2,193 research outputs found

    Mapping Framework for Heterogeneous Reconfigurable Architectures:Combining Temporal Partitioning and Multiprocessor Scheduling

    Get PDF

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Achieving High Speed CFD simulations: Optimization, Parallelization, and FPGA Acceleration for the unstructured DLR TAU Code

    Get PDF
    Today, large scale parallel simulations are fundamental tools to handle complex problems. The number of processors in current computation platforms has been recently increased and therefore it is necessary to optimize the application performance and to enhance the scalability of massively-parallel systems. In addition, new heterogeneous architectures, combining conventional processors with specific hardware, like FPGAs, to accelerate the most time consuming functions are considered as a strong alternative to boost the performance. In this paper, the performance of the DLR TAU code is analyzed and optimized. The improvement of the code efficiency is addressed through three key activities: Optimization, parallelization and hardware acceleration. At first, a profiling analysis of the most time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-dimensional unstructured mesh is performed. Then, a study of the code scalability with new partitioning algorithms are tested to show the most suitable partitioning algorithms for the selected applications. Finally, a feasibility study on the application of FPGAs and GPUs for the hardware acceleration of CFD simulations is presented

    Hardware/Software Co-design Methodology and DSP/FPGA Partitioning: A Case Study for Meeting Real-Time Processing Deadlines in 3.5G Mobile Receivers

    Get PDF
    This paper presents a DSP/FPGA hardware/software partitioning methodology for signal processing workloads. The example workload is the channel equalization and user-detection in HSDPA wireless standard for 3.5G mobile handsets. Channel equalization and user-detection is a major component of receiver baseband processing and requires strict adherence to real time deadlines. By intelligently exploring the embedded design space, this paper presents a hardware/software system-on-chip partitionings that utilizes both DSP and FPGA based coprocessors to meet and exceed the real time data rates determined by the HSDPA standard. Hardware and software partitioning strategies are discussed with respect to real time processing deadlines, while an SOC simulation toolset is presented as vehicle for prototyping embedded architectures.Nokia Inc.Texas InstrumentsNational Science Foundatio

    VLSI Architectures and Rapid Prototyping Testbeds for Wireless Systems

    Get PDF
    The rapid evolution of wireless access is creating an ever changing variety of standards for indoor and outdoor environments. The real-time processing demands of wireless data rates in excess of 100 Mbps is a challenging problem for architecture design and verification. In this paper, we consider current trends in VLSI architecture and in rapid prototyping testbeds to evaluate these systems. The key phases in multi-standard system design and prototyping include: Algorithm Mapping to Parallel Architectures – based on the real-time data and sampling rate and the resulting area, time and power complexity; Configurable Mappings and Design Exploration – based on heterogeneous architectures consisting of DSP, programmable application-specific instruction (ASIP) processors, and co-processors; and Verification and Testbed Integration – based on prototype implementation on programmable devices and integration with RF units.Nokia Foundation FellowshipNokia CorporationNational InstrumentsNational Science Foundatio

    Speed-up run-time reconfiguration implementation on FPGAs

    Get PDF
    International audienceReconfigurable computing is certainly one of the most important emerging research topics over the last few years, in the field of digital processing architectures. The introduction of run-time reconfiguration (RTR) on FPGAs requires appropriate design flows and methodologies to fully exploit this new functionality. For that purpose we present an automatic design generation methodology for heterogeneous architectures based on Network on Chip (NoC) and FPGAs that eases and speed-up RTR implementation. We focus on how to take into account specificities of partially reconfigurable components during the design generation steps. This method automatically generates designs for both fixed and partially reconfigurable parts of a FPGA with automaticmanagement of the reconfiguration process. Furthermore this automatic design generation enables reconfiguration pre-fetching techniques to minimize reconfiguration latency and buffer merging techniques to minimize memory requirements of the generated design. This concept has been applied to different wireless access schemes, based on a combination of OFDM and CDMA techniques. The implementation example illustrates the benefits of the proposed design methodology

    EPICURE: A partitioning and co-design framework for reconfigurable computing

    Get PDF
    This paper presents a new design methodology able to bridge the gap between an abstract specification and a heterogeneous reconfigurable architecture. The EPICURE contribution is the result of a joint study on abstraction/refinement methods and a smart reconfigurable architecture within the formal Esterel design tools suite. The original points of this work are: (i) a generic HW/SW interface model, (ii) a specification methodology that handles the control, and includes efficient verification and HW/SW synthesis capabilities, (iii) a method for parallelism exploration based on abstract resources/performance estimation expressed in terms of area/delay tradeoffs, (iv) a HW/SW partitioning approach that refines the specification into explicit HW configurations and the associated SW control. The EPICURE framework shows how a cooperation of complementary methodologies and CAD tools associated with a relevant architecture can signficantly improve the designer productivity, especially in the context of reconfigurable architectures
    corecore