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Abstract

In response to the increasing expectations of their clients, cloud services exploit

geo-replication to provide fault-tolerance, availability and low latency when executing

requests. However, cloud platforms tend to adopt weak consistency semantics, in which

replicas may diverge in state independently. These systems offer good response times

but at the disadvantage of allowing potential data inconsistencies that may affect user

experience.

Some systems propose to adopt solutions with strong consistency, which are not as

efficient but simplify the development of correct applications by guaranteeing that all

replicas in the system maintain the same database state. Therefore, it is interesting to ex-

plore a system that can offer strong consistency while minimizing its main disadvantage:

the impact in performance that results from coordinating every replica in the system. A

possible solution to reduce the cost of replica coordination is to support partial replica-

tion. Partially replicating a database allows for each server to only be responsible for a

subset of the data - a partition - which means that when updating the database only some

of replicas have to be synchronized, improving response times.

In this dissertation, we propose an algorithm that implements a distributed replicated

database that offers strong consistency with support for partial replication. To achieve

strong consistency in a partially replicated scenario, our algorithm is in part based on the

Clock-SI[10] research, which presents an algorithm that implements a multi-versioned

database for strong consistency (snapshot-isolation) and performs the Two-Phase Commit

protocol when coordinating replicas during updates. The algorithm is supported by

an architecture that simplifies distributing partitions among datacenters and efficiently

propagating operations across nodes in the same partition, thanks to the ChainPaxos[27]

algorithm.

Keywords: distributed systems, consistency, partial replication
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Resumo

Como forma de responder às expectativas cada vez maiores dos seus clientes, as

operadoras cloud tiram partido da geo-replicação para oferecer tolerância a falhas, dis-

ponibilidade e baixa latência dos seus sistemas na resposta aos pedidos. No entanto, as

plataformas cloud tendem a adotar uma semântica de consistência fraca, na qual as répli-

cas podem variar em estado de forma independente. Estes sistemas oferecem bons tempos

de resposta mas com a desvantagem de que têm de lidar com potenciais inconsistências

nos dados que podem ter impacto na experiência dos utilizadores.

Alguns sistemas propõem adotar soluções com consistência forte, as quais não são

tão eficientes mas simplificam o desenvolvimento de aplicações ao garantir que todas

as réplicas do sistema mantêm o mesmo estado da base de dados. É então interessante

explorar um sistema que garanta replicação forte mas que minimize a sua principal

desvantagem: o impacto de performance no momento de coordenar o estado das réplicas

nos sistema. Uma possível solução para reduzir o custo de coordenação das réplicas

durante transações é o suporte à replicação parcial. Replicar parcialmente uma base de

dados permite que cada servidor seja apenas responsável por uma parte dos dados - uma

partição - o que significa que quando são realizadas escritas apenas algumas das réplicas

têm de ser sincronizadas, melhorando os tempos de resposta.

Neste trabalho propomos um algoritmo que implementa um sistema de armazena-

mento distríbuido replicado que oferece consistência forte com suporte a replicação par-

cial. A fim de garantir consistência forte num cenário de replicação parcial, o nosso

algoritmo é em parte baseado no algoritmo Clock-SI[10], que implementa uma base de

dados parcial com multi-versões para garantir consistência forte (snapshot-isolation) e

que realiza o protocolo Two-Phase Commit para coordenar as réplicas no momento de

aplicar escritas. O algoritmo é suportado por uma arquitectura que torna simples distri-

buir partições por vários centros de dados e propagar de forma eficiente operações entre

todos os nós numa mesma partição, através do algoritmo ChainPaxos[27].

Keywords: sistemas distribuidos, consistência, replicação parcial
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1

Introduction

1.1 Context

Modern online applications are evolving to large scale architectures that target an

increasingly larger number of users across the globe. These applications are expected to

have low response times and always be online. Distributing data across different nodes

improves performance because different replicas may process user requests concurrently.

It also provides fault-tolerance because, when a replica fails, another replica may just

take over the work leading to a system that is always available. For these reasons, most

services nowadays choose to geo-replicate their system. Geo-replication allows the system

to be spread across multiple replicas across the globe, possibly closer to users of each

geographic location decreasing client latency times.

Replicating the system provides availability and fault-tolerance, however, it comes

with the cost of consistency. As the number of replicas increases, coordinating the replicas

to keep integrity of the data becomes increasingly difficult. In fact, the CAP theorem

[5] has demonstrated that, in a distributed system prone to network partitions, it is

impossible to provide both availability and strong consistency. Because of this, many

commercial systems nowadays decide to sacrifice consistency in favor of availability and

better client response times. However, application correctness might become vulnerable

since replicas may diverge when there are multiple concurrent updates. This divergence

may lead to violations of critical system invariants, and makes it harder for programmers

to reason about the system’s state and develop correct implementations for an application.

Still, despite its performance issues, there are systems that provide strong data con-

sistency even in a globally-replicated setting. This is usually the case for applications

where maintaining data integrity is critical. A common example are banking systems, as

they must assure that no transaction ever violates system invariants, like not allowing

an account to spend more money than its current balance. Even applications that do not

require always consistent data may implement strong consistency for system correctness

and easier application development.
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CHAPTER 1. INTRODUCTION

Nowadays, the modern demands and expectations from clients have led cloud providers

to highly increase their number of datacenters. As time passes, the challenge of providing

fault-tolerance while keeping replicas reasonably synchronized as the number of datacen-

ters increases has only become more difficult.

1.2 Motivation

As the number of datacenters increases, there is a need for solutions that provide

strong consistency while still showing good performance and availability in a global

scale. One way to achieve this is through partial replication. In a partially replicated

database, each replica in the system only stores a subset of the data. When some data

object is updated, only the replicas responsible for that object have to be coordinated,

which significantly decreases latency between replicas. Partial replication also pairs well

with geo-replication, because it allows data to be stored only in places where it is likely

to be accessed. A common example are social networks, where the data accessed by users

is largely dependent on their regions.

Despite the performance potential of partial replication, most distributed systems

use full replication because it offers higher availability and is easier to implement and

coordinate compared to partial replication. However, full replication requires all replicas

to participate in every transaction which hurts latency. To compensate, programmers feel

forced to use weaker consistency models that commit transactions more quickly, at the

cost of system correctness.

As such, there is interest in a model that can guarantee strong consistency in a globally

replicated setting, possibly optimized by partially replicating data. The main challenge

comes from trying to coordinate concurrent transactions in a setting where no replica is

aware of the entire database, which may lead to inconsistencies. Some systems guarantee

consistency between data in the same partition but not in separate partitions, and usually

rely on the application to define the boundaries of each partition [2]. Spanner [7] offers

good scalability in a globally-distributed setting and partitions the data in shards stored

in different servers, still, each datacenter stores a full replica of the data. It also requires

many cross-datacenter communication steps to coordinate datacenters [22], by requiring

one of the datacenters to work as a Two-Phase Commit coordinator. Spanner also has the

disadvantage of relying on external machines to assign global timestamps to transactions,

which is bad for availability. Blotter [23] presents an approach similar to Spanner’s that

shows good throughput in a global scale, but also requires full replication and provides a

consistency model weaker than Snapshot Isolation.

2



1.3. PROPOSED SOLUTION

1.3 Proposed Solution

We propose a strongly consistent partial replication protocol that tries to tackle the rel-

evant limitations of the solutions described above while still being responsive. Like previ-

ous work done in this regard (ex. Spanner), our algorithm is supported by an architecture

that allows partitions to be distributed across different datacenters that communicate

with each other through some Paxos-based protocol. Unlike previous solutions, however,

partitions may be arbitrarily assigned to a datacenter, and no datacenter is required to

store the entirety of the data.

Our main improvement to previous solutions is reducing the amount of inter-datacenter

communication required to replicate updates across partitions. Previous work selects one

of the datacenters to work as a transaction coordinator that has to communicate with the

other datacenters to decide whether a transaction should commit or not. Instead, our

solution puts the burden of transaction coordination on the client, using a specialized

API on the client side. This helps reduce the workload on the side of the datacenter,

improving throughput and possibly reducing response times.

Another improvement we introduce is the use of the ChainPaxos[27] protocol to repli-

cate operations across nodes in the same partition. In comparison to other famous Paxos-

based protocols, ChainPaxos shows better throughput by minimizing the amount of mes-

sages that have to be sent over the network by having a designated leader that does not

need to communicate with every other server in the cluster - we present an explanation

in section 2.2.

Finally, our algorithm adapts the work of the Clock-SI[10] paper, which presents an

implementation of a partitioned multi-versioned database offering snapshot-isolation

consistency. It also explains how to implement a database that derives snapshot and

commit timestamps from loosely synchronized clocks, rather external machines like in

Spanner.

1.4 Document Organization

This document is organized as follows:

• Chapter 2 covers basic distributed system concepts related to the work here pre-

sented and discusses proposed solutions in the literature.

• Chapter 3 describes our algorithm and the architecture supporting it.

• Chapter 4 presents the results of our experimental evaluation, comparing the per-

formance of our algorithm across different test configurations.

• In Chapter 5 we discuss and summarize what was accomplished and the conclusions

derived from our solution.
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2

Related Work

This section introduces related work, starting by an introduction to replication models,

followed by replication algorithms used for enforcing strong and weak consistency in dis-

tributed systems. The section proceeds by addressing database replication and algorithms

used for database replication.

2.1 Replication

A distributed system manages data that is often replicated for allowing the system to

tolerate faults and provide high availability. In this section we address different aspects

related with replication.

2.1.1 Consistency Models

A consistency model defines a set of safety properties that decide the order and co-

herency of updates that can be seen by a client when contacting a server. It specifies a

contract between the client and the system, where the system guarantees that the data

read will be consistent as long as the client follows the rules of the model. Each model

comes with its own trade-offs and programmers must decide which is the most suited

solution when designing a distributed system.

Multiple consistency models have been proposed in literature. We now present the

most relevant ones.

2.1.1.1 Strong Consistency

A strong consistent model guarantees that all clients accessing the system read every

update operation in the same order, ensuring they always observe a consistent state of

the system. The system acts as if there was only a single copy of the data, making it easy

to reason about its evolution and develop solutions based on it. Strong consistency is the

adequate choice when having an always consistent and up-to-date state is essential to

the overall system correctness. However, coordinating every replica can be slow and not

4



2.1. REPLICATION

acceptable for services that focus on low response times.

Some of the models that fit strong consistency are:

Linearizability: Linearizability [15] is a guarantee about single operations on single

objects. It provides atomicity and a total order guarantee over writes that happen

in the system, based on the real-time these write requests where issued.

In distributed systems, atomicity states that, for every write sent to the system, there

is a point in time (serialization point) between the client sending the write request

and receiving the reply from the system, where we can consider the write operation

to be completed. After this point, any read operation should see this write, and any

new updates to the system should be ordered after this write.

Serializability: Serializability [1, pp.812] is a guarantee about one or more opera-

tions over one or more objects (usually called transactions, more on that on Section

2.3.1). It guarantees that the execution of a set of transactions over multiple data

objects follows some total order that may or may not be based on the real-time order

these operations were seen by the system. To achieve this, the system may reorder

transactions, to possibly avoid inconsistencies or deadlocks.

2.1.1.2 Weak Consistency

In weak consistency model, replicas apply updates and execute reads without coordi-

nating with other replicas, which allows clients to see inconsistent states of the database.

Operations may not be seen by every replica, and clients might read out-of-date values or

in different orders. These models trade consistency for availability and lower latency of

communication between replicas, and are usually the choice when the system is depen-

dent on fast response times. Some of the models that fit weak consistency are:

Eventual Consistency: The eventual consistency model [31] tries to achieve high

availability by giving no guarantees about the state of the system, clients are allowed

to see any writes made in a replica and in any order. This model only provides

a liveness guarantee that states that, if no writes are received for a long enough

period of time, eventually replicas will converge to the same state. The way this

convergence is done is usually a design choice, as an example, the replicas may

converge to the last write ever seen in a replica (last-writer-wins approach), or they

may follow some merge-procedure that merges the state of every replica.

Causal Consistency: Causal consistency [18] is one of the strongest of the weak

consistency models and guarantees that implicit dependencies between operations

are respected across every replica. To achieve this, the system has to keep track of

causal dependencies between operations, and ensure that clients always see updates

in an order that respects their causal dependencies.

5
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Because the system only guarantees consistency between causally dependent op-

erations, concurrent operations that have no relation with each other may be seen

out-of-order, allowing users to see the system in different and inconsistent states,

weakening consistency.

Some consistency models, such as Red-Blue consistency [20], have combined weak

and strong consistency in the same systems, by allowing applications to specify which

operations should run under each consistency model.

2.1.1.3 CAP Theorem

The CAP theorem [5] states that it is impossible for a distributed system to simultaneously

provide:

• Strong Consistency: Every client always reads the most recent write (consistent

data).

• Availability: The system is always available to process client requests even in the

presence of failures.

• Partition-Tolerance: The system stays functional even in the presence of network-

partitions.

The theorem also states that, while providing all three properties is impossible, a sys-

tem can guarantee any two of the three properties. However, this assertion has proven to

be misleading [4]. Network partitions are unavoidable in large scale systems, and because

in a partitioned distributed system it is impossible to guarantee both consistency and

availability, distributed applications must choose a combination of partition-tolerance

and one of the other two properties.

2.1.2 Replica Location

The distance between replicas of a distributed system is one of the main factors that

influence latency times of communication between replicas.

Co-located: Co-located replicas are placed on the same physical location. Having

replicas close to each other allows faster communication between them and reduces

latency times. These systems are usefull when clients are geographically close,

because latency to clients would increase when trying to serve users globally.

Geo-replication: Geo-replicated replicas are distributed at various geographic lo-

cations that might span long distances between replicas. The longer distance may

lead to an increase in latency when coordinating replicas, but it allows replicas to

6



2.1. REPLICATION

be placed closer to clients across the globe, decreasing latency between a user and a

replica. Since most distributed applications nowadays are globally distributed and

focused on user experience, this trade-off is usually acceptable.

2.1.3 Data Redundancy

Systems must decide how many copies of the data do they need. They may choose to

copy all data in every node, or to have fewer copies of each data object located in a few

select nodes.

Full Replication: Fully replicated systems replicate the entire data set across all

replicas. Fully replicated systems guarantee that no data is lost as long as one replica

that executed every update survives. These systems provide reliable fault-tolerance,

at the cost of sending large, possibly redundant, amounts of data to every replica in

the system.

Partial Replication: In partially replicated systems, each replica is only responsible

for a subset of the data, which means that the amount of copies of a data object is

actually less than the amount of replicas. This model provides less reliable fault-

tolerance, but having to distribute data across less replicas is proven to lead to

better performance and scalability [17]. Partial replication is usually combined

with Geo-replication to provide replication of specific parts of data only in places

where clients are likely to acess it. For example, it would make sense to store partial

data related to european users of a social media in a server in Europe, as they are

much more likely to access it instead of, for instance, an american user.

2.1.4 Active and Passive Replication

Defines if every node in the system should execute an operation, or if only one node

executes the operation and the other replicas just store the result.

Active Replication: In an active replicated system, all replicas execute the re-

quested operations. The replica that received the operation broadcasts it to every

replica in the system, or the client may send the request to all replicas directly.

Because every replica has to execute the operation locally, only deterministic opera-

tions are allowed so the replicas do not diverge in state. State Machine Replication

is a special case of active replication that must also respect the total order of opera-

tions across all replicas when operations are not commutative.

Passive Replication: In a passive replicated system, only the replica that received

the operation processes it, and then delivers the result to other replicas. Because

only of the replicas executes the operation, passive replication may be used for

non-deterministic operations, but unlike active replication, only having one replica

execute operations may lead to load imbalance.

7
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2.1.5 Synchronous and Asynchronous Replication

Also one of the main factors that influences response times. Decides if the coordina-

tion between nodes in the system is done while executing an update, or is the update

propagated asynchronously to other replicas after the system already replied to the client.

Synchronous Replication: In a synchronous system, operations are only considered

complete after replicated in all (or a majority of) replicas. When a server receives

an operation from a client, it immediately sends it to other replicas and only when

sure a majority of replicas in the system have processed the operation, the server

replies to the user. This form of replication is usually associated with strong consis-

tency models, since it ensures at all times the state between replicas is consistent.

However, executing each update synchronously is costly and operations may take a

long time executing, hurting scalability.

Asynchronous Replication: In an asynchronous system, when a server executes an

operation, it immediately replies to the client that requested it. The operation is

then eventually propagated to every other replica asynchronously. Because a server

does not have to wait for a response from a majority of replicas before replying to

a user, asynchronous systems have much lower response times. However, because

there is no coordination between writes in different replicas, these protocols often

allow replicas to diverge in state. This form of replication is mostly associated with

weak consistency models, since it focus on lower response times and availability at

the cost of weakening consistency. It often scales better than stronger models and

is usually the choice for large-scale applications that focus on user experience.

2.1.6 Single Master and Multi-Master

Defines if every replica in the system is available to answer client updates, or should

clients only request updates from a single node working as a leader.

Single-Master: In single-master systems (also called Primary-Backup), one of the

servers in the system is designated as a leader that receives every operation coming

from the clients. This server has complete control over the system and the other

replicas work as backups that replicate the data. To distribute some of the workload,

read-only operations may be sent to the backups, at the risk of reading stale values.

When the leader fails, some leader election procedure must take place to choose

a new leader from the remaining backups. These systems are usually used for

implementing strong consistency models, since it’s easier to maintain consistency

over replicas when only one server receives operations. However, this protocol lacks

scalability because adding more replicas does not increase performance (it actually

reduces it, because the leader will have to wait for more replicas), and because a

failure of the leader means the whole application will be down while a new leader

is being elected, it provides weak availability.
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Multi-Master: In multi-master systems, any server in the system may process client

requests, it’s up to the user to choose which replica to connect to (usually the closest

one geographically). After finishing the operation, the server will broadcast the

operation to other replicas asynchronously. Having more servers able to answer

requests leads to better availability, and allowing clients to communicate with the

servers closer to them leads to better response times, helping scalability. However,

it becomes very difficult to synchronize replicas and so divergence is common and

these systems usually implement weak consistency models. Still, there are systems

that implement strong consistency models in a multi-master system, with the help

of coordination protocols like Paxos (Section 2.2).

2.2 Replication Protocols

For maintaining the state of the replicas, a number of replication protocols have been

proposed in literature. In this section, we overview some replication protocols/systems.

For an example of a weakly consistent replication protocol, Dynamo[8] is an even-

tually consistent NoSQL database. Each object is identified by a key, and the system

only exposes two operations: get() and put(). For providing fault-tolerance, each object is

replicated in N replicas, through consistent hashing, these replicas are placed in a ring

and each replica is responsible for a subset of the key-space. Each object is also stored

with context data, which allows the system to find and re-conciliate divergent versions

of the same object in different replicas. Divergence comes from allowing any node to

receive updates from clients which means that different nodes may end up seeing data in

different and concurrent states. When contacting the system, the context object acts as a

vector clock that allows the system to detect and merge concurrent operations.

The following are all replication protocols that offer stronger consistency levels.

Chain Replication[30] is a primary-backup approach that offers good throughput

and availability without compromising strong consistency guarantees. In this protocol,

servers are linearly ordered as chain. All object updates are received by the head of the

chain, and then propagated and processed along the chain up to the tail. Query opera-

tions are all processed by the tail. Write operations perform better because the head does

not have to replicate the operation to a majority quorum, it just has to send the result to

the next backup in the chain, and so on. Strong consistency is guaranteed because query

requests and update requests are all processed serially in a single server, the tail.

One of the challenges of Chain Replication, however, is that it does not have a fair dis-

tribution of workload, since the head receives all the updates and the tail all the queries.

Moreover, the analysis Fouto et. al [20] as shown that, in the presence of network parti-

tions in an asynchronous model, Chain Replication may violate linearisability.

Consensus Algorithms solve a relaxed variant [12] of the consensus problem, and are

used for implementing strongly consistent systems where any replica may try to execute

update operations. Consensus Algorithms ensure replicas will always decide to execute

9
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the same operations during the same instances and in the same order, allowing for the

implementation of State Machine Replication (Section 2.1.4).

Undeniably, Paxos[19] is the most widely known consensus algorithm. In Paxos, a

set of of proposer servers try to propose operations to a set of acceptor servers, which will

decide among all the proposed values which one should be applied to every server. When

a decision is made, the acceptors send the decided value to a set of learner servers, to be

replicated (the same servers may act as proposers, acceptors and learners simultaneously).

It is of note though, that the classic Paxos algorithm is only able to learn a single value per

instance, thus a complete Paxos instance has to completed for each value to be decided in

the state machine.

Since its conception, multiple variations of Paxos have appeared that try to optimize

the original Paxos protocol. One of the most famous variations is Multi-Paxos [9], which

distinguishes one of the proposers as leader and only allows the leader to propose values.

This allows Multi-Paxos to decide values in one less synchronization phase (as long as the

leader stays the same) compared to the original Paxos protocol.

Raft[25] is a consensus algorithm that, besides offering strong consistency with good

performance, promises to be an easier to understand protocol compared to Paxos. Paxos

as been regarded as a somewhat difficult to understand algorithm with vague explana-

tions, which may lead to wrong implementations in real systems. Raft promises a better

explained, easier to understand algorithm, making it a better platform for building real

systems. The Raft algorithm relies on a replicated log that keeps information about previ-

ously executed operations. It also depends on a leader that has responsibility of managing

the log and the state of the other replicas.

EPaxos[24] aims to provide high availability and performance by not having a desig-

nated leader process. Clients can choose which replica to submit a command and, if there

is no interference with another concurrent command, it will be committed. This allows

the system to evenly distribute the load across all replicas, eliminating the bottleneck of

only having one server receive all requests like in Multi-Paxos. In EPaxos, commands that

do not interfere with any other will be committed after a single round of communication

(fasthpath), if there is an interference, then an extra step of communication is done where

the command proposer has to send an accept message to a majority of replicas (similar to

the accept phase in Paxos).

Atlas[11] is another leaderless consensus algorithm, similar to EPaxos. It allows pa-

rameterization of the number f of allowed failures. A smaller f results in smaller quo-

rums, thereby decreasing latency (at the cost of fault-tolerance). Also, depending on f ,

it allows concurrent transaction to follow the fastpath even when they conflict. In fact, if

f = 0, every transaction will follow the fastpath.

ChainPaxos[27] offers high throughput replication by ordering replicas in a chain. A

distinguished leader acts as head of the chain and receives client operations, which it then

sends to the next node in the chain and so on. When the operation has passed trough a

majority of nodes, a response is sent to the client. This chain topology allows ChainPaxos

10
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to integrate membership managing without the use of external coordination devices, and

allows for linearizable reads in any replica without communication overhead.

Solutions like EPaxos and Atlas allow operations to execute in a single round, however,

these protocols still require the nodes executing a write operation to send and receive

O(n) messages, unlike ChainPaxos that has O(1) message complexity. These protocols

try to distribute the load imposed on the leader to multiple replicas. In contrast, Chain-

Paxos strives to minimize the load imposed by the protocol while still balancing the work

between replicas.

The main goals of ChainPaxos are: to minimize the number of messages each node

processes in a fault-free run to maximize throughput; and to integrate an efficient fault-

tolerance system, without relying on an external system, by taking advantage of the Paxos

messages. Figure 2.1 illustrates the ChainPaxos message flow in a fault-free run.

Figure 2.1: ChainPaxos message flow [13]

When it receives an operation, the leader sends an accept message, with its own ack
included, to the next replica. Upon receiving the accept message, the receiving replica

adds its own ack and forwards the accept message to the next replica, this cycle repeats

until the end of the chain. When the tail receives the accept message, it directly sends

to the head a message with the acks of all replicas. This step is necessary to make sure

the head learns the decided value. Additionally, to inform the replicas in the chain that

did not see enough acks at the time to decide a value, the next accept message sent by the

head piggybacks this information.

Meanwhile, when the accept reaches the replica in the middle of the chain, it will include

acks from a majority quorum. Thus, the replica in the middle knows a value has been

decided, and will execute the request and return the result to the client.

Because ChainPaxos is just using a different communication pattern to convey the

messages of Multi-Paxos, it can fall back to the regular two phases of Paxos to handle

faults and manage membership. For detecting faults, each replica expects to receive

periodic keep-alive messages from the following node. Also, if a replica does not receive

accept messages for a long period of time, it will suspect the leader is faulty and attempts

11
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to take leadership. Reconfiguration of membership after a fault involves deciding the

instance the new membership is active, by executing the ChainPaxos protocol in the

functioning replicas and piggybacking additional information in the accept messages.

In our project, ChainPaxos will be the main mechanism to replicate operations among

nodes in the same partition.

2.3 Database Replication

Database systems are central in modern applications and systems, by managing the

data of the application. Unlike simple data stores, database system support transac-

tions, which require specific algorithms for executing them. In this section we introduce

database replication.

2.3.1 Transactions

Even in strongly consistent systems, some operations cannot be guaranteed to perform

correctly by just replicating simple, single operations in single objects. For example,

imagine a distributed banking system and a client that tries to transfer money from

acount A to account B. This situation can be represented as the following sequence of

(isolated) operations:

• Removing 100$ from account A
• Adding 100$ to account B

Now what happens if the first operation concludes but second one fails? Account B

will still have the same amount of money it had before the transfer, while account A lost

100$ that just disappeared from the system. Even in this situation, strong consistency

may not have been violated, because if an operation fails (in this case, the second one),

it just means that it was not applied in any replica. The real problem is that the system

allowed the first operation to complete and have a visible effect.

As such, there is need for an abstraction that allows to group two or more operations

in a single meta-operation, and guarantees that either all operations are successfully

completed or none of them are. This abstraction is called transaction, and it is the

main logical mechanism that allows manipulating data in a replicated database system.

Coming from the database community, transactions provide the ACID properties [1, pp.

799-804]:

• Atomicity: All operations in a transaction complete successfully or none of them

do.
• Consistency: The state of the database respects all invariants of the data model

before and after the execution of a transaction.
• Isolation: Transactions execute without being aware of other concurrent transac-

tions.

12
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• Durability: The effects of a transaction that terminates successfully are not lost,

even if failures occur.

2.3.2 Isolation levels

Each transaction executes under an isolation (from ACID) level, which determines how

it may be affected by other concurrent transactions. Transactions under a strong isolation

level cannot see changes from other transactions, while relaxed isolation levels allow a

transaction to have its execution affected by the updates of concurrent transactions, which

may lead to wrong results.

Serilizability is the strongest of isolation levels, and guarantees that execution of

concurrent transactions is equivalent to an ordered execution of these same transactions,

one at a time. If no ordering between transactions is possible, then one of them should

be aborted. However, ensuring a completely isolated environment for every transaction

requires a lot of effort by the concurrency control protocol, and so serializability should

only be used in databases where data integrity is crucial, even at the cost of performance.

To overcome this, more relaxed isolation levels have been proposed like Snapshot

Isolation, Cursor Stability, Repeatable Read and Read Commited [3]. Applications

should choose the most appropriate isolation level, leveraging throughput in exchange of

isolation between transactions.

Most commercial databases implement isolation trough the use of locking mecha-

nisms [3]. The Two-Phase Protocol (2PC) [16] is a common example of a locking mecha-

nism used to coordinate transactions in a replicated database system.

2.3.2.1 Snapshot-Isolation

The problems with protocols providing serializability come from the fact that all types

of read/write and write/write transaction conflicts have to be considered. In particular,

since read/write conflicts tend to be very common in database systems, they limit the

potential concurrency and scalability of the system.

Snapshot-isolation is a consistency model in which transactions see a snapshot of the

database as it was when the transactions started. In SI readers and writers do not conflict,

which has the advantage of allowing queries to be performed without interfering with

updates, in fact, replication based on snapshot -isolation is only concerned with update

operations. Also, compared to serializability, SI offers a similar level of consistency.

The main disadvantage of SI is that, because transactions perform all operations on

a snapshot of the database, if the snapshot is too old, transactions may end up reading

stale values that have already been overwritten in the database. Still, this is expected to

be a rare occurrence and acceptable because of the potential performance gain.

Snapshot-isolation is the consistency model offered by our algorithm, as we think the

pros outweigh its cons.
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2.3.3 Database Replication Models

Similar to distributed systems, there are two ways updates may be propagated to

replicas[14]:

• Eager Replication: Whenever a transaction updates an object, every replica that

owns an instance of that object has to be updated for the transaction to commit

successfully. Eager systems provide serializable execution and are usually imple-

mented trough locking mechanisms. There are no inconsistencies and no need for

reconciliation, as locking detects potential anomalies and converts them to waits or

deadlocks. However, because transactions have to wait for updates to be done in ev-

ery replica, eager replication reduces update performance and increases transaction

response times.

• Lazy Replication: Only one replica is updated by the originating transaction. Up-

dates to the other replicas are propagated asynchronously, as a separate transaction

to each node. This model allows the original transaction to commit faster, because

it does not have to wait for commits in other replicas. Of course, if the replica that

received the operation crashes before sending it to all other replicas, lazy systems

may diverge and have inconsistencies, requiring reconciliation. Reconciliation is

usually done trough the use of timestamps or multi-version of objects (like Snapshot

Isolation).

Also similar to distributed systems, there are two ways to regulate who receives up-

dates[14]:

• Master Replication: Each object has a master node. Only the master can update

the object, all other replicas are read-only. If a non-master replica wants to update

the object, it must request the master for the update.

• Group Replication: Any server with a copy of an object may update. Also called

Update Everywhere.

2.3.4 Strongly Consistent Database Replication

The analysis of [14] concluded that eager solutions generally do not scale and that both

eager and lazy replication have high conflict rates. This lead researchers to find solutions

that could eliminate the problems of eager and lazy replication while offering one of the

stronger isolation levels with good performance. A common approach is to provide an

hybrid replication that is both eager and lazy. In this hybrid approach, the system replies

to the client after commiting in one replica (as if it was lazy), but there is a coordination

step between every replica before the commit (as if it was eager). These solutions usually

involve recording the set of write operations done at a replica during a transaction so it

can be sent to other replicas for coordination and replication, also called deferred update.
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These solutions are supported by an atomic broadcast primitive that ensures that all

messages are delivered at the same order in all nodes, which guarantees they produce the

same outcome for all transactions. Locally, transactions are synchronized trough the use

of some concurrency control mechanism, like two-phase locking.

2.3.4.1 1-Copy-Serializability

[16, 17] present similar solutions providing 1-Copy-Serializabitizy (1CS), which is a

guarantee that any client accessing the system will see the database as if there is only a

single copy providing serializability. In [17], for a transaction Ti invoked at node N , all

read operations from Ti are performed at N . The write operations are deferred until all

read operations are executed and there is a description WSi of the set of write operations

of transaction Ti . This set is is bundled into a single message and broadcast to all nodes,

including N . The atomic broadcast primitive will set a total order between these messages,

deciding the order of conflicting transactions. After delivery of WSi (totally ordered by

the communication primitive) in a node, the transaction manager checks for read/write

conflicts between local transactions and WSi , with the use of locking mechanisms. If

the write set intersects with the read set of a local transaction, the reading transaction

is aborted. It is necessary to give write operations priority over read operations to avoid

possible deadlocks over objects, because read operations are only known locally while

write operations are known globally. The execution of a transaction Ti in this protocol

requires a node N to broadcast two messages: one for the write set and another with the

decision to abort or commit a transaction, because only N knows about a possible abort

of Ti when in conflict with the write set of another transaction.

This process of delaying writes until the time of commit is also the basis of our algo-

rithm when committing transactions.

Figure 2.2: Replication protocol guaranteeing serializability [17]
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Figure 2.3: Example execution of the 1-Copy-Serializability protocol [16]

2.3.4.2 1-Copy-Snapshot-Isolation

Protocols offering serializability provide strong consistency guarantees but show poor

scalability (as stated in Section 2.3.2). Solutions like [21] offer 1-Copy-Snapshot-Isolation

(1CSI) to achieve better performance while still providing good consistency. With Snap-

shot Isolation, a transaction T reads a snapshot of the database which contains all updates

that were commited at the time T started. Only conflicts between write operations are de-

tected, and if two transactions try to update the same object, one of them will be aborted.

The main advantage of SI compared to serializability is that reads never conflict with

writes since they are read from a snapshot.

[21] models a system based on a middleware working on top of the database level.

This middleware detects SI conflicts among transactions in different replicas. When a

transaction is first executed in one replica, the write set is extracted and sent to the middle-

ware, which then performs a validation to check write/write conflicts with transactions

that executed at other replicas and that have already validated. If validation succeeds,

the transaction commits at the local replica and the write set is sent to the other replicas

in a lazy way. Otherwise, the transaction is aborted. To check if there was any transaction

concurrent with a transaction T , the middleware needs to check if there was another

transaction successfully validated after T started, but before T validated. If there is such

a transaction, and there is common write between both, T is aborted.

The analysis by Serrano et. al [28] proves there is great scalability potential for 1-Copy-

Snapshot-Isolation solutions by partially replicating the data. But it also brings to light

some challenges of the 1CSI approach when used for partial replication. One may think

that with partial replication validation of transactions should be only done by replicas

that have copies of the modified data, however, that may lead to inconsistencies. For
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example, assuming there are three sites {S1,S2,S3} and the database consists of objects

{a,b,c}. Site S1 stores S1 = {b,c},S2 = {a,b}, and S3 = {a,c}. There are two concurrent

transactions t1 and t2, t1 updates {b} and t2 updates {a,b}. Assuming the atomic broadcast

totally orders t1 before t2, if S1 only receives write sets related to b and c, S1 would

commit t1 and abort t2. The same would happen in S2. S3 however, having no knowledge

of transaction t1, would commit t2, which would lead to inconsistencies between nodes.

Therefore, all sites must receive and validate update operations.

There is also the issue that if a single transaction tries to update objects that are stored

in different sites, some sort of coordination mechanism has to be applied. [28] presents

a protocol that implements 1CSI with partial replication and tackles these issues. The

protocol involves a coordinator (the site that originally receives the request from the

client) that associates a timestamp with the transaction and redirects the transaction

to other sites if they have data that is modified by the transaction. If the operation is

redirected to another site, that site will execute the operation and send the results back to

the coordinator. When a transaction executes in different sites, they must read from the

same snapshot at all times. Sites that receive a redirected transaction must also guarantee

that they apply all changes already done by that transaction before it was redirected.

Our solution provides a snapshot-isolation solution similar to the ones here presented,

with some improvements to circumvent the problems of applying it to partially replicated

data.

2.3.4.3 State Machine Approach

[26] improves on the deferred update technique used on previous solutions by improv-

ing on its main drawback: the lack of synchronization during a transaction which may

lead to large transaction abort rates. It treats the distributed database as if it was a state

machine where operations may be reordered. It reduces transaction abort rates by using

a reordering certification test, which looks for possible serializable executions between

the concurrent committing transactions before deciding on aborting them. An atomic

broadcast protocol is still needed to guarantee total order in the delivery of messages

so every replica reaches the same output. Unlike the previously presented protocols,

however, both the writeset and the readset of transactions have to be delivered.

To guarantee all database sites eventually reach the same state, transaction execution

is handled by the Transaction Manager, the Lock Manager, the Data Manager and the Cer-
tifier. The Certifier is responsible for the certification test of a transaction delivered by

the atomic broadcast protocol. On certifying a transaction, the Certifier asks the Data

Manager about previously committed transactions. If the transaction is successfully cer-

tified, its write lock requests are transmitted to the Lock Manager, and once granted, the

updates are performed. The Certifier has to ensure that write-conflicting transactions get

their locks following the order they are delivered, so that all databases apply conflicting

transactions in the same order.
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Figure 2.4: The Database State Machine [26]

The main mechanism of the certification test is the Reorder List. The Reorder List

contains transactions that have been committed and have their locks granted, but have

not yet been applied to the database. As such, they cannot yet be seen by other executing

transactions. Transactions in the Reorder List may change their relative order if there is a

serializable execution between concurrent transactions, if there is no possible serialization

order, then some transaction has to be aborted. This reordering allows the system to apply

more transactions without having to abort conflicting ones.

The size of the Reorder List is defined by the Reorder Factor. When the list is full

(number of transactions the reached Reorder Factor), the leftmost transactions in the list

is removed, its operations are applied to the database and its write locks are released.

This technique reduces aborts but introduces some data contention because transactions

in the Reorder List have to wait longer for their operations to be applied.

Figure 2.5: The Reorder List [26]

[29] proposes to extend the Database State Machine protocol to handle partial repli-

cation. The original DBSM protocol only assumes databases that offer full replication
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to ensure that, after certifying a transaction, all database sites reach the same decision.

When partially replicating objects this is impossible, as some replicas may decide to com-

mit a transaction and others to abort it (example similar to the one in Section 2.3.4.2).

Databases that hold only a partial copy of the data cannot decide to commit a transac-

tion based only on the certification test, they must consider data objects stored in other

database sites to reach a conclusion. This is possible by use of an atomic commit protocol

[29], and each database should use the result of the certification test as its vote for the

atomic commit protocol.

The certification of a transaction now has to involve:

• Certification Test: Similar test to the one used in the full replication protocol.

But now, instead of committing or aborting a transaction, when a transaction is

serializable the database site votes yes, otherwise votes no.

• Atomic Commit: Every site involved in a transaction’s commit starts an atomic

commit using as its vote the outcome of the certification test. If the result of the

atomic commit is to commit, then the transaction is committed, its updates are

performed and its locks are released.

Figure 2.6: The architecture for partial replication [29]

2.3.4.4 Spanner

Spanner [7] was developed by Google and provides a scalable, globally-distributed

database that provides ACID transactional guarantees. The database shards the data
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across many sets of Paxos state machines in datacenters spread across the world. Span-

ner allows replication configurations for data to be dynamically controlled by applica-

tions, and to dynamically and transparently move data between datacenters. It also pro-

vides globally-consistent reads across the database at a time-stamp by assigning globally-

meaningful commit timestamps, even though transactions may be distributed. These

timestamps are possible through the use of the TrueTime API, that accesses external

machines to get a precise timestamp (more details in the original article).

In Spanner, transactions are replicated across datacenters through Two-Phase Commit

(2PC) to guarantee serializable executions, on top of a Paxos replicated log. Basically, the

decided operations during the execution of 2PC are broadcast between the datacenters

as instances of the Paxos protocol. Figure 2.7 shows the messages exchanged during

Two-Phase Commit on a system where logs are replicated across datacenters using Paxos.

Figure 2.7: Two-Phase Commit on top of a Paxos-replicated log [22]
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2.3.4.5 Replicated Commit

The analysis by Mahmoud et. al [22] brings to light the high amount of inter-datacenter

communication trips that have to be done when replicating the 2PC log, which hurts

latency and scalability. As an optimization, [22] proposes to do the inverse, run Paxos on

top of Two-Phase Commit to replicate the commit operation itself. That is, to execute the

Two-Phase Commit operation multiple times, once per datacenter, with each datacenter

only using Two-Phase Commit internally, and only using Paxos to reach consensus among

datacenters about the fate of a transaction for the commit or abort decision. This approach

is called Replicated Commit, as opposed to the Replicated Log approach. Figure 2.8 shows

the messages exchanged during Replicated Commit execution.

Figure 2.8: Two-Phase Commit operations when using Replicated Commit [22]

The way Replicated Commit performs Two-Phase Commit is that each transaction
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executes a new Paxos instance to replicate Two-Phase Commit across datacenters. As can

be seen by the Figure 2.8, the client acts as the proposer of the Paxos instance, and each

datacenter as both an acceptor and a learner. The value to be agreed at the end of a Paxos

instance is whether to commit a transaction or not. The default value is not to commit, so

a majority of acceptors must accept the accept request from the client for the transaction

to be committed.

Replicated Commit has the advantage of replacing several inter-datacenter commu-

nication trips with intra-datacenter communication, while still preserving ACID trans-

actions on top of globally-replicated data. Also, by replicating the Two-Phase Commit

operations rather than replicating log entries, communication trips are further reduced

by eliminating the need for an election phase in Paxos.

2.3.4.6 Clock-SI

The Clock-SI protocol [10] is a fully distributed protocol that implements snapshot isola-

tion for partitioned data stores. In Clock-SI transactions obtain their snapshot by reading

the clock at the originating partition. This snapshot remains consistent across all parti-

tions. By not depending on a centralized timestamp authority, Clock-SI provides better

availability and performance. Commits are propagated through the Two-Phase Commit

(2PC) protocol, with the originating partition acting as the coordinator. All partitions

that were modified by a transaction must participate in 2PC to decide whether it should

abort or commit, and what should be its final commit timestamp.

The main challenge of using of loosely synchronized clocks in different machines to

coordinate transactions comes from the fact that machines may have their local clocks

in different timestamps. To provide SI consistency, a snapshot with timestamp t must

include, for each data item, the version written by the transaction with the greatest

timestamp smaller than t. As such, the following situations must be addressed:

Situation one

Figure 2.9: Snapshot unavailability due to clock skew [10]
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Because of clock skew between different machines it is possible for a snapshot to

be unavailable. In this example, transaction T1 starts at partition P1 and is assigned a

snapshot with timestamp t. Because the clock at P2 is behind by some amount θ, at time

t on P1, P2’s clock value is t − θ. As such, when the read arrives P2 at time t′ (t′ < t) the

snapshot with time t is not yet available. This difference in clock times is important,

because in P2 between t′ and t another transaction could have committed and its writes

should be included in T1’s snapshot.

Situation two

Figure 2.10: Snapshot unavailability due to pending commit of an update transaction
[10]

In this case a pending commit of an update transaction causes a transaction to be

unavailable. Figure 2.10 depicts two transactions running in the same partition. T2’s

snapshot is unavailable because of the pending commit of transaction T1, which assigned

the value t as its commit timestamp. T1 involves a write to stable storage and completes

at time t′. If transaction T2 starts at a timestamp t′′ between t and t′ and attempts to read

an item x also modified by T1, we cannot return the value written by T1, because we do

not yet know if the commit will succeed, and we cannot just return the previous value

because if T1 does commit, this older value will not be part of a consistent snapshot at t′′

To solve situation one (fig. 2.9), when a transaction tries to read a data item on a

remote partition and its snapshot timestamp is greater than the clock time at the remote

partition, Clock-SI delays the transaction until the clock at the remote partition catches

up with the snapshot timestamp, so it does not miss any committed changes.

In the second case (fig. 2.10), when a transaction T tries to access an item updated by

a transaction T ′ that has not yet finished committing, Clock-SI delays transaction T until

T ′ finishes its commit to ensure T ’s snapshot includes all committed updates.

Clock-SI also delays update requests when the snapshot timestamp is greater than

the clock at some remote partition, the same way as reads, to ensure that the commit

timestamp of a transaction is always greater than its snapshot timestamp.

To commit a multi-partition transaction, the 2PC protocol is performed with the
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coordinator running in the originating partition. Each partition performs locally a certi-

fication test to check if a transaction can commit, and if so, changes transaction state to

prepared and sends its current clock value as prepare timestamp back to the coordinator.

If each participant is able to commit the transaction, the coordinator informs all partici-

pants that they should commit the transaction (and store its changes) and with commit

timestamp equal to the maximum prepare timestamp received from all participants.

2.4 Summary

In this chapter we have presented concepts that are important when discussing dis-

tributed systems. We have also presented previously done research that will be relevant

for the work conducted in this thesis. Of special importance was ChainPaxos (Section

2.2), as we intend to make use of its chain topology for high throughput and to move data

between nodes; Spanner (Section 2.3.4.4) for geo-replication and the possible advantages

of integrating it with replicated commit; and the Database State Machine (Section 2.3.4.3)

protocol as it may help us bypass the lack of partial replication support from the repli-

cated commit approach. We also present Clock-SI, which is a protocol that coordinates

multi-partition transactions without the need for a centralized timestamp authority.
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3

Design and Implementation

In this chapter we will present the proposed system and algorithm for providing

strong consistency in a partially replicated (or sharded) database. First, we will describe

and illustrate the overall architecture of our solution, and present an overview on how

the different components work with each other for processing client requests. After that,

we will go more in-depth at the actual code of our algorithm, as we explain the code of

our server and client API components with pseudo-code examples.

3.1 Architecture

Figure 3.1 presents the architecture of the system, illustrated with a system deploy-

ment composed by 3 server nodes.

Figure 3.1: Architecture
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The system organizes the database in a set of partitions, with each partition keep-

ing a fraction of the full database state - the number of partitions in a given deployment

is a parameter of the system. In the example of the figure there are three partitions, with

each partition being replicated in two servers - the left node stores partitions A and B,

the middle one stores B and C, and the right one stores C and A. In real deployments,

each partition is typically replicated in at least 3 servers, but we are keeping them short

here so the illustration doesn’t get too large. Here the order of the nodes in each Chain-

Paxos thread is represented by arrows. This is just an example, as any order of head, tail

and middle nodes in a chain could be possible. It all depends on how the replicas get

configured during initialization.

Each server node maintains the database state of the partitions replicated in that node.

As detailed later, for each key, the system maintains multiple data versions, thus adopting

a multi-version database model. This is used to provide snapshot isolation model without

resorting to locking.

For replicating each partition, each server node uses the ChainPaxos algorithm, with

one instance of ChainPaxos running in each node for each partition replicated in that

node. In the figure, each ChainPaxos chain is represented using arrows, with the head

being the Paxos leader issuing proposals for replicating transactions.

Each node receives operations from the client - reads and commits - and processes

them by accessing the local state and issuing operations in ChainPaxos instances. After

processing an operation, the result is returned to the client.

This architecture is inspired by the one of Spanner (see 2.3.4.4), that has a datacenter

with nodes for each partition that propagate data to the nodes in the other datacenters

through Paxos.

Clients access and modify the database using the client API, which is responsible

for transaction operations like reads and writes, and, when a user requests a commit,

coordinates the nodes during the execution of the Two-Phase commit protocol. We now

briefly describe the operations offered by the client API:

Begin

Sets the local state values required by the API to start a new transaction.

Read

The user requests to read a value with a given key from the database. The API will

contact one of the servers that stores the partition with that key (should be the one closest

to the user) and returns the value back to the client. Reads follow the same protocol

as in Clock-SI (see 2.3.4.6), which means that if a user asks for a read with a snapshot

timestamp higher than the current clock in that partition the read has to wait until the

partition’s clock catches up. If the read attempts to read a value that is also modified by a
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transaction that is prepared but has not yet finished committing, the read must wait for

the transaction’s conclusion.

Write

The user requests to write a key with a value. Writes are stored locally in the client API

to be sent later when the user asks to commit the transaction (see deferred update in 2.3.4)

Commit

The user asks to commit the transaction. A commit is processed running the two-phase

commit protocol among the partitions involved in the transaction. The client requests ev-

ery partition that was modified by this transaction to prepare the transaction, by sending

the transaction’s write-set and snapshot timestamp. In this example, a transaction that

modifies partitions A and B could send the prepare requests to the the left and middle

node, or it could also send both requests to the left node since it contains both A and B

partitions. Each modified partition will then do a certification check to see if it is possible

to commit this transaction and replies back to the API with the result, it also sends back

its current clock to be used as the commit timestamp of the transaction. The certification

test checks if there is any committed transaction that happened concurrently to this one,

and modified the same data (similar to protocol in 2.3.4.1, but only checks for write/write

conflicts). If the certification test is successful in every modified partition, the API tells

every modified partition to finalize the commit and write the updated values in storage

with commit timestamp equal to the largest timestamp received by the API from all parti-

tions. If the certification test fails in any partition, the API tells evey partition to discard

the transaction.

As a final note, it is important mentioning that our algorithm is based on the Clock-

SI protocol when assigning timestamps to transactions but some adjustments had to be

made. The original Clock-SI paper [10] only studies the case where each partition is only

stored in a single node, and so each partition can just check its own clock to get its own

timestamp. In our case, because each partition can be located in multiple nodes it is not

possible to just check the local clock of one of the nodes because the clocks in all nodes

may be running at different speeds. As such, we had to find a way to make sure that clock

reads of a partition stayed consistent across all nodes in that partition. Our solution was

to use the messages propagated by the ChainPaxos protocol to piggyback information

about the current timestamp across all nodes in a partition. For this, we introduced a

virtual clock in each replica. When the Paxos leader (head of the chain) sends a new

accept message to the other nodes, it also send its current clock value so that when the

other nodes receive this message they all set their virtual clock values to the same one.

This means that advancing the (virtual) clock in a partition is dependent on the number
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of messages sent by the ChainPaxos threads, because of this, the leader may occasionally

send a NoOp message to the other nodes in the chain so their clocks don’t fall behind too

much. A more detailed explanation of this virtual clock in section 3.2.2;

3.1.1 Server

We now present the pseudo-code of the server side of our algorithm. The following

code implements the protocol that modifies database state in our nodes (code for the

ChainPaxos component can be found in the original article [27]). Algorithm 1 presents the

state of each replica: store is a map that maps each partition in this node to their respective

key-value store, each key-value store itself is a map that, for each key stored in a partition,

maintains multiple data versions with their respective timestamps; prepared is a map

of all prepared transactions that passed the certification test but are still waiting for the

result of the Two-Phase Commit protocol to see if they should commit or not. Transactions

are here represented as a triplet with an id, a writeset ws, and a a prepareT imestamp.

Algorithm 2 presents our server algorithm, with auxiliary functions detailed in Algo-

rithm 3. Of note that, except for the Read_Request message, all received messages by the

server have to first be accepted and ordered by the ChainPaxos layer, to ensure all nodes

in a partition converge to the same state.

Algorithm 1 Server state
1: store : key-value store (for multiple partitions)
2: prepared : map of prepared transactions waiting for commit in each partition

Algorithm 2 Server algorithm
1: function Init

2: store← {}
3: prepared← {}
4: upon receive <READ_REQUEST, key, snapshotT s,partition> from clientapi do:
5: currentTs = GetClockTime(partition)
6: if snapshotTs = 0 then
7: snapshotTs← currentTs
8: if snapshotTs > currentTs then
9: Wait for this partition to reach snapshot time

10: for each (id,ws,prepareTs) in prepared[partition] do:
11: if key ∈ ws.keys ∧ prepareTs <= snapshotTs then
12: Wait for transaction with id to reach commit/abort
13: end for
14: val← {val : (key,val,commitTs) ∈ store[partition] ∧ commitTs <= snapshotTs ∧ ∃!((key’,commitTs’) :

(key’,val’,commitTs’) ∈ store[partition] ∧ key ! = key’ ∧ commitTs < commitTs’) }

15: Send(clientapi,<READ_REPLY,val, snapshotT s>)
16:
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17: upon receive <PREPARE_REQUEST, id,ws, snapshotT s,partition> from clientapi do:
18: prepareTs = GetClockTime(partition)
19: if snapshotTs = 0 then
20: SnapshotTs← prepareTs
21: if snapshotTs > prepareTs then
22: Wait for this partition to reach snapshot time
23: if ∃ ((id’,ws’,prepareTs’) ∈ prepared[partition] ∧ (ws.keys ∩ ws’.keys ! = ∅ ) ∧ prepareTs’ >=

snapshotTs ∧ prepareTs’ <= prepareTime) then
24: Send(clientapi,<PREPARE_REPLY, f alse,0>)
25: else
26: prepared[partition]← prepared[partition] ∪ {(id,ws,prepareTs)}
27: Send(clientapi,<PREPARE_REPLY, true,prepareT s>)

28:
29: upon receive <COMMIT, id,commitT s,partition> from clientapi do:
30: currentTs = GetClockTime(partition)
31: if commitTs > currentTs then
32: Wait for this partition to reach commit time
33: transaction← {(id’,ws,prepareTs) ∈ prepared[partition] : id = id’ }
34: for each (key, val) in transaction.ws do:
35: store← store ∪ {(key, val, commitTs)}
36: end for
37: prepared[partition]← prepared / {transaction}
38:

39: upon receive <ABORT, id,partition> from clientapi do:
40: transaction← {(id’,ws,prepareTs) ∈ prepared[partition] : id = id’ }
41: prepared[partition]← prepared / transaction
42:

Algorithm 3 Server Algorithm - private functions
1: function GetClockTime(String partition)
2: return current timestamp of partition

On initialization, the maps and lists start empty (L1-3). When a read request is

received (L4-16), the system first compares the snapshot timestamp of the read to the

partition’s current clock. If the snapshot timestamp is equal to 0, that means this is

the first read done by this transaction, so the system sets the snapshot as the current

timestamp of this partition (L6-7). If the snapshot timestamp has a value larger than the

current clock, then the read should be postponed until the partition’s clock has catched up

to the snapshot timestamp (L8-9). Then, the system checks if there are any transactions

currently pending commit that also modify the value of the key that was requested, if that

is the case, the read waits until all these transactions have finished committing (L10-13).

Finally, the system retrieves from the database the value for this key with the maximum

commit timestamp lower than the snapshot timestamp and sends it back to the user

(L14-16).

When a prepare request for a transaction Ti is received (L17-28), the system checks the

current clock to be used as the prepare timestamp (L18). Like reads, if the transaction still

has not set a snapshot then it will be set to this timestamp, and if the snapshot timestamp
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is larger than the current clock, then the partition must wait for the clock to catch up (L19-

22). The system then checks if there is any pending transaction Tj with conflicting writes

which entered its prepare state between the moment of Ti ’s snapshot and the current

timestamp (L23). If that is the case, the system requests the client API coordinating Two-

Phase Commit to abort Ti (L24). If there were no conflicts, Ti is now considered prepared

and the system requests the coordinator to commit transaction (L25-27).

When a commit request for a transaction Ti is received (L29-37), the system starts by

ensuring the partition’s clock is up-to-date with the commit timestamp. It then stores

the changes done by Ti in its local store (it does not overwrite old values, it just adds

new ones with a larger commit timestamp). Ti is then removed from the list of pending

transactions.

If an abort request is received for some transaction (L39-41), then the transaction is

simply discarded from the prepared transaction list.

3.1.2 Client

The following is the pseudo-code of our client API. Algorithm 4 presents the state

of the client: servers is the list of the addresses of all nodes in the system; partitions

informs the client of the available partitions in the database; transactionID is the unique

id of the current transaction being processed by the API; snapshotT s and prepareT s

are the snapshot and prepare timestamps of the current transaction; WS is the map

storing the delayed writes done by this transaction, that will be sent to the servers when

the user requests a commit; partitionsW ithWrites is a set informing of what partitions

will be modified by this transaction, if it commits; waitingResponse is the set of nodes

for which the API is waiting for a response to the commit request, during Two-Phase

Commit; responses is a counter of the amount of nodes in waitingResponse that have

already answered the commit request; commitT s is the final commit timestamp of this

transaction, if 2PC is successful; commit is just a bool that is true if the nodes in 2PC

agree to commit the transaction.

Algorithm 5 is the algorithm behind our client API, with auxiliary functions detailed

in Algorithm 6.

Algorithm 4 Client API state
1: servers : array of server nodes
2: partitions : array of existing partitions
3: transactionId : id of current transaction
4: snapshotTs : snapshot time of transaction
5: prepareTs :prepare time of transaction
6: WS : writeset of transaction
7: partitionsWithWrites : set of partitions to which this transaction writes
8: waitingResponse : set of nodes pending response to prepare
9: commit : bool decision to commit or abort

10: responses : int number of responses received from nodes in waitingResponse
11: commitTs : commit time of transaction
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Algorithm 5 Client API Algorithm
1: upon receive <BEGIN> from client do:
2: transactionId = UniqueID( )
3: snapshotTs← 0
4: prepareTs← 0
5: WS← {}
6: partitionsWithWrites← {}
7: waitingResponses← {}
8: commit← true
9: responses← 0

10: commitTs← 0
11:

12: upon receive <READ, key> from client do:
13: partition← GetPartitionWithKey(key)
14: node← GetNodeInPartition(partition)
15: Send(node,<READ_REQUEST,key,snapshotTs,partition>)
16:

17: upon receive <READ_REPLY,val, readSnapshotT ime> from node do:
18: if snapshotTs = 0 then
19: snapshotTs← readSnapshotTime
20: Send(client,<READ_RESULT,val>)
21:

22: upon receive <WRITE, key,val> from client do:
23: partition← GetPartitionWithKey(key)
24: partitionsWithWrites← partitionsWithWrites ∪ {partition}
25: WS←WS ∪ {partition, key, val}
26:

27: upon receive <COMMIT> from client do:
28: for each partition in partitionsWithWrites do:
29: node← GetNodeInPartition(partition)
30: waitingResponse← waitingResponse ∪ {node}
31: writes← {(key, val) : (partition, key, val) ∈WS}
32: Send(node,<PREPARE_REQUEST,transactionId,writes,snapshotTs,partition>)
33: end for
34:

35: upon receive <PREPARE_REPLY, partitionCommit, partitionCommitTime> from node do:
36: if node ∈ waitingResponse then
37: responses← responses +1
38: if partitionCommitTime > CommitTime then
39: CommitTime← partitionCommitTime
40: if partitionCommit = false then
41: commit← false
42: if responses = #waitingResponse then
43: if commit = true then
44: for each node in waitingResponse do:
45: Send(node,<COMMIT,transactionId,CommitTime,partition>)
46: end for
47: else
48: for each node in waitingResponse do:
49: Send(node,<ABORT,transactionId,partition>)
50: end for
51: Send(client,<COMMIT_RESULT,commit>)
52:
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Algorithm 6 Client API Algorithm - private functions
1: function GetPartitionWithKey(String key)
2: return partition from partitions that contains key

3: function GetNodeInPartition(String partition)
4: return node from servers that participates in partition ▷ should be node closer to user

When a user starts a new transaction (L1-10), the API sets the default values to prepare

for a new transaction.

When the user asks to read a value (L12-15), the system sends a read request to one of

the nodes that stores the partition which contains the key. When the node responds (L17-

20), if the transaction still had no snapshot timestamp set it will be set to the timestamp

received from the node and then the value that was read is returned to the user.

When a user requests to write a value (L22-25), the system stores the information of

what partition will be modified by this write and then stores the write locally to be sent

later.

When the user requests to commit the transaction (L27-33), the system chooses one

node of each partition and sends to each one the respective updates, this starts the 2PC

protocol to find out whether the transaction can committed or not. The system then waits

for the response of every partition that was modified (L35-51), whenever a response is

received it sets the commit time of the transaction to the highest timestamp received

(L38-39). After receiving a response from every partition, if they all accepted to commit

the transaction, the system now tells every partition to finalize committing the transac-

tion and sends the final commit timestamp (L42-46). If any of them called to abort the

transaction, the system will tell every partition to discard the transaction (L48-50). After

all of this, the API replies to the user with the final commit result.

3.1.3 Correctness

In this section, we present the correctness argument for our algorithm, by showing

that its execution ensures the snapshot-isolation safety properties.

1. Transactions commit in a total order. Every operation is totally ordered in every

replica by the ChainPaxos layer, and because every commit timestamp of transac-

tions is assigned from reading values of physical clocks.

2. Transactions read consistent snapshots. By delaying reads until a partition’s clock

catches up to the snapshot timestamp of a transaction, we guarantee that a transac-

tion reads all committed changes of transactions with commit timestamps smaller

than its snapshot timestamp. By delaying reads when there are prepared (but no

committed) transactions with overlapping writes, a transaction never reads a value

from a transaction that was aborted.
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3. Committed concurrent transactions do not have write-write conflicts. The algo-

rithm identifies concurrent transactions by checking their snapshot and commit

timestamps and aborts one of the two concurrent transactions if their write-sets

overlap. Two nodes never reach different conclusions on whether to commit or

abort a transactions because they execute the Two-Phase Commit protocol.

3.1.4 Faults

ChainPaxos already handles faults and membership reconfiguration. When a replica

fails, the ChainPaxos chains the replica was a member of will just reconfigure and go back

to normal routine. If the replica rejoins the chains later, ChainPaxos transfers the current

state from one of the other replicas to the one that just joined, so it has the same state.

During the Two-Phase Commit protocol, replicas and the client log to stable storage

any decisions that they make. If a replica crashes and then recovers, it checks its log

to know what was its decision, and continues the 2PC protocol from where it stopped.

If the client times out (possibly because it crashed), the partitions communicate with

each other to reach a decision on whether to commit or abort the transaction (this would

require each partition to know what partitions where involved in the transaction, this

information could be sent in the prepare message). As of writing this paper, however, we

have not yet implemented a working version of the recovery mechanism for two-phase

commit.

3.2 Implementation

Our prototype was implemented in Java. Most of the pseudo-code here presented

can be easily translated to Java code. Most of the logic is simple to translate and simple

lists and maps are used to store most of the data. Still, there are a few details we feel we

should elaborate.

3.2.1 Key-Value store

In section 3.1.1 we say that the each partition has its own key-value store that "is a

map that, for each key stored in a partition, maintains multiple data versions with their

respective timestamps". Basically, it is the shard of the database that is stored in a specific

partition. In our implementation, the key-value store is a map with a string - the name of

a value - as key and the "value" itself is a TreeMap (implemented by Java). In this TreeMap

each key is a Long value - a timestamp - and the value is a byte array. This map is the part

responsible for storing the multiple data versions of keys that allow snapshot reads. By

using a TreeMap - which is a sorted map - we can store each value and its corresponding

timestamp, and easily query the database for the value with the largest timestamp up to

a given snapshot timestamp.
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3.2.2 Global Partition Clock

In server pseudo-code in section 3.1.1, we state that read, prepare and commit opera-

tions wait for a partition’s clock to advance if it is lower than the snapshot timestamp of

a transaction. To achieve this, we implemented a class that manages the current clock of

a partition. One object of this class gets instatiated for each partition stored in a server.

It is responsible for storing and modifying the current clock of a partition, and stores

operations from transactions that are currently waiting for an advance on the partition’s

clock. When the clock reaches the timestamp these operations where waiting for, this

class will resume and finish them. The following is the pseudo-code for this class, which

we called GlobalPartitionClock.

Algorithm 7 GlobalPartitionClock state
1: timestamp : long
2: waiting : map of operations waiting for a specific timestamp (timestamp is the key, and a list of pending

operations is the value)

Algorithm 8 GlobalPartitionClock
1: function Init( )
2: timestamp← 0
3: waiting← {}

4: function GetClock( )
5: return timestamp

6: function SetEventForTimestamp(ts, pending_op)
7: waiting[ts]← waiting[timestamp] ∪ {pending_op}

8: function SetClock(new_timestamp)
9: timestamp← new_timestamp

10: pending_ops← {op : op ∈ waiting[ts] ∧ ts <= timestamp}
11: for each op in pending_ops do:
12: op.continue()
13: end for

When initialized (L1-3), the current timestamp is 0 and the map of waiting transac-

tions is empty. In our implementation, waiting is implemented by a TreeMap, which is

a sorted map. By using timestamps as the key, and a list of operations waiting for that

timestamp as a value, it is easy to query the sorted map on all operations that are waiting

up to a given timestamp.

The function GetClock (L4-5) is just a simple getter used by a partition to check the

current clock.

Function SetEventForT imestamp (L6-7) is called when an operation needs to be de-

layed. The waiting map adds pendingop to the list of operations currently waiting for

timestamp ts (the list starts empty).

As mentioned at the end of section 3.1, the clock of a partition advances when the

leader of the corresponding ChainPaxos sends accept messages to the rest of the chain.
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If these messages get accepted, each instance of the corresponding partition will call

SetClock (L8-13) which sets the clock to the timestamp that came in the accept message.

Then it will check for any pending operations that were waiting for the clock to reach this

timestamp or lower. If there are any, they are resumed and finished sequentially.

3.2.3 Babel

The protocols running in the server nodes, the algorithm that modifies the database

and the algorithm for the ChainPaxos threads, are implemented on top of Babel1[13].

Babel is a Java framework to support quick prototyping of distributed algorithms. Babel

provides a set of abstractions that allows the developer to focus on implementing the

algorithm logic, following an API that is close to the typical presentations of pseudo-code

of such algorithms. Babel simplifies developing and testing algorithms for distributed

systems by providing useful abstractions that deal with the low level complexities usu-

ally associated with distributed system implementations. These complexities include

handling communication among local and external protocols and concurrency-control.

Notably, communication complexities are hidden behind abstractions called channels.
A Babel process can execute any number of protocols that communicate with each

other and/or protocols in other processes. Each protocol is exclusively assigned a ded-

icated thread which handles received messages in a serial fashion. As stated before,

communication between protocols is hidden behind the channels abstraction, which al-

lows protocols to easily establish and accept TCP connections to/from other processes,

including processes not running Babel. In our work, these channels are responsible for

the communication between the client and servers, and among the servers themselves

when propagating messages trough a ChainPaxos chain.

Figure 3.2 exemplifies the Babel Architecture, with two Babel processes in different

machines, each running three distributed algorithm protocols that communicate with

each other through channels.

1a repository is available at https://github.com/pfouto/babel-core
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Figure 3.2: Babel Architecture [13]
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Evaluation

In this chapter we report the experimental evaluation of our algorithm. The primary

goal of this thesis is to research ways to achieve partial replication with strong consistency,

and how that could improve on solutions based on full replication. As such, our tests focus

on comparing our algorithm to a fully replicated one. We will evaluate both solutions

by comparing execution times under different workloads, varying the number of clients

and number of operations per transaction. We will also analyse how the percentage of

aborted transactions changes with the number of clients.

4.1 Configuration

The experiments were conducted on the Grid5000 testbed, using a cluster of machines

with one Intel Xeon Gold 5220 CPU with 18 cores and 96 GiB DDR4 RAM. The machines

are connected through a 25 Gbps Ethernet switched network. Each replica executes in its

own machine, and an extra 10 independent machines work as clients running the YCSB

benchmark. Each client connects to a replica executing transaction operations in a closed

loop. Each test was run 5 times.

The prototypes of both our server and client algorithms were implemented in Java.

When testing our partial replication algorithm, each replica stores three different par-

titions, with partitions distributed across replicas in a round-robin way (configuration

similar to the one in figure 3.1). This also means that each ChainPaxos chain will only

have 3 nodes. The number of unique partitions is equal to the total number of servers,

so with 5 servers there will be 5 partitions and so on. For our tests, the database stores

1000000 different keys. The following are the partition distributions used when testing

partitioned databases, with 5 and 7 servers:
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Total Partitions
A,B,C,D,E

Nodes Partitions
1 A,B,C
2 C,D,E
3 E,A,B
4 B,C,D
5 D,E,A

Table 4.1: 5 servers

Total Partitions
A,B,C,D,E,F,G

Nodes Partitions
1 A,B,C
2 C,D,E
3 E,F,G
4 G,A,B
5 B,C,D
6 D,E,F
7 F,G,A

Table 4.2: 7 servers

To use as a comparison, we also perform tests on a fully replicated database. A fully

replicated protocol can be easily implemented by instantiating our algorithm with just a

single partition. Therefore, during full replication tests, we setup the replicas such that

there exists only a single ChainPaxos chain and every replica is part of it.

Our tests consist of running multiple clients with the YCSB benchmark[6]. These

clients are set on a loop that keeps executing the required operations to create, modify,

and commit a transaction (using our implemented client API). YCSB by itself does not

actually have transaction support, it only offers simple operations, like reads and writes

of single values, to work with single registers. As such, we actually had to extend YCSB

to allow clients to perform more complex operations (like commits/aborts) to be able to

test transaction support. The code looped by the clients works as follows:

1. Begin a new transaction. (performed locally)

2. Randomly select (with uniform distribution) n keys from the database to be read.

(performed locally)

3. Request a read for each of the n keys, one at a time. (requires contacting the replicas)

4. Write a new value for a (variable) subset of the n keys. (performed locally, since

updates are delayed)

5. Request to commit the transaction. (requires contacting the replicas and waiting

for conclusion of 2PC)

In our tests, we consider that a user only writes values for keys that they have previ-

ously read. Therefore, modifying a key implies two operations, the read during step 3 of

the loop and then the write during step 4. Each database value is 128 bytes.

Clients connect uniformly at random to a replica with the requested partition, and

receive a reply from that same replica once the operation is over. This allows to maximize

throughput by distributing the load of handling clients as much as possible.

Also of note that in every ChainPaxos chain each Paxos operation is executed in a

different instance (no batching of operations).
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4.2 Results

In this section we present and discuss the results of the the tests performed on our

algorithm. The line graphs on the left present the performance results of our algorithm

under different configurations, and the bar graphs on the right show the corresponding

transaction abortion rates.

4.2.1 Partition Impact

In our first set of experiments, we study how the number of partitions in the system

impact the overall performance of the system. In these tests, clients perform transactions

that read 4 keys and write 50% of them (2 writes). We test how the number of partitions

(and nodes) impact the overall latency of the system.

Figure 4.1: Partition impact - Full replication only

Figure 4.2: Partition impact - Partial replication only
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Figure 4.3: Partition impact - 5 servers, full and partial replication

Figure 4.4: Partition impact - 7 servers, full and partial replication

We start by studying how the number of replicas impact the performance in a fully

replicated deployment. Figure 4.1 shows that the performance of the system has only a

very small drop in performance when increasing the number of replicas - as all replicas

are involved in processing all transactions, this result is expected, with the small drop

in performance being explained by the fact that ChainPaxos has some fix management

overhead that depends on the number of replicas of the system.

Figure 4.2 compares the performance of a partial replicated deployment with 5 and

7 servers with the full replicated scenario with 3 servers. Figures 4.3 and 4.4 place the

partial replication lines with their full replication counterparts in the same graph to make

it easier for comparison.

The results show that partial replicated deployments have higher throughput than

the full replicated deployments and that the performance of partial replication increases

with the number of servers. This performance gain comes from the fact that, because in

partial replication only a fraction of the total transactions have to be processed by a node,

the CPU usage in each node is reduced. With low load (first points in the lines), however,

the latency of the fully replicated deployments is lower than that of partial replicated

deployments. The reason for this is that under partial replication, the commit needs to
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run a two-phase commit between the replica groups involved in the transaction, which is

not necessary in the full replication scenario.

The bar graphs on the right show that abort rate is influenced by contention among

transactions that execute concurrently. As the number of threads increase, the number of

concurrent transactions also increase in each of the deployments, leading to an increasing

ratio of aborts, as shown in the figure. The lower abort ratio of partial replication de-

ployments, when compared with the full replicated deployment is, among other factors,

influenced by the latency of transactions which starts growing more quickly with a low

number of threads when doing full replication, which in turn leads to more transaction

interference.

4.2.2 Write percentage impact

Here we tested how system responsiveness is affected by writes from a transaction.

Clients perform transactions that read 4 keys and write a variable percentage of them

(100% corresponds to 4 writes, 50% to 2, and 10% was rounded up to 1 write). In both

tests, the system is composed of 5 servers.

Figure 4.5: Write percentage impact - Full replication

Figure 4.6: Write percentage impact - Partial replication
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As expected, response times are heavily influenced by the amount of updates per-

formed on the database. In both full and partial replication, system performance de-

creases as the number of writes increases. This is the result of many factors, like having

to send more data over the network and the partitions having to spend more processing

time to find conflicts with other transactions.

In the partitioned configuration, however, the major influence to latency times is the

fact that by increasing client writes we also increase the likelihood of the transaction

performing updates in multiple partitions , which means that, when a client requests

a commit, much more time is spent coordinating multiple servers during the 2PC pro-

tocol. Because of this, partial replication performs worse than full replication when

write percentage is very high, as can be seen when comparing figures 4.5 and 4.6. When

write percentage is lower, the advantages of partial replication outweigh the resources

spent during two-phase commit and allow partial replication to achieve much higher

throughput thresholds when compared to full replication.

Abort percentage also proves to be inversely proportional to write percentage. Again,

this is not surprising, because by increasing the amount of writes we also heavily increase

the probability of a transaction conflicting with another by trying to update the same

keys.

4.2.3 Key impact

In these tests we vary the number of keys that are read and set the write percentage to

50% (which means 2 keys will write 1, 4 will write 2, 12 will write 6). Again, the system

is composed of 5 nodes.

Figure 4.7: Key impact - Full replication
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Figure 4.8: Key impact - Partial replication

These results lead to similar conclusions as the results in the variable write tests

(section 4.2.2). By increasing the amount of keys (and writes), response times are expected

to be worse, especially in a partitioned system where multiple partitions may have to be

coordinated during 2PC. Additionally, because in these tests we also increase the amount

of keys read by a transaction, extra time is also spent requesting key reads to the system.

Like in the write percentage tests, when comparing figures 4.7 and 4.8 we can see

partial replication performing worse when transactions do a large amount of writes.

Because in the 12-key tests each transaction performs 6 writes, that means committing

transactions will often involve coordinating most, if not all, of the partitions in the system

(in our tests a 5 server system stores 5 unique partitions). As the number of writes

decrease, however, partial replication ends up outperforming full replication by a large

margin.

4.2.4 Read-only impact

In these tests we introduce a new type of transactions, a read-only transaction that

only reads keys but does not write any of them (always commits successfully). We vary

the percentage of ”normal” transactions and read-only transactions. Both types of trans-

actions read 4 keys, and normal transactions write 50% of them. The system is composed

of 5 nodes.
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Figure 4.9: Read-only impact - Full replication

Figure 4.10: Read-only impact - Partial replication

These results show that latency times are better with the increase of read-only transac-

tions. Because read-only transactions do not update the database in any way, no process-

ing time has to be spent resolving conflicting transactions and coordinating partitions

during commit. That means that read-only transactions are much shorter than normal

transactions, and so it is expected that by increasing the percentage of read-only transac-

tions (and decreasing normal ones) the system is able to achieve much higher throughput

values

Same logic follows for the abort percentages, as lowering the percentage of trans-

actions that perform updates (and so may conflict) should lead to much lower abort

percentages.

When comparing figures 4.9 and 4.10, partial replication shows better results, always

achieving an higher throughput threshold when compared to full replication, this is in

part because in this test each transaction only performs 2 writes, and so only a short

amount of time is lost by partial replication when coordinating partitions during two-

phase commit.

44



4.2. RESULTS

4.2.5 Alternate Paxos variants

In these tests we study our algorithm when using different Paxos variants to broadcast

updates to all nodes in a partition. We compare ChainPaxos to the use of the ”original”

MultiPaxos protocol and EPaxos, mentioned in section 2.2. Clients perform transactions

that read 4 keys and write 50% of them (2 writes), all tests used 5 servers.

Figure 4.11: Alternate Paxos - Full replication

Figure 4.12: Alternate Paxos - Partial replication

In both tests the use of ChainPaxos shows better results, being able to reach a much

higher throuput threshold when compared to the other two protocols. MultiPaxos is a

leader-based Paxos protocol, like ChainPaxos, but suffers from requiring a larger number

of messages to be sent over the network, because the leader has to send an accept message

to every node in the Paxos group and then wait for a response from all of them. Chain-

Paxos only requires the leader to send an accept to the next node in the chain and then

wait for a response from the tail, once the accept reaches it. It also allows a node in the

middle of the chain to immediately know if the request was accepted by a majority, so it

can execute the operation sooner.

EPaxos shows the worst performance, which might result from the fact that it does not

use a designated leader, and requires two communication step in situations of contention,
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which are common in our tests.

4.3 Conclusion

Looking at the results, there is a clear improvement in system throughput when shard-

ing the database into partitions. By decreasing the workload in each of the replicas, the

system is able to respond to a much larger number of requests. Having less transaction

contention in each of the nodes also seems to improve transaction abort rates, as seen

in out tests. The major influence on latency in a partitioned database is the two-phase

commit protocol, and its impact depends on the number of modified partitions during a

transaction. If transactions make a lot of writes and modify a large number of partitions

simultaneously then the two-phase commit protocol becomes a bottleneck and the partial

solution performs worse than full replication. Still, in a realistic setting this may be a rare

occurrence as transactions tend to only modify a small portion of the partitions, usually

just one.

In the end, we also compared ChainPaxos to other famous Paxos variants, with Chain-

Paxos showing the best results. The original ChainPaxos paper only tested it to replicate

simple operations over a single register, so its great to see that it also pairs well with

database replication.
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Conclusion

When designing large scale distributed applications programmers face the problem of

selecting the appropriate consistency model. A weak consistency model provides good

availability and system response times but allows replicas to diverge potentially leading

to violations of data integrity. This might be acceptable for applications where having

good client response times is the most important factor, but for applications where having

consistent data is key, weak models are not enough. In those cases, a strongly consistent

model is more adequate, ensuring system correctness across all replicas even if at the

cost of performance. One possible way to minimize the performance problems of strong

consistency models is to partially replicate the database, where each partition is replicated

in only a subset of the nodes. This means that, during updates, only a fraction of the nodes

in the system have to coordinate, requiring less communication trips among nodes and

leading to better response times. Additionally, partial replication also has the advantage

of allowing data to be stored only in locations where it is likely to be accessed.

In this dissertation, we propose a solution offering strong consistency (snapshot-

isolation) for partially replicated databases, while still providing better performance

when compared to other fully replicated systems.

The proposed algorithms build mostly on the Clock-SI[10] protocol, because it offers

a good framework for building a partially replicated database supporting snapshot isola-

tion. It solves well the problem of coordinating multiple nodes during a transaction, in

a model where no node is aware of all the updates currently being done in the database.

This is achieved by using timestamp-based mechanisms to delay reads and ensure consis-

tent snapshots, and by doing the Two-Phase Commit protocol during commits.

Some changes had to be made, however, because the original Clock-SI paper only

considers the case where each partition is stored in a single node. We adapted the original

Clock-SI protocol to an architecture inspired by Spanner, where different data-centers,

each with their own partitions, communicate with each other through a Paxos-based

protocol to broadcast updates to all nodes in the same partition[22]. We also set the

client as the coordinator for the 2PC protocol instead of relying on one of the datacenters

to work as a leader, reducing the amount of communication trips that have to be done
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across datacenters and the amount of CPU resources that would have to be spent by the

coordinating node.

Furthermore, we studied the use of ChainPaxos as a way to broadcast the updates in

a partition with total order and in a efficient way. ChainPaxos is a novel Paxos variant

that offers better performance when compared to other leader-based Paxos protocols,

by greatly reducing the amount of messages that have to be sent and received by the

leader when broadcasting updates to the other nodes in the Paxos group. The original

ChainPaxos[27] paper only tests replicating simple read and write operations over a single

register, so it was also interesting to test its behaviour in a transaction-based setting with

more complex operations - like commits - and the results were very positive.

Lastly, we evaluated the performance of the proposed algorithm under different test

configurations. In each test we compared full and partial replication and concluded that

there is a high potential for performance gain by partitioning a database. Abortion rates

also reduce when data is divided into partitions. We also studied response times when

communication is supported by different Paxos variants, with ChainPaxos showing the

best results by a large margin.

5.1 Contributions

In summary, this dissertation proposes an algorithm for database replication with

strong replication in a distributed setting, that improves on transaction latency times by

exploiting the advantages of partial replication. The algorithm is supported by an archi-

tecture that makes it simple to distribute partitions among datacenters and efficiently

broadcast updates across nodes in the same partition through the use of ChainPaxos.

Snapshot-Isolation consistency is guaranteed by implementing an algorithm for coordi-

nating transactions based on the work of the Clock-SI[10] research.

5.2 Future Work

As mentioned in section 3.1.4, our current implementation of the algorithm does yet

not implement the recovery mechanism for replicas and clients that fail during the Two-

Phase Commit protocol. It would be very useful to get a working version running.

To improve on our work, it would be interesting to see how our algorithm performs

under different isolation models other than snapshot-isolation, like serializability, for

example. We could also test our algorithm when doing long distance geo-replication of

data, since all our tests where performed in the Grid5000 cluster, with nodes located in

France.

It would also be valuable to formally prove the definition of the algorithm, to confirm

its correctness properties and prove that replicas converge to the same state and that

snapshot-isolation consistency is working as intended.

48



Bibliography

[1] S. Abraham, K. Henry, and Sudarshan. Database System Concepts (cit. on pp. 5, 12).

[2] J. Baker et al. “Megastore: Providing scalable, highly available storage for interac-

tive services”. In: (2011) (cit. on p. 2).

[3] H. Berenson et al. “A critique of ANSI SQL isolation levels”. In: ACM SIGMOD
Record 24.2 (1995), pp. 1–10 (cit. on p. 13).

[4] E. Brewer. “CAP twelve years later: How the"rules"have changed”. In: Computer
45.2 (2012), pp. 23–29 (cit. on p. 6).

[5] E. A. Brewer. “Towards robust distributed systems”. In: PODC. Vol. 7. 10.1145.

Portland, OR. 2000, pp. 343477–343502 (cit. on pp. 1, 6).

[6] B. F. Cooper et al. “Benchmarking cloud serving systems with YCSB”. In: Pro-
ceedings of the 1st ACM symposium on Cloud computing. 2010, pp. 143–154 (cit. on

p. 38).

[7] J. C. Corbett et al. “Spanner: Google’s globally distributed database”. In: ACM
Transactions on Computer Systems (TOCS) 31.3 (2013), pp. 1–22 (cit. on pp. 2, 19).

[8] G. DeCandia et al. “Dynamo: Amazon’s highly available key-value store”. In: ACM
SIGOPS operating systems review 41.6 (2007), pp. 205–220 (cit. on p. 9).

[9] H. Du and D. J. S. Hilaire. “Multi-Paxos: An implementation and evaluation”. In:

Department of Computer Science and Engineering, University of Washington, Tech. Rep.
UW-CSE-09-09-02 (2009) (cit. on p. 10).

[10] J. Du, S. Elnikety, and W. Zwaenepoel. “Clock-SI: Snapshot isolation for partitioned

data stores using loosely synchronized clocks”. In: 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems. IEEE. 2013, pp. 173–184 (cit. on pp. iv,

v, 3, 22, 23, 27, 47, 48).

[11] V. Enes et al. “State-machine replication for planet-scale systems”. In: Proceedings
of the Fifteenth European Conference on Computer Systems. 2020, pp. 1–15 (cit. on

p. 10).

49



BIBLIOGRAPHY

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of distributed consen-

sus with one faulty process”. In: Journal of the ACM (JACM) 32.2 (1985), pp. 374–

382 (cit. on p. 9).

[13] P. Fouto et al. “Babel: A Framework for Developing Performant and Dependable

Distributed Protocols”. In: (2022) (cit. on pp. 11, 35, 36).

[14] J. Gray et al. “The dangers of replication and a solution”. In: Proceedings of the 1996
ACM SIGMOD international Conference on Management of Data. 1996, pp. 173–182

(cit. on p. 14).

[15] M. P. Herlihy and J. M. Wing. “Linearizability: A correctness condition for con-

current objects”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 12.3 (1990), pp. 463–492 (cit. on p. 5).

[16] B. Kemme and G. Alonso. “A new approach to developing and implementing eager

database replication protocols”. In: ACM Transactions on Database Systems (TODS)
25.3 (2000), pp. 333–379 (cit. on pp. 13, 15, 16).

[17] B. Kemme and G. Alonso. “A suite of database replication protocols based on

group communication primitives”. In: Proceedings. 18th International Conference
on Distributed Computing Systems (Cat. No. 98CB36183). IEEE. 1998, pp. 156–163

(cit. on pp. 7, 15).

[18] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”.

In: Commun. ACM 21.7 (1978), 558–565. issn: 0001-0782. doi: 10.1145/359545

.359563. url: https://doi.org/10.1145/359545.359563 (cit. on p. 5).

[19] L. Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18–25

(cit. on p. 10).

[20] C. Li et al. “Making Geo-Replicated Systems Fast as Possible, Consistent When

Necessary”. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX Association,

2012, 265–278. isbn: 9781931971966 (cit. on p. 6).

[21] Y. Lin et al. “Middleware based data replication providing snapshot isolation”. In:

Proceedings of the 2005 ACM SIGMOD international conference on Management of
data. 2005, pp. 419–430 (cit. on p. 16).

[22] H. Mahmoud et al. “Low-latency multi-datacenter databases using replicated com-

mit”. In: Proceedings of the VLDB Endowment 6.9 (2013), pp. 661–672 (cit. on pp. 2,

20, 21, 47).

[23] H. Moniz et al. “Blotter: Low latency transactions for geo-replicated storage”. In:

Proceedings of the 26th International Conference on World Wide Web. 2017, pp. 263–

272 (cit. on p. 2).

50

https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563


BIBLIOGRAPHY

[24] I. Moraru, D. G. Andersen, and M. Kaminsky. “There is more consensus in egalitar-

ian parliaments”. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. 2013, pp. 358–372 (cit. on p. 10).

[25] D. Ongaro and J. Ousterhout. “In search of an understandable consensus algo-

rithm”. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). 2014,

pp. 305–319 (cit. on p. 10).

[26] F. Pedone, R. Guerraoui, and A. Schiper. “The database state machine approach”.

In: Distributed and Parallel Databases 14.1 (2003), pp. 71–98 (cit. on pp. 17, 18).

[27] F. Pedro, L. João, and P. Nuno. “High Troughput Replication with Integrated Mem-

bership Management”. In: (2022, under submission) (cit. on pp. iv, v, 3, 10, 28,

48).

[28] D. Serrano et al. “Boosting database replication scalability through partial replica-

tion and 1-copy-snapshot-isolation”. In: 13th Pacific Rim International Symposium
on Dependable Computing (PRDC 2007). IEEE. 2007, pp. 290–297 (cit. on pp. 16,

17).

[29] A. Sousa et al. “Partial replication in the database state machine”. In: Proceedings
IEEE International Symposium on Network Computing and Applications. NCA 2001.

IEEE. 2001, pp. 298–309 (cit. on pp. 18, 19).

[30] R. Van Renesse and F. B. Schneider. “Chain Replication for Supporting High

Throughput and Availability.” In: OSDI. Vol. 4. 91–104. 2004 (cit. on p. 9).

[31] W. Vogels. “Eventually Consistent”. In: Commun. ACM 52.1 (2009), 40–44. issn:

0001-0782. doi: 10.1145/1435417.1435432. url: https://doi.org/10.1145/1435

417.1435432 (cit. on p. 5).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.8.8) [novathesis-manual].

51

https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://github.com/joaomlourenco/novathesis



	Front Matter
	Cover
	Front Page
	Dedicatory
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Proposed Solution
	1.4 Document Organization

	2 Related Work
	2.1 Replication
	2.1.1 Consistency Models
	2.1.2 Replica Location
	2.1.3 Data Redundancy
	2.1.4 Active and Passive Replication
	2.1.5 Synchronous and Asynchronous Replication
	2.1.6 Single Master and Multi-Master

	2.2 Replication Protocols
	2.3 Database Replication
	2.3.1 Transactions
	2.3.2 Isolation levels
	2.3.3 Database Replication Models
	2.3.4 Strongly Consistent Database Replication

	2.4 Summary

	3 Design and Implementation
	3.1 Architecture
	3.1.1 Server
	3.1.2 Client
	3.1.3 Correctness
	3.1.4 Faults

	3.2 Implementation
	3.2.1 Key-Value store
	3.2.2 Global Partition Clock
	3.2.3 Babel


	4 Evaluation
	4.1 Configuration
	4.2 Results
	4.2.1 Partition Impact
	4.2.2 Write percentage impact
	4.2.3 Key impact
	4.2.4 Read-only impact
	4.2.5 Alternate Paxos variants

	4.3 Conclusion

	5 Conclusion
	5.1 Contributions
	5.2 Future Work

	Bibliography
	Back Matter
	Back Cover


