53 research outputs found

    Compound particle swarm optimization in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2008.Adaptation to dynamic optimization problems is currently receiving a growing interest as one of the most important applications of evolutionary algorithms. In this paper, a compound particle swarm optimization (CPSO) is proposed as a new variant of particle swarm optimization to enhance its performance in dynamic environments. Within CPSO, compound particles are constructed as a novel type of particles in the search space and their motions are integrated into the swarm. A special reflection scheme is introduced in order to explore the search space more comprehensively. Furthermore, some information preserving and anti-convergence strategies are also developed to improve the performance of CPSO in a new environment. An experimental study shows the efficiency of CPSO in dynamic environments.This work was supported by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1

    Triggered memory-based swarm optimization in dynamic environments

    Get PDF
    This is a post-print version of this article - Copyright @ 2007 Springer-VerlagIn recent years, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are time-varying. In this paper, a triggered memory scheme is introduced into the particle swarm optimization to deal with dynamic environments. The triggered memory scheme enhances traditional memory scheme with a triggered memory generator. Experimental study over a benchmark dynamic problem shows that the triggered memory-based particle swarm optimization algorithm has stronger robustness and adaptability than traditional particle swarm optimization algorithms, both with and without traditional memory scheme, for dynamic optimization problems

    Particle Swarm Optimization and Genetic Algorithm for Big Vehicle Problem: Case Study in National Pure Milk Company

    Get PDF
    The number of companies in the industry, as well as the current economic conditions, have created intense competition between companies. One of the important activities of a company is distributing goods from a warehouse to several agents so that the distribution of goods can be done easily and quickly. National Pure Milk Company is based in Salatiga. There are various flavors of pure milk stored in the form of a cup and a pack that will be distributed to each destination. Each cup and pack has data in the form of mass, volume, destination (distance between the destination location and the warehouse location), and the time when it must be dropped. All items of pure milk will be delivered by 4 truck vehicles with different types. Each vehicle has a mass capacity, volume capacity, mileage capacity, trip duration capacity, and trip number capacity. All the data of the pure milk that distributed must not run over the capacity of the vehicle. In this research, Particle Swarm Optimization (PSO) Algorithm can be modified into the discrete PSO Algorithm to determine the shortest distance of the route and Genetic Algorithms can be modified to determine the exact composition of goods on each vehicle. The optimization problem is limited by the condition that each item is delivered at the same time interval

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Mobile Robot Path Finding using Nature Inspired Algorithms - A Review

    Get PDF
     In today’s world, Mobile Robot has been widely used for various purposes across several aspects of life. The environments could be static and dynamic. Path planning for mobile robot is a very important problem in robotics. Path Planning for robot could be referred to the determination of a path; a robot takes in to perform a task given a set of key inputs. To find the best and optimal path from the starting point to the goal point, such that time and distance is reduce, in any given environment avoiding collision with obstacles is an interesting area for research. This research presents a review on the application of nature inspired algorithms in solving the problem of mobile robot path planning such that the robot reaches the target station from source station without collision with obstacles. The future of these nature-inspired algorithms on mobile robot is also discussed

    Particle swarm optimization with composite particles in dynamic environments

    Get PDF
    This article is placed here with the permission of IEEE - Copyright @ 2010 IEEEIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.This work was supported in part by the Key Program of the National Natural Science Foundation (NNSF) of China under Grant 70931001 and 70771021, the Science Fund for Creative Research Group of the NNSF of China under Grant 60821063 and 70721001, the Ph.D. Programs Foundation of the Ministry of education of China under Grant 200801450008, and by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    A hibernating multi-swarm optimization algorithm for dynamic environments

    Full text link

    Design and Optimization of the Power Management Strategy of an Electric Drive Tracked Vehicle

    Get PDF
    This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge) of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization) is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation) platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles

    Detecting change and dealing with uncertainty in imperfect evolutionary environments

    Get PDF
    Imperfection of information is a part of our daily life; however, it is usually ignored in learning based on evolutionary approaches. In this paper we develop an Imperfect Evolutionary System that provides an uncertain and chaotic imperfect environment that presents new challenges to its habitants. We then propose an intelligent methodology which is capable of learning in such environments. Detecting changes and adapting to the new environment is crucial to exploring the search space and exploiting any new opportunities that may arise. To deal with these uncertain and challenging environments, we propose a novel change detection strategy based on a Particle Swarm Optimization system which is hybridized with an Artificial Neural Network. This approach maintains a balance between exploitation and exploration during the search process. A comparison of approaches using different Particle Swarm Optimization algorithms show that the ability of our learning approach to detect changes and adapt as per the new demands of the environment is high
    corecore