7,353 research outputs found

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma

    Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Full text link
    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.Comment: 7 pages, 7 figure

    Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    Get PDF
    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver

    High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications

    Get PDF
    A high order, deterministic direct numerical method is proposed for the nonrelativistic 2Dx×3Dv2D_{\bf x} \times 3D_{\bf v} Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators. Such a system is devoted to the modelling of electronic transport and energy deposition in the general frame of Inertial Confinement Fusion applications. It describes the kinetics of plasma physics in the nonlocal thermodynamic equilibrium regime. Strong numerical constraints lead us to develop specific methods and approaches for validation, that might be used in other fields where couplings between equations, multiscale physics, and high dimensionality are involved. Parallelisation (MPI communication standard) and fast algorithms such as the multigrid method are employed, that make this direct approach be computationally affordable for simulations of hundreds of picoseconds, when dealing with configurations that present five dimensions in phase space

    Ion acceleration in underdense plasmas by ultra-short laser pulses

    Get PDF
    We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axi
    • …
    corecore