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Definitions

• Prognostics = the problem of predicting the future state of a 

system

• For our research (and the purposes of this presentation), we are 

specifically interested in predicting failure states

– EOL = end of life (time of failure)

– RUL = remaining useful life (time until failure)
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Why Prognostics?

• Prognostics can enable:

– Adopting condition-based maintenance strategies, instead of time-based 
maintenance

– Optimally scheduling maintenance

– Optimally planning for spare components

– Reconfiguring the system to avoid using the component before it fails

– Prolonging component life by modifying how the component is used 
(e.g., load shedding)

– Optimally plan or replan a mission

• System operations can be optimized in a variety of ways
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What is Model-Based Prognostics?

• “Model-based” vs “data-driven”

– These terms are not very useful! All approaches use models of some 

kind, and all are driven by data

• “Model-based” typically refers to approaches using models derived from first 

principles (e.g., physics-based)

• “Data-driven” typically refers to approaches using models learned from data (e.g., 

Artificial Neural Networks, Gaussian Process Regression)

• In practice, models are typically developed from a mix of system 

knowledge and system data and are typically adapted online in 

some fashion
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Our Definition of Model-Based Prognostics

• Model-based prognostics refers simply to approaches that use 

mathematical models of system behavior

– When available, knowledge from first principles, known physical laws, etc, 

should be used to develop models

– When a large amount of data is available (for both nominal and 

degraded behavior), models can be learned from the data

• The general framework will be defined in this context

– It does not matter how the model was developed

– It does not matter what the model looks like
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Why Model-Based Prognostics?

• With model-based algorithms, models 
are inputs

– This means that, given a new problem, 
we use the same general algorithms

– Only the models should change

• Model-based prognostics approaches 
are applicable to a large class of 
systems, given a model

• Approach can be formulated 
mathematically, clearly, and precisely
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Outline

• Mathematical Framework

– Problem Formulation

– Computing EOL

– Handling Uncertainty

– Probability of Failure

• Modeling for Prognostics

– General Modeling Framework

– Example: 

• Water Recycling System Prognostics

• Advanced Prognostics Concepts

– System-Level Prognostics

– Distributed Prognostics

– Prognostics and Decision Making

– Examples: 

• Predicting the Safety of our Airspace

• Rover Mission Replanning

• Conclusions
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Mathematical Framework

• Problem Formulation

• Computing EOL

• Handling Uncertainty

• Probability of Failure



Concept
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Problem Requirements

• System model

– System state space

– Partition into non-failure and failure states

– System inputs

– State update equation

• Prediction inputs

– Initial time 𝑘𝑜

– Prediction horizon 𝑘ℎ
– System inputs from 𝑘𝑜 to 𝑘ℎ
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System Model

• Assume system can be modeled using

– x 𝑘 + 1 = f x 𝑘 , u 𝑘 , v 𝑘

– 𝑘 is the discrete time variable

– x is the state vector

– u is the input vector

– v is the process noise vector

– f is the state update equation

• Define a threshold function that partitions state-space into nonfailure
and failure states

– 𝑇𝑓:ℝ
𝑛𝑥 → {true, false}

– That is, 𝑇𝑓 x 𝑘 returns true when it is a failure state, false otherwise
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Initial Problem Formulation

• Assume we know

– Initial state, x 𝑘𝑜

– Future input trajectory, 𝐔𝑘𝑜,𝑘ℎ = u 𝑘𝑜 , u 𝑘𝑜 + 1 ,… , u 𝑘ℎ

– Process noise trajectory, 𝐕𝑘𝑜,𝑘ℎ = v 𝑘𝑜 , v 𝑘𝑜 + 1 ,… , v 𝑘ℎ

• Problem definition

– Given 𝑘𝑜 , 𝑘ℎ, x 𝑘𝑜 , U𝑘𝑜,𝑘ℎ, V𝑘𝑜,𝑘ℎ
– Compute EOL

• EOL(𝑘) = inf 𝑘 ′: 𝑘 ′ ≥ 𝑘 and 𝑇𝑓 𝐱 𝑘

OCT 3, 2017 I Roychoudhury - PHM 17 Tutorial: Model-Based Prognostics 12



Concept: ComputeEOL
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Computational Algorithm

ComputeEOL 𝑘𝑜 , 𝑘ℎ , x 𝑘𝑜 , U𝑘𝑜 ,𝑘ℎ, V𝑘𝑜 ,𝑘ℎ
1. X𝑘𝑜,𝑘ℎ 𝑘𝑜 ← x 𝑘𝑜 // Set initial state
2. for 𝑘 = 𝑘𝑜 to 𝑘ℎ − 1 do

3. if 𝑇𝑓 X𝑘𝑜,𝑘ℎ 𝑘 // Check if failure state
4. return 𝑘 // Return current time as EOL
5. end if

6. X𝑘𝑜,𝑘ℎ 𝑘 + 1 ← f X𝑘𝑜,𝑘ℎ 𝑘 , U𝑘𝑜,𝑘ℎ 𝑘 , V𝑘𝑜,𝑘ℎ 𝑘 // Update state

7. end for

8. if 𝑇𝑓 X𝑘𝑜,𝑘ℎ 𝑘 // Check if failure state
9. return 𝑘 // Return current time (kh) as EOL
10. else
11. return∞ // Return infinity
12. end if
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Concept: Uncertainty
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Handling Uncertainty

• Sources of uncertainty

– Initial state, x 𝑘𝑜

– Future input trajectory, U𝑘𝑜,𝑘ℎ
– Process noise trajectory, V𝑘𝑜,𝑘ℎ

• Requirements

– Must define 𝑝 x 𝑘𝑜

– Must define 𝑝(U𝑘𝑜,𝑘ℎ)

– Must define 𝑝(V𝑘𝑜,𝑘ℎ)
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Updated Problem Formulation

• Assume we know

– Initial state distribution, 𝑝 𝐱 𝑘𝑜

– Future input trajectory distribution, 𝑝(𝐔𝑘𝑜,𝑘ℎ)

– Process noise trajectory distribution, 𝑝(𝐕𝑘𝑜,𝑘ℎ)

• Problem definition

– Given 𝑘𝑜 , 𝑘ℎ, 𝑝 x 𝑘𝑜 , 𝑝(𝐔𝑘𝑜,𝑘ℎ), 𝑝(𝐕𝑘𝑜,𝑘ℎ)

– Compute 𝑝(EOL(𝑘𝑜))
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Concept: ComputePEOL
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Computational Algorithm

ComputePEOL 𝑘𝑜 , 𝑘ℎ , 𝑝(x 𝑘𝑜 ), 𝑝(U𝑘𝑜,𝑘ℎ),𝑝(V𝑘𝑜,𝑘ℎ)

1. // Sample prediction inputs

2. { x 𝑘𝑜
(𝑖), U𝑘𝑜,𝑘ℎ

(𝑖), V𝑘𝑜,𝑘ℎ
(𝑖) }𝑖=1

𝑁 ←
GenerateSamples(𝑁,𝑝(x 𝑘𝑜 ), 𝑝(U𝑘𝑜,𝑘ℎ

), 𝑝(V𝑘𝑜,𝑘ℎ))

3. for 𝑖 = 1 to 𝑁 do

4. // Compute EOL

5. EOL(𝑖)← ComputeEOL(𝑘𝑜, 𝑘ℎ, x 𝑘𝑜
(𝑖), U𝑘𝑜,𝑘ℎ

(𝑖), V𝑘𝑜,𝑘ℎ
(𝑖)

6. end for

7. // Return EOL realizations 

8. return {EOL(𝑖)}𝑖=1
𝑁
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Generating Samples

• Compute a set of future state trajectories given realizations of all the 

uncertain inputs

– Each state trajectory corresponds to a different EOL prediction

• Sampling algorithms

– Monte Carlo sampling

• Independently randomly sample from each of the uncertain distributions N times

• Typically the required value of N for good results increases nonlinearly with the 

number of random variables

– Latin hypercube sampling

• Near-random sampling in which we ensure each equally probable subspace in each 

dimension are covered exactly once

• Guarantees ensemble of samples is representative of real variability 

– Unscented transform sampling

• Deterministically sample “sigma points” using unscented transform such that 

statistical moments (e.g., mean and variance) are retained

• Number of required points scales linearly with the number of random variables

• If samples are weighted, ComputePEOL can be extended accordingly
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Initial State Distribution

• In general, infer from system knowledge and/or sensor data

• In the Bayesian prognostics paradigm, this is provided by an observer

– Kalman filter: represents linear system using mean vector and covariance matrix

– Extended Kalman filter: represents nonlinear system using mean vector and 

covariance matrix

– Unscented Kalman filter: represents using weighted sigma point set

– Particle filter: represents using weighted sample set

• From each of these representations, we can sample realizations for 

prediction
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Process Noise Trajectory Distribution

• Assume that process noise at time 𝑘 is independent of process 
noise at time 𝑘′
– Represent v 𝑘 using some assumed distribution

– For example, multi-variate normal distribution as represented by mean 
vector and covariance matrix

– Often assume time-invariant, zero-mean, zero cross-covariance:

• Example: 𝝁𝑣 = 0,0,… , 0 ,𝑷𝑣𝑣 =
5 0 0
0 4 0
0 0 1

• To construct a realization of V𝑘𝑜,𝑘ℎ, independently sample from 

𝑝 v 𝑘 for each 𝑘 ∈ [𝑘𝑜 , 𝑘ℎ]
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Future Input Trajectory Distribution

• Input trajectories can take on many different forms, depending on 
the system

– Need to obtain values for system inputs for each 𝑘 ∈ [𝑘𝑜, 𝑘ℎ]

– Have potentially (𝑘ℎ−𝑘𝑜 + 1) ∙ 𝑛𝑢 variables to sample!

– Must reduce dimensionality

• “Surrogate variable” approach

– Represent a future input trajectory through a small finite set of 
“surrogate variables” that describe how to “construct” an input 
trajectory

– Indirectly sample input trajectories by sampling surrogate variables
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Future Input Trajectories: Examples

• Constant Load
– 𝑢 𝑘 = 𝜃 for all 𝑘, where 𝜃 is drawn from a known distribution

• Sinusoidal Load
– 𝑢 𝑘 = 𝜃1sin(𝜃2𝑘) for all 𝑘, where 𝜃1 and 𝜃2 are drawn from known distributions

• Variable Load as Constant Load Segments
– 𝑁 total segments

– Each segment defined by magnitude and duration with known distributions: 2𝑁 total random 
variables

– To sample a trajectory, sample magnitude and duration for each segment
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Concept: Probability of Failure
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Probability of Failure

• Can compute probability of reaching failure within the given finite

time horizon within this framework

– 𝑃𝑓 = 𝑃 x(𝑘ℎ ∈ 𝑋𝑓), assuming that: x 𝑘 ∈ 𝑋𝑓 ⊢ x 𝑘 + 1 ∈ 𝑋𝑓
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ComputePf 𝑘𝑜, 𝑘ℎ , 𝑝(x 𝑘𝑜 ), 𝑝(U𝑘𝑜,𝑘ℎ
),𝑝(V𝑘𝑜,𝑘ℎ)

1. // Sample prediction inputs

2. { x 𝑘𝑜
(𝑖),U𝑘𝑜,𝑘ℎ

(𝑖), V𝑘𝑜,𝑘ℎ
(𝑖) }𝑖=1

𝑁 ←GenerateSamples(𝑁,𝑝(x 𝑘𝑜 ), 𝑝(U𝑘𝑜,𝑘ℎ
),𝑝(V𝑘𝑜,𝑘ℎ))

3. for 𝑖 = 1 to 𝑁 do
4. // Compute EOL

5. EOL(𝑖)← ComputeEOL(𝑘𝑜,𝑘ℎ, x 𝑘𝑜
(𝑖),U𝑘𝑜,𝑘ℎ

(𝑖),V𝑘𝑜,𝑘ℎ
(𝑖)

6. end for
7. // Return EOL realizations 

8. return EOL 𝑖 :EOL 𝑖 < ∞
𝑖=1

𝑁
/𝑁



Online Prognostics

• Up to now, described the problem of making a prediction at a single time point

• In online prognostics, predictions are made at several time points

• At each new time step 𝑘
– Update state estimate, 𝑝 𝐱 𝑘

• Use state estimation algorithm (e.g., particle filter)

• Requires output equation: y 𝑘 = h x 𝑘 , u 𝑘 ,n 𝑘 , where n 𝑘 is sensor noise

– Update future input trajectory distribution, 𝑝(𝐔𝑘,𝑘+ℎ)
• May update based on new load schedule

• May be a function of the state

– Update process noise trajectory distribution, 𝑝(𝐕𝑘,𝑘+ℎ)
• Usually, we assume this is independent of 𝑘
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Generalizing the Framework

• Partition does not have to be into non-failure/failure states

– Example: battery not discharged vs. discharged

• Partition does not have to be among only two types

– Can make predictions w/r/t different state “labels”

• Does not have to be a partition

– Some states can be assigned multiple “labels”

• This is a framework for predicting time of event occurrence and 

probability of events
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Damage Modeling Framework

• Damage variables, d 𝑘 ⊆ x(𝑘)

• Damage progression equations

–  𝑑1 = 𝑓1 x 𝑘 , u 𝑘 ,v 𝑘

–  𝑑2 = 𝑓2 x 𝑘 , u 𝑘 , v 𝑘

– …

• Damage progression parameters

– E.g.,  𝑑1 = 𝑤1 ⋅ 𝑥1 𝑘 + 𝑤2 ⋅ 𝑥2 𝑘 ⋅ 𝑢1 (𝑘)

– 𝑤1 and 𝑤2 parameterize the damage progression equation

– Typically, only the order of magnitude is known, and they must be estimated 

online along with the states
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Damage Modeling Procedure

• Develop nominal model

• Identify model parameters that may change as a function of 

damage

– These become the damage variables

– They augment the state vector of the nominal model

• Develop damage progression equations describing how these 

variables evolve in time

– Determine damage progression parameters

– Determine range of values for expected EOL
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A Case Study

• Water Recycling System Prognostics



Example: The Water Recycling System

• The ability to recycle potable water from waste water is an integral part of the 
Environmental Control and Life Support System (ECLSS) of human-rated space missions

• The forward-osmosis water recycling system (WRS) installed in the “Sustainability Base”
– The “Sustainability Base” is a new Leadership in Energy and Environmental Design (LEED) Platinum 

certified “green” office building at ARC

– The WRS recycles all of the water from the sinks and showers in the building to potable water

– Designed to reduce water consumption by 60%

• The WRS permits long-duration testing of next-generation WRS technology that is 
under consideration for use in Deep Space Habitats
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Why Prognostics for WRS?

• The WRS is a complex engineered system with a large number of 
components
– Subject to degradation due to regular use

– Faults 

• Prognosis applications can be implemented to enable condition-based 
maintenance 
– Avoid unplanned outages

– Extend the useful life of the system

• Having a good estimate of when things fail is useful for planning for 
maintenance tasks 
– Performing maintenance too early results in low utilization of resources

– Performing maintenance action after failure results in system downtime
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Forward and Reverse Osmosis
• The WRS consists of a Forward Osmosis (FO) module + a Reverse Osmosis (RO) module

• FO is the movement of solvent molecules across a semi-permeable membrane from a region of higher water chemical potential to a region of 
lower water chemical potential 
– Driven by the difference in solute concentrations across the membrane

• RO is the movement of solvent molecules across a semi-permeable membrane in the opposite direction of FO, i.e., from a region of lower 
water chemical potential to a region of higher water chemical potential due to the application of hydraulic pressure

– Driven by the application of external pressure

• Forward osmosis: ∆P = 0

• Reverse osmosis: ∆P > π

OCT 3, 2017 I Roychoudhury - PHM 17 Tutorial: Model-Based Prognostics

)( PAJw  

Water flux

Water permeability 

constant

Osmotic pressure differential Applied pressure differential

Reflection coefficient

34

FO

RO

Waste
water

Higher concentrationLower concentration Water Recycling System



Nominal WRS Dynamics

Pump 2 running

Pump 4 running

Pump 2 off

FO running

)( PAAreaJAreaf
FOFO MembwMembFO  
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Nominal WRS Equations
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Degradation Modeling

• Unexpected change in system components, e.g., filters, membranes, pumps, 

sensors 

– Modeled as parameter changes

• Faults assumed to be incipient

• Single fault assumption

• Faults are persistent Filter Blockage

Membrane BlockageSensor Drift

Incipient Fault
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Faulty WRS Dynamics: Filter 2 Clogging
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Prognostics for WRS

ComputePEOL 𝑘𝑜, 𝑘ℎ, 𝑝(x 𝑘𝑜 ), 𝑝(U𝑘𝑜,𝑘ℎ), 𝑝(V𝑘𝑜,𝑘ℎ)
1. // Sample prediction inputs

2. { x 𝑘𝑜
(𝑖) ,U𝑘𝑜,𝑘ℎ

(𝑖) , V𝑘𝑜,𝑘ℎ
(𝑖) }𝑖=1

𝑁 ←
GenerateSamples(𝑁, 𝑝(x 𝑘𝑜 ),𝑝(U𝑘𝑜,𝑘ℎ

),𝑝(V𝑘𝑜,𝑘ℎ))

3. for 𝑖 = 1 to 𝑁 do
4. // Compute EOL

5. EOL(𝑖)← ComputeEOL(𝑘𝑜, 𝑘ℎ, x 𝑘𝑜
(𝑖),U𝑘𝑜,𝑘ℎ

(𝑖),V𝑘𝑜,𝑘ℎ
(𝑖)

6. end for
7. // Return EOL realizations 
8. return {EOL(𝑖)}𝑖=1

𝑁
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𝑘𝑜 ✓

𝑘ℎ ✓

Models ✓

𝑝(x 𝑘𝑜 ) ✓ (Normal Gaussian)

𝑝(U𝑘𝑜 ,𝑘ℎ) ✓ (Hypothesize Inputs)

𝑝(V𝑘𝑜 ,𝑘ℎ) ✓ (Normal Gaussian)
✓



Advanced Prognostics Concepts

• System-Level Prognostics

• Distributed Prognostics

• Prognostics and Decision Making

• Examples: Predicting the Safety of our Airspace, Rover Decision Making



Example: Real-Time Safety Monitoring of National Airspace System

• RTSM framework

– Provides real-time assessment (nowcast
and forecast) of safety and risk to NAS

– Predicts evolution of safety to 
proactively avoid unsafe situations 
instead of reactively mitigating them

– Holistic framework

• Generalization of prognostics concepts

• Combines multiple threats to safety and 
considers their potential interactions

• Integrates disparate data sources

• Incorporates multiple sources of 
uncertainty into the predictions
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Terminology

• Unsafe event: An event/situation that compromises NAS safety or established safety standards
– Examples: loss of separation, loss of control, controlled flight into terrain, runway incursion, hard landing, tail strike, 

collision, etc.

• Safety metric: A quantitative measure of some aspect of safety of the NAS
– Examples: distance between two aircraft, distance between aircraft and convective weather region

• Safety threshold: Some limit on a safety metric or set of safety metrics
– Example: Enroute separation of 5 nautical miles

• Safety margin: “Distance” between current safety metric(s) and safety threshold(s)
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Approach Overview

• Model-based approach - require dynamic models
– Model aircraft, weather regions, etc.

– Predictions improve with more accurate models

– Tradeoff between model fidelity and computational performance

• Capture uncertainty inherent in 
– Sensor information (sensor noise, message delay, etc.), system models, and system inputs (e.g., aircraft intent information)

• Identify categories of events to model
– Loss of separation,  wake vortex encounter, convective weather encounter, sector demand violation, etc.

• Determine what conditions define the occurrence of each event
– Defined using safety metrics which are functions of the NAS state

– Example: Loss of separation between A1 and A2 occurs when the horizontal separation is less than 5 nautical miles and the 
vertical separation is less than 1000 ft

– Example: Sector demand is too high when the number of aircraft in a sector meets or exceeds the capacity limit

• Compute the safety margin w/r/t an event
– Margin computed as “distance” to event threshold, over threshold, in [0,100]%

– Margin is 0% when event is present

• Compute aggregate safety margins
– Average safety margins over all potential events 
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RTSM – System-level Prognostics Example

OCT 3, 2017 I Roychoudhury - PHM 17 Tutorial: Model-Based Prognostics 44



RTSM – System-level Prognostics Example
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Time

10 Realizations of NAS 
State Trajectories

Occurrences of LOSA1,A2:
1. Probability = 60%
2. Time until event = 2 min. (average)

Occurrences of WXW1,A3:
1. Probability = 40%
2. Time until event = 8 min. (average)

80% Probability of Unsafe Event
0 min

10 min



Computational Architecture of RTSM
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F i gu r e 3. C om p u t at i on al ar ch i t ect u r e of RT SM .

I I I .D . Comput at ional A r chi t ect ur e

The computat ional architecture of the RTSM system is depicted in Fig. 3. First , data from the NAS (flight

t racks, flight plans, weather polygons, and wind) is pre-processed to account for missing data, t ime-order

the data, and separate into data st reams for individual aircraft and weather objects. When new aircraft

or weather systems are recognized in the airspace, new objects are spawned. When they leave the airspace

(e.g., an aircraft lands), their corresponding objects are deleted.

For each act ive aircraft a and weather object w, RTSM first est imates their state, xa and xw , using the

UKF. For aircraft , t rack data, flight plans, and wind are consumed and for the weather systems, wind data

and weather polygon data are consumed. For each aircraft / weather, the predict ion algorithm (Algorithm 2)

is used to generate predicted state t rajectories, { X i
a} N

i = 1 and { X i
w } N

i = 1.

The safety computat ion is then performed given the predicted state t rajectories. For every event e 2 E ,

the safety metrics and margins are computed along with the event probabilit ies using Algorithm 3. RTSM

can be easily extended by adding new events to E , and defining the corresponding metrics and margins

funct ions.

Although Fig. 3 may imply a single, cent ralized architecture, some dist ribut ion of the computat ion is

possible. The monitoring/ predict ion modules for each aircraft / weather are computat ionally independent ,

and so can be executed in parallel on separate computat ional units. Within the predict ion algorithm, each

realizat ion of the state t rajectory can be computed in parallel (e.g., using a GPU). The computat ions for

each event e 2 E can also be done in parallel. Such parallelizat ion enables a high degree of scalability.

It should also be noted that di↵erent pieces of RTSM can be located in di↵erent places. For example,

each aircraft in the airspace can be responsible for producing its own t rajectory predict ions, which can then

be handled through a cloud service that implements RTSM.

I V . A ppl icat ion

In this sect ion, we demonst rate the framework with a set of four event categories. We first describe the

models, followed by specific results obtained by applying the framework with real data.
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Distributed Prognostics

• … but the previous algorithms do not scale!

• A distributed solution is needed for large-scale systems, and for system-level prognostics problems

• Propose to decompose the global prognostics problem, by decomposing the global model, into local
independent subproblems for local submodels
– Assuming some measurements to be known inputs

• Independent subproblems are trivially distributed and parallelized –This is the case for RTSM
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Prognostics and Decision-Making

• We employ prognostics in order to inform 
some type of action

• Autonomous vehicles like UAVs and rovers 
receive command sequences from humans
– E.g., as a set of waypoints with scientific 

objectives to achieve at each

• Unexpected situations can cause the vehicle 
to go into a safe mode while engineers 
diagnose the problem, which might take a 
long time

• An autonomous decision-making system 
that includes automated diagnosis and 
prognosis in making optimal decisions can 
save time, money, and increase mission value
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Example: Rover Mission Replanning Using Prognostics

• Given: 

– An initial mission route (not necessarily optimized) 
which includes waypoint parameter constraints 

– Each waypoint is associated with a payoff value 

– A healthy vehicle is able to complete the entire route 
within the energy and component health constraints 

– A fault occurs that makes it impossible to complete 
the mission before the End of Life (EoL): 

• Rover: parasitic electrical load. The fault results in increased 
energy consumption and battery overheating. 

• Goal:

– Predict end-of-discharge states and replan path that 
maximizes payoff and extends the remaining useful life
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Integrated Decision Making Architecture

1. Rover receives control inputs (individual wheel speeds) and sensors produce outputs

2. Low-level control modifies wheel speed commands to move towards a given waypoint in the presence 
of diagnosed faults

3. Diagnoser receives rover inputs and outputs and produces fault candidates

4. Prognoser receives rover inputs and outputs and predicts remaining useful life (RUL) or rover and/or its 
components (eg, batteries, motors)

5. Decision maker plans the order to visit the waypoints (science objectives) given diagnostic and 
prognostic information. It can also selectively eliminate some of the waypoints if all of them are not 
achievable due to vehicle health or energy constraints.
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Rover Replanning: Nominal Scenario
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Rover Replanning: Fault Injected, PDM Disabled
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Rover Replanning: Fault Injected, PDM Enabled
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Wrapping Up



Conclusions

• Presented model-based prognostics framework

• Key takeaways:

– Modeling is key – both dynamics of the system and representation of uncertain 
inputs to the prediction problem

– Uncertainty is inherent to the problem and cannot be ignored

– Future input uncertainty is often most significant and its representation should 
include as much knowledge about future operation of the system as is known

• Framework and models implemented in open-source MATLAB 
packages

– https://github.com/nasa/PrognosticsModelLibrary

– https://github.com/nasa/PrognosticsAlgorithmLibrary
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Useful Links

• PCOE Webpage: http://prognostics.nasa.gov

• PCOE Data repository: 

https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

• Generic Software Architecture for Prognostics (GSAP) 

https://github.com/nasa/GSAP
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