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Abstract—In recent years, there has been a growing interest in
the study of particle swarm optimization (PSO) in dynamic envi-
ronments. This paper presents a new PSO model, called PSO with
composite particles (PSO-CP), to address dynamic optimization
problems. PSO-CP partitions the swarm into a set of composite
particles based on their similarity using a “worst first” principle.
Inspired by the composite particle phenomenon in physics, the
elementary members in each composite particle interact via a
velocity-anisotropic reflection scheme to integrate valuable infor-
mation for effectively and rapidly finding the promising optima in
the search space. Each composite particle maintains the diversity
by a scattering operator. In addition, an integral movement strat-
egy is introduced to promote the swarm diversity. Experiments on
a typical dynamic test benchmark problem provide a guideline for
setting the involved parameters and show that PSO-CP is efficient
in comparison with several state-of-the-art PSO algorithms for
dynamic optimization problems.

Index Terms—Composite particle, dynamic optimization prob-
lem (DOP), particle swarm optimization (PSO), scattering opera-
tor, velocity-anisotropic reflection (VAR).

I. INTRODUCTION

PARTICLE SWARM optimization (PSO) has become an
active branch of swarm intelligence (SI) during the last

decade [4], [26], [36], [38]. As a population-based technique,
PSO was inspired by the emergent motion of swarms and
flock behavior [25], [40], [51], [52]. Instead of manipulating
new individuals through information recombination as in evo-
lutionary algorithms (EAs), particles in PSO iteratively explore
optima in a multidimensional search space by utilizing per-
sonal memories and sharing the information within a specific
neighborhood. This motion principle of particles makes PSO
a natural candidate for solving static optimization problems
[20], [37], where the search space remains fixed during the
optimization progress. For static problems, the aim is to design
PSO algorithms that can quickly and precisely find optima in
the search space.
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However, most real-world optimization problems are subject
to changes in the environment [17], [33]. For these dynamic
optimization problems (DOPs), the evaluation function and/or
environmental conditions may change over time due to many
factors such as the stochastic arrival of new tasks, machine
breakdown or maintenance, market fluctuation, and financial
variations. Given this, the goal of an optimization algorithm
would now be to track the moving optima or to find emerging
new optima in the search space, as opposed to seeking a fixed
satisfactory solution. This new goal poses a big challenge to
classic EAs and SI [24], [39].

In recent years, the study of DOPs has attracted a growing
interest from the EA community. EAs are intrinsically inspired
by natural or biological evolution, which is always subject to
an ever-changing environment. Several approaches have been
developed into traditional EAs to address DOPs [24], [47],
including diversity schemes [10], [14], [41], [45], [46], mem-
ory schemes [5], [50], multipopulation schemes [6], [49], and
adaptive schemes [31], [48].

In a similar fashion to EAs, SI has also been used recently to
address DOPs with several promising results [3], [15], [16]. In
particular, the investigation of PSO in dynamic environments
has become one of the most important applications of SI [2],
[21]. However, similar to EAs, classic PSO should be modified
to deal with the convergence problem for solving DOPs: Once
the swarm has converged, particles lose the ability to track new
optima due to the low velocity [2]. To address this problem,
various approaches have been developed to improve the perfor-
mance of PSO algorithms for DOPs [1], [18], [34].

Within PSO, the principles that govern the movement of
a particle are the interactions among particles and the retro-
spection of the past experience of the particle. In general, a
particle in PSO is driven toward two attractors: the best global
location found by the swarm within a specific neighborhood
and the best local location found by the particle itself so
far. Due to the special features of dynamic interactions and
information sharing, PSO turns out to be potentially attractive
for solving DOPs. Therefore, PSO with effective interaction
strategies, which can combine the technique of fully integrating
valuable information of particles to quickly drive particles to
exploit more promising regions and diversification methods to
improve the exploration capacity, should have a good potential
in dynamic environments.

In this paper, we investigate the introduction of one prevalent
concept of composite particles from the domain of physics into
PSO to elaborate the behavior of particles. Through integrating
some principles of this concept with the classic PSO, a PSO
algorithm with composite particles, denoted PSO-CP in this
paper, has recently been proposed in [27] with some promis-
ing preliminary results. This paper further introduces a new
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approach to construct composite particles, which first considers
worse particles in the swarm according to their similarity. Based
on the experimental results in static landscapes, a novel scatter-
ing operator is introduced, with the expectation of regaining the
local diversity within composite particles, as well as enhanc-
ing the efficiency of the velocity-anisotropic reflection (VAR)
operator, which was introduced in [27] for a better tracking
capacity for PSO in dynamic environments. In addition, an
integral movement strategy is introduced to enhance the ability
of peak detection in a new environment. In this paper, the effects
of crucial parameters and approaches on the behavior of PSO-
CP in dynamic environments are investigated. In addition, we
consider the performance comparisons of PSO-CP with other
state-of-the-art PSO algorithms to address DOPs.

The rest of this paper is outlined as follows. Section II briefly
reviews the principles of PSO and relevant work on PSO in
dynamic environments. Section III describes the background
on composite particles in physics. Section IV provides the pro-
posed PSO-CP in detail. The experimental results and analysis
of PSO-CP in comparison with other PSO algorithms for DOPs
are given in Section V. Finally, Section VI concludes this paper
with discussions on relevant future work.

II. RELATED WORK

A. PSO

In PSO, each particle holds a memory of the best position that
it has seen so far and within its neighborhood. Particles update
their velocity based on their current velocity and position and
these two attractors. The modification of the moving orbit of a
particle, for example, particle i, is described as [25]

�vi(t + 1) =ω�vi(t) + c1
�ξ × (�pi(t) − �xi(t))

+ c2�η × ( �pg(t) − q �xi(t)) (1)
�xi(t + 1) = �xi(t) + �vi(t + 1) (2)

where ω is the inertia weight, which controls the degree that
the velocity of a particle at time t influences the velocity of
that particle at time t + 1. Vectors �vi(t) and �xi(t) represent
the current velocity and position of particle i at time t, re-
spectively, �pi(t) and �pg(t) represent the position of the best
solution discovered so far by particle i and by all particles in
the neighborhood of particle i, respectively, c1 and c2 are the
acceleration constants that determine the influence of the two
attractors to particle i, respectively, and �ξ and �η are random
vectors with each constituent drawn with a uniform probability
from [0, 1]. The symbol of “×” represents the component-wise
product of the corresponding vectors.

In the classical PSO model, according to (1) and (2), particles
share information through the swarm attractor �pg and evoke
memories by particle attractors �pi.

B. PSO in Dynamic Environments

In recent years, PSO has been increasingly applied to solve
DOPs. When addressing DOPs, an efficient PSO algorithm
should be able to continuously track the dynamically changing
optima [11], [29]. This challenges classic PSO due to the
problem of diversity loss in the swarm with the searching
progress. In classic PSO, after initialization, particles in the
swarm will usually congregate to local or global optima in the

search space over successive iterations [42]–[44]. Thereafter,
when a change occurs and the optima in the search space move,
the slackened velocities and converged particles will deprive
PSO of a sufficient exploration ability to track new optima.
Therefore, for DOPs, classic PSO needs to be modified to deal
with the diversity loss [2], [3].

For DOPs, one simple method is to view an environmental
change as the arrival of a new problem and solve it from scratch
[7]. However, some knowledge obtained during the interaction
of particles inspired by social networks may still be useful in
tracking the orbit of the optima in a new environment. Several
mechanisms have been introduced to improve the performance
of classic PSO in dynamic environments. These mechanisms
include adopting the rediversification scheme when a change
is detected [8], maintaining the diversity during the run via
repulsion [1] or dynamic network topology [21], [29], and mul-
tiswarm schemes [28]. These mechanisms are briefly reviewed
below.

Hu and Eberhart [18] suggested randomizing part of or the
whole swarm when a change is detected. This rediversification
scheme may eliminate some valuable information obtained in
the history that may be useful for a new environment.

Repulsion mechanisms have been investigated to increase the
swarm diversity in dynamic environments. A PSO model that
imitates a cloud of charged particles orbiting around the neutral
particles was proposed in [1]. The charge could produce a repul-
sion force for a converging swarm to track the changed optima.

As a major diversity enhancement scheme, adjusting the
form of interaction between particles through a proper topology
within the swarm of particles was investigated in dynamic
environments. Li and Dam [29] applied a gridlike neighbor-
hood structure for DOPs. Janson and Middendorf [21] adopted
hierarchical PSO to address static and dynamic problems. They
used a local neighborhood instead of the global neighborhood
via a hierarchical structure to maintain the diversity of the
swarm.

The multiswarm approach is also a considerable technique
for maintaining the swarm diversity, with the purpose of
tracking different local optima in the dynamic landscape. An
example is the charged PSO studied in [3], which works by
constructing a set of swarms that interact locally and globally
by an exclusion operator and an anticonvergence operator,
respectively. Another multiswarm PSO, studied in [34] and
[35], uses the perception of speciation to track multiple peaks
simultaneously in dynamic environments. In [28], the specia-
tion mechanism was also combined with the idea of quantum
particles to sustain diversity within a species and has been
shown a great improvement on optima tracking.

Researchers have also hybridized PSO with other optimiza-
tion algorithms for DOPs. Esquivel and Coello [12] devised a
hybrid PSO (Hy_PSO) model, which uses a dynamic macro-
mutation operator to maintain the diversity within the swarm.
A collaborative PSO model, named collaborative evolutionary
swarm optimization (CESO) and proposed by Lung and Du-
mitrescu [30], uses two collaborative populations: One evolves
with the differential evolution algorithm, and another evolves
with the classic PSO. These hybrid approaches also indicate
that adopting effective schemes for interactions among particles
may provide PSO with competitive performance in dynamic
environments.
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The aforementioned approaches indicate some key consider-
ations for improving the adaptation of PSO in dynamic environ-
ments. These are described as follows.

1) Particles should take into account useful information
from some other particles besides the best fit one to pre-
vent the crowding of particles, which seriously restricts
the ability of PSO to search for new optima.

2) The weak particles should exploit information from better
particles in the neighborhood to fly toward a promising
region in the search space (where new optima may exist)
as quickly as possible to accelerate the optimization
process in a new environment.

3) The fitter particles may take advantage of knowledge
from the weaker ones to probe promising areas and
explore for new optima.

In the following, a modified PSO model that integrates
the notion of a composite particle in physics to meet these
requirements is proposed.

III. COMPOSITE PARTICLE IN PHYSICS

The notion of the composite particle in PSO-CP is derived
from a branch of physics [13], [32]. In physics, composite
particles usually refer to a particular kind of particles that
are composed of two or more particles via chemical actions.
These composite particles possess not only the properties of
each elementary particle but also some composite properties
[13]. This composition technique enables composite particles to
have some superior properties, such as stability and oxidation
resistance, and, hence, enables them to have better performance
than single particles in complex environments.

Recently, composite systems that are composed of inorganic
particles and organic polymer have been extensively studied.
These systems have much better performance because they
effectively syncretize the properties of inorganic and organic
materials. Composite materials can be obtained by assembling
effects of chemical bonds. For example, CaCO3 particles can
be adsorbed by porous SiO2 particles to form CaCO3/SiO2

composite particles [23].
There are three essential principles behind the composite

particle phenomenon in physics. They are summarized below.
1) Internal dissimilarity and compatibility. Elementary par-

ticles involved in each composite particle have different
surfaces and properties. This way, the composite particle
may have diverse effects to fit with its surroundings.
On the other hand, there are some compatibilities or
similarities among the elementary ones to guarantee a
strong cohesion.

2) Internal action. Elementary particles in each composite
particle interact with each other by chemical bonding.
Adopting nonidentical chemical reactions may lead to
different properties of particles.

3) Concerted action. Once composite particles are con-
structed, each composite particle is considered as a whole
to react with other particles in the overall system.

IV. COMPOSITE PSO

In this paper, the concept of composite particles in physics
is integrated into the classic PSO algorithm. The proposed

PSO-CP model has the following three characteristics.

1) Composite particles are constructed based on the similar-
ity of particles.

2) The information-sharing mechanism among different
composite particles utilizes the basic framework of the
classic PSO model.

3) The information-sharing among elementary particles
within each composite particle employs a special reflec-
tion method and an integral movement scheme.

In the following, the construction and operations for compos-
ite particles are described in detail.

A. Construction

To simplify the operations, the structure of a composite
particle is designed to be a simple geometrical shape, namely,
a triangle, which consists of three elementary particles. In
our previous work [27], a composite particle is created by
first randomly selecting one particle from the swarm and then
randomly generating two particles that form a triangle with the
selected particle with the length of the interconnecting edges
being L. Thereafter, the elementary members of a composite
particle are fixed during the whole computation process. This
original approach requires a user-specified parameter L, which
may not be properly set without some prior knowledge on the
problem being solved. On the other hand, a group of particles
with a dynamically adjusted set of members according to the
feedback obtained from the current fitness landscape may be
more competitive, particularly in dynamic environments [35].

As discussed in Section I, a partition method that can appro-
priately create subpopulations, in which the member particles
can fully and effectively absorb the information from others,
is vital for achieving better performance of the overall opti-
mization. As a promising niching technique, the species-based
mechanism in [35] has been shown to outperform other ap-
proaches for locating and tracking multiple optima. To identify
multiple species to search different peaks in parallel, it applies
a “fit-first” principle to select a species seed and a prespecified
radius parameter to determine the member particles for each
subpopulation.

In this paper, a similar method with the idea of “worse
first” is presented in PSO-CP. A composite particle can be
defined as three members with a similar feature, according
to the Euclidean distance. Different from the species-based
approach in [35], a composite particle is constructed with a
priority of first considering the “weak” particles in the swarm.
The algorithm (as shown in Fig. 1) of constructing composite
particles is performed at each iteration. It starts from a list
LI , in which all particles are sorted in the order of increasing
fitness values. Composite particles are constructed one by one
by removing particles from LI . When constructing a composite
particle Ci, the worst particle among the remaining particles in
LI is first selected, and then two particles in LI that are similar
(i.e., they are the closest particles to the first selected one) will
be selected to form the composite particle.

We adopt such a construction scheme for three factors.
First, it is expected that composite particles may adjust their
elementary particles dynamically based on the feedback infor-
mation, which may reflect the current environment, and, hence,
encouraging particles (whether fitter ones or not) rapidly and
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Fig. 1. Procedures for constructing composite particles, where Nc is the size
of the set of composite particles C, which is set to [(swarm_size − 1)/3] in
this paper, and Ci is the ith composite particle.

continuously tracking the moving optima. Furthermore, by
means of self-adjustment within each composite particle, which
will be introduced in the following section, nonpioneering
elementary particles with useful information are expected to
be sufficiently developed, which helps PSO-CP in tracking the
moving optima. It is hoped that particles should exploit infor-
mation from their near neighbors that hold valuable knowledge,
which has been proven to be an effective interaction mode in
dealing with multimodal optimization problems both in static
and dynamic environments [28], [35].

The particles in the swarm that do not belong to any com-
posite particle are referred to as “independent particles.” With
the above composite particle construction scheme, the size of
independent particles in the swarm is NI = swarm_size −
3 ∗ [(swarm_size − 1)/3]. In the case that the value of
swarm_size is a multiple of three, the whole swarm will con-
tain NI = 3 independent particles. With the above construction
scheme, it can be seen that independent particles are usually
the fittest particles. This allows a divergence of fitter particles,
which may be beneficial for a rapid response to changes.

B. Self-Adjustment With an Adaptive Parameter

As discussed in Section III, composite particles in physics
may behave better through the interaction of their elementary
particles. Similarly, each composite particle in PSO-CP should
adjust its internal structure to enhance the efficiency of search
in dynamic environments.

For each composite particle, there are two primary concerns.
The first one is how to design an interaction method among
elementary particles, which may drive the whole particle to
explore a promising search space more extensively. A VAR
scheme is proposed with the idea of replacing the worst particle
with another reflection point toward the “better” direction in
the search space. By using this method, it is expected that
the new composite particle helps track promising peaks in
a new environment. The second concern is how to select a

Fig. 2. Construction of a new composite particle through the VAR scheme.

“pioneer particle” that may synthesize valuable information
of the whole composite particle for sharing information with
other composite and independent particles in the swarm. This
pioneer particle is also responsible for transferring knowledge
back to the other two elementary particles within the composite
particle. The procedures are described in detail as follows.

1) Substep 1 (VAR With an Adaptive Step Size): The con-
struction of a new composite particle via the VAR scheme
is illustrated in Fig. 2. The position of the worst particle in
a composite particle is denoted as W . A point, denoted by
M , is generated randomly on the straight line with the two
endpoints representing the other two elementary particles. If
the reflection point is fitter than the worst one, the composite
particle is reflected in accordance with the point W to a point
R (there is no reflection performed if this is not the case). The
new composite particle then consists of points A, R, and B. The
reflection point R is calculated as follows:

−−→
WR = −−−→

WM + Rstep�γ ×−−−→
WM (3)

where Rstep is the reflection step size that controls the degree
that the worst particle moves from point M in the direction
of �γ × �WM , and �γ is the VAR vector. Rstep prevents the
reflection point R from moving too close to M and, hence,
avoids a rapid convergence within the composite particle.

It can be seen that, if �γ is a scalar value, particles will only
be able to explore the 2-D search space. To ensure that particles
can explore the D-dimensional space comprehensively, a VAR
scheme is used in the relevant vector.

Definition: A D-dimensional vector �γ = (γ1, γ2, . . . , γD) is
a VAR vector if it satisfies

|γi − γj | ≤ d i, j ∈ (1, 2, . . . ,D) (4)
∃i, j, such that γi �= γj (5)

where d is the maximum difference between reflection ve-
locities for each dimension, which determines the degree of
departure from the initial direction

−−−→
WM . A larger value of

d could produce a more comprehensive reflection space for
composite particles.

It is clear that, with the VAR vector shown in (4) and (5),
the current composite particle cannot be restricted to the same
space in which the former composite particle resides. That is,
�WR cannot be linearly represented by �WA and �WB in any

case [22]. A brief illustration to support this conclusion is given
below.

Denote �WA=(a1, . . . , aD) and �WB=(b1, . . . , bD). Then,
�WR = (γ1(b1 + (1 − z)a1), . . . , γD(bD + (1 − z)aD), where

z is generated randomly in the range of [0.0, 1.0]. Assume that
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�WR can be linearly represented by �WA and �WB. Then, there
exist k1 and k2 that meet the following:

(γ1 (b1 + (1 − z)a1) , . . . , γD (bD + (1 − z)aD)
= k1(a1, . . . , aN ) + k2(b1, . . . , bN ). (6)

Then, we have γ1 = γ2 = · · · = γD = k1/(1 − z) = k2. This
conclusion does not conform to (4). Hence, the primary as-
sumption is false, and the VAR vector can drive composite
particles to explore in the D-dimension search space. In this
paper, each component in the VAR vector for the ith composite
particle is generated by

γij =rand(0, e−|vij/vmax|), i ∈ {1, . . . , Nc}, j ∈ {1, . . . , N}
(7)

where vij and γij are the velocity and the reflection factor of the
ith composite particle in the jth dimension, respectively, and
Nc = [(swarm_size − 1)/3] is the total number of composite
particles in the swarm.

It is noticeable that the reflection factor is designed to be
relevant to the velocity of the composite particle. In a sense, the
VAR vector works like the chemical bond inside the composite
particle in physics as described in Section III. Different values
of the elements in the VAR vector can be regarded as different
chemical bonds being adopted.

We adopt such a rule for two reasons. First, when the veloci-
ties have the tendency to shrink to a small value, particularly
when the population converges, the numerical range of the
reflection velocity tends to be larger. Hence, the exploration
ability will be enhanced adaptively because the degree of depar-
ture from the original direction is enlarged. To some extent, the
reflection forces the worst elementary particle of a composite
particle to depart from the two other ones and strive for better
tracking. Second, the difference degree d between the reflection
velocities in each dimension will be restricted to a moderate
degree in case the reflection direction deviates too much from a
“better” direction.

In addition, given that swarm diversification is a critical
issue for PSO in dynamic environments, an adaptive reflection
step size is also introduced into PSO-CP according to an
entropy-based diversity measurement, which is calculated as
follows [9]:

Dentropy(P ) =
[

1
π

(
arctan AD(P ) +

π

2

)]
E(P )

log(M)
(8)

where

E(P ) = −
Q∑

j=1

(pj log(pj)) (9)

pj =
|Sj |
M

(10)

where P is the set of individuals with the size of M , E(P )
is the entropy of the set P, S1, S2, . . . , SQ are the subsets
of P with the size of |S1|, |S2|, . . . , |SQ|, respectively, and
∀p, q ∈ 1, 2, . . . , Q and p �= q, Sp ∩ Sq = ∅.

In (8), AD(P ) is the average Euclidean distance between
individuals in P , which is defined as follows:

AD(P ) =
∑M−1

i=1

∑M
k=i+1 ED( �Xi, �Xj)
M − 1

(11)

where ED( �Xi, �Xj) is the Euclidean distance between individ-
uals �Xi and �Xj .

With the above definition of the entropy-based diversity
measurement, the reflection step size described in (3) can be
designed as an adaptive parameter Rstep_adp, which can be
calculated as follows:

Rstep_adp = Rstep (1 − Dentropy(CS)) (12)

where CS is the current swarm. In this paper, the reflection step
size is adaptively adjusted according to the diversity degree of
the population measured by Dentropy(P ) within the range of
[0.0, 1.0]. It is expected that this technique can encourage the
detection of new peaks according to the convergence level of
the whole swarm.

2) Substep 2 (Pioneer Particle Selection): A pioneer par-
ticle, which integrates the valuable information of elementary
particles in a composite particle, should be selected to partici-
pate in the information-sharing in the whole swarm, similar to
what particles in the classic PSO algorithm do. It is practical
to select the best elementary particle in a composite particle,
which allows elementary particles to move to even fitter po-
sitions and, hence, have a better tracking capacity in dynamic
environments.

C. Integral Movement

In classic PSO, each particle is driven by the swarm and
particle attractors. Nevertheless, some useful information may
be erased in the sense that some potential regions in the search
space may be skipped over. This is undesirable since it may
result in diversity loss, which is a great obstacle for PSO in
addressing both static and dynamic problems. Therefore, an
integral movement scheme is employed in PSO-CP after the
update of pioneer particles. This integral movement scheme
conveys the velocity of a pioneer particle to the other two
elementary particles in each composite particle.

The reason for introducing this scheme lies in the fact that
all elementary particles may move under a right guidance, and
that, meanwhile, some valuable information may be preserved
for creating new particles for the next iteration. It utilizes
the “concerted action” principle of the composite particle in
physics, which was described in Section III.

To summarize, Fig. 3 is a schematic diagram that describes
the motion of different sorts of particles in PSO-CP.

D. Enhancing Diversification Within a Composite Particle

Although it is expected that the VAR operator and the inte-
gral movement help avoid collision and velocity-slackening of
elementary particles within a composite particle, the shrinking
of the composite particle may still happen if the spatial size
is lower than a certain degree. For example, as shown in (3),
when | �WM | is subject to a small value, the diversity cannot
be enhanced through the VAR operator, and the VAR operator
may even lose the effect of improving the composite particle.
When elementary particles are very close to each other, while
Rstep can be set to a large value, the collision of the better two
particles still cannot be avoided. This is undesirable since the
particle diversity around promising regions is critical for optima
tracking [3].



LIU et al.: PSO WITH COMPOSITE PARTICLES IN DYNAMIC ENVIRONMENTS 1639

Fig. 3. Illustration of the motion of different sorts of particles. (a) Initialization. (b) Performing the VAR scheme for composite particles. (c) Identifying pioneer
particles. (d) Updating the swarm that contains independent and pioneer particles. (e) Performing the integral movement within composite particles.

Fig. 4. Generating a new composite particle through the scattering operation.

To prevent the above problem, it is practical to introduce a
repulsion operator that guarantees a sufficient “local” diversity
level and provides a possible direction to cover peaks in dy-
namic environments. A new scattering operation is presented
here with the above considerations. It is triggered when the
composite particle is converged. In a similar fashion to the
convergence measurement for species in [28], a composite
particle is considered to be converged when the local diversity,
defined as the Euclidean distance of the worst member to the
furthermost member within the composite particle, is smaller
than a threshold θ.

The scattering operation aims to improve the fittest elemen-
tary particles to a possible promising direction, according to
the information derived from the worse ones, as illustrated
in Fig. 4. The position of the fittest elementary particle in a
composite particle is denoted by F . The two points, denoted
by N1 and N2, are the “nonpioneer” particles. The fittest one
will be scattered into two new particles along the direction of

�N1F and �N2F to substitute the points of N1 and N2. The new
composite particle consists of points F , S1, and S2, with the
scattering points S1 and S2 calculated as follows:

�FS1 = �φ × �N1F (13)
�FS2 = �φ × �N2F (14)

where �φ is a random vector with each element generated
in the range of [Sstep_min, Sstep_max]. Here, Sstep_min and
Sstep_max are the minimum and maximum values of the
stretching step size, respectively. They control the degree of di-

versity that this operation may promote. In this paper, Sstep_min

and Sstep_max are set to 2 and 3, respectively.
There are two reasons we adopt such a principle. First, it

is expected that this operation could work effectively when
the local diversity of a composite particle has decreased to
a certain degree. Once a composite particle converges, the
elementary particles may be clustered in a promising area.
The directions of �N1F and �N2F , with fitness increasing from
the point N1 and N2 to F , respectively, are also the right
directions toward the fitter regions. Second, due to the special
triangular structure of the composite particle, the two scattering
particles may be naturally subject to a repulsion pressure since
the distance between S1 and S2 is larger than that between N1

and N2 (see Fig. 4). By applying this scattering operation, it is
expected that the population diversity increases, which lead to
a better exploration capacity, and that the elementary particles
are driven to cover more promising areas.

It is practical to introduce an adaptive method for adjusting
the diversity threshold according to the convergence level of
composite particles. In this study, (8) is applied to describe
the local diversity degree, and the local diversity threshold is
adaptively adjusted as follows:

θadp = θ (1 − Dentropy(C)) (15)

where C is a composite particle. This way, the requirement for
the local diversification can be adaptively adjusted according to
the convergence level of composite particles.

E. Detection and Response to Changes

To avoid misleading the tracking behavior of particles in dy-
namic environments, the shared information among composite
particles with respect to the best knowledge obtained and the
stored information corresponding to each elementary particle’s
local best solution should be corrected when an environmental
change occurs. This requires PSO-CP to detect the changes.

In PSO-CP, the change of the environment can be detected
by reevaluating the position �pg at each iteration. That is, when
the fitness value of �pg does not match the stored best value at
the last iteration, an environmental change is detected. This de-
tection strategy will work under instances in which the changes
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of the fitness landscape affect the region where �pg is located.
Further research could focus on a more effective detection
method. Whenever an environmental change is detected, a
response method is invoked, and each particle’s memory, i.e.,
�pi, is reevaluated. By using this response method, it is expected
that some valuable information in previous environments can
be conserved to help the swarm track changes.

In summary, Fig. 5 shows the pseudocode of PSO-CP pro-
posed in this paper to address DOPs. PSO-CP differs from
some prior PSO algorithms, such as the niching technique [35],
[39] and multiswarm approaches [3], [28], in two aspects. First,
the construction of composite particles starts from nonfitter
particles to create a subset of the whole swarm without user-
specified parameters (i.e., the niching radius). Second, the inter-
action mechanism among particles within a composite particle
does not follow the standard PSO particle motion principle but
is implemented by the VAR scheme and the integral movement
scheme.

F. Complexity Analysis

The complexity of the algorithm for constructing a com-
posite particle can be estimated according to the number of
evaluations of Euclidean distances between particles. Assuming
that there are N particles sorted in the list of LI . Therefore,
the number of Euclidean distance calculations required for this
procedure, i.e., T (N), can be calculated as follows:

T (N) =
�N

3 �∑
i=1

(N − 3i + 2). (16)

That is, the worst time complexity of the procedure is O(N2).
The multiquantum swarm optimization (MQSO) algorithm

[3] also has a complexity of O(N2), which is at the expense
of calculating Euclidean distances between particles. However,
the partition method that integrally considers the distance and
fitness could produce an effective scheme to contribute a full
utilization of the involved particles.

The CESO algorithm [30], which hybridizes PSO with other
optimization algorithms for addressing dynamic environments,
has a complexity of O(N). CESO focuses on using differential
evolution to explore the motion principle of the original PSO
model, but always performs weaker than PSO-CP according
to the experiments reported below. Hence, it is worthy to
enhance the adaptivity of PSO by integrating other effective
metaheuristic methods for solving DOPs.

V. EXPERIMENTAL STUDY

A. Dynamic Test Environments

The moving peak benchmark (MPB) problem proposed by
Branke [5] has been widely used as a dynamic benchmark
problem in the literature. Within the MPB, the optima can be
varied by three features, i.e., the location, height, and width
of the peaks. Hence, it has the flexibility and universality to
generate a series of dynamic landscapes with different dynamic
characteristics. For the D-dimensional landscape, the problem
is defined as follows:

F (�x, t) = max
i=1,...,N

Hi(t)

1 + Wi(t)
∑D

j=1 (xj(t) − Xij(t))
2

(17)

Fig. 5. Pseudocode of the proposed PSO-CP for DOPs, where S is the whole
swarm with size swarm_size, and C is the set of composite particles with
size NC .

where Hi(t) and Wi(t) are the height and the width of peak i at
time t, respectively, and Xij(t) is the jth element of the location
of peak i at time t. The N independently specified peaks are
blended together by the max function.

In this paper, the dynamism of changes is designed based
on the MPB scenario 2 [5], with the height of peaks shifting
randomly in the range [30, 70] and the width of peaks shifting
randomly within [1, 12]. The position of each peak is shifted by
a vector �vi of a distance S, and the change of a single peak can
be described as follows:

�vi(t) =
S

|�r + �vi(t − 1)| ((1 − λ)�r + λ�vi(t − 1)) (18)
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TABLE I
OFFLINE ERROR AND STANDARD ERROR OF PSO-CP WITH DIFFERENT swarm_size ON DOPs

WITH E = 5000 AND DIFFERENT ENVIRONMENTAL DYNAMICS AND COMPLEXITIES

where the shift vector �vi(t) is a linear combination of a ran-
dom vector �r and the previous shift vector �vi(t − 1) and is
normalized to the length S, which determines the severity of
the problem dynamics. The correlated parameter λ is set to 0,
which implies that the peak movements are uncorrelated.

B. Experimental Design

Three sets of experiments were carried out to investigate the
performance of PSO-CP in dynamic environments. In the first
preliminary set of experiments, the effects of key parameters
and critical approaches on the performance of PSO-CP were
analyzed on different dynamic functions. In addition, a guide-
line for setting the new introduced parameters (i.e., Rstep, θ)
was provided, with an experimental verification for them to be
robust within a range for different dynamic instances. Second,
experiments were carried out to compare the performance of
PSO-CPs, including the variant proposed in our previous work
[27], called PSO-CPr, where the composite particle is being
created with a fixed length of L (L = 0.01 × (Xmax − Xmin))
without the scattering operation. We also studied PSO-CP that
keeps composite particles for more than one iteration, called
PSO-CPc, with a parameter of c representing the construction
period of composite particles. In the major set of experiments,
PSO-CP was compared with four other PSO models in dynamic
environments with different complexities and dynamics of the
fitness landscape.

The four contender PSO algorithms are described as follows.
The first PSO model is the restart PSO (RPSO), which reini-
tializes all particles when a change is detected. We consider
RPSO to be a straightforward method to response to dynamic
environments [18]. The second algorithm is the species-based
with particle diversity method (SPSO-PD) studied in [28],
which has been proved to be an effective niching PSO model.
The third contender PSO model is the MQSO model presented
in [3], which can produce competitive results in dynamic envi-
ronments. Within MQSO, the configuration of 10(5 + 5q) that
performs the best was used. The fourth PSO model is the CESO
algorithm proposed in [30], which is another state-of-the-art
PSO model for DOPs.

For each PSO variant, the learning factors c1 = c2 = 2.05
and the inertia weight ω = 0.729844 were applied as sug-
gested in [35]. The initial positions of particles were generated
randomly in the range of [Xmin,Xmax] = [0, 100]. The total
swarm size was set to 100. For PSO-CP, the adaptive method
with the initial reflection step size Rstep in (12) set to 6 and
the initial diversity threshold θ in (15) set to 3 was adopted.

For the contender PSO models, other relevant parameters that
were recommended by corresponding authors were also ap-
plied here.

For each experiment of an algorithm on a test problem,
30 independent runs were executed with the same set of random
seeds. For each run of an algorithm on a DOP, ten environ-
mental changes were allowed. For the purpose of evaluating the
ability of algorithms to track the optima, the offline error, which
was defined by Branke [7] and has been extensively used as a
major criterion for DOPs in various studies [21], [35], [46], was
used as the primary performance measure. It is the average over,
at every point in time, the error of the best solution found since
the last change of the environment. This measure is always
greater than or equal to zero, and it would be zero if the tracking
is perfect.

C. Parameter Analysis for PSO-CP in Dynamic Environments

1) Effect of the Swarm Size: The aim of this set of experi-
ments is to test the effect of the swarm size on the performance
of PSO-CP in dynamic environments with different shift sever-
ities and complexities. Experiments were carried out with the
value of the swarm size set to 50 and 100. The complexities of
the fitness landscape were the combination of the dimensional-
ity D ∈ {2, 5, 10} and the number of peaks N ∈ {1, 10, 100}.
The dynamics of the environment were specified by the value
of S ∈ {1.0, 2.0, 5.0} and the number of evaluations between
changes, which was set to E = 5000. The experimental results
are given in Table I.

From Table I, it can be seen that the swarm size 100 gives a
better result in most cases. For S = 1.0 with a single peak, the
better results are obtained when the swarm size is set to 50. The
standard errors are smaller for the swarm size 100 than for
the swarm size 50 in all investigated functions.

2) Effect of the VAR Scheme: As mentioned in Section IV,
the VAR scheme has a potential to drive composite particles to
exploit solutions in a promising region. Hence, it is expected
that the VAR scheme could lead to a better tracking behavior
in dynamic environments. To examine the effect of the VAR
scheme on the behavior of PSO-CP under different severi-
ties, experiments were carried out with four PSO-CP variants,
namely, PSO-CP with the VAR scheme with a fixed value of
Rstep = 6.0, PSO-CP with the adaptive VAR scheme with an
initial value of Rstep = 6.0, PSO-CP with a reflection vector
that is unrelated to the velocity in each dimension (i.e., all
components in the VAR vector are randomly generated in the
range [0.0, 1.0]), and PSO-CP without any reflection scheme.
The experimental results are given in Table II.
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TABLE II
OFFLINE ERROR AND STANDARD ERROR OF PSO-CP WITH DIFFERENT

VAR STRATEGIES AND WITHOUT VAR ON DOPs WITH E = 5000 AND

DIFFERENT ENVIRONMENTAL DYNAMICS AND COMPLEXITIES

Fig. 6. Offline error of PSO-CP algorithms with different Rstep on DOPs
with E = 5000, S = 1.0, D = 5, and a different number of peaks.

From Table II, it can be seen that the adaptive VAR scheme
applied in this paper gives a better result for all cases. This
indicates that the adaptive method can enhance the ability of
PSO-CP for DOPs. Comparing with the other two variants (i.e.,
without any reflection and reflection with a random vector),
PSO-CP with a fixed VAR parameter performs better for mod-
erate severity cases (S = 1.0 and S = 2.0), and the reflection
scheme without referring to velocities performs better than the
VAR scheme when the dynamism is severe (S = 5.0). The
reason lies in the fact that, when the change is smooth, utilizing
the velocity information of particles, which can reflect the
degree of swarm convergence to some extent, may lead to a
better exploitation for optima tracking. However, the ignorance
of the convergence degree under this environment may weaken
the track ability when the new optima are close to the ones in the
last environment. When the environment suffers severe changes
(for example, if S = 5.0), it seems that particles evenly distrib-
uted in the search space are more helpful for a better exploration
of the landscape. This stresses again that the adaptive VAR
scheme with proper parameters can contribute in accelerating
the searching speed in dynamic environments.

Given the above discussion, it is evident that the initial value
of the reflection step size plays a vital role in the performance
of PSO-CP in dynamic environments. To validate this, experi-
ments were further carried out with the value of Rstep set in the
range [0.1, 10]. The results are shown in Fig. 6.

From Fig. 6, it can be seen that the initial value of Rstep

around 4.0 gives a better result when tracking a single peak.

TABLE III
OFFLINE ERROR AND STANDARD ERROR OF PSO-CP WITH DIFFERENT

Rstep ON DOPs WITH DIFFERENT LANDSCAPES AND DIFFERENT

ENVIRONMENTAL DYNAMICS

This indicates that a local optimizer that can produce a small-
scale search is beneficial for tracking mild shifts. However,
when there are more than ten peaks, a step size around 6.0
becomes more suitable, which indicates that it is important to
sustain the local diversity in composite particles for a rapid
response to changes in multimodal landscapes. PSO-CP per-
forms the worst in extreme cases of Rstep = 0.1 and Rstep =
10. When Rstep = 0.1, PSO-CP suffers from the diversity
loss, which leaves the entire swarm ill-adapted to a new en-
vironment. When Rstep = 10, many invalid reflections that are
produced do not contribute to optima tracking but lead to a rapid
convergence.

Furthermore, we are interested in investigating the range in
which the parameter of Rstep is robust on different dynamic
instances. Based on the above analyses, the ability of PSO-CP
with Rstep set in the range of [4.0, 7.0] was provided in
Table III. Table III shows that the offline error of PSO-CP
is less affected by Rstep in this range in the investigated
dynamic environments. Again, the value around 6.0 produces
the best performance for dynamic multimodal optimization
problems. One reason lies in the fact that the VAR scheme
with Rstep around 6.0 helps maintaining the diversity at a
reasonable level, which contributes to more efficient tracking as
compared with the other settings. Another observation is that
PSO-CP with Rstep = 7.0 shows a weaker adaptation due to
the invalid reflections. Rstep around 5.0 provides better tracking
performance in the dynamic environments with relatively mild
changes (i.e., S = 1.0 and S = 2.0).

3) Effect of the Local Diversity Threshold (θ): The parame-
ter θ determines when the scattering operation is invoked. It
has a significant influence on the ability of PSO-CP to address
dynamic environments. With the adaptive method, a large initial
value of θ may weaken the exploitation ability of composite
particles to track the nearby optima. In contrast, a small initial
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TABLE IV
OFFLINE ERROR AND STANDARD ERROR OF PSO-CP WITH DIFFERENT θ
WITH AND WITHOUT ADAPTIVE METHODS (DENOTED AS ADA AND FIX)

ON DOPs WITH D = 10, N = 5, AND DIFFERENT

ENVIRONMENTAL DYNAMICS

value of θ may weaken the exploration capacity of particles
to cover promising peaks after a change. To test the influence
of θ on the performance of PSO-CP, experiments were carried
out with θ set to different values in the set {0.1, 1, 2, 3, 5, 103}
with and without the adaptive technique. Since the setting
of θ concerns the balance between the exploration and ex-
ploitation abilities of particles, we focus on the environmental
dynamics with E = {3000, 5000}, which represents a different
degree of swarm convergence before a change occurs, and S =
{1.0, 2.0, 5.0} in a landscape of ten peaks in a 5-D space. The
experimental results are given in Table IV, where “Ada” and
“Fix” denote the adaptive and fixed schemes for the reflection
step size, respectively.

The results in Table IV show that the adaptive diversity
threshold θ can produce a better tracking behavior than the fixed
θ in all investigated cases. In addition, the parameter θ should
be set in the range of [1.0, 5.0] for better performance of PSO-
CP on the test DOPs. It can be observed that, when the update
interval is small (E = 3000), setting θ around 2.0 gives a better
result than other settings. The poor offline error for θ = 0.1
indicates the necessity for the scattering operation. When the
update interval increases to E = 5000, the swarm becomes
more converged before a change occurs. Hence, diversification
becomes even more important for tracking peaks in these cases,
and it is more suitable to set θ in the range of [3.0, 5.0].
However, when θ = 103, which gives the highest local diversity
degree among all the settings of θ, PSO-CP performs worse
than when θ is set to 3.0 at most cases. This happens because
too much diversification is harmful to the convergence process
required to search for the optima. This result indicates that a
good tradeoff between convergence and diversification is vital
for tracking the moving peaks and, hence, is vital for the overall
performance of PSO-CP for DOPs.

To investigate the ability of PSO-CP with different θ to track
the optima and maintain the diversity level during the whole
solving process, different from the entropy-based diversity
measurement applied in the adaptive technique, the “distance-
to-average-point” measurement for the swarm diversity, as de-
fined in [19], was introduced as follows:

diversity(CS) =
1

M × L

M∑
i=1

√√√√ D∑
d=1

(xid − xd)2 (19)

where CS is the current swarm with the swarm size M , L is
the length of the longest diagonal in the search place, D is the
problem dimensionality, and xd is the dth dimensional value of
the average point.

The dynamic performance of PSO-CP with θ = 3.0 and two
extreme cases of θ = 0.1 and 103 regarding the offline error
is plotted in Fig. 7. The swarm diversity is plotted against
the number of evaluations in Fig. 8 with E = 5000. Some
observations can be drawn from Figs. 7 and 8. For the static
period, the performance is similar for the three settings. With
the progress of the optimization process, PSO-CP with θ = 0.1
is likely to be trapped into the local optima, and the offline error
increases due to the diversity loss. The offline error for θ = 3.0
is considerably better, demonstrating that a sufficient diversity
for efficiently exploring the search space can be gained in this
case (see Fig. 8). The performance of PSO-CP with θ = 103 is
always weaker than that of PSO-CP with θ = 3.0 at most cases
(except for the case when S = 5.0). This is because it focuses
on diversification without exploiting peaks in the promising
area. This indicates again that the diversity level of the swarm
is a major concern but not the singular one that affects the
performance of PSO algorithms in dynamic environments [49].
Other factors, such as the speed of exploiting promising regions
in the search space of the current environment, should also be
considered to achieve a stronger adaptation for PSO algorithms
in dynamic environments.

It is noticeable that setting θ to a large value gives a better
result in some environmental periods when S = 5.0. This in-
dicates that a high diversity degree of the swarm can enable a
better tracking behavior when the dynamic problems are subject
to a greater level of dynamism. After several iterations, the
offline error of PSO-CP with θ = 3.0 becomes the smallest
again. This happens because performing the VAR scheme on
composite particles that have a reasonable local diversity degree
can promote the tracking ability of particles. Another interest-
ing result is that PSO-CP with θ = 0.1 tends to suffer from
the diversity loss particularly when S = 5.0. This result again
indicates that increasing the particle diversity is more important
for high-dynamism environments [3], [27].

It is interesting to compare the diversity level between
PSO-CP and RPSO during the running process. Note that RPSO
can regain a high-level diversity when a change is detected.
Fig. 9 shows the swarm diversity of PSO-CP and RPSO on
the DOP with E = 5000, D = 5, and S = 1.0. From Fig. 9,
it can be seen that in comparison with RPSO, the diversity
level of PSO-CP fluctuates within a range. This happens due
to the combination of the VAR scheme and diversification
strategies. The former approach utilizes good information to
probe promising solutions and results in a faster searching
speed in dynamic environments, and the latter approach aims
at distributing particles in a more comprehensive area, lead-
ing to a better exploration of the search space. Furthermore,
considering the comparison between RPSO and PSO-CP in the
following section, it seems that, in some environments, the idea
of maintaining the diversity during the whole process is more
beneficial for rapidly responding to changes than the method of
rediversification after a change.

Based on the above discussions, the effect of the adaptive
parameter θ on the performance of PSO-CP was tested with
the initial value of θ in the range of [1.0, 5.0]. To further see
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Fig. 7. Dynamic performance of PSO-CP with different θ on the DOPs with E = 5000 and different severities of environmental changes: (a) S = 1.0,
(b) S = 2.0, and (c) S = 5.0.

Fig. 8. Swarm diversity of PSO-CP with different θ on the DOPs with E = 5000 and different severities of environmental changes: (a) S = 1.0, (b) S = 2.0,
and (c) S = 5.0.

Fig. 9. Swarm diversity for PSO-CP and RPSO on the DOP with E = 5000,
S = 1.0, and D = 5.

the effect of θ on the performance of PSO-CP, we carried out
some experiments on PSO-CP on DOPs with different fitness
landscape features. Table V presents the experimental results
regarding the performance of PSO-CP with different θ on DOPs
with E = 5000 and different fitness landscapes with different
dimensionalities and number of peaks. From Table V, it can be
seen that setting θ in the range of [2.0, 5.0] does not greatly
affect the performance of PSO-CP in the investigated cases.
Hence, we recommend setting θ within this range, which can
provide a proper diversity level and a sufficient search power
with the adaptive technique.

4) Effect of the Integral Movement: Another strategy intro-
duced in our approach is the integral movement. To study the
effect of the integral movement on the performance of PSO-
CP in dynamic environments, experiments were carried out on
PSO-CP with and without the integral movement. The experi-
mental results regarding the offline error and the swarm diver-

TABLE V
OFFLINE ERROR AND STANDARD ERROR OF PSO-CP WITH DIFFERENT θ
ON DOPs WITH E = 5000 AND DIFFERENT FITNESS LANDSCAPES WITH

DIFFERENT DIMENSIONALITIES (D) AND NUMBER OF PEAKS (N)

sity against the number of evaluations are plotted in Figs. 10
and 11, respectively.

From Figs. 10 and 11, it can be seen that the integral
movement scheme can maintain a sufficient diversity level and,
hence, can produce a significant advantage to the performance
of PSO-CP. This confirms our expectation that this technique
can promote the swarm diversity and, hence, can provide PSO-
CP with a better tracking behavior in dynamic environments.

D. Comparing PSO-CP Variants in Dynamic Environments

1) Comparison With PSO-CPr: The experimental results
of comparison between PSO-CPr [27] and PSO-CP proposed
in this study on dynamic problems with different shift sever-
ities are provided in Table VI, where the experiments were
specified by E = 5000 and S ∈ {0, 1.0, 3.0, 6.0} in a land-
scape of ten peaks in a 5-D solution space. In addition, the
statistical test results of comparing PSO-CP with the contender
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Fig. 10. Dynamic performance of PSO-CP with and without the integral
movement scheme and θ = 2 on the DOP with E = 5000, S = 1.0, D = 5,
and N = 10.

Fig. 11. Swarm diversity of PSO-CP with and without the integral movement
scheme and θ=2 on the DOP with E =5000, S =1.0, D=5, and N =10.

TABLE VI
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs

WITH E = 5000, D = 5, AND N = 10. THE t-TEST RESULTS OF

COMPARING PSO-CP WITH PSO-CPr ARE SHOWN IN BRACKETS

PSO algorithms in terms of the offline error by the one-tailed
t-test with 58 degrees of freedom at a 0.05 level of significance
are given in the brackets in Table VI, where the t-test result is
shown as “+”, “−”, or “∼” when PSO-CP is significantly better
than, significantly worse than, or statistically equivalent to the
corresponding algorithm, respectively.

It can be seen from Table VI that for each fixed S, PSO-CP
outperforms PSO-CPr in all investigated cases. This happens
because the construction scheme in PSO-CP improves its adap-
tivity due to the prompt adjustment based on the combination
of fitness and Euclidean distance information obtained from
the current fitness landscape. The enhancements such as the
detection method and the adaptive scattering operation also give
advantages for PSO-CP in dynamic environments.

2) Comparison on DOPs With PSO-CPc: One major issue
for PSO-CP is the complexity problem as analyzed above. One
straightforward method is to increase the construction period
of the composite particles. The experiments were carried out

TABLE VII
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs

WITH E = 5000, D = 5, AND N = 10. THE t-TEST RESULTS OF

COMPARING PSO-CPC WITH c = 1 AND OTHER VALUES

ARE SHOWN IN BRACKETS

TABLE VIII
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs

WITH E = 5000, D = 5, N = 10, AND DIFFERENT SHIFT SEVERITIES.
THE t-TEST RESULTS OF COMPARING PSO-CP WITH OTHER PSO

ALGORITHMS ARE SHOWN IN BRACKETS

with c setting to different values in the set {1, 2, 5, 10}, where
c is the construction period of the composite particles, and
dynamic environments were consistent with the above settings.
The experimental results are shown in Table VII.

It can be seen from Table VII that for PSO-CPc on all investi-
gated environments, the performance drops heavier and heavier
when the value of c increases from 1 to 10. Although the PSO-
CP recommended in this paper has the additional overhead
of computing, it does present some significant advantages, in
particular, when the environmental dynamics are more severe
(i.e., S = 3.0 and S = 6.0). This is because the construction
executed for each iteration can rapidly respond to the current
fitness landscape. Further investigation is needed on how to
balance the complexity and the effectiveness of PSO-CP.

E. Major Experimental Results and Analysis

In this major set of experiments, the performance of PSO-
CP in dynamic environments was compared with the four
contender PSO algorithms, i.e., RPSO, SPSO-PD, MQSO, and
CESO. All corresponding parameters were fixed to be the same
values for investigated DOPs.

1) Comparison on DOPs With Different Dynamics: These
experiments investigate the performance comparison between
the four PSO algorithms on DOPs with different dynamics.
When considering the effect of different shift severities on the
performance of PSO algorithms, experiments were specified by
E = 5000 and S ∈ {0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0}. When con-
sidering the effect of a different number of evaluations between
changes on the performance of PSO algorithms, experiments
were specified by S = 1.0 and E ∈ {3000, 5000, 10000}. For
both cases, the landscape dimensionality is set to D = 5, and
the number of peaks is set to N = 10. The results are given in
Tables VIII and IX, respectively.

From Tables VIII and IX, several results can be observed
and are analyzed as follows. First, it can be seen that in-
creasing the value of S increases the difficulty for all PSO
algorithms in tracking the global optima, and an increasing
interval between changes can encourage better tracking in
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TABLE IX
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs

WITH S = 1.0, D = 5, N = 10, AND A DIFFERENT NUMBER OF

EVALUATIONS BETWEEN CHANGES. THE t-TEST RESULTS OF

COMPARING PSO-CP WITH CONTENDER PSO ALGORITHMS

ARE SHOWN IN BRACKETS

TABLE X
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs
WITH E = 5000, S = 1.0, D = 5, AND A DIFFERENT NUMBER OF

PEAKS. THE t-TEST RESULTS OF COMPARING PSO-CP WITH CONTENDER

PSO ALGORITHMS ARE SHOWN IN BRACKETS

dynamic environments. All SPSO-PD, MQSO, CESO, and
PSO-CP significantly outperform RPSO on the DOPs with
different environmental dynamics. This indicates that the idea
of altering some old solutions with specific interaction mecha-
nisms is helpful in tracking optima in dynamic environments.

Second, another significant result is that PSO-CP outper-
forms other PSO algorithms on most DOPs, and PSO-CP
shows significantly better performance in most cases. This
result validates the efficiency of introducing composite particles
along with relevant strategies into PSO-CP. The movement
strategy can integrate valuable information efficiently, and the
VAR scheme has an intensive exploitation ability, which helps
composite particles search for optima continuously rather than
converging into a solution ahead. The advantage of these
schemes results in significantly better results, particularly when
the environment suffers from moderate changes.

Third, PSO-CP is statically equivalent to CESO in some
cases (for example, when E = 3000 and S = 1.0, or E = 5000
and S = 6.0). The reason lies in the fact that the VAR scheme
does not fully exhibit its effect when the environment is subject
to intensive changes.

2) Comparison on DOPs With a Different Number of Peaks:
The performance of PSO algorithms was also investigated
on DOPs with a different number of peaks N ∈ {1, 10, 30,
50, 100} and other dynamic and complexity parameters fixed
to E = 5000, S = 1.0, and D = 5. The experimental results,
including the t-test results of comparing PSO-CP with the
contender PSO algorithms, are shown in Table X.

From Table X, it can be seen that PSO-CP outperforms other
PSO variants in all investigated cases. This is because the VAR
scheme offers a significant advantage in tracking optima, and
the integral movement strategy can slow down the process of
being trapped and push the searching toward the global optima.
The superiority of PSO-CP on DOPs with a large number
of peaks indicates that although it is not specially designed
for locating and tracking multiple optima simultaneously, the
adaptive method also helps in rapidly responding to changes
when the distance between peaks is small.

3) Comparison on DOPs With Different Dimensionalities:
The performance of the five PSO algorithms was investigated

TABLE XI
OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS ON DOPs

WITH E = 5000, S = 1.0, N = 10, AND DIFFERENT DIMENSIONALITIES.
THE t-TEST RESULTS OF COMPARING PSO-CP WITH CONTENDER PSO

ALGORITHMS ARE SHOWN IN BRACKETS

TABLE XII
COMPARISON OFFLINE ERROR AND STANDARD ERROR OF ALGORITHMS

ON DOPs WITH E = 5000, S = 1.0, N = 10, AND DIFFERENT

CORRELATION OF THE SHIFT PARAMETER. THE t-TEST RESULTS OF

COMPARING PSO-CP WITH CONTENDER PSO ALGORITHMS

ARE SHOWN IN BRACKETS

on the DOPs with different dimensionalities D ∈ {5, 10, 50}
and other dynamic and complexity parameters set as follows:
E = 5000, S = 1.0, and N = 10. The experimental results
regarding the offline error and the t-test of comparing PSO-CP
with the contender PSO algorithms are shown in Table XI.

From Table XI it can be seen that PSO-CP performs better
than other algorithms on dynamic landscapes with a fixed
number of peaks. Based on above discussions, one major reason
lies in that the adaptive VAR scheme can encourage the swarm
to extensively explore the multidimensional search space.

4) Comparison on DOPs With Different Correlations of
the Shift Parameter: Experiments were also carried out to
investigate the performance of the five PSO algorithms with
different settings of the correlated parameter λ, which repre-
sents for the correlation between consecutive movements of a
single peak [5]. The effect of setting the correlation parameter
λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 1} with different shift severities S ∈
{1.0, 3.0, 6.0} on the performance of algorithms is provided in
Table XII.

It can be observed that PSO-CP significantly outperforms the
other three contender algorithms on all dynamic instances. For
λ = 0, in which the movement is completely uncorrelated in
more severe cases, PSO-CP performs statically equivalent to
CESO (i.e., S = 6.0). However, with the increase of the value
of λ, PSO-CP always beats other contender algorithms. This
happens because under dynamic environments with correlated
changes, the adaptive VAR scheme in PSO-CP contributes to its
adaptivity over cases with correlated changes. The VAR scheme
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among the near neighbors brings in an effective integration of
valuable information in the previous and current environments.
This benefit leads to the better performance of PSO-CP over
other algorithms.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a new PSO model, called PSO-
CP, based on the phenomenon of composite particles in physics
for addressing DOPs. The basic motivation behind PSO-CP is
to utilize an efficient integrated and interactive mechanism to
track promising peaks in dynamic environments. A new kind
of composite particles is introduced into PSO. These composite
particles have a simple geometrical shape: The elementary par-
ticles form a triangle. This model uses a “worst first” principle
and spatial information to construct composite particles for
highly efficient information sharing. Composite particles are
operated through the following operators.

• VAR scheme. It is important to enable particles to con-
tinuously track the moving optima over time to address
DOPs. Hence, we focus on how to fully exhibit valuable
information from all the particles, whether they are fit or
not. The VAR scheme with an adaptive method improves
the less-fit elementary particles by fitter ones that are close
to it in a specialized way. It ensures an exploitative ability
for promising regions, thereby driving particles to track
optima in dynamic environments.

• Scattering operation. The diversity within each composite
particle can encourage elementary particles to track new
peaks. The self-adaptive scattering operation helps main-
tain the local diversity and, hence, guarantees the swarm
diversity to watch over new optima, as well as to explore
potentially more promising regions.

• Integral movement strategy. The swarm diversity is crucial
for a better exploration to cover new peaks in the search
space. The integral movement strategy aims to prevent
the collision of composite particles, which improves
less-fit elementary particles toward the fittest one that is
updated according to the standard rule of the classic PSO
algorithm.

To justify the proposed PSO-CP, experiments were carried
out to compare the performance of PSO-CP with a number
of state-of-the-art PSO algorithms on dynamic test problems.
From the experimental results, several conclusions can be
drawn on the dynamic test environments. First, the introduc-
tion of composite particles with their specific interaction form
is beneficial for the performance of PSO in dynamic envi-
ronments. Second, the proposed VAR scheme is efficient to
improve the performance of PSO-CP, particularly for multidi-
mensional DOPs. Third, the scattering operator works well for
PSO-CP to adapt to a new environment. Fourth, the strategy
of extracting information from other particles besides the best
solutions as in the classic PSO algorithm is a good choice for
preserving valuable information and avoiding convergence to
improve the performance of PSO in dynamic environments.

Generally speaking, the experimental results indicate that
the proposed PSO-CP can be a good optimizer in dynamic
environments.

For future work, it would be valuable to try to simplify the
PSO-CP model to release the effect of setting the involved

parameters and enhance the robustness of PSO-CP for more
complex DOPs. A deep investigation for decreasing the com-
plexity of the algorithm needs to be considered. It is also worthy
discussing the proposed PSO-CP from the view of theory,
including analyzing the VAR scheme by probability. Finally, the
comparison with EAs, such as differential evolution methods,
and genetic algorithms is under investigation.
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