and obtain 3 decoupled DoF for the mobile base

(see Sec. 2.5). This permits to obtain a mathematical model that consider the

mobile manipulator as a standard redundant manipulator. The 3 decoupled DoF

are considered as new joints and links of the overall kinematic structure (two end-

less prismatic joints and one infinite rotary joint) and this allow to extend the

traditional control methods for the standard fixed-base manipulators to mobile

manipulators.

However the practical implementation of these unified approaches in the control

strategy is not straightforward. First of all the non-optimal motion distribution

between the mobile platform and manipulator creates issues. Traditional con-

trol methods try to move the mobile platform and manipulator concurrently not

taking in consideration the di↵erent working conditions and dynamic behaviors

of the manipulator joints and the mobile base joints. Usually, the manipulator

is more accurate than the mobile platform, which is especially true when using

omni-wheels that are in general a↵ected by low positioning precision.

This lead to not negligible tracking errors of the mobile manipulator’s end-e↵ector

when considering the unselective motion of all joints together. Intuitively, to

achieve a better tracking performance in a generic grasping task, instead of equally

using the mobile platform and manipulator during the whole operation, the use of

the latter should be preferred as much as possible when the object is placed within

the manipulator’s workspace, while the mobile base should have a predominant
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role during the approaching phase. Unfortunately this procedure would implies the

availability of master devices specifically designed to overcome the master/slave

kinematic dissimilarities and control the DoF of the manipulator and of the mobile

base separately.

The design of custom haptic devices oriented to mobile manipulators teleopera-

tion must also pay a particular attention in keeping the complexity as limited as

possible: main reasons are the costs and the period necessary to train the human

personnel. Although a good design attempt in this direction is presented in [94]

there are no commercial solution yet and it is often necessary to control such as

combined systems with traditional haptic devices, as e.g. the PHANToM haptic

([14], [95]) discussed in Sec. 2.4.1. In this scenario, the di↵erent kinematic char-

acteristics of the master and slave systems usually involve the need to map the

high number of DoF (typically six or nine) of the redundant mobile manipulator

into the six DoF proper of standard commercial masters. This requires to design

suitable control algorithms able to make the overall teleoperation system intuitive

while preserving the feeling of telepresence and transparency to the operator.

These reasons have motivated the design of the hybrid control algorithm for mo-

bile manipulators presented in Chapter 4 which addresses a synchronized motion

of both the mobile platform and the manipulator of the slave robot by means of a

proper partition of the fixed-base master device’s workspace.

3.3.2 Haptic device design

Bilateral force-reflecting telerobotics systems require the availability of special

master devices able to display kinesthetic information to the human operator.

Many researchers have shown that such haptic interfaces can considerably im-

prove the performance of a master-slave teleoperation system providing the oper-

ator with su�cient information about physical interaction occurring in the remote

environment (see Sec. 2.4).

An ideal haptic device provides a completely transparent interface to the remote

environment (see Sec. 2.1). The transparency and versatility of haptic devices is

a↵ected by a number of design criteria characterizing its performance. The haptic

devices performance in terms of force display, strictly depends on the actuators

properties and the mechanical transmission between the actuators and the inter-

action point with the human operator (i.e the robot’s end-point). The display of

a large dynamic range of impedances is the main challenge: a good backdrivabil-

ity to allow unconstrained motion imposed by the operator and high sti↵ness to
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mimic interaction contacts are desirable. For this reason the primary requirements

for actuators and mechanical transmission in impedance-type haptic devices are:

low inertia, low friction, low torque ripple, backdrivability, and low backlash. In

addition, if the design is such that the actuator itself moves as the user’s position

changes, a higher power-weight ratio is desired.

On the other hand many applications involve the need of haptic devices with con-

siderable workspace available. This second requirement may be in contranst with

the need of low inertia. A maximization of the workspace volume with respect

to the length of the kinematical chain requires a serial kinematic chains (see Sec.

2.4.1) with revolute joints which provide spherical workspaces with radius equal

to the length of the master arm. This lead to complex and heavy mechanisms

where the presence of links and actuators in the moving structure contributes to

considerably increase the inertia. For all those tasks requiring large workspaces

and high force-rendering capability often standard serial industrial robots are used

[96, 97]. These robots are, however, not optimized for interactions with humans:

the force capability exceeds by far the strength of a human and the mechanical

sti↵ness is much larger than required for haptic applications [41]. Besides when

considering serial structures large areas of the workspace will not be available

due to the presence of kinematic singularities: around these positions the robot

dynamic properties degrade because high joint velocities only produce small end-

e↵ector velocities/displacements. Since the device must be freely moved by the

human operator the transition thought these configurations cannot be avoided by

trajectory planning methods.

Another important characteristic requested in ideal haptic devices is the extensi-

bility i.e. the capability to host heavy haptic end-e↵ectors such as exoskeleton,

able to providing kinesthetic feedback to the operator’s hand or tactile interfaces.

The addition of such devices requires su�cient mounting space and actuation per-

formance. The commercial haptic device available on the market and discussed in

Sec. 2.4 are usually very expensive and do not guarantee the features mentioned

above. This considerably slow down the exploration of novel applications involv-

ing haptic force rendering.

Cable-based interfaces are promising candidates to solve limitations related to

workspace, inertia and cost, at the expense of limited sti↵ness. The cable trans-

mission minimizes the actuators contribution to the end-point inertia and encum-

brance, providing a considerable force-weight ratio. The usage of cable transmis-

sions is not a new concept in haptic interfaces design, as some wire-based haptic

displays have been proposed in the literature. In [98] a wearable haptic interface
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based on parallel wires in an under-actuated configuration is presented. The dis-

cussed device is addressed to blind people and it is the basis of the development

of the three-cable haptic interface presented in [99]. A 4-wire driven 3-DoF planar

haptic device in proposed in [100], while in [101] a 4 strings 3D spatial interface

is presented. Over-actuated solutions for 6 DoF with 9 and 8 strings are proposed

respectively in [102] and [103]. The advantages of such a configuration are low-

inertia, low-cost, and high safety.

Driven by the considerations reported in this section, the design of a novel cable-

driven haptic device (and related actuation module) based on Twisted Strings

Actuation (TSA) and addressed to teleoperation of di↵erent types of robots is

presented in Chapters 5 and 6. This mechanical interface allows to secure the

forearm of the user while leaving to her/him the freedom to use the hand to ac-

complish other tasks, such as teleoperating a robotic gripper.



Chapter 4

The Hybrid Teleoperation

Control Scheme

4.1 Motivation

The increasing need of teleoperated robotic systems implies more and more often

the use, as slave devices, of mobile platforms (terrestrial, aerial or underwater) with

integrated manipulation capabilities, provided e.g. by robotic arms with proper

grasping/manipulation tools. Due to the intrinsic integration of the standard ma-

nipulators and mobile platforms, mobile manipulators (previously described in

Sec. 2.5) have been widely used in many applications including industrial manu-

facturing, hazardous material operations and space exploration [69, 104–106].

An important aspect to be considered in this context is that the research activity

in controlling teleoperation systems has mainly focused on the control of either

standard fixed-base manipulators or mobile robots [11, 90, 91], non considering

the integration of these two types of systems in a single device (Chapter 3).

In this decoupled approach the motion commands sent from the master to the

slave, related to the master position displacement imposed by the user, can be

computed and mapped on the slave side by means of di↵erent strategies depend-

ing on the kinematics of the slave device. Roughly speaking, it is possible to

define two main control approaches strongly oriented to the type of robot to be

controlled [73]. In case of fixed-base manipulators, a common approach is the so

called position-position scheme that maps, with proper scaling factors, the dis-

placement of the master device in position reference signals for the slave while,

in case of mobile robots, the same master displacement is mapped into velocity

commands (position-velocity). Both approaches have been described in Sec. 3.1.

37
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Mobile manipulators are combined systems able to perform manipulation tasks

in a much larger workspace than a fixed-base manipulators. However, the inte-

gration of the two di↵erent robotic devices also introduces new challenges such

as mismatch in the master/slave kinematic structures and introduction of extra

DoF which creates redundancy. The control issues related to mobile manipulators

teleoperation has been already discussed in Sec 3.3.1.

These issues have motivated the research described in this chapter, where an hybrid

position-position and position-velocity teleoperation control scheme for a generic

mobile manipulators, is presented and discussed. The algorithm, (that tries to take

advantage of both schemes) is intended to be applied in common teleoperation ap-

plications involving mobile manipulators where the slave robot, controlled by a

single haptic device characterized by a fixed-base open kinematic chain and not

specifically designed for mobile manipulators teleoperation, is requested to grasp

objects and move/release them in di↵erent locations. Since both the grasping and

the releasing position can be placed outside the workspace of the manipulator, a

synchronized motion of both the arm and the mobile platform is required.

The proposed control scheme integrates the two control modalities depending on

the phase of the task to be executed by the slave robot. In particular, in the grasp-

ing/manipulation phase, the robot is controlled with a position-position scheme,

while in the motion phase a position-velocity control scheme is adopted. Exper-

imental results are presented at the end of the chapter to illustrate the features

and the e↵ectiveness of the proposed control scheme.

The work has been presented at the International Conference on Intelligent Robots

and Systems (IROS 2016, Daejeon, South Korea) [107].

4.2 The hybrid control algorithm

The human been is a full-fledged legged mobile manipulator. In everyday life we

have to perform a countless number of interactions with the environment, usually

involving grasping or manipulation. As it happens in most cases, the target object

is placed far outside the workspace of the human arms and a coordinated motion

between the lower and the upper part of the body is required. In most teleop-

eration applications involving mobile manipulators interacting with unstructured

environments, the same need arises and a synchronized motion of the arm and the

mobile platform is required.

The novel control strategy presented aims at the simultaneous control of an om-

nidirectional mobile platform and a robotic manipulator by means of a single,
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Figure 4.1: Characterization of the master device’s workspace

commercial, haptic device, characterized by an open kinematic chain with a fixed

base (i.e. a Phantom Omni). This result is achieved with a specific partition of

the master workspace, as schematically shown in Fig. 4.1.

Given a master device characterized by an open kinematic chain, the volume of

its workspace is approximately a portion of a sphere with a radius that depends

on the manipulator dimensions.

We define a sphere of radius R
m

as the maximum spherical region which can be

geometrically contained in the workspace and centered in the workspace itself.

The center of the sphere is then assumed to be the origin of the reference frame

for the master end-point.

A second concentric sphere of radius R
o

< R

m

is then defined. This second sphere

divides the master workspace in two separate regions. When the haptic interface is

inside the inner region, a proper position-position control scheme allows to control

the arm of the slave system, while in the outer region a position-velocity mapping

is implemented with the aim of controlling the mobile platform. In order to avoid

an abrupt stop of the arm motion when the master end-point reaches this surface,

a third sphere of radius R
i

= R

o

� ✏ (✏ > 0) is introduced.

By defining kpk = d(P, 0) as the Euclidean distance of the haptic interface end-

point from the origin during the user operations, the portion of workspace defined

by R

i

< kpk < R

o

is meant to be used to perform a proper smooth transition

between the two control modalities. In conclusion, three di↵erent control areas

can be identified for the master device:
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a) An inner grasping area, delimited by the smaller spherical surface of radius

R

i

in which only the arm is controlled while the mobile base is fixed;

b) An outer navigation area, delimited by the two spheres of radius R
o

and R

m

respectively, mainly assigned to the control of the mobile base;

c) A transition area, delimited by the two spheres of radius R
i

and R

o

and used

to perform a gradual transition between the two control modalities.

While the parameter R

m

is a design specification and depends on the master

workspace dimension, R
o

and R

i

(i.e. the value of ✏) are degrees of freedom in the

control design that can be properly chosen, as described below.

4.2.1 Grasping Area

In this region, a standard position-position scheme is implemented with the aim to

teleoperate the arm of the mobile manipulator. In order to overcome the mismatch

of the master/slave workspaces dimensions, a proper scaling factor � is defined.

LetR
s

be the radius of the smallest spherical surface containing the whole workspace

of the slave arm. It is possible to define the scaling factor � as:

� =
1

R

o

/R

s

=
R

s

R

o

(4.1)

Depending on the value of R
s

related to the slave’s arm physical characteristics,

it is then possible to tune the parameter R
o

(< R

m

) so that the resulting factor

� allows a proper workspace mapping ensuring a good accuracy in the slave end-

e↵ector positioning.

Referring to the specific setup used for the teleoperation experiment and presented

in Sec. 2.4.1 and Sec 2.5.1, the chosen factor � is represented by the constant an-

gular coe�cient of the red line of Fig. 4.2.

4.2.2 Navigation Area

The sphere of radius R
o

acts as an enclosing region for the master’s end-point. The

outer navigation area can be only reached by forcing a temporary expansion of
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Figure 4.2: Mapping between the master and slave arm positions.

the sphere through the application of a force against its surface, that modifies its

radius R
o

according to the user movements. The end-point is subject to an elastic

force, proportional to the expansion of R
o

. During the expansion, the increase

of the end-point distance from the origin is compensated by a reduction of the

scale factor � due to the radius increase, obtaining a position reference for the arm

characterized by a constant absolute value. In this way, in the navigation area the

controlled arm modifies only its orientation according to the end-point coordinates

and any mismatch in the mapping related to the return of the end-point to the

transition area can be avoided.

The elastic force feedback, produced when the sphere is expanded, is defined ac-

cording to the distance of the end-point from the original surface given by R

o

as

shown in eq. 4.2:

~

f

e

= �K

e

· (~s� ~p

m

) (4.2)

where s is a vector with the same direction of the current end-point position vector

p

m

and amplitude equal to R

o

. The elastic force feedback is produced according

to the vector di↵erence between p

m

and s.

The position vector p

m

of the master’s end-point is used to define the direction

in the workspace from the origin towards the actual position. The intersection of

the direction vector with the inner sphere allows to define vector s of components

matching the current position; the components of the two vectors are then com-

pared and, in case at least one of the components of p
m

is greater than those of
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s (the end e↵ector is outside the grasping region), the force feedback is computed

accordingly.

The velocity control law is characterized by a proportional behavior in both the

two outer regions (the transition and the navigation areas); the reference veloc-

ity is set to zero in the grasping area, and then increases proportionally to the

di↵erence between the end-point position p and R

i

as shown in eqs 4.3 and 4.4:

V

x

= K

v

· (p
x

�R

i

x

), V

y

= K

v

· (p
y

�R

i

y

) (4.3)

where:

K

v

=
V

max

R

m

�R

i

(4.4)

The elastic force produced by the sphere provides the operator with a feedback

of the current mobile base’s velocity. The constant factor K

v

, used to map the

whole velocity range of the mobile platform, is obtained according to the choice

of R
o

during the design phase. The components R
i

x

and R

i

y

are obtained as the

x,y components of the vector with the same direction of p
m

and amplitude equal

to R

i

. The resulting velocity control scheme is schematically shown in Fig. 4.3.

Figure 4.3: Velocity generation

The rotational velocity is obtained in a similar way by considering the di↵erence

between the z component of the end-point position and R

i

(see eq. 4.5).
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!

z

= K

p

· (p
z

�R

i

) (4.5)

where:

K

p

=
!

max

R

m

�R

i

(4.6)

In this way, the rotation of the mobile base is defined only in the end-point coor-

dinates whose z components are greater than R

i

.

4.2.3 Transition Area

The transition area guarantees a smooth switch between the arm and the base

motion: while the master end-point is crossing the region the mobile base starts

to increase its velocity according to (4.3) while the arm progressively reduces its

speed until it stops when the final position is reached. This reduction is obtained

by defining a third order polynomial function in the mapping between the master

and slave arm positions, as shown in Fig. 4.2 (green line).

The chosen polynomial trajectory is computed using the following parameters:

q

i

=
R

i

R

o

R

s

q

f

=
R

s

(R
o

�R

i

)

2R
o

+ q

i

q

v

i

=
R

s

R

o

q

v

f

= 0

These four boundary conditions represent the initial and final values of the ref-

erence position and of its derivative with respect to the master end-point values.

The progressive reduction of the arm motion and the avoidance of the singularity

configuration that could arise on the boundary of the slave arm workspace are

obtained by choosing as final position the central point between the boundary of

the slave arm workspace and q

i

.

Since q
i

is defined according to the value of R
i

, its choice during the design phase

can be seen as a trade-o↵ between the percentage of arm workspace mapped with

direct proportionality and the distance kept from the singular configuration.

The obtained motion mapping is:
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Figure 4.4: System used for the experimental evaluation.

p

s

= �0.5
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�R
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R

i

(p
m

�R

i

)2 +
R

s

R

o
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�R

i

) +
R

s

R

i

R

o

(4.7)

4.3 System description

The setup used for the experimental evaluation of the proposed algorithm is shown

in Fig. 4.4. The master device is a Sensable Phantom Omni Haptic device (pre-

viously described in Sec. 2.4.1), while the slave systems is a Kuka YouBot mobile

manipulator (see Sec. 2.5.1).

The control algorithm and communication software infrastructure is based on the

Robotic Operating System (ROS). This choice has allowed the creation of a mod-

ular scheme, simplifying the debugging and test phases.

4.3.1 The master device

The Sensable Phantom Omni haptic device is a a 6 DoF robotic arm equipped

with three motors in the first three joints in order to provide a 3D Cartesian

force feedback to the user. Both the Cartesian pose and the joints state vector

are transmitted to the network. The 6 DoF of the master end-point Cartesian

pose are derived in form of an homogeneous transformation matrix from the joints

values by means of the direct kinematics function (DK).

A removable stylus, equipped with two additional switch buttons, can be connected

to the end e↵ector in order to provide further customization to the user interaction.

In particular, in our experiments, a single button has been used to send open/close

commands to the slave’s gripper.
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4.3.2 The slave device

The Kuka YouBot (described in Sec. 2.5.1) is composed by two di↵erent robotic

devices: a mobile omnidirectional base provided with an onboard PC and four

omnidirectional wheels (see Sec. 2.5), and two 5 DoF robotic arms mounted on

the mobile platform. However, the tests have been carried out on a single-arm

configuration. The main reference frame is fixed to the base, with origin in the

center of mass, with the z axis pointing upwards and the x axis pointing towards

the revolute axis of the first joint of the arm. The main control software runs on

the onboard PC allowing also the communication over the network.

It is important to remark that the master device has 6 DoF while the slave arm has

only 5 DoF. The di↵erent kinematics of the master and slave devices introduces

configurations that are not physically reachable by the slave. Therefore, the use

of two di↵erent approaches for the definition of the desired position and rotation

is needed. The Cartesian position (with no orientation) of the master end-point

is defined by the DK function and depends only on the actual values of the first

three joints. The obtained values, properly modified according to the algorithm

described in Sec. 4.2, represent the desired position for the slave end-e↵ector (see

Sec.3.2.2). The orientation mapping is obtained by defining three Euler angles

providing the orientation about the z � y � z axes of a reference frame placed

in the arm base. The pitch and the roll of the youBot gripper are defined as

proportional to the values of the last two joints j

5

and j

6

(see Sec.3.2.1) of the

master device, as shown in Fig. 4.5, while the third angle is obtained by the

geometric constrains of the arm:

↵ = j

6

(4.8)

� =
j

5

� c

k

(4.9)

� = atan2(
p

y

p

x

) (4.10)

The geometric constraint in eqs 4.8, 4.9, 4.10 is imposed by the arm kinematics

that forces it to work always in the direction perpendicular to its second joint’s

revolute axis.

The corresponding rotation matrix, together with the evaluated end-e↵ector po-

sition, defines an homogeneous transformation matrix giving the desired pose for

the slave end-e↵ector, and is then given as input to the youBot IK function for

the computation of the corresponding joint angles for the slave arm. The solution
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(a) KUKA youBot arm (b) PHANToM haptic device

Figure 4.5: The roll angle ↵ of the youBot end-e↵ector is defined according to the
value of the last joint j6 of the PHANToM device while the pitch angle � is related to

the value of the fifth joint j5.

Figure 4.6: Inner-arm and outer-arm configurations

with the shortest distance from the current configuration is chosen, in order to

avoid unexpected behaviors due to the multiple solutions of the IK.

4.3.3 Configuration switching and singularity issues

With respect to the single arm configuration of the Kuka youBot, the arm workspace

can be divided in two main regions depending on the arm configuration, as shown

in Fig. 4.6 and referred to as inner-arm and outer-arm configuration.

The commutation between the inner and outer arm configuration is achieved by

using one of the buttons of the Phantom device: during switching operations the
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three central joints of the arm invert their angle reference with respect to the z

axis before returning the control to the master. The workspace mapping of the

arm applied in inner-arm configuration has the y axis reversed to provide a more

intuitive interface for the operator. In addition, a generic point in the workspace

can be reached in both elbow-down and elbow-up configuration.

4.4 Experimental results

In this section, some experimental tests performed on the system described in Sec.

4.3 are introduced and discussed. The results are related to a generic grasping

task characterized by two phases. In the first phase, the slave robot is used to

grasp an object initially located inside its arm workspace. The grasping action is

properly performed by means of the position-position control of the slave’s arm,

while the master end-point never leaves the grasping area (inner area). In the

second phase the slave robot attempts to place the grasped object far away from

the current slave workspace, implying a transition from the grasping area to the

navigation area of the master end-point and the resulting movement of the mobile

platform. Three specific aspects of the task are discussed and analyzed:

• The position-position mapping between the master and the slave arm during

the initial grasping action;

• The position-position mapping between the master and the slave arm while

the master goes through the transition area;

• The overall behavior in terms of master arm position, slave arm position and

mobile platform velocity while passing through the three control regions.

Considering the physical dimensions of the Kuka youBot arm used for the exper-

iment, it follows the first numerical parameter defined, that is: R

s

= 0.5 [ m ]

With regards to eq. 4.1, and given the desired scaling factor � ' 7, it follows:

R

o

=
R

s

�

= 0.0714 ' 0.07 [m ] (4.11)

Following the general procedure described in Sec. 4.2, the corresponding chosen

parameters are listed in table 4.1 The value � = 7.14 represents a good trade-

o↵ between the necessity to have good accuracy while operating in the grasping



Chapter IV. The Hybrid Teleoperation Control Scheme 48

Time [s]

0 1 2 3 4 5 6 7 8 9

P
o
si

tio
n
 [
m

]

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045
Master and slave end-point position

Master end-point position

Slave end-point normalized position

Figure 4.7: Master and slave position tracking along x.

Table 4.1: Design parameters

Variable Value Unit Variable Value Unit

R

m

0.1 [m] � 7.14
R

s

0.5 [m] R

i

0.05 [m]
R

o

0.07 [m] V

max

0.8 [m/s]

area in a position-position control and the need to equally partition the master

workspace between the three control regions.

4.4.1 The grasping task

The grasp of the object is performed inside the inner spherical region of the master

device, the grasping area. This region is characterized by a constant scale factor

� and zero velocity for the mobile platform. Fig. 4.7 shows the position tracking

of the slave arm’s end-e↵ector with respect to the master device’s end-point along

x. The slave position has been divided by � = 7.14 in order to normalize its value

to the master position scale.

The graph refers to the object’s approach and grasping phase and highlights the

proper tracking of the slave end-e↵ector despite the presence of a time delay of

about 0.2 s between master acquisition and slave execution. This delay can be

explained considering the non-real time control environment provided by ROS and

the wireless communication channel between the master and the slave devices.
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Figure 4.8: Master and slave position and mobile platform velocity through the three
control regions.

4.4.2 Overall behavior through the three control regions

In order to map the whole velocity range of the slave mobile platform in the whole

position displacement achievable by the master end-point in the navigation area,

the numerical value of K
v

needs to be computed with respect to the specific setup

used in the experimental tests. Referring to eq. 4.4 we obtain:

K

v

= 16

V

max

= 0.8 [m/s ]

R

i

= 0.05 [m ]

where V

max

is the maximum linear velocity achievable by the Kuka youBot om-

nidirectional platform and R

i

has been chosen as a good trade-o↵ between the

percentage of slave arm workspace mapped with direct position-position propor-

tionality and the need to avoid singularity configuration. Figure 4.8 refers to the

second phase of the experimental tests (i.e. after the grasping action) in which the

robot attempts to place the grasped object outside the current slave workspace.

The graphs show the projection of the Cartesian 3-dimensional position p

m

, p

s

in
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Figure 4.9: Master and slave mapping across the transition area. From the left side:
grasping, transition and navigation area.

the x-y plane and the mobile platform velocity V

xy

=
p
ẋ

2 + ẏ

2 for both the mas-

ter and the slave robot. The master’s end-point position is referred to a reference

frame placed in the center of its workspace, the slave’s end-e↵ector position is

instead referred to the arm’s base link reference frame. The figure highlights the

e↵ectiveness of the overall arm/base coordination in response to the movement

of master end-point. When the master enters the transition area (green line) the

slave arm slows down progressively while the base velocity linearly increases. In

the end, in the navigation area (blue line), the slave end-point’s distance from

the x� y origin does not increase anymore and the master displacement is totally

mapped in velocity commands for the mobile base, which reaches its maximum

speed at the borders of the master workspace.

It is important to notice that the orientation of the slave arm with respect to the

mobile base frame keeps changing in order to preserve the position tracking with

the master arm when the latter is located in the navigation area. For this reason

the slave arm always indicates the direction of motion of the mobile base.

4.4.3 Master/Slave position mapping in the transition area

Figure 4.9 shows the position mapping between the master and the slave device

during the transition phase between the grasping and the navigation area. It has

been obtained through the comparison of the distances of the master and the slave

end-points from the origin of their main reference frame respectively, in each time
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instant of the performed task.

The red curve in the graph represents the ideal trajectory generated by the control

scheme, while the blue one is obtained from the data measurements. It can be

seen that a satisfactory tracking of the desired reference is achieved by the system:

the final position reached by the arm is the desired value (far away from singular

configurations).



Chapter 5

Design of the UBHaptic

5.1 Motivation

As already mentioned in Chapter 2, a teleoperated robotic system consists of a

slave robot remotely controlled by means of an haptic interface, usually referred

to as master device.

The most common application areas of such systems include space and underwater

exploration, mining, surveillance, rescue, surgery and all those application, involv-

ing remote interactions, in which is requested to perform and accomplish complex,

uncertain tasks in hazardous, dangerous or unstructured environments. Most of

this scenarios require the availability of adequate haptic interfaces able to provide

the operator a feeling of telepresence [7].

Such a system, extends the human capability of interacting and manipulating ob-

jects from a remote location by providing kinesthetic sensations to the human

operator (commonly force feedback).

Besides the commercial solutions available on the market, many researchers have

proposed haptic devices using serial and parallel mechanisms. Both commercial

and research devices have been previously discussed in Sec. 2.4.

The cost of standard commercial haptic devices characterized by serial kinematic

chains is usually high because of the complex mechanical structure. Other draw-

backs of such configurations are high inertia and reduced workspace. In most

cases master devices are too heavy and not manipulable enough to allow e↵ective

usage [100]. Ideally a master device is supposed to have very low inertia while

maintaining the ability to behave very sti✏y, allowing a realistic reconstruction of

the forces experienced by the slave robot.

52
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In this chapter, the design concept of a new cable-driven haptic interface is pro-

posed. The haptic device, whose name UBHaptic stands for University of Bologna

HAPTIC, is based on Twisted String Actuation (TSA). The TSA [108, 109]

represents a very interesting solution for the implementation of very compact,

lightweight and low cost linear transmission system for highly-integrated mecha-

tronic devices, such as haptic interfaces.

The proposed haptic interface, which conceptual design is reported in Fig. 5.3, is

driven by four TSA modules arranged on the vertex of a tetrahedron, as depicted

in Fig. 5.5, allowing to render linear forces along the 3 dimensions of the Cartesian

space.

The chapter reports the analysis of the kinematics and force distribution of the

proposed device. Moreover, the system design procedure is illustrated by means of

simulations, providing the locations, force and displacement the actuators should

provide given the desired workspace dimension and the minimum force level the

interface must render. To the best of the author’s knowledge this is the first at-

tempt of using twisted string actuation in the design of a force reflection haptic

devices.

The work has been presented at the International Conference on Advanced Intel-

ligent Mechatronics (AIM 2017, Munich, Germany) [110].

5.2 Basic principles of TSA actuation

The basic principle of the TSA is an amazingly simple concept that has been

known and used for thousands of years. The basic idea is illustrated schematically

in Fig. 5.1: a couple of strings connected to a rotative DC motor to twist them

on one end, while on the other end the strings are attached to a linear moving

element, i.e. the load. The string twisting produced by the electrical motor re-

duces the overall string length, thus the rotative motion of the electric motor is

converted to a linear motion on the other side of the strings [108].

This actuation concept, because of its high (though configuration dependent) re-

duction ratio, permits the use of very small, lightweight and low power electric

motors and, therefore, is very interesting in applications where size and weight

are of crucial importance as well as anywhere it’s necessary to produce very cheap

form of linear motions.

TSA has been already successfully used for the implementation of di↵erent robotic

devices like anthropomorphic hands and elbows (see [111]): strings do not take up

much space, and they work just like muscles and tendons do in the human body.
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Figure 5.1: (Top) Basic concept and (Bottom) schematic representation of the twisted
string actuation system.

Probably the most-experienced project regarding the application of TSA in real

robotic systems is the European project DEXMART [112], in which the LAR lab

of the University of Bologna was strongly involved. The main idea behind the

project was to use twisted strings to actuate the fingers of a anthropomorphic

robotic hand. Fig. 5.2 shows the DEXMART Hand: a total of 24 actuation units

were implemented to actuate the five fingers and the wrist.

Other interesting uses of TSA include exoskeletons [113] and tensegrity robots for

space applications [114]. A TSA actuation module for robotic hands is presented

in [115], while applications on wearable assistance devices can be found in [116].

5.3 System design

The main idea is to design an haptic interface able to move freely in the six-

dimensional space (3 linear translations plus 3 orientations) under the intention

of the operator and at the same time apply reaction forces in the Cartesian space

along the three linear directions x-y-z. The device, shown in Fig. 5.3, can be used

as mean to control a remote robotic device at a distance and feed the interaction

forces acting on the the telemanipulated robot directly to the user’s wrist. The
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Figure 5.2: The 5-fingers DEXMART anthropomorphic hand based on TSA.

connection between the haptic device and the human is implemented by means of

a bracelet that is fasten to the user forearm (see Fig. 5.4).

A set of three gimbals, one mounted on the other with orthogonal pivot axes form-

ing a Cardan suspension, are driven by four cable-based actuators, see Fig. 5.5,

allowing the user to change freely the orientation of the forearm without a↵ect-

ing the force exerted by the actuators along the linear directions of the Cartesian

space. In the following, we will refer to this mechanical interface as the mobile

frame.

TSA modules, integrating in a very compact space an high speed-low torque DC

motor with incremental encoder and a force sensor, are adopted in order to mini-

mize the complexity and the cost of the device. TSA closed loop position and force

control are implemented in the module embedded controller discussed in chapter

6. Being the device driven by means of cables, a minimum number of n+1 actua-

tors is necessary to control motion and forces in a n-dimensional space. Therefore,

being interested in controlling only linear movements, four actuators are needed.

The actuators are arranged on the fixed frame, while the strings are connected

between the output shafts of the TSA modules and the anchoring points on the

mobile frame.

To allow the motor module to be always aligned with the fixing points on the
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Figure 5.3: 3D CAD rendering of the proposed haptic interface.

Figure 5.4: Di↵erent 3D views of the Human-Machine Interface.
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Figure 5.5: Schematic view of the haptic interface and actuators arrangement.

frame and the corresponding point on the mobile frame, a universal joint has been

used to fix the TSA modules to the frame.

5.4 Kinematic model of the haptic interface

The workspace reachable by the mobile frame depends on the relative location of

the TSA anchor points on both the fixed and the mobile frame. As a natural choice

for achieving a symmetric behavior of the interface in resting conditions, the TSA

modules are arranged on the vertices of a regular tetrahedron (i.e. having all the

edges with the same length), as depicted in Fig. 5.5. This choice allows to optimize

the haptic interface in terms of workspace and generated forces by using a simple

geometrical formulation. It is straightforward to note that in case the actuators

are ideally connected at the center of the mobile frame (as shown in Fig. 5.7(b)),

the reachable workspace would be the entire volume of the tetrahedron itself.

Although this solution is very interesting because the tension of the strings would

not generate any torque on the mobile frame, due to the practical implementation

needs, it is not feasible, since the mobile frame has to hold at its middle the

forearm. Therefore the anchor points need to be shifted away from the single

point configuration. The solution proposed is to shift down the three connection

points corresponding to the ones of the base of the tetrahedron. A schematic view

of the anchoring points on the mobile and fixed frame is shown in Fig. 5.5.

In order to compute the kinematic model of the proposed haptic interface, it is
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Figure 5.6: Kinematics of the haptic interface.

assumed that all the strings are always properly tensioned by minimum strictly

positive forces. We define the points ai, 8i 2 0, . . . , 3, as the intersection of the

two orthogonal axes of the universal joint used to fix the TSA module on the

frame. The points bi, 8i 2 0, . . . 3, represent the connection points of the string

on the TSA modules. The points ci, 8i 2 0, . . . , 3, are the anchor points of the

strings on the mobile frame. Therefore the string of the i-th TSA module goes

from the bi to the ci point. With reference to Fig. 5.6, a workspace reference frame

F
w

is defined with the origin placed at the midpoint of the segment connecting

the TSA modules a0 and a1 and its x-y plane including the three TSA modules

a0, a1 and a2 placed in the vertices of the tetrahedron’s base. A mobile reference

frame F
m

fixed with the outer gimbal is also defined. Since both these frames are

marker-based, the pose of the latter reference frame with respect to the former

is known and given by the transformation wT
m

provided by the motion tracking

system. The coordinates of the connection points c
i

, 8i 2 0, . . . , 3 with respect to

the workspace frame can be expressed as:

wp
c

i

= wT
m

mp
c

i

= [ wx
c

i

w

y

c

i

w

z

c

i

] (5.1)

with mp
c

i

being the fixed positions of the ci points expressed in F
m

and obtainable

form the CAD model of the wearable interface. The known fixed coordinates of the

anchor point a
i

, 8i 2 0, . . . , 3 of each TSA module with respect to the workspace

frame F
w

are named wp
a

i

= [ wx
a

i

w

y

a

i

w

z

a

i

].

Given the formula of the distance between two points in the 3D space considering



Chapter V. Design of the UBHaptic 59

points c
i

and a
i

, and taking into account the length of TSA module body s, the

length of the i-th string l

i

is expressed as:

l

i

= | wp
c

i

� wp
a

i

|� s (5.2)

Specializing eq. (5.2) for each of the four strings the inverse kinematic model is

obtained. The vector l = [l
0

l

1

l

2

l

3

]T is the vector of the string lengths and can

be considered as the joint position vector of the haptic interface.

Although the direct kinematic model can be derived by inversion of eq. (5.2) (which

presents a unique solution as long as we consider only positive z coordinates), the

computation a closed form direct kinematic expression is not needed since the

end-point position will be estimated by the motion tracking system.

The computation of the Jacobian matrix is straightforward if the unit vectors

associated with each of the four string are considered:

v̂
i

=
v
i

|v
i

| = (wp
c

i

� wp
a

i

)
1

l

i

(5.3)

where l

i

are computed from eq. (5.2). Specializing eq. (5.3) for each string the

four unit vectors, v̂
0

, v̂
1

, v̂
2

, v̂
3

are obtained.

The tensions t
i

along the strings are then projected by the unit vectors v̂
i

into a

3D Cartesian force f acting on the bracelet:

f = t

0

v̂
0

+ t

1

v̂
1

+ t

2

v̂
2

+ t

3

v̂
3

= (JT )† t (5.4)

where (JT )† = [v̂
0

v̂
1

v̂
2

v̂
3

] and t = [t
0

t

1

t

2

t

3

]. The Jacobian matrix J relates the

linear 3D velocity of the end-point in the workspace ẋ
w

to the actuator contraction

velocities l̇

ẋ
w

= J l̇ (5.5)

therefore given a desired force f the corresponding vector t of actuation forces is

computed as:

t = JT f (5.6)

where JT is computed in eq. (5.4) and the su�x † denotes the Moore-Penrose

pseudoinverse of a matrix.

It is important to note that, since we are dealing with cable-driven transmissions,

only traction forces are allowed (i.e. the strings can only pull). It is then necessary

to generate only t

i

� 0. Equation (5.6) does not guarantee that this constraint is
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met since the solution for a given desired f produces a minimum module tensions

vector t with, in general, components t
i

< 0 as well. For this reason, from a control

strategy point of view, it is convenient to modify eq. (5.6) into the following:

t? = JT f

t = t? + � t�
(5.7)

where t� is a base of the null space of (JT )† and � 2 R is chosen in order to impose

the strings tensions above a certain threshold t0 as follow:

� = max
i2{0,..,3}

t0
i

� t?
i

t

�

i

(5.8)

where t

�

i

is the i-th component of t�. The term � t� of eq. (5.7), being a vector

2 ker (JT )†, do not produce any additional Cartesian force f� on the bracelet while

ensuring vector t of strings tensions to be always positive [117].

5.5 Device dimensioning

5.5.1 Workspace sizing

Due to the tetrahedral spacial arrangement of the TSA modules, it is straightfor-

ward to understand that singular configurations of the overall parallel mechanism

occur when an anchor point reaches one of the faces of the tetrahedron. With

respect to Fig. 5.7 a spherical region S
R1 of radius R

1

, with origin in the tetrahe-

dron’s centroid, is defined as the desired workspace in which the bracelet’s center

must freely move avoiding singular configurations. In order to simplify the anal-

ysis, a second sphere S
R2 is defined with origin in the bracelet’s actual position

and whose radius depends on the mechanical design of the bracelet itself by the

relation:

R

2

= max ||mp
c

i

|| (5.9)

where mp
c

i

are the fixed position of the anchor points expressed in the mobile

frame F
m

. Eq. 5.9 ensures that all the anchor points c
i

are enclosed within

S
R2 . The radius R

3

of the maximum sphere S
R3 inscribed in the tetrahedron and

tangent to its faces can be then computed. The side of the tetrahedron, which
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(a) Conceptual scheme used for dimensioning the geometric pa-
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Figure 5.7: 2D and 3D views of the available workspace of the haptic interface.

determines the total encumbrance of the device is related to R

3

by the following:

R

3

= R

1

+R

2

L = 12p
6

R

3

(5.10)

Table 5.1 summarizes the design parameters of the proposed haptic interface.
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Table 5.1: Design Parameters

Variable Value

R

1

0.2 [m]
R

2

0.1062 [m]
R

3

0.3062 [m]
L 1.5 [m]

0
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0.8
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1.2

0.5

0
0.5

-0.5
0

Figure 5.8: Sampling of the workspace surface SR1 .

5.5.2 Actuation and transmission sizing

The actuators specifications in terms of maximum force and requested contraction

are defined according to the desired forces the haptic device is requested to apply

to the user wrist and the workspace dimensions defined in Sec. 5.5.1.

To this end, the kinematic model described in Sec. 5.4 has been implemented in

Matlab and used to analyze the actuation requirements over the whole workspace

of the haptic interface. It is assumed that in every point of the desired workspace,

the system must be able to apply a minimum force of 20 N in every directions.

Adopting spherical coordinates the workspace surface S
R1 has been discretized in

a finite number of points P evenly distributed as shown in Fig. 5.8. An analog

operation has been done for the three-dimensional force space. The surface of a
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sphere with radius 20 N has been discretized in a finite number of points and a

set of force vectors F is computed by connecting the origin of the sphere with the

points of the sphere surface (see the magnification of Fig. 5.8).

The algorithm implemented, to determine the size of the actuators, iteratively

evaluates each point of P by computing the lengths of the strings as defined by

eq. 5.2 and (JT )† as defined by eq. 5.4. At each iteration, for each force vectors

belonging to F , the tendons tensions are computed by means of eq. 5.7. With the

assumptions made in Sec. 5.5.1, the behavior becomes critical when the mobile

frame is placed to the lower region of the workspace, i.e. c
0

, c
1

, c
2

are close to

S
R3 . As shown in Fig. 5.9(a) the string tensions required to generate the set of

desired forces F reaches maximum values much higher than any other region of

the workspace (⇡ 250 N). A possible solution to mitigate this e↵ect could be to

move upwards (positive direction of the z-axis) the origin of S
R1 . Running the al-

gorithm recursively we found that an height z=h/3 leads to a uniform distribution

of the tendon tensions along the entire set of configurations evaluated as shown

in Fig. 5.9(b), which means that singularities are faraway from the workspace

considered. It is worth to note that a minimum force of 1 N has been considered

to keep a minimum tension on the tendons. Analyzing the results it is easy to

conclude that TSA modules with maximum force of 80 N will fulfill the Cartesian

force requirements of the proposed haptic interface.

Fig. 5.10 shows the evolution of the tendon lengths within the set of points P . The

maximum values for the four tendons lengths are [0.9693, 0.9687, 0.9701, 0.8050] m

while the minimum are [0.3983, 0.3985, 0.3971, 0.4] m. A maximum linear dis-

placement equal to the 40% of the untwisted length guarantees that the relation

between the twisting angle of the motor shaft and the linear displacement can be

accurately predicted and fatigue e↵ects can be avoided [108]. The values com-

puted by means of the simulation are within this working region and therefore the

actuation parameters assumed can be considered suitable for further development

steps.

5.6 The TSA module

A schematic view of the first version of TSA module that has been designed for

the implementation of the proposed haptic interface is represented in Fig. 5.11. It

is composed, from left to right, by: i) a connection element to connect the module

to the supporting frame; ii) the force sensor to measure the actuation load; iii) a
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(a) String tensions in the case of S

R1 centered in the tetrahedron centroid.
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(b) String tensions in the case of S
R1 is lifted to z = h/3.

Figure 5.9: Result of the sizing simulation

frame hosting the DC motor, the output shaft where the twisted strings are con-

nected and all the electronics; iv) the twisted string itself connecting the motor

module with the load, and the load itself represented as a translating mass.

Figure 5.12 reports a detailed 3D view of the TSA module design [118] and [119].

The frame structure is manufactured in ABS plastic [120] by 3D rapid prototyp-

ing.
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Figure 5.10: Result of the simulation with respect to the strings lengths.

Figure 5.11: Schematic representation of the TSA structure.

In the first version it was created, the TSA was composed of a pair of axial-

symmetric compliant beams that act as a linear spring, providing to the structure

a certain compliance for the implementation of the force sensor. An optoelectronic

device is used to detect the frame deformation and convert it back to the applied

force. As can be seen in Fig. 5.12, a DC motor equipped with an incremental

encoder for angular position sensing is embedded in the module, while the output

shaft is supported by an axial bearing at the point of the twisted string connec-

tion to both reduce the friction and prevent the transmission force from damaging

the motor. A silicon tube is used to connect the transmission shafts and the DC

motor in order to solve problems regarding misalignment of the rotational axes

of the motor and the module output shaft. The designed TSA module permits

the transmission force to be entirely supported by the output shaft through the
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Figure 5.12: Design detail of the first version of the TSA module.

beamsholes

pcb
light_fork

pcb_supportwindow
win_sup

Figure 5.13: Scheme of the sensor structure and component arrangement.

combined bearing, while the motor is only used to transmit the necessary torque

for driving the twisted string actuation to the output shaft. Figure 5.13 rep-

resents the basic concept of the force sensor being mounted in the TSA module.

This sensor is crucial to successfully measure the force the actuator applies to the

load (see [119]). The main concept is to have a LED illuminating a photodiode

(PD), where the current flowing through the PD can be modulated by means of

a mechanical component that partially intercepts the light emitted by the LED.

The position of the mechanical component depends on the deformations occurring

on the sensor’s body as a consequence of the application of an external force. As

can be seen in Fig. 5.12, the force sensor is located between the frame connection

point on the robot structure and the frame hosting the DC motor, i.e. on the

opposite side of the twisted strings with respect to the rotative motor.

Figure 5.14 depicts the TSA module embedded controller based on an Arduino

NANO board. The actuator electronics provide a digital interface for input and

output signals required for the actuation system control, including both the motor
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Figure 5.14: Detailed view of the TSA module prototype and control electronics.

power electronics, the conditioning system for both the force sensor and the en-

coder and a microcontroller board for controlling the TSA module, see Fig. 5.14.

The communication between the TSA controller and the external system can be

implemented with either UART, SPI or I2C interfaces.

5.7 Real setup

The first prototype of the HMI, described in Sec. 5.3, which implements the

physical connection between the haptic device and the user forearm is shown in

Fig. 5.15. It has been realized with ABS using 3D printing technologies. The user

can insert and fix the forearm to the inner ring which allows to change freely the

orientation of the forearm without a↵ecting the orientation of the outer ring.

As shown in Fig. 5.15 five reflecting markers has been fixed on the outer ring

allowing the the definition of the mobile frame needed to compute the kinematic

model discussed in Sec. 5.4. In particular the Jacobian matrix (necessary to

link a desired 3D Cartesian force in the workspace with the corresponding string

tensions) is a function of the state vector q (i.e. the vector of the stings length)

which depends on the relative position between F
w

and F
m

.

With respect to Fig. 5.16 the workspace reference frame F
w

is defined with the

origin placed at the midpoint of the segment connecting two generic TSA modules

and its x-y plane including the three TSA modules placed in the vertices of the
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Figure 5.15: Prototype of the bracelet-like HMI based on gimbal mechanism.

Figure 5.16: Arrangment of the workspace frame and the mobile frame on the haptic
device by means of Vicon markes.

tetrahedron’s base.

Fig. 5.17(a) and 5.17(b) show the relative position between F
w

and F
m

for a

given cartesian pose of the user’s wrist in the haptic device’s workspace and the

corresponding 3D reconstruction given by the visual tracking system.



Chapter V. Design of the UBHaptic 69

(a) Real relative pose between the mobile frame and the workspace

frame.

(b) 3D visualization of the mobile frame pose with respect to the
workspace frame.

Figure 5.17: Workspace frame and Mobile frame captured by the Vicon system.



Chapter 6

Design of the TSA Module

6.1 Motivation

The implementation of the TSA actuator reported in this chapter represents the

evolution of the previous solution presented in Sec. 5.6. The force sensor was re-

alized by an infrared optical fork mounted on the side of the frame and a window

connected to the same side. The fork and the window were fixed to the extremities

of two axial-symmetric compliant beams acting as a traction spring. The compli-

ance introduced by the beam allows the relative motion of the two components

(fork and window) which is converted back to the force applied to the two extrem-

ities of the frame.

During the development of the haptic device described in Chapter 5, the TSA

module has shown some critical issues that have pushed to some improvement.

First of all, the force sensor based on the compliant beams is quite sensitive to

loads misaligned with the x-axis (with reference to Fig. 5.11) which can lead to

unpredictable measures in some particular conditions. This e↵ect is amplified by

the location of the fork and window with respect to the center of compliance of the

beams. Being located at approximately 10 mm on the z-axis, a small torsion along

the y-axis leads to a consistent motion on the x-z plane and therefore a significant

distortion of the measure. A solution that can mitigate this e↵ect needed to be

investigated.

The elastic element has been thought to be produced in one piece with the frame

exploiting the capacity of 3D printing technology to realize complex shapes with-

out additional manufacturing e↵ort. On the other hand the parts printed with

FDM technology have an uneven distribution of the material which makes di�-

cult to predict precisely the deformation/stress characteristics. With the aim of

70
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having a design that can be simply scaled for di↵erent range of measurable force

this solution seems to be time consuming since an iterative process of trial and er-

ror is needed to reach the desired deformation response to the load of the beams.

The TSA module described in this chapter is characterized by integrated force

sensor based light forks [121], a DC motor with integrated encoder, embedded

microcontroller and power electronics. The custom TSA module controller, devel-

oped on purpose for the application, allows position, velocity and force control of

the actuators, and provides an Ethernet interface to ease the creation of complex

cables actuation networks based on the proposed device (e.g the custom haptic

interface presented in Chapter 5).

The TSA module has been evaluated through di↵erent experimental tests, pre-

sented at the end of this chapter, in which the capability of regulating the force

applied on a static load has been evaluated. These tests are particularly significant

for the designed system since they involve all the components of the implemented

system, i.e. the mechanical design, the force sensor, the custom electronics and

the controller. The work is currently under review at the International Conference

on Advanced Intelligent Mechatronics (AIM 2018, Auckland, New Zealand).

6.2 System description

With respect to Fig. 5.11 the new TSA module with integrated force sensor is

composed, from left to right, by: i) a connection element to the supporting frame;

ii) the force sensor to measure the actuation load; iii) a frame hosting the DC

motor and all the electronics, iv) the output shaft where the twisted strings are

connected; v) the twisted string that connects the motor module with the load.

Since the twisted string converts the motor rotation into a linear one at the load

side, the load is represented as a translating mass.

With respect to solutions presented in Sec. 5.6, the actual design present a number

of advantages:

• A more powerful motor is adopted, increasing the module power from 9 to

22W;

• The force sensor is aligned with the twisted string axis to reduce sensitivity

to spurious loads;

• Commercial springs are adopted to implement the elastic element to achieve

an easy predictable and modular force sensor;
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(a) Parallel connection.

(b) Series connection.

Figure 6.1: Parallel and series connection of Belleville springs.

• The e↵ect of transversal loads on the complaint elements (i.e. the springs)

is annihilated by linear guides embedded into the module structure;

• The firmware running on the TSA controller has been completely redesigned

embedding acquisition, control and power electronics with Ethernet interface.

In the following sections, the design of the module components is detailed.

6.2.1 Force sensor

As pointed out in the Sec. 6.2, an important improvement on the TSA module is

related to the force sensor implementation. Given the experience acquired during

the initial development of the haptic interface described in Chapter 5, the following

modifications are introduced:

• The optical force sensor is moved as close as possible to the elastic element

center of compliance;

• The motion of the elastic element is mechanically constrained in order to

minimize the e↵ect of secondary loads;

• Commercial springs with the desired sti↵ness characteristics are adopted in

order to make the design fully predictable and scalable.

In the solution proposed, the elastic element of the force sensor is implemented by

Beleville springs. These springs, which shape is schematized in Fig. 6.2, presents
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Figure 6.2: Main design parameters of a Belleville spring.

a truncated cone shape and can be used for both static and dynamic applications

where high loads and relatively small deflections are required. A suitable selection

of the mechanical design parameters allows to easily achieve the desired sti↵ness

characteristic. It is worth to notice that these springs can be arranged in stack

to implement series and parallel connections by just changing the orientation and

coupling among the springs. Springs with opposite cavities, as shown in Fig. 6.1(b),

implement a series connection, leading to an equivalent spring with a lower sti↵ness

and larger deflection. In particular, being K

i

the sti↵ness of each spring stacked

up in series, the equivalent sti↵ness of the spring series K
s

will result in:

1

K

s

=
X

i

1

K

i

(6.1)

Springs stacked up with the same cavity direction, as shown in Fig. 6.1(a), leads

to a parallel connection, and therefore to a sti↵er equivalent spring K

p

equal to

the sum of the single spring sti↵ness K
i

:

K

p

=
X

i

K

i

(6.2)

To ensure stable working conditions, it is important to mechanically constrain the

springs to hold them in position taking into account that, in order to maintain

the nominal spring characteristics, a proper clearance has to be guaranteed since,

during compression, the spring outer diameter (OD) will increase and the inner

diameter (ID) will decrease with respect to their nominal value. The typical

materials for the production of this type of springs are steels alloys and plastic.

The force sensor, as well as the whole TSA module here presented, are designed

according to the requirements of the haptic device described in Chapter 5. In

particular, the maximum load expected on the motor module is 80N.
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(a) The optical fork KRB011.

(b) Relative Collector Current vs shield distance in the horizontal and
vertical directions.

Figure 6.3: Design and characteristics of the light fork KRB011 (from manufacturer
datasheet).

The optical component selected to detect the spring deformation is the light

fork KRB011, produced by Kingbrigh and shown in Fig. 6.3(a). The component

has a fork shape with the infrared emitter placed in front of the detector. It is

characterized by a compact footprint of 4x5mm, and the photo-sensitive region has

a rectangular section of 0.3x1mm. In Fig. 6.3(b) the static characteristics of the

collector current (i.e. the output of the sensor) with respect to the distance from

the center of an obstacle is given. Note that in the left curve the shield travels

horizontally, therefore it spans the 0.3mm edge of the sensitive area, while the

right curve the shield is translated vertically and therefore it spans the 1mm edge.

It is interesting to note that both curves have a linear range centered at the middle

of the detector, while the connection with the saturation values is non-linear. In

the horizontal configuration the linear interval is smaller then 0.1mm and the

total working range is approximately 0.2mm. In the vertical configuration, the

linear range is about 0.3mm while the total range approximately 1mm. During
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Figure 6.4: The available Belleville springs produced by Igus: external diameter
De, internal diameter Di, thickness t, maximum deformation h0, 25% of the maximum
deformation S0.25, force at 25% of maximum deformation F0.25, 50% of maximum defor-
mation S0.5, force at 50% of maximum deformation F0.5, 75% of maximum deformation
S0.75, force at 75% of maximum deformation F0.75, force at maximum deformation F1,

weight M .

the design process the vertical configuration has been selected for the following

reasons:

• It makes easier to place the sensitive element as much as possible close to

the center of compliance of the spring;

• The optical sensor presents a lower sensitivity which makes easier the regu-

lation of the initial force sensor o↵set

Once the load and the deformation range of the force sensor are specified, it is

possible to select the appropriate Belleville spring. At this stage, plastic springs

of the series Polysorb produced by Igus are selected.

The result found with this preliminary prototype might be valid also for steel

springs with appropriate load/deformation characteristics. This evaluation will be

subject of future work.

Given the available models shown in Fig. 6.4, the spring JTEM-12 is selected

to fit with the application needs. This spring has an elastic coe�cient of K
1

=

64.24N/mm until the 75% of its maximum deformation, i.e. S

0.75

= 0.42mm,

and a slight decrease of the elastic constant in the second part of the character-

istics, with K

2

= 61.53N/mm. To avoid this region in the working range of the

force sensor, a total number of three springs in parallel can be used to guarantee

a linear behavior within the 80N load range, with an equivalent elastic constant

K = 3K
1

= 192.72N/mm (see eq. 6.2), leading to a deformation at the maximum

load of 0.415mm. This choice generates a non-linear response of the sensor since

the maximum deformation of the spring is larger than the linear range of the op-

tical fork. We assume that the non-linear e↵ect introduced can be characterized
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(a) 3D view of the force sensor CAD design.

(b) Section view of the force sensor CAD design.

Figure 6.5: CAD design of the force sensor.

experimentally during the calibration and managed by a proper polynomial inter-

polation by the control system.

In Fig. 6.5(a) and 6.5(b) the 3D model and a section view of the proposed force

sensor are shown. It consists of two main parts, the red one fixed to ground and the

blue one free to move under the action of the load. The relative motion between

these two parts is constrained by the use of four pairs of brass sliders and teflon

bushings, to prevent spurious motions along other directions w.r.t. the direction

of the measured force also in case of transversal loads. The optical fork is soldered

on a PCB together with the LED and Phototransistor polarizing resistors, see

Fig. 6.5(b). A 3 poles connector is used to supply power to the light fork and to

output the sensor signal. The PCB is fixed on the bottom of the moving frame
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(a) A section view of the motor module with integrated force sensor (fixed together).

(b) A section view of the motor module with integrated force sensor (separated).

Figure 6.6: Section view of the TSA module and the integrated optoelectronic force
sensor.

in such a way that the center of the optical fork is aligned with the load axis,

see Fig. 6.5(a). On the fixed frame, an obscuring shield is mounted to interfere

with the infrared ray of the optical fork. The spring stack is located between the

bottom plate of the fixed frame and the upper plate of the moving frame. When

a force along the vector represented in Fig. 6.5(b) is applied to the moving frame,

the springs get compressed producing the downward motion of the moving frame,

moving the shield with respect to the optical fork accordingly. This motion pro-

duces a variation of the amount of light that is received by the Phototransistor.

The force applied to the moving frame can be then related to the signal variation

by means of a proper calibration, as discussed in the next section.

6.2.2 Other components

In order to integrate the force sensor described in Sec. 6.2.1 with the DC motor,

a multi-layered frame has been designed. The section views of Fig. 6.6(a) and

Fig. 6.6(b) show how the moving frame of the force sensor (the blue frame of Fig.

6.5) is fixed to the structure holding the motor, the output shaft and its bearing.

The parallel frames are held in position by spacers and four threaded bars passing
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(a) 3D view of the TSA module and the integrated optoelectronic force sensor.

(b) TSA module and the integrated optoelectronic force sensor realized with rapid
prototyping.

Figure 6.7: CAD design of the motor module and real prototype.

through them. The DC motor shaft is rigidly connected to the TSA output shaft.

A combined bearing is mounted on the frame to support the TSA output shaft,

decoupling in this way the load acting on the twisted string and the DC motor

shaft and reducing rotation friction. The fixed frame of the force sensor (the red

frame of Fig. 6.5) is connected to ground by means of a ball joint, that allows the

TSA module to follows the orientation of the string within a range of ±25� w.r.t.

the neutral position.

The 3D view and the real prototype of the proposed TSA module are shown in

Fig. 6.7(a) and Fig. 6.7(b) respectively.

6.3 Control system architecture

The proposed TSA module is provided with an embedded control system. All

the required functionalities (e.g control, sensors acquisition, communication) are

demanded to a custom embedded controller shown in Fig. 6.8. The controller is
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Figure 6.8: The TSA controller.

Figure 6.9: Interconnection between the TSA module, the embedded controller and
the development workstation.

based on the well known Arduino NANO board [122] mounted on a PCB purposely

designed for this specific application which provides all the digital and analog in-

terfaces necessary for data exchange with the other system components, as well

as the conditioning system for the force sensor signal and the connection to the

power supply.

A schematic view of the overall architecture is represented in Fig. 6.9. The con-

nection between TSA controller and the motor module is provided by a 6-pin I/O

connector collecting the motor actuation (PWM), encoder signals (quadrature rel-

ative encoder) and respective low power supply. Another 3-pin connector connects

the TSA controller with the force sensor providing the power supply and the sen-

sor output analog signal. The communication between the TSA controller and

the external workstation used for controller design, monitoring and experimental

data collection is implemented by means of an Arduino Ethernet Shield placed

in-between the PCB and the Arduino board.

The graph shown in Fig. 6.10 represents the structure of the system controller

running on the TSA module. The set of functionalities grouped in the Initial Setup
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Figure 6.10: System controller architecture.

block on top of the graph, run only once at the system startup. First the initial

operational mode is set to o↵ mode. The operational mode can be chosen between

position mode, in which the control of the angular position is implemented, force

mode which implements the control of string’s tensioning, manual mode which

allows setting the PWM’s duty-cycle (i.e. the rotational velocity of the motor)

manually and o↵ mode. Other actions performed in the initial setup include:

• Initialization of the Ethernet UDP connections necessary to exchange data

with the workstation;

• Definition of the interrupt handler and enable of all interrupts;

• Execution of the homing procedure;

The homing procedure is performed at the system startup to allow a complete

untwisting of the string regardless of its current state. This is necessary since

the relation between an angular movement of the motor and the corresponding

linear displacement of the twisted string strictly depends on how much the string

is twisted. The procedure guarantees that the system is always initialized to a

known state. The pseudo code of the described routine is provided below:

1. Set operational mode to manual mode.
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2. Move the motor with constant velocity (constant duty cycle) along an arbi-

trary direction until the force sensor senses a defined arbitrary force value

acting on the string.

3. Reset the motor’s encoder count.

4. Repeat point 2) with inverted velocity. The string will pass through the

untwisted status and will twist in the opposite direction until the force sensor

senses the same force value of point 2).

5. Read the angular position from the encoder.

6. Set operational mode to position mode.

7. Go to the half of the angular position read at point 5).

8. Reset the encoder.

9. Set operational mode to o↵ mode.

The Main Loop block iterates every cycle time and take care about the communi-

cation with the PC workstation over UDP sockets. At each iteration the presence

of a new UDP control packet is checked. Fig. 6.11 shows the structure of the con-

trol packet sent from the remote workstation to the TSA controller over ethernet

connection.

The packet contains 1 byte with the desired operational mode and 4 bytes with

the corresponding command. The current operational mode ID and corresponding

command are updated each time a new packet is received.

With a similar procedure the current motor state variables, in terms of operational

mode, angular position and force acting on the string, are collected into a state

packet and feed back to the workstation at each iteration.

The control interrupt handler is triggered at 1 kHz by the Arduino board inte-

grated timer. This routine implements:

• The digital conversion of the optical fork signal;

• The transformation of this variable to a force information by means of the

calibration parameters;

• The control strategy related to the current operational mode, based on stan-

dard PID controllers
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Figure 6.11: Structure of the UDP control packets sent from the workstation.

The encoder count update is demanded to a second interrupt service routine (en-

coder interrupt handler block in Fig. 6.10) which is attached to the signal of one

of the two encoder pins. The routine is then triggered at every rising edge of the

encoder signal (i.e. each time the encoder senses a unit displacement).

6.4 Experimental results

In order to experimentally test the presented actuator, the setup shown in Fig. 6.12

has been developed. The TSA module is connected through a couple of Dyneema

strings with a diameter of 0.24 mm and length 0.97m (in accordance to the haptic

device’s actuation dimensioning given in Sec. 5.5.2) to a linear motor, a LinMot

PS01-37x120, acting as load for the system.

The control system of the linear motor is based on the servo controller LinMot

E2010-VF that performs the basic current control, while both position and force

control have been implemented on a standard PC equipped with a Sensoray 626

data acquisition board, used to both communicate with the servo controller and

acquire the sensors signals. In particular the position of the motor is measured by

an incremental encoder with a resolution of 1µm integrated in the stator, while

the force measurement is obtained via a load cell connected between the slider and

the strings.

The linear motor control scheme is designed by using the MatLab/Simulink/Re-

alTime Workshop environment. The control scheme also communicates with the

actuator’s embedded controller through UDP connection in order send control

packet to impose the desired working modes (between the ones described in Sec.
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Figure 6.12: Schematic view of the experimental setup.

6.3) and acquire position and force feedback. The real-time operating system

RTAI-Linux allows the controller to run with a sampling period T

s

= 1ms.

6.4.1 Force sensor calibration

The optical force sensor embedded on the TSA module is calibrated using a com-

mercial load cell used as reference measurement. The load cell is mounted on the

linear motor, and the linear motor is used to provide precise pulling forces F
ref

on

the twisted string. Namely, a staircase force profile is commanded to the linear

motor, and the sensor raw signal V
force

is acquired through the A/D converter

on the Arduino board. Note that during calibration procedure the TSA motor

is not powered and the strings are kept in untwisted position. The calibration

data set is then used to numerically find a polynomial interpolation curve fitting

in a least-squares sense the experimental data. In Fig. 6.13 the data from several

measurement cycles are reported showing the sensor repeatability in case of static

measurements.
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Figure 6.13: Calibration data acquired from the sensor (black squares) and corre-
sponding polynomial interpolating curve (red).

In order to provide the best accuracy in force sensing and lowest possible compu-

tational burden, a third-order polynomial curve is used to interpolate the sensor

output signal V
force

to the force value F
TSA

. Note that in this case the elaboration

takes just 6 multiplications and 3 additions.

Moreover calibration curve demonstrates the correctness of the design choice in

Sec. 6.2.1 where the selection of the spring is motivated in order to guarantee

linear behavior within 80N load range. The regulation of the starting o↵set of the

sensor is done by adding graduated washers at the top of the last spring. A good

starting point is around the 20% of the characteristics, which allows to avoid the

high non-linear response range of the sensor.

6.4.2 Force control tests

In order to test the force control loop embedded on the TSA module, the controller

is set to track a fixed force set-point while the linear motor is used as a disturbance

source. Namely the linear motor is controlled to track a sinusoidal position profile,

which in turn changes the tension of the twisted string accordingly.

As shown in Fig. 6.14(a) - 6.14(b) the controller reacts to disturbances at di↵erent

frequencies quite well, even if the friction on the shaft bearing a↵ects negatively
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(a) Force control test with a sinusoidal disturbance with frequency 0.05Hz.

(b) Force control test with a sinusoidal disturbance with frequency 0.2Hz.

Figure 6.14: Tracking of a force set-point of 30N when sinusoidal disturbances of
di↵erent frequencies are applied on the twisted string. On top, force measurements are
given highlighting the e↵ect of the force feedback, while at the bottom the position

profile of the linear motor is shown.
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the tracking error. Moreover, it is worth to notice that the force reconstruction of

the TSA module is consistent with the load cell measurement.



Chapter 7

Conclusions and Future Works

7.1 Hybrid control scheme

Control problems in remote robots teleoperation arise when the master and the

slave robots present kinematically dissimilar mechanical structures as the case of

mobile manipulators controlled by standard fixed-base haptic devices.

The integration of standard robotic arms mounted on the top of mobile robots in-

troduces redundancy that needs to be properly managed. A synchronized motion

of both devices needs then to be achieved by means of a generally not redundant

master device.

The hybrid position-position and position-velocity control algorithm for teleopera-

tion of a generic mobile manipulator presented and discussed in Chapter 4 achieves

this purpose by means of a proper partition of the master workspace. The scheme

has been successfully applied to a 8 DoF Kuka youBot controlled by means of a 6

DoF PHANToM haptic device, not properly design for mobile manipulators tele-

operation. The interaction approach o↵ered by the algorithm appears intuitive to

the operator and overcomes the problems due to the kinematic di↵erences between

the master and the slave robots. A further extension to the non-holonomic mobile

platform case can be easily implemented starting from the actual motion control

law and it is currently under investigation.

In the next future, the extension of the control scheme to the dual arm mobile

manipulators case is planned. For this purpose, a proper switch between an arm-

oriented and an object-oriented teleoperation scheme will be developed. A proper

force reflection, when operating the arm inside the bubble, also needs to be imple-

mented and the resulted bidirectional communication will require stability analy-

sis.

87
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In order to move in the direction of a truly multi-sensorial system, visual infor-

mation coming from a depth camera mounted on the arm’s end-point could be

embedded in the system. The gaze direction of the camera (i.e the orientation of a

generic reference frame placed on the arm end-point) could be adjusted according

to the orientation of the operator’s head, retrieved by mean of a proper visual

tracking system. All this feedback integrations will contribute to augment the

sense of telepresence and transparency for the operator through the definition of

a functional multi-modal teleoperation framework.

Another possible development concerns the analysis of dynamic e↵ects, i.e. when

inertial e↵ects of the slave device become more relevant due to high masses and/or

velocities/accelerations. In this research these e↵ects have been neglected and will

be possibly considered in a future extension.

Finally, a proper local autonomous obstacle avoidance that takes advantage from

the redundant kinematics of the mobile robot can be implemented in order to

move in the direction of a shared control architecture.

7.2 Haptic interface design

In the last decades many researchers have shown that the creation of fully bidirec-

tional systems able to display force information to the operator can considerably

improve the performance of a remote manipulation task. This requires the avail-

ability of haptic interfaces able provide the operator with su�cient kinesthetic

information about the interaction forces exchanged between the slave robot and

the remote environment.

The main challenge in the design of haptic interfaces is to successfully display of a

large dynamic range of impedances. The ideal haptic device must be characterized

by a good backdrivability to allow unconstrained motion imposed by the operator

and high sti↵ness to mimic interaction contacts. This request the haptic interface

to have low inertia, backdrivability while preserving the opportunity to extend

the workspace dimension at will depending on the application’s request. Commer-

cially available haptics based on heavy serial kinematic chains do not satisfy this

requests.

The development of the novel cable-driven haptic interface presented in Chapter

5 moves in this direction. The device is able to allow a free 6 DoF movement

imposed by the user (measured by visual motion tracking system), and render a

3D linear force feedback by means of four TSA modules arranged on the fixed

frame in a tetrahedric configuration. To the best of the author’s knowledge the
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use of twisted string transmission in such a device has never been investigated.

One of the main benefit of rendering forces by means of string tensions is the

scalability of the haptic workspace. This aspect makes cable-driven mechanisms

potentially suited for overcoming the workspace limitations that characterize hap-

tic solutions based on serial chains.

The tetrahedron-like structure of the proposed haptic interface has been obtained

by considering a spherical workspace, a minimum level of feedback that can be

transmitted and the fact that at least 4 tendons are necessary to render linear

forces in all the directions of the Cartesian space.

The inverse kinematic model and the equations of direct and inverse statics were

derived and discussed as well as a procedure for obtaining feasible string tensions

for control purposes.

The design, prototyping, and preliminary tests of a modular TSA module for

force rendering applications has been also presented and discussed. The use of

the Belleville springs to realize the force sensors has met the need of simplifying

the dimensioning of the elastic element with regard to the desired range of force

required from the specific application.

The second great advancement is the independence of the force sensor measure

with respect to spurious loads. This has been achieved with the installation of the

photo-detector aligned with the central axis, the use of guides that constrain the

relative motion of the frame fixed to ground and the one subjected to the load,

and the use of a ball joint to allow the self-alignment of the module to the string

direction.

The whole structure of the module has been designed in such a way that it can

be easily scaled according to di↵erent motor sizes. At this stage all the structural

parts has been realized in ABS by means of rapid prototyping techniques to make

it easier the preliminary validation of the solutions. However CNC manufactured

aluminum parts might make more rigid the frame reducing the friction between

the output shaft and the bearing, and therefore improve the force control perfor-

mance.

Since the device is still under development, further activities are necessary in or-

der to complete the real setup and demonstrate the e↵ectiveness in terms of force

reflection through experimental results.

The next step is the validation of the behavior of multiple coordinated actua-

tors acting on a common load as required from the haptic device. Other future

extensions will include the study of a complex mechanical structure, based on

Gimbal-like mechanisms, able to allow the actuation forces always to be aligned

with the bracelet’s center point, avoiding the creation of undesired torques acting
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on the mobile frame.

The long-term goal is to merge di↵erent perceptive solutions and control archi-

tectures into a single multi-modal master device for telerobotic systems able to

immerse the user in full 3D reconstruction of the remote environment (as well as

3D visors for VR-aided visual feedback.) augmenting the felling of telepresence.

Besides, the integration of fingers force feedback mechanisms with the aim of en-

abling telemanipulation tasks is also a target for the future, but this goes beyond

the present Ph.D. activity.
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