212 research outputs found

    Extended Rearrangement inequalities and applications to some quantitative stability results

    Full text link
    In this paper, we prove a new functional inequality of Hardy-Littlewood type for generalized rearrangements of functions. We then show how this inequality provides {\em quantitative} stability results of steady states to evolution systems that essentially preserve the rearrangements and some suitable energy functional, under minimal regularity assumptions on the perturbations. In particular, this inequality yields a {\em quantitative} stability result of a large class of steady state solutions to the Vlasov-Poisson systems, and more precisely we derive a quantitative control of the L1L^1 norm of the perturbation by the relative Hamiltonian (the energy functional) and rearrangements. A general non linear stability result has been obtained in \cite{LMR} in the gravitational context, however the proof relied in a crucial way on compactness arguments which by construction provides no quantitative control of the perturbation. Our functional inequality is also applied to the context of 2D-Euler system and also provides quantitative stability results of a large class of steady-states to this system in a natural energy space

    Stable ground states and self-similar blow-up solutions for the gravitational Vlasov-Manev system

    Get PDF
    In this work, we study the orbital stability of steady states and the existence of blow-up self-similar solutions to the so-called Vlasov-Manev (VM) system. This system is a kinetic model which has a similar Vlasov structure as the classical Vlasov-Poisson system, but is coupled to a potential in −1/r−1/r2-1/r- 1/r^2 (Manev potential) instead of the usual gravitational potential in −1/r-1/r, and in particular the potential field does not satisfy a Poisson equation but a fractional-Laplacian equation. We first prove the orbital stability of the ground states type solutions which are constructed as minimizers of the Hamiltonian, following the classical strategy: compactness of the minimizing sequences and the rigidity of the flow. However, in driving this analysis, there are two mathematical obstacles: the first one is related to the possible blow-up of solutions to the VM system, which we overcome by imposing a sub-critical condition on the constraints of the variational problem. The second difficulty (and the most important) is related to the nature of the Euler-Lagrange equations (fractional-Laplacian equations) to which classical results for the Poisson equation do not extend. We overcome this difficulty by proving the uniqueness of the minimizer under equimeasurabilty constraints, using only the regularity of the potential and not the fractional-Laplacian Euler-Lagrange equations itself. In the second part of this work, we prove the existence of exact self-similar blow-up solutions to the Vlasov-Manev equation, with initial data arbitrarily close to ground states. This construction is based on a suitable variational problem with equimeasurability constraint

    A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling

    Get PDF
    In this work, we derive particle schemes, based on micro-macro decomposition, for linear kinetic equations in the diffusion limit. Due to the particle approximation of the micro part, a splitting between the transport and the collision part has to be performed, and the stiffness of both these two parts prevent from uniform stability. To overcome this difficulty, the micro-macro system is reformulated into a continuous PDE whose coefficients are no longer stiff, and depend on the time step Δt\Delta t in a consistent way. This non-stiff reformulation of the micro-macro system allows the use of standard particle approximations for the transport part, and extends the work in [5] where a particle approximation has been applied using a micro-macro decomposition on kinetic equations in the fluid scaling. Beyond the so-called asymptotic-preserving property which is satisfied by our schemes, they significantly reduce the inherent noise of traditional particle methods, and they have a computational cost which decreases as the system approaches the diffusion limit

    Asymptotic preserving schemes for highly oscillatory kinetic equation

    Full text link
    This work is devoted to the numerical simulation of a Vlasov-Poisson model describing a charged particle beam under the action of a rapidly oscillating external electric field. We construct an Asymptotic Preserving numerical scheme for this kinetic equation in the highly oscillatory limit. This scheme enables to simulate the problem without using any time step refinement technique. Moreover, since our numerical method is not based on the derivation of the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, and in the highly oscillatory regime as well. Our method is based on a "double-scale" reformulation of the initial equation, with the introduction of an additional periodic variable

    Numerical schemes for kinetic equations in the diffusion and anomalous diffusion limits. Part I: the case of heavy-tailed equilibrium

    Get PDF
    In this work, we propose some numerical schemes for linear kinetic equations in the diffusion and anomalous diffusion limit. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion type equation. However, when a heavy-tailed distribution is considered, another time scale is required and the small mean free path limit leads to a fractional anomalous diffusion equation. Our aim is to develop numerical schemes for the original kinetic model which works for the different regimes, without being restricted by stability conditions of standard explicit time integrators. First, we propose some numerical schemes for the diffusion asymptotics; then, their extension to the anomalous diffusion limit is studied. In this case, it is crucial to capture the effect of the large velocities of the heavy-tailed equilibrium, so that some important transformations of the schemes derived for the diffusion asymptotics are needed. As a result, we obtain numerical schemes which enjoy the Asymptotic Preserving property in the anomalous diffusion limit, that is: they do not suffer from the restriction on the time step and they degenerate towards the fractional diffusion limit when the mean free path goes to zero. We also numerically investigate the uniform accuracy and construct a class of numerical schemes satisfying this property. Finally, the efficiency of the different numerical schemes is shown through numerical experiments

    Models of dark matter halos based on statistical mechanics: I. The classical King model

    Full text link
    We consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at finite temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos at statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless gas experiencing Lynden-Bell's type of violent relaxation. In order to avoid the infinite mass problem and carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the non-degenerate limit leading to the classical King model. This model was initially introduced to describe globular clusters. We propose to apply it also to large dark matter halos where quantum effects are negligible. We determine the caloric curve and study the thermodynamical stability of the different configurations. Equilibrium states exist only above a critical energy EcE_c in the microcanonical ensemble and only above a critical temperature TcT_c in the canonical ensemble. For E<EcE<E_c, the system undergoes a gravothermal catastrophe and, for T<TcT<T_c, it undergoes an isothermal collapse. We compute the profiles of density, circular velocity, and velocity dispersion. We compare the prediction of the classical King model to the observations of large dark matter halos. Because of collisions and evaporation, the central density increases while the slope of the halo density profile decreases until an instability takes place. We show that large dark matter halos are relatively well-described by the King model at, or close to, the point of marginal microcanonical stability. At that point, the King model generates a density profile that can be approximated by the modified Hubble profile. This profile has a flat core and decreases as r−3r^{-3} at large distances, like the observational Burkert profile. Less steep halos are unstable

    Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations

    Get PDF
    We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to captureaccurately the solutions without numerically resolving the high frequency oscillations {\em in both space and time}.Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and otherhighly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds theoscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties

    Uniformly accurate numerical schemes for the nonlinear Dirac equation in the nonrelativistic limit regime

    Get PDF
    We apply the two-scale formulation approach to propose uniformly accurate (UA) schemes for solving the nonlinear Dirac equation in the nonrelativistic limit regime. The nonlinear Dirac equation involves two small scales Δ\varepsilon and Δ2\varepsilon^2 with Δ→0\varepsilon\to0 in the nonrelativistic limit regime. The small parameter causes high oscillations in time which brings severe numerical burden for classical numerical methods. We transform our original problem as a two-scale formulation and present a general strategy to tackle a class of highly oscillatory problems involving the two small scales Δ\varepsilon and Δ2\varepsilon^2. Suitable initial data for the two-scale formulation is derived to bound the time derivatives of the augmented solution. Numerical schemes with uniform (with respect to Δ∈(0,1]\varepsilon\in (0,1]) spectral accuracy in space and uniform first order or second order accuracy in time are proposed. Numerical experiments are done to confirm the UA property.Comment: 22 pages, 6 figures. To appear on Communications in Mathematical Science
    • 

    corecore