12 research outputs found

    Partial replication in the database state machine

    Get PDF
    This paper investigates the use of partial replication in the Database State Machine approach introduced ear- lier for fully replicated databases. It builds on the or- der and atomicity properties of group communication primitives to achieve strong consistency and proposes two new abstractions: Resilient Atomic Commit and Fast Atomic Broadcast. Even with atomic broadcast, partial replication re- quires a termination protocol such as atomic commit to ensure transaction atomicity. With Resilient Atomic Commit our termination protocol allows the commit of a transaction despite the failure of some of the par- ticipants. Preliminary performance studies suggest that the additional cost of supporting partial replica- tion can be mitigated through the use of Fast Atomic Broadcast

    Partial replication in the database state machine

    Get PDF
    Tese de Doutoramento em Informática - Ramo do Conhecimento em Tecnologias da ProgramaçãoEnterprise information systems are nowadays commonly structured as multi-tier architectures and invariably built on top of database management systems responsible for the storage and provision of the entire business data. Database management systems therefore play a vital role in today’s organizations, from their reliability and availability directly depends the overall system dependability. Replication is a well known technique to improve dependability. By maintaining consistent replicas of a database one can increase its fault tolerance and simultaneously improve system’s performance by splitting the workload among the replicas. In this thesis we address these issues by exploiting the partial replication of databases. We target large scale systems where replicas are distributed across wide area networks aiming at both fault tolerance and fast local access to data. In particular, we envision information systems of multinational organizations presenting strong access locality in which fully replicated data should be kept to a minimum and a judicious placement of replicas should be able to allow the full recovery of any site in case of failure. Our research departs from work on database replication algorithms based on group communication protocols, in detail, multi-master certification-based protocols. At the core of these protocols resides a total order multicast primitive responsible for establishing a total order of transaction execution. A well known performance optimization in local area networks exploits the fact that often the definitive total order of messages closely following the spontaneous network order, thus making it possible to optimistically proceed in parallel with the ordering protocol. Unfortunately, this optimization is invalidated in wide area networks, precisely when the increased latency would make it more useful. To overcome this we present a novel total order protocol with optimistic delivery for wide area networks. Our protocol uses local statistic estimates to independently order messages closely matching the definitive one thus allowing optimistic execution in real wide area networks. Handling partial replication within a certification based protocol is also particularly challenging as it directly impacts the certification procedure itself. Depending on the approach, the added complexity may actually defeat the purpose of partial replication. We devise, implement and evaluate two variations of the Database State Machine protocol discussing their benefits and adequacy with the workload of the standard TPC-C benchmark.Os sistemas de informação empresariais actuais estruturam-se normalmente em arquitecturas de software multi-nível, e apoiam-se invariavelmente sobre um sistema de gestão de bases de dados para o armazenamento e aprovisionamento de todos os dados do negócio. A base de dado desempenha assim um papel vital, sendo a confiabilidade do sistema directamente dependente da sua fiabilidade e disponibilidade. A replicação é uma das formas de melhorar a confiabilidade. Garantindo a coerência de um conjunto de réplicas da base de dados, é possível aumentar simultaneamente a sua tolerância a faltas e o seu desempenho, ao distribuir as tarefas a realizar pelas várias réplicas não sobrecarregando apenas uma delas. Nesta tese, propomos soluções para estes problemas utilizando a replicação parcial das bases de dados. Nos sistemas considerados, as réplicas encontram-se distribuídas numa rede de larga escala, almejando-se simultaneamente obter tolerância a faltas e garantir um acesso local rápido aos dados. Os sistemas propostos têm como objectivo adequarem-se às exigências dos sistemas de informação de multinacionais em que em cada réplica existe uma elevada localidade dos dados acedidos. Nestes sistemas, os dados replicados em todas as réplicas devem ser apenas os absolutamente indispensáveis, e a selecção criteriosa dos dados a colocar em cada réplica, deve permitir em caso de falha a reconstrução completa da base de dados. Esta investigação tem como ponto de partida os protocolos de replicação de bases de dados utilizando comunicação em grupo, em particular os baseados em certificação e execução optimista por parte de qualquer uma das réplicas. O mecanismo fundamental deste tipo de protocolos de replicação é a primitiva de difusão com garantia de ordem total, utilizada para definir a ordem de execução das transacções. Uma optimização normalmente utilizada pelos protocolos de ordenação total é a utilização da ordenação espontânea da rede como indicador da ordem das mensagens, e usar esta ordem espontânea para processar de forma optimista as mensagens em paralelo com a sua ordenação. Infelizmente, em redes de larga escala a espontaneidade de rede é praticamente residual, inviabilizando a utilização desta optimização precisamente no cenário em que a sua utilização seria mais vantajosa. Para contrariar esta adversidade propomos um novo protocolo de ordenação total com entrega optimista para redes de larga escala. Este protocolo utiliza informação estatística local a cada processo para "produzir" uma ordem espontânea muito mais coincidente com a ordem total obtida viabilizando a utilização deste tipo de optimizações em redes de larga escala. Permitir que protocolos de replicação de bases de dados baseados em certificação suportem replicação parcial coloca vários desafios que afectam directamente a forma com é executado o procedimento de certificação. Dependendo da abordagem à replicação parcial, a complexidade gerada pode até comprometer os propósitos da replicação parcial. Esta tese concebe, implementa e avalia duas variantes do protocolo da database state machine com suporte para replicação parcial, analisando os benefícios e adequação da replicação parcial ao teste padronizado de desempenho de bases de dados, o TPC-C.Fundação para a Ciência e a Tecnologia (FCT) - ESCADA (POSI/CHS/33792/2000)

    Semantic reliability on the database state machine

    Get PDF
    Database replication protocols based on group communication primitives have recently been the subject of a considerable body of research [1, 11, 13, 6, 8, 4]. The reason for this stems from the adequacy of the order and atomicity properties of group communication primitives to implement synchronous replication (i.e., strong consistent) strategies. Unlike database replication schemes based on traditional transactional

    Parallel Deferred Update Replication

    Full text link
    Deferred update replication (DUR) is an established approach to implementing highly efficient and available storage. While the throughput of read-only transactions scales linearly with the number of deployed replicas in DUR, the throughput of update transactions experiences limited improvements as replicas are added. This paper presents Parallel Deferred Update Replication (P-DUR), a variation of classical DUR that scales both read-only and update transactions with the number of cores available in a replica. In addition to introducing the new approach, we describe its full implementation and compare its performance to classical DUR and to Berkeley DB, a well-known standalone database

    Fault-Tolerant Partial Replication in Large-Scale Database Systems

    Get PDF
    We investigate a decentralised approach to committing transactions in a replicated database, under partial replication. Previous protocols either re-execute transactions entirely and/or compute a total order of transactions. In contrast, ours applies update values, and orders only conflicting transactions. It results that transactions execute faster, and distributed databases commit in small committees. Both effects contribute to preserve scalability as the number of databases and transactions increase. Our algorithm ensures serializability, and is live and safe in spite of faults

    Optimistic Algorithms for Partial Database Replication

    Get PDF
    In this paper, we study the problem of partial database replication. Numerous previous works have investigated database replication, however, most of them focus on full replication. We are here interested in genuine partial replication protocols, which require replicas to permanently store only information about data items they replicate. We define two properties to characterize partial replication. The first one, Quasi-Genuine Partial Replication, captures the above idea; the second one, Non-Trivial Certification, rules out solutions that would abort transactions unnecessarily in an attempt to ensure the first property. We also present two algorithms that extend the Database State Machine to partial replication and guarantee the two aforementioned properties. Our algorithms compare favorably to existing solutions both in terms of number of messages and communication steps

    Partial replication with strong consistency

    Get PDF
    In response to the increasing expectations of their clients, cloud services exploit geo-replication to provide fault-tolerance, availability and low latency when executing requests. However, cloud platforms tend to adopt weak consistency semantics, in which replicas may diverge in state independently. These systems offer good response times but at the disadvantage of allowing potential data inconsistencies that may affect user experience. Some systems propose to adopt solutions with strong consistency, which are not as efficient but simplify the development of correct applications by guaranteeing that all replicas in the system maintain the same database state. Therefore, it is interesting to explore a system that can offer strong consistency while minimizing its main disadvantage: the impact in performance that results from coordinating every replica in the system. A possible solution to reduce the cost of replica coordination is to support partial replication. Partially replicating a database allows for each server to only be responsible for a subset of the data - a partition - which means that when updating the database only some of replicas have to be synchronized, improving response times. In this dissertation, we propose an algorithm that implements a distributed replicated database that offers strong consistency with support for partial replication. To achieve strong consistency in a partially replicated scenario, our algorithm is in part based on the Clock-SI[10] research, which presents an algorithm that implements a multi-versioned database for strong consistency (snapshot-isolation) and performs the Two-Phase Commit protocol when coordinating replicas during updates. The algorithm is supported by an architecture that simplifies distributing partitions among datacenters and efficiently propagating operations across nodes in the same partition, thanks to the ChainPaxos[27] algorithm.Como forma de responder às expectativas cada vez maiores dos seus clientes, as operadoras cloud tiram partido da geo-replicação para oferecer tolerância a falhas, disponibilidade e baixa latência dos seus sistemas na resposta aos pedidos. No entanto, as plataformas cloud tendem a adotar uma semântica de consistência fraca, na qual as réplicas podem variar em estado de forma independente. Estes sistemas oferecem bons tempos de resposta mas com a desvantagem de que têm de lidar com potenciais inconsistências nos dados que podem ter impacto na experiência dos utilizadores. Alguns sistemas propõem adotar soluções com consistência forte, as quais não são tão eficientes mas simplificam o desenvolvimento de aplicações ao garantir que todas as réplicas do sistema mantêm o mesmo estado da base de dados. É então interessante explorar um sistema que garanta replicação forte mas que minimize a sua principal desvantagem: o impacto de performance no momento de coordenar o estado das réplicas nos sistema. Uma possível solução para reduzir o custo de coordenação das réplicas durante transações é o suporte à replicação parcial. Replicar parcialmente uma base de dados permite que cada servidor seja apenas responsável por uma parte dos dados - uma partição - o que significa que quando são realizadas escritas apenas algumas das réplicas têm de ser sincronizadas, melhorando os tempos de resposta. Neste trabalho propomos um algoritmo que implementa um sistema de armazenamento distríbuido replicado que oferece consistência forte com suporte a replicação parcial. A fim de garantir consistência forte num cenário de replicação parcial, o nosso algoritmo é em parte baseado no algoritmo Clock-SI[10], que implementa uma base de dados parcial com multi-versões para garantir consistência forte (snapshot-isolation) e que realiza o protocolo Two-Phase Commit para coordenar as réplicas no momento de aplicar escritas. O algoritmo é suportado por uma arquitectura que torna simples distribuir partições por vários centros de dados e propagar de forma eficiente operações entre todos os nós numa mesma partição, através do algoritmo ChainPaxos[27]

    RAIDb: Redundant Array of Inexpensive Databases

    Get PDF
    Clusters of workstations become more and more popular to power data server applications such as large scale Web sites or e-Commerce applications. There has been much research on scaling the front tiers (web servers and application servers) using clusters, but databases usually remain on large dedicated SMP machines. In this paper, we address database performance scalability and high availability using clusters of commodity hardware. Our approach consists of studying different replication and partitioning strategies to achieve various degree of performance and fault tolerance. We propose the concept of Redundant Array of Inexpensive Databases (RAIDb). RAIDb is to databases what RAID is to disks. RAIDb aims at providing better performance and fault tolerance than a single database, at low cost, by combining multiple database instances into an array of databases. Like RAID, we define different RAIDb levels that provide various cost/performance/fault tolerance tradeoffs. RAIDb-0 features full partitioning, RAIDb-1 offers full replication and RAIDb-2 introduces an intermediate solution called partial replication, in which the user can define the degree of replication of each database table. We present a Java implementation of RAIDb called Clustered JDBC or C-JDBC. C-JDBC achieves both database performance scalability and high availability at the middleware level without changing existing applications. We show, using the TPC-W benchmark, that RAIDb-2 can offer better performance scalability (up to 25%) than traditional approaches by allowing fine-grain control on replication. Distributing and restricting the replication of frequently written tables to a small set of backends reduces I/O usage and improves CPU utilization of each cluster node

    From cluster databases to cloud storage: Providing transactional support on the cloud

    Get PDF
    Durant les últimes tres dècades, les limitacions tecnològiques (com per exemple la capacitat dels dispositius d'emmagatzematge o l'ample de banda de les xarxes de comunicació) i les creixents demandes dels usuaris (estructures d'informació, volums de dades) han conduït l'evolució de les bases de dades distribuïdes. Des dels primers repositoris de dades per arxius plans que es van desenvolupar en la dècada dels vuitanta, s'han produït importants avenços en els algoritmes de control de concurrència, protocols de replicació i en la gestió de transaccions. No obstant això, els reptes moderns d'emmagatzematge de dades que plantegen el Big Data i el cloud computing—orientats a millorar la limitacions pel que fa a escalabilitat i elasticitat de les bases de dades estàtiques—estan empenyent als professionals a relaxar algunes propietats importants dels sistemes transaccionals clàssics, cosa que exclou a diverses aplicacions les quals no poden encaixar en aquesta estratègia degut a la seva alta dependència transaccional. El propòsit d'aquesta tesi és abordar dos reptes importants encara latents en el camp de les bases de dades distribuïdes: (1) les limitacions pel que fa a escalabilitat dels sistemes transaccionals i (2) el suport transaccional en repositoris d'emmagatzematge en el núvol. Analitzar les tècniques tradicionals de control de concurrència i de replicació, utilitzades per les bases de dades clàssiques per suportar transaccions, és fonamental per identificar les raons que fan que aquests sistemes degradin el seu rendiment quan el nombre de nodes i / o quantitat de dades creix. A més, aquest anàlisi està orientat a justificar el disseny dels repositoris en el núvol que deliberadament han deixat de banda el suport transaccional. Efectivament, apropar el paradigma de l'emmagatzematge en el núvol a les aplicacions que tenen una forta dependència en les transaccions és fonamental per a la seva adaptació als requeriments actuals pel que fa a volums de dades i models de negoci. Aquesta tesi comença amb la proposta d'un simulador de protocols per a bases de dades distribuïdes estàtiques, el qual serveix com a base per a la revisió i comparativa de rendiment dels protocols de control de concurrència i les tècniques de replicació existents. Pel que fa a la escalabilitat de les bases de dades i les transaccions, s'estudien els efectes que té executar diferents perfils de transacció sota diferents condicions. Aquesta anàlisi contínua amb una revisió dels repositoris d'emmagatzematge de dades en el núvol existents—que prometen encaixar en entorns dinàmics que requereixen alta escalabilitat i disponibilitat—, el qual permet avaluar els paràmetres i característiques que aquests sistemes han sacrificat per tal de complir les necessitats actuals pel que fa a emmagatzematge de dades a gran escala. Per explorar les possibilitats que ofereix el paradigma del cloud computing en un escenari real, es presenta el desenvolupament d'una arquitectura d'emmagatzematge de dades inspirada en el cloud computing la qual s’utilitza per emmagatzemar la informació generada en les Smart Grids. Concretament, es combinen les tècniques de replicació en bases de dades transaccionals i la propagació epidèmica amb els principis de disseny usats per construir els repositoris de dades en el núvol. Les lliçons recollides en l'estudi dels protocols de replicació i control de concurrència en el simulador de base de dades, juntament amb les experiències derivades del desenvolupament del repositori de dades per a les Smart Grids, desemboquen en el que hem batejat com Epidemia: una infraestructura d'emmagatzematge per Big Data concebuda per proporcionar suport transaccional en el núvol. A més d'heretar els beneficis dels repositoris en el núvol en quant a escalabilitat, Epidemia inclou una capa de gestió de transaccions que reenvia les transaccions dels clients a un conjunt jeràrquic de particions de dades, cosa que permet al sistema oferir diferents nivells de consistència i adaptar elàsticament la seva configuració a noves demandes de càrrega de treball. Finalment, els resultats experimentals posen de manifest la viabilitat de la nostra contribució i encoratgen als professionals a continuar treballant en aquesta àrea.Durante las últimas tres décadas, las limitaciones tecnológicas (por ejemplo la capacidad de los dispositivos de almacenamiento o el ancho de banda de las redes de comunicación) y las crecientes demandas de los usuarios (estructuras de información, volúmenes de datos) han conducido la evolución de las bases de datos distribuidas. Desde los primeros repositorios de datos para archivos planos que se desarrollaron en la década de los ochenta, se han producido importantes avances en los algoritmos de control de concurrencia, protocolos de replicación y en la gestión de transacciones. Sin embargo, los retos modernos de almacenamiento de datos que plantean el Big Data y el cloud computing—orientados a mejorar la limitaciones en cuanto a escalabilidad y elasticidad de las bases de datos estáticas—están empujando a los profesionales a relajar algunas propiedades importantes de los sistemas transaccionales clásicos, lo que excluye a varias aplicaciones las cuales no pueden encajar en esta estrategia debido a su alta dependencia transaccional. El propósito de esta tesis es abordar dos retos importantes todavía latentes en el campo de las bases de datos distribuidas: (1) las limitaciones en cuanto a escalabilidad de los sistemas transaccionales y (2) el soporte transaccional en repositorios de almacenamiento en la nube. Analizar las técnicas tradicionales de control de concurrencia y de replicación, utilizadas por las bases de datos clásicas para soportar transacciones, es fundamental para identificar las razones que hacen que estos sistemas degraden su rendimiento cuando el número de nodos y/o cantidad de datos crece. Además, este análisis está orientado a justificar el diseño de los repositorios en la nube que deliberadamente han dejado de lado el soporte transaccional. Efectivamente, acercar el paradigma del almacenamiento en la nube a las aplicaciones que tienen una fuerte dependencia en las transacciones es crucial para su adaptación a los requerimientos actuales en cuanto a volúmenes de datos y modelos de negocio. Esta tesis empieza con la propuesta de un simulador de protocolos para bases de datos distribuidas estáticas, el cual sirve como base para la revisión y comparativa de rendimiento de los protocolos de control de concurrencia y las técnicas de replicación existentes. En cuanto a la escalabilidad de las bases de datos y las transacciones, se estudian los efectos que tiene ejecutar distintos perfiles de transacción bajo diferentes condiciones. Este análisis continua con una revisión de los repositorios de almacenamiento en la nube existentes—que prometen encajar en entornos dinámicos que requieren alta escalabilidad y disponibilidad—, el cual permite evaluar los parámetros y características que estos sistemas han sacrificado con el fin de cumplir las necesidades actuales en cuanto a almacenamiento de datos a gran escala. Para explorar las posibilidades que ofrece el paradigma del cloud computing en un escenario real, se presenta el desarrollo de una arquitectura de almacenamiento de datos inspirada en el cloud computing para almacenar la información generada en las Smart Grids. Concretamente, se combinan las técnicas de replicación en bases de datos transaccionales y la propagación epidémica con los principios de diseño usados para construir los repositorios de datos en la nube. Las lecciones recogidas en el estudio de los protocolos de replicación y control de concurrencia en el simulador de base de datos, junto con las experiencias derivadas del desarrollo del repositorio de datos para las Smart Grids, desembocan en lo que hemos acuñado como Epidemia: una infraestructura de almacenamiento para Big Data concebida para proporcionar soporte transaccional en la nube. Además de heredar los beneficios de los repositorios en la nube altamente en cuanto a escalabilidad, Epidemia incluye una capa de gestión de transacciones que reenvía las transacciones de los clientes a un conjunto jerárquico de particiones de datos, lo que permite al sistema ofrecer distintos niveles de consistencia y adaptar elásticamente su configuración a nuevas demandas cargas de trabajo. Por último, los resultados experimentales ponen de manifiesto la viabilidad de nuestra contribución y alientan a los profesionales a continuar trabajando en esta área.Over the past three decades, technology constraints (e.g., capacity of storage devices, communication networks bandwidth) and an ever-increasing set of user demands (e.g., information structures, data volumes) have driven the evolution of distributed databases. Since flat-file data repositories developed in the early eighties, there have been important advances in concurrency control algorithms, replication protocols, and transactions management. However, modern concerns in data storage posed by Big Data and cloud computing—related to overcome the scalability and elasticity limitations of classic databases—are pushing practitioners to relax some important properties featured by transactions, which excludes several applications that are unable to fit in this strategy due to their intrinsic transactional nature. The purpose of this thesis is to address two important challenges still latent in distributed databases: (1) the scalability limitations of transactional databases and (2) providing transactional support on cloud-based storage repositories. Analyzing the traditional concurrency control and replication techniques, used by classic databases to support transactions, is critical to identify the reasons that make these systems degrade their throughput when the number of nodes and/or amount of data rockets. Besides, this analysis is devoted to justify the design rationale behind cloud repositories in which transactions have been generally neglected. Furthermore, enabling applications which are strongly dependent on transactions to take advantage of the cloud storage paradigm is crucial for their adaptation to current data demands and business models. This dissertation starts by proposing a custom protocol simulator for static distributed databases, which serves as a basis for revising and comparing the performance of existing concurrency control protocols and replication techniques. As this thesis is especially concerned with transactions, the effects on the database scalability of different transaction profiles under different conditions are studied. This analysis is followed by a review of existing cloud storage repositories—that claim to be highly dynamic, scalable, and available—, which leads to an evaluation of the parameters and features that these systems have sacrificed in order to meet current large-scale data storage demands. To further explore the possibilities of the cloud computing paradigm in a real-world scenario, a cloud-inspired approach to store data from Smart Grids is presented. More specifically, the proposed architecture combines classic database replication techniques and epidemic updates propagation with the design principles of cloud-based storage. The key insights collected when prototyping the replication and concurrency control protocols at the database simulator, together with the experiences derived from building a large-scale storage repository for Smart Grids, are wrapped up into what we have coined as Epidemia: a storage infrastructure conceived to provide transactional support on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories, Epidemia includes a transaction management layer that forwards client transactions to a hierarchical set of data partitions, which allows the system to offer different consistency levels and elastically adapt its configuration to incoming workloads. Finally, experimental results highlight the feasibility of our contribution and encourage practitioners to further research in this area
    corecore