27 research outputs found

    An Integrated Approach for Gear Health Prognostics

    Get PDF
    In this paper, an integrated approach for gear health prognostics using particle filters is presented. The presented method effectively addresses the issues in applying particle filters to gear health prognostics by integrating several new components into a particle filter: (1) data mining based techniques to effectively define the degradation state transition and measurement functions using a one-dimensional health index obtained by whitening transform; (2) an unbiased l-step ahead RUL estimator updated with measurement errors. The feasibility of the presented prognostics method is validated using data from a spiral bevel gear case study

    Physics-based prognostic modelling of filter clogging phenomena

    Get PDF
    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results

    Intelligent Prognostic Framework for Degradation Assessment and Remaining Useful Life Estimation of Photovoltaic Module

    Get PDF
    All industrial systems and machines are subjected to degradation processes, which can be related to the operating conditions. This degradation can cause unwanted stops at any time and major maintenance work sometimes. The accurate prediction of the remaining useful life (RUL) is an important challenge in condition-based maintenance. Prognostic activity allows estimating the RUL before failure occurs and triggering actions to mitigate faults in time when needed. In this study, a new smart prognostic method for photovoltaic module health degradation was developed based on two approaches to achieve more accurate predictions: online diagnosis and data-driven prognosis. This framework of forecasting integrates the strengths of real-time monitoring in the first approach and relevant vector machine in the second. The results show that the proposed method is plausible due to its good prediction of RUL and can be effectively applied to many systems for monitoring and prognostics

    Application of deterministic resampling particle filter to fatigue prognosis

    Get PDF
    The method based on a particle filter for a fatigue crack growth prognosis has proved to be a powerful and effective tool for developing prognostics and health management (PHM) technology. However, the widely used basic particle filter have the unavoidable particle impoverishment problem, which will make particles unable to approximate the true posterior probability density function of the system state and lead to a prognosis result with a large error. This paper proposes a fatigue crack growth prognosis method based on a deterministic resampling particle filter. The active structural health monitoring based on the Lamb wave is used for on-line crack length monitoring with piezoelectric transducers. With the on-line crack measurement, the crack state and crack growth model parameters are estimated for a fatigue crack growth prognosis. In addition, the deterministic resampling procedure is employed to overcome the particle impoverishment problem. The result shows the proposed crack growth prognosis method based on deterministic resampling particle filter can provide more satisfactory results than the basic particle filter

    Particle Filter-Based Prognostics for an Electrolytic Capacitor Working in Variable Operating Conditions

    No full text
    International audiencePrognostic models should properly take into account the effects of operating conditions on the degradation process and on the signal measurements used for monitoring. In this work, we develop a Particle Filter-based (PF) prognostic model for the estimation of the Remaining Useful Life (RUL) of aluminum electrolytic capacitors used in electrical automotive drives, whose operation is characterized by continuously varying conditions. The capacitor degradation process, which remarkably depends from the temperature experienced by the component, is typically monitored by observing the capacitor Equivalent Series Resistance (ESR). However, the ESR measurement is influenced by the temperature at which the measurement is performed, which changes depending on the operating conditions. To address this problem, we introduce a novel degradation indicator independent from the measurement temperature. Such indicator can, then, be used for the prediction of the capacitor degradation and its RUL. For this, we develop a Particle Filter prognostic model, whose performance is verified on data collected in simulated and experimental degradation tests

    A Fast Monte Carlo Method for Model-Based Prognostics Based on Stochastic Calculus

    Get PDF
    This work proposes a fast Monte Carlo method to solve differential equations utilized in model-based prognostics. The methodology is derived from the theory of stochastic calculus, and the goal of such a method is to speed up the estimation of the probability density functions describing the independent variable evolution over time. In the prognostic scenarios presented in this paper, the stochastic differential equations describe variables directly or indirectly related to the degradation of a monitored system. The method allows the estimation of the probability density functions by solving the deterministic equation and approximating the stochastic integrals using samples of the model noise. By so doing, the prognostic problem is solved without the Monte Carlo simulation based on Euler's forward method, which is typically the most time consuming task of the prediction stage. Three different prognostic scenarios are presented as proof of concept: (i) life prediction of electrolytic capacitors, (ii) remaining time to discharge of Lithium-ion batteries, and (iii) prognostic of cracked structures under fatigue loading. The paper shows how the method produces probability density functions that are statistically indistinguishable from the distributions estimated with Euler's forward Monte Carlo simulation. However, the proposed solution is orders of magnitude faster when computing the time-to-failure distribution of the monitored system. The approach may enable complex real-time prognostics and health management solutions with limited computing power

    A new hybrid prognostic methodology

    Get PDF
    Methodologies for prognostics usually centre on physics-based or data-driven approaches. Both have advantages and disadvantages, but accurate prediction relies on extensive data being available. For industrial applications this is very rarely the case, and hence the chosen method’s performance can deteriorate quite markedly from optimal. For this reason a hybrid methodology, merging physics-based and data-driven approaches, has been developed and is reported here. Most, if not all, hybrid methods apply physics-based and data-driven approaches in different steps of the prognostics process (i.e. state estimation and state forecasting). The presented technique combines both methods in forecasting, and integrates the short-term prediction of a physics-based model with the longer term projection of a similarity-based data-driven model, to obtain remaining useful life estimation. The proposed hybrid prognostic methodology has been tested on two engineering datasets, one for crack growth and the other for filter clogging. The performance of the presented methodology has been evaluated by comparing remaining useful life estimations obtained from both hybrid and individual prognostic models. The results show that the presented methodology improves accuracy, robustness and applicability, especially in the case of minimal data being available

    A new algorithm for prognostics using subset simulation

    Get PDF
    This work presents an efficient computational framework for prognostics by combining the particle filter-based prognostics principles with the technique of Subset Simulation, first developed in S.K. Au and J.L. Beck [Probabilistic Engrg. Mech., 16 (2001), pp. 263-277], which has been named PFP-SubSim. The idea behind PFP-SubSim algorithm is to split the multi-step-ahead predicted trajectories into multiple branches of selected samples at various stages of the process, which correspond to increasingly closer approximations of the critical threshold. Following theoretical development, discussion and an illustrative example to demonstrate its efficacy, we report on experience using the algorithm for making predictions for the end-of-life and remaining useful life in the challenging application of fatigue damage propagation of carbon-fibre composite coupons using structural health monitoring data. Results show that PFP-SubSim algorithm outperforms the traditional particle filter-based prognostics approach in terms of computational efficiency, while achieving the same, or better, measure of accuracy in the prognostics estimates. It is also shown that PFP-SubSim algorithm gets its highest efficiency when dealing with rare-event simulation

    Model-Based Prognostics

    Get PDF
    This tutorial will cover the basics of model-based prognostics, and include concepts such as modeling approaches, estimation and prediction algorithms, and how uncertainty is represented and quantified. Other topics covered will include structural model decomposition, system-level prognostics, prognostics of hybrid systems, and distributed prognostics. Several case studies, such as water recovery systems to the prediction of safety margins in the national airspace system will be used to explain different concepts of prognostics and demonstrate their application to real-world systems
    corecore