
HAL Id: inria-00232662
https://hal.inria.fr/inria-00232662v4

Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-Tolerant Partial Replication in Large-Scale
Database Systems

Pierre Sutra, Marc Shapiro

To cite this version:
Pierre Sutra, Marc Shapiro. Fault-Tolerant Partial Replication in Large-Scale Database Systems.
[Research Report] RR-6440, INRIA. 2008, pp.25. �inria-00232662v4�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50182352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00232662v4
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
64

40
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Fault-Tolerant Partial Replication in Large-Scale
Database Systems

Pierre Sutra Marc Shapiro

Université Paris VI and INRIA Rocquencourt, France

N° 6440

Janvier 2008

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Fault-Tolerant Partial Replication in Large-Scale

Database Systems

Pierre Sutra∗ Marc Shapiro

Université Paris VI and INRIA Rocquencourt, France

Thème COM — Systèmes communicants
Projet Regal

Rapport de recherche n° 6440 — Janvier 2008 — 22 pages

Abstract: We investigate a decentralised approach to committing transactions in a repli-
cated database, under partial replication. Previous protocols either reexecute transactions
entirely and/or compute a total order of transactions. In contrast, ours applies update val-
ues, and generate a partial order between mutually conflicting transactions only. It results
that transactions execute faster, and distributed databases commit in small committees.
Both effects contribute to preserve scalability as the number of databases and transactions
increase. Our algorithm ensures serializability, and is live and safe in spite of faults.

Key-words: data replication, large-scale, database systems

∗ LIP6, 104, ave. du Président Kennedy, 75016 Paris, France; mailto:pierre.sutra@lip6.fr

mailto:pierre.sutra@lip6.fr

Un algoorithme tolérant aux fautes pour la réplication

de bases de données dans les systèmes large-échelle

Résumé :

Mots-clés : réplication, large-échelle, base de données,

Fault-Tolerant Partial Replication in Large-Scale Database Systems 3

1 Introduction

Non-trivial consistency problems e.g. file systems, collaborative environments, and databases.
are the major challenge of large-scale systems. Recently some architectures have emerged
to scale file systems up to thousands of nodes [12, 15, 3], but no practical solution exists for
database systems.

At the cluster level protocols based on group communication primitives [4, 11, 16] are
the most promising solutions to replicate database systems [22] . In this article we extend
the group communication approach to large-scale systems.

Highlights of our protocol:

� Replicas do not re-execute transactions, but apply update values only.

� We do not compute a total order over of operations. Instead transactions are partially
ordered. Two transactions are ordered only over the data where they conflict.

� For every transaction T we maintain the graph of T ’s dependencies. T commits locally
when T is transitively closed in this graph.

The outline of the paper is the following. Section 2 introduces our model and assump-
tions. Section 3 presents our algorithm. We conclude in Section 4 after a survey of related
work. An appendix follows containing a proof of correctness.

2 System model and assumptions

We consider a finite set of asynchronous processes or sites Π, forming a distributed system.
Sites may fail by crashing, and links between sites are asynchronous but reliable. Each site
holds a database that we model as some finite set of data items. We left unspecified the
granularity of a data item. In the relational model, it can be a column, a table, or even a
whole relational database. Given a data item x, the replicas of x, noted replicas(x), are the
subset of Π whose databases contain x.

We base our algorithm on the three following primitives:1

� Uniform Reliable Multicast takes as input a unique message m and a single group of
sites g ⊆ Π . Uniform reliable multicast consists of the two primitives R-multicast(m)
and R-deliver(m). With Uniform Reliable Multicast, all sites in g have the following
guarantees:

– Uniform Integrity: For every message m, every site in g performs R-deliver(m)
at most once, and only if some site performed R-multicast(m) previously.

– Validity: if a correct site in g performs R-multicast(m) then it eventually performs
R-deliver(m).

1Our taxonomy comes from [5].

RR n° 6440

4 Sutra & Shapiro

lock held

lock

requested

R W IW

R 1 0 0

W 0 0 0

IW 0 0 1

Table 1: Lock conflict table

– Uniform Agreement: if a site in g performs R-deliver(m), then every correct sites
in g eventually performs R-deliver(m).

Uniform Reliable Multicast is solvable in an asynchronous systems with reliable links
and crash-prone sites.

� Uniform Total Order Multicast takes as input a unique message m and a single group of
sites g. Uniform Total Order Multicast consists of the two primitives TO-multicast(m)
and TO-deliver(m). This communication primitive ensures Uniform Integrity, Validity,
Uniform Agreement and Uniform Total Order in g:

– Uniform Total Order: if a site in g performs TO-deliver(m) and TO-deliver(m′)
in this order, then every site in g that performs TO-deliver(m′) has performed
previously TO-deliver(m).

� Eventual Weak Leader Service Given a group of sites g, a site i ∈ g may call function
WLeader (g). WLeader (g) returns a weak leader of g :

– WLeader (g) ∈ g.

– Let ρ be a run of Π such that a non-empty subset c of g is correct in ρ. It exists
a site i ∈ c and a time t such that for any calls of WLeader (g) on i after t,
WLeader (g) returns i.

This service is strictly weaker than the classical eventual leader service Ω [18], since
we do not require that every correct site eventually outputs the same leader. An
algorithm that returns to every process itself, trivially implements the Eventual Weak
Leader Service.

In the following we make two assumptions: during any run, (A1) for any data item x,
at least one replica of x is correct, and (A2) Uniform Total Order Multicast is solvable in
replicas(x).

2.1 Operations and locks

Clients of the system (not modeled), access data items using read and write operations.
Each operation is uniquely identified, and accesses a single data item. A read operation is

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 5

a singleton: the data item read, a write operation is a couple: the data item written, and
the update value.

When an operation accesses a data item on a site, it takes a lock. We consider the
three following types of locks: read lock (R), write lock (W), and intention to write lock
(IW).Table 1 illustrates how locks conflict with each other; when an operation requests a
lock to access a data item, if the lock is already taken and cannot be shared, the request is
enqueued in a FIFO queue. In Table 1, 0 means that the request is enqueued, and 1 that
the lock is granted.

Given an operation o, we note:

� item(o), the data item operation o accesses,

� isRead(o) (resp. isWrite(o)) a boolean indicating whether o is a read (resp. a write),

� and replicas(o)
△
= replicas(item(o));

We say that two operations o and o′ conflict if they access the same data item and one of
them is a write:

conflict(o, o′)
△
=

{

item(o) = item(o′)
isWrite(o) ∨ isWrite(o′)

2.2 Transactions

Clients group their operations into transactions. A transaction is a uniquely identified set
of read and write operations. Given a transaction T ,

� for any operation o ∈ T , function trans(o) returns T ,

� ro(T) (respectively wo(T)) is the subset of read (resp. write) operations,

� item(T) is the set of data items transaction T accesses: item(T)
△
=

⋃

o∈T item(o).

� and replicas(T)
△
= replicas(item(T)).

Once a site i grants a lock to a transaction T , T holds it until i commits T , i aborts T ,
or we explicitly say that this lock is released.

3 The algorithm

As replicas execute transactions, it creates precedence constraints between conflicting trans-
actions. Serializability theory tell us that this relation must be acyclic [2].

One solution to this problem, is given a transaction T , (i) to execute T on every replicas of
T , (ii) to compute the transitive closure of the precedence constraints linking T to concurrent
conflicting transactions, and (iii) if a cycle appears, to abort at least one the transactions
involved in this cycle.

RR n° 6440

6 Sutra & Shapiro

Unfortunately as the number of replicas grows, sites may crash, and the network may
experience congestion. Consequently to compute (ii) the replicas of T need to agree upon
the set of concurrent transactions accessing item(T).

Our solution is to use a TO-multicast protocol per data item.

3.1 Overview

To ease our presentation we consider in the following that a transaction executes initially on
a single site. Section 3.9 generalizes our approach to the case where a transaction initially
executes on more than one site. We structure our algorithm in five phases:

� In the initial execution phase, a transaction T executes at some site i.

� In the submission phase, i transmits T to replicas(T).

� In the certification phase, a site j aborts T if T has read an outdated value. If T

is not aborted, j computes all the precedence constraints linking T to transactions
previously received at site j.

� In the closure phase, j completes its knowledge about precedence constraints linking
T to others transactions.

� Once T is closed at site j, the commitment phase takes place. j decides locally whether
to commit or abort T . This decision is deterministic, and identical on every site
replicating a data item written by T .

3.2 Initial execution phase

A site i executes a transaction T coming from a client according to the two-phases locking
rule [2], but without applying write operations2. When site T reaches a commit statement,
it is not committed, instead i releases T ’s read locks, converts T ’s write locks into intention
to write locks, computes T ’s update values, and then proceeds to the submission phase.

3.3 Submission phase

In this phase i R-multicasts T to replicas(T). When a site j receives T , j marks all T ’s
operations as pending using variable pending . Then if it exists an operation o ∈ pending ,
such that j = WLeader(replicas(o)), j TO-multicasts o to replicas(o).3

2If T writes a data item x then reads it, we suppose some internals to ensure that T sees a consistent
value.

3If instead of this procedure, i TO-multicasts all the operations, then the system blocks if i crashes. We
use a weak leader and a reliable multicast to preserve liveness.

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 7

3.4 Certification phase

When a site i TO-delivers an operation o for the first time4,i removes o from pending , i

certifies o.
To certify o, i considers any preceding write operations that conflicts with o. We say that

a conflicting operation o′ precedes o at site i, o′→io, if i TO-delivers o′ then i TO-delivers o:

o′→io
△
=

{

TO-deliveri(o
′) ≺ TO-deliveri(o)

conflict(o′, o)

Where given two events e and e′, e ≺ e′ is the relation e happens-before e′, and TO-deliveri(o
′)

is the event: “site i TO-delivers operation o′”.
If o is a read, we check that o did not read an outdated value. It happens when o executes

concurrently to a conflicting write operation o′ that is now committed. Let committedi

be the set of transactions committed at site i, the read operation o aborts, if it exists
an operation o′ such that o′→io ∧ trans(o′) ‖ trans(o) ∧ trans(o′) ∈ committedi, where
trans(o′) ‖ trans(o) means that the transactions trans(o′) and trans(o) were executed con-
currently during the initial execution phase.

If now o is a write, i gives an IW lock to o: function forceWriteLock (o). If an operation
o′ holds a conflicting IW lock, o and o′ share the lock (see Table 1); otherwise it means that
trans(o′) is still executing at site i, and function forceWriteLock (o) aborts it.5

3.5 Precedence graph

Our algorithm decides to commit or abort transactions, according to a precedence graph.
A precedence graph G is a directed graph where each node is a transaction T , and each
directed edge T→T ′, models a precedence constraint between an operation of T , and a write

operation of T ′:

T→T ′ △
= ∃(o, o′) ∈ T × T ′, ∃i ∈ Π, o′→io

A precedence graph contains also for each vertex T a flag indicating whether T is aborted
or not: isAborted(T, G), and the subset of T ’s operations: op(T, G), which contribute to the
relations linking T to others transactions in G.

Given a precedence graph G, we note G.V its vertices set, and G.E its edges set. Let G

and G′ be two precedence graphs, the union between G and G′, G ∪ G′, is such that:

� (G ∪ G′).V = G.V ∪ G′.V ,

� (G ∪ G′).E = G.E ∪ G′.E ,

� ∀T ∈ (G ∪ G′).V , isAborted(T, (G ∪ G′)) = isAborted(T, G) ∨ isAborted(T, G′).

� ∀T ∈ (G ∪ G′).V , op(T, (G ∪ G′)) = op(T, G) ∪ op(T, G′).

4Recall that the leader is eventual, consequently i may receive o more than one time.
5This operation prevents local deadlocks.

RR n° 6440

8 Sutra & Shapiro

Algorithm 1 decide(T, G), code for site i

1: variable G′ := (Ø, Ø) ⊲ a directed graph
2:

3: for all C ⊆ cycles(G) do

4: if ∀T ∈ C,¬isAborted (T, G) then

5: G′ := G′ ∪ C

6: if T ∈ breakCycles(G′) then

7: return false

8: else

9: return true

We say that G is a subset of G′, noted G ⊆ G′, if:

� G.V ⊆ G′.V ∧ G.E ⊆ G′.E ,

� ∀T ∈ G.V , isAborted(T, G) ⇒ isAborted(T, G′),

� ∀T ∈ G.V , op(T, G) ⊆ op(T, G′).

Let G be a precedence graph, in(T, G) (respectively out(T, G)) is the restriction of G.V
to the subset of vertices formed by T and its incoming (resp. outgoing) neighbors. The
predecessors of T in G: pred(T, G), is the precedence graph representing the transitive
closure of the dual of the relation G.E on {T }.

3.6 Deciding

Each site i stores its own precedence graph Gi, and decides locally to commit or abort a
transaction according to it. More precisely i decides according to the graph pred(T, Gi). For
any cycle C in the set of cycles in pred(T, Gi) : cycles(pred(T, Gi)). i must abort at least
one transaction in C. This decision is deterministic, and i tries to minimize the number of
transactions aborted.

Formally speaking i solves the minimum feedback vertex set problem over the union of
all cycles in pred(T, Gi) containing only non-aborted transactions The minimum feedback
vertex set problem is an NP-complete optimization problem, and the literature about this
problem is vast [6]. We consequently postulate the existence of an heuristic: breakCycles().
breakCycles() takes as input a directed graph G, and returns a vertex set S such that G \ S

is acyclic.
Now considering a transaction T ∈ Gi such that G = pred(T, Gi), Algorithm 1 returns

false if i aborts T , or true otherwise.

3.7 Closure phase

In our model sites replicate data partially, and consequently maintain an incomplete view
of the precedence constraints linking transactions in the system. Consequently they need to
complete their view by exchanging parts of their graphs. This is our closure phase:

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 9

� When i TO-delivers an operation o ∈ T , i adds T to its precedence graph, and adds o

to op(T, Gi). Then i sends pred(T, Gi) to replicas(out(T, Gi)) (line 29).

� When i receives a precedence graph G, if G 6⊆ Gi, for every transaction T in Gi, such
that pred(T, G) 6⊆ pred(T, Gi), i sends pred(T, G∪Gi) to replicas(out(T, Gi)). Then i

merges G to Gi (lines 31 to 35).

Once i knows all the precedence constraints linking T to others transactions, we say that
T is closed at site i. Formally T is closed at site i when the following fixed-point equation
is true at site i:

closed(T, Gi) =

{

op(T, G) = T

∀T ′ ∈ in(T, Gi).V , closed(T ′, Gi)

Our closure phase ensures that during every run ρ, for every correct site i, and every
transaction T which is eventually in Gi, T is eventually closed at site i.

3.8 Commitment phase

If T is a read-only transaction: wo(T) = Ø, i commits T as soon as T is executed (line 9).
If T is an update, i waits that T is closed and holds all its IW locks: function holdIWLocks()

(line 35). Once these two conditions hold, i computes decide(T, pred(T, Gi)). If this call
returns true, i commits T : for each write operation o ∈ wo(T), with i ∈ replicas(o), i

considers any write operation o′ such that T→trans(o′) ∈ Gi ∧ conflict(o, o′). If trans(o′) is
already committed at site i, i does nothing; otherwise i applies o to its database.

Algorithm 2 describes our algorithm. This protocol provides serializability for partially
replicated database systems: any run of this protocol is equivalent to a run on a single site
[2]. The proof of correctness appears in Appendix.

3.9 Initial execution on more than one site

When initial execution phase does not take place on a single site we compute the read-from
dependencies. More precisely when a site i receives a read o accessing a data item it does
not replicate, i sends o to some replica j ∈ replicas(o). Upon reception j executes o. At the
end of execution j sends back to i the transitive closure containing read-from dependencies
and starting from T .

Once i has executed locally or remotely all the read operations in T , i checks if the
resulting graph contains cycles in which T is involved. If this is the case, T will be aborted,
and instead of submitting it, i re-executes at least one of T ’s read operations Otherwise i

computes the write set and the update values, and sends T with its read-from dependencies
by Uniform Reliable Multicast. The dependencies are merged to precedence graph when a
site receives an operation by Total Order Multicast. The rest of the algorithm remains the
same.

RR n° 6440

10 Sutra & Shapiro

Algorithm 2 code for site i

1: variables Gi := (Ø, Ø); pending := Ø
2:

3: loop ⊲ Initial execution
4: let T be a new transaction
5: initialExecution(T)
6: if wo(T) 6= Ø then

7: R-multicast(T) to replicas(T)
8: else

9: commit(T)

10:

11: when R-deliver(T) ⊲ Submission
12: for all o ∈ T : i ∈ replicas(o) do

13: pending := pending ∪ {o}

14:

15: when ∃o ∈ pending ∧ i = WLeader (replicas(o))
16: TO-multicast(o) to replicas(o)
17:

18: when TO-deliver(o) for the first time ⊲ Certification
19: pending := pending \ {o}
20: let T = trans(o)
21: Gi.V := Gi.V ∪ {T}
22: op(T, Gi) := op(T, Gi) ∪ {o}
23: if isRead(o) ∧ (∃o′, o′→io ∧ trans(o′) ‖ trans(o) ∧ trans(o′) ∈ committedi) then

24: setAborted (T, Gi)
25: else if isWrite(o) then

26: forceWriteLock (o)
27: for all o′ : o′→io do

28: Gi.E := Gi.E ∪ {(trans(o′), T)}

29: send(pred(T, Gi)) to replicas(out(T, Gi))
30:

31: when receive(T, G) ⊲ Closure
32: for all T ∈ Gi do

33: if pred(T, G) 6⊆ pred(T, Gi) then

34: send(pred(T, Gi ∪ G)) to replicas(out(T, Gi))

35: Gi := Gi ∪ G

36:

37: when ∃T ∈ Gi,

8

<

:

i ∈ replicas(wo(T))
closed(T, Gi)
holdIWLocks(T)

⊲ Commitment

38: if ¬ isAborted(T, Gi) ∧ decide(T, pred(T, Gi)) then

39: commit(T)
40: else

41: abort(T)

42:

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 11

3.10 Performance analysis

We consider Paxos [14] as a solution to Uniform Total Order Multicast. Since precedence
constraints in a cycle are not causally related, Algorithm 2 achieves a message delay of 5: 2
for Uniform Reliable Multicast, and 3 for Uniform Total Order Multicast. It reduces to 4,
if in each replica group the leader of Paxos is also the weak leader of g.

Let o be the number of operations per transaction, and d be the replication degree, the
message complexity of Algorithm 2 is 5od + (od)2: 2od for Uniform Reliable Multicast, o

Uniform Total Order Multicasts, each costing 2d messages, and od replicas execute line 29,
each site sending od messages. Again, if in each replica group, the leader of Paxos is also
the weak leader of g, the message complexity of our protocol reduces to 4od + (od)2

4 Concluding remarks

4.1 Related work

Gray et al. [7] prove that scale traditional eager and lazy replications does not scale: the
deadlock rate increase as the cube of the number of sites, and the reconciliation rate increases
as the square. Wiesmann and Schiper confirm practically this result [22]. Fritzke et al. [10]
propose a replication scheme where sites TO-multicast each operations and execute them
upon reception. However they do not prevent global deadlocks with a priority rule; it
increases abort rate. Preventive replication [16] considers that a bound on processor speed,
and network delay is known. Such assumptions do not hold in a large-scale system. The
epidemic algorithm of Holiday et al [9] aborts concurrent conflicting transactions and their
protocol is not live in spite of one fault. In all of these replication schemes, each replica
execute all the operations accessing the data items it replicates. Alonso proves analytically
that it reduces the scale-up of the system [1].

The DataBase State Machine approach [17] applies update values only but in a fully
replicated environment. Its extensions [19, 21] to partial replication require a total order
over transactions.

Committing transactions using a distributed serialization graph is a well-known technique
[20]. Recently Haller et al. have proposed to apply it [8] to large-scale systems, but their
solution does not handle replication, nor faults.

4.2 Conclusion

We present an algorithm for replicating database systems in a large-scale system. Our solu-
tion is live and safe in presence of non-byzantine faults. Our key idea is to order conflicting
transaction per data item, then to break cycles between transactions. Compared to pre-
vious existing solutions, ours either achieves lower latency and message cost, or does not
unnecessarily abort concurrent conflicting transactions.

The closure of constraints graphs is a classical idea in distributed systems. We may
find it in the very first algorithm about State Machine Replication [13], or in a well-known

RR n° 6440

12 Sutra & Shapiro

algorithm to solve Total Order Multicast [5].6We believe that the closure generalizes to a
wider context, where a constraint is a temporal logic formula over sequences of concurrent
operations.

References

[1] G. Alonso. Partial database replication and group communication primitives in 2nd European Research
Seminar on Advances in Distributed Systems, 1997.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987. .

[3] J-M. Busca, F. Picconi, and P. Sens. Pastis: A highly-scalable multi-user peer-to-peer file system. In
Euro-Par, 2005.

[4] L. Camargos, F. Pedone, and M. Wieloch. Sprint: a middleware for high-performance transaction
processing. SIGOPS Oper. Syst. Rev., 2007.

[5] X. Defago, A. Schiper, and P. Urban. Totally ordered broadcast and multicast algorithms: a compre-
hensive survey, 2000.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In Proceedings
of the 1996 ACM SIGMOD international conference on Management of data, 1996.

[8] K. Haller, H. Schuldt, and C. Türker. Decentralized coordination of transactional processes in peer-to-
peer environments. In CIKM ’05: Proceedings of the 14th ACM international conference on Informa-
tion and knowledge management, 2005.

[9] J. Holliday, D. Agrawal, and A. Abbadi. Partial database replication using epidemic communication,
2002.

[10] U. Fritzke Jr. and P. Ingels. Transactions on partially replicated data based on reliable and atomic
multicasts. In Proceedings of the The 21st International Conference on Distributed Computing Systems,
page 284. IEEE Computer Society, 2001.

[11] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement
database replication. In The VLDB Journal, pages 134–143, 2000.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS. ACM, November 2000.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[14] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, October 2006.

[15] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. In
Proceedings of 5th Symposium on Operating Systems Design and Implementation, 2002.

[16] Esther Pacitti, Cédric Coulon, Patrick Valduriez, and M. Tamer Özsu. Preventive replication in a
database cluster. Distrib. Parallel Databases, 18(3):223–251, 2005.

[17] F Pedone, R Guerraoui, and A Schiper. The database state machine approach. Distrib. Parallel
Databases, 14(1):71–98, July 2003.

6In [13] Lamport closes the ≪ relation for every request to the critical section. In [5] the total order
multicast protocol attributed to Skeen, closes the order over natural numbers to TO-multicast a message.

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 13

[18] Michel Raynal. Eventual leader service in unreliable asynchronous systems: Why? how? In NCA,
pages 11–24. IEEE Computer Society, 2007.

[19] N. Schiper, R. Schmidt, and F. Pedone. Optimistic algorithms for partial database replication. In 10th
International Conference on Principles of Distributed Systems (OPODIS’2006), 2006.

[20] C-S Shih and J. A. Stankovic. Survey of deadlock detection in distributed concurrent programming
environments and its application to real-time systems. Technical report, 1990.

[21] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the database state machine,
2001.

[22] M. Wiesmann and A. Schiper. Comparison of database replication techniques based on total order
broadcast. IEEE Transactions on Knowledge and Data Engineering, 17(4), 2005.

RR n° 6440

14 Sutra & Shapiro

.1 Additionnal notations

We note D the universal set of data item, T the universal set of transactions, and G the
universal set of precedence graphs constructed upon D.

Let ρ be a run of Algorithm 2, given a site i we note eventi when the event event happens
at site i during ρ ; moreover if value is the result of this event we note it: eventi = value.

Let ρ be a run of Algorithm 2, we note:

� faulty(ρ) the set of sites that crashes during ρ,

� correct(ρ) the set Π \ faulty(ρ).

� committed(ρ) the transactions committed during ρ, i.e. {T ∈ T, ∃i ∈ Π, T ∈ committedi},

� and aborted(ρ) the transactions aborted during ρ, i.e. {T ∈ T, ∃i ∈ Π, T ∈ abortedi}.

Given a site i and a time t, we note Gi,t the value of Gi at time t.

.2 Proof of correctness

Since the serializability theory is over a finite set of transactions, we suppose hereafter that
during ρ a finite subset of T is sent to the system.

Let ρ be a run of Algorithm 2, we now proove a series of propositions leading to the fact
that ρ is serializable.

�

�

�

�
P1

∀T ∈ T, (∃j ∈ Π, R-deliverj(T) ∈ ρ)

⇒ (∀o ∈ T, ∀i ∈ replicas(o) ∩ correct(ρ), TO-deliveri(o) ∈ ρ)

Proof

Let T be a transaction and j a site that R-delivers T during ρ.

F1.1 ∀i ∈ replicas(T) ∩ correct(ρ), R-deliveri(T)

By the Uniform Agreement property of Uniform Reliable Multicast.

F1.2 ∀o ∈ T, ∃k ∈ correct(ρ) ∩ replicas(o), TO-multicastk(o) ∈ ρ

F1.2.1 ∃l ∈ correct(ρ) ∩ replicas(o),WLeader l(replicas(o)) = l ∧ R-deliverl(o)

By fact F.1.1, assumption A1 and the properties of the Eventual Weak
Leader Service.

By fact F1.2.1 eventually a correct site executes line 16 in Algorithm 2.

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 15

Fact F1.2 and the Validity and the Agreement properties of Total Order Multicast
conclude our claim.

�

In the following we say that a transaction T is submitted to the system: T ∈ submitted(ρ),
if a site i R-delivers T during ρ.

�

�

�

�
P2

∀T ∈ submitted(ρ), ∀i ∈ replicas(T), ∀o ∈ T,

∃G ∈ G, o ∈ op(T, G) ∧ receivei(G)

Proof

F2.1 ∀i ∈ Π, ∀t, t′, t > t′ ⇒ Gi,t ⊆ Gi,t′

F2.2 ∀G ∈ G, ∀T ∈ T, T ∈ G ⇒ T ∈ pred(T, G)

By definition of pred(T, G).

By proposition P1, facts F2.1 and F2.2, and since links are reliable.

�

�

�

�

�
P3

∀T, T ′ ∈ submitted(ρ),

T→T ′ ⇒ (∃o, o′ ∈ T × T ′, ∃i ∈ correct(ρ), o→io
′)

Proof

By definition of T→T ′, let o, o′ ∈ T × T ′ and let j be a site such that o→jo
′. Since

conflict(o, o′) and an operation applies on a single data item, we note x the unique data
item such that x = item(o) = item(o′).

F3.1 j ∈ replicas(x)

Site j TO-delivers o during ρ and links are reliable.

F3.2 ∃i ∈ replicas(x) ∩ correct(ρ), TO-deliveri(o) ∧ TO-deliveri(o
′)

RR n° 6440

16 Sutra & Shapiro

By assumption A1 ∃i ∈ replicas(x) ∩ correct(ρ), and by the Uniform Agreement
property of Total Order Multicast, since i is correct during ρ, i TO-delivers both
o and o′.

Fact F3.2 and the Total Order property of Total Order Multicast concludes our claim.

�

�

�

�

�
P4

∀T ∈ submitted(ρ), ∀i ∈ Π

(∃t, T ∈ Gi,t) ⇒ (∃T1, . . . , Tm≥0 ∈ submitted(ρ), i ∈ replicas(Tm) ∧ T → T1 → . . . → Tm)

Proof

Since Gi,0 = (Ø, Ø), let us consider the first time t0 at which T ∈ Gi,t.
According to Algorithm 2 either:

� i TO-delivers an operation o ∈ T at t0, and thus i ∈ replicas(T). QED

� or i receives a precedence graph G′ from a site j such that T ∈ G′. Now since links
are reliable, note t1 the time at which j send G′ to i. According to lines 29 and 34, it
exists a transactions T ′ such that T ∈ pred(T ′, Gj,t1), and a transaction T ′′ such that
T ′′ ∈ out(T ′, Gj,t1) and i ∈ replicas(T ′′).

From T ∈ pred(T ′,), by definition of the predecessors, we obtain T → . . . → T ′,
and from T ′′ ∈ out(T ′, Gj,t1) we obtain T ′→T ′′. Thus T → . . . → T ′ → T ′′, with
i ∈ replicas(T ′′).

�

�

�

�

�
P5

∀T ∈ submitted(ρ), ∀i ∈ correct(ρ),

(∃t, T ∈ Gi,t) ⇒ (∃t, op(T, Gi,t) = T)

Proof

Let T0 be a transaction submitted during ρ and let i be a site that eventually hold T0 in
Gi.

By proposition P4 it exists T1, . . . , Tm≥0 ∈ submitted(ρ) such that i ∈ replicasTm and
T → T1 → . . . → Tm.

Let k ∈ J0, mK, we note P(k) the following property:

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 17

P(k)
△
= ∀j ∈ correct(ρ) ∩ replicas(Tk), ∃t ∈ op(T0, Gj,t0) = T0

Observe that by proposition P2 P(0) is true. We now proove that P(k) is true for all
the k by induction:

Let o, o′ ∈ Tk × Tk+1, and j ∈ correct(ρ) such that o→jo
′.

Let t0 be the first time at which j TO-delivers o during ρ.
Let t2 be the first time at which op(Tk, Gj,t) = Tk (since Gj,0 = (Ø, Ø), and P(k) is

true).
Let t1 be the first time at which j To-delivers o′ during ρ.
Observe that since o→jo

′, tO < t1. It follow that we have three cases to consider:

� cases t2 < t0 < t1 and t0 < t2 < t1

In these cases when j To-delivers o′, we have:

Tk→Tk+1 ∈ Gj,t1 ∧ op(Tk, Gj,t1 = Tk)

Thus,

Tk ∈ pred(Tk+1, Gj,t1) ∧ op(Tk, pred(Tk, Gj,t1)) = Tk

and according to Algorithm 2, j sends pred(Tk+1, Gj,t1) to replicas(out(Tk+1,))Gj,t1 .

Now since replicas(Tk+1) ⊆ replicas(out(Tk+1,))Gj,t1 , given a site j ∈ replicas(Tk+1),
eventually j receives pred(Tk+1, Gj,t1), and merges it into its own precedence graph.

� case t0 < t1 < t2

We consider two-subcases:

– At t2 j delivers an operation of Tk, and this operation is different from o′. Now
since Tk→Tk+1 ∈ Gj,t2 , P(k + 1) is true.

– If now j receives a graph G such that op(Tk, G) = Tk, by definition of t2, G ⊆
Gj,t2 , and more precisely, pred(Tk, G) 6⊆ pred(Tk, Gj,t2).

It follows that j sends pred(Tk, G∪Gj,t2) to replicas(out(Tk, G∪∪Gj,t2)). Finally
since by definition of t1, Tk→Tk+1 ∈ Gj,t2 , we obtain Tk+1 ∈ out(Tk, G ∪ Gj,t2),
from which we conclude that P(k + 1) is true.

To conclude observe that since i ∈ replicas(Tm) and P(m) is true, eventually op(T0, Gi,t0) =
T0.

�

RR n° 6440

18 Sutra & Shapiro

�

�

�

�
P6

∀T ∈ submitted(ρ), ∀i ∈ correct(ρ),

(∃t, T ∈ Gi,t) ⇒ (∃t, ∀T ′ ∈ submitted(ρ), T ′→T ⇒ (T ′, T) ∈ Gi,t)

Proof

F6.1 ∀T, T ′ ∈ submittedρ, ∀o, o′ ∈ T × T ′, (∃i ∈ Π, o′→⇒o∀j ∈ replicas(o), o→jo
′

By the Uniform Agreement and Total Order properties of Total Order MBroad-
cast

F6.2 ∀T ∈ submitted(ρ), ∀o ∈ T, ∀i ∈ correct(ρ), (∃t, oop(T, Gi,t)) ⇒ (∀T ′submitted(ρ), T ′→T ⇒
∃t, (T, T ′) ∈ Gi,t)

Since o ∈ op(T, Gi,t) and Gi,0 = (Ø, Ø), either:

1. i ∈ replicas(T) ∧ TO-delivero(i)
First observe that since links are reliable i ∈ replicas(o).
Let T ′ be a a transaction, o′ ∈ T ′ an operation, and k a site such that o′→ko.
By fact F6.1 since i, j ∈ replicas(o), o′→io.

2. ∃G ∈ G, receiveT (G) ∧ o ∈ op(T, G)
According to Algorithm 2 it exists k0, . . . , km sites sucht that:

� k0 TO-delivers o during ρ, and execute line 29 sending pred(T, Gk0
) with

o ∈ op(T, predecessorsTGk0
) and k1 ∈ replicas(out(T, Gk0

)).

� k1 receives pred(T, Gk0
) during ρ and then execute line 29 or line 34,

sending a precedence graph G such that pred(T, Gk0
) ⊆ G to a set of

replicas containinig k2.

� etc ... until i receives it.

Consequently pred(T, Gk0
) ⊆ Gi,t, and according to our reasonning in item

1, we conclude that fact F6.2 is true.

Fact F6.2 and proposition P5 conclude.

�

We are now able to proove our central theorem: every transaction is eventually closed
at a correct site.

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 19

�

�

�

�
T1

∀T ∈ submitted(ρ), ∀i ∈ correct(ρ),

(∃t, T ∈ Gi,t) ⇒ (∃t, closed(T, Gi,t))

Proof

We consider that a finite subset of T are sent to the system, consequently submitted(ρ)
is also finite. Let CT be the graph resulting from the transitive closure of the relation
→ on {T }. According to proposition P6, CT is eventually in Gi,t, and thus according to
proposition P5, T is eventually closed at site i.

�

�

�

�

�
P7

∀T ∈ submitted(ρ), ∀i, j ∈ Π, ∀t, t′,

(T ∈ Gi,t ∧T ∈ Gj,t′ ∧ closed(T, Gi,t)∧ closed(T, Gj,t′)) ⇒ (pred(T, Gi,t) = pred(T, Gj,t′))

Proof

F7.1 pred(T, Gi).V = pred(T, Gj).V

Let T ′ ∈ pred(T, Gi). By definition it exists T1, . . . , Tm such that T ′ → T1 →
. . . → Tm → T ⊆ Gi. By an obious induction on m using proposition P6 we
conclude that T ′ is also in pred(T, Gj).

F7.2 pred(T, Gi).E = pred(T, Gj).E

Identical to the reasonning proposed for fact F7.1.

F7.2 ∀T ′ ∈ pred(T, Gi), op(T ′, pred(T, Gi)) = op(T ′, pred(T, Gj))

By fact F7.1 and since T is closed at both sites i and j.

F7.4 {T ′|isAborted(T, Gi)} = {T ′|isAborted(T, pgraphSitej)}

Let T ′ ∈ pred(T, Gi) such that isAborted(T ′, pred(T, Gi)). According to Algo-
rithm 2, it exists a site k and a read operation r ∈ T ′ such that k TO-delivers r

during ρ, and then k set the aborted flag of T ′ in its precedence graph.

Now let k′ be a replica of r, by the Uniform Agreement and the Total Order
Property of Total Order Multicast, when k′ TO-delivers r, it also set the aborted
flag of T ′ in its precedence graph.

RR n° 6440

20 Sutra & Shapiro

By the conjunction of facts F7.1 to F7.4.

�

We proove now that ρ is serializable [2].
Let O(x, ρ) be the set of write operation over the data item x during ρ, we define the

relation ≪ as follows:

∀x ∈ D, ∀o1, o2 ∈ O(x, ρ), x1 ≪ x2

△
= ∃i ∈ replicas(x), o→io

′

�

�

�

�
P8 ≪ is a version order for ρ.

Proof

Let O(x, ρ) be the set of write operation over the data item x during ρ ; and let i ∈
replicas(x) ∩ correct(ρ) (assumption A1).

According to Algorithm 2 o is executed only if trans(o) is committed during ρ conse-
quently i commits during ρ any transaction T such that ∃o ∈ wo(T), O(x, ρ). Consequently
≪ is total over O(x, ρ), and by the Total Order and Uniform Agreement properties of Total
Order Multicast, ≪ is an order over O(x, ρ).

�

�

�

�

�
P9

∀T, T ′ ∈ MVSG(ρ,≪),

((T, T ′) ∈ MVSG(ρ,≪) ∧ wo(T) 6= Ø ∧ wo(T ′) 6= Ø) ⇒ T→T ′

Proof

F9.1 If (T, T ′) is a read-from edge, then T→T ′

Let (T, T ′) be a read-from relation. By definition it exists a site i, a write w[x] ∈ T ,
and a read r[x] ∈ T ′ such that during ρ at site i w write x then r reads the value
written by w.

Let t and t′ be respectively the times at which these two events occured; according to
Algorithm 2 :

F9.1.1 TO-deliveri(o) <ρ t <ρ t′

INRIA

Fault-Tolerant Partial Replication in Large-Scale Database Systems 21

Then since T ′ ∈ MVSG(ρ,→), T ′ ∈ submitted(r), and by assumption A1, it exists
j ∈ replicas(x) ∩ correct(r) such that TO-deliverj(o

′).

Now, TO-deliveri(o) ⇒ TO-deliverj(o) by the Uniform Agreement, and the Total
Order properties of Total Order Multicast. Consequently using fact F9.1.1,

¬(TO-deliveri(o
′) <ρ TO-deliveri(o)) ⇒ TO-deliverj(o) <ρ TO-deliverj(o

′)

concluding our claim.

F9.2 If (T, T) is a version-order edge, then T→T

Let T1, T2, T3 be three transactions committed during ρ, and suppose that it exists a
version-order edge (T1, T2) ∈ MVSG(ρ,→).

According to the definition of a version order it follows either:

1. it exists w1 ∈ wo(T1), w2 ∈ wo(T2), and r3 ∈ ro(T3) such that r3[x3], w1[x1] and
x1 ≪ x2.

By definition of x1 ≪ x2 ⇒ T1→T2.

2. it exists r1 ∈ ro(T1), w2 ∈ wo(T2) and w3 ∈ wo(T3) such that r1[x3], w2[x2] and
x3 ≪ x2.

Let i ∈ replicas(x)∩correct(ρ) (by assumption A1). Since T1, T2, T3 ∈ committed(r) ⊆
submitted(r), i TO-delivers r1, w1 and w3 during ρ. Now according to the Total
Order property of Total Order Multicast, since x3 ≪ x2, w3→iw2.

Let j be a site on which r1[x3] happens. Since w3→iw2, according to our definition
of commit() (Section 3.8), w2 ≺ r1.

Now since T1 ∈ committed(ρ), necessarily r1→iw2 (otherwise T1 is aborted: line
24).

By facts F9.1 and F9.2

�

�

�

�

�
P10 ρ is serializable.

Proof

Consider the sub-graph Gu of MVSG(r,≪) containing all the transactions T such that
wo(T) 6= Ø, and the edge linking them.

F10.1 Gu is acyclic.

RR n° 6440

22 Sutra & Shapiro

Let T1, . . . , Tm ∈ Gu such that T1, . . . , Tm≥1 forms a cycle in Gu, and recall that
by definition T1, . . . , Tm ∈ committed(r)

According to proposition P9, T1 → . . . → Tm → T1.

Let i be a replica of T1, and we note t the time at which i commits T during ρ.

Acoording to Algorithm 2 at time t, closed(T1, Gi,t).

Now according to Algorithm 1, and since i commits T1 at time t,

∃k ∈ J2, mK, Tk ∈ breakCycles(pred(T1, Gi,t))

Let j ∈ replicas(Tk) such that j commit Tk during ρ, and let t” be the time at
which this event happens.

Since T1 ∈ pred(Tk, Gj,t′) and Tk ∈ pred(T1, Gi,t), pred(T1, Gi,t) = pred(Tk, Gj,t′ , .)

Consequently since breakCycles() is deterministic, j cannot commit Tk during ρ.
Absurd.

F10.2 MVSG(ρ,→) is acyclic.

By fact F10.1 and since read only transactions are executed using two-phases
locking.

Fact F10.2 induces that ρ is serializable.

�

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	 Introduction
	 System model and assumptions
	 Operations and locks
	 Transactions

	 The algorithm
	 Overview
	 Initial execution phase
	 Submission phase
	 Certification phase
	 Precedence graph
	 Deciding
	 Closure phase
	 Commitment phase
	 Initial execution on more than one site
	 Performance analysis

	 Concluding remarks
	 Related work
	 Conclusion
	 Additionnal notations
	 Proof of correctness

