

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Reconfigurable Architectures
From Physical Implementation to Dynamic Behavoir Modelling

Wu, Kehuai; Madsen, Jan

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wu, K., & Madsen, J. (2008). Reconfigurable Architectures: From Physical Implementation to Dynamic Behavoir
Modelling. (IMM-PHD; No. 180).

http://orbit.dtu.dk/en/publications/reconfigurable-architectures(d0113e9e-7a8e-4fb7-beeb-4d01efb3cfa4).html

Reconfigurable Architectures: from
Physical Implementation to

Dynamic Behaviour Modelling

Kehuai Wu

Kongens Lyngby 2007

IMM-PHD-2007-180

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

This dissertation focuses on the dynamic behavior of the reconfigurable architec-
tures. We start with a survey of the existing work with the aim of categorizing
the current research and identifying the future trends. The survey discusses
the design issues of the reconfigurable architectures, the run-time management
strategies and the design methodologies.

The second part of our work focuses on the study of commercial FPGAs that
support the dynamic partial reconfiguration. This work grants us a better un-
derstanding of the limit and the potential of the main-stream commercial FPGA,
and justifies the necessity of employing more advanced technologies in order to
enable the realization of highly efficient reconfigurable architectures.

The third part of our study is carried out on ADRES, a coarse-grained datapath-
coupled reconfigurable architecture. The study on ADRES shows that Multi-
threading not only is feasible for reconfigurable architectures, but greatly im-
proves the architecture scalability as well.

Our concluding study proposes a simulation framework for coprocessor-coupled
reconfigurable architectures, namely COSMOS. The COSMOS simulation frame-
work comprises a generic application model and an architecture model, the
combination of which captures the dynamic behavior of the reconfigurable ar-
chitectures. Our framework is a tool for studying the run-time management
strategies and for experimenting the design space exploration of the reconfig-
urable architectures, and offers a means of evaluating various other works on a
common ground.

ii

Resumé

Denne afhandling omhandler de dynamiske egenskaber ved rekongifurerbare
arkitekturer. Først er der foretaget en undersøgelse af eksisterende forskning
for at kategorisere denne og identificere tendenser for fremtiden. Undersøgelsen
diskuterer designforhold for rekongifurerbare arkitekturer, run-time h̊andteringsstrategier
og designmetoder.

Anden del af afhandlingen fokuserer p̊a studier af kommercielle FPGAer, der
understøtter dynamisk partiel rekongifurering. Dette danner baggrund for dy-
bere forst̊aelse af begrænsninger og muligheder ved generelle kommercielle FP-
GAer og understreger samtidig nødvendigheden for at anvende mere avancerede
teknologier for at gøre realisering af effektive rekongifurerbare arkitekturer mulig.

Den tredje del omhandler arbejdet med ADRES, en grovmasket datavejskoblet
rekongifurerbar arkitektur. Studierne af ADRES viser at fler-tr̊adet ikke blot
er muligt for rekongifurerbare arkitekturer, men ogs̊a forbedrer arkitekturens
skalerbarhed markant.

De konkluderende studier fremviser COSMOS, et simuleringsmiljø for coprocessor-
koblede rekongifurerbare arkitekturer. COSMOS simuleringsmiljøet omfatter en
generel applikationsmodel og en arkitekturmodel, som tilsammen modellerer de
dynamiske egenskaber ved rekongifurerbare arkitekturer. Miljøet er et værktøj
til studier af run-time h̊andteringsstrategier og eksperimentering med udforskn-
ing af de mulige designløsninger af rekongifurerbare arkitekturer, og muliggør
sammenligning af forskellige løsninger under de samme forudsætninger.

iv

Preface

This thesis was prepared at the institute of Informatics and Mathematical Mod-
elling, at the Technical University of Denmark, in partial fulfillment of the re-
quirements for acquiring the Ph.D. degree. The Ph.D. study was supervised by
Professor Jan Madsen.

The study of the reconfigurable architecture has been a puzzling journey. One
can immerse himself in the world of infinite possibilities and keep wondering
what message is crucial to deliver to the others. My belief is that, at this mo-
ment, we should focus more on the run-time management study. With the goal
of easing other’s work, the COSMOS framework is presented. As fundamental
as it is generic, the COSMOS model captures the essence of dynamic reconfig-
uration and suggests a realistic view on the all-too-complicated reconfigurable
architectures.

The thesis consists of a summary report and a collection of chapters based on 3
research papers written during the period 2005–2007, and elsewhere published.

Lyngby, May 2007

Kehuai Wu

vi

Papers contributed to the

thesis

1 Kehuai Wu and Jan Madsen. Run-time Dynamic Reconfiguration:

A Reality Check Based on FPGA Architectures from Xilinx Norchip
Conference 2005. Published

2 Kehuai Wu, Andreas Kanstein, Jan Madsen and Mladen Berekovic MT-

ADRES: Multithreading on Coarse-Grained Reconfigurable Ar-

chitecture International Workshop on Applied Reconfigurable Comput-
ing 2007. Published

3 Kehuai Wu and Jan Madsen. COSMOS: A System-Level Modelling

and Simulation Framework for Coprocessor-Coupled Reconfig-

urable Systems SAMOS VII: International Symposium on Systems,
Architectures, Modelling and Simulation 2007. Published.

4 Kehuai Wu, Esben Rosenlund, and Jan Madsen. Towards Understand-

ing the Emerging Critical Issues from the Dynamic Behavior of

Run-Time Reconfigurable Architectures International Conference on
Codesign and System Synthesis 2007. Submitted.

5 Kehuai Wu, Andreas Kanstein, Jan Madsen and Mladen Berekovic MT-

ADRES: Multithreading on Coarse-Grained Reconfigurable Ar-

chitecture-extended version International Journal of Electronics 2007.
Accepted

viii

Acknowledgements

Professor Jan Madsen has been a continuous inspiration throughout my Ph.D.
study. He sets a great model for me with his generosity, commitment and
enthusiasm.

Knowing Andreas Kanstein from Freescale is an important event in my life. I
appreciate him being there for me during the hard time.

Mladen Berekovic and Frank Bouwens made my stay in Belgium a wonderful
experience. There had never been a dull moment at IMEC, Leuven, thanks to
them.

Flemming Stassen has done me so many kindnesses. Living in a foreign country
has been made so much easier with his help.

I own my gratitude to so many people, especially the ones working in the SoC
group as I have been. ARTIST2 gave me the financial support during my more
productive time, and made some of my publication possible.

Knowing that my parents love me gives me strength. They helped me countless
times, and gave me more than anyone can believe.

My wife, Xia, is my home, my shepherd and my hope. Without her, nothing
will be the same.

Kehuai Wu
May 2007

x

Contents

Summary i

Resumé iii

Preface v

Papers contributed to the thesis vii

Acknowledgements ix

1 Introduction 1

1.1 Reconfigurable architectures in a nutshell 1

1.2 The origin, and the revival . 2

1.3 Industry practice . 4

1.4 State-of-the-art academic research 5

1.5 Thesis Outline . 7

xii CONTENTS

2 Survey of the Dynamically Reconfigurable Systems 9

2.1 Architecture . 10

2.2 Reconfiguration strategy . 23

2.3 Operating system design . 27

2.4 Design methodology . 31

2.5 Conclusion . 42

3 A Reality Check Based on FPGA Architectures from Xilinx 45

3.1 The Virtex configuration organization 46

3.2 Xilinx dynamic reconfiguration design flows 47

3.3 ICAP . 51

3.4 Conclusions . 51

4 MT-ADRES: Multithreading on Coarse-Grained Reconfigurable
Architecture 53

4.1 Introduction . 54

4.2 ADRES Multithreading . 58

4.3 Experiment . 62

4.4 Discussion . 68

4.5 Conclusions and future work . 70

5 COSMOS: A System-Level Modelling and Simulation Frame-
work for Coprocessor-Coupled Reconfigurable Systems 71

5.1 Background . 73

5.2 Task model . 75

CONTENTS xiii

5.3 Coprocessor coupled architecture model 77

5.4 System-C simulation model . 82

5.5 Demonstrative simulation . 87

5.6 MP3 Experiments . 90

5.7 Advanced allocation strategies 95

5.8 Future work . 101

5.9 Conclusion . 102

6 Conclusion 105

6.1 Contribution . 105

6.2 Outlook . 106

A TGFF files 109

A.1 Input file . 109

A.2 Output file . 110

xiv CONTENTS

Chapter 1

Introduction

1.1 Reconfigurable architectures in a nutshell

Traditional computer architectures mainly takes two approaches to execute an
application. The first one is to employ a programmable microprocessor. The
processor-based architectures usually support an instruction-set that covers a
wide range of logic and memory operations, thus can execute various applica-
tions when the application is proper compiled. However, due to the usually
limited amount of parallel computing resource, the large execution overhead
and the memory bottleneck, these architectures are inefficient in terms of per-
formance and energy.

The second approach is to tailor a hardware for a specific application, so that
the application can be executed at the highest affordable speed. The resulting
Application-Specific Integrated Circuit (ASIC) is usually dedicated to one appli-
cation, or even only one configuration of a certain application, thus exceedingly
lacks the flexibility. ASIC design also has a long development cycle, thus the
consequence of having fabrication fault or design errors is more severe than the
software-based application design. The lack of flexibility substantially increase
the verification and test phase of the implementation.

In hopes of closing the gap between the processor-based architectures and the

2 Introduction

ASIC, reconfigurable architectures come into play. The mainstream of the re-
configurable architectures is composed of a fixed logic part and a reconfigurable
part. The fixed logic usually includes a programmable processor that executes
the non-crucial parts of the application and controls the reconfigurable unit. The
reconfigurable unit is a high-performance field-programmable logic frequently
used to accelerate the execution of the application kernels.

From the architecture composition, we see that both the fixed part and the re-
configurable part are programmable, thus the programmability of the processor-
based architecture is retained. The reconfigurable unit can even extend the
instruction set of its fixed counterpart, therefore makes the programmability
of the architecture even stronger. The reconfigurable unit usually is a scalable
gate array with high amount of parallel computation resource. This gives the
reconfigurable unit a potential performance advantage over the processors. Due
to the nature of the field-programmable logic, the reconfigurable unit is usually
not as efficient as the ASIC implementation in terms of power and speed, but
the flexibility compensates for it.

1.2 The origin, and the revival

In year 1960, Gerald Estrin at the University of California at Los Angeles pro-
posed a computer architecture that is very different from the main stream re-
search [33] at that time. As shown in his original figure (figure 1.1), this com-
puting machine is a combination of a Fixed (F) computing unit and a Variable
(V) unit. The fixed part of the machine offers the user a consistent and friendly
interface, while the variable unit of the system performs specific task as user
requests. The variable part of the system offers a performance that is as high
as dedicated hardware, and it can reconfigure itself to fit the user’s application.
This is the first time that the reconfigurable computing concept has been openly
discussed. However, due to the lack of the technology support, this concept was
not adopted well during 60’s, and the microprocessor-ASIC combo have domi-
nated both the industry and the academic research in the next few decades.

However, the advance of the silicon technology leads to many new digital system
design strategies and trends. The appearance of the Complex Programmable
Logic Device (CPLD) and the Field-Programmable Gate Array (FPGA), which
are mostly used for implementing simple digital circuit and prototyping larger
digital systems, respectively, gives very solid technical backbones to the recon-
figurable computing. Through these devices, we have acquired a preliminary
understanding of the configurability, the performance, the programmability and
the application domain of the reconfigurable architectures.

1.2 The origin, and the revival 3

Figure 1.1: One of the earliest proposal of reconfigurable computing architec-
ture [33]

In recent years, the chip fabrication cost and the non-recurrent engineering cost
has increased to a level where the non-reusable custom ASIC design is hardly
affordable for smaller business. Since the chip reusability becomes an important
issue, FPGA is not only used as a prototyping device, but also a solution as part
of the final product. Even though there is always a performance margin between
the ASIC and the FPGA, thanks to the demand of the digital design community,
this margin has been shrinking in the last few years, and even battery-powered
FPGA-based designs are emerging. This trend suggests that the FPGA is the
most appealing base for reconfigurable architecture study, and people shouldn’t
expect anything less from the reconfigurable architectures than from the FPGA
in terms of performance.

Some other recent technologies contributed to the study of the reconfigurable
architectures. The development of the intellectual property (IP) core is a promis-
ing strategy for increasing the design reusability. One of the byproducts of the
IP core reusability study is the hardware run-time adaptivity, which is one of
the enabling technologies of the dynamically reconfigurable architecture. Also,
the high-level synthesis, especially the finite-state-machine based and loop-level
optimization based synthesis, fits naturally to the programmability study of the
reconfigurable architectures.

The technology scaling is driving the computer architecture research into the
era of Multi-Processor System-on-Chip (MPSoC). Multiple cores interconnected
with an on-chip network (NoC) is one of the most interesting on-going archi-
tecture research due to its potential for increasing design scalability and perfor-
mance. When the MPSoC paradigm is applied on the reconfigurable architec-
tures, the reconfigurable architecture is benefited from higher flexibility, better

4 Introduction

scalability and the better usage of coarse-grained parallelism.

Future embedded systems will be based on platforms which allow the system to
be extended and incrementally updated while running in the field. This will not
only extend the life time of the system, but also allow the system to adapt to the
physical environment as well as performing self-repair, hence increasing the reli-
ability and robustness of the system. Dynamically reconfigurable architectures
is the most suitable technology for facilitating this, and is being studied in the
research of self-evolving embedded system that can adapt to the environment
and fault tolerable system that needs long lifecycle in the field.

To conclude, the reconfigurable architecture research at the current stage is
of utmost importance and relevance. The study in this area has solid tech-
nology foundation from the previous work, and the issues to be addressed are
tightly intertwined with many other crucial research areas. Investigating and
understanding the reconfigurable architecture not only push the reconfigurable
architecture study forward, but encourage the related fields of research as well.

1.3 Industry practice

Being the flagship of commercial FPGA developers, Xilinx [9] contributed sig-
nificantly to the physical implementation of the reconfigurable device. Their
VIRTEX FPGAs can partially reprogram themselves during run-time, hence
are realistic platforms for studying the online adaptive systems. Their exist-
ing configuration development tool chain has been augmented for supporting
the generation of partial configuration, and the on-chip configuration device
is given a higher bandwidth to achieve faster reconfiguration. At the current
stage, the killer application for such a system is yet to be found, and their partial
reconfiguration approach is mostly used for academic experimentations.

There exists some off-the-shelf reconfigurable architectures. The XD1 [5] su-
percomputers from Cray, the MAP [8] processor from SRC and various systems
from Nallatech [6] etc. tries to get the most out of the commercial FPGA by
coupling them to other control modules. These systems are more focused on
offering parallel computation power than frequent reconfiguration, and mainly
attempt to offer user-friendly interface to the programmers. Many of them also
focus on employing an array of FPGAs in order to improve the system perfor-
mance even further.

Other in-the-lab commercial examples are known. The Chameleon System

1.4 State-of-the-art academic research 5

Inc[96]1 proposed a single-chip solution, cs2000 architecture, to push the use of
much more advanced reconfiguration strategies on commercial FPGAs. Their
architecture development is discontinued from its infancy, but it still inspired
many academic researches. The Silicon Hive [7] approached the reconfigurable
system development from the IP development and programmability study. Celox-
ica [4] proposed to use a c-like programming language, Handle-C, to address the
programmability issue of the reconfigurable architectures. There are many other
new technologies used in some context, but a highly integrated tool flow or a
dedicated architecture is yet to be seen.

In general, the commercial reconfigurable architecture is centered on the off-
the-shelf FPGAs. The technologies being studied and put to practice is mostly
computation-oriented rather than reconfiguration-oriented. The study on pro-
grammability and architecture is still premature, and the run-time management
is not being recognized as a critical issue. The lack of highly automated tool sup-
port and the lack of better understanding of the application domain is hindering
the acknowledgement of the reconfigurable architecture, and in turn, results in
the miscarriage of many great technologies’ commercial breakthrough.

1.4 State-of-the-art academic research

On the contrary, academic researches on reconfigurable architecture has wit-
nessed an outburst of new ideas. The architecture study leads to the demand of
the better understanding of the logic granularity issue, the architecture coupling
issue and the configuration strategy issue etc. The programmability study leads
to the demand of highly automated and efficient high-level synthesis, mapping,
partition tools etc. The behavior study of the reconfigurable system leads to
the need of highly complicated run-time management system design, which is
closely related to the architecture design and application mapping strategy.

In the last couple of decades, logic units of various granularities have been
proposed and evaluated. The logic granularity is the measure of how precise the
configuration data can describe the function of the logic unit. The impact of
the granularity variance has been studied to a great extend in terms of memory
requirements, performance and programmability etc.

The coupling between the reconfigurable unit and the fixed part is also a com-
plicated issue. Commercial solutions are usually multi-chip systems, where the
fixed part and the reconfigurable part are not on the same chip, thus the cou-
pling between these two parts is always very loose. Tighter coupling enables

1Not in business since 2001

6 Introduction

much faster communication between the fixed logic and the reconfigurable unit,
therefore results in much more interesting system behaviors and increases the
occurrence of reconfiguration. The coupling has great impact on the architecture
scalability, the data communication efficiency and the reconfigurability.

The online configuration strategy has also lead to many discussions. Whether
a reconfigurable unit should be shared by multiple tasks in time or in space,
and how to share the reconfigurable unit between tasks are open for further
experimentation. These topics further lead to the study of the multi-context
FPGA, inter-task communication and configuration memory hierarchy.

Programmability of reconfigurable architectures is another interesting topic.
The reconfigurable architectures need the application to be partitioned into
two parts, one being executed on the reconfigurable units, and the other be-
ing executed on the fixed part. The part of the application being executed on
the reconfigurable unit needs to optimally use the reconfigurable unit, which
offers parallel computing resources. To program for the reconfigurable architec-
tures, we either need a high-level synthesis tool that integrates the partitioning
tool, synthesis tool and compilation tool in one environment, or we need a
development kit to carry out the software programming, hardware modelling
and the interfacing at the same time. No matter which approach we take, the
performance of the architecture is determined by how well we can explore the
parallelism in the application from data level to task level, which is not a trivial
task.

The dynamic reconfiguration is a costly operation. How frequently should a
reconfigurable unit be reconfigured, and how should it be reconfigured needs
to be decided at run-time, thus the run-time management system is another
challenging design issue. For a large-scaled reconfigurable system that supports
multi-tasking, the reconfigurable part of the system is a critical computing re-
source, and efficiently sharing it among several tasks is another challenge.

At current stage, the architecture design of the reconfigurable architecture is
studied by many. The issues in the physical design is rather well-understood,
and moving towards realization of dedicated reconfigurable device is not posing
any prohibiting technical difficulties. The programmability of the reconfigurable
architectures is still being discussed, and many tools and methodologies have
been proposed. Due to the variety of reconfigurable systems, the study on
tool chains are hard to converge, and most solutions take ad hoc approaches
based on the architectures. The run-time system design is in a similar status as
the programmability study is in. The complexity and variety of reconfigurable
systems make it difficult to capture and generalize the run-time behavior of the
reconfigurable system, thus makes it hard to develop a run-time system and
assess its efficiency. The design verification and testing has been discussed by a

1.5 Thesis Outline 7

few, but moving into verification is still not a concern for most people.

1.5 Thesis Outline

In our study, we would like to acquire a thorough understanding of the recon-
figuration before we decide what issues are important at the current stage, and
what possible technical support is available to build future technologies upon.
We took the bottom-up approach to understand the reconfigurable architectures,
thus our study went through the following four phases.

A survey of the reconfigurable architecture has been carried out in the first
phase, and the findings of our study are documented in chapter 2. We noticed
that the coupling between the fixed logic and the reconfigurable logic has huge
impact on the architecture scalability, configurability and programmability etc,
and therefore dedicated most of the rest of the study to investigate this issue.

Then we moved on to the study of the commercial FPGA, and experimented on
the partial reconfiguration design flow supported by the Xilinx Virtex FPGAs.
The objective of this study is to get a general understanding of what state-
of-the-art commercial reconfigurable devices can achieve, what technologies are
mature and feasible in practice, what technologies not being put to practice are
actually feasible and crucial, and most importantly, what unconventional physi-
cal characteristics reconfigurable systems have. During our experimentation, we
noticed that several limitations exist in the current Xilinx tool flow as well as in
the architecture, and documented them in chapter 3. We also described what
urgent issues need to be addressed to make the current Virtex FPGA a more
suitable platform for building more complicated reconfigurable architectures.

To acquire a better understanding of the datapath-coupled reconfigurable ar-
chitectures, we carried out some study on the state-of-the-art ADRES architec-
ture developed at IMEC, Belgium, and extended it to support the simultaneous
multi-threading (SMT). Our approach and conclusions are documented in chap-
ter 4 of this dissertation. From this exercise, we gained the knowledge of the
design pitfalls of datapath-coupled architectures, and proved that the threading
is a feasible and important solution for improving the performance and scala-
bility of these architectures.

After carrying out many studies in various areas, we are convinced that the
coprocessor-coupled architectures have great potential, but there hasn’t been
enough investigation on many critical issues of these architectures yet. We pro-
pose our general system-level simulation framework, COSMOS, for further study

8 Introduction

on coprocessor-coupled reconfigurable architectures. We demonstrate how the
COSMOS model can be used for acquiring a better understanding of the recon-
figurable architectures’ dynamic behavior, and for evaluating the performance
of a reconfigurable system. The result is documented in chapter 5.

Chapter 6 concludes our work and discusses the perspectives of the reconfig-
urable architecture research.

Chapter 2

Survey of the Dynamically

Reconfigurable Systems

In the last two decades, large number of reconfigurable architectures have been
proposed, along with many new technologies. In general, the state-of-the-art
reconfigurable systems still resemble the F+V system proposed by Gerald Es-
trin decades ago. The variable part of the reconfigurable architecture does the
arithmetic computation to speed up the execution of user programs, while the
fixed part offers a consistent programming interface to the programmer and su-
pervises the use of the variable part at run-time. Quite a few architectures have
shown great potential in accelerating user applications and improving energy-
efficiency.

The architecture design in this area is getting mature, and many new tech-
nologies have been proven feasible. However, people started to notice that the
dynamic behavior of the reconfigurable system is very different from that of
the traditional architectures. Improving the run-time system efficiency, the re-
configurability and the programmability of the reconfigurable architectures are
bigger challenges than the architecture design. Recently, the lack of integrated
high-level compilation tools and efficient run-time systems starts to restrain the
dissemination of reconfigurable system, so the focus of the mainstream research
is currently moving towards these areas to provide the missing pieces.

10 Survey of the Dynamically Reconfigurable Systems

Before we can understand where the current research trends are going and pin-
point what critical challenges lie ahead, we want to understand what has been
done, or proved, by others and what is the state-of-the-art. We start our study
by surveying the research activity in the last couple of decades, and document-
ing our observation in the next four sections. The first section gives a gen-
eral overview of the architecture proposed in recent research, and discusses the
new technologies being used. The second section focuses on the reconfiguration
strategies, and discusses their impact on system-level design. The third section
discusses the known run-time system design issues and some proposed strategies
to address them. The fourth section discusses the methodology design issue cur-
rently under study and some general direction being taken to approach them. In
the final section of this chapter, we conclude how the state-of-the-art motivates
us to continue, and what is most relevant in the near future for us.

2.1 Architecture

The deterministic architecture design issues of reconfigurable systems are the
host-reconfigurable unit coupling and the reconfigurable logic block granularity.
Also, several recently proposed FPGA technologies contribute to the architec-
ture design. In the last few years, all these three areas have evolved rapidly,
and a classification is necessary.

2.1.1 Reconfigurable unit coupling

The reconfigurable unit (RU) can be coupled into the host architecture in four
ways, as shown in figure 2.1 [23]. It can be a reconfigurable functional unit
(FU) built into the datapath, a coprocessor, an attached reconfigurable unit or
an external stand-alone processing unit. The coupling method has deterministic
impact on the operating system design and the methodologies, and is the most
important decision a designer has to make.

2.1.1.1 Datapath-coupled reconfigurable architectures

The reconfigurable units can be embedded into the datapath of a processor as
a special function unit. Most of the known architectures in this class are sim-
ilar to RISC processors or Very-Long-Instruction-Word (VLIW) architectures.
But unlike VLIW architectures, this class of Reconfigurable architectures de-
mands complicated compiler design due to the flexible instruction set. During

2.1 Architecture 11

Figure 2.1: Different coupling methods of reconfigurable units [23]

compile time, the complicated and regular arithmetic operations are identified
and extracted by the programmer’s guidance[58] or by profiling[85]. If execut-
ing these operations on an RU is beneficial, a special RU-operation instruction
with reconfiguration op-code extension will be generated from the compiler, and
the extracted arithmetic operation will be synthesized into an RU configuration
bitstream with dedicated synthesis tool. At run time, several RU operation
bitstreams are stored on the RU, and the dedicated op-code extension bits se-
lectively switch the bitstream enabled on the RU when an RU operation needs
to be executed.

PRISC is an early example of such systems[85]. The datapath and the instruc-
tion format of PRISC are shown in figure 2.2. In the PRISC instruction format,
the op-code expfu indicates whether the current instruction invokes RU, which
is called PFU in the figure. The field LPnum indicates which pre-synthesized
configuration should be loaded onto the PFU. The PRISC PFU is more flexible
and efficient than a normal functional unit, but the size of it is still rather small
(30.5K transistors).

Figure 2.2: PRISC datapath and instruction[85]

The Chimaera architecture [47] and XIRISC[64][65] architecture shown in figure

12 Survey of the Dynamically Reconfigurable Systems

2.3 are a couple of examples of more recent datapath-coupled architectures. The
Chimaera system has an array of reconfigurable columns, several of which can
be used to map one algorithm. It allows the configuration of several algorithms
to co-exist in the RU, and programmers can use this feature to enable config-
uration caching. Similarly, the XIRISC system’s reconfigurable unit, PicoGA,
is partitioned into 3 blocks. Depending on the complexity of the algorithm
mapped onto the PicoGA, blocks can be combined if necessary. PicoGA also
uses redundant memory to achieve configuration prefetching and caching. The
XIRISC prototype costs 12M transistors, and more than 1/3 of the total area
is occupied by the PicoGA unit.

a) The Chimaera datapath

b) The XIRISC datapath

Figure 2.3: Other recent datapath-coupled architectures

In general, this class of reconfigurable systems has the tightest coupling between

2.1 Architecture 13

the host and the RU. The RU is easy to access by the host, and it is frequently
reconfigured during function execution. The operating system support of such
a system is simple, and the compilation is straight-forward. The drawback of
such system is the regularity of the memory-to-RU interface and the scalability
of the RU, and they limit the type and the size of the digital circuits that gain
benefit from the RU.

2.1.1.2 Reconfigurable coprocessor

The RU coupled with the host as a coprocessor has direct access to the host’s
memory hierarchy. The host usually controls the coprocessors through message
passing instead of instruction. Interaction between the host and the RU is much
less frequent compared to the datapath-coupled systems, and the host and the
RU can execute different applications concurrently and independently.

The GARP system[48][21] shown in figure 2.4 is a typical architecture of this
class. The host MIPS II processor handles the configuration, task execution
control and data transfer between the MIPS II and the RU. The Chameleon
CS2112 chip[96] and the MorphoSys[90] have similar structures, but their RUs
are further optimized for configuration data size reduction and configuration
caching. The MaRS system[95] is an advanced version of the MorphoSys. The
RU of MaRS is shared by a group of processors, and the memory modules are
distributed among the processors in order to increase bandwidth.

The work from [70] experimented on the Xilinx Virtex-II device. The architec-
ture used the existing on-chip instruction set processor PowerPC as the host,
and divided the rest of the FPGA into several reconfigurable blocks. These
reconfigurable blocks are connected with 3 on-chip networks (NoC), as shown
in figure 2.5. These NoCs include a reconfiguration network (RN), a data net-
work(DN) and control network(CN). The host is responsible for controlling all
the networks and activities.

The Amalgam processor[55][38] shown in figure 2.6 is another NoC based archi-
tecture. In Amalgam, there are totally 4 reconfigurable units (RCluster) and 4
programmable units (PCluster). Managing so many computation resources at
run-time is complicated, so the control of this system relies heavily on static
analysis. The DART system[27][26][28] has 4 clusters of reconfigurable units,
and the host processor is simply a task control unit. This architecture is suitable
for linear and computationally demanding applications, but is not very flexible
for general purpose computation.

The RU of this class of architectures is scalable, but when the RU is upscaled

14 Survey of the Dynamically Reconfigurable Systems

Figure 2.4: The GARP processor architecture

Figure 2.5: The NoC support for the reconfigurable system

to a certain extend, dividing an oversized RU into several smaller ones is more
flexible and practical. Using complicated buses or NoCs to support a multi-RU
system is often necessary, but the overhead and bandwidth requirements always
pose design challenges. Also, having large RU enables designers to map com-
plicated algorithms onto the RU, but it also increases the overhead of dynamic
reconfiguration, e.g. long reconfiguration latency. What is also worth noticing
is that the co-processors often can directly access the main memory or even the
cache, thus creates two problems. First, the bus is sometimes overloaded, and
it leads to stalling on both RU and the host. Second, if data consistency can
not be guaranteed through static analysis, the cache consistency issue need to
be addressed at run-time, thus the hardware and the performance overhead will
increase.

2.1 Architecture 15

Figure 2.6: The Amalgam architecture.

2.1.1.3 Attached processing unit

The attached processing unit is coupled to the host through ports and external
bus. The host system’s memory is not directly accessible to the RU, and the
RU functions are very independent. The RU is controlled by the host through
device drivers or the operating system API call. Due to the inconvenience,
the RU is rarely configured. The single chip solution of this class is much less
efficient compared to the coprocessor architecture, and the RU is often built
with several commercial FPGAs.

The GECKO system[101] is an experimental system that belongs to this cat-
egory. This system’s host is a complete COMPAQ iPAQ pocket PC, and the
RU is a Xilinx Virtex-II device. These two parts have their own clock domains,
power supplies and memory systems. One of the most interesting objectives of
this project is to study the dynamic task migration, e.g. how a task can be
moved to run on the host or the RU, and what the cost is for doing so.

Most of the commercial FPGA-based development systems belong to the cat-
egory of attached reconfigurable processing unit. These systems are usually
infrequently reconfigured by a host system, but they also have their own mem-
ory and peripheral devices. These architectures’ coupling is very weak, and can
usually be reconfigured through many standard interfaces.

16 Survey of the Dynamically Reconfigurable Systems

2.1.1.4 Stand-alone processing unit

The stand-alone processing unit coupled reconfigurable system is the most loosely
coupled architecture. The reconfigurable unit can even be a workstation ac-
cessed through the ethernet. The RU is usually wrapped up by many layers of
software, from network protocol to device drivers, and the users of such system
may have no knowledge of the RU. This type of system has high volume, and
is scarcely reconfigured.

The Cam-E-Leon system is a typical stand-alone processing unit. Figure 2.7
shows the architecture of this system. User of this system accesses services by
using a web browser and remotely gets the image processing service.

Figure 2.7: The Cam-E-Leon system layer

The attached processing unit and the Stand-alone processing unit have relaxed
size constraints, but the communication cost between the host and the RU is
very high. These systems fit for dedicated and highly complicated operations,
and the dynamic reconfiguration means little to them. Both of these classes
are well-understood and widely used, thus are not the focus of the current
reconfigurable system research.

2.1.2 Logic block granularity

The logic block granularity is one of the primary factors that decides the sys-
tem performance. The granularity of the reconfigurable logic is defined as the
complexity of the atomic logic unit addressed during logic mapping. In general,
finer-grained logic block is more flexible when being used to implement digital
circuits, while coarser-grained logic requires less configuration memory and can

2.1 Architecture 17

achieve faster reconfiguration.

2.1.2.1 Fine-grained logic block

The most commonly used configurable logic blocks (CLB) are fine-grained. The
input and output data of the fine-grained unit are single-bit wide, as shown in
figure 2.8. The look-up table (LUT) is the most frequently used building-block
of CLBs, especially in commercial FPGAs.

Figure 2.8: The fine-grained logic block from Chimaera system

The fine-grained reconfigurable unit suffers from the costly reconfigurable over-
head. Due to the high volume of the configuration data, the storage requirement
of these system is usually very high, e.g. approximately 30% of total chip area
for commercial FPGAs. Also, the latency to load a configuration into an RU is
proportional to the configuration data volume, thus fine-grained RU often suf-
fers from slow reconfiguration. These shortages make the caching/prefetching
of configuration difficult, but not prohibitive.

The greatest advantage of the fine-grained system is the flexibility. Any al-
gorithm can be mapped onto the fine-grained logic device, and the bit-level
operation-intensive applications use the fine-grained systems very efficiently.
Due to the low granularity, these devices also have the highest utilization rate
if compared to the coarser-grained devices.

18 Survey of the Dynamically Reconfigurable Systems

2.1.2.2 Medium-grained logic block

The medium-grained logic block is a compromise between flexibility and recon-
figurability. Figure 2.9 shows the medium-grained logic unit from PicoGA’s
reconfigurable unit[65]. As shown in the figure, the medium-grained logic block
is very similar to the fine-grained version, except for the input/output data
bit-width. Most of the medium grained systems are 2 or 4-bit wide.

Figure 2.9: The medium-grained logic block from PicoGA system

The medium-grained systems are more friendly to reconfigure, but harder to
map some application on. The utilization rate of the logic device is normally
lower than that of the fine-grained systems, but for applications that do not
perform many bit-level logic operation, the medium-grained systems are still
practical and efficient.

2.1.2.3 Coarse-grained logic block

The coarse-grained logic has no regular form. The reconfigurable unit of the
MorphoSys is an 8X8 array of 16-bit ALU, as shown in figure 2.10. The Montium
tile processor[84] has a similar logic block, but extended with a butterfly-shaped
MAC unit. The ADRES [75] architecture has up to 64 32-bit heterogeneous
functional units as basic logic block.

The coarse-grained logic block could be more complicated than an instruction-

2.1 Architecture 19

Figure 2.10: The coarse-grained logic block from the MorphoSys system

set processor. The RAW processor[97] is a compiler-directed reconfigurable
system. As shown in figure 2.11, it is constructed with 16 tiles of independent
processing units. In each tile, there is a MIPS-style processor interfaced with
a programmable router. At compile time, single task will be partitioned and
mapped onto one or more adjacent tiles. The RAW compiler is architecture-
conscious, and orchestrates the routers statically. The programmable router
layer of this system is one of the early NoC.

Figure 2.11: The RAW processor architecture

The coarse-grained logic block has the lowest reconfiguration overhead in terms
of memory cost and reconfiguration latency. Many architectures employ ALU or
similarly coarse-grained logic unit as the basic logic block, thus instruction-logic
block mapping is more frequently used for these architectures instead of logic
synthesis. This enables designers to program their applications in high-level

20 Survey of the Dynamically Reconfigurable Systems

language and apply advanced compilation technologies to use the architecture
optimally.

2.1.2.4 Mix-grained unit

As mentioned earlier, architectures with lower logic block granularity fit nar-
rower application domain. To improve the robustness and flexibility of these
reconfigurable architectures, mix-grained architecture was introduced.

The technical proposal in [72] discussed a hierarchical architecture. The hier-
archy of this reconfigurable unit is a quadric-tree. The lowest-level cluster is
composed of an arithmetic node, a bit-manipulation node, a finite state ma-
chine (FSM) node and a scalar type operation node, since the operations of
these four different algorithm domains are very incompatible. The four func-
tional nodes are recursively clustered by a matrix interconnect network. The
logic granularity of these different nodes is apparently different.

Another example is the DART architecture. The reconfigurable cluster of the
DART has six coarse-grained logic unit (DPR) and an FPGA, as shown in figure
2.12. The DPR is used to execute most of the instructions, but the bit-level
manipulation is handled by the FPGA. For an architecture like this, the task
partitioning is another challenge.

Figure 2.12: The mix-grained DART reconfigurable unit

The logic mapping of the mix-grained RU is more complicated than that of
the mono-grained RU. If an RU is comprised of both the fine-grained and the
ALU-grained logic, two of which require different compilation/synthesis tools,
the integration of the tool will be difficult. Also, applications may need to be
partitioned in an early stage to ease the compilation and the synthesis, and
optimal partitioning will be a great challenge.

2.1 Architecture 21

2.1.3 FPGA technology

The traditional FPGA suffers greatly from reconfigurable overhead. Without
applying more advanced FPGA technologies, dynamic reconfiguration is only
suitable for very small-scaled system. The most important technologies that
increase the FPGA’s reconfigurability are the run-time partial reconfiguration
and the multi-context design. Routing issue of the commercial FPGA has al-
ways been a great challenge, and some other work proposed some means of
simplification to this issue.

2.1.3.1 Partial reconfiguration

The partial reconfigurability allows part of the FPGA to be reconfigured, while
the other part is running. This function is already supported by many commer-
cial FPGAs, e.g. Xilinx Virtex family and ATMEL at6000 series[1].

The Virtex-II FPGA, as an example, can be divided into several separated
blocks at very early design phase. The separated blocks, which are called PR
logic in figure 2.13[11], are independent, and they communicate to the surround-
ings through dedicated ports. The boundary of each block cannot be changed
once the algorithm starts running on the chip, but the algorithm mapped on the
blocks can be reconfigured at run time. Since the reconfigurable block’s bound-
ary is rarely changed, the system is equivalent to a group of smaller FPGAs.

Figure 2.13: The partial reconfigurable logic of Virtex FPGA

The partial reconfiguration opens up many possibilities, e.g. it enables the

22 Survey of the Dynamically Reconfigurable Systems

hardware context switching and multi-tasking. If the system has a large amount
of redundant reconfigurable blocks, the idle blocks can be used for configuration
prefetching. However, the current FPGAs and their tool chains are not very
friendly to use, and killer application is yet to be found.

2.1.3.2 Multi-context FPGA

Conceptually, the logic layer of an FPGA is an array of configurable logic blocks
and interconnection nodes, and the configuration layer is physically a collection
of distributed SRAMs or register files that store the configuration data of the
logic layer. Unlike normal FPGA, which has one configuration layer and one
logic layer, multi-context FPGA has multiple configuration layers but one logic
layer, and all the configuration layers configure the same logic layer. Each
configuration layer can store one set of complete configuration data and the
intermediate data of the whole logic layer, thus is called one context. These
configuration layers are connected to the logic layer through a multiplexing
circuit, and the multiplexing circuit selects which configuration layer currently
activates the logic layer. For those configuration layers that are inactive, they
can be used as configuration caches. Most of the multi-context architectures
can change their configuration in only one clock cycle, if the configuration is
properly cached.

Xilinx has proposed a time-multiplexed FPGA[98] based on their XC4000E
FPGA. This time-multiplexed FPGA has eight configuration layers and one
logic layer. The reconfiguration loading time of the whole chip is only 5ns,
which gives almost no reconfiguration penalty. Their proposal has not been
commercialized, but their idea is adopted by many other research group. The
DRLE system is also an 8-configuration system. In their work[35] the trade-off
between the energy-latency product and the area has been studied. Their result
shows that the 4 or 8-context FPGA is the most efficient for their architecture.
The MorphoSys has coarse-grained logic block, and can store up to 32 configu-
rations on-chip. The PicoGA FPGA has 4 configuration RAMs. As mentioned
before, the PicoGA is partitioned into 3 blocks, thus one context switching can
switch in up to 3 new functions.

The multi-context design provides configuration caching, which helps to hide the
reconfiguration overhead. This technique also enables reusing the logic layer for
executing different parts of a task, thus reduces the size of the logic layer. A
main drawback of this technique is the high volume of the storage, thus is mostly
applicable on coarser-grained systems.

2.2 Reconfiguration strategy 23

2.1.3.3 Alternative FPGA design technologies

To make the reconfigurable architecture more flexible and user-friendly, many
effort has been put into reducing the latency of creating a configuration from
a netlist. Here is an example of how the architecture simplification can reduce
the placement and routing latency.

The flexibility of fine-grained configurable logic block is not fully used by many
applications, and the research described in [66][67] propose to simplify the fine-
grained FPGA without significantly losing performance. As shown in figure
2.14a, their routers (SM) of each configurable logic block (CLB) link to their
1-hop neighbors and their 2-hop neighbors with solid and dashed lines, respec-
tively. The internal structure of the router offers very limited connectivity: the
wire from one side of router can only be connected to the wires of the other
three sides with the same name, as shown in figure 2.14b. The result of the
project shows that the WCLA FPGA, combined with the tool chain ROCPAR
from the same group, are comparable to XILINX Virtex-E FPGA. Due to the
simplified hardware structure, the execution time of the ROCPAR is on average
40 times faster than XILINX tool. One extra benefit is the whole tool chain
ROCPAR, from logic synthesis to P&R, can be fit into the cache memory of the
ARM processor.

a) Configurable logic array
 b) Switch matrix

Figure 2.14: The WCLA FPGA routing[66]

2.2 Reconfiguration strategy

Depending on the coupling of the reconfigurable units, reconfiguration can be
performed differently. Stand-alone processing units and attached reconfigurable
units are usually less frequently reconfigured due to the device complexity and
memory bottleneck, but they are scalable, reliable and simple to use. User of
these devices are not very interested in the device flexibility, but mostly in the

24 Survey of the Dynamically Reconfigurable Systems

computation power, thus the reconfiguration of these devices are not interesting
enough to study.

The coprocessor-coupled and the datapath-coupled architectures are more flex-
ible and versatile, and the reconfiguration of these architectures are frequently
discussed. They are both the main focus of the run-time reconfiguration (RTR)
research, but due to their different characteristics and potential, they are recon-
figured differently. The coprocessor-coupled architectures have great potential
in scalability and performance, but are also the most complicated to reconfigure.

2.2.1 RTR of the datapath-coupled architectures

The datapath-coupled architectures are very frequently reconfigured. The PRISC
system can reconfigure its PFU every clock cycle if the configuration is pre-
loaded into the PFU. Once the reconfiguration occurs, the whole RU is updated.
The Chimaera system and PicoGA system’s RUs support partial reconfigura-
tion, thus several configurations can co-exist on the RU. Comparing to the sys-
tem that cannot be partially reconfigured, The Chimaera system and PicoGA
system are not very frequently reconfigured, but it is very normal that their
RUs are reconfigured several times when executing one task.

The datapath-coupled architectures are relatively small and regular. For sys-
tems like PicoGA, the reconfigurable array is homogeneous, has regular structure
and is partitioned. Thanks to these characteristics, the dynamic reconfiguration
overhead is manageable. The most frequently used strategy for these architec-
tures is to statically explore the fine-grained parallelism, e.g. instruction-level
parallelism (ILP) or loop-level parallelism (LLP), generate the configurations,
and plan for the reconfiguration statically.

2.2.2 RTR of coprocessor-coupled architectures

Multi-tasking is one of the greatest potential of the coprocessor-coupled system.
Depending on the size and the number of the co-processing RUs, the multi-
tasking architecture varies, so is the RTR strategies. In general, the two main
multi-tasking strategies are the single-coprocessor multi-tasking (SCMT) and
the multi-coprocessor multi-tasking(MCMT).

2.2 Reconfiguration strategy 25

2.2.2.1 RTR of SCMT system

The SCMT systems usually have a large non-partitioned reconfigurable unit
that allows several tasks to run on it concurrently. Figure 2.15[45] shows the
run-time multi-tasking strategy of such systems. Each shaded rectangular area
on the FPGA models a task or a kernel of the task.

Figure 2.15: The SCMT system[45]

There are several design issues for SCMT systems. Firstly, the task allocation
results in fragmentation on RU. Several research groups[24][45] have proposed
algorithms to defrag the free space. Most of the defragmentation methods re-
quire reallocation of the issued tasks, which could be extremely time-consuming
to do. Secondly, the rectangular model of the tasks is inadequate for many
tasks, and more realistic models greatly increase the execution time of the task
placement algorithms. Finally, the task communication interfaces must be per-
sistent or at least traceable after reallocation, and run-time rerouting might be
needed to handle the task communication channel.

The most critical performance bottleneck of the SCMT system design is the
reallocation of the tasks. The issuing, allocation and reallocation of a task must
occur at system run-time, which is not supported by the traditional FPGA
design methodologies. Xilinx has contributed the JBits[40][39], a Java based
program that can manipulate the FPGA bitstream at run-time, to support run-
time reallocation. The JBits can access the logic and routing blocks when the
FPGA is powered-on, reprogram any part of the circuit, and enable the updated
part. The JBits operates at the logic level, which not only gives great flexibility
but also results in many drawbacks. It is manual, and requires the programmer
to have very good understanding of the FPGA. It also lacks a verification tool
that can exam the modification and verify the timing of the final results.

JBits has stimulated many other research activities. In order to hide the low-

26 Survey of the Dynamically Reconfigurable Systems

level detail of the FPGA, Xilinx developed several other tools running on top
of the JBits. Run-time parameterizable cores[41] are extended from the tradi-
tional static core models. Due to its dynamic parameterizable nature, the bit-
stream of an IP core can be dynamically synthesized and downloaded into the
FPGA. The interconnects among cores are handled by using a stitcher class.
User of the system only need to manually allocate the interface of the cores
and stitchers, and the low level details will be automatically handled by the
Java program. JRoute[54] is another automated routing program from Xilinx.
JRoute supports more flexible routing/unrouting features and functional de-
bugging. User of JRoute and the Run-time parameterizable core methodology
needs very little knowledge of the FPGA, and their designs are portable. The
software PARBIT[49] generates the partial bitfile of a given task and rearrange
a running FPGA bitstream to fit the partial bitfile into the bitstream. This pro-
gram extends the idea of JBits into task level. The CLB reallocation software
introduced in [37] uses JBits as part of their reallocation flow. The proposed
reallocation tool is capable of reallocating the circuit when it is running, thus
hides the reallocation overhead.

The SCMT system’s performance depends on the run-time RU management,
and the task reallocation adds significant overhead to the reconfiguration la-
tency. The recent FPGAs can support task reallocation, but the efficiency is
rather low. The design methodology is currently under research, and there are
only few architecture-OS combinations proposed.

Multi-context FPGA can eliminate the need of task reallocation. If we assume
that each context of the FPGA stores the configuration of one task, then the
tasks can share the reconfigurable unit in time rather than in space. This strat-
egy has several disadvantages. Firstly, multi-context architectures normally
have less computation resource due to the high memory cost, thus the size of
the task that can be fit into the RU is more limited. Tasks will have a tighter
area constraint when being synthesized, and larger tasks have to be partitioned.
Secondly, tasks cannot be executed in parallel anymore, but have to be executed
in turn. The overall performance of the system might be even lower than the
systems suffering from task reallocation penalties. Finally, inter-task communi-
cation might have to go through special memory device, since communicating
tasks can not be active at the same time. In general, Multi-context systems are
also hard to design on SCMT system, and practical methodology and run-time
system design is yet to be seem.

2.3 Operating system design 27

2.2.2.2 RTR of MCMT system

The MCMT systems have an array of reconfigurable unit tiles. A tile of RU
could be a coprocessor, an FPGA or a partially reconfigurable module of an
FPGA. The reconfigurable units are often small and not able to execute a com-
plete application. Complicated tasks are accomplished by a group of interacting
units that are connected with NoC or bus. Figure 2.16 shows the 16-tile RAW
processor running 4 tasks concurrently as an example.

Figure 2.16: The multi-tasking of the RAW processor[97]

The MCMT system is scalable, flexible and easy to control at run-time. The
task model of the MCMT system is similar to that of the multi-processor system,
but there are extra (re)configuration delay during task initiation and reconfigu-
ration. The run-time support of the MCMT system only need to assign a task
to a certain tile and setup the inter-task communication, hence is considerably
simpler than that of the SCMT systems. The executed algorithm is partitioned
and optimized at compile time, therefore the reconfiguration overhead is pre-
dictable and small. The reconfiguration of a tile is systematic, thus can be
optimized by many existing technologies. The drawback of the MCMT design
is the complicated compilation system, but many existing embedded system
design technologies can be adopted.

2.3 Operating system design

The coupling of the reconfigurable units determine what operating system (OS)
support is relevant. For datapath-coupled reconfigurable units, the RU is man-
aged as a flexible datapath of the host processor and requires little OS support.
For reconfigurable coprocessor, multi-processor OS design can be adopted. For

28 Survey of the Dynamically Reconfigurable Systems

attached processing unit, the OS manages the RU as a peripheral device. For
stand-alone processing unit, the RU is usually a server with its own OS, and
can not be accessed directly by other users. Due to the increasing complexity
of the reconfigurable systems, traditional OS designs must be extended in many
aspects, and some of the features need to be implemented in hardware to achieve
higher efficiency.

2.3.1 Reconfigurable unit virtualization

From the programmer’s point of view, the reconfigurable computing resource is
always there to speed up the application execution, but in reality, the RU is a
limited resource. If several tasks need to access the RU during a short period
of time, and the total resource requirement exceeds the RU’s capacity, the RU
must be shared by tasks in time. In this case, which can be quite common, a
virtulization mechanism must be built into the OS to facilitate this.

Such virtual reconfigurable resource management system is similar to the virtual
memory management. But in contrast to the virtual memory management, RU
has more complicated physical constraints, and the virtualization should partly
be done at application compile time. For instance, larger tasks that can not
be fit into the RU should be partitioned during compilation in order to reduce
the run-time overhead. However, this research topic has not been recognized as
an urgent issue to address. Even though it has been mentioned by many, solid
solution are yet to be seen.

2.3.2 Virtual memory management

For systems that can support multi-tasking, the data allocation problem should
be addressed. Reconfigurable systems that can support multi-tasking is often
capable of running complicated algorithm. In case the local memory in a recon-
figurable tile is not sufficient to hold the intermediate variable, the main memory
access from the tile is necessary. The virtual memory (VM) management of the
main memory access comes into the picture.

A simple method of managing VM in MCMT system is to maintain a table in the
OS. Every entry of the table corresponds to a reconfigurable tile. When a task
is issued to a reconfigurable tile, the corresponding table entry is updated with
the virtual address of the task. When a tile tries to access the main memory, the
data address is translated by the OS through the corresponding table entry. The
work described in [102] is a hardware implementation of the concept. As shown

2.3 Operating system design 29

in figure 2.17, the memory management unit (MMU) unit translates the physical
address from the processor to the main memory. The window management unit
(WMU), which is the MMU for the coprocessor, performs the same function at
coprocessor side.

Figure 2.17: The Virtual Memory Management hardware[102]

2.3.3 Inter-task communication

The inter-task communication of the reconfigurable system differs greatly from
that of the traditional OS. The tasks of the reconfigurable system could be
located in the host processor as software or in the RU as hardware. In order to
enable the inter-task communication between the host processor and the RU, an
abstraction layer of RU should be built into the OS[81][77]. If the abstraction
layer is well-designed, the traditional message passing is still appropriate for the
reconfigurable system.

As shown in figure 2.18, the communication can be categorized into 3 types: the
software-software, the software-hardware and the hardware-hardware communi-
cation. The software-software communication on the host processor is similar to
the inter-task communication of the traditional system. The software-hardware
communication passes through the hardware abstraction layer (HAL). In this
case, the HAL is responsible for translating the OS specified task ID to the phys-
ical reconfigurable tile. The hardware-hardware communication can be handled
by several manners. The straight-forward method is to pass the message to the
OS and let OS transfer the data among different reconfigurable tiles through
HAL. This method is easy to implement, but the data bus becomes the per-
formance bottleneck. A more complicated but scalable communication method
is achieved by the cooperation between the OS and the on-chip network that

30 Survey of the Dynamically Reconfigurable Systems

connects the reconfigurable tiles. The OS is only responsible for maintaining a
routing table that keeps track of the location of the active hardware tasks. Once
a message passing starts, the message source task fetches the physical location of
the destination task from the routing table, packs the location information into
the message and sends the message through the on-chip network. The MCMT
system is very suitable for this communication scheme due to its multi-threading
nature.

Figure 2.18: Three possible cases of message passing[81]

2.3.4 RU-OS interface

The choice of the interface method between the operating system and the re-
configurable units depends on the coupling between the host processor and the
RU. For datapath-coupled systems, the compiler has a global view of the whole
architecture and orchestrate the software execution at compile-time. At run
time, software is directly executed on the reconfigurable hardware without any
operating system interface support.

The architectures coupled in other methods usually need a device driver built
into the operating system, unless the architecture is very simple. The driver
can offer an abstract view of the underlying RU, buffer the input/output data
and solve resource sharing problems. As shown in figure 2.18, the hardware
abstraction layer hides the detail of the hardware implementation on the FPGA
by offering a simple inter-task communication interface to the software. The
HAL keeps track of the use of the reconfigurable tiles and location of the service,
and if conflicts need to be solved, a message buffer can be implemented in the
HAL.

The work described in [19] focuses on the single-thread applications. For each
active procedure, no matter if it is implemented in hardware or software, there is
a corresponding interfacing stub registered in the OS. Caller calls the callee with

2.4 Design methodology 31

remote procedure call through the stubs and locate the required service without
even knowing the location of the callee. Their device driver also supports the
configuration readback function and partial configuration function.

2.3.5 Hardware context switching

Hardware context switching is difficult to handle for the following reasons.
Firstly, context switch latency is normally high, and it adds to the task exe-
cution time. Secondly, loading a configuration into an RU costs memory band-
width, and in turn lowers the overall system performance. Thirdly, storing a
digital circuit’s current state means storing all the data in its memory element,
and it can be tricky and costly to do. Without proper optimization, hardware
context switching causes huge performance penalty.

There are several methods to reduce the context switching overhead. The first
one is to take the context switching overhead into account when assigning task
priority. E.g. periodic tasks that demand high data bandwidth should be given
a higher priority than the other tasks, thus be preempted less frequently. The
second method is to use the RUs that can support bitstream readback. The
readback should be able to access the status of all the internal registers and
RAMs[60]. The third method is to define certain context switching points[78] in
the application program. Experienced programmers can choose the best place
for the context switching to reduce overhead cost.

2.4 Design methodology

The reconfigurable system can speed up the application execution significantly,
but the performance gain is not easy to obtain. The programmers must have
ample knowledge of the underlying architecture and great deal of experience
in parallel programming in order to fully utilize the architecture’s computation
power. As shown in figure 2.19, the design flow of the reconfigurable system’s
application is also much more complicated than usual software design flow. It
usually requires several software engineers and hardware engineers working to-
gether to program the reconfigurable systems, and the application development
cycle can be very long.

The design automation is recognized as the crucial issue if the reconfigurable sys-
tem wants to be adopted by the mainstream software engineers. When designing
an application, the manually optimized application is the most performance-

32 Survey of the Dynamically Reconfigurable Systems

Program

specification

HW/SW

Partitioning

Hardware

high-level

synthesize

Software

Compilation

Gate level

synthesize

Assembly

compilation

Placement

and routing

Host

processor

Reconfigurable

unit

High level

language

High level

language

High level

language

Assembly level

program

Machine code

RTL circuit

description

netlist

bitstream

Figure 2.19: A typical design flow of application implementation for reconfig-
urable system[81]

optimal, but it takes too long time to design. Automated design tools still have
only limited ability to explore the design space and take advantage of the RU,
but are much faster than the completely manual approach. A compromise of
the two extremes is to let programmer control part of the design flow. The early
decisions in a design flow have the most significant influence on the performance,
thus the partitioning and the high-level hardware design are often done under
the supervision of programmers.

The objective of the design automation is to explore the application parallelism,
take full advantage of the available on-chip resource and partition the algorithm
efficiently into hardware and software without violating the resource and timing
constraints. The programming language, the compiler and the synthesis tool

2.4 Design methodology 33

play the most important rolls in the design flow. Many research of these areas
have been done, and quite a few interesting results have been seem.

2.4.1 Programming

2.4.1.1 Register transfer level design

VHDL and Verilog are the most well-known Register Transfer Level (RTL)
hardware design languages. Experienced reconfigurable system programmers
can parallelize the application and manually map the algorithm on to a given
RU with these languages. The timing of the design is manually constrained
and optimized, and the use of the registers in the algorithm is pre-defined. The
designer has control over all the details of the algorithm implementation, thus
the development circle is very long.

SystemC extends the ANSI C with its own library. The SystemC-based FPGA
design flow is very similar to VHDL/Verilog based design flow, although it offers
a more friendly programming environment. The design is still at RT level, thus
the clock signal and the circuit structure are explicitly defined by programmers.
Since SystemC is based on C, it can be used for both software and hardware
designers.

JHDL[15] is a Java based RTL design tool. Compare to SystemC, JHDL has ex-
plicit mechanism that supports reconfiguration. In JHDL, FPGA is represented
as a Reconfigurable class, and the reconfiguration process is represented by the
Reconfigurable object instantiation. When the hardware is realized, the inter-
face between hardware and software is interpreted by device drivers. Program-
mers can manually partition the application into software parts programmed by
usual Java semantics, and reconfigurable hardware parts encapsulated by recon-
figurable class. The design can be easily co-simulated in Java environment.

2.4.1.2 High-level programming language

Cliff is an embedding of a network-domain specific language[56]. The fundamen-
tal unit of Cliff is an element. These elements have uniform interface, which is
shown in figure 2.20. Communication among Cliff elements is based on three-
way handshake protocol. When synthesized, all the elements are implemented
as FSM with communication state and user state.

The work described in [79] generates RTL hardware description from DSP as-

34 Survey of the Dynamically Reconfigurable Systems

Figure 2.20: The interface of the cliff elements[56]

sembly code. Their compiler takes assembly language as input and decompiles it
into Control and Data Flow Graph (CDFG). After the CDFG is optimized, it is
translated into another intermediate abstract syntax tree that can be converted
into RTL VHDL or RTL Verilog.

SA-C is a C-based single assignment language that targets image processing
algorithms[80]. It supports integer and fixed-point number with user specified
bit width[31]. The pointer and recursion are not supported due to the single
assignment nature of the language. The body of a SA-C function is constructed
with an input data window, a set of loops and a set of data return points. When
VHDL code is generated from software function, a uniform hardware model
that structurally represents each part of the software is used. As shown in
figure 2.21, the loop generator, which is translated from the input data window,
fetches data from the memory and sends them to the arithmetic unit called
inner loop body (ILB). When ILB finishes the computation, the results will be
stored in the memory by data collector, which is translated from the data return
point. The ILB unit is synthesized from the optimized software loop. Because
the ILB is fully combinatorial, its latency varies according to the software loop
complexity. The timing and control of the computation process is handled by
the loop generator and data collector. The SA-C also supports external VHDL
component plug-ins and pragmas that mark the region of the code that need to
be optimized[44]. The programmer can control function inlining, loop fusion,
loop unrolling e.tc. through the use of the pragmas.

Handle-C is another C-based high level programming language[4]. Even if there
is no explicit clock information specified by programmers, the compilation sys-
tem assumes that certain instructions in the algorithm are clocked. E.g. all
assignment statements and if/while statement execute in a single clock cycle,
and a value assigned to a register can only be available in the next clock cycle.

2.4 Design methodology 35

Figure 2.21: The hardware model of SA-C[86]

Haydn-C extends the idea of the handle-C by using two timing models[25].
The strict timing model of haydn-C is similar to the timing model of handle-
C, and the flexible timing model is more advanced. Haydn-C compiler can
break down the C description of an application into a dataflow graph (DFG).
With the DFG and some user constraints, haydn-C compiler can reschedule the
application in flexible timing model to find optimal implementations. Haydn-C
also borrows the concept of entity and component from VHDL that make design
more structured.

2.4.2 Software optimization

Software kernels are the most important candidates for intensive optimization
analysis, since they are most frequently mapped to the reconfigurable units.
The optimization objective is to exploit the data-level parallelism (DLP), the
instruction-level parallelism (ILP) and the loop-level parallelism (LLP) of the
high-level application description, and to efficiently map the parallelized kernels
onto the RU. The optimization is mostly based on four different types of analysis:
loop analysis, data analysis, communication analysis and pipeline analysis. Here
we introduce some of the most frequently used technologies in these categories
and discuss how they are different from traditional issues when applied to the

36 Survey of the Dynamically Reconfigurable Systems

reconfigurable systems.

2.4.2.1 Loop analysis

Loop unrolling: The most commonly used LLP optimization is the loop un-
rolling. For reconfigurable system, the unrolling factor is determined by several
hardware constraints. For instance, the available memory bandwidth is a lim-
iting factor of unrolling. If the available memory ports are fully utilized, the
unrolling can hardly improve execution time of the kernel. As shown in [30],
data producing rate and consuming rate of the reconfigurable tiles become the
bottleneck of the system performance when the unrolling factor reaches certain
threshold. The size of the reconfigurable tile can also be a physical limit of the
unrolling factor. The number of CLB required to implement a kernel in hard-
ware is proportional to the unrolling factor, thus the optimal unrolling factor
should take the hardware space usage into account.

Loop merging: If two loops have the same index space, they can often be
merged into one loop[103]. The benefit of the loop merging is the reduced data
communication and loop control overhead. In case there exists data dependency
between the merged loops, delay must be added into the merged loops.

Loop distribution: Quite opposite to the loop merging, loop distribution
splits a loop into several loops. This technique is useful if the loop is too big to
be mapped onto an reconfigurable tile. Loops sometimes cannot be distributed
due to data dependency.

2.4.2.2 Data analysis

Scalar replacement: Arrays are usually stored in the data memory. A fre-
quently reused array references can be replaced with temporary scalar variables,
which are mapped to the RU’s on-chip register by behavioral synthesis[107]. By
doing scalar replacement, unnecessary memory fetching is reduced. Some high-
level synthesis tools are able to exploit register reusability and decide which
array reference should be replaced by scalar variables.

Tapped delay line: If consecutive and overlapping elements of a given array
are accessed over consecutive iterations of a loop, it is beneficial to store the
array in a linearly-connected set of shift-registers[30]. The registers can be con-
currently accessed, thus data can be processed in parallel. The cost of achieving
such optimization is the chip area for the registers and the multiplexing tree,

2.4 Design methodology 37

hence the RU size limits how big an array can be implemented with registers.

Data layout and distribution: This technique lays out data in the memory
in certain patterns so that multiple data being processed by an algorithm can
be easily indexed and fetched. For reconfigurable systems that have memory
units distributed on the RU, data layout and distribution are often intertwined
with hardware/software partitioning, thus become very hard to analyze. This
technique has been used by many in ad hoc manner, but the automation is still
a challenge.

Data partitioning and packing: An array can be partitioned into a set of
smaller arrays and distributed on the reconfigurable tile, so that various parts
of it can be processed in parallel. This technique is frequently applied with data
layout and distribution. Data packing is used to pack smaller data into one
pack. It is often used to improve the data transmission efficiency , but it can
also improve the data processing rate and reduce the reconfiguration rate when
applied on reconfigurable systems.

2.4.2.3 Communication analysis

Static single assignment (SSA): SSA transformation is known to be able to
reduce the data traffic by removing false data dependencies[76] at the cost of
extra multiplexer. The work described in [52] shows that the placement of mul-
tiplexer in the software has significant influence on floorplan. If properly placed,
the physical connection on chip can be optimized in terms of communication
delay.

2.4.2.4 Pipeline analysis

Data context switching: If nested loops exist in the application, and the inner
loops have data dependency that stalls the pipelined datapath, the data context
switching can improve the performance[17]. Data context switching interleaves
the outer loop execution by mixing different outer loop iterations in time. The
cost of data context switching for reconfigurable system is the extra temporary
storage and multiplexer tree in the pipelined datapath. E.g. if different outer
loop iterations use different set of data as inputs, the data set should be stored
into the pipeline with registers. As outer loop interleaves, the data registers are
switched with multiplexing circuit.

38 Survey of the Dynamically Reconfigurable Systems

2.4.3 Profiling

A common observation in hardware/software co-design is that the performance
of the design depends on the partitioning. The quality of the partitioning relies
on the estimation of the application, which is carried out by profiling. For re-
configurable system design, loop-accurate profiling is usually necessary, because
a rougher estimation often results in the waste of reconfigurable resource. The
profiling of an application could be done at program run-time or simulation time,
depending on how it fits the methodology. Profiling should not only track the
loop execution frequency, but also estimate the area cost of certain algorithm if
implemented in hardware.

2.4.3.1 Run-time profiling

Run-time profiling usually requires compiler support. When an application is
compiled for profiling, compiler adds counters into various parts of the appli-
cation. At run-time, the corresponding counter is increased when certain part
of the application is executed. The values of counters are reported to the user
as feedback by the end of the profiling run. Run-time profiling only increases
the execution time by a few percent, but it also only gives limited amount of
feedback.

Profiling results can be case-dependent, thus a few profiling results may not be
general enough to be the optimal partitioning guidance. Work presented in [43]
proposes to generate both the software and the hardware implementation of the
same application during design phase. When the application is compiled, both
the complete software executable and the complete hardware implementation
are generated. At application run time, application still generates profiling
information, which is used to point out which part of the application should be
executed with hardware.

2.4.3.2 Simulation-time profiling

Simulation-time profiling occurs at design and compile-time. It can give pro-
grammer more detailed feedback information, and the simulation can be very
accurate. The costs of this profiling method are the effort of designing an ac-
curate simulation model of the reconfigurable system and very long simulation
time. The simulation time of an algorithm is frequently thousand to million
times longer than the algorithm run time, depending on the accuracy of simu-
lation and the complexity of the system being simulated.

2.4 Design methodology 39

Traditional simulation-time profiling runs the user application on a software-
emulated processor, thus increases the simulation time greatly. The work de-
scribed in [89] suggests to use a hardware-emulated processor instead of the
software-emulated version. The idea is to synthesize the execution platform of
the application, e.g. an instruction-set processor, onto an FPGA with super-
vising profiling counters. Users can run their applications on the synthesized
processor and extract the profiling counter value from the FPGA when the sim-
ulation is finished. To facilitate this profiling method, an actual RTL model of
the execution platform has to be built, and it can be a non-trivial task.

2.4.3.3 Profiling feedback

The main interest in profiling the reconfigurable system’s application is to know
the execution frequencies and latencies of loops. The most frequently executed
loops, or kernels, are the critical candidates to be mapped to the RU. The FLAT
profiler[94] and many others[61][50] focus on the loop-profiling and function-call-
profiling. Their profiling results show the detailed timing break-down of the user
applications.

In order to reveal more detailed hardware nature of an application before parti-
tioning, many profiling tools quickly estimate the synthesized result of the ap-
plications in terms of area. As described in [57], the area-bitwidth relationship
of arithmetic operations are categorize into 5 types. E.g. the area of addition
and multiplication unit increases linearly and quadratically, respectively, if bit-
width increases. This estimation method is built into the SA-C compiler and
shown to have 90% accuracy.

2.4.4 HW/SW partition

Partitioning greatly impacts how efficiently the RU can be used, thus has been
discussed frequently. Traditional HW/SW partitioning methods can be used on
many reconfigurable architectures, but they do not take full advantage of the
flexibility of the reconfigurable systems. Many recent work proposed novel parti-
tioning techniques to cope with some special characteristics of the reconfigurable
system.

40 Survey of the Dynamically Reconfigurable Systems

2.4.4.1 General partitioning strategy

The partitioning techniques for reconfigurable devices are very similar to tradi-
tional ones. Most frequently executed tasks that can be parallelized are mapped
to hardware[61][94], and the size of the hardware constrains the partitioning.
More advanced partitioning tools take communication and data locality into
account, and apply heuristics to analyze various partitioning strategies.

Reconfigurable architecture makes the partitioning a bit more complicated. Be-
sides increasing the system performance and reducing data communication[34], a
good partitioning strategy should also increase the configuration reusability[53][18],
reduce memory latency[46] and fully use the reconfigurable resource[61]. How-
ever, heuristics used in solving traditional partitioning problems still fit the
reconfigurable architecture if their cost functions can cope with additional com-
plexity.

2.4.4.2 Partitioning for reconfiguration

A hardware task may be too large to be mapped onto the on-chip reconfigurable
unit completely. In case this happens, the oversized task can be partitioned into
several smaller tasks and be executed separately in time. As shown in figure
2.22 [63], a task graph can be evenly and efficiently divided into several stages,
each of which can fit into available reconfigurable unit. The staging determines
the communication among tasks. If the communication can not be localized in
the RU, minimizing the communication can be an interesting issue to address.

Figure 2.22: The temporal partitioning of oversized task[63]

Multi-context FPGAs can benefit greatly from such temporal partitioning[62][36][105].
Data communication among different time stages can simply be localized by

2.4 Design methodology 41

using memory elements in the RU, thus results in almost no communication
overhead. Since multi-context FPGAs can switch the configuration in one clock
cycle, tasks being temporal-partitioned can be executed seamlessly. Also, the
partitioning algorithm can spend less effort evaluating the communication cost,
which greatly reduces the compilation time.

2.4.5 Scheduling

Instruction-level scheduling is frequently used for coarse-grained datapath-coupled
architectures. Most of these schedulers explore fine-grained parallelism in the
application and schedule the instructions on the reconfigurable unit statically.
The scheduling issue often resembles an instruction-level placement and rout-
ing issue. For architectures that rely on multi-context support to execute
kernels[75], their statical instruction-level scheduling issue is a 3D placement and
routing issue[76], since time-axis also need to be considered. Modulo scheduling
algorithm based algorithms[91] solve these problems quite efficiently.

2.4.6 High-level synthesis

Software and hardware designers have very different understanding about com-
putation. Software designers view a computing system as a sequence machine
that has virtually infinite amount of resources, but hardware designers try to
explore parallelism on limited resources. For hardware designers, the flexi-
bility that software designers desire is difficult to translate into hardware de-
scription. At the current stage, advanced software programming technique like
polymorphism, use of pointers, multi-dimensional data structure or recursion are
still difficult to convert into hardware[42]. But fortunately, most computation-
hungry parts of user application are presented in loops, which can often be
represented with arithmetic units, memories and counters. Even if several lim-
itations exist, many application programmed in high-level language that can
benefit from hardware acceleration can still be partially synthesized.

The most frequently used strategy of high-level logic synthesize is to convert
the optimized and partitioned high-level software description into a hierarchy of
finite state machines (FSM)[59][56]. The logic part of the FSM implements the
core algorithm. Synthesis techniques like pipelining and multi-cycle data path
are frequently used[50]. Retiming and clock-gating have also been discussed[91].
The control part of the FSM acts as a data access arbitrator. It keeps track
of a set of counters to generate memory addresses if external memory needs to
be accessed. The data exchange among tasks, operating system controls and

42 Survey of the Dynamically Reconfigurable Systems

resource sharing should be planned at synthesis-time and carried out by the
FSM control part at run-time.

Some of the research is dedicated to compiling certain intermediate software
presentation into an RTL hardware description. The Stanford SUIF2[2] and
OCAPI-xl[100] can be used as frontend tools that generate parallel presentation
of user application. The more recent achievement SPARK[42] takes C program
as input and produces RTL VHDL code that is compatible to Synopsys Design
Compiler and Xilinx XST/ISE tool chain. These approaches more or less follow
the FSM based approach and extend it in various ways.

2.5 Conclusion

A reconfigurable system’s coupling method has decisive influence on the system’s
scalability and reconfigurability, as shown in figure 2.23. Attached processing
units and Stand-alone processing units are very loosely coupled to the host
processors. They are usually off-chip, thus can grow very large in size. Due to
the size, the tool chain, the control methods and the application domain, these
systems scarcely need to be reconfigured dynamically. Much work has been done
to improve these systems, but dynamic reconfiguration is not yet an interesting
topic for them.

Reconfigurable

Scalable

Datapath

coupled

Coprocessor

coupled

Attached

processing

unit

Stand-alone

processing

unit

Figure 2.23: Scalability and reconfigurability contradiction[63]

The datapath-coupled system is another extreme. These reconfigurable units
are used as special functional units, thus have limited data bandwidth and
complexity. Many of these architectures have multi-context support to achieve
single-cycle dynamic reconfiguration. These systems are relatively flexible to use
and friendly to program, and demand little from compiler and operating system.
But due to their limited scalability, the performance of these architectures is
not much faster than a state-of-the-art Multi-Processor System-on-Chip system.
Even if not yet recognized by many, we believe that the scalability is one of the
critical issues to be addressed.

2.5 Conclusion 43

The coprocessor-coupled systems are the most complicated yet interesting ones.
In theory, their RUs can be easily upscaled, no matter whether the RU is a
single unit or composed of multiple cores. They are ideal platforms to support
multi-threading, and have great potential to improve the performance of the
host processor. However, due to the reconfiguration overhead, the extremely
high design complexity, the unpredictable dynamic behavior, the limited pro-
grammability, the complicated run-time resource management, etc, these sys-
tems are still very far from being put to practice. From previous study, we
observed that not only is such system hard to design, but the interplay among
the architecture design, the methodology design and the run-time system design
makes it extremely complicated to evaluate and optimize.

What coprocessor-coupled system research needs is not a few more new tech-
niques to improve performance or help partitioning, but a user-friendly inte-
grated system-level simulation framework. Such a framework can be used to
gain better understanding of these systems’ behavior and to evaluate various
techniques. Due to the complexity of reconfigurable systems, building such a
simulation framework is an ambitious and open-ended project. We believe that
such an integrated environment can help people understand the coprocessor-
coupled reconfigurable systems better, and intrigue people to create more prac-
tical ideas.

Before we can build our simulation framework, the reconfigurable system and its
application has to be modelled. In order to make our model realistic, we carried
out a few partial reconfiguration experiments on commercial FPGAs. Through
the experiments, we also got to know how mature the commercial FPGA is,
what potential these devices have, and what improvement is urgently needed.

To conclude, we would like to continue our study by experiencing the commer-
cial FPGA’s partial reconfiguration flow, studying the scalability of datapath-
coupled architectures, and proposing a simulation framework that can capture
the dynamic behavior of the coprocessor coupled architectures. Our discoveries
are recorded in the next few chapters.

44

Chapter 3

A Reality Check Based on

FPGA Architectures from

Xilinx

FPGA technology has mainly been used as a means of rapid prototyping for
ASIC designs. From a fabrication’s point of view, FPGAs are general-purpose
devices produced in extraordinarily high volumes, allowing FPGAs to take ad-
vantages of the latest semiconductor technologies and improve their densities
and speed. These characteristics effectively reduce the performance gap be-
tween FPGAs and ASICs over generations.

Recently, several FPGA vendors have investigated the potential of the dynamic
reconfiguration of their logic devices, and try to bring the device reusability
to a new level. Xilinx proposed a technology called partial reconfiguration[11],
which enables an FPGA to be partitioned into several logically non-committed
modules that can be reconfigured and assembled at run-time. On its quest to
support dynamic reconfiguration, Xilinx introduced an Internal Configuration
Access Port (ICAP) which allows the device configuration to be accessed and
modified internally. Having ICAP on-chip leads to an easy and efficient way of
building a run-time self-reconfigurable system, in which a (soft-)processor can
access the ICAP device through a user-friendly configuration controller.

46 A Reality Check Based on FPGA Architectures from Xilinx

The current research trend in dynamic reconfigurable systems is focused on
tightly coupled architectures, such as coprocessors or datapath coupled architec-
tures. For this purpose, the Xilinx Virtex family appears to be an ideal prototyp-
ing platform, hence many proposed architectures and design methodologies[104]
have been prototyped and experimented on the Xilinx device.

In this chapter, we present a reality check on the state-of-the-art support for
dynamic reconfiguration based upon the Xilinx Virtex family of FPGAs. Our
main objective is to understand how the partial reconfiguration is carried out on
Virtex FPGA, what design methodologies has been applied to support partial
reconfiguration, what scenario a reconfiguration goes through and how friendly
it is for a software programmers to reconfigure the Xilinx device. We also
pinpoint the existing design pitfalls, and propose solutions to overcome some of
these issues.

3.1 The Virtex configuration organization

Virtex family has a column-based organization that offers modest configuration
flexibility[12]. As shown in figure 3.1, the configuration memory of the FPGA is
organized as a one-dimensional array of heterogeneous columns. Depending on
the type of the column, different numbers of storage frames are needed to store
the column configuration. For instance, for any Virtex and Virtex-E FPGA, a
CLB column always contains 48 frames while a memory column always contains
64 frames.

I
O

B

c

o
l

u
m

n

(
5

4

f
r

a
m

e
s

)

B

R

A

M

D

c

o
l

u
m

n

(
6

4

f
r

a
m

e
s

)

B

R

A

M

I

c
o

l
u

m

n

(
2

7

f
r

a

m

e
s

)

C

L

B

c

o
l

u
m

n

(
4

8

f
r

a
m

e
s

)

...

I
O

B

c

o
l

u
m

n

(
5

4

f
r

a
m

e
s

)

B

R

A

M

D

c

o
l

u
m

n

(
6

4

f
r

a
m

e
s

)

B

R

A

M

I

c
o

l
u

m

n

(
2

7

f
r

a

m

e
s

)

C

L

B

c

o
l

u
m

n

(
4

8

f
r

a
m

e
s

)

...

C

L

B

c

o
l

u
m

n

(
4

8

f
r

a
m

e
s

)

C

L

B

c

o
l

u
m

n

(
4

8

f
r

a
m

e
s

)

G

C

L
K

c

o
l

u
m

n

(
8

f
r

a
m

e
s

)

Figure 3.1: Xilinx Virtex’s column based configuration memory structure

As shown in figure 3.2, columns are organized as a 1D array of frames. All

3.2 Xilinx dynamic reconfiguration design flows 47

frames are single-bit wide and span from top to bottom within their designated
column. Data stored in a frame is hard to interpret. E.g. for the xcv1000
FPGA, each column contains the configuration of 64 CLBs. Each CLB needs
approximately 864 bits to specify its configuration, including the local routing
configuration. These 864 configuration bits for a single CLB are distributed into
48 frames so that each frame only contains 18 bits of the CLB configuration.
I.e., each frame contains a small portion of these 64 CLB configurations, making
the data stored in a frame almost unreadable.

 2 IOBs

2 IOBs

CLB64

...

CLB2

CLB1

frame48

frame1
 frame47

frame2
 ...

18 bits

1 bit

Figure 3.2: One column of a xcv1000 CLB

For each generation of the Virtex family, the column-frame organization varied
slightly, but the column-frame based backbone has largely been the same. The
understanding of the column-frame based architecture is essential in order to
understand the mechanisms which enable and limit the Xilinx partial reconfig-
uration methodologies. Xilinx partial reconfiguration design flows, introduced
in the next section, can be viewed as “frame content manipulation”.

3.2 Xilinx dynamic reconfiguration design flows

Xilinx has two documented dynamic reconfiguration flows: module-based design
flow and difference-based design flow[11]. In general, the module-based design
flow is suitable for systematic design of larger systems. In this flow, the partial
reconfigurable units are modularized so that all the partial designs are imple-

48 A Reality Check Based on FPGA Architectures from Xilinx

mented in the same manner. The cost of this flow is the inevitable high storage
cost and long reconfiguration latency. The difference-based design flow takes
advantage of the existing correlation between partial designs. This design flow
is mostly suited for very small systems.

3.2.1 Module-based design flow

The module-based design flow is an area-constraint driven design methodology.
It is extended from the modular design flow[3] that is commonly used in large-
scale ASIC/FPGA design. Figure 3.3 shows the complete design/reconfiguration
flow. The objective of this flow is to create an initial bitstream and a set
of independent partial bitstreams. The initial bitstream is downloaded to the
device as the default device setup, while the partial bitstream is downloaded
when needed during run-time.

Design entry

HDL entry/synthesis

(top-level design)

Run-time partial

reconfiguration

Partial bitstream

Creation

Download to a

Xilinx device

(initial configuration)

Final Assembly

(Top-level design and

modules)

Design entry

HDL entry/synthesis

(module)

Initial budgeting

(top-level design)

Active module

implementation

(module)

 Mapping

 Placement

 Routing

 Mapping

 Placement

 Routing

Standard modular

design flow

Partial reconfiguration

design flow extension

static

dynamic

Figure 3.3: Module-based design flow (based on figure 4-1 from [3])

3.2 Xilinx dynamic reconfiguration design flows 49

During floor-planning, the FPGA is partitioned into several non-overlapping re-
gions, which are conceptually viewed as reconfigurable units. During placement
and routing, each partial design is completely fitted into a region. When a par-
tial design is downloaded, a region is reconfigured without affecting the rest of
the FPGA.

The communication among regions is implemented with on-chip tristate buffers
or multiplexors. The communication interface is persistent even if the region
can be reconfigured. This requires that all partial designs, which are allocated
to the same region, have identical physical interface. The logic units used for
communication are not to be reconfigured.

Pitfalls: The module-based design flow is scalable and systematic, and the
designer does not need to know low level details about the device. The area,
timing and storage cost for each reconfiguration is constant for each region.
However, many problems exist in this flow. Our experiments discovered that
the same submodule can have different clock trees before and after the assembly
phase, as shown in figure 3.4. The Xilinx design environment may have tried to
reduce the clock skew during the assembly phase, but it leads to the discrepancy
between two layouts of the same circuit. This problem may lead to constant
clock skew among different modules, and may require extra synchronization
units to be added to the user design. A hypothetical solution to this problem is
to use the assembled design as the guidance to create the partial bitstream so
that the partial design can have optimized timing as the assembled design.

a. before assembly phase

(a partial module)

b. after assembly phase

(part of initial module)

Clock net
 Clock net

Figure 3.4: Two different clock nets of the same logic unit

Another problem of the design flow is that the partial reconfigurable bitstream
can only be placed to a fixed region. Since the partial bitstream is region-specific,
if a partial design need to be placeable to two regions, two partial bitstreams
must be generated. This increases the cost of storing the partial bitstream, and

50 A Reality Check Based on FPGA Architectures from Xilinx

the design is not as flexible as expected.

Finally, the design methodology is fundamentally an area-constrained placement
and routing (P&R) process. There is no hardware support to guarantee the
successful partial P&R, thus the layout level design is subject to P&R errors.
Many pre-synthesized cores are partially placed and routed during RTL design
phase in order to satisfy specific timing/area constraint, and these cores may
not even be able to fit into many user partitions without violating performance
constraints or design rules. A highly automated implementation of a partial
design is still not available, since constrain violation and P&R errors are hard
to eliminate by the current software support.

3.2.2 Difference-based design flow

Difference-based design flow is currently very inefficient for large design. The
principle of this flow is as the following: Suppose there are two placed and routed
circuit descriptions, namely A and B. Instead of creating a full configuration bit-
stream for each of them, we only create the full configuration bitstream of A. For
design B, we compare its circuit description frame-by-frame with that of design
A, note down all the different frames between A and B, and then create a partial
reconfiguration bitstream that only modifies the frames with differences. With
this partial configuration bitstream, we can dynamically reconfigure design A,
which must already be downloaded into the FPGA, into design B. Compared to
the module-based design flow, the frames being reconfigured does not need to be
consecutive, and the timing/storage cost of performing such a reconfiguration is
proportional to the number of different frames, plus some overhead. Apparently
the cost of this design flow can be low only if design A and B resemble each
other on the layout level.

Pitfalls: At current stage, there is no automated ways of making two unrelated
designs similar at the layout level, thus this design flow heavily relies on manual
work. Usually the designer will start from a placed and routed design description
and manually identify the possible modifications at layout level. Hence, only
very simple applications can take advantage of this design flow and really get
some benefits, even if this design flow provides fast frame-level reconfiguration.

Another issue is that a specific configuration must be on the device before certain
partial configuration bitstreams can be used. If the reconfiguration from any n
possible configurations to any other n−1 configurations has to be achieved by a
single reconfiguration, n(n− 1) configuration bitstreams have to be created and
stored in the system memory. A possible solution for reducing memory overhead
is to perform a two-hop reconfiguration. If a common neutral configuration can

3.3 ICAP 51

be found for a reconfigurable unit, we can reconfigure any reconfigurable unit
from the current configuration to the neutral configuration, and then from the
neutral configuration to the target configuration. This solution can reduce the
memory requirement from n(n − 1) to 2n by doubling the configuration time.
However, this is only feasible when the neutral configuration is similar to most
of the possible configurations, thus keeping all configuration bitstreams small.

3.3 ICAP

The ICAP is a simplified substitute of the Xilinx SelectMap reconfiguration solu-
tion, which is a byte-parallel external reconfiguration interface that can achieve
the highest possible reconfiguration speed on Xilinx devices. It is assumed that
the ICAP will only be used for partial reconfiguration, since the part of the
FPGA that controls the ICAP must never be reconfigured through ICAP. Xil-
inx offers device drivers in the latest embedded system development kit (EDK)
releases and offers an API that can easily control this device.

Theoretically, the ICAP device can load one byte of configuration data each
system clock cycle. Xilinx has reported that the minimum reconfiguration time
of each xc2v1000 frame is 13 µs[16]. However, experiments have shown that in
practice the Xilinx device driver is much less efficient. The timing cost of loading
a frame from memory and sending it to the ICAP device buffer dominates the
reconfiguration process. According to our ModelSim simulation the actual cost
to reconfigure a xc2v1000 frame is increased to 69 clock cycles per word, and it
will be even slower if the memory hierarchy is more complicated. This results
in a frame reconfiguration time of around 300µs at 66 MHz, if the overhead
is included. As long as the software scheduling and the caching technique lags
behind, the speed potential of ICAP will be greatly limited.

3.4 Conclusions

From our experience, we can hardly say that the Virtex device is dedicated
and advanced enough to be the experimental platform for most of the recent
researches. From the frame/column structure, we can see that the CLBs, which
are the ideal atomic reconfiguration unit, are indexed in an awkward way in
the configuration memory. From our analysis of bitstream composition, we
discovered that loading a configuration to non-consecutive configuration memory
location costs extra configuration latency, thus many unnecessary timing penalty

52 A Reality Check Based on FPGA Architectures from Xilinx

is added when reconfiguring the Virtex devices. This latency can not be reduced
unless the frame/column based structure is changed.

Various computation resources, e.g. multipliers, digital signal processing units
and memory elements, are distributed on the FPGA in a non-uniform manner.
This complicates the partitioning of an FPGA. Which part of an application can
be mapped to which partition is a difficult issue to analyze, since the designer
must have minute knowledge about both the application and the resource dis-
tribution of each partition. Even if the synthesis tool can assist the designers,
such analysis is still a time-consuming task.

A digital circuit’s implementation is device dependent, thus a partial bitstream
can only be used on the same type of FPGA. The circuit implementation is also
partition-specific, thus each partial design can only be run on one specific FPGA
partition. If an algorithm needs to be executed in multiple partitions, each
partition has to have its own copy of the same algorithm implemented. This issue
makes the memory cost of the configuration very high, and the management of
multiply algorithm can be challenging.

The partial configuration latency is another issue. Suppose that a Virtex 4
LX 25 device, which is a rather small FPGA, is partitioned into two modules.
Depending on the reconfiguration methods, the reconfiguration latencies range
from tens of milliseconds to seconds. If we assume that the reconfiguration
latency costs one percent of the total application execution time, the reconfig-
uration is only allowed to occur on second or minute bases. It is hard to argue
what kind of applications can benefit from such a low reconfiguration rate.

”To help minimize problems related to design complexity, the number of re-
configurable modules should be minimized (ideally, just a single reconfigurable
module, if possible). This said, the number of slice columns divided by four
is the only real limit to the number of defined reconfigurable module regions.”
1 No matter how pessimistic it sounds, it is an honest assessment for current
state-of-the-art commercial FPGA. Virtex series FPGA have some potential in
terms of partial reconfiguration, but are currently not suitable for implementing
highly complicated reconfigurable system due to many shortcomings in their ar-
chitectures and methodologies. It is feasible to built small-scaled systems with
two reconfigurable units that can communicate with each other. But beyond
that, there will be too many physical limiting factors which effectively reduce
the system efficiency. We conclude that the current FPGA can only be used
for demonstration purpose with toy applications, but it is not a satisfactory
platform for building highly, or even moderately, complex and advanced recon-
figurable systems, which is the aim of the reconfigurable research community.

1Quoted from Xilinx Application Note 290.

Chapter 4

MT-ADRES: Multithreading

on Coarse-Grained

Reconfigurable Architecture

Datapath-coupled architectures are generally hard to upscale but easy to recon-
figure, thus how to increase the scalability of these architecture is an interesting
yet challenging issue. To investigate the performance bottleneck and the scal-
ability of the state-of-the-art datapath-coupled reconfigurable architectures, we
studied the coarse-grained reconfigurable architecture ADRES (Architecture for
Dynamically Reconfigurable Embedded Systems) developed by IMEC, Belgium.
Through our research, we understood the advantages and the limitations of
datapath-coupled architectures, and proposed to explore task-level parallelism
to improve the scalability of similar architectures.

In this chapter, first we give a short introduction to the ADRES architecture,
point out its limitation, and propose to apply multi-threading on ADRES. Then
we discuss how the ADRES architecture can be extended to support multi-
threading, and how the ADRES compilation tool flow needs to be extended to
cope with that. We continue our work by running a dual-threaded MPEG2 de-
coder on a customized ADRES architecture to demonstrate that multi-threading
is feasible for ADRES. Through the MPEG2 experiment we discovered some de-
sign pitfalls that hinder the performance of the threaded ADRES, and discussed

54

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

Figure 4.1: ADRES architecture template and its two operation modes

what technologies can further improve the performance of the multi-threaded
ADRES. Finally, we conclude our study and discuss what issues need to be
addressed in future work.

4.1 Introduction

The ADRES architecture template is a datapath-coupled coarse-grained recon-
figurable architecture [75]. As shown in Figure 4.1, it resembles a very-long-
instruction-word (VLIW) architecture coupled with a 2-D Coarse-Grained het-
erogeneous reconfigurable Array (CGA). The CGA is an extension of the VLIW
rather than a reconfigurable unit attached to it, and the computation power of
the VLIW can also be used by the CGA when necessary. The ADRES archi-
tecture brings the coarse-grained logic design to its extreme by employing the
heterogeneous functional unit (FU) as the atomic logic unit of the CGA, hence
reduces the requirements of the configuration memory size to the minimum and
enables the multi-context storage support. Since the CGA is an array of FUs,
the programmer can use a high-level language to program his/her application,
therefore can focus more on exploiting the instruction-level parallelism of the
application instead of the data-level parallelism.

As ADRES is defined using a template, many design factors can vary depending
on the use cases. In principle, FUs that are connected to the global register

4.1 Introduction 55

files are usually defined as parts of the VLIW, and any FU can be defined as
part of the CGA. But in practice, there is no constraint of how many FUs
can be used as VLIW functional units, or how many FUs can be excluded
from the CGA. As a result, the boundary between the VLIW and the CGA is
usually blurred, thus ADRES offers more freedom for the designer to improve the
architecture performance. The interconnection among FUs are also described in
the template. The designer can freely experiment with the use of buses, on-chip
network (NoC) of various topology, or even the mix of them to study the impact
on the communication and the implementation cost. The designer can also tailor
the instruction set supported by each FU, and investigate what combination or
distribution of the instruction set is optimal for a specific application. The
architecture described in the template can have arbitrary size and complexity,
and the feasibility of the physical implementation does not impose any constraint
in such an early development stage.

The processor operates either in the VLIW mode or in the CGA mode. When
compiling an application for ADRES with the DRESC compiler [76], the ap-
plication is partitioned into kernels and control codes. The kernels and the
control codes are modulo-scheduled for the CGA or compiled for the VLIW,
respectively, by the DRESC compiler. By defining several FUs that can access
the global data register file and sharing them between the VLIW mode and the
CGA mode, the global data register file serves as a data interface between two
modes, enabling an integrated compilation flow. By seamlessly switching the
architecture between the VLIW mode and the CGA mode at run-time, stati-
cally partitioned and scheduled applications can be run on the ADRES with a
high number of instructions-per-clock (IPC).

As shown in figure 4.2, the DRESC tool chain is an integrated environment for
both the application compilation flow and the architecture synthesis flow. The
application compilation tool chain uses C programs as input. The C program
is iteratively profiled and transformed to ease the exploitation of parallelism.
When frequently-executed algorithm kernels are identified during profiling, the
application is partitioned into two parts to be executed separately on the CGA
and the VLIW. The generation of the code is dependent on a specific instance of
the ADRES architecture, thus the architecture abstraction is used as a reference
of mapping constraint during the compilation. The generated binary code is
then verified with various architecture-dependent simulators.

The architecture design flow starts with an architecture generator programmed
in PHP, which is a general-purpose scripting language. The PHP generator reads
a highly abstract user-defined architecture specification and generates an XML
architecture description, which includes detailed descriptions of each functional
unit and communication device. The XML architecture description is then
parsed into several simulation models by several tools, including a Register-

56

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

c

Profiling/partitioning

Transformation

IMPACT front-end

Lcode
ILP front-end

Register allocation

Dataflow analysis

CGA scheduling
Code generation

Kernel scheduling

PHP architecture gen

XML arch. description

Architecture parser

Architecture abstraction

Architecture simulator

Mapping

Assembler/linker

executable
 Esterel simulator

FPGA demo

ASM code

Application design flow
 Architecture design flow

Figure 4.2: DRESC, the ADRES compilation flow

Transfer Level (RTL) simulation model generator. After the application compi-
lation tool chain generates the program binary code, it is loaded into the memory
modules of the simulation models for functional verification. The correctness of
the design can be verified by downloading the synthesized RTL model into an
FPGA.

Earlier study on single-threaded ADRES is based on the MPEG2 decoder. We
have observed [73] that most MPEG2 decoder kernels can be scheduled on the
CGA with the IPC ranging from 8 to 43. Some of the most aggressive archi-
tecture instances have the potential to execute 64 instructions per clock cycle,
but few kernels can utilize this level of parallelism, resulting in a much lower
average IPC. This is caused by two reasons: (1) The inherent ILP of the kernels
are low and cannot be increased efficiently even with loop unrolling, or the code
is too complex to be scheduled efficiently on so many heterogeneous units due
to certain resource constraints, for example the number of memory ports. (2)
The CGA is idle when executing sequential code in VLIW mode. The more se-
quential code is executed, the lower the achieved application’s average IPC, and
in turn, the lower the CGA utilization. This is commonly known as Amdahl’s
law [14]. In conclusion, even though the ADRES architecture is highly scalable,
we are facing the challenge of getting more parallelism out of many applications,
which fits better to be executed on smaller ADRES arrays.

Knowing that the instruction-level and the loop-level parallelism (LLP) explo-
rations have their limitation, we need a new strategy to increase the utilization of

4.1 Introduction 57

the ADRES. The ADRES architecture has a large amount of FU, thus the most
appealing approach for increasing the application parallelism would be to employ
simultaneous multi-threading (SMT) [32] and exploit the application’s task-level
parallelism. Such architecture for the domain of supercomputing has been devel-
oped at UT Austin [20]. However, as the ADRES implementation applies static
scheduling due to low-power requirements, such dynamic/speculative [13, 83]
threading is not practical. Instead, our threading approach identifies an appli-
cation’s coarse-grained parallelism based on static analysis.

If properly reorganized and transformed at programming time, multiple ker-
nels in the same application can be efficiently parallelized by the application
designer. We can statically identify the low-LLP kernels through profiling, es-
timate the optimal choice of ADRES array size for each kernel, and partition a
large ADRES array into several small-scaled ADRES sub-arrays that fits each
kernel, which is parallelized into a thread if possible. When an application is
executed, a large ADRES array can be split into several smaller sub-arrays for
executing several low-LLP kernels in parallel. Similarly, when a high-LLP kernel
needs to be executed, sub-arrays can be unified into a large ADRES array. Such
a multi-threaded ADRES (MT-ADRES) is highly flexible, and can increase the
overall utilization of large-scaled ADRES arrays when the LLP of application is
hard to explore.

As discussed earlier, the DRESC tool chain is highly robust and complicated,
thus having the complete DRESC updated for threading is not a trivial task.
We propose how the threading can be augmented to the DRESC tool chain
and presents a demonstrative dual-threading experiment on the MPEG2 de-
coder implemented on top of the current single-threaded architecture and its
matching compilation tools. Through this experiment, we have proven that the
multithreading is feasible for the ADRES architecture, and that the scalability
of ADRES can be greatly improved.

Previously, a superscalar processor loosely coupled with a reconfigurable unit
has been presented in [99]. Their approach enables the superscalar processor
and the reconfigurable unit to execute different threads simultaneously. The
CUSTARD architecture presented in [29] has a tighter coupling between the
RISC and the reconfigurable unit. Their architecture and tools support the
block/interleaved multithreading. To our knowledge, the parallelism supported
by the reconfigurable unit has not been exploited by threading so far, and the
MT-ADRES is the first attempt to support SMT both on the processor and the
reconfigurable unit.

58

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

Split 1

Split 2

Split 3
 8x4

4x4
4x4

2x4
 2x4

2x3+1
 1x1

Split 1

Split 2

Split 3

2x4
 2x4

Figure 4.3: Scalable partitioning-based threading

4.2 ADRES Multithreading

We propose a scalable partitioning-based threading approach for ADRES, as
shown in Figure 4.3. A large ADRES instance can be partitioned into two
or more sub-arrays, each of which can be viewed as a down-scaled ADRES
architecture and be partitioned further down hierarchically. Such a flexible
threading strategy enables the designers to experiment on the combination of
threading and partitioning in one compilation/synthesis environment, hence can
be integrated into the DRESC tool chain. This technique can serve as a template
for future FPGA-like platforms.

In practice, each thread has its own resource requirement. A thread that has
high fine-grained parallelism requires more computation resources, thus execut-
ing it on a larger partition results in the optimal use of the ADRES array and
vise versa. A globally optimal application design demands that the programmer
knows the IPC of each part of the application, so that he can find an efficient
array partition for each thread. A programmer starts from a single-threaded
application and profiles it on a large single-threaded ADRES. From the pro-
filing results, kernels that has low IPC and are less dependent to the other
kernels are identified as the high-priority candidates for threading. Depending
on the resource demand and the dependency of the threads, the programmer
statically plans on how and when the ADRES should split into partitions during
application execution.

4.2.1 Architecture Design Aspects

The FU array on the ADRES is heterogeneous. There exists dedicated memory
units, special arithmetic units and control/branch units on the array that con-
strain the partitioning. When partitioning the array, we have to guarantee that
the thread being executed on certain partition can be mapped. This requires

4.2 ADRES Multithreading 59

that any instruction invoked in a thread to be supported by at least one of the
functional unit in the array partition. The well-formed partitions usually have
at least one VLIW FU that can perform branch operation, one FU that can
perform memory operation, several arithmetic units if needed, and several FUs
that can handle general operations. Optimally partitioning the ADRES also
requires a good understanding about the kernel, so that the partition can offer
enough parallel resources to match the kernel’s demand.

On the ADRES architecture, the VLIW register file (RF) is a critical resource
that can not be partitioned easily. The most recent ADRES architecture em-
ploys a clustered register file that has previously been adapted in VLIW ar-
chitectures [106, 22]. If we prohibit the RF bank to be shared among several
threads, the RF cluster can be partitioned with the VLIW/CGA, and the thread
compilation can be greatly simplified. In case a single global RF is used, the
register allocation scheme must be revised to support the constrained register
allocation, as suggested in our proof-of-concept MPEG2 experiments.

The ADRES architecture requires ultra-wide memory bandwidth. Multi-bank
memory has been adapted to recent ADRES architecture [74], and proven to
cope nicely with the static data-allocation scheme used in DRESC. On ADRES,
the memory and the algorithm core are interfaced with a crossbar with queues.
Such a memory interface offers a scratchpad style of memory presentation to
all the load/store units, thus the multi-bank memory can be used as a shared
synchronization memory.

Besides the shared memory, other dedicated synchronization primitives like
register-based semaphores or pipes can also be adapted to the ADRES tem-
plate. These primitives can be connected between pairs of functional units
that belongs to different thread partitions. Synchronization instruction can be
added to certain functional units as intrinsics, which is supported by the current
DRESC tools.

In the single-threaded ADRES architecture, the program counter and the dy-
namic reconfiguration counter is controlled by a finite-state-machine (FSM) type
control unit. When implementing the multithreading ADRES, we need an ex-
tendable control mechanism to match our hierarchically partitioned array. As
shown in Figure 4.4, we duplicate the FSM type controller and organized the
controllers in a hierarchical manner. In this multithreading controller, each pos-
sible partition is still controlled by an FSM controller, but the control path is
extended with two units called merger and bypasser. The merger and the by-
passer form a hierarchical master-slave control that is easy to manage during
program execution. The merger path is used to communicate change-of-flow in-
formation to the master controller of a partition, while the bypasser propagates
the current PC or configuration memory address from the master to all slaves

60

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

ADRES

partition 1

PC/mode

control 1

Merger 1

ADRES

partition n

PC/mode

control n

Merger n

ADRES

partition 2

PC/mode

control 2

Merger 2

Bypasser 2
 Bypasser n

ADRES

partition 3

PC/mode

control 3

Merger 3

Bypasser 3

...

PC 1/cfg 1
 PC 3/cfg 3
PC 2/cfg 2
 PC n/cfg n

Figure 4.4: Hierarchical multithreading controller

within a partition.

The principle of having such a control mechanism is as follows. Suppose we have
an ADRES architecture that can be split into two halves for dual threading,
while each half has its own controller. In order to reuse the controllers as
much as possible, we need each controller to control a partition of the ADRES
when the program is running in dual threaded mode, but also prefer one of the
controller to take full control of the whole ADRES when the program is running
in the single-threaded mode. By assigning one of the controller to control the
whole ADRES, we created the master. When the ADRES is running in the
single-thread mode, the master controller also receives the signal from the slave
partition and merge them with the master partition’s signal for creating global
control signal. At the same time, the slave partition should bypass any signal
generated from the local controller and follow the global control signal generated
from the master partition. When the ADRES is running in the dual-threaded
mode, the master and slave controller completely ignores the control signals
coming from the other partition and only responds to the local signals. This
strategy can be easily extended to cope with further partitioning.

4.2.2 Multithreading Methodology

The multithreading compilation tool chain is extended from the existing DRESC
compiler[76]. With several modifications and rearrangements, most parts of
the original DRESC tool chain, e.g. the IMPACT frontend, DRESC modulo
scheduler, assembler and linker can be reused in our multithreading tool chain.
The most significant modifications are made on the application programming,
the architecture description and the simulator.

4.2 ADRES Multithreading 61

Task 1

Task 2
 Task 3

Task 4

Single-

threaded.c

Thread_A.c
 Thread_B.c

Task 5

Thread_C.c

Figure 4.5: Source code reorganization

Before the threaded application can be compiled, the application needs to be
reorganized. As shown in Figure 4.5, the application is split into several C-
files, each of which describes a thread that is executed on a specific parti-
tion, assuming the application is programmed in C. The data shared among
threads are defined in a global Header file that is included in all the thread
C-files, and protected with synchronization mechanism. Such reorganization
takes modest effort, but makes it easier for the programmer to experiment on
different thread/partition combinations to find the optimal resource budget in
the DRESC environment.

The multithreading ADRES architecture description is extended with the par-
tition descriptions, as shown in Figure 4.6. The partition description is a list
of functional units, interconnection nodes and memory elements. Similar to
the area-constrained placement and routing on the commercial FPGA, when a
thread is scheduled and mapped on an ADRES partition, the instruction place-
ment and routing is constrained by the partition description. The generated
assembly code of each thread goes though the assembling process separately,
and gets linked in the final compilation step.

As in the original DRESC tool chain, the simulator reads the architecture de-
scription and generates an architecture simulation model before the application
simulation starts. As shown in Figure 4.4, each partition has its own controller,
thus the generation of the controller’s simulation model depends on the partition
description as well. Furthermore, the control signal distribution is also partition-
dependent, thus requires the partition description to be consulted during the
simulation model generation.

Some other minor practical issues needs to be addressed in our multithreading
methodology. The most costly problem is that different partitions of the ADRES
are conceptually different ADRES instances, thus a function compiled for a

62

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

Architecture description (XML)

Partition 1
 Partition n
Partition 2
 ...

Non-

threaded.c

Thread_A.c
 Thread_n.c
Thread_B.c

Impact +

modulo

scheduler

Impact +

modulo

scheduler

Impact +

modulo

scheduler

Impact +

modulo

scheduler

Assembler
 Assembler
Assembler
Assembler

Linker

Simulator

RTL VHDL

generator

Power/area

analyzer

Figure 4.6: Multithreading compilation tool chain outline

specific partition cannot be executed on any other partitions. When a function
is called by more than one thread, multiple partition-specific binaries of this
function has to be stored in the instruction memory for different caller. Secondly,
multiple stacks need to be allocated in the data memory. Each time the ADRES
splits into smaller partitions due to the threading, a new stack need to be created
to store the temporary data. Currently, the best solution to decide where the
new stack should be created is based on the profiling, and the thread stacks are
allocated at compile time. And finally, each time the new thread is created,
a new set of special purpose registers needs to be initialized. Several clock
cycles are needed to properly initial the stack points, the return register, etc.
immediately after the thread starts running.

4.3 Experiment

As discussed earlier, the DRESC tool chain is a complicated co-design envi-
ronment. In order to understand what feature is needed in future DRESC tool
chain for supporting the multi-threaded methodology and prove its feasibility, we
carried out an experiment based on the MPEG2 decoder, our well-understood
benchmark. Our objective is to go through the whole process of generating
the threaded application executable, partitioning the instruction/data memory
for threads, upgrading the cycle-true architecture simulation model and suc-
cessfully simulating the execution of MPEG2 decoder with our simulator. By

4.3 Experiment 63

8X4 array

4X4

array

4X4

array

8X4 array

VLD+IQ

MC
IDCT

Add_block

Split

Unify

t
i
m

e

Figure 4.7: Threading scenario on MPEG2 decode

going through the whole process, we can acquire ample knowledge on how to
automate the compilation for threads and simulation/RTL model generation of
MT-ADRES.

4.3.1 Application and Methodology

Our proof-of-concept experiment achieves dual-threading on the MPEG2 de-
coder. The MPEG2 decoder can be parallelized on several granularities [51],
thus is a suitable application to experiment on. We choose the Inverse Dis-
crete Cosine Transform (IDCT) and Motion Compensation (MC) as two paral-
lel threads, and reorganized the MPEG2 decoder as shown in Figure 4.7. The
decoder starts its execution on an 8x4 ADRES, executes the Variable Length
Decoding (VLD) and Inverse Quantization (IQ), then switches to the threading
mode. When the thread execution starts, the 8x4 ADRES splits into two 4x4
ADRES arrays and continues on executing the threads. When both threads
are finished, the two 4x4 arrays unify and continue on executing the add block
function. We reorganized the MPEG2 program as described in Figure 4.5, and
added “split” and “unify” instructions as intrinsics. These intrinsic instructions
are only used to mark where the thread mode should change in the MPEG2’s
binary code. These marks are used by the threading control unit at run time
for enabling/disabling the thread-mode program execution.

The current dual-threading compilation flow is shown in Figure 4.8. The lack of
partition-based scheduling forces us to use two architecture descriptions as the
input to the scheduling. The 8x4 architecture is carefully designed so that the
left and the right halves are exactly the same. This architecture is the execution
platform of the whole MPEG2 binary. We also need a 4x4 architecture, which
is a helping architecture that is compatible to either half of the 8x4 array. This

64

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

8x4 arch
 Unified.c

Simulator

Linker

ASM

Impact +

modulo

scheduler

MC.c
4x4 Arch
IDCT.c

ASM
ASM

Manual

Intervention

Impact +

modulo

scheduler

Impact +

modulo

scheduler

Figure 4.8: Experimental Dual-threading compilation flow

Single-thread

mode

configuration

IDCT

configuration

MC

configuration

Configuration

memory
 Data memory

Instruction

memory

Single-thread

mode

instruction

IDCT

instruction

MC

instruction

IF/CW2

IF/CW1

IF/CW1

IF/CW2

DF 2

DF 1

DF 1

DF 2

0x00

0x20

0x15

0x10

0xFFFF

0xF000

0xE000

0x0000

0x02FFFF

0x000000

Shared

data

memory

IDCT

stack

MC

stack

Single-thread

mode stack

Figure 4.9: Dual-threading memory management

architecture is used as a half-array partition description of the 8x4 architecture.
With these two architectures in place, we compile the single-threaded C-file and
the threads on the 8x4 architecture and the 4x4 architecture, respectively. The
later linking stitches the binaries from different parts of the program seamlessly.

4.3.2 Memory and Register File Design

The memory partitioning of the threaded MPEG2 is shown in Figure 4.9. The
instruction fetching (IF) unit, data fetching (DF) unit and the configuration-
word fetching (CW) unit have been duplicated for dual-threading. The fetching
unit pairs are step-locked during single-threaded program execution. When the
architecture goes into the dual-threading mode, the fetching unit pairs split up
into two sets, each of which is controlled by the controller in a thread partition.

4.3 Experiment 65

Shadow register file
 Shadow register file

Register file
 Register file

Split

Unify

Figure 4.10: Shadow Register file setup

During the linking, the instruction memory and data memory are divided into
partitions. Both the instruction and configuration memory are divided into
three partitions. These three partition pairs store the instructions and config-
urations of single-threaded binaries, IDCT binaries and MC binaries, as shown
on Figure 4.9. The data memory is divided into four partitions. The largest
data memory partition is the shared global static data memory. Both the single-
threaded and the dual-threaded program store their data into the same shared
memory partition. The rest of the data memory is divided into three stacks.
The IDCT thread’s stack grows directly above the single-threaded program’s
stack, since they uses the same physical controller and stack pointer. The base
stack address of the MC thread is offset to a free memory location at linking
time. When the program execution goes into dual-threading mode, the MC
stack pointer is properly initialized at the cost of several clock cycles.

In the future, we aim at partitioning the clustered register file among the array
partitions so that each thread has its own register file(s). However, due to the
lack of a partitioning-based register allocation algorithm at the current stage,
the partitioning approach is not very feasible. We experiment on the ADRES
architecture with a single global register file and go for the duplication based
approach to temporary accommodate the register file issue. As shown in Fig-
ure 4.10, a shadow register file has been added into the architecture. When
the single-threaded program is being executed, the shadow register file is step-
locked with the primary register file. When the program initiate the dual-thread
execution, the MC thread gets access to the shadow register file and continues
the execution on the array partition and shadow register file. When the pro-
gram resume to the single threaded execution, the shadow register file become
hidden again. The MPEG2 program is slightly modified so that all the data be-
ing shared between threads and all the live-in and live-out variables are passed
through the global data memory.

66

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

4.3.3 Control mechanism design

The scalable control concept in Figure 4.4 has been verified in our simulation
model. By having our control scheme tested on the dual-threading, we are
positive that this scheme can be extended to a certain scale, and the control
unit simulation model generation can be automated.

During the program linking, we identify where the “split” and “unify” instruc-
tions are stored in the instruction memory. These instructions’ physical ad-
dresses mark the beginning and the ending point of the dual-threading mode.
During the simulation model generation, these instructions’ addresses are stored
in a set of special-purpose registers in a threading control unit. After the pro-
gram starts executing, the program counter’s (PC) values are checked by the
the threading control unit in each clock cycle. When the program counter reach
the split point, the threading control unit sends control signals to the merger
and bypasser to enable the threading mode. After the program goes into the
threaded mode, the threading controller waits for both threads to join in by
reaching the PC value where the “unify” instructions are stored. The first
thread that joins in will be halt till the other thread finish. When the second
thread eventually joins in, the threading control unit switch the ADRES array
back to single-threaded mode, and the architecture resumes to the 8x4 array
mode. The overhead of performing split and unify operation mainly comes from
executing several bookkeeping instructions on some special-purpose registers,
and such overhead is negligible.

When an application gets more complicated and has multiple splitting/unifying
point, the current approach will become more difficult to manage, thus the future
architecture will only rely on the instruction decoding to detect the “split” and
“unify” instructions. The threading control unit will be removed in the future,
and part of its function will be moved into each partition’s local controller.

4.3.4 Simulation result

The simulation result shows that the threaded MPEG2 produces the correct
image frame at a slightly faster rate. Table 4.1 shows the clock count of the first
5 image frames decoded on the same 8x4 ADRES instance with and without
threading. The cc count column shows the clock cycle count of the overall
execution time when an image frame is decoded, while the decoding time
column shows the clock cycle count between two frames are decoded. The dual-
threaded MPEG2 is about 12-15% faster than the single-thread MPEG2 for the
following reasons.

4.3 Experiment 67

frame single-thread dual-thread single-thread dual-thread speed-up

number cc count cc count decoding time decoding time

1 1874009 1802277

2 2453279 2293927 579270 491650 15.1%

3 3113150 2874078 659871 580151 12.1%

4 3702269 3374421 589119 500343 15.1%

5 4278995 3861978 576726 487557 15.5%

Table 4.1: Clock cycle count of single and dual threaded MPEG2 on the same
architecture

Both IDCT and MC algorithm have high loop-level parallelism, thus can opti-
mally utilize the single-threaded 8X4 architecture. When scheduled on the 4x4
architecture as threads, the IPCs of both algorithms are effectively reduced by
half due to the halved array size, thus the overall IPCs of the non-threaded
and the threaded MPEG2 are nearly the same. As mentioned earlier, when
the ADRES’ size is increased to certain extend, the scheduling algorithm has
difficulty exploring parallelism in the applications and using the ADRES array
optimally. It is clear that doubling/quadrupling the size of the ADRES array or
choosing low-parallelism algorithm for threading will result in more speed-up.

As mentioned earlier, when one of the threads finishes its execution, it has to
wait until the other thread to finish before the architecture can unify. This
implies that during the waiting period, only half of the array is being used.
This can significantly reduce the performance if not properly dealt with. The
IDCT and the MC happens to have very close execution time when running on
the 4x4 partition, so the penalty is not noticeable. In case the execution time
of the two threads are not very close, one can balance the execution time by
unevenly partitioning the ADRES instance and mapping the thread with the
longer execution time onto the larger partition.

As we have observed, the marginal performance gain is mostly achieved from
the ease of modulo-scheduling on the smaller architecture. When an application
is scheduled on a larger CGA, many redundant instructions are added into the
kernel for routing purpose. Now the IDCT and MC kernels are scheduled on a
half-CGA partition instead of the whole ADRES, even if the overall IPC of the
application is not significantly improved, the amount of redundant instructions
added during scheduling for placement and routing purpose has been greatly
reduced.

68

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

Avg. 4x4 ADRES 8x4 ADRES
Kernel Algorithm execution Execution Execution

time(%) time(kcc/frame) time(kcc/frame)
Fast IDCT
Saturate IDCT 16.3 139.7 87.6
Form component prediction MC 12.6 133.3 69.2
Clear block
Dequantize non-intra block VLD+IQ 50.5 398.8 266.1
Dequantize intra block
Add block Add block 14.4 129.9 76.5

Total: MPEG2 dec 93.8 801.1 499.4

Table 4.2: Execution time break-down of the MPEG2 decoder on 4x4 and 8x4
architectures

4.4 Discussion

Our threading experiment shows that the speedup is marginal, due to the par-
allel nature of the IDCT algorithm and the motion compensation algorithm.
Whether the performance of the MPEG2 decoder can be further improved on
an 8x4 architecture will not depend on these two algorithms, but somewhere
else. We profiled the whole MPEG2 decoder on various configurations of 4x4
and 8x4 architectures to gain a better understanding of the MPEG2 decoder.

The statistics of our study is listed in table 4.2. The first column of the table
lists all the kernels that contribute significantly to the overall execution time of
the decoder. The second column points out in which part of the MPEG2 de-
coding algorithms each kernel is executed. The third column shows the average
execution time of each algorithm in percentile. The last two columns lists the
average execution time of each algorithm when the decoder is profiled with a
image frame stream on the 4x4 or the 8x4 ADRES instances, respectively, in
the unit of kilo clock cycle per frame. The bottom row is a summary of the
overall MPEG2 decoder performance. The kernels take up 93.8% of the whole
MPEG2 decoder’s execution time, so the non-kernel part of the decoder only
takes up 6.2% of the overall execution time, thus is ignored from our study.

Table 4.2 shows that the execution time of the VLD+IQ algorithm is 266.1kcc/frame
on the 8x4 ADRES instance. When the same algorithm is executed on the 4x4
ADRES, we expect that the execution time to be doubled since the array size
is reduced by half. But in practice, the VLD and the IQ algorithm are not very
easy to parallelize on the 8x4 ADRES due to their sequential nature, thus the
execution time of the VLD+IQ kernels is only (398.8

266.1
% − 100%) = 50% longer

when running on the 4x4 array. This indicates that the VLD+IQ part of the
MPEG2 decoder uses the 4x4 ADRES array better than it uses the 8x4 array,

4.4 Discussion 69

VLD

MC

IDCT
IQ

VLD

MC

IDCT
IQ

frame
in
(i)

frame
in
(i+1)

frame
out
(i)

frame
out
(i+1)

frame
out
(i)

frame
out
(i-1)

Figure 4.11: Source code transformation for alternative MPEG2 decoder thread-
ing startegy

thus is a better candidate for threading than the IDCT/MC algorithms. Also,
the average execution time of the VLD+IQ part takes up 50% of the overall
execution time of the whole MPEG2 decoder, thus has the greatest potential to
make impact on the overall performance. Unfortunately, because the execution
of the VLD and the IQ is sequential, this part of the MPEG2 algorithm is hard
to parallelize.

To make use of the potential of the VLD and the IQ algorithm, the structure of
the MPEG2 decoder has to be revised. An alternative way of restructuring the
MPEG2 decoder is shown in figure 4.11. Instead of decoding the video stream
on a frame-to-frame base, the frames are decoded in pairs. The two instances
of VLD+IQ can be easily parallelized into threads, thus improves the overall
decoding efficiency. The motion compensation of the second frame is dependent
on the previous frame, thus the MC of the second frame can not be started
before the MC of the first frame is finished. But since the IDCT and the MC
of the first frame can be parallelized and use the dual-threaded 8x4 ADRES
efficiently, the dependency between the two MC instances doesn’t impose any
performance penalty.

As shown in the profile results in table 4.2, decoding one frame with the 8x4
ADRES takes around 499.4kcc/frame, and decoding a frame with the 4x4 ADRES
takes around 801.1kcc/frame. If the strategy in figure 4.11 is implemented,
we anticipate that the overall performance of the decoder should be 100% −

801.1
499.4×2

% = 20% faster with no added hardware or energy cost. The latency to
produce the first image frame will be slightly increased, but more importantly,
the average decoding throughput will also increase.

70

MT-ADRES: Multithreading on Coarse-Grained Reconfigurable

Architecture

4.5 Conclusions and future work

By carrying out the dual-threading experiment on MPEG2 decoding algorithm,
we have gained ample knowledge on the MT-ADRES architecture. The sim-
ulation results show that the MPEG2 has gain 12-15% of speed up, and has
potential to gain another 8% when more effort is put into source code transfor-
mation. We are convinced that more speedup can be gained in future bench-
marking, when full tool support permits the optimization of the template and
the software architecture. The results so far demonstrate that our threading
approach is adequate for the ADRES architecture, is practically feasible, and
can be scaled to a certain extend. So far, the only extra hardware cost added
onto ADRES is a second control unit, the size of which can be neglected for an
ADRES larger than 3X3. Based on the success of our proof-of-concept experi-
ments, we have very positive view on the future of MT-ADRES.

However, even if threading can improve the scalability of the datapath-coupled
reconfigurable architectures, it is not always an easy job to find out which parts
of an application can be parallelized. Tasks being selected as threads need
to have low instruction-level and loop-level parallelism, and are preferred to
have no dependencies to the other tasks being chosen for threading at the same
time. The selection of tasks is not always intuitive, and complicated source
code transformation is needed. For complicated applications, it is not easy to
investigate the characteristics of kernels, thus having an automated tool to assist
in profiling and structuring the application is an urgent need for future work.

Chapter 5

COSMOS: A System-Level

Modelling and Simulation

Framework for

Coprocessor-Coupled

Reconfigurable Systems

One of the biggest challenges in reconfigurable system design is to improve the
rate of reconfiguration at run-time by reducing the reconfiguration overhead.
Such overhead comes from multiple sources, and without proper management,
the flexibility of the reconfiguration can not justify the overhead cost. Many
new technologies and designs for minimizing the reconfiguration overhead have
been proposed. Logic granularity [75, 71], host coupling [23], resource manage-
ment [92, 93] etc. have been studied in various contexts. These technologies
substantially increase the practicality of the reconfigurable systems, but also
often lead to highly complicated system behavior. There exists several highly
efficient architectures, but many of them have significant drawbacks in terms of
programmability, flexibility, scalability or utilization rate.

Even though low-level technologies have drawn a lot of attention, the study on

72

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

system-level behavior and compilation is still in their infancies. It is known
as a rule-of-thumb that high level design decisions made earlier in the design
process can have higher impact on the system performance. But currently,
the evaluation of applications executing on a reconfigurable system in the early
development stages is a new challenge to be addressed.

In this context, a key issue is to understand the real-time dynamic behavior of
the application when executed on the run-time reconfigurable platform. This is
a very complicated task, due to the often very complicated interplay between the
application, the application mapping, and the underlying hardware architecture.
However, understanding the real-time dynamic behavior is critical in order to
determine the right reconfigurable architecture and a matching optimal on-line
resource management policy, given a specific application. Although architecture
selection and application mapping have been studied intensively, they have not
been thoroughly studied in the context of run-time reconfigurable system. Not
only do we need to understand the real-time dynamic behavior of these systems,
we also need to understand the importance of understanding this behavior, i.e.
which aspects of the dynamic behavior should we capture in order to derive
efficient solutions.

For datapath-coupled architectures [65, 76], reconfigurable unit (RU) is fre-
quently designed as a special instruction-set functional unit or extended to a
large-scale VLIW processor, thus the application can be efficiently evaluated
with instruction-level simulation. However, coprocessor-coupled architectures,
which are usually large-scaled and highly complicated, need advanced run-time
resource management support. Hence, to improve the system efficiency, we need
to be able to model and analyze such systems’ architecture, run-time system and
the applications running on them.

In this chapter we present COSMOS, a flexible framework to model and simulate
coprocessor-coupled reconfigurable systems. First we propose a novel real-time
task model that captures the characteristics of dynamically reconfigurable sys-
tems’ task in terms of initialization, reconfiguration and reallocation. We also
propose a general model of coprocessor-coupled reconfigurable systems. The
task and architecture models are based on an existing MPSoC simulation model,
ARTS [69], which has been extended by us to facilitate the study of run-time
resource management strategies. We demonstrate how a simple “worst case”
run-time system can be modelled in the COSMOS framework as a firmware to
manage the application execution.

Then we use the COSMOS model to experiment on various combinations be-
tween the application and the architecture to gain a better understanding of
the emerging critical issue in reconfigurable architecture design. We present the
results of a set of experiments that are carried out on a MP3 task graph. We

5.1 Background 73

study how the numbers of RU, the sizes of RUs, the number of reconfiguration
contexts and the granularity of RUs impact the run-time behavior of the sys-
tem. We also address how more advanced run-time system design, especially the
task allocation and reallocation, can impact the system performance. We pro-
pose several reallocation strategies, and study their effectiveness through several
simulations.

Finally, we discuss how the COSMOS framework can be improved in the future
and conclude our work.

5.1 Background

During a reconfiguration, reconfigurable architectures suffers from latencies due
to the context switching (configuration and intermediate data) of an RU. The
severity of this latency is determined by several physical factors, e.g. the scale
of the RU, the logic granularity, the configuration memory bandwidth, the rate
of reconfiguration or the buffering technics of reconfiguration memory fetching.
In the following we will give an overview of the related research areas that can
reduce such latencies, and discuss how they affect system behavior.

One research trend assume that the applications, or a collection of tasks, share
the RU in time, as shown in Figure 5.2A. [98] proposed a multi-context FPGA
that can significantly reduce the reconfiguration time, but the extra cost of
chip area is hardly justifiable by the performance gain. A solution that can
substantially reduce the area overhead is to increase the logic granularity of the
RU to medium- or coarse-grained, as shown in Figure 5.1. Even if these higher-
granularity architectures do not offer highly optimal solutions to applications
that heavily exploit bit-level data manipulations, the concept of multi-context
is proved feasible. But still, the number of contexts being cached on the RU
is usually limited, and optimal utilization of the limited context resource at
run-time is a difficult challenge for a multi-tasking system [63].

Another type of reconfigurable architecture assume that the RU is shared in
space [11, 92], as shown in Figure 5.2B. The RU is partially reconfigurable and
large-scaled, thus several tasks can be run on the same RU with no conflicts
among each other. Besides reconfiguration latency, this class of architectures
leads to complicated inter-task communication and resource management. Since
a task can be allocated on an RU at any free location during run-time, data traf-
fic between tasks go through multiple possible paths, maybe requiring dynamic
routing. For a large programmable array, the complexity of performing the task
placement and data routing at run-time can be very hard to handle. Also, it

74

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

Context

Fine-grained
 Coarse-grained

Context
 Context

Logic

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Logic

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Logic

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Intermediate

 data

(memory elements)

Configuration

Figure 5.1: The impact of logic granularity on the chip area of reconfigurable
architectures.

is clear that the fragmentation is a common issue for this kind of design, thus
task (context) reallocation and rerouting is consistently required for defrag-
mentation. In summary, the behavior and efficiency of such system can be very
unpredictable, and understanding the system behavior in the early development
stage is crucial.

T1

T5

T4

T3

T2

Reconfigurable

unit

A. RU shared in time
 B. RU shared in space

Reconfigurable unit

T1

T2

T3

T4

Figure 5.2: Reconfigurable unit design

A third type of RU is a hybrid of the two former families. This type of archi-
tectures is viewed as an array of networked multi-context RUs. Such system
also requires efficient dynamic resource management, but the routing problem
is greatly simplified compared to space-shared architectures. Nollet et al. [82]
proposed an architecture that resembles several heterogeneous reconfigurable
units (RU) being interconnected with an on-chip network (NoC). They use a
hierarchical control scheme to efficiently manage the computation resources at
run-time, so that the architecture can be extended to a large scale. Since the
RUs are assumed to be heterogeneous, the resource management can still be very
time-consuming to perform at run-time, resulting in large run-time overheads.

5.2 Task model 75

In general, we are facing the increasing complexity of the reconfigurable sys-
tem’s spatial and temporal behavior. New technologies that improve the sys-
tem’s efficiency also complicates the architecture, and the value of the tradeoff
between performance and design complexity is not easily assessable. A system-
level simulator is much needed for evaluating the performance of dynamically
reconfigurable systems. Such a simulator should give the designer the opportu-
nity to tune various design parameters and to study the consequences on system
performance.

To build a system-level simulator, we need a thorough understanding on how to
model the tasks which comprise the application. A task running on the reconfig-
urable architecture has a different execution behavior than the classical real-time
task, thus the classical model does not fit our purpose. For the simulator design,
we need i) a general and generic model of the RU which can represent various
types of coprocessor-coupled RU designs, ii) the dynamic resource management
issue of the RU to be addressed, and iii) the simulation to be parameterizable so
that the consequences of changes in the physical design can be captured within
the model.

The ARTS modelling Framework captures real-time behavior of heterogeneous
multiprocessor systems, where each processor may run its own operating system.
In our work, we adopt the underlying message-passing based mechanism of the
ARTS model and some of its RTOS functionality. We extend it further to
support the modelling of dynamically reconfigurable systems. In particular, our
model, unlike ARTS, can handle task reconfiguration and reallocation during
run-time, i.e. during simulation.

5.2 Task model

In the ARTS framework, an application is modelled as a set of task graphs, and
each task is modelled as a finite state machine (FSM), as shown in Figure 5.3.
The state transitions of a task are driven by the operating system control mes-
sages. Whether a task should run, or be preempted, depends on the resource
allocation, scheduling and task dependency. But for reconfigurable system, such
an FSM is not sufficient to capture the task execution scenario.

Firstly, to initialize the task execution, the initial configuration needs to be
loaded from the configuration memory to the RU. Depending on the RU’s gran-
ularity, size and memory interfacing, the timing cost for fetching the whole
configuration can be a big overhead. To explicitly express this task execution
phase, a new state init config has been added to the task model, as shown in

76

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

T1

T2

T4

T3

T5

idle
 ready

running

preemp

ted

run

preempted

resume

A. task graph
 B. task FSM

Figure 5.3: ARTS task model

Figure 5.4.

idle
 ready

init

config

run

preempt

reconfig_

Preempt

reconfig_

Run

realloc
 realloc

realloc

start

realloc

realloc

realloc
 realloc

realloc

realloc

run

preempt

resume

0
 1
 2

3

4
5

6

7

7
7

Figure 5.4: Real-time reconfigurable task model

Secondly, the preemption is not simply a process of task giving up an RU for
other tasks, but is also a process of hardware context switching. Differ from the
software context switching, which mostly involves backing up special-purpose
registers and bookkeeping the operating system management entries, hardware

5.3 Coprocessor coupled architecture model 77

context switching needs to back up the configuration and all the intermediate
data stored in all the memory elements. The timing cost of the preemption can
be extremely high if the context is stored in the external memory, or as low as
a single clock cycle if the RU has multi-context support. Architecture designers
would experiment on various combinations of different context storage design in
order to find an optimal strategy, thus the reconfiguration latency may vary. In
our model, we added two delay states, reconfig preempt and reconfig run,
to represent the timing cost of the preemption.

Finally, the effect of process of task migrating among multiple RUs need to
be modelled. As shown in Figure 5.4, we add the reallocation state realloc
at three places and marked it with dashed circles, in order to emphasize that
this single state has multiple entry points and exit points. This is modelled so
because reallocation can happen anytime after a task leaves the idle state, and
at different point of time, the reallocation has different effect on task execution.
If the reallocation is started before a task is run for the first time, the task
needs to be initialized on a different RU. In this case, the (partial) context of
the reallocated task is moved to another RU, then it resumes the previous state
for either continue initializing or waiting to get permission to run. If the task
has been run before, then the allocation must be ended with the task going to
the preempt state. The reason for such a setup is because the task doesn’t know
if it can continue executing after the reallocation, since the resource status of
the reallocated RU is unknown. It is safe for a task to preempt itself and request
resource management unit for permission to continue execution.

5.3 Coprocessor coupled architecture model

5.3.1 Architecture model outline

Our work takes the scalability of reconfigurable architectures as the most criti-
cal measure. As shown in Figure 5.2, the architecture design is heading to two
directions. Besides the aforementioned resource management issue, the time-
shared architectures also suffer from scalability issue, since parallelizing a task
to use the full RU gets harder when RU’s size increases. Similarly, the space-
shared architecture’s defragmentation gets harder when the RU upscales, and
the rerouting becomes impossible to handle at run time. Unless the RU is par-
titioned and modularized, the space-shared architecture has too many practical
issue to realize.

To solve the problem of both types of the reconfigurable architecture, we propose

78

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

a hybrid architecture model. As shown in Figure 5.5, our coprocessor consists
of an array of homogeneous multi-context RUs connected with on-chip networks
(NoC). Similar to the time-shared design, the computation resource of our archi-
tecture is still the context of the RUs. By statically partitioning the applications
into tasks, each of which is small enough to fit into one RU’s context, or one
resource, we can explore the application’s parallelism at various levels and effi-
ciently utilize the potential of the coprocessor. Such architectures are scalable
not only as a single-chip solution, but multi-chip ones as well. If the off-chip
communication protocols can be handled as on-chip ones, the chip boundary is
indifferent for each RU, thus the coprocessor can be upscaled beyond the size
of a single die.

CPU

Configuration/

Context database

Data memory

Coprocessor

RU
RU
RU

RU
RU
RU

RU
RU
RU

NoC

Logic

Context 1

Context 2

Context n

.
.
.

Context 3

RU

Figure 5.5: Hybrid coprocessor-coupled reconfigurable system

Each RU is a collection of memory elements and logic elements, and is the atom
of the reconfiguration. The number of configuration contexts supported by the
hardware is explicitly modelled as reconfiguration resources, the management
of which is a critical issue to be addressed by the run-time management. The
chip area composition breakdown is as following:

Atotal = ANoC + #RU ∗ ARU

ARU = Alogic + #context ∗ Acontext

Even if the architecture model appears quite simple, the dynamic system be-
havior is still very complicated, as discussed in our experiments.

As an architecture design, our architecture has several advantages compared to
many previous designs. Our coprocessor is upscaled by increasing the number
of RUs, thus has more flexibility to efficiently support applications of various
complexity. With the support of the NoC, rerouting problem can be solved on
the fly when the tasks are communicating. Since the coprocessor is modularized,

5.3 Coprocessor coupled architecture model 79

defragmentation is not a prohibitively crucial issue as in previous space-shared
design. When combined with our resource management strategy, which will be
discussed later, our co-processor is highly scalable.

As a model, our model can easily be used for both time-shared and space-shared
architecture PSE. To model the time-shared architectures, by assuming the
number of RUs to be one, our model imitates a multi-context architecture. As to
model a space-shared architecture, by assuming all the RUs to be single-context,
our model can be viewed as a modularized space-shared RU. By employing a
NoC and assuming that any task can be allocated to a randomly selected RU,
the dynamic placement and routing issues of space-shared architecture becomes
a much easier issue to address. However, the homogeneity of RUs adds an extra
compile/synthesis resource constraint.

5.3.2 Assumption and simplification

Currently we assume that the RUs are homogeneous. From the compilation
or synthesis point of view, homogeneous RUs demand more static analysis of
the applications. For instance, when an application is partitioned into a task
graph, each task has to be able to optimally utilize the computation power
of the RU. The homogeneity may appear to be a cumbersome constraint for
task partitioning, but the run-time management of resources can be greatly
simplified. Homogeneous RUs also enable easy task reallocation, and have the
great potential to support run-time fault-tolerance, which are greatly demanded
by the future chip designs. We assume that a task can be reallocated to any
RU with free context, as long as the lifecycle of the task is not over.

The RUs are assumed to be mono-grained. For extremely coarse-grained RUs
that use the FU as logic blocks, we assume that the cost of configuration storage
is neglectable, and that the number of context an RU can have is unlimited.
However, we assume that the number of tasks that can be mapped onto one RU
is still limited by a small number, since the run-time management of tasks is
still an issue for these architectures.

We will not go into detail of the NoC model design in our work, since it has been
addressed by the ARTS model described in previous work[68]. In our model,
we simply assume that if two communicating tasks are k hops away on the
coprocessor, the communication latency is kT, where T is the single-hop base
communication latency between those tasks decided through static analysis.
The overall communication latency of an application is greatly affected by the
allocation strategy, which is one of the most interesting issue to be addressed
by our model.

80

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

When a task is reallocated, the context of a task is transferred from one RU to
another. This process results in a burst of data transfer on the NoC in a short
period of time. Compared to the context transfer, inter-task communication
happens much more frequently than reallocation, and data is often delivered
in smaller packets. These two types of data transmission have very different
requirements on the NoC design, thus we separate them into two NoCs. The
reallocation NoC is assumed to be able to establish preset paths that can guar-
antee to finish the reallocation in a short period of time, thus the physical
distance between the context transfer’s source and destination should not play
a significant role in the overall reallocation latency. In our model, we assume
that any reallocation takes a constant period of time, and several reallocation
can take place concurrently without blocking each other. Physically, the con-
figuration data communication could share the inter-task communication NoC,
but to demonstrate the concept, we choose not to do so at the moment.

CLB=80

CLB=20
 CLB=25

CLB=45

CLB=40

CLB=40

T1

T2
 T3

T1.1

T1.2

T2/3

Split

M
e
r
g
e

a. Original Task graph
 b. task graph transformed

to fit 50-CLB RU

Figure 5.6: Task transformation

To ease the dynamic resource management, we assume that tasks never share
one RU in space, even if several tasks can fit into one RU at the same time. This
guarantees that each task can be reallocated without interfering the execution
of the other tasks. Tasks that are unable to fit into one RU need to be split into
smaller tasks. As shown in figure 5.6a, task T1 requires 80 CLBs to execute,
but we assume that the RU can not fit a task that cost more than 50 CLBs.
Task T1 has to be split into two smaller tasks that can fit into each RU, but
the communication cost will increase if the partitioning is ill-performed, thus
such splitting is not a trivial task. For the RUs that are underused by the tasks,
e.g. task T2 and T3 in figure 5.6a, merging several tasks into one task simplify
the task management. Task splitting and merging can significantly impact the
overall execution time, and finding an optimal transformation is a critical static
analysis issue.

5.3 Coprocessor coupled architecture model 81

5.3.3 Run-time management

The resource management is still a problem for our architecture, since the run-
time system needs to manage tasks in both space and time. For a small-scaled
coprocessor, the CPU/operating system can be used to manage the resource.
But if the system reaches certain scale, it is foreseeable that taking a snap-
shot of the whole coprocessor’s resource distribution, evaluating it and allocat-
ing/reallocating task by using the CPU can be a performance bottleneck. Here
we introduce our alternative to address this issue.

C
M

M

M

C
 S
M

C
C

M
 M
 m
 m

S
 S
 S
 S
 S
 S
 S
 S
 S
 S

S

S
 S

S

S

S

S

S

S

CPU

Figure 5.7: Hierarchical organization of reconfigurable units

As shown in Figure 5.7, some nodes in the coprocessor are selected as Coor-
dinator nodes (C-nodes) or Master nodes (M-nodes), and the rest are Slave
nodes (S-nodes). By structuring the whole design into hierarchies, the resource
management is distributed into different roles each type of the nodes play.

C-nodes are the resource management nodes. Each time an application is started
by CPU, all C-nodes send message to the lower hierarchy for resource check.
Then M-nodes collect the weighted resource distribution status from S-nodes
and pass it to the C-nodes. Then the C-nodes, all of which run the same
decision-making protocol, select a resource-optimal M-nodes to initialize and
synchronize the application’s execution.

M-nodes are the task execution management nodes. After the C-nodes assign an
application to an M-node, the M-node reallocates the currently running tasks
to free up some resources if the new application has a higher priority. Then
the M-node initializes the new application’s tasks to free resources, and start its
execution. During execution, depending on the task dependencies and priorities,
the M-node can reallocate the tasks or preempt the task execution. C-nodes
and M-nodes forms a cluster. M-nodes is only controlled by the C-nodes in its
cluster, thus any message received from other C-node will be ignored.

S-nodes are the computation units. When a task is allocated to an S-node,

82

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

the task can be blocked or selected for execution, depending on its priority or
deadline. The node keeps track of how many resources is currently in use and
how many is still available. The multi-context S-nodes is not bounded to one
specific M-nodes. As long as it gives optimal results, contexts on a S-node can
be shared among all M-nodes.

The tasks of a certain application are distributed on the S-nodes near one M-
node selected by the C-nodes. The higher priority an application has, the more
effort the M-nodes will put into to cluster its tasks, in order to lower the com-
munication cost. Lower priority applications’ clusters can be disrupted by the
M-nodes when a new application with higher priority is started. Careful place-
ment of clusters can help achieve overall system optimality, thus is crucial in
our approach.

Our hierarchical design represents our general resource management strategy,
but we don’t enforce a physical bounding between the function of a resource/task
management unit and a RU, except for the S-nodes. For instance, when the co-
processor is small, the function of the C-node and M-nodes can be realized by
the operating system running on CPU, or be combined into one physical RU. It
gives us the freedom to model the architecture on various scales. In our experi-
ment, priority is based on the overall communication demand of an application,
but we don’t constrain how task priority is defined or what allocation strategy
is used. Different designer may have different preference on specific parts of the
system, and we leave them open for experimentation.

Even though it is not the focus of our work, the latency of off-coprocessor
data communication can be easily modelled by our framework. Data IO ports
connected to the main memory can be modelled as S-nodes with no context
limitation, and off-coprocessor data communication can be modelled as special
tasks that can only be allocated on the S-nodes that imitates the coprocessor’s
IO ports. Given a set of coordinates to the ports, which is preferably on the
boundary of the coprocessor, the off-coprocessor communication latency can
change when the task reallocation occurs, depending on the distance between
the IO port and the tasks that need access to the main memory.

5.4 System-C simulation model

The general structure of our System-C model is shown in Figure 5.8. Various
types of modules are organized as mentioned in Figure 5.7 and connected with
communication links defined in the System-C master-slave communication li-
brary. The links in solid line are used to convey resource allocation control

5.4 System-C simulation model 83

messages, while the links in dashed lines are for task execution control message
passing. The critical design issue of our model is to support task allocation,
task execution and task reallocation.

CPU

C
 C

M

Sync

M

Sync

S

Sche

S

Sche

T1.1
 T1.n
T1.2
 Tx.1
 Tx.m
Tx.2

...

...

...

...
 ...
...

Resource management

message path

Task execution

message path

L1

LT1

L5

L4

L3

L2

LT2

LT3

NoC

Sche

Figure 5.8: COSMOS model structure

5.4.1 Task allocation

When CPU requests to execute an application, it sends out a message that
includes the header description of the application to all the C-nodes through link
L1. The information contained in the header are the application’s allocation
priority, default distribution requirement, distribution matrix and the
application size. Applications with higher allocation priority can force low
allocation priority tasks to be reallocated and give up resources. The default
distribution requirement is an integer that specifies the number of S-nodes
needed for optimal allocation of an application. For instance, the task graph in
Figure 5.3A will be optimally executed if it is allocated on 2 S-nodes, due to

84

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

its task-level parallelism. The distribution matrix specifies how the tasks are
divided into groups, each of which should be allocated on the same S-node. For
example, the task graph in Figure 5.3A can have a distribution matrix= [[T1,
T3, T4],[T2, T5]]. This indicates that, in order to optimally utilize the task level
parallelism and minimize the communication cost, M-node should attempt to
allocate task 1, 3 and 4 on one S-node, and allocate task 2 and 5 on the other
one. Application size simply stands for how many tasks the application has
been partitioned into.

Upon receiving the message that requests C-nodes to start up an application,
each C-node will further send request through link L2 to the M-nodes in their
clusters to exam the resource distribution. M-nodes send the request further
down to S-nodes through link L4, and each S-node reports how many free context
it has to M-nodes through link L5.

At this point, each M-node has an updated resource distribution map of the
whole coprocessor, and needs to evaluate if the M-node itself is resource-abundant.
Application is optimally allocated if its tasks are nested into cluster, thus having
clustered free resources around an M-node ease the allocation for this M-node.
Depending on the resource distribution around a specific M-node, resources are
weighed for this M-node. Another factor that influence the allocation is the re-
allocation potential of each M-node. If there are many high-priority applications
nested around and being controlled by an M-node, reallocation will be difficult
to perform for this M-node. Thus, we sum up the priorities of all the running
tasks being controlled by each M-node, and use it to downgrade the overall re-
source count. To summarize, each M-node weighs its resource distribution map
and sums up all the weighed resource to get an overall weighed resource count,
then the number is divided by the priority sum of all the running tasks.

After the M-nodes calculate their final resource count, the number is sent to the
C-nodes through link L3. C-nodes then decides which M-node has the highest
amount of resource available for the application. Together with the application
priority and the distribution matrix, the decision is then passed through link
L2 to the selected M-node for setting up the task execution.

The selected M-node first attempts to reallocate some running tasks, whose
priorities are relatively lower than that of the new application, to free up some
S-nodes till there is enough free clustered context to allocate the newly-started
application. Then the new application’s tasks are allocated to the free S-nodes
with the guidance of distribution matrix. If the distribution matrix can
not be strictly followed due to the resource availability, spanning to several more
S-nodes is allowed. After each task is allocated onto an S-node, the M-node sends
a “start” message to all these tasks through link L4, the corresponding S-node
and link LT3 to signal the task execution. And finally, some bookkeeping is

5.4 System-C simulation model 85

done in M-nodes and S-nodes.

5.4.2 Task execution control

The task execution in COSMOS is essentially the same as in ARTS multipro-
cessor model. Task execution is controlled through the synchronizer in the
M-node and the scheduler in the S-node, as shown in Figure 5.8. In COSMOS,
we adapt to the well-understood direct synchronization (DS) protocol and the
earliest-deadline-first (EDF) scheduling for initial experimentation.

Task interacts with the run-time system in the similar way as ARTS tasks
model. When a task is ready for execution, it sends a “ready” message to
synchronizer through link LT1. When the synchronizer and scheduler permit the
task execution to start, the task receives a “run” message through link LT3 and
starts executing. When the task is in the “run” state, it can be preempted by the
scheduler at any point of time. Similarly, when the task is in the “preempted”
state, scheduler can issue “resume” message to let the task continue executing.

The synchronizer acts as a task dependency filter. Its purpose is to block the
execution of those tasks that have unsolved dependencies to the preceding tasks.
When a task is initialized and has requested for initial execution through link
LT1, the synchronizer will immediately block the task if there are unsolved data
dependencies. Every time a task finishes its execution, the synchronizer check
if any blocked task’s dependency is completely solved and ready for execution.
The M-node is selected to perform the synchronization since it has the control
of the whole application.

When a task is released by the synchronizer, a message is sent from the syn-
chronizer to the scheduler through link LT2. The EDF scheduler then decide
if the task should start the execution on the S-node immediately or be blocked
until the currently running task is finished, depending on which task’s deadline
is arriving earlier. If the task released by the synchronizer has a tighter deadline
compared to the currently running task, the currently running task is preempted
and blocked in a task list. Once the running task has finished its execution, the
blocked task that has the earliest deadline is selected for execution.

5.4.3 Task reallocation

As mentioned before, task reallocation can occur anytime between the time the
task starts initialization and the end of execution. The reallocation basically

86

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

involves putting the task into the reallocation state for a period of time and
updating the task model’s information about onto which S-node it is reallocated.
The reallocation of a task goes through several different scenarios when the
reallocation is initiated at different point of time.

The first possibility is the case that a task is reallocated during initialization. In
this case, the task hasn’t been blocked by either the synchronizer or scheduler,
and the task goes back to initialization right after the reallocation is finished.

The second possible case is the situation that a task is reallocated when it
is in the ready state. In this case, the task might be blocked by either the
scheduler or the synchronizer. When the task goes into the reallocate state, the
synchronizer or the scheduler that blocks the reallocated task need to clean up
the record of blocking. When the task finishes the reallocation, the task sends
the “ready” message again to the synchronizer to get processed again and goes
into the “ready” state again. It is worth noting that, if a task is blocked by the
synchronizer when the reallocation start, it is not necessarily true that the same
task is still blocked by the synchronizer when the reallocation is finished, since
the task dependency can be solved during the reallocation process.

The last possibility is the case that a task has been partially executed before
reallocation. The task can only be blocked by the scheduler, or not be blocked
at all. If the task is blocked by a scheduler, the scheduler also needs to clean up
the record of task being blocked. After the task is reallocated, the task goes into
the “preempted” state and send a “ready” message to synchronizer, which will
directly pass the message to the scheduler where the task is reallocated since
the task dependency has been solved before.

5.4.4 NoC model and communication tasks

The ARTS framework explicitly models the communication latency between
tasks if the tasks are allocated on different processing elements. As shown in
Figure 5.9, communication between tasks are treated in two different ways. A
local communication inside of a processor, e.g. the dependency between T1 and
T3, is assumed to have no timing cost, and the dependency is implicitly solved
by the local synchronizer. But the communication between tasks allocated on
different processors are transformed into communication tasks with explicit ex-
ecution time, e.g. as task c1 2. A NoC scheduler is used as shown in Figure
5.9 and 5.8 to handle the communication latency and NoC scheduling strategy.
The communication latencies are decided before simulation time.

In COSMOS model, since the tasks can be reallocated at simulation time, any

5.5 Demonstrative simulation 87

T1

T4

T3

T2

CPU1
 CPU2

T1

T3

CPU1

T4

T2

CPU2

C1_2

C3_4

NoC

Sche
 Sche
 Sche
Sche

Sync
 Sync
Sync
Sync

Sche

Figure 5.9: ARTS communication task

task dependency can become a communication task. Furthermore, the commu-
nicating source and destination is not fixed on the RU array, thus the physical
system and the model should have a varying communication latency. In our
model, we assume all the task dependencies to be a communication task, and
each communication task has a base latency. Each time a task is reallocated, the
communication task that is linked to the reallocated task update its communi-
cation source or destination’s coordinates, depending on how the task is linked
to the communication task. If a communication task’s source and destination
are allocated on the same S-Node, the communication will be finished in one
simulation clock cycle, which is negligible. If the source and destination of a
communication task are not allocated on the same S-node, the communication
latency is the product of the base communication task latency multiplied by the
number of hops between the source and the destination s-nodes.

5.5 Demonstrative simulation

To demonstrate the function of the model, we set up the architecture and ap-
plication as shown in Figure 5.10. The architecture is a 3x3 RU array with one
C-node, one M-node and seven S-nodes, each of which supports dual-context.
Application 1, 2, and 3, whose task graphs are shown in Figure 5.10C, start
their execution at t=T1, T2 and T3, respectively, as shown in Figure 5.10A.
The application 1 is assigned a slightly earlier deadline compared to the other
2 applications for demonstrative purpose. We assume all the communication
tasks to have a single-hop latency of two clock cycles, and the NoC scheduler
can only handle one communication message at a time. The latencies for task
initial configuration and task reallocation are assumed to be 5 cycles. The la-
tencies of task staying in reconfig preempt state and reconfig run state are

88

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

assumed to be 3 cycles. All the numbers presented here, including the size of
architecture and various timing figures, are only for demonstration purpose and
only serves the purpose of helping readers to understand the function of the
model. COSMOS is a flexible model, and there is no constraints on how these
number can be decided.

An optimal system’s reallocation strategy should minimize the occurrence of
task reallocation while keeping the overall communication overhead small. But
for our experiment, in order to demonstrate the scenario of task reallocation
with a simple setting, we select a reallocation strategy that is far from optimal.
We define the M-node to be the only cluster center for all three applications.
By doing so, we make the M-node into an allocation “hot spot,” thus cause
frequent reallocations.

When each application is initialized, its task will be allocated as close to the
M-nodes as possible, resulting in the lower priority task to be reallocated on
the S-nodes farther away from the M-node. This is achieved by weighing the
resource with the distance between the S-node and the M-node during resource
evaluation, selecting the most resource-optimal S-node for allocation and select-
ing the second-most resource-optimal S-node for reallocation.

At t=14, CPU requests to start application 1. The M-node first check the
application’s distribution matrix for allocation guidance. According to the ap-
plication 1’s distribution matrix, which suggests that task T0 0 and T0 1 should
be allocated on the same RU, the M-node initialize both tasks on S-node(0,2).
Task T0 2 and T0 3 are both allocated on S-node(1,1) for the same reason.
After the tasks finishes the initialization and get ready for execution, only task
T0 0 goes into the “run” state, since it’s the only task without unsolved de-
pendencies. All the other tasks are blocked by the synchronizer for the time
being.

At t=22 the application 2 is initialized. Since the application 2 has the same
priority as application 1, it does not cause any task reallocation. At t=30, ap-
plication 3 starts its initialization. Since this application has a higher allocation
priority, previously allocated tasks have to be reallocated to more remote S-
nodes. As shown in Figure 5.10B, task T0 0, T0 1 and T0 2 are replaced by
task T2 0, T2 1 and T2 2, respectively. From the waveform, we can see that
the reallocated tasks enter and exit “realloc” state at the same time. Since
task T0 0 is running when being reallocated, after it finishes the reallocation,
it goes into “preempted” state and wait for synchronizer and scheduler to start
it again, as shown in Figure 5.4. The other two reallocated tasks go back to
“ready” state and wait for their dependencies to be solved.

After the reallocation, communication task c0 0 1 and c0 2 3 become non-local,

5
.5

D
e
m

o
n
stra

tiv
e

sim
u
la

tio
n

8
9

T0_0

T1_2

T1_1

T1_0

T0_3

T0_2
T0_1

T2_2

T2_1

T2_0

C0_0_1
 C0_0_2

C0_1_3
 C0_2_3

C1_0_1

C1_1_2

C2_0_1

C2_1_2

Application 1

Alloc priority = 1

Distribution matrix =

 [[T0_0,T0_1],[T0_2, T0_3]]

Application 3

Alloc Priority=2

Distribution matrix =

 [[T2_0,T2_1],[T2_2]]

Application 2

Alloc Priority=1

Distribution matrix =

 [[T1_0,T1_1],[T1_2]]

A. Simulation waveform

B. Task reallocation
 C. Application task graphs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2
2

2
2

2

2

2

1

1

1

1

1

1

1

1

1

1

4
 5

5
6

6

7

7

7

State enumeration: 0=idle, 1=init_config, 2=ready, 3= run, 4=reconfig_preempt, 5=reconfig_run, 6=preempted, 7=realloc

C
 M

T0_0

T0_1

T0_2

T0_3

T1_0

T1_1

T1_2

t=22 ns

C
 M

T2_0

T2_1

T0_0

T1_0

T1_1
T0_2

T2_2

T0_3

T0_1
 T1_2

t=30 ns

0

0

1

1

2

2
0
 1
 2

0

1

2

T1
 T3
T2

t
exe
=4

t
exe
=4
t
exe
=3

t
exe
=4

t
exe
=4

t
exe
=3

t
exe
=4

t
exe
=4

t
exe
=4

t
exe
=10

F
ig

u
re

5
.1

0
:

D
em

o
n
stra

tiv
e

sim
u
la

tio
n

90

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

and the communication task c0 0 2’s latency is increased by one hop. The
communication task c2 0 1, which is made local by the distribution matrix and
reallocation, cost only one clock cycle to finish.

At t=98, task T2 2 goes through a few state changes, which is caused by task
T0 3. As shown in Figure 5.10B, these two tasks are allocated on the same
S-node. At t=86, task T2 2’s dependency is solved, and the synchronizer starts
its execution. When the simulation time reaches 98, task T0 3’s dependency is
also solved, and the scheduler decides that T0 3 should start its execution since
it has an earlier deadline. Task T2 2 goes through a long preempt phase and
return to the “run” state after task T0 3 finishes its execution.

5.6 MP3 Experiments

5.6.1 The reference MP3 task graph

Schmitz et al. [87] studied the implementation of several benchmark programs
for ASICs, FPGAs and General Purpose Processors (GPP). Their work gen-
eralized each benchmark into a task graph with various parameters annotated
to each task, e.g. the area cost of a task’s ASIC implementation or the execu-
tion time of a task’s GPP implementation. In our study, we adopt their MP3
task graph, as shown in figure 5.11, for our experimentation. The whole MP3
cost 2408 CLBs to map onto an FPGA, and the execution time on the FPGA
is 61739 clock cycles (cc). The state-of-the-art commercial FPGAs have more
than 10,000 CLBs, thus the MP3 can easily be implemented on a single FPGA.

T0

T14
T12
T10
T8

T7

T5
T3
T1

T6
T4
T2
 T15
T13
T11
T9

Texe
FPGA
(#cc)

Texe
GPP
(#cc)

#CLB
FPGA

407
 276
 3678
 1417
 9178
 25755
 6391
 14492
 22668

128
 34
 67
 146
 172
 265
 82
 111
 678

1071
 476
 36781
 14172
 63914
 2568
 21305
 144924
 266687

* All communication are assumed to be 44 clock cycles

IPC
avg
 2.63
 1.72
 10(8)
 10(8)
 6.96
 0.1(1)
 3.33
 10(8)
 11.76(8)

* Task pairs in parallel have identical characteristics

Figure 5.11: Original MP3 task graph and task implementation parameters

5.6 MP3 Experiments 91

The purpose of our experiments is not to demonstrate how the MP3 can be im-
plemented on a reconfigurable system, but to demonstrate how the design space
and platform space exploration can be done given a reconfigurable architecture
with constant area. Unlike the original MP3 task graph, which assumes that
the same task graph can be used for any means of implementation, the tasks
in our application model have to optimally use the RUs of various sizes. The
original MP3 task graph needs to be transformed to fit the RUs by using the
same principle discussed in figure 5.6 with hypothetical assumptions on how the
splitting and the merging change the communication cost.

When simulated in COSMOS, the task allocation scheme tries to allocate as
many tasks with data dependencies onto the same RU as possible in order to
reduce the communication among RUs, and allocate parallel tasks onto different
RUs to achieve high performance. When more than one instance of MP3 is
executed on the array, reallocation is needed if the second MP3 instance has a
higher allocation priority. Currently we assume that the task synchronization,
the scheduling and the resource management take no simulation time, so we can
focus our study on the interplay between the tasks and the architecture.

5.6.2 Fine-grained architecture study

For a reconfigurable architecture, the size of the RU and the number of hardware
contexts have significant impact on system performance. The size of the RU
decides the latency of loading a configuration from the memory to the RU,
the latency of the task reallocation, and the inter-task communication latency.
Under the assumption of having a fixed number of computation resources on
a chip, having larger RU leads to having less RUs, which in turn reduces the
flexibility of the task allocation. The number of the contexts has significant
impact on the system parallelism and the data locality. Reducing the number
of contexts leaves more chip area for having more RUs, thus result in having
more parallel computation power. But reducing the number of contexts also
results in more communication among tasks, since it is harder to allocate the
tasks with dependencies into the same RU and localize the communication. In
general, there are trade-offs to be made among different architecture settings,
and due to the complexity of the applications and the architecture, the impacts
of various trade-offs should be assessed by simulation in an early development
stage.

92

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

5.6.2.1 Varying the RU size

We assume that the total chip area Atotal = 10K in the number of CLBs. 30%
of the area is used on the NoC, thus leave us 7K CLB-equivalent chip area for
RUs. We assume that the

Alogic

Acontext
= 10

3
for fine-grained RU, and the number

of context for each RU is 4. The total chip area spent on logic is about 3.2K
CLBs, and the total chip area spent on context storage is about 3.8K CLBs.
We assume two Master nodes and two Coordinator nodes are assigned to the
RU array.

In our experiment, the whole array is divided into 3x3, 4x4 and 5x5 arrays.
The reference task graph in figure 5.11 is transformed for each partition accord-
ing to the size of the RU. Communication latencies caused by task splitting
Tcomm split = 0.5cc/CLB × Alogic, and the initial configuration latency of each
task Tinit = 10cc/CLB ×Alogic, since current FPGA still needs great improve-
ment on reducing reconfiguration latency.

From figure 5.12a we can see that the 5x5 architecture is slightly faster that the
others. We expect the 5x5 array to have a higher communication latency than
that of the other two, since its task graph has more tasks resulted from transfor-
mation. The main reason why this doesn’t happen is that the communication
latency of the MP3 is very low compared to the initial configuration latency,
thus has little effect on the overall execution time. On the other hand, since
the 5x5 RU is smaller than the others, the tasks’ initial configuration latency is
lower than that of the others, thus results in better performance. However, both
the initial configuration latency and the communication latency are decided by
many design factors, and which latency dominates the timing overhead depends
on the NoC and the configuration memory design. We carry out the same sim-
ulation with all the communication latency increased by 10 times, and got a
completely opposite result, as shown in figure 5.12b.

Another mean of measuring the system optimality is the percentile of the con-
texts being used by the application. We observed that the usage of the whole
array when partitioned into 5X5 array is lower than that of the other two par-
titions. This leaves room for more flexible allocation of the next running appli-
cation. From our observation, as long as the communication latency caused by
the task splitting is acceptable, having higher number of RUs achieves better
overall system usage.

The 5x5 partition’s execution time is around 66,600 clock cycle, which is 7.4%
more than the 61,739 clock cycle execution time of the traditional FPGA im-
plementation. The application uses 32% of the total 10K CLB chip area, which
is around 800 CLBs more than the traditional FPGA implementation’s cost.

5.6 MP3 Experiments 93

32

3x3
 4x4
 5x5

T
exe
 (1000 cc)

3x3
 4x4
 5x5

Usage
(%)

66.6
67.1

68.3

60
 partition
 partition
0

100

60

37.5

a. Varying RU size, fast communication

60

3x3
 4x4
 5x5

T
exe
 (1000 cc)

partition
70

1
 2
 3

Context #

e. reallocation impact, slow communication

T
exe
 (1000 cc)

4

91.5

110.6

94.6

90

110

103.1

96.2

98.4

App 1

App 2

80

150

110.6

82.2

95.9

101.4
 96.2
93.5

107.2

172.8

App 1

App 2

3x3
 4x4
 5x5

T
exe
 (1000 cc)

72.8
71.7
69.5

partition

b. Varying RU size, slow

communication

60

37.5

T
exe
 (1000 cc)
 Usage
(%)

68.5

60
 Context #
 0

100

c. Varying context number, fast communication

1
 2
 3
 4
 1
 2
 3
 4

Context #

78.3
67.6

67.1
67.0
 50.0

42.8

1
 2
 3

Context #

d. Varying context #, slow

communication

T
exe
 (1000 cc)

4

89.8

71.7
71.1

77.9
80

70

3x3
 4x4
 5x5

T
exe
 (1000 cc)

80.5

65.7
65.5

partition

f. Varying RU size,

coarse-grained RU

Figure 5.12: Simulation results of MP3 experiments

The performance of the reconfigurable system is comparable to the dedicated
FPGA implementation, but the flexibility of the reconfigurable system is a great
advantage over the traditional FPGA based design. With dedicated design that
aim for reducing the overhead, we can expect the reconfigurable systems to have
even closer performance and cost to the traditional FPGA based designs.

5.6.2.2 Varying the number of contexts

We assume that the Alogic = 200CLB is a constant for each RU, and we trade
contexts for more RUs. With the previously assumed total RU area of 7K CLB,
we can have 18 RUs with 3 contexts, 22 RUs with 2 contexts or 27 RUs with sin-

94

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

gle context. Figure 5.12c shows the performance and the context usage of each
simulation. We observed that the single context design suffers greatly from the
high usage rate, since logics and contexts have one-to-one correspondence. Also,
we observed that the more contexts the RUs have, the more communication can
be localized, thus the shorter the application execution time can be. The effect
of the data localization is amplified on slow communication simulation as shown
in figure 5.12d, where the simulation assume the communication bandwidth is
reduced by 10 times. However, localizing the communication through task allo-
cation doesn’t guarantee the performance gain, since applications may demand
parallel computation resources or high number of RU for more speed up.

5.6.2.3 Impact of the reallocation

We experiment on how the partitioning influences the reallocation. As shown
in figure 5.12e, we run two instances of MP3 in each simulation to cause task
reallocation. To guarantee the occurrence of reallocation, we only define one
M-node in the system. The second instance of the MP3 is started after the first
instance is run for 20K clock cycles. We expect the first MP3 instance to finish
before the second instance finishes, and designs with more RUs and contexts
are less influenced by the reallocation. What we observed is somewhat different
from expected. For instance, the 4X4 array with 4 contexts finishes running the
second MP3 instance before the first one. This happens because the reallocation
accidentally cause the tasks that should be executed in parallel be reallocated
to the same RU. The penalty of such reallocation is significant enough to cause
serious performance degradation. Such observation leads to the consideration
of designing more advanced reallocation strategy. A good reallocation strategy
not only needs to take the resource distribution and task execution time into
account, but the task parallelism as well.

5.6.3 Coarse-grained architecture study

Most of the medium-grained and coarse-grain reconfigurable systems have simi-
lar characteristics as fine-grained ones, except that they have lower requirements
on the configuration memory size and bandwidth. However, for coarse-grained
architectures that use FU as logics, the configuration management becomes a
even less demanding problem, since the configuration is small in size. Instead,
the efficient use of RU become a more serious issue, as shown in our experiment.

The original MP3 study gave out the execution time of GPP implementation of
each task, under the assumption that the instructions are executed in sequential

5.7 Advanced allocation strategies 95

order. To transform the original MP3 into a realistic task graph that fits coarse-
grained architecture, we need to find out the instruction-level parallelism of each
task. This can be estimated by comparing a task’s execution time of the FPGA

implementation and that of the GPP implementation, e.g. IPCavg =
TexeGP P

TexeF P GA

.

The average IPC of the MP3 tasks varies between 1.7 and 11.8, as shown in
figure 5.11, which indicates that the RU can not be efficiently used all the time.

We assume that an FU costs 16 CLBs to implement, including the data rout-
ing that fetches the computation results from the neighboring FUs. Based on
this assumption, the 3x3, 4x4 and 5x5 partitions can offer the maximum IPCs
(IPCmax) of 22, 12 and 8 per RU, respectively. As mentioned before, the IPCs
of MP3 task are estimated around 1.7 and 11.8, thus high-parallelism tasks’
performance is capped at 8 IPC when running on 5x5 partition RUs. In this
case, we assume that the execution time of each task is:

Texecoarse
=

{

TexeF PGA
=

TexeGP P

IPCavg
, if IPCavg ≤ IPCmax;

TexeGP P

IPCmax
, if IPCavg > IPCmax;

We still assume that only 4 tasks can be allocated on the same RU, and the
inter-task communication latency is the same as in fine-grained architectures.

Our simulation is done on various number of RUs, and the result is shown in
figure 5.12f. The 3x3 and 4x4 partition systems have very close performance,
since both partitions offer enough parallel FUs for all tasks. The 5x5 architecture
has a significant performance penalty due to the IPC cap of 8. However, 3x3
and 4x4 partitions result in a large waste of RUs, since many tasks can only use
a few FUs, even if up to 22 FUs are available.

The system efficiency boils down again to the matching of the size of the RU and
the demand of the tasks. Source code transformation or aggressive compile-time
loop-level optimization can improve the task IPC, but these tasks are not trivial.
Before upscaling such architecture, designers need to estimate how frequently
the added functional unit is being used.

5.7 Advanced allocation strategies

Our previous experiments employed a rather simple task allocation strategy. We
tightly cluster all the tasks around the M-nodes to reduce the communication,
but the M-nodes become the allocation hot spots and cause high occurrence of
reallocation. In this section, we propose a few other (re)allocation strategies
and discuss how (re)allocation impacts the system performance.

96

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

5.7.1 Task clustering

Instead of using M-nodes as the cluster centers of any application, each appli-
cation should find its own cluster center and form its own cluster, as shown
in figure 5.13. By forming clusters separately, we expect that applications will
disrupt each other less frequently, hence result in less communication and real-
location.

C

M

M

M

M

C

Application 1

cluster

Application 2

cluster

Application 3

cluster

Figure 5.13: Clustering based on applications

The clustering of each application is made by one of the M-nodes when the
application is being allocated. The M-node being selected to synchronize and
schedule the application has a resource distribution map of the whole coproces-
sor, thus is able to search for an area on the coprocessor that has condensed
free resources. Since the RU array is quite small, the search time is reasonably
short.

During the search, the selected M-node assumes that any slave node can be the
cluster center, and builds a helix search path on each slave. Figure 5.13 shows
one of the possible helix search paths that formed application 1’s cluster. The
helix search path is extended one hop at a time from the assumed cluster center.
Each time the helix is extended, the total number of free resources chained on
the helix is calculated. If there are enough free resources on the helix chain
to run the application, the search stops. Clearly, if the helix extended from a
slave node has the shorter length when the search stops, the cluster has more
condensed free resources, thus is a better place to allocate the new application.

5.7 Advanced allocation strategies 97

5.7.2 Allocation priority

The reallocation is a costly process, thus should only occur if there is lit-
tle penalty received from it. Our previous reallocation strategy is completely
priority-based, e.g. a lower-priority task gets reallocated to guarantee that
higher-priority tasks suffer less from communication overhead. Based on some
of our observation, such a simple strategy may cause starvation or unnecessarily
prolong the task execution time. For instance, a low-priority task can be reallo-
cated repeatedly if several high-priority tasks request to be allocated, resulting
in the low-priority task to suffer greatly from reallocation latency and miss the
deadline, even if the task is near its completion.

To solve this problem, the allocation has to take not only spatial characteristic
of the resource distribution into account, but the temporal one as well. This
is a complicated issue to address at run-time, since the temporal characteristic
of the resource distribution is not simple to capture. Our strategy to solve
this problem is to employ dynamic task prioritization. E.g. we should increase
the allocation priority of an allocated task when a large portion of it has been
executed, or when its deadline approaches. Currently we are still analyzing
how to optimally change a task priority. In our experiment here, we simply
increase the task’s priority if its remaining execution time is comparable to the
reallocation latency.

5.7.3 Critical path guided allocation

After the system is running for a while, free resources will eventually be evenly
distributed on the array, causing a 3D-space resource fragmentation. Therefore,
we attempt to find an alternative strategy that can reduce the occurrence of
the reallocation even further. Critical path is often used to optimize the task
partition and scheduling [88] etc. In our system, it can be used to guide the
task allocation as well.

The critical path of a task graph can be easily identified when the task graph
is statically constructed. During an idealistic allocation scenario, the M-node
should spend more effort to guarantee the allocation quality of the tasks on the
critical path. Non-critical tasks could be allocated in a more relaxed manner.
Reallocation should only be invoked when the task being allocated is critical in
order to avoid causing further complication.

However, due to the non-deterministic communication latency, the critical path
of the application running on a reconfigurable system may vary dynamically.

98

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

Finding one “absolute” critical path is infeasible for such system, so we need
to find some more advanced solutions. In practice, we can either dynamically
monitor the changes during task (re)allocation and identify the critical path
on the fly, or statically identify several critical path candidates and optimally
allocate several of them. When compared to the dynamical approach, the static
approach is not equally efficient at reducing reallocation’s occurrence, but has
the advantage of reducing the run-time management overhead.

We experimented on the static approach during our study. For a given task
graph as shown in figure 5.14, based on the execution time analysis, a prelimi-
nary critical path can be identified as T1→T2→T3→T4→T5→T6. We assume
such path is highly probable to be the critical path in run-time, thus assign
the highest allocation priority to it (P=3). Paths that are branched out of the
critical path, especially the ones that join the critical path later on, have high
probability to become another critical path, thus we back trace some of these
paths and assign them a moderately high priority (P=2). The rest of the task
graph get the lowest priority, which should not cause any reallocation. We also
allow a task graph to have more than one critical path in order to improve the
reallocation.

T1

T11

T7

T6

T5

T4

T3

T2

T10
T9

T8

Critical path

Back-trace path

p=3

p=2

p=3

p=3

p=3

p=3

p=3

p=1

p=1
p=1

p=1

Figure 5.14: Critical path based task prioritization

5.7 Advanced allocation strategies 99

5.7.4 Simulation and analysis

To evaluate the effectiveness of our various management strategies, we set up
the following simulations. We generated 5 application task graphs by using
Task Graph For Free (TGFF)[10], as shown in appendix A. Then we randomly
instantiate 100 applications from these five application task graphs to construct
an input application set. During simulation time, as soon as there is a certain
amount of resources available on the coprocessor, one of the applications in the
input application set is started. We set up the architecture as an 8x8 RU array
with two C-nodes, two M-nodes and 60 four-context S-nodes. We assume that
the NoC can handle up to 64 messages concurrently, and the reconfiguration
latency is comparable to the average execution time of all tasks. We run the
simulation several times, each time with a different input application set, and
show the average result in this section.

We believe that (re)allocation will not be very efficient when the coprocessor
is overly stressed. E.g. starting a new application when there are just enough
resources available can be bad for the overall system performance, since there
is little a reallocation strategy can do. However, how many resources should
be reserved for (re)allocation and how the reserved resources can impact the
system are unclear to us. In our experiments, we reserved up to 120 resources,
which is equivalent to up to 50% of total resources, and observed the impacts
on the total execution time of these 100 applications.

The simulation results are shown in figure 5.15. The Basic R simulation em-
ploys the M-node centered reallocation strategy. In this simulation, an allocation
priority ranging from 1 to 5 is randomly assigned to each application. The He-
lix NR simulation employs the helix-path based allocation strategy to optimize
for the task allocation. The matching reallocation strategy for the helix-path
based allocation is still under research, thus the reallocation for Helix NR sim-
ulation is disabled. The Dynamic priority simulation increases the basic task
priority, which is assigned the same way as in the Baisc R simulation, when a
task’s remaining execution time is less than the reconfiguration time. The Crit-
ical path simulation assigns task priority based on the principle introduced in
figure 5.14.

The most interesting observation is that a small amount of reserved resources
reduce the execution time of all the simulation. Without any reserved resources,
the execution time of all the tested strategies are very close, since none of
the (re)allocation strategies is effective. With 20-30 resources (∼10%) reserved
for allocation, the Basic R, Critical path and Dynamic priority gets some
benefit. The Helix NR simulation performs no reallocation, thus requires more
free resources to get to the optimal point. All simulations show that reserving

100

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

0 20 40 60 80 100 120
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

4

of reserved resource

t ex
e(c

c)
Basic_R
Critical_Path
Helix_NR
Dynamic_priority

Figure 5.15: Running 100 applications with various management strategies

fewer resources linearly reduces the application execution time, but little perfor-
mance gain can be achieved from reserved resources deduction when less than
80 resources (∼30%) are reserved for (re)allocation.

The helix-path based allocation strategy outperforms the other three manage-
ment strategies. The system seems more rigid when fewer resources are reserved
for allocation, but the overall performance gain proves that distributed clus-
tering is a right allocation strategy. However, the matching task reallocation
strategy is hard to devise, since the task allocation is already very optimal,
and reallocation has a high chance to cause more communication rather than
reducing any.

The Basic R, Critical path and Dynamic priority simulation rely more on
reallocation rather than allocation. The simulations show that their results
are very close. From our analysis, we discovered that reallocation frequently
cause longer overall communication time. Higher priority applications often get
efficiently executed, but the lower priority tasks suffer from exceedingly more
communication latencies than necessary. The crucial issues are that we still
can’t choose the right low priority task to reallocate, and we still can’t find an
optimal S-node to reallocate a task to. The reallocation issue is a complicated
NP-complete problem that is challenging to analyze at run-time, and is one of
the major topics for future study.

To investigate how fragmentation impacts our various resource management

5.8 Future work 101

strategies, we run the same simulations with different numbers of input appli-
cation and observe the task execution time. The optimal number of reserved
resources is granted to each of these simulations. As shown in figure 5.16, due to
the flexibility of our architecture, the fragmentation does not change the linear
relationship between the execution time and the number of tasks being executed.
The Helix NR simulation still outperforms the others, especially when fewer
tasks are executed on the coprocessor.

10 20 30 40 50 60 70 80 90
1000

2000

3000

4000

5000

6000

7000

8000

9000

of applications

t ex
e(c

c)

Basic_R
Critical_Path
Helix_NR
Dynamic_priority

Figure 5.16: Running various number of applications with various management
strategies

From our experiments, we demonstrated that our clustering strategy is a simple
and effective solution to address the allocation issue. The reallocation issue,
however, is much more complicated to understand. All our attempts show that
the execution time of higher-priority applications can only be reduced when
the overall system performance is compromised. So far, many parts of the
reallocation are not well-addressed, and we are still on our journey towards
understanding the nature of the reallocation.

5.8 Future work

Our current work concentrates on the real-time behavior of the task being ex-
ecuted on the coprocessor, but the timing characteristic of the management
strategy has not been thoroughly addressed. Take reallocation for an exam-

102

COSMOS: A System-Level Modelling and Simulation Framework for

Coprocessor-Coupled Reconfigurable Systems

ple, the decision of which task should be reallocated to which S-node greatly
impacts the system performance. If the M-nodes can thoroughly analyze the
current resource distribution status, the reallocation strategy can better improve
the system performance. However, the decision is made by M-nodes at run-time,
thus the latency on making the decision becomes an overhead to the task ex-
ecution as well. There are trade-offs between reallocation optimality and the
reallocation latency, and such trade-off is not well-understood at the moment.
In our model, we currently assume that all the resource management algorithms
are executed in no time, which can be too optimistic for a large system. In the
future, some improvement can be made on this aspect of our model.

With some modification on the allocation strategy and task model, COSMOS
can be used to study the systems with heterogeneous RU array. But currently,
understanding the behavior of a homogeneous system and optimizing such a
system already pose great challenges, and heterogeneous system is far more
complicated than the homogeneous system. When the homogeneous system
study is more mature, we believe it will be interesting to study the behavior of
the heterogeneous systems and compare it with that of the homogeneous ones.

From the applications’ allocation/execution scenario, we can identify plenty of
issues to be addressed in the future. The strategies of task allocation, scheduling
and reallocation etc. are open for further study. From our experience, we see
that the (re)allocation issue can be highly complicated. Employing complicated
allocation algorithm when an application requests to run not only increases
timing overhead, but also improves little when the resource is fragmented. Also,
the computation power of the C- or M-nodes is wasted when no application is
requesting to run. Proactive run-time management is a promising strategy to
make better use of the management nodes and ease the allocation. Currently
we are studying how a proactive resource management strategy can be applied
to the reconfigurable system, and what kind of complexity such strategy can
handle.

5.9 Conclusion

The most important lessen we learnt from reconfigurable system study is that,
even if reconfigurable system design issues have much resemblance to that of
many traditional systems and technologies, applying previously used solutions
to reconfigurable system is rarely appropriate. Being highly dynamic systems
with non-deterministic behavior, reconfigurable system should be treated more
delicately, or even be approached from a different angle. Before proposing ad-
vanced solutions based on previous research or intuitive reasoning, we often need

5.9 Conclusion 103

to withdraw our conclusion based on the study of the traditional architectures
and try to understand the reconfigurable systems a little better, especially when
we are facing such complexity.

Under this circumstance, we developed the COSMOS framework in hopes of
helping us to evaluate our design and inspiring us to create more ideas. The
COSMOS model is a flexible platform that can be partially customized to fit
the needs of the user. It is also a rather friendly tool to update once the un-
derlying message passing mechanism is understood. Through our simulation,
we demonstrated how our simulator can be used for studying system-level de-
sign, and pinpointed what architecture design issues can impact the application
execution performance.

Even if we have only discussed a few key architecture design issues, considerable
complexity has already been seen. At the current stage, we are still in the process
of understanding how the reconfigurable systems’ dynamic behavior is affected
by various design issues. Based on our observation, we proposed some run-time
management strategies and demonstrated that these strategies can impact the
system performance in certain scenario. Currently, plenty of work still remains
to be done in both understanding and improving such system, and we anticipate
that COSMOS can be a handy tool to assist our future work.

104

Chapter 6

Conclusion

6.1 Contribution

The research on reconfigurable systems has been growing for more than a decade.
The architecture study has taken several different directions, each of which
results in its own relevant methodology study and run-time management study.
Enormous amount of ideas have been proposed, and a few industrial practices
have been seen. However, due to the diversity of the ongoing researches, it is
not a trivial task to pinpoint what the urgent needs are for the current research
and how to contribute to it.

Under such circumstance, we divide our study into the following three phases.
In the first phase, we made a survey of the area and experienced the partial
reconfiguration on commercial FPGA. From this phase, we understood some of
the crucial characteristics of reconfiguration and identified some of the unad-
dressed issues that hinder the future research. The outcome of this phase is the
foundation of our follow-up works.

In the second phase, we propose to use the simultaneous multi-threading to
increase the performance and the scalability of datapath-coupled reconfigurable
architectures. The scalability is the crucial issue that restrains the promotion
of many datapath-coupled architectures. We expanded the existing ADRES

106 Conclusion

architecture to support the partition-based threading, and proposed a strategy
to improve the ADRES tool chain, DRESC, to ease the architecture partitioning
and application compilation. By upgrading the MPEG2 decoder into a dual-
threaded program and running the decoder on a threaded ADRES instance, we
demonstrated that the simultaneous multi-threading leverages the scalability
issue of the datapath-coupled system, thus deserves further investigation.

The last phase of our study focuses on the system-level modelling and simulation
of the coprocessor-coupled systems. Being the most complicated category of the
reconfigurable system, coprocessor-coupled systems have highly unpredictable
dynamic behavior. Our work focuses on the homogeneously modularized and
partitioned systems, and tries to capture the behavior of such system. With the
help of our modelling and simulation framework, we studied how several impor-
tant early-stage architecture design decisions can impact system performance,
and pointed out several pitfalls and tradeoffs. Through some simulation, we’ve
also acquired better understanding of the dynamic resource management issue
of such system, and proposed several task reallocation strategies to increase the
system performance. We are positive that our simulation framework, COSMOS,
is a valuable tool that can help us to understand such system and optimize them
in many aspects.

6.2 Outlook

The reconfigurable system research is a promising yet challenging area. These
architectures have great potential in achieving both high flexibility and high per-
formance, but also risk suffering from reconfiguration penalties. Understanding
the source of these penalties requires us to have ample knowledge of the dynamic
behavior of these systems. however, such behavior has not been thoroughly in-
vestigated before.

The datapath-coupled systems are relatively more practical to use. These sys-
tems’ structures are frequently regular and simple, and are suitable to be used
for embedded system design. When compared to more traditional embedded
systems, the programming and compilation of these reconfigurable systems are
more complicated, but thanks to the regularity of these systems, the design
automation is still feasible. Due to the scaling limitation of these systems, the
performance penalty caused by the run-time management is reasonably small.

The coprocessor-coupled systems tend to be large and complicated. When com-
bined with MPSoC and NoC, these systems offer great deal of parallel comput-
ing power to speed up the execution of several applications concurrently, but

6.2 Outlook 107

these systems are also highly complicated in every design aspect. Our COSMOS
model currently has been used to study several important architecture design
factors and run-time task reallocation issues of these systems, but many other
run-time characteristics have not been investigated. The interaction among the
host processor, the memory hierarchy and the reconfigurable coprocessor is an-
other interesting topic to study, especially the memory bandwidth issue, and
COSMOS is a suitable framework for investigating such issue.

The COSMOS framework models the homogeneous systems. Whether or not
the homogeneous systems should be the focus of future research depends on two
issues. These issues are: how difficult it is to efficiently manage a heterogeneous
system’s resource; and how difficult it is to partition an application into a task
graph that can efficiently use the homogeneous resource. Both of these issues are
known to be very challenging to study at the moment, and we expect nothing
less than long term investigation to address these issues.

Even if the reconfigurable systems have been studied by many, we still see quite
a few fundamental issues not well-addressed, especially for coprocessor-coupled
architectures. As potentially powerful as it is tricky to take advantage of, we
believe that many aspects of the reconfigurable system still require much work to
be truly understood. Nonetheless, the reconfigurable system is one of the most
promising paradigms for future architectures, and its potential of taking the
advantages of all the major ongoing researches makes it hard to be overlooked.
In time, we wish to see them being better recognized and appreciated.

108

Appendix A

TGFF files

A.1 Input file

cnt 5
sk cnt 12 6
sk degree 2 2
riod laxity 1
riod mul 1, 0.5, 2
write
write
s write
g write

ble label COMMUN
ble cnt 1
ble attrib price 200 40
pe attrib exec time 60 20
ans write

1
1
0

T
G

F
F

fi
le

s

A
.2

O
u
tp

u
t

fi
le

TASK_GRAPH 0
 Period= 440
 In/Out Degree Limits= 2 / 2

TASK_GRAPH 1
 Period= 880
 In/Out Degree Limits= 2 / 2

TASK_GRAPH 2
 Period= 880
 In/Out Degree Limits= 2 / 2

TASK_GRAPH 3
 Period= 440
 In/Out Degree Limits= 2 / 2

TASK_GRAPH 4
 Period= 880
 In/Out Degree Limits= 2 / 2

0

1 2

3

4

5 6

7

0

1 2

3

4 5

6 7 8

9 10

11

12

13

14

15 16

0

1 2

3 4 5

6

7

8 9

10 11 12

13

14

0

1

2 3

4

5

6

0

1

2

3 4

5

6

7 8

9

10

11 12

13

14 15

d=500

d=600

d=200

d=800

d=700

d=600

d=700 d=700

d=500

d=400

d=500

d=400

d=600

d=500

d=400

d=800

d=600

d=800 d=800

F
ig

u
re

A
.1

:
T
a
sk

g
ra

p
h

u
sed

in
C

O
S
M

O
S

m
a
n
a
g
em

en
t

stra
teg

y
stu

d
y

Bibliography

[1] Fpslic on-chip partial reconfiguration of the embedded at40k fpga.
www.atmel.com.

[2] http://suif.stanford.edu/.

[3] Ise 7.1i development system reference guide. www.xilinx.com.

[4] See http://www.celoxica.com/.

[5] See http://www.cray.com/products/xd1/index.html.

[6] See http://www.nallatech.com/.

[7] See http://www.siliconhive.com/.

[8] See http://www.srccomp.com/.

[9] See http://www.xilinx.com.

[10] See http://ziyang.ece.northwestern.edu/tgff/.

[11] Two flows for partial reconfiguration: Module based or difference based
application note. xapp290 v1.1. www.xilinx.com.

[12] Virtex series configuration architecture user guide. xapp151 v1.7 october
20, 2004. www.xilinx.com.

[13] H. Akkary and M.A. Driscoll. A dynamic multithreading processor.
31st Annual ACM/IEEE International Symposium on Microarchitecture.
MICRO-31. Proceedings, pages Page(s):226 – 236, 1998.

112 BIBLIOGRAPHY

[14] G.M. Amdahl. Validity of the single processor approach to achieve
large-scale computing capabilities. Proc. AFIPS Spring Joint Computer
Conf. 30, pages 483–485, 1967.

[15] P. Bellows and B. Hutchings. Jhdl - an hdl for reconfigurable system.
FCCM ’98: Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, page 175, 1998.

[16] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundarara-
jan. A self-reconfigurable platform. Field-Programmable Logic and Appli-
cations FPL’03, 2003.

[17] Kiran Bondalapati. Parallelizing dsp nested loops on reconfigurable archi-
tectures using data context switching. DAC ’01: Proceedings of the 38th
conference on Design automation, pages 273–276, 2001.

[18] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction gener-
ation and regularity extraction for reconfigurable processors. CASES ’02:
Proceedings of the 2002 international conference on Compilers, architec-
ture, and synthesis for embedded systems, pages 262–269, 2002.

[19] Mihai Budiu, Mahim Mishra, Ashwin R. Bharambe, and Seth Copen Gold-
stein. Peer-to-peer hardware-software interfaces for reconfigurable fabrics.
FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, page 57, 2002.

[20] D. Burger, S.W. Keckler, and K.S. McKinley. Scaling to the end of silicon
with edge architectures. IEEE Computer (37), pages 44 – 55, 2004.

[21] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The garp architecture
and c compiler. Computer Volume: 33 Issue: 4, pages 62–69, 2000.

[22] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for vliws:
A preliminary analysis of tradeoffs. The 25th Annual International Sym-
posium on Microarchitecture, pages 103–114, 1992.

[23] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey
of systems and software. ACM Comput. Surv., 34(2):171–210, June 2002.

[24] Katherine Compton, Zhiyuan Li, James Cooley, Stephen Knol, and Scott
Hauck. Configuration relocation and defragmentation for run-time re-
configurable computing. IEEE Trans. Very Large Scale Integr. Syst.,
10(3):209–220, 2002.

[25] J.G.F. Coutinho and W. Luk. Source-directed transformations for hard-
ware compilation. Field-Programmable Technology (FPT). Proceedings.
IEEE International Conference on, pages 278–285, 2003.

BIBLIOGRAPHY 113

[26] R. David, D. Chillet, S. Pillement, and O. Sentieys. A dynamically re-
configurable architecture for low-power multimedia terminals. VLSI-SOC
’01: Proceedings of the IFIP TC10/WG10.5 Eleventh International Con-
ference on Very Large Scale Integration of Systems-on/Chip, pages 51–62,
2001.

[27] R. David, D. Chillet, S. Pillement, and O. Sentieys. A compilation frame-
work for a dynamically reconfigurable architecture. FPL ’02: Proceedings
of the Reconfigurable Computing Is Going Mainstream, 12th International
Conference on Field-Programmable Logic and Applications, pages 1058–
1067, 2002.

[28] R. David, D. Chillet, S. Pillement, and O. Sentieys. Dart: A dynamically
reconfigurable architecture dealing with future mobile telecommunications
constraint. Parallel and Distributed Processing Symposium., Proceedings
International, IPDPS, pages 156–163, 2002.

[29] R. Dimond, O. Mencer, and W. Luk. Custard - a customisable threaded
fpga soft processor and tools. International Conference on Field Pro-
grammable Logic and Applications, pages 1 – 6, 2005.

[30] Pedro Diniz, Mary Hall, Joonseok Park, Byoungro So, and Heidi Ziegler.
Bridging the gap between compilation and synthesis in the defacto system.
In Proceedings of the 14th Workshop on Languages and Compilers for
Parallel Computing (LCPC’2001),, pages 570–578, 2001.

[31] B. Draper, W. Najjar, W. Bohm, J. Hammes, B. Rinker, C. Ross,
M. Chawathe, and J. Bins. compiling and optimizing image processing
algorithms for fpgas. Computer Architectures for Machine Perception.
Proceedings. Fifth IEEE International Workshop on, pages 222–231, 2000.

[32] S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, R.L. Stamm, and D.M.
Tullsen. Simultaneous multithreading: A platform for next-generation
processors. Micro, IEEE Volume 17, Issue 5, pages 12 – 19, 1997.

[33] Gerald Estrin. Reconfigurable computer origins: The ucla fixed-plus-
variable (f+v) structure computer. IEEE annals of the history of com-
puting, pages 773–783, 1988.

[34] Jong eun Lee, Kiyoung Choi, and Nikil D. Dutt. An algorithm for mapping
loops onto coarse-grained reconfigurable architectures. SIGPLAN Not.,
38(7):183–188, 2003.

[35] K. Furuta, T. Fujii, M. Motomura, K. Wakabayashi, and M. Yamashina.
Spatial-temporal mapping of real applications on a dynamically recon-
figurable logic engine (drle) lsi. Custom Integrated Circuits Conference,
CICC. Proceedings of the IEEE, pages 151–154, 2000.

114 BIBLIOGRAPHY

[36] K.M. GajjalaPurna and D. Bhatia. Partitioning in time: A paradigm
for reconfigurable computing. ICCD ’98: Proceedings of the International
Conference on Computer Design, page 340, 1998.

[37] Manuel G. Gericota, Gustavo R. Alves, Miguel L. Silva, and Jose M. Fer-
reira. Run-time management of logic resources on reconfigurable system.
DATE ’03: Proceedings of the conference on Design, Automation and Test
in Europe, pages 974 – 979, 2003.

[38] D.B. Gottlieb, J.J. Cook, J.D. Walstrom, S. Ferrera, Chi-Wei Wang, and
N.P. Carter. Clustered programmable-reconfigurable processors. Field-
Programmable Technology, (FPT). Proceedings. IEEE International Con-
ference on, pages 134– 141, 2002.

[39] S. Guccione, D. Levi, and P. Sundararajan. Jbits: Java based
interface for reconfigurable computing. http://www.io.com/ guc-
cione/Papers/MAPPLD/JBitsMAPPLD.pdf.

[40] Steven A. Guccione and Delon Levi. Jbits: A java-based interface to fpga
hardware. http://www.io.com/ guccione/Papers/JBits/JBits.html.

[41] Steven A. Guccione and Delon Levi. Run-time parameterizable cores. Pro-
ceedings of the ACM/SIGDA seventh international symposium on Field
programmable gate arrays, page 252, 1999.

[42] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Spark: A
high-level synthesis framework for applying parallelizing compiler trans-
formations. Intl. Conf. on VLSI Design, 2003, pages 461– 466, 2003.

[43] Yajun Ha, Radovan Hipik, Serge Vernalde, Diederik Verkest, Marc En-
gels, Rudy Lauwereins, and Hugo De Man. Adding hardware support to
the hotspot virtual machine for domain specific applications. FPL ’02:
Proceedings of the Reconfigurable Computing Is Going Mainstream, 12th
International Conference on Field-Programmable Logic and Applications,
pages 1135–1138, 2002.

[44] Jeffrey P. Hammes, Robert Rinker, Walid A. Najjar, and Bruce Draper.
A high level, algorithmic programming language and compiler for recon-
figurable systems. The 2nd International Workshop on the Engineering of
Reconfigurable Hardware/Software Objects (ENREGLE), 2000.

[45] Manish Handa and Ranga Vemuri. An efficient algorithm for finding empty
space for online fpga placement. DAC ’04: Proceedings of the 41st annual
conference on Design automation, pages 960–965, 2004.

[46] J. Harkin, T.M. McGinnity, and L.P. Maguire. Genetic algorithm driven
hardware-software partitioning for dynamically recofigurable embedded
systems. Microprocessor and Microsystems, pages 263–274, 2001.

BIBLIOGRAPHY 115

[47] S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao. The chimaera reconfig-
urable functional unit. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pages 206–217, 2004.

[48] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with
a reconfigurable coprocessor. In Kenneth L. Pocek and Jeffrey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing Machines,
pages 12–21. IEEE Computer Society Press, 1997.

[49] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour.
Dynamic hardware plugins in an fpga with partial run-time reconfigura-
tion. DAC ’02: Proceedings of the 39th conference on Design automation,
pages 343–348, 2002.

[50] Zhining Huang and Sharad Malik. Exploiting operation level parallelism
through dynamically reconfigurable datapaths. DAC ’02: Proceedings of
the 39th conference on Design automation, pages 337–342, 2002.

[51] E. Iwata and K. Olukotun. Exploiting coarse-grain parallelism in the
mpeg-2 algorithm. Stanford University Computer Systems Lab Technical
Report CSL-TR-98-771, 1998.

[52] Adam Kaplan, Philip Brisk, and Ryan Kastner. Data communication es-
timation and reduction for reconfigurable systems. DAC ’03: Proceedings
of the 40th conference on Design automation, pages 616–621, 2003.

[53] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh. Instruc-
tion generation for hybrid reconfigurable systems. ACM Trans. Des. Au-
tom. Electron. Syst., 7(4):605–627, 2002.

[54] Eric Keller. Jroute: A run-time routing api for fpga hardware. IPDPS ’00:
Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, pages 874–881, 2000.

[55] Richard B. Kujoth, Chi-Wei Wang, Derek B. Gottlieb, Jeffrey J. Cook, and
Nicholas P. Carter. A reconfigurable unit for a clustered programmable-
reconfigurable processor. In FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate
arrays, pages 200–209. ACM Press, 2004.

[56] Chidamber Kulkarni, Gordon Brebner, and Graham Schelle. Mapping a
domain specific language to a platform fpga. DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 924–927, 2004.

[57] Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J. Kur-
dahi. Fast area estimation to support compiler optimizations in fpga-based
reconfigurable systems. FCCM ’02: Proceedings of the 10th Annual IEEE

116 BIBLIOGRAPHY

Symposium on Field-Programmable Custom Computing Machines, page
239, 2002.

[58] Luciano Lavagno. The programmer’s view of a dynamically reconfigurable
architecture. MPSoC’04 workshop invited presentation, 2004.

[59] Sunghyun Lee, Sungjoo Yoo, and Kiyoung Choi. Reconfigurable soc de-
sign with hierarchical fsm and synchronous dataflow model. CODES ’02:
Proceedings of the tenth international symposium on Hardware/software
codesign, pages 199–204, 2002.

[60] L. Levinson, R. Manner, M. Sessler, and H. Simmler. Preemptive multi-
tasking on fpgas. FCCM ’00: Proceedings of the 2000 IEEE Symposium
on Field-Programmable Custom Computing Machines, page 301, 2000.

[61] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure,
and Jon Stockwood. Hardware-software co-design of embedded reconfig-
urable architectures. DAC ’00: Proceedings of the 37th conference on
Design automation, pages 507–512, 2000.

[62] Huiqun Liu and D. F. Wong. Network flow based circuit partitioning for
time-multiplexed fpgas. ICCAD ’98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, pages 497–504, 1998.

[63] Huiqun Liu and D. F. Wong. A graph theoretic optimal algorithm
for schedule compression in time-multiplexed fpga partitioning. ICCAD
’99: Proceedings of the 1999 IEEE/ACM international conference on
Computer-aided design, pages 400–405, 1999.

[64] A. Lodi, M. Toma, and F Campi. A pipelined configurable gate array
for embedded processors. Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate arrays FPGA’03,
pages 21–30, 2003.

[65] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerrieri.
A vliw processor with reconfigurable instruction set for embedded appli-
cations. Solid-State Circuits, IEEE Journal of, pages 1876–1886, 2003.

[66] Roman Lysecky and Frank Vahid. A configurable logic architecture for dy-
namic hardware/software partitioning. DATE ’04: Proceedings of the con-
ference on Design, automation and test in Europe, pages 480–485, 2004.

[67] Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. Dynamic fpga
routing for just-in-time fpga compilation. DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 954–959, 2004.

[68] J. Madsen, S. Mahadevan, and K. Virk. Network-centric system-level
model for multiprocessor system-on-chip simulation. Interconnect-Centric
Design for Advanced SoC and NoC, Springer, pages 341–365, 2004.

BIBLIOGRAPHY 117

[69] J. Madsen, K. Virk, and M. J. Gonzalez. A systemc-based abstract real-
time operating system model for multiprocessor system-on-chips. Multi-
processor System-on-Chips Morgan Kaufmann, page 2004, 283-311.

[70] T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Ver-
nalde, and R. Lauwereins. Networks on chip as hardware components of an
os for reconfigurable systems. Field-Programmable Logic and Applications
FPL’03, pages 595–605, 2003.

[71] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean Vuillemin, and Brad
Hutchings. A reconfigurable arithmetic array for multimedia applications.
In FPGA ’99: Proceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, pages 135–143, New York,
NY, USA, 1999. ACM Press.

[72] P. Master. Keynote: the next big leap in reconfigurable systems. Field-
Programmable Technology, (FPT). Proceedings. IEEE International Con-
ference on, pages 17–22, 2002.

[73] B. Mei. A coarse-grained reconfigurable architecture template and its
compilation techniques. Ph.D. thesis, IMEC, Belgium, 2005.

[74] B. Mei, S. Kim, and R. Pasko. A new multi-bank memory organization
to reduce bank conflicts in coarse-grained reconfigurable architectures.
IMEC, Technical report, 2006.

[75] B. Mei, S. Vernalde, D. Verkest, H.D. Man, and R. Lauwereins. Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix. International Conference on Field Programmable
Technology, pages 166–173, 2002.

[76] B. Mei, S. Vernalde, D. Verkest, H.D. Man, and R. Lauwereins. Dresc:
A retargetable compiler for coarse-grained reconfigurable architectures.
Field-Programmable Logic and Applications FPL’03, 2003.

[77] J. Mignolet, S. Vernalde, D. Verkest, and R. Lauwereins. Enabling
hardware-software multitasking on a reconfigurable computing platform
for networked portable multimedia appliances. Proceedings of the Inter-
national Conference on Engineering Reconfigurable Systems and Architec-
ture, 2002.

[78] J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins. Infrastructure for design and management of relocatable tasks in a
heterogeneous reconfigurable system-on-chip. DATE ’03: Proceedings of
the conference on Design, Automation and Test in Europe, pages 986–991,
2003.

118 BIBLIOGRAPHY

[79] Gaurav Mittal, David C. Zaretsky, Xiaoyong Tang, and P. Banerjee. Au-
tomatic translation of software binaries onto fpgas. DAC ’04: Proceedings
of the 41st annual conference on Design automation, pages 389–394, 2004.

[80] Walid A. Najjar, Wim Bohm, Bruce A. Draper, Jeff Hammes, Robert
Rinker, J. Ross Beveridge, Monica Chawathe, and Charles Ross. High-
level language abstraction for reconfigurable computing. Computer,
36(8):63–69, 2003.

[81] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Design-
ing an operating system for a heterogeneous reconfigurable soc. IPDPS
’03: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, page 174.1, 2003.

[82] V. Nollet, T. Marescaux, P. Avasare, and J-Y. Mignolet. Centralized
run-time resource management in a network-on-chip containing reconfig-
urable hardware tiles. In Design, Automation and Test in Europe, 2005.
Proceedings, pages 234–239, March 2005.

[83] E. Ozer and T.M. Conte. High-performance and low-cost dual-thread
vliw processor using weld architecture paradigm. IEEE Transactions on
Parallel and Distributed Systems, Volume 16, Issue 12, pages 1132 – 1142,
2005.

[84] Gerard K. Rauwerda, Paul M. Heysters, and Gerard J. M. Smit. Mapping
wireless communication algorithms onto a reconfigurable architecture. J.
Supercomput., 30(3):263–282, 2004.

[85] R. Razdan and M. D. Smith. A high-performance microarchitecture with
hardware-programmable functional units. In Proceedings of the 27th An-
nual International Symposium on Microarchitecture, pages 172–80, 1994.

[86] Robert Rinker, Margaret Carter, Amitkumar Patel, Monica Chawathe,
Charlie Ross, Jeffrey Hammes, Walid A. Najjar, and Wim Bohm. An au-
tomated process for compiling dataflow graphs into reconfigurable hard-
ware. IEEE Trans. Very Large Scale Integr. Syst., 9(1):130–139, 2001.

[87] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. System-Level
Design Techniques for Energy-Efficient Embedded Systems. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2004.

[88] Mingsheng Shang, Shixin Sun, and Qingxian Wang. An efficient parallel
scheduling algorithm of dependent task graphs. Parallel and Distributed
Computing, Applications and Technologies, . PDCAT’2003. Proceedings
of the Fourth International Conference on, pages 595– 598, 2003.

BIBLIOGRAPHY 119

[89] Lesley Shannon and Paul Chow. Using reconfigurability to achieve real-
time profiling for hardware/software codesign. FPGA ’04: Proceedings
of the 2004 ACM/SIGDA 12th international symposium on Field pro-
grammable gate arrays, pages 190–199, 2004.

[90] H. Singh, M. Lee, G Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.
Chaves Filho. Morphosys: An integrated reconfigurable system for data-
parallel computation-intensive applications. Computers, IEEE Transac-
tions on, pages 465–481, 2000.

[91] Greg Snider. Performance-constrained pipelining of software loops onto re-
configurable hardware. FPGA ’02: Proceedings of the 2002 ACM/SIGDA
tenth international symposium on Field-programmable gate arrays, pages
177–186, 2002.

[92] Christoph Steiger, Herbert Walder, and Marco Platzner. Operating sys-
tems for reconfigurable embedded platforms: Online scheduling of real-
time tasks. IEEE Trans. Comput., 53(11):1393–1407, 2004.

[93] Arvind Sudarsanam, Mayur Srinivasan, and Sethuraman Panchanathan.
Resource estimation and task scheduling for multithreaded reconfigurable
architectures. In ICPADS ’04: Proceedings of the Parallel and Dis-
tributed Systems, Tenth International Conference on (ICPADS’04), page
323, Washington, DC, USA, 2004. IEEE Computer Society.

[94] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, Jason R. Villarreal, and
Greg Stitt. Profiling tools for hardware/software partitioning of embed-
ded applications. LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems, pages
189–198, 2003.

[95] Nozar Tabrizi, Nader Bagherzadeh, Amir H. Kamalizad, and Haitao Du.
Mars: A macro-pipelined reconfigurable system. CF ’04: Proceedings of
the 1st conference on Computing frontiers, pages 343–349, 2004.

[96] X. Tang, M. Aalsma, and R. Jou. A compiler directed approach to hiding
configuration latency in chameleon processors. Proceedings of the The
Roadmap to Reconfigurable Computing, 10th International Workshop on
Field-Programmable Logic and Applications, pages 29–38, 2000.

[97] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee,
Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman,
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal.
The raw microprocessor: A computational fabric for software circuits and
general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

120 BIBLIOGRAPHY

[98] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed
fpga. FCCM ’97: Proceedings of the 5th IEEE Symposium on FPGA-
Based Custom Computing Machines, page 22, 1997.

[99] S. Uhrig, S. Maier, G. Kuzmanov, and T. Ungerer. Coupling of a recon-
figurable architecture and a multithreaded processor core with integrated
real-time scheduling. International Parallel and Distributed Processing
Symposium. IPDPS, page 4 pp, 2006.

[100] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels, and I. Bolsens.
Hardware/software partitioning of embedded system in ocapi-xl. CODES
’01: Proceedings of the ninth international symposium on Hard-
ware/software codesign, pages 30–35, 2001.

[101] D. Verkest. Machine chameleon. Spectrum, IEEE Volume 40, Issue 12,
pages 41–46, 2003.

[102] Miljan Vuletic;, Laura Pozzi, and Paolo Ienne. Virtual memory window
for application-specific reconfigurable coprocessors. DAC ’04: Proceedings
of the 41st annual conference on Design automation, pages 948–953, 2004.

[103] Markus Weinhardt and Wayne Luk. Pipeline vectorization for reconfig-
urable systems. IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 52–62, 1999.

[104] J. Williams and N. Bergmann. Embedded linux as a platform for dy-
namically self-reconfiguring system-on-chip. Engineering of Reconfigurable
Systems and Algorithms, ERSA’04, 2004.

[105] Guang-Ming Wu, Jai-Ming Lin, and Yao-Wen Chang. Generic ilp-based
approaches for time-multiplexed fpga partitioning. Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, pages
1266–1274, 2001.

[106] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Hierarchical clustered
register file organization for vliw processors. International Parallel and
Distributed Processing Symposium, 2003. Proceedings., page 10 pp, 2003.

[107] Heidi Ziegler, Byoungro So, Mary Hall, and Pedro C. Diniz. Coarse-grain
pipelining on multiple fpga architectures. FCCM ’02: Proceedings of the
10th Annual IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, page 77, 2002.

	Summary
	Resumé
	Preface
	Papers contributed to the thesis
	Acknowledgements
	1 Introduction
	1.1 Reconfigurable architectures in a nutshell
	1.2 The origin, and the revival
	1.3 Industry practice
	1.4 State-of-the-art academic research
	1.5 Thesis Outline

	2 Survey of the Dynamically Reconfigurable Systems
	2.1 Architecture
	2.2 Reconfiguration strategy
	2.3 Operating system design
	2.4 Design methodology
	2.5 Conclusion

	3 A Reality Check Based on FPGA Architectures from Xilinx
	3.1 The Virtex configuration organization
	3.2 Xilinx dynamic reconfiguration design flows
	3.3 ICAP
	3.4 Conclusions

	4 MT-ADRES: Multithreading on Coarse-Grained Reconfigurable Architecture
	4.1 Introduction
	4.2 ADRES Multithreading
	4.3 Experiment
	4.4 Discussion
	4.5 Conclusions and future work

	5 COSMOS: A System-Level Modelling and Simulation Framework for Coprocessor-Coupled Reconfigurable Systems
	5.1 Background
	5.2 Task model
	5.3 Coprocessor coupled architecture model
	5.4 System-C simulation model
	5.5 Demonstrative simulation
	5.6 MP3 Experiments
	5.7 Advanced allocation strategies
	5.8 Future work
	5.9 Conclusion

	6 Conclusion
	6.1 Contribution
	6.2 Outlook

	A TGFF files
	A.1 Input file
	A.2 Output file

