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Abstract

Enterprise information systems are nowadays commonly structured as multi-tier
architectures and invariably built on top of database management systems respons-
ible for the storage and provision of the entire business data. Database manage-
ment systems therefore play a vital role in today’s organizations, from their reli-
ability and availability directly depends the overall system dependability.

Replication is a well known technique to improve dependability. By maintain-
ing consistent replicas of a database one can increase its fault tolerance and sim-
ultaneously improve system’s performance by splitting the workload among the
replicas.

In this thesis we address these issues by exploiting the partial replication of data-
bases. We target large scale systems where replicas are distributed across wide
area networks aiming at both fault tolerance and fast local access to data. In par-
ticular, we envision information systems of multinational organizations presenting
strong access locality in which fully replicated data should be kept to a minimum
and a judicious placement of replicas should be able to allow the full recovery of
any site in case of failure.

Our research departs from work on database replication algorithms based on group
communication protocols, in detail, multi-master certification-based protocols. At
the core of these protocols resides a total order multicast primitive responsible for
establishing a total order of transaction execution.

A well known performance optimization in local area networks exploits the fact
that often the definitive total order of messages closely following the spontaneous
network order, thus making it possible to optimistically proceed in parallel with
the ordering protocol. Unfortunately, this optimization is invalidated in wide area
networks, precisely when the increased latency would make it more useful. To
overcome this we present a novel total order protocol with optimistic delivery for
wide area networks. Our protocol uses local statistic estimates to independently
order messages closely matching the definitive one thus allowing optimistic exe-
cution in real wide area networks.

Handling partial replication within a certification based protocol is also partic-
ularly challenging as it directly impacts the certification procedure itself. De-
pending on the approach, the added complexity may actually defeat the purpose
of partial replication. We devise, implement and evaluate two variations of the
Database State Machine protocol discussing their benefits and adequacy with the
workload of the standard TPC-C benchmark.





Resumo

Os sistemas de informação empresariais actuais estruturam-se normalmente em
arquitecturas de software multi-nível, e apoiam-se invariavelmente sobre um sis-
tema de gestão de bases de dados para o armazenamento e aprovisionamento de
todos os dados do negócio. A base de dado desempenha assim um papel vital,
sendo a confiabilidade do sistema directamente dependente da sua fiabilidade e
disponibilidade.

A replicação é uma das formas de melhorar a confiabilidade. Garantindo a co-
erência de um conjunto de réplicas da base de dados, é possível aumentar simul-
taneamente a sua tolerância a faltas e o seu desempenho, ao distribuir as tarefas a
realizar pelas várias réplicas não sobrecarregando apenas uma delas.

Nesta tese, propomos soluções para estes problemas utilizando a replicação par-
cial das bases de dados. Nos sistemas considerados, as réplicas encontram-se
distribuídas numa rede de larga escala, almejando-se simultaneamente obter tole-
rância a faltas e garantir um acesso local rápido aos dados. Os sistemas propostos
têm como objectivo adequarem-se às exigências dos sistemas de informação de
multinacionais em que em cada réplica existe uma elevada localidade dos dados
acedidos. Nestes sistemas, os dados replicados em todas as réplicas devem ser
apenas os absolutamente indispensáveis, e a selecção criteriosa dos dados a colo-
car em cada réplica, deve permitir em caso de falha a reconstrução completa da
base de dados.

Esta investigação tem como ponto de partida os protocolos de replicação de bases
de dados utilizando comunicação em grupo, em particular os baseados em cer-
tificação e execução optimista por parte de qualquer uma das réplicas. O me-
canismo fundamental deste tipo de protocolos de replicação é a primitiva de di-
fusão com garantia de ordem total, utilizada para definir a ordem de execução das
transacções.

Uma optimização normalmente utilizada pelos protocolos de ordenação total é a
utilização da ordenação espontânea da rede como indicador da ordem das men-
sagens, e usar esta ordem espontânea para processar de forma optimista as men-
sagens em paralelo com a sua ordenação. Infelizmente, em redes de larga es-
cala a espontaneidade de rede é praticamente residual, inviabilizando a utilização
desta optimização precisamente no cenário em que a sua utilização seria mais
vantajosa. Para contrariar esta adversidade propomos um novo protocolo de or-
denação total com entrega optimista para redes de larga escala. Este protocolo
utiliza informação estatística local a cada processo para "produzir" uma ordem
espontânea muito mais coincidente com a ordem total obtida viabilizando a util-
ização deste tipo de optimizações em redes de larga escala.



Permitir que protocolos de replicação de bases de dados baseados em certificação
suportem replicação parcial coloca vários desafios que afectam directamente a
forma com é executado o procedimento de certificação. Dependendo da abor-
dagem à replicação parcial, a complexidade gerada pode até comprometer os
propósitos da replicação parcial. Esta tese concebe, implementa e avalia duas vari-
antes do protocolo dadatabase state machinecom suporte para replicação parcial,
analisando os benefícios e adequação da replicação parcial ao teste padronizado
de desempenho de bases de dados, o TPC-C.
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Chapter 1

Introduction

In today’s globalized world, it is common to organizations be present in several
countries or continents. It is also increasing the reliance of organizations on theirs
information system whose dependability becomes critical with the growth and
internationalization of the organization.

In a globalization scenario, it is required, due to the presence of the organization
in different zones of the globe, that its information system must be always on-line.
The unavailability of the information system even for a few minutes may represent
a significant loss in the organization’s business, and in an extreme scenario may
also imply its collapse.

To fulfill the requirement of being always on-line the information system must
be fault tolerant, i.e. it must survive the failure of any of its components. In a
globalization scenario, tolerating the failure of any of its components may not be
sufficient, i.e., hosting the information system in a dependable cluster may not
be sufficient. The information system must survive events such as earth-quakes,
tsunamis or any other catastrophic event either natural or not. This requires the
components of the information system to be spread over a wide area network, en-
suring that the disappearing of a location is not sufficient to break the information
system.

In the development of the organizations’ information systems it is common to
use multi-tier architectures, typically 3-tier architectures, usually referred as the
Presentationtier, theLogical or Applicationtier, and theData tier. The Data tier
is the heart of organizations’ information systems as it is the responsible to store
and make available all the organization’s data.

Replication is a well known technique to increase the dependability of a system
component, either hardware or software. Regarding the Data tier of the referred

1



2 CHAPTER 1. INTRODUCTION

architecture, it usually uses a database to store the organization’s data. In order
to achieve the desired degree of dependability, replicated databases are the can-
didates to be used in the Data tier. The use of replicated databases in such an
environment, i.e., in a wide area network poses several challenges.

Currently replicated databases are usually targeted to clusters or local area net-
works and most of the available products relax consistency in favor of better per-
formance, i.e., most of the replicated databases do not ensure strong data consist-
ency among the replicas.

In a globalized scenario, an organization to achieve the desired degree of depend-
ability, must have replicas of their most sensitive data in several locations of a wide
area network. This new kind of environment, with high point to point latency and
limited bandwidth, poses several challenges to replicated databases that have been
targeted to local environments usually with low latency and without bandwidth re-
strictions.

Another issue relating to database replication that deserve some attention is the
data being replicated. In a globalized organization, some of its data is relevant
for all of its branches, but surely there is other data that is only relevant to one
or some of the branches but not to all of the branches. Given that some data is
not relevant to some of the branches of the organization, it is questionable why
to replicated all data to every replica. Should only relevant data be replicated to
each replica, i.e., using partial replication instead of full replication, and it would
be possible to achieve a high degree of dependability, and reduce the required
network bandwidth and also local storage at each replica.

Given the lack of database replication proposals for wide area networks, ensuring
strong consistency and supporting partial replication, the goal of this thesis is to
address and propose solutions for the problems arising from partially replicated
databases and wide area networks.

1.1 Group Based Database Replication

Replication as long been a research issue either in the distributed systems com-
munity [PCD91, Sch93, BMST93, DSS98] either in the databases community
[Tho79, Gif79, TGGL82, GSC+83, ES83, GMB85, Pâr86, Her87, vRT88, Pâr89,
BGMS89, JM90, PL91, Kum91, AAC91, CAA92, WB92, KRS93, TPK95, PW97,
NW98]. Although pursuing the same objective of ensuring replicas consistency
and augment the system dependability, the protocols developed by the distributed
systems and databases communities concentrate in a particular aspect of the prob-
lem, which results in very different and unrelated protocols.
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Replication protocols in the database community concentrate mainly on the data
and its semantic. The properties of the communication primitives and how they
can help in ensuring data consistency are usually disregarded. This results in
lack of acceptance of protocols ensuring strong data consistency, which are con-
sidered too expensive and presenting poor performance. This of course, favors
the adoption of protocols relaxing the consistency criteria, which present better
performance but rely on user intervention or other ad-hoc mechanisms in order to
bring replicas to a consistent state, when inconsistencies arise.

In distributed systems replication protocols, the properties of the communication
primitives present a major concern. This results several communication prim-
itives, ranging from reliable delivery to every destination to totally ordered and
uniform delivery to every destination. The existence of such primitives eases the
development of replication protocols which may rely on the communication prim-
itives to ensure data consistency, without regarding to the data semantics.

Recently several research efforts have been developed in order to combine proto-
cols from both communities. These efforts result in group based replication pro-
tocols [SR96, AAAS97, PGS98, SAA98, KPAS99, KA00a, KA00b, PMJPKA00,
CMZ04, WK05]. The first results obtained by these protocols are encouraging,
giving indicators that, in a replicated database, data consistency do not need to be
sacrificed in favor of performance.

1.2 Wide-Area Networks

The underlying network topology, latency and reliability properties are factors
that must be taken into consideration when developing efficient communication
protocols.

In a globalized organization with multiple campus worldwide, they are connected
by long distance or satellite links. This results, when compared to local area
network, in latencies several times higher when using long distance links and
several hundred times higher when using satellite links.

With respect to the reliability of the wide area network links, they are much more
prone to failures than the ones used in the local area network infrastructure. Long
distance links are usually shared by several telecommunication operators, and
other infrastructures reducing the available bandwidth. Their isolation from the
environment is not always the best resulting in links, being quite easily damaged
even accidentally. When a problem arises with such a link, it usually means at
least several hours of downtime.
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Due to its cost and availability it is not always possible to have redundant long
distance links which would enable operation as long as one of such link does not
fails. In a local area network, even if it spreads around several buildings it is much
cheaper to have redundant links connecting these facilities and ensuring that the
local network is resilient to the failure of one or several of those links.

In a local area network it is usual to have multicast facilities or else low latency
and high bandwidth point to point connection between every two hosts. Hosts in
different local area networks of a wide-area network usually are connected using
the internet, or a point-to-point communication link, with higher latency and lower
bandwidth than the existent in the local area network.

These factors influence the communication protocols behavior resulting in pro-
tocols used in local area network environments defrauding users expectations in
wide area network environments. For instance the changes in the point to point
latency when changing from a local area network to a wide area network, require
optimistic protocols to be re-evaluated in order to ensure their adequacy to such a
scenario.

1.3 Partial Replication

In an organization with several branches spread world wide, there should exist
data stored in the organization’s information system that is relevant to all branches
and information relevant to a specific branch or a subset of all branches.

Full replication of the information system data in every branch surely increases
the overall system dependability, but also incurs in costs that may be considered
unnecessary, relating the network bandwidth and local storage requirements at
each branch.

In the cases where these costs are considered excessive, it should be considered
the possibility of replicating locally at each branch the data that is only relevant
locally, ensuring higher levels of dependability for local data. The other data,
that is relevant to all branches, should be replicated by every replica, ensuring a
dependability level able to support catastrophic events, and providing easy access
to these data, as it is replicated locally.

Partial replication changes some of the assumptions upon which replication proto-
cols have been built. These changes result mainly from the fact of dealing with in-
complete information which may require additional synchronization steps among
the replicas. This is specially unfortunate in wide area networks due to the higher
latencies of these networks, compared to the local area network latencies.
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1.4 Thesis Contributions

Replication protocols suitable for partial replication. This contribution ad-
dresses the use of partial replication in the context of the Database State Machine
(DBSM) [PGS03]. We extend the Database State Machine protocol to handle par-
tial replication while preserving its replication characteristics, namely synchron-
ous replication and the use of the deferred update technique.

An optimistic total order protocol for wide-area networks. We propose a
simple protocol which enables optimistic total order to be used in WANs with
much larger transmission delays where the optimistic assumption does not nor-
mally hold. the proposal exploits local clocks and the stability of network delays
to reduce the mistakes in the ordering of tentative deliveries by compensating the
variability of transmission delays. This allows protocols which are based on spon-
taneous ordering to fulfill the optimistic assumption and thus mask the latency.

Realistic protocol evaluation through centralized simulation. This contribu-
tion addresses the difficulty of realistically evaluate the replication and commu-
nication protocols of the other contributions in various environments. Even with
a complete implementation of the whole system, it is costly to setup and run
multiple realistic tests with slight variations of configuration parameters. This
becomes particularly evident when considering a large number of replicas and
wide-area networks.

We propose a model of a replicated database server that combines simulation of
the environment with real implementations of the replication and communication
protocols. As these are the components responsible for the database replication,
and both the database engine and the network are simulated. This allows to exper-
iment different configuration parameters, to assess the validity of the design and
implementation decisions.

1.5 Dissertation Outline

This dissertation starts with a review of replication protocols developed by the
distributed systems and database communities in Chapter 2. The problem being
solved by the replication protocols is the same – ensure data consistency. The re-
view starts with the description of the five generic phases proposed in [WPS+00]
which may be ordered, merged, or iterated in different ways to describe the rep-
lication protocols. Afterwards, two classes of replication protocols are described
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– read one write all and quorum based replication protocols. Database replica-
tion protocols based on group communication are described next, followed by the
existing work on partial replication.

Chapter 3 defines the environment and provides the definitions that are required
for the remaining chapters.

Chapter 4 proposes an algorithm, thestatistically estimated optimistic total order
algorithm, which tries to mask the factors responsible for the different optimistic
deliveries observed by different processes, thus improving spontaneous total or-
der in WAN. It describes the problems of total order and optimistic total order
multicasts, as well as the reasons preventing spontaneous total order in WAN. Af-
terwards it introduces the motivation for the statistically estimated optimistic total
order protocol and presents an algorithm providing optimistic delivery of mes-
sages based on a fixed-sequencer total order multicast protocol. It also describes
the implementation of the statistically estimated total order protocol in a group
communication toolkit, and evaluates the performance gains of the proposed pro-
tocol based on a simulated model.

Chapter 5 describes the main contributions of this thesis. It starts by revising
database replication with optimistic execution, and associated database model.
Afterwards, it describes the changes and refinements on the components of the
database model in order to support partial replication, proposing two alternatives
for the termination protocol and the trade-offs involved in the selection of each
of the alternatives. It describes the protocols implementations the evaluation en-
vironment and the evaluation of the replication termination protocols using the
TPC-C benchmark [TPC01].

Finally, Chapter 6 concludes this dissertation by presenting the achieved results
and identifying research directions in order to complement the results obtained.
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Chapter 2

Database Replication

Replication has long been a research issue either in Distributed Systems either in
Databases.

In Distributed Systems, most of the research efforts have ben put on group com-
munication protocols and on the ordering and reliability properties offered. Using
the properties of the communication protocol simplifies the development of rep-
lication protocols which delegate much of its complexity to the communication
protocol.

Database replication protocols focused mainly on how to improve data access con-
currency. Since database replication protocols usually make no assumptions on
the properties of the communication protocols, this results in complex protocols
that must simultaneously deal with the communication and concurrency complex-
ities. This is the reason why the increase in the number of the replicas may result
in reduced concurrency and not in improved concurrency as expected [GHOS96].

Only recently, database replication protocols taking advantage of the properties
offered by group communication protocols have emerged. This new class of proto-
cols combines the best of both worlds, overcoming much of the limitations pointed
out to existing database replication protocols, and presenting promising results.

This chapter starts with the description of the five generic phases of [WPS+00],
which may be combined in order to describe the existing replication protocols.
Afterwards, existing replication protocols representative of two class of replic-
ation protocols – read one write all and quorum based replication protocols are
described. Database replication protocols based on group communication are de-
scribed next, followed by the existing work on partial replication.

9



10 CHAPTER 2. DATABASE REPLICATION

2.1 Replication Protocols Classification Criteria

Replication protocols aim at ensuring consistency among a group of replicas. Des-
pite pursuing the same goal and being conceptually similar, protocols developed in
the database and distributed systems community end up very different, rendering
their comparison very difficult.

In [WPS+00], the authors define a set of five generic phases, that may be ordered,
merged, or iterated in different ways in order to describe the replication protocols.
Each of the generic phases is described as:

Request (RE) During the request phase the client submits a transaction to the
system. It may send a message to one replica which in turn will send it to all other
replicas during the server coordination phase (SC) or it may send the message to
all replicas.

In this phase, a difference between databases and distributed systems can be ob-
served. In database systems, clients never contact all replicas, always sending the
transaction to only one of them. Two reasons justify this: the first one is that rep-
lication should be transparent to clients; and the second one is to alleviate client
of the full knowledge of database internals, which is not practical for any aver-
age size database. The knowledge of the database internals resides in the replicas
which will forward, when necessary, the requests to the appropriate replicas. In
distributed systems, the replicas to which a request is sent makes a distinction
between active and passive replication techniques[BMST93, Sch93]. In active
replication, the client sends the request directly to all replicas, while in passive
replication the client sends the request only to one of the replicas.

Another distinction between replication protocols in databases and distributed
systems is that databases pay attention to operation semantics and dependencies
between operations. Doing so database replication protocols improve concur-
rency, further than distributed systems protocols which do not account for op-
eration semantics nor for dependencies among operations, only for the ordering
of the operations.

Server Coordination (SC) During the server coordination phase, operations
are ordered, an execution order established, and several other choices may be
made by the protocols. The choices made in this phase depend on the adopted
consistency criteria, and its requirements on the ordering produced by the ordering
mechanisms.
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In databases, operations are ordered according to data dependencies, so all op-
erations have the same data dependencies at all replicas. This is the reason why
operation semantics is so important in database replication protocols.

Distributed systems, on the other hand, are usually based on very strict notions
of ordering. Ranging from causality, which is based on potential dependencies
between operations, without regarding to data dependencies, to total order in
which all operations are ordered regardless of being or not related.

The consistency criteria, usually adopted in replicated databases isone-copy seri-
alizability [BHG87]. With one-copy serializability replication should be trans-
parent to the clients and as such the several replicas should present a behavior
similar to a centralized system. In distributed systems,sequential consistencyand
linearizability[AW94] are used as the consistency criteria. Sequential consistency
requires that all of the data operations appear to have executed atomically, in some
sequential order that is consistent with the order seen at a replica. Linearizabil-
ity requires that this order also preserves the global ordering of non-overlapping
operations.

Execution (EX) The execution phase, usually uses locks on the data items ac-
cessed by the transactions in order to prevent concurrent transactions to update
the same data items. Updates are, usually, applied to the database only during the
agreement coordination phase (AC), because only after that phase the data must
be made stable.

Agreement Coordination (AC) In the agreement coordination phase the rep-
licas ensure that all or none of them have executed the transaction. This phase
brings up some of the fundamental differences between distributed systems and
database replication protocols.

In databases, it usually corresponds to a two phase commit protocol [BHG87],
during which transaction commit or abort is decided. It is a required step, as after
being ordered there are several factors that may prevent a server to execute the
transaction. For example, server load, consistency constraints, interactions with
local transactions, unavailability of disk space.

On the other hand in distributed systems, after the transaction is ordered it will
be executed and no further coordination is required. This is the reason why in
distributed systems, the factors that led a database server to abort a transaction,
led the server to fail, preventing it to evolve to inconsistent states.
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Response (END) In the response phase transaction’s outcome is sent back to
the client. Client responses can be sent:i) only after the transaction has been
executed by all replicas, i.e., all replicas agree to commit or abort the transaction;
ii ) immediately by the replica that received and executed the transaction, which
only propagates the changes to the other replicas in the server coordination phase.

In databases systems the instant where responses are sent to clients leads to:i)
eager or synchronous replication protocols when the response is sent only after
all replicas have executed the transaction; andii ) lazy or asynchronous replication
protocols, when the client gets the result before all replicas have executed the
transaction.

In distributed systems, responses are usually sent after all replicas have executed
the transaction, an instant where discrepancies among replicas can not arise.

2.2 Replication Protocols

There is a plethora of replication protocols differing mainly on the necessary con-
ditions that must hold in order to execute read or write operations. A deeper ana-
lysis of the protocols may lead to their classification along two classes:i) read one
write all (ROWA); andii) quorum based replication protocols. The first class re-
quires write operations to be executed by all replicas, and the second one balances
the difficulty of executing read and write operations by requiring those operations
to be executed by a set of the replicas. These sets must ensure thati) any read
quorum must intersect with every write quorum; andii) any two write quorums
must intersect.

2.2.1 Read One Write All

In the read one write all protocol (ROWA) [TGGL82], read operations are ex-
ecuted by the replica receiving the client requests and write operations must be
executed by all replicas. Given the impossibility of executing update operations
in the case of a single replica failure, a more flexible protocol, the read one write
all available protocol (ROWAA) has been proposed [GSC+83]. The protocol is
similar to the ROWA but the definition of the available replicas is dynamic in
order to reflect replica failures or network partitions.

In distributed systems, the implementations of the ROWA protocol lead to the
definition of several protocols. Their differences reside in the way replicas are
contacted in order to execute operations and on the mechanisms used to ensure
atomic operation execution.
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2.2.1.1 Active Replication

The principle of active replication, also called the state machine approach [Sch93],
is that if all replicas start in the same initial state and execute the same operations
in the same order, then each of them will do the same work and produce the
same output. This principle implies that operations are processed in the same
deterministic way.

In the active replication protocol, client operations are send to every replica, get
ordered, executed by the replicas and each of the replicas replies to the client
after execution. Depending on the failure model assumed, the client considers
the operation executed when it receives a certain number of responses from the
replicas.

According to the abstract replication protocol the active replication protocol uses
the following phases:

1. (RE) The client sends the operations to the replicas using atomic broad-
cast [HT93].

2. (SC) During server coordination phase an order to the operations submitted
by different clients is established, i.e. the order of the atomic broadcast, and
operations are delivered to the replicas.

3. (EX) After delivering operations they are executed by each replica.

4. (END) All replicas send operation results back to the client.

In this protocol there is no need to agreement coordination, as operation execution
is deterministic and all replicas execute the same operations in the same order,
hence producing the same result.

When considering interactive transactions or transactions involving more than one
operation, the request, server coordination and execution phases are executed for
every operation until the commit request is issued by the client. It is worth point-
ing that transactions could be aborted due to concurrency control constraints,
which do not happens in the single operation scenario.



14 CHAPTER 2. DATABASE REPLICATION

2.2.1.2 Passive Replication

In passive replication or primary-backup replication [BMST93], one of the rep-
licas, theprimary, plays a special role: all operations requested by clients are
directed to it. The primary is also responsible to execute the operations, update
the other replicas and respond to the client.

According to the abstract replication protocol the primary-backup replication pro-
tocol can be described as:

1. (RE) The client sends the operation to theprimary replica.

2. (EX) Theprimaryexecutes it.

3. (SC) In the server coordination phase, updates produced by the execution
are sent to every replica.

4. (AC) In the agreement coordination phase, an atomic commitment protocol
is started, so all or none of the replicas apply the updates.

5. (END) After the termination of the atomic commitment protocol theprimary
sends to the client the result of the operation in case of success or abort oth-
erwise.

As all transactions are executed at the primary, it is its responsibility to abort trans-
actions due to conflicting operations. If transactions are aborted in the agreement
coordination phase, it is never due to conflicting operations but unexpected events,
such as disk outage or any other failures, at one or several replicas.

The required adjustments in this protocol to support interactive transaction in-
volves a loop with the request and execution phases. When the commit request
is received from the client, the protocol enters the server coordination phase and
works as in the single operation case.

2.2.1.3 Semi-Active Replication

The semi-active replication protocol [PCD91], is similar to the active replica-
tion protocol, allowing for non-deterministic processing. In this protocol, non-
deterministic processing is executed only by one of the replicas called theleader
which in turn sends the result of the non-deterministic processing to the other
replicas calledfollowers. The resulting protocol is thus conceptually similar to
state machine protocol except in non-deterministic processing where it resembles
a primary-backup protocol.
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The protocol can be described using the abstract replication protocol as:

1. (RE) The client sends the operations to the replicas using atomic broadcast.

2. (SC) During server coordination phase operations are ordered according to
the atomic broadcast and delivered to the replicas.

3. (EX) After delivering operations they are executed by each replica, if they
only require deterministic processing.

4. (SC) If there are non-deterministic choices to be made, then theleader
makes these choices and informs thefollowers.

5. (END) All replicas send operation results back to the client.

2.2.1.4 Semi-Passive Replication

The semi-passive replication protocol [DSS98], is a replication protocol concep-
tually similar to the primary-backup protocol, as only one of the replicas executes
the transaction while the others apply its updates.

Contrary to the passive replication protocol, in semi-passive replication client’s
operations are sent to all replicas, so replica failures can be made transparent
to the client. Every operation is executed only by one of the replicas, selected
on a per transaction basis, using the rotating coordinator paradigm [CT96]. This
approach distributes transaction processing by all replicas, not overloading the
primary as in the primary-backup protocol. After executing a transaction the rep-
lica starts a variant of a consensus problem, calledConsensus with Deferred Initial
Values. The result of the consensus with deferred initial values execution is the
updates produced by the transaction execution. After terminating this protocol,
every replica responds to the client. Using this protocol the client does not have
to take care of primary failures. They are handled by the consensus with deferred
initially values, which also ensures that the transaction is executed only once.

This protocol can be described using the abstract replication protocol as:

1. (RE) The client sends the operations to all replicas.

2. (SC+EX+AC) The server coordination, execution and agreement coordina-
tion phases are now merged and considered integrated in the consensus with
deferred initial values. For each transaction there is a primary which is se-
lected as the coordinator for that round of the consensus. After the selection
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of the primary it executes the transaction and proposes its result as the ini-
tial value for the consensus problem. The result will be accepted by all the
other replicas if it does not fail. In case of primary failure a new primary is
selected and the transaction gets executed.

3. (END) After the termination of the consensus problem, all replicas apply
the updates to their state and send a response back to the client.

When considering interactive transactions, all transaction operations are executed
by the selected replica.

2.2.2 Quorum Based Replication Protocols

In quorum based replication protocols, before executing an operation it must be
ensured that it is possible to read/write from/to a read/write quorum. In its generic
form, a quorum system is a set system defined over a set of replicas. This set
system holds the property that every two sets in the set system have non-empty
intersection. Every set of the set system is a write quorum, meaning that a write
operation must be executed by all of its members. A read-write quorum system
for a set of replicas is defined over two set systemsR andW , beingW a quorum
system andR a set system with the property that every member ofR has non-
empty intersection with every member ofW .

A quorum based replication protocol can be described using the abstract replica-
tion protocol as:

1. (RE) the client sends its requests to one of the replicas.

2. (SC) In the server coordination phase, inquires are sent to all replicas, after
which a read/write quorum containing the most up to date data is selected.

3. (EX) In the execution phase, in case of a read operation it is sent to one of
the quorum members holding the most up to date version of the data. Write
operations are sent to all members of the quorum.

4. (AC) The agreement coordination phase ensures that none of the quorum
members have failed and that all them have executed the operation, in the
case of write operations.

5. (END) After completion of the agreement coordination phase the operation
result is sent back to the client.

The existing quorum based replication protocols may be classified in voting and
grid quorums which are detailed in the following Sections.
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2.2.2.1 Voting Quorums

Voting protocols such as the majority quorum [Tho79] and weighted voting [Gif79]
are representatives of a class of quorum based replication protocols. In these, each
replica has a number of votes associated to it and quorums are defined so that the
number of votes necessary to form a quorum exceeds half of the total votes. Ad-
ditionally a quorum must fulfill the requirements that2wq > n andrq + wq > n,
wheren stands for the total of votes,wq for write quorum andrq for read quorum.

In order to tolerate replicas failure and systems dynamics, several works proposed
the definition of these quorum levels dynamically according to the number of
replicas [ES83, Her87, BGMS89, JM90].

Voting with witnesses [PL91, Pâr86], with ghosts [vRT88] and with bystanders
[Pâr89] are several variations on voting protocols dealing with the reduction of
storage required and number of replicas necessary to define a quorum in the first
case and to deal with network partition failures in the other cases.

Hierarchical quorum consensus [Kum91] is a generalization of quorum consensus.
It logically organizes the replicas in a multilevel tree (the root of the tree is at
level 0), with leaves corresponding to the replicas and nodes to logical groups. A
node at a certain level is viewed as a logical group which in turn consists of its
subgroups. In order to obtain a quorum, at each level of the tree beyond the root
level, a majority the nodes must be taken, and for each of those nodes a majority
of its sub-nodes.

A generalization of weighted voting is the multidimensional voting presented
in [AAC91]. The aim of multidimensional voting is to provide a protocol with the
simplicity of the voting protocol but with the generality of quorum sets. These are
showed to be more general than voting as there are quorum sets that can not be
obtained by voting [GMB85]. In multidimensional voting the vote assignments
to each replica and the quorums arek-dimensional vectors of non-negative in-
tegers. The quorum has a two dimension definition, a vote quorum which is a
k-dimensional integer vector defining the quorum level for each dimension, and a
numberl, 1 ≤ l ≤ k, which is the number of dimensions of vote assignments for
which a quorum must be obtained.

2.2.2.2 Grid Quorums

Quorum based replication protocols focused essentially on data availability res-
ulting in high available solutions but without noticeable performance improve-
ment. This is a result of these protocols requiring operations to be executed
by a large number of replicas, reducing the possibility of load sharing. Efforts
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to also improve systems performance, resulted in the definition of grid quor-
ums [CAA92, Kum91, NW98]. In the grid protocol theN replicas are logically
organized in a rectangularm × n grid. A read quorum is formed by a replica
from each column of the grid and a write quorum is formed by the union of a
read quorum with all the replicas of a column of the grid. The use of incomplete
or hollow grids [KRS93], was suggested as an improvement on the availability of
grid protocols as well as an improvement on its flexibility allowing the definition
of quorums that could not be obtained with the grid protocol.

The triangular grid [EL75], is a grid protocol where replicas are arranged in a
number of rows such that rowi (i > 1) hasi replicas. In it, a write quorum is
the union of one complete row and one replica from every row below it. A read
quorum can be either one replica from each row or a write quorum. A general-
ization of the triangle grid releasing the requirement that rowi hasi replicas has
been presented as the crumbling walls protocol [PW97].

Improvements on rectangular grids availability have been proposed in [WB92,
TPK95, NW98]. These protocols require quorums to be formed using paths from
left to right, i.e. horizontal paths and from top to bottom, i.e. vertical paths. A
read quorum is a horizontal path while a write quorum is a horizontal and a ver-
tical path.

2.2.3 Database Replication Protocols Using Group Communic-
ation

Despite all the research efforts put on strong consistency replication protocols,
their adoption has been limited. The protocols have also been severely criticized
due to its inability to scale up and to its dead-lock rate of orderO(n3) on the
number of replicas [GHOS96].

In the distributed systems field, efficient communication protocols among a group
of replicas has concentrated a lot of research efforts [Bir85, Ric93, HT93, BvR94,
AMMS+95a, ACBMT95, DM96, Nei96]. These efforts resulted in several im-
plementations of group communication protocols [MSMA90, KT91, ADKM92a,
ADKM92b, MAMSA94, BvR94, AMMS+95a, DM96, MMSA+96].

A proposal for using group communication in the processing of batch transac-
tions [SR96], boosts the research on database replication protocols using group
communication primitives. Group communication primitives have distinct prop-
erties, ranging from simple broadcast with eventual delivery to the more complex
total order broadcast that ensures that all replicas deliver the same messages in
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the same order [HT93]. The use of different broadcast primitives results in dif-
ferent database replication protocols [SAA98]. The relation established between
the group communication primitive and the replication protocol is such that the
stronger the properties of the communication primitive, the simpler the replication
protocol, either in the number of messages required either in additional protocols
that must be used to ensure the correctness of the replication protocol.

The simplest replication protocol is the one using total order broadcast as the
communication primitive. It is the one using fewer messages and not requiring
additional protocols. It is also the protocol to which more attention has been
devoted [AAAS97, PGS98, KPAS99, KA00b].

In exploiting atomic broadcast in replicated databases [AAAS97], the authors start
with a naive protocol implementing a state machine [Sch93], and using a total or-
der broadcast message per operation. The protocol then evolves to not broadcast-
ing read operations, and finally to locally execute transactions broadcasting all
transaction’s operations at commit time. This results in a protocol requiring only
two total order broadcast messages per transaction, or one total order broadcast
message plus an atomic commitment protocol.

Starting with a protocol conceptually similar to the last one, using the deferred
update principle [BHG87], and deterministic certification, a protocol requiring a
single atomic broadcast message per transaction has been proposed [PGS98].

A replication protocol suited to transactions encapsulated in stored procedures
has been presented in [KPAS99]. It assumes that the data is a priori partitioned in
conflict classes and a transaction accesses only one of such conflict classes. This
requirement has been released in [PMJPKA00], allowing transactions to access a
set of conflict classes named compound conflict class. Transactions accessing the
same conflict class are supposed to have high conflict probability, while transac-
tions in different conflict classes do not conflict and can be executed concurrently.
For each conflict class a master replica where update transactions are executed
is defined. Update transactions are executed at the master replica despite being
broadcasted to all replicas. Read only transactions can be executed everywhere
using a snapshot of the data. At each replica there are a set of queues, one for
each conflict class. Upon being received a transaction is queued in the respective
conflict class. As soon as the transaction reaches the head of its queue it is ex-
ecuted if at the master replica. Otherwise it waits until the transaction’s updates
are received from the master replica. After being executed at the master replica,
transaction’s updates are broadcasted to all replicas so its changes can be installed
locally and the transaction removed from its queues.

In [KA00b], the authors propose a protocol, replication with serializability, in
which read operations and read-only transactions are executed locally and write
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operations of update transactions are deferred until commit time. At this point
the transaction write-set is sent in an total order broadcast message to every rep-
lica. Upon delivery every replica requests all write locks on an atomic step, and
execute the write operations after the lock request is granted. If the transaction
being delivered is local and it successfully acquires all its write locks, then it will
broadcast a commit message, otherwise it will broadcast an abort messge. When
the commit or abort message is received, every replica commits its updates or
undo them in the case of an abort, and release all locks. This protocol provides 1-
copy-serializable executions, avoids distributed deadlocks, and a final two-phase
commit. As optimizations to the described protocol, the authors propose two other
protocols, replication with cursor stability and replication with snapshot isolation.
These protocols avoid read/write conflicts thus reducing the abort rates and im-
prove the overall performance.

The research on group based replication protocols resulted in in-core database
implementations [KA00a, WK05] and a middleware implementation [CMZ04].

The Postgres-R [KA00a], implements a group based replication protocol on Post-
gres 6.4.2 [PSQ], a database using two phase locking for concurrency control. It
requires two messages per transaction, one using total order broadcast to dissem-
inate the transaction write sets and another using reliable broadcast send by the
executing replica to commit or abort the transaction. The Postgres-R(SI) [WK05]
implements the replication protocol on Postgres 7.2, a multiversion database en-
gine. It provides snapshot-isolation as its consistency criteria [BBG+95], resulting
in executions that may not always be serializable.

The clustered JDBC(C-JDBC) [CMZ04], is a flexible database clustering mid-
dleware. It addresses the scalability of database clusters by dispersing the load
of the database by several back-ends using RAIDb [CMZ03]. RAIDb applies to
databases the same principle RAID systems apply to individual disks, hiding the
back-ends from C-JDBC’s clients. Its raid levels range from stripping the data-
base, being each back-end responsible for a fragment of the database, to full rep-
lication in which every back-end holds a full copy of the database. In order to
improve C-JDBC’s scalability and eliminate its single point of failure two altern-
atives are proposed. Horizontal scalability, obtained by replicating the C-JDBC
controller, resulting also in an improvement on system fault-tolerance. Vertical
scalability, obtained cascading C-JDBC controllers, allowing the database replic-
ation layer to adapt to the requirements of its applications. A solution improving
both scalability and fault-tolerance is the combination of both horizontal and ver-
tical scalability proposals.

The performance evaluation of the group communication based replication proto-
cols has always been present [HAA99, KA00a, JPPMKA02, AT02, ADMA+02,
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CMZ04, WK05]. The first proposed protocols using group communication prim-
itives have been evaluated using simulation in [HAA99]. As expected it reveals
the protocol broadcasting all updates in a single message as having lower execu-
tion latency. The other results have been obtained in several scenarios and using
distinct applications. One common aspect to all these performance evaluations is
the fact that all of them use real implementations of the group communication and
replication protocols. As the baseline for the evaluation, [CMZ04, WK05] use a
non-replicated database, [KA00a, JPPMKA02] use a replicated database with dis-
tributed locking and [AT02, ADMA+02] use a replicated database using two phase
commit protocols. Additionally in [ADMA+02] the protocols were evaluated in
wide area networks.

In all evaluations of group based replication protocols, improvements in overall
system performance have been obtained indicating that it seems an effective way
of improving systems performance without sacrificing its correctness.

2.2.4 Partial Database Replication

The replication protocols described so far only consider full replication scenarios.
A question arising is whether they are also applicable in partial replication scen-
arios. Initial works in partial replication [Alo97], argue that results obtained for
fully replicated databases are not directly applicable in partially replicated data-
bases. This happens because some discrepancies among the orders obtained by
different replicas may arise, leading to inconsistencies among them. This same
problem, of discrepancies between serialization order and temporal precedence,
arises in federated and multi-database systems. In [Alo97], order preserving seri-
alizability [BBG89] is presented as a sufficient condition for obtaining partial rep-
lication protocols based on group communication.

The use of epidemic protocols for partial database replication has been proposed
in [HAA02]. The replication protocol uses epidemic multicast of database logs
in order to disseminate and order transactions. The logs produced by a transac-
tion are sent to every replica independently of it holding or not a replica of the
modified data. The difference between this protocol and its full replication coun-
terpart [HAA00], is that a replica only updates data items referred in the log for
which it holds a replica. When a transaction tries to access a data item not replic-
ated locally, it places an entry in the log requesting it, generating a new replica,
and keeps the replica updated as long as it finds it useful.
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2.3 Total Order protocols

Total order protocols are used as a building block of some of the replication proto-
cols describe earlier in Section 2.2. In fact the group based replication protocols of
Section 2.2.3, using total order in the transaction’s dissemination are the simpler
ones and also the ones requiring the smaller number of messages to be exchanged
by the replicas.

In [DSU04] the authors studied total order protocols and proposed a classification
of the total order protocols according to the mechanism used to order the mes-
sages. They define five classes of ordering mechanisms: fixed sequencer, moving
sequencer, privilege based, communication history and destinations agreement.
Each of these classes represents a set of protocols that are likely to exhibit similar
behavior.

In the fixed sequencer total order multicast protocols, the process sending a mes-
sage sends it to all the destination processes and to the sequencer. After receiving
the message the sequencer establishes the message order and multicasts the order
to all destinations.

The moving sequencer total order multicast protocols are conceptually similar to
the fixed sequencer ones. The difference is that the initial message is multicasted
to all sequencers instead of to the fixed sequencer. When receiving the message,
only one of the sequencers orders it and multicasts the order to all of its destina-
tions, informing all the other sequencers of the message it ordered.

Since these classes of protocols are conceptually similar, we merged them into a
single class named of sequencer based total order protocols.

The privilege based total order multicast protocols assume the existence of a
token. The token circulates among all processes and grants to its owner the per-
mission to multicast and order messages. Messages multicasted while the process
is not the token holder are queued. When receiving the token, the process orders
all messages in its queue and multicasts them. Afterwards it sends the token along
with the current ordering version to the next token holder.

Regarding the communication history based total order multicast protocols, in the
ones using causal history, each process has atimestampwhich it increases by 1
when sending a message, attaching it to the message being sent. In the reception
of a message, the process timestamp is increased by 1 if the process timestamp
is higher than the timestamp of the received message. If the timestamp of the
received message is higher than the local timestamp, then the message timestamp
is increased by 1 and becomes the process timestamp. Messages are delivered
according to their timestamp and messages with the same timestamp are ordered
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according to to the identifier of its sender. These protocols can only deliver a
messagem after receiving from every process, a message that was multicasted
after the reception ofm, or that is concurrent withm, i.e., that has the same
timestamp asm.

The destinations agreement total order multicast protocols require that all pro-
cesses agree on the messages order. Their agreement can be on the message order,
on a message set or on the proposed message order. In the protocols using agree-
ment on the message order, the sender multicasts the message to be ordered to all
processes, which will assign a local timestamp to it and multicast this timestamp
to all processes. When the local timestamp is received from all processes the mes-
sage global timestamp is established and messages are delivered according to the
global timestamp.

From the algorithms description, the communication patterns, as well as the ex-
pected execution latency of each protocol class can be established. The commu-
nication patterns and expected latencies of the protocols execution are presented
in Table 2.1, wheren andm are number of processes, withm < n, k is the number
of messages queued andl is the point to point latency.

Sequencer
Privilege Communication Destinations

based history agreement
Comm.

n + n 1 + (n
k
|n) n + m× n n + n× n

Pattern
Latencya l + l n

2
l l l + l

Latencyb 2l + 6l
n

n+6
2

l 4l 4l + 4l
a Assumes that point to point latency between any two processes isl.
b Assumes that point to point latency betweenn−1 of the processes isl, and that

the remaining one has a point to point latency of4l.

Table 2.1: Total order protocols communication pattern and latency.

In terms of communication pattern, the communication history is the protocol
requiring fewer messages when all processes send messages at the same rate, re-
quiring a single multicast message to order a message (i.e.,m = 0). It may require
some additional messages (i.e.,m 6= 0), when some process,m, send messages
less frequently than the others, in order to avoid latency increases.

The privilege based protocol requires a point to point message from the token
holder to the next token holder andi) a multicast message from the token holder
to multicast and order all the messages in the queue; orii) k multicast messages to
multicast and order each of thek messages in its queue. When several messages
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are multicasted and ordered in a single multicast message, the privilege based is
the protocol requiring fewer messages to order a set of messages.

The sequencer based protocol requires two multicast messages to order a mes-
sage, i.e., a multicast message from the sender to all destinations and a multicast
message from the sequencer to all destinations.

The destinations agreement protocol requires a multicast message from the sender
to all destinations followed by a multicast message from each destination to all the
destinations to send the ordering info.

Regarding the protocols latency, in a scenario where the processes point to point
latencies are equal, the communication history is the one with the lowest latency,
in a optimal scenario where all processes are sending the same number of mes-
sages and at the same message rate. In this scenario, the protocol latency equals
the point-to-point latency.

The sequencer based and destinations agreement protocols present similar laten-
cies which are twice as large as the point to point latency. In the sequencer based
it is the latency of a message from the sender to the sequencer plus the latency
from the sequencer to all destinations. In the destinations agreement the latency
is the sum of the latency of the message from the sender to all destinations plus
the latency of the message sent from each of the destinations.

In the privilege based protocol, the latency of the protocol depends on the instant
a message is sent. if it is sent immediately after the token is passed away then the
latency will be equal to the time it takes to the token to reach this sender again.
If the message is sent immediately before being the token holder, then the latency
will be close to 0. Considering the middle case, i.e. a scenario in which messages
are sent at a constant rate, then the latency will be equal to(n)

2
l.

Considering a scenario in which a process point to point latency is four times
higher than the other processes point to point latency, this single process with
higher latency will affect the latency of all protocols. The sequencer based pro-
tocols are the ones which the smallest increase in the protocol latency. In the
privilege based protocols the token period will be increased by the latency of the
process with higher point to point latency, and the communication history and
destinations agreement protocols will observe a latency increment proportional to
the highest point to point latency among every two processes.
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2.4 Summary

Replication has long been a research issue in databases and distributed systems.
However, few commercial databases integrate results derived from research. Usu-
ally replicated databases do not support synchronous replication, i.e. replication
protocols ensuring one copy serilizability. Distributed systems based on group
communication can be found in military environments such as the AEGIS war-
ship, in trading systems such as the New York and Swiss stock exchange, in air
traffic control, factory process control and telephony.

In distributed systems, communication complexities such as reliability and order-
ing guaranties are hidden from the application. Application developers use the
communication primitives provided, usually by a group communication toolkit.
This enable them to concentrate in the application development rather than on
ensuring the properties required for the communication primitives.

In databases, usually there is no separation between the database and the com-
munication layer. The use of a generic communication layer means that it does
not provide reliability or ordering guaranties, so the programmer must implement
them and integrate them with the database. Doing so, the programmer must con-
centrate in its application but also in every other aspect related to communication,
making it difficult to implement efficiently the replication strategies proposed in
the literature, due to the involved complexity.

The work presented in [JPPMAK03], studied several quorum based replication
protocols and conclude that the ROWA protocol is the adequate one for most situ-
ations. It is also the protocol implemented by most of the group based replication
protocols. The group based replication protocols presenting better performance
results are the ones using optimistic execution and total order multicast to dissem-
inate and order transactions.

The total order protocols have also been a research issue for a long time and a re-
cent survey [DSU04] classified the existing protocols according to the mechanism
used to order messages, which resulted in 5 different classes of protocols. The
observation of a simple algorithm of each class allowed to establish the commu-
nication pattern and protocol execution latency of each class.

The analysis of the communication pattern showed that in a system withn pro-
cesses, the privilege based protocols requiren+1 messages to deliver in total order
a single or a set of messages. The communication history protocols require, in an
ideal scenario,n messages to deliver in total order each message. The sequencer
based protocols requires2n messages and the destinations agreement protocols
requiren+n2 messages to deliver in total order each message. This results in that
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if using the communication pattern as the selection criteria, then privilege based
or communication history protocols should be selected.

The analysis of the protocol execution latency revealed that communication his-
tory and destinations agreement protocols execution latency is directly related to
the point to point latency of a single process exhibiting high latency. The priv-
ilege based protocols are additionally affected by the number of processes. The
only class of protocols whose execution latencies are not directly influenced by
the existence of a single process with higher point to point latency is the sequen-
cer based class of protocols. In this case the only messages which have higher
ordering latency are the ones sent by the process with higher latency. From this it
results than when performance is the selection criteria, and there is variable point
to point latency among the processes, then the sequencer based protocols should
be selected.



Chapter 3

Models and Definitions

3.1 Distributed System Model

The considered distributed system is composed of two completely connected sets
S = {s1, ..., sn} andC = {c1, ..., cm}, respectively of database sites or processes,
and client sites.

Database sites communicate through message passing (i.e., no shared memory).
Communication is done through a fully connected network in which, reliable
and totally ordered broadcast primitives are available [HT93]. Reliable broadcast,
totally ordered broadcast and delivery of messages are represented by stepsrb-
cast(m), abcast(m)andbdel(m). Uniform agreement is assumed to hold [HT93]:
A message delivered by any database site, is eventually delivered to all correct
database sites.

A database site iscorrect if, in response to inputs, it behaves in a manner consist-
ent with its specification [Cri91]. A failure occurs when the database site behavior
is different from its specification.

If, after a first failure to behave according to its specification, a database site omits
to produce output to subsequent inputs until its restart, the database site is said
to suffer acrash failure[Cri91]. In the assumed system model, database sites fail
only by crashing (i.e., no Byzantine failures [Cri91]), and do not recover, thus
stopping to execute database operations, or broadcast or deliver further messages.
A crash is modeled as the repeated execution of event CRASH. It is assumed that
scheduling of events in processes is fair: No event is forever ready to be executed
without in fact being executed.

The availability of totally ordered broadcast implicitly assumes that consensus is
solvable in the assumed system model [FLP85]. It is not explicitly explained how
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this is achieved or otherwise make use of any assumptions besides an asynchron-
ous system model where sites fail only by crashing and do not recover.

3.2 Databases and Transactions

A database is defined using the page model [GG02]: A databaseΓ = {x, y, z, . . .}
is a collection of named data items which have a value. The combined values of
the data items at any given instant is the database state. There are no assumptions
on the granularity of data items.

A database system (DBS) is a collection of hardware and software modules that
support commands to access the database, called database operations (or simply
operations). Data items are manipulated by read and write operations. A read
operation on data itemx, depicted asr(x), returns the value stored in data itemx,
and a write operation, depicted asw(x), changes the value of data itemx.

The DBS executes each operation atomically, i.e., it behaves as if operations ex-
ecution is sequential. However, typically it will execute operations concurrently.
That is, there may be times when it is executing more than one operation at once.
However, even if it executes operations concurrently, the final effect must be the
same as some sequential execution.

The DBS also supports transactions whose semantics are ruled by the ACID prop-
erties [GR93]:

Atomicity A transaction’s changes to the state are atomic: either all happen or
none happen.

Consistency A transaction is a correct transformation of the state. The actions
taken as a group do not violate any of the integrity constraints associated
with the state.

Isolation Even though transactions execute concurrently, it appears to each trans-
action,t, that others executed either beforet or aftert, but not both.

Durability Once a transaction completes successfully (commits), its changes to
the state survive failures.

A transactiont is a partial order on a set of operations of the formr(x) or w(x),
wherex ∈ Γ, with an initial operation (start transaction) depicted asbt and final
operation, commit depicted asct or abort depicted asat, depending on the trans-
action termination status. I.e., if a transaction ends with commit then all of its
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updates have been applied to the database. If it ends with abort then none of its
update operations are visible to other transactions. Transaction reads and writes,
as well as multiple writes applied to the same data item are ordered. A transaction
with m operations is a pairt = (op, <t) such that:

• ∀i1 < i < m, opi
t ∈ {r(x), w(x)}

• opi
t <t opj

t iff i < j

• op1
t = bt

• opm
t = ct|opm

t = at

The result of executing a transactiont is a sequence of reads and writes of data
items. The read set of the transaction, denoted byRS(t), is the set of identifiers
of the data items read byt. The write set, denotedWS(t), is the set of identifiers
of the data items written byt. The set of data items written byt, its write values,
is denotedWV (t).

A partially replicated database is a set of DBSs, each of them called a database
site, holding a partial copy of the database data items. For each data itemx ∈ Γ,
it is assumed that there is at least one correct database site that storesx. For
each database sites ∈ S, Items(s) is defined as the set of data items replicated
in s; the set of all database sites replicating a data itemx ∈ Γ is denoted by
Sites(x). Given a transactiont, RS(t).s andWS(t).s identifies the data items
read or written, respectively, byt and replicated in a particular database sites.

Transactions execution is formalized by schedules and histories [GG02]. A sched-
ule is a prefix of a history, which defines in what order a set of transactions
T = {t1, . . . , tn} are executed in a database. Eachti ∈ T has the formti =
(opi, <i), with opi denoting the set of operations ofti and<i denoting their order-
ing 1 ≤ i ≤ n. A history forT is a pairs = (op(s), <s) such that:

• op(s) ⊆ ∪n
i=1opi

⋃
∪n

i=1{bi, ai, ci} and∪n
i=1opi ⊆ op(s), i.e., s consists

of the union of the operations from the given transactions plus a starting
operation,bi, plus a termination operation which is either aci (commit) or
anai (abort) for eachti ∈ T ;

• (∀i1 ≤ i ≤ n) ci ∈ op(s) ⇐⇒ ai 6∈ op(s), i.e., for each transaction, there
is either a commit or abort ins, but not both;

• ∪n
i=1 <i⊆<s, i.e., all transaction orders are contained in the partial order

given bys;
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• (∀i, 1 < i ≤ n)(∀p∈opi
) p <s bi, i.e., the start operation always appears as

the first step of a transaction.

• (∀i, 1 ≤ i < n)(∀p∈opi
) p <s ai∨p <s ci, i.e., the commit or abort operation

always appears as the last step of a transaction;

• every pair of operationsp, q ∈ op(s) from distinct transactions that access
the same data item and have at least one write operation among them is
ordered ins in such a way that eitherp <s q or q <s p.

A history s is serial if for any two transactionsti and tj in it, wherei 6= j, all
operations fromti are ordered ins before all operations fromtj or vice-versa.

In a schedules, conflicts between transactionst andt′, such thatt 6= t′ and both
belong to the schedule, are characterized as:

• two data operationsp ∈ t, q ∈ t′ are in conflict ins if they access the same
data item and at least one of them is a write operation, i.e.,(p = r(x)∧ q =
w(x)) ∨ (p = w(x) ∧ q = r(x)) ∨ (p = w(x) ∧ q = w(x))

• conf(s) ≡ {(p, q)|p, q are in conflict ins andp <s q}, is called the conflict
relation ofs.

Two scheduless ands′ are conflict equivalent, denoteds ≈c s′, if they have the
same operations and the same conflict relations, i.e., if:

• op(s) = op(s′) and

• conf(s) = conf(s′)

A history s is conflict-serializable if there exists a serial historys′ such thats ≈c

s′. The class of all conflict-serializable histories is denoted CSR.

The conflict graphG(s) = (V, E) of a schedules is defined by:

• V = ct

• (t, t′) ∈ E ⇐⇒ t 6= t′ ∧ (∃p ∈ t)(∃q ∈ t′)(p, q) ∈ conf(s)
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I.e., the vertices of the graph are the committed transactions ins and there is
an edge between two committed transactions if there are conflicting operations
between the transactions.

The serializability theorem states that a historys belongs to class CSR iff its con-
flict graphG(s) is acyclic.

In a database, the existence of several versions of a data item is a method to im-
prove concurrency among transactions, allowing executions otherwise impossible.
For instance, the existence of several versions of a data item allows for transac-
tions to keep reading a data item from an older version despite a transaction gen-
erating a new version of that data item have been committed. The improvement in
concurrency results from the fact of the reading transaction continue its execution,
instead of being aborted as in the case where there was only a version of the data
item.

The multiversion model which considers several versions of a data item is attract-
ive for non-replicated databases as it improves concurrency, but also allows to
model replicated databases, in which, each replica is considered as a version of
the database.

The multiversion model depends on a version functionh defined as: Lets be
a history with initialization transactiont0 and final transactiont∞. A version
function fors is a functionh, which associates with each read step ofs a previous
write step on the same data item, and which is the identity on write steps.

In the multiversion model, a history, i.e., a multiversion history on a setT =
{t1, . . . , tn} is defined as is a pairm = (op(m), <m) where<m is an order on
op(m) and:

• op(m) = h(∪n
i=1(opti)) for some version functionh;

• For all t ∈ T and all operationsp, q ∈ op(t) the following holds:p <t q ⇒
h(p) <m h(q);

• if h(rj(x)) = rj(xi), i 6= j, andcj is in m, thenci is in m andci <m cj;

A multiversion schedule is a prefix of a multiversion history.

If a multiversion schedule version function maps each read step to the last preced-
ing write step on the same data item, then this schedule is called a monoversion
schedule.

In a multiversion schedulem, a multiversion conflict is a pair of stepsri(xj) and
wk(xk) such thatri(xj) <m wk(xk).
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A multiversion historym is multiversion conflict-serializable if there is a serial
monoversion history for the same set of transactions in which all pairs of oper-
ations in multiversion conflict occur in the same order as inm. The class of all
multiversion conflict serializable histories is denotedMCSR.

The multiversion conflict graph of a multiversion schedulem is a graph that has
the transactions ofm as its nodes and an edge fromti to tk if there are stepsri(xj)
andwk(xk) for the same data itemx in m such thatri(xj) <m wk(xk).

A multiversion history isMCSR iff its multiversion conflict graph is acyclic.

3.3 Fault-tolerant Communication Primitives

Process communication constitutes one of the basic building blocks of a distrib-
uted system. The guaranties provided by the communication layer cannot be dis-
regarded as they also play an important role on application development. De-
pending on the application different scenarios on message reliability and ordering
might be necessary. This section recalls the definition of some communication
primitives defined in [HT93].

3.3.1 Reliable Broadcast

Reliable broadcast is the weakest type of fault-tolerant communication primitive
considered. It is a broadcast primitive that satisfies the following three properties:

• validity: If a correct process broadcasts a messagem, then it eventually
deliversm;

• Agreement:If a correct process delivers a messagem, then all correct pro-
cesses eventually deliverm;

• Integrity: For any messagem, every correct process deliversm at most
once, and only ifm was previously broadcast bysender(m).
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3.3.2 Atomic Broadcast

When all messages must be delivered in the same order by all the processes this
characterizes an Atomic Broadcast, a Reliable broadcast with the following total
order property:

• Total Order: If correct processesp andq both deliver messagesm andm′,
thep deliversm beforem′ if and only if q deliversm beforem′.
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Chapter 4

Optimistic Total Order in Wide
Area Networks

Total order multicast greatly simplifies the implementation of fault-tolerant ser-
vices using the replicated state machine approach [Sch93]. By ensuring that de-
terministic replicas handle the very same sequence of requests from clients, it is
ensured that their state is kept consistent and the interaction with clients is serial-
izable [GS97b].

Implementation of total order multicast is however more costly than other forms
of multicast. The establishment of a total order has an unavoidable impact on
latency. For instance, in a sequencer based protocol [BSS91, KT91] all processes
(except the sequencer itself) have to wait for the message to reach the sequencer
and for the sequence number to travel back before the message can be delivered.

Protocols based on causal history [Lam78, PBS89, EMS95] can provide latency
proportional to the inter-arrival delay of each sender and thus lower latency than
sequencer based protocols. However, when each sender has a large inter-arrival
time and low latency is desired, this requires the introduction of additional control
messages. This is especially unfortunate in large groups and in wide area networks
(WAN) with limited bandwidth links.

In most protocols, based on a sequencer [BSS91, KT91] or on consensus [CT96,
Anc96], the total order is given by the spontaneous ordering of messages as ob-
served by some process. In addition, in local area networks (LAN) it can be ob-
served that the spontaneous order of messages is often the same in all processes.
Disclosing the spontaneous ordering of messages to the client application, com-
pensates part of the total order multicast latency by allowing the computation to
proceed in parallel with the ordering protocol [KPAS99]. Later, when the total
order is established and if it confirms the spontaneous order, the application can
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immediately use the results of theoptimisticcomputation. If not, it must undo the
effects of the computation and restart it using the correct ordering.

The effectiveness of the technique rests on the assumption that a large share of
correctly ordered optimistic deliveries offsets the cost of undoing the effects of
mistakes. While this is the case for LAN, in WAN loopback optimization, packet
loss, network topology and routing policies are responsible for an increase in the
number of mistakes. This is unfortunate as this makes optimistic delivery useful
only in LAN where the latency is much less of a problem than in WAN.

This chapter proposes an algorithm, thestatistically estimated optimistic total or-
der algorithm, which tries to mask the factors responsible for the different optim-
istic deliveries observed by different processes, thus improving spontaneous total
order in WAN.

This chapter is organized as follows: the next section recalls the problems of total
order and optimistic total order multicasts, as well as the reasons preventing spon-
taneous total order in WAN. Section 4.2 introduces the motivation for the statistic-
ally estimated optimistic total order protocol and presents an algorithm providing
optimistic delivery of messages based on a fixed-sequencer total order multicast
protocol. Section 4.3 describes the implementation of the statistically estimated
total order protocol in a group communication toolkit. Section 4.4 evaluates the
performance gains of the proposed approach based on a simulated model. Finally,
Section 4.5 summarizes the results obtained by the statistically estimated optim-
istic total order protocol and discusses its applicability.

4.1 Optimistic Total Order Multicast

4.1.1 Total Order Multicast

Total order multicast ensures that no pair of messages is delivered to distinct des-
tination processes in different order.

Formally, total order multicast is defined by primitivesto-multicast(m) and to-
deliver(m), and satisfies the following properties [HT93]:

Validity . If a correct process to-multicasts a messagem, then it eventually to-
deliversm.

Agreement. If a correct process to-delivers a messagem, then all correct process
eventually to-deliversm.
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Integrity . For any messagem, every correct process to-deliversm at most once,
and only ifm was previously to-multicast by the sender ofm.

Total Order . If correct processesp andq both to-deliver messagesm andm′,
thenp deliverm beforem′ if and only if q deliversm beforem′.

Total order multicast has been shown to be equivalent to the generic agreement
problem of consensus [CT96] and therefore assumed to be solvable in our as-
sumed system model (Chapter 3). In some protocols, consensus is explicitly in-
voked to decide the message sequence [CT96, Anc96]. In others, consensus is
implicit in a group membership service [BSS91, HLvR99, EMS95].
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Figure 4.1: Sequencer based total order protocol.

There is a plethora of total order protocols for asynchronous message passing sys-
tems which can be classified according to several criteria [DSU04]. Some order
the messages while disseminating them [AMMS+95b, ACM95, HLvR99]. Oth-
ers, take advantage of an existing unordered multicast protocol [BSS91, KT91,
CT96] and work in two stages: First, messages are disseminated using a reliable
multicast protocol. Then, an ordering protocol is run to decide which is the correct
delivery sequence of buffered messages.

An example of a protocol often used in group communication toolkits is the one
based on a sequencer [BSS91, KT91], which uses consensus implicitly in the
view-synchronous reliable multicast protocol used to disseminate messages pre-
vious to ordering them. As depicted in Figure 4.1, a data message is disseminated
using an unordered reliable multicast primitive. Upon reception (depicted as a
solid dot), the message is buffered until a sequence number for it is obtained. A
single process (p1 in the example) is designated as the sequencer; it increments a
counter and multicasts its value along with the original message identification to
all receivers as a control message. Data messages are then delivered according to
the sequence numbers. A group membership protocol is used to ensure that for
any given data message there is exactly one active sequencer.

Besides being a very simple protocol, it performs very well, especially in net-
works with limited bandwidth or in large groups with large and variable message
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inter-arrival times: it requires at most a single additional control message for each
data message and any message can always be delivered after two successive mes-
sage transmission delays. The basic protocol is also easily modified to cope with
higher message throughput by batching sequence numbers for several messages
in a single one [BSS91], reducing the number of control messages at the expense
of a higher latency.

4.1.2 Optimistic Total Order

A reliable multicast protocol can deliver a message after a single transmission
delay from the originator to the receiver. This contrasts with the latency of totally
ordered multicast which is twice as large when using a sequencer based protocol,
or proportional to the message inter-arrival delay in protocols using causal history.
However:

• Some protocols, such as the sequencer based, produce an ordering which is
the spontaneous ordering observed by some process.

• In LAN, it can be observed that the spontaneous ordering of message recep-
tion of all processes is often the same and therefore, the same as the final
ordering decided by the sequencer.

The optimistic total order multicast protocol [PS03] takes these observations into
consideration to improve average delivery latency of a consensus based total order
protocol.

Further latency improvements can be obtained if the application itself can take ad-
vantage of a tentatively ordered delivery. This is called optimistic delivery [PS03,
SPOM01] as it comes from the optimistic assumption that reliable multicast or-
ders messages spontaneously. It also implies that eventually an authoritative total
order is determined, leading to a confirmation or correction of the previously used
delivery order. To the interval between the optimistic delivery and the authoritat-
ive delivery we calloptimistic window. It is during this interval that the application
can optimistically do some processing in advance.

To define optimistic total order multicast two different delivery primitives are
used. An optimisticopt-deliver(m) primitive that delivers messages in a tentative
order and a finalfnl-deliver(m) primitive that delivers messages in their final, or
authoritative, order. Optimistic total order multicast satisfies the following prop-
erties [SPOM01]:
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Validity: If a correct process to-multicasts a messagem, then it eventually fnl-
deliversm.

Agreement: If a correct process fnl-delivers a messagem, then every correct
process eventually fnl-deliversm.

Integrity: For every messagem, every process:

• opt-deliversm only if m was previously multicast, and;

• every process fnl-deliversm only once, and only ifm was previously
multicast.

Local Order: No process opt-delivers a messagem after having fnl-delivered
m.

Total Order: If two processes fnl-deliver two messages, then they do so in the
same order.

Notice that if the optimistic ordering turns out to be wrong, the application has to
undo the effect of any processing it might have done. Therefore, the net advantage
of optimistic delivery depends on the balance between the cost of a mistake and
the ratio of correctly ordered optimistic deliveries. When the optimistic delivery is
wrong, there is a performance penalty: The processing resources used have been
wasted.

The tradeoff is thus similar to the one involved in the design of cache memories.
However, the protocol designer has no possibility to reduce the cost of a mistake,
as this depends solely on the application. The only option is thus to try to maxim-
ize the amount of messages which are delivered early but correctly ordered.

4.2 Statistically Estimated Optimistic Total Order

4.2.1 Obstacles to Spontaneous Total Order

A high ratio of spontaneously totally ordered messages which results in good per-
formance of optimistic applications is not trivially achieved, especially in WAN.
One reason for this is the loopback optimization in the operating system’s network
stack. Noticing that the outgoing packet is also to be delivered locally, the oper-
ating system may use loopback at lower layers of the protocol stack and immedi-
ately queue the message for delivery. This allows self messages to be delivered in
advance of messages from other senders which have reached the network first.
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Another reason for out of order delivery lies in the network itself. Although not
frequent, there is a possibility that messages are lost by some but not all destina-
tions. A reliable multicast protocol detects the occurrence and issues a retransmis-
sion. However, the delay introduced opens up the possibility of other messages
being successfully transmitted while retransmission is being performed.

An additional issue is the complexity of the network topology. Different mes-
sages can be routed by different paths, being therefore subject to different queuing
delays or even to being dropped by congested routers. This is especially relevant
when there are multiple senders. Receivers which are nearer, in terms of hops, to
one of them will receive its messages first. Receivers which are nearer of another
will possibly receive messages ordered differently.

Notice however that bad spontaneous order in WAN is not attributable to the large
network delays themselves, but to the fact that the delays to different destina-
tions are likely to be different, often by two orders of magnitude. Consider Fig-
ure 4.2(a). Messagesm1 andm2 are multicast to three different processes, includ-
ing the senders themselves. The time taken to transmit each message varies with
the recipient, for instance, transmission to the sender itself (typically hundreds of
microseconds by loopback) takes less time than transmission to other processes
(typically up to tens of milliseconds over a long distance link). The result is that
processp1 spontaneously orders messagem1 first whilep2 andp3 deliverm2 first.

p1

p2

p3

m1

m2

d1
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(a) Variable delays lead to overlapping deliveries.
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(b) Similar delays avoids overlapping deliveries.

Figure 4.2: Transmission delays and spontaneous total order.
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Figure 4.2(b) shows a similar example where message transmission delays are
longer but where is it more likely that messages are delivered by all processes
in the same order. What actually matters is the difference between transmission
delays to different processes depicted asd1 andd2. Larger values ford1 andd2

mean that there is a higher probability of transmission overlapping and thus of
different delivery order.

4.2.2 Delay Compensation

A network exhibiting identical transmission delays with low variance among any
pair of processes would enable spontaneous total ordering of messages. This ob-
servation leads to the intuition underlying the proposed protocol: given the mag-
nitude of the latency introduced by total order protocols it should be possible, by
judiciously scheduling the delivery of messages, to reduce the differences among
transmission delays andproducean optimistic order which is likely to match the
authoritative total order. As an example, notice that Figure 4.2(a) can be trans-
formed into Figure 4.2(b) simply by delaying the deliveries of messagem1, lead-
ing to a total order ofm2 andm1;

What remains to be established is how to determine the correct delays to introduce
to each message such that the likelihood of matching the authoritative total order
is improved. The challenge is to do this with minimal overhead, both in terms of
messages exchanged as well as computational effort. In addition, by introducing
delays this technique increases the average latency of optimistic delivery. This
must therefore be minimized and compensated by the higher share of correctly
ordered optimistic deliveries.

Notice that in a WAN this cannot ever replace a total order algorithm: Transmis-
sion delays cannot be precisely estimated, some uncertainty exists and thus it is
likely that some messages are delivered out of order [Pax97]. On the other hand,
if the only modification to the original sequencer algorithm is the introduction
of finite delays, its correctness in an asynchronous system model is unaffected.
Therefore, by reusing an algorithm known to be correct in the asynchronous sys-
tem model, the robustness of the solution is ensured [OPS01]. Timing assump-
tions, namely on the stability of transmission delays as measured by a process
local clock are used only to improve the performance.

4.2.2.1 Relatively Equidistant Receivers

As the basis for the protocol, it is considered a fixed-sequencer total order mul-
ticast algorithm as described in Section 4.1.1. It is assumed that the total order
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of messages is based on the spontaneous ordering of messages as seen by the
sequencer.

The different orders seen by a processp between the messages it delivers optim-
istically and those that it delivers authoritatively reflect therelative differences
between the communication delays from the senders top and to the sequencer.
For simplicity these communication delays are treated as “distances” between pro-
cesses (more precisely, as directed distances, as the distance fromp to q can be
different from that ofq to p). If, through the introduction of artificial delays, each
processp and the sequencer are set as relatively equidistant receivers with respect
to all other processes, then the order in whichp delivers messages optimistically
will be that of the sequencer and therefore will match the authoritative order.

The way to increase the distance fromq to p is to delay the optimistic delivery
of messages fromq at p. This means that whenp needs to getq closer eitherp
reduces the delay it might be imposing to the messages fromq, or p has to stand
back from all other processes by delaying the optimistic delivery of messages
from these processes. This is the basic mechanism of the algorithm. It is simple
and independently managed at each process, e.g., the adjustment of the distance
betweenp andq is independent from that betweenq andp.

Two particular cases however require special attention. One is the fact that any
process is usually closer to itself than from the sequencer and thus it will have to
distance from itself. This case is simple, each process will delay the optimistic de-
livery of its own messages such that “it distances from itself” as it distances from
the sequencer. The other case regards the sequencer itself. While, as any other
process, the sequencer is closer to itself than to the other processes. The distance
to the sequencer does not apply here and the order of optimistic delivery trivially
matches that of the authoritative’s. However, it is required, as happens with the
other processes, that the sequencer “distances from itself” by delaying the optim-
istic delivery of its own messages.1 The reason for this is that unless the sequencer
delays the optimistic delivery of its own messages, the optimistic and authoritative
delivery of its messages will always occur almost simultaneously. This is true at
the sequencer process itself as well as in any other process and, as exemplified in
the next section, it would eventually force the same phenomenon in the messages
of the other processes. The problem of delaying the optimistic delivery of the
sequencer’s messages is that it also delays their authoritative delivery.

1The delay imposed on the optimistic delivery of sequencer’s own messages may impact all
other processes and be responsible for an increase in the overall latency, as sequencer’s messages
are only ordered after being optimistically delivered.
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Figure 4.3: Calculation of relative equidistance.

4.2.2.2 Distance Calculation

Consider the scenario depicted in Figure 4.3. Lets represent the sequencer’s
timeline andp that of some processp. Messagem1 is multicast by a processp1

(not shown) and messagem2 is multicast by another processp2 (also not shown).
Both the sequencers and a second processp receivem1 andm2 as shown. Upon
reception they are ordered bys, which assigns them sequence numbers and deliv-
ers them immediately. The authoritative order of the messages becomesm1, m2 as
this was the spontaneous order seen bys. In contrast, processp can only make an
optimistic guess about the final relative order ofm1 andm2, and in this situation
it would have mistakenly predicted the delivery ofm2 beforem1. The final order
is known only upon the reception of the sequence numbers froms.

As soon as it receives the sequence numbers for both messages,p becomes aware
that its relative distances top1 andp2 are different from those ofs, because it has
received the messages in the inverse order. If it had delayed the optimistic deliv-
ery of m2 until after the reception ofm1, it would have compensated its relative
distance from the senders with respect to that of the sequencer and matched the
authoritative order.

Although any sufficiently large delay imposed onm2 by p would correctly order it
relatively tom1, a correct prediction of the final order byp requires an evaluation
of relative distances to senders tos and top, enabling an optimal delay to be
introduced. Notice that the delay should not be so large that it causesm2 to be
misordered with a future messagem3 that arrives to all processes after bothm1

andm2.

Explicit estimation of distances among all processes is not required. A better ap-
proach is to directly determine optimal delays to be introduced prior to optimistic
delivery by observing that:
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• If the relative distance ofp ands is the same with respect to senders ofm1

andm2 and each message is multicast simultaneously to all destinations,
then interarrival timests andtp will be identical.

• If transmission delays ofseq(m1) andseq(m2) from s to p are the same,
thenp can use the value oftsp to locally determinets. This avoids assump-
tions on the drift rate of clocks.

Processp can easily calculate the delay it should have introduced to the optimistic
delivery ofm2 to match its relative distance fromp1 andp2 to that of the sequen-
cer. Specifically, it should have delayedm2 by tsp − tp.2 To cope with spurious
variations on transmission delays, adjustments are made taking into account an
inertia pondering factor.

The next section presents a detailed description of how the delays are calculated
and which messages are delayed. Right now, it is worth note that delays to a
process messages are only introduced when it is not possible to achieve the same
result by reducing the delays inflicted to the other.

The way the sequencer calculates its own messages delays is different. Should it
use the same method as the others and it, clearly, would not delay its own mes-
sages. To understand the method followed by the sequencer lets first exemplify
the consequences of not introducing delays on the sequencer’s own messages.
Consider three processes,p, q ands. Processs is the sequencer. Processq, for
simplicity, is δ equidistant ofs andp. The distance froms to p is dsp and the
distance ofs to itself isdss.

Havingp ands relatively equidistant fromq means that(δ − dss) = (δ − dsp). To
achieve this, sincedsp cannot be reduced, the possibilities are 1)p to distance from
q, or 2) s to distance from itself, or both. Now suppose thats does not delay its
own messages. In this case,p will have to stand back∆ = dsp−dss from q. Since
dss (the loopback delay) is usually negligible it can be assumed that∆ ' dsp.
This means that when a message multicast byq is optimistically delivered atp
it is almost simultaneously delivered authoritatively atp too. Therefore, unless
the sequencer delays the optimistic delivery of its own messages the size of the
optimistic window at the other processes becomes uninteresting or even vanishes.

In the next section, we show how the sequencer computes the delay for its own
messages. This, contrary to other processes adjustments, is not independent and
requires their cooperation. The idea is that the sequencer will stand back from
itself as it distances from its farthest process.

2Notice thattp is negative in Figure 4.3, indicating that the relative order ofm1,m2 is reversed.
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4.2.3 Algorithm

In Figure 4.4 we present the statistically estimated optimistic total order algorithm
as executed by each process. The algorithm consists of a procedureTO-multicast(m)
invoked by the client application to multicast a message and a set of fourupon-
dostatements, executed atomically, that deal with the optimistic and authoritative
delivery of the messages. The actual delivery of the messages to the client applic-
ation is done through two upcallsopt-deliver(m)and fnl-deliver(m). Procedure
adjustis an auxiliary procedure local to the algorithm.

Each process manages four queuesR, O, F andS where it keeps track of the mes-
sages received, optimistically and authoritatively delivered to the application, and
those for which it has already received a sequence number, respectively. Every
messagem has a special attribute (m.sender) identifying its sender. At each pro-
cess a variableseqidentifies the sequencer process.

To multicast a totally ordered message, the client application invokes proced-
ure TO-multicast(m)(lines 9-11). This, in turn, invokes an underlying primit-
ive providing reliable multicast with a pair(m, max(delay[])− delay[seq]). The
value computed bymax(delay[]) − delay[seq], as discussed below, corresponds
to the delay the process suggests the sequencer to inflict to its own messages.

The reception and delivery of messages is done by the fourupon-dostatements.
The first two handle the optimistic delivery while the others handle the authoritat-
ive delivery.

When a processp receives a messagem (line 12) it simply addsm as a tuple
(m, d, d′) to the queue,R, of received messages scheduling its delivery for after
the delayd′ inflicted byp to the sender ofm. When this timer expires and ifm
was not already optimistically delivered (m 6∈ O) nor authoritatively delivered
(m 6∈ F ), which corresponds to the condition on line 15, thenm is optimistically
delivered to the application and the fact registered by addingm to theO queue.
If p happens to be the sequencer it computes a sequence number to give tom
and reliably multicasts a sequence message composed bym’s id and its sequence
number. Afterwards,p (if in the role of sequencer) takes parameterd just received
with m and adjusts the delays it imposes to its own messages.

Upon receiving a sequence message at line 25, each process simply adds the re-
ceived tuple (message id and sequence number) plus the current time to the queue
of sequence numbersS.

Once a messagem that has already been received (m ∈ R) gets a sequence num-
ber in theS queue and its sequence number corresponds to the next message to
be authoritatively delivered (the whole condition at line 28), thenm is authoritat-
ively delivered to the application throughfnl_deliver. At this point, the algorithm
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1: g ← 0 {Global sequence number}
2: l← 0 {Local sequence number}
3: R← ∅ {Messages received}
4: S ← ∅ {Sequence numbers}
5: O ← ∅ {Messages opt-delivered}
6: F ← ∅ {Messages fnl-delivered}
7: delay[1..n]← 0
8: r_delay[1..n]← 0 {Delays requested to the sequencer}

9: procedureTO_multicast(m) do
10: R_multicast(DATA(m, max(delay[])− delay[seq]))
11: end procedure

12: upon R_deliver(DATA(m, d)) do
13: R← R ∪ {(m, d, now + delay[m.sender])}
14: end upon

15: upon ∃(m, d, t) ∈ R : now ≥ t ∧m 6∈ O ∧m 6∈ F do
16: opt_delivery(m)
17: O ← O ∪ {m}
18: if p = seq then
19: g ← g + 1
20: R_multicast(SEQ(m, g))
21: r_delay[m.sender]← d
22: delay[p]← max(r_delay[])
23: end if
24: end upon

25: upon R_deliver(SEQ(m, s)) do
26: S ← S ∪ {(m, s, now)}
27: end upon

28: upon ∃(m, d, o) ∈ R : (m, l + 1, t) ∈ S ∧m 6∈ F do
29: fnl_delivery(m)
30: if ∃(m′, d′, o′) ∈ R : (m′, l, t′) ∈ S then
31: ∆← (t− t′)− (o− o′)
32: if ∆ > 0 then
33: adjust(m′.sender, m.sender, ∆)
34: else
35: adjust(m.sender, m′.sender, |∆|)
36: end if
37: end if
38: l← l + 1
39: F ← F ∪ {m}
40: end upon

41: procedureadjust(i, j, d) do
42: v ← (delay[i]× α) + (delay[i]− d)× (1− α)
43: if v ≥ 0 then
44: delay[i]← v
45: else
46: delay[i]← 0
47: delay[j]← delay[j] + |v|
48: end if

49: end procedure

Figure 4.4: Delay compensation algorithm for processp
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computes the adjustments that might need to be done to the delays inflicted to the
sender ofm or to the sender of the messagem′ delivered just beforem. To do
this it considers the interval between the reception of the sequence number for
m′ and the sequence number form given by (t− t′) and the interval between the
optimistic reception ofm′ and the optimistic reception ofm given by (o−o′). The
difference∆ (line 31) between these intervals represents the relative adjustment
that should have been done to the delays imposed to the optimistic delivery ofm′

or m to make the interval of the optimistic deliveries of these messages match that
of the authoritative deliveries.

If ∆ is negative it means that the optimistic order matched the authoritative or-
der. If ∆ is positive then either the order was reversed or the interval between
optimistic deliveries is smaller than the interval between authoritative deliveries.
Depending on this, procedureadjust is called differently. In the first caseadjust
is called to decrease the delay put on messages received from the sender ofm,
otherwise it should decrease the delay inflicted to the sender ofm′.

Procedureadjust(p,q,d)works as follows. Based on the delayd and on a inertia
parameterα, it computes the new delayv to give to messages ofp. If v becomes
negative, this means that it actually needs to anticipatep’s messages which is
not possible. Instead, it does not delay the messages ofp but starts delaying the
messages ofq by an additional|v| amount.

Finally, the sequencer computes the delays on the optimistic delivery of its own
messages as follows. Every process, whenR_multicasts a data message (line
10), also sends the value of the greatest delay it is applying locally (this is usually
the self delay) minus the delay it is currently applying to the sequencer messages.
Only the sequencer makes use of this values keeping track of them on vector
r_delay. The delay the sequencer inflicts on its own messages is given, at each
moment, by the greatest value inr_delay.

4.3 Total Order Protocols Implementation

This section describes the implementation of the statistically estimated optimistic
total order protocol, in a Java based group communication toolkit [PO05]. We
describe the architecture of the group communication toolkit and then the protocol
implementation.
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4.3.1 Architecture and Interfaces

The implementation of the communication protocols in the group communication
toolkit uses a layered architecture depicted in Figure 4.5. Upon initialization, the
group communication toolkit offers an implementation of theTop interface, and
an application using group communication must implement theBottom interface,
depicted in Figure 4.6 along with the JAVA classes used in the implementation of
the total order protocols. A communication protocol layer is a piece of software
implementing both theTop andBottom interfaces and ensuring certain properties
on the messages it delivers to upper layers.
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Figure 4.5: Protocols implementation architecture.
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Figure 4.6: Implementation classes and interfaces.

In order to facilitate the development of new communication protocol layers the
group communication toolkit defines aBuffer class implementing both theTop

andBottom interfaces.
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TheTop interface defines methods for initialization,init , for sending messages
to the group,multicast , for protocol composition, i.e. to stack communication
protocol layers,stack , for upper layers to signal they are ready to view change,
done , and to signal they are ready to deliver messages,unblockDeliver .

TheBottom interface defines the counterpart methods of theTop interface which
are theflush called by the lower layer before view changing, in order to the layer
ensure that all messages that must be delivered in the current view are effectively
delivered. When all messages are delivered then thedone method on the lower
layer is called to signal that the layer is ready for the view change. Theinstall

method is called to view change, i.e., to change the group membership, by setting
the current group members. TheunblockMulticast is called by the lower
layer to signal that it can resume sending messages. The lower layer signals that
message exchanging is blocked by returningfalse after multicasting a message.
Finally, thedeliver method is used to receive messages, multicasted by a group
member.

The Buffer class as stated earlier implements both theTop andBottom inter-
faces and defines the methods to abstract the communication protocol layer as a
queue. Using this base class, a communication protocol layer may intercept mes-
sages entering the queue (methods with the enqueue prefix) or before leaving the
queue (methods with the dequeue prefix), in order to enforce the desired message
properties. For instance, a total order protocol may intercept unordered messages
when entering the queue in order to order them, and it may also delay their de-
livery intercepting thedequeueDelivery and retaining the messages until the
desired properties are achieved.

4.3.2 Total Order Protocol Implementation

The logic behind the implementation of the sequencer based total order protocol
is depicted in Figure 4.7. The protocol manages two queues, thercvOPT queue
holding messages broadcasted for which the order is not yet established, and the
rcvFNL holding the sequence numbers for messages in thercvOPT queue.

The implementation intercepts messages entering the protocol layer, by redefining
methodenqueueDelivery , depicted in Listing 4.1. This step is only meaningful
for the sequencer and if it is not an ordered message. In the case of the process
intercepting the message being the sequencer (line 2), the message is decoded (line
3) and if it is an ordinary message, i.e., not an ordered message, the sequencer’s
assign it a sequence number by calling theorder procedure (line 5). Afterwards
the message is reassembled (line 6) and inserted in theBuffer queue (line 8).
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Figure 4.7: Total order protocol implementation.

1 void enqueueDelivery(int i, Message obj) {
if (sequencer){

FastABHeaders header=FastABHeaders.pop(obj);
if (!header.ordered())

5 order(newFastABHeaders(header));
header.push(obj);

}
super.enqueueDelivery(i,obj);

}
10

void order(FastABHeaders nh){
nh.set_ord(vid,last++);
Message m=newMessage();
nh.push(m);

15 enqueueMulticast(m);
}

Listing 4.1: Message ordering.

The order procedure assigns to the message the next sequence number in the
current view (line 12), creates a new message and multicasts it (lines 13-15).

The implementation also intercepts messages before being delivered for the up-
per layer in order to ensure they are only delivered when their sequence number
is known and all previous messages have been delivered. This is done by rede-
fining thedequeueDelivery method depicted in Listing 4.2. It starts decoding
the message (line 2) and depending on being an ordered or ordinary message it
is inserted in thercvFNL or rcvOPT respectively (lines 4 or 6). Afterwards a
verification is done to check whether the received message fulfills the conditions
to be delivered in total order to the upper layer, by calling thecheckordered
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1 void dequeueDelivery(int i, Message obj) {
ABHeaders header=ABHeaders.pop(obj);
if (header.ordered())

rcvFNL.put(new Integer(header.get_ord()), header);
5 else

rcvOPT.put(header.message_id(),newbuf_message(i,obj));
checkordered();

}

10 void checkordered(){
ABHeaders header=(ABHeaders)rcvFNL.get(new Integer(last_dlvr+1));
if (header!=null ){

buf_message m=(buf_message)rcvOPT.remove(header.message_id());
if (m!=null ){

15 rcvFNL.remove(new Integer(++last_dlvr));
super.dequeueDelivery(m.i,m.m);
check_ordered();

}
}

20 }

Listing 4.2: Message delivery.

procedure (line 7).

Thecheckordered procedure starts by checking if there is a message identifier
associated to the next sequence number to be delivered to the application (lines
11-12). If it is the case, then it checks if it have already received the message
associated to the message identifier (lines 13-14). If the previous check is suc-
cessful, then the sequence number of the next message to deliver is removed from
thercvFNL queue and the sequence number for the next message to be delivered
updated (line 15). The message is then queued for delivery to the upper layer
(line 16). Afterwards the procedure is recalled in order to verify if it is possible to
deliver another message.

4.3.3 Statistically Estimated Optimistic Total Order Protocol
Implementation

The implementation of the statistically estimated optimistic total order protocol
requires several changes from the total order implementation of the previous sec-
tion. These changes are depicted in Figure 4.8 and are related to the ordering pro-
cedure, the processing of optimistic messages and the delivery of totally ordered
messages to the upper layer.

In addition to the two queues used by the total order protocol, the statistically
estimated optimistic total order protocol defines theoptDLVR and optDELAY

queues. The first one stores messages optimistically delivered to the upper layer
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Figure 4.8: Statistically estimated optimistic total order protocol implementation.

while the second stores messages waiting to be optimistically delivered to the up-
per layer.

The statistically estimated optimistic total order protocol, requires messages to be
delivered twice to the upper layer. This is unfortunate as it requires changing the
Bottom interface, thus requiring changes in the protocol layer interface. In order
to avoid changing the protocol layer interface, the adopted solution only delivers
the message once, and then notifies the upper layer informing it that some or all
of its desired properties are met.

The solution uses theMessage class of Figure 4.6. In it, theacquire is used by
the upper layer to query the message for checking whether the required property
is already met, or otherwise to set a callback for being notified when such con-
dition is met. The communication protocol layer sets properties to the message
by calling thegrant method, and may want to be notified when such property
is known by the upper layer, by calling thereacquire method. After knowing
that the required message property is met, the upper layer should also notify the
communication protocol layer, by calling therelease method.

This mechanism is used by the statistically estimated total order protocol in order
to ensure that the total order property of the next ordered message is only set when
the previous one has been processed by the upper layer. The protocol uses the
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waitACK as a mutex to control when the total order property of the next ordered
message can be set.

1 void enqueueDelivery(int i, Message obj) {
if (sequencer){

FastABHeaders header=FastABHeaders.pop(obj);
if (!header.ordered())

5 if (i==0 && delay[0]!=0)
order_coord(i,newFastABHeaders(header));

else
order(i,newFastABHeaders(header));

header.push(obj);
10 }

super.enqueueDelivery(i,obj);
}

void order_coord(final int i,final FastABHeaders header){
15 SeqProcess.self().schedule(newRunnable() {public void run() {order(i,header);} }, delay[0]/1000);

}

void order(int i,FastABHeaders nh){
order(nh);

20 if (i!=0){
dincr[i]=nh.get_delay();
delay[0]=max(dincr);

}
}

Listing 4.3: Message ordering.

In order to set sequence numbers to messages, the statistically estimated total
order protocol also redefines theenqueueDelivery method. As depicted in
Listing 4.3, the changes relatively to the total order protocol are when the se-
quencer wants to set sequence numbers to messages issued by the himself (line
5). In this case, instead of calling immediately the order procedure, it calls the
order_coord which schedules the call to the order procedure to after the delay
the sequencer imposes to its own messages elapses. Theorder procedure (lines
18-24), uses theorder procedure of the sequencer based total order protocol and
in the case of messages not issued by the sequencer himself (line 20), the se-
quencer updates the maximum delay the sender is imposing on messages before
optimistically delivering them (line 21). Afterwards the sequencer sets the delay
it imposes on its own messages to be equal to the highest delay some process is
imposing locally (line 22).

Messages are intercepted before being delivered to the upper layer by redefining
thedequeueDelivery method depicted in Listing 4.4. It starts by decoding the
message (line 2) and depending on being an ordered or ordinary message it is
placed in thercvFNL or rcvOPT queue. Afterwards theprocessmessages

procedure which identifies the messages that may be processed is called and acts
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accordingly. If there are ordered messages and the protocol is not waiting from a
notification from the upper layer (line 11) then it calls the procedure responsible
for the processing of ordered messages which is depicted in Listing 4.6. if there
are ordinary messages received and not yet processed (line 13) the the procedure
responsible for the processing of ordinary messages, depicted in Listing 4.5 is
called.

1 void dequeueDelivery(int i, Message obj) {
FastABHeaders header=FastABHeaders.pop(obj);
if (header.ordered())

rcvFNL.addLast(newbuf_message(header,obj));
5 else

rcvOPT.addLast(newbuf_message(header,obj));
processmessages();

}

10 void processmessages(){
if (rcvFNL.size()!=0 && ! waitACK)

processrcvFNL();
if (rcvOPT.size()!=0)

processrcvOPT();
15 }

Listing 4.4: Message delivery.

1 void processrcvOPT(){
m=(buf_message)rcvOPT.removeFirst();
if (delay[m.hd.sender()]!=0){

optDELAY.addLast(m);
5 sched_fastdelivery(m.hd.sender(),m.m,m.hd);

} else
fast_delivery(m.hd.sender(),m.m,m.hd);

}

10 void fast_delivery(int i, Message m, FastABHeaders header){
optDLVR.addLast(newbuf_message(header,m,System.currentTimeMillis()/1000));
super.dequeueDelivery(i,m);
processmessages();

}
15

void sched_fastdelivery(final int i,final Message m,final FastABHeaders header){
SeqProcess.self().schedule(newRunnable() {
public void run() {

if (check_queue(newbuf_message(header,m),optDELAY) !=null )
20 fast_delivery(i,m,header);

} },delay[i]/1000);
}

Listing 4.5: Processing optimistic messages.

The processing of ordinary messages depicted in Listing 4.5 removes the first mes-
sage from thercvOPT queue (line 2), and in the case that its delivery should
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be delayed (line 3), it is placed in theoptDELAY queue and the procedure to
schedule (sched_fastdelivery ) its delivery to after the delay it should suffer
elapses called (line 5). Otherwise the procedure to deliver it to the upper layer
(fast_delivery ) is called (line 7).

Thesched_fastdelivery schedules the execution of therun procedure depic-
ted in lines 19-20 to be run after the delay messages from senderi should suffer
elapses. The procedure checks if the message is still in theoptDELAY queue (line
19) in which case it is removed from the queue and thefast_delivery proced-
ure called in order to optimistically deliver the message to the upper layer. This
check is necessary as the processing of totally ordered messages may force the
message to be delivered before the delay elapses.

The fast_delivery procedure (lines 10-14) places the message and the instant
of its optimistic delivery in theoptDLVR queue (line 11), queues it for delivery to
the upper layer (line 12) and finally recalls theprocessmessages procedure of
Listing 4.4, to check if it is possible to process some other message (line 13).

The procedure responsible for the processing of ordered messages, depicted in
Listing 4.6 is divided in three steps. In the first, lines 3-4 checks whether it is
possible to set the total order property on the next message to be delivered in total
order. The second, lines 5-12, checks if the message has not yet been delivered
because of the delays imposed to it. The third step, lines 14-18, delivers the
message in total order.

1 void processrcvFNL(){
buf_message m;
if ( waitACK || (m=get_ord_msg(last_dlvr+1))==null )

return ;
5 buf_message m1=check_queue(m,this.optDLVR);

if (m1==null ){
rcvFNL.addFirst(m);
m1=check_queue(m,this.optDELAY);
if (m1==null )

10 m1=check_queue(m,this.rcvOPT);
if (m1!=null )

fast_delivery(m1.hd.sender(),m1.m,m1.hd);
} else{

m1.m.grant(FINAL);
15 if (!m1.m.reaquire(FINAL,cb))

waitACK=true;
last_dlvr++;
adjust_delays(m1);
processmessages();

20 }
}

Listing 4.6: Processing ordered messages.
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The first phase of the processing of ordered (lines 3-4), is a validation phase.
Checks are made in order to establish whether it is possible to deliver the next
ordered message and if there is an ordered message identifying the next message
to be delivered in total order to the upper layer. If any of these conditions fails then
the processing stops (line 4). Afterwards, theoptDLVR queue is checked to verify
whether the message has been optimistically delivered or not. If the message is
not in theoptDLVR queue, i.e., it has not been optimistically delivered, then it
may be in theoptDELAY , waiting to be delivered, or in thercvOPT queue if it
has just been received, or it may not yet been received. In any case, the ordered
message is placed in the head of thercvFNL queue (line 7), because the optimistic
message has not yet been delivered to the upper layer, and the total order property
can not be granted. If the message is in one of theoptDELAY or rcvOPT queues
it is removed from there (lines 8-10) and is optimistically delivered (line 12), by
the fast_delivery procedure of Listing 4.5.

If the message has already been optimistically delivered to the upper layer, then
the total order property is granted (line 14), and a notification callback is set in the
case that the upper layer do not immediately acknowledges the grant operation,
in which case thewaitACK is set totrue (lines 15-16). Afterwards, the order
number for the next message to be delivered is set (line 17), the procedure to
adjust the delays to impose to the optimistic delivery of messages called (line 18),
and theprocessmessages procedure in order to verify whether it is possible to
deliver some other messages (line 19).

1 void adjust_delays(buf_message m){
if (lastfinal!=−1 && !sequencer){

long delta=(long)((System.currentTimeMillis()/1000−lastfnal)−(m.time−lastfast));
if (delta>0)

5 adjust(lastsender,m.hd.sender(),delta);
elseif (delta<0)

adjust(m.hd.sender(),lastsender,−delta);
}
lastfast=m.time;

10 lastfnal=System.currentTimeMillis()/1000;
lastsender=m.hd.sender();

}

void adjust (int p, int q, long d){
15 fut=(long)(delay[p]∗alfa + (delay[p]−d)∗(1−alfa));

if (fut<0){
delay[p]=0;
delay[q]=delay[q]−fut;

} else
20 delay[p]=fut;

}

Listing 4.7: Adjustments to message delays.
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The adjust_delays procedure depicted in Listing 4.7 starts by verifying that
this is not the first total order delivery and that the process delivering the message
is not the sequencer (2). If this is the case, then it calculates∆, i.e., the difference
between the intervals of the total order deliveries and of the optimistic deliveries of
this and of the previously totally ordered message (line 3). Depending on the value
of ∆ theadjust procedure is called to reduce the delay inflicted on messages sent
by the sender of the previously total order delivered message, if∆ > 0 (line 5),
or to reduce the delay inflicted to messages whose sender is the same as the one
sending the message being delivered (line 7). Finally the time of the last optimistic
and final deliveries is updated as well as the indication of the sender of the last
total order delivered message.

Theadjust procedure, starts by calculating the delay that should be set on mes-
sages of senderp (line 15). If this value turn out to be negative, this means that
messages from senderp shothe uld optimistically delivered before being received.
As this is impossible to happen the solution is to stop delaying messages from
senderp (line 17) and enlarge the delay imposed on messages from serverq (line
18). If the calculated value is positive, then it is the delay applied to messages
from serverp before optimistically deliver them.

4.4 Protocol Evaluation

This section describes the evaluation of the statistically estimated total order pro-
tocol comparing it to the sequencer based total order protocol.

The evaluation starts with a simulation of both protocols recording for each pro-
cess the instants the messages are sent, received, optimistically and authoritatively
delivered. After the simulation runs the recorded values are used to calculate pro-
tocol spontaneous total order, optimistic and delivery windows, used to demon-
strate that the statistically estimated total order protocol only marginally increases
the protocol latency, and only because of the delays the sequencer imposes to self
messages.

The values obtained by the simulation were afterwards confirmed by a prototype
based evaluation of the protocols.

4.4.1 Evaluation Criteria

For an application to benefit from optimistic ordering it is required thati) optim-
istic order closely matches the final order; andii ) the time between optimistic
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delivery and final delivery is enough to do meaningful processing. Performance
evaluation is done with an event-based simulation, which allows to study the im-
pact of the system and the protocol parameters, as well as with an implementation
of the protocol within a group communication toolkit, allowing to confirm the
simulation results.

The primary evaluation criteria is thus to compare optimistic and final orders of
both the sequencer based total order multicast protocol and the statistically estim-
ated optimistic total order multicast protocol. To accomplish this, for an execution
of each protocol, the sequence of optimistic and final deliveries are logged. After
the execution has finished, the first final delivery and the first optimistic delivery
are compared. If they match a hit is recorded, otherwise a miss is recorded. The
messages are then removed from both logs and the process repeated until the logs
are empty. From these, the ratio of correctly ordered optimistic messages is de-
rived. This closely matches the impact on the application: If an optimistic delivery
is much earlier than it should, it will cause several misses until it is removed from
the log.

A second evaluation criterion is to compute whether the time between optimistic
delivery and final delivery — the optimistic window — is enough to do meaning-
ful processing. Finally, the impact of delay compensation in end-to-end latency
of the final delivery is also studied. It has to be ensured that the improvements
in spontaneous total order are not obtained at the expense of larger end-to-end
latency. It is, however, expectable some increase in end-to-end latencies due to
the delay introduced by the sequencer to its messages. This delays the ordering of
sequencer’s messages, thus increasing end-to-end latency, both in the sequencer
and in the other processes.

4.4.2 Simulation Based Evaluation

Using discrete event simulation the performance of the protocol is studied in a
scenario without application or message processing and delivery overheads. We
consider a fully connected point-to-point network. The transmission delay in
each link is normally distributed with parameterized mean and standard deviation.
Message inter-arrival rate is exponentially distributed with equal mean in every
participant.

In the following the several network topologies used in the evaluation of the pro-
tocol are described. All settings have five processes, a reference latency of 30 ms,
and use process 1 as the sequencer.
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Network topology 1 In this topology the latency between every two different
processes is 30 ms.

Network topology 2 In this topology the latency between processesi andj (1 ≤
i, j ≤ 5 andi 6= j) is calculated as(7− j) ∗ (7− i) ∗ latency which results
in the latencies described in Table 4.1.

Processes 1 2 3 4 5
1 0 900 720 540 360
2 900 0 600 450 300
3 720 600 0 360 240
4 540 450 360 0 180
5 360 300 240 180 0

Table 4.1: Latencies between processes for topology 2, in ms.

Network topology 3 This topology mimics a situation where a long distance link
separates two clusters. In this setting, processes 1 and 2 form cluster 1, and
processes 3, 4 and 5 form cluster 2. Latencies between processes inside
each cluster is 30 ms while the latency between processes not in the same
cluster is 60 ms.

Network topology 4 This topology is similar to the previous one but now 4 pro-
cesses are in one cluster with a latency of 30 ms, while the remaining is
isolated having a latency of 300 ms.

The experiences conducted evaluate the sequencer based total order protocol and
ours under different loads. In each run, the per process message rate ranges from
1 to 200 messages per second, and the standard deviation of message transmission
delays is of 0 and 10%.

Figure 4.9, presents the spontaneous total order of the sequencer based total order
protocols as observed by each process and for each one of the topologies con-
sidered in the experiences. The values presented consider a standard deviation of
message transmission delay of 0%.

While, by construction, the sequencer as a 100% hit ratio, it can be observed that
spontaneous total order at the other processes has a quick degradation.

The point-to-point latencies and message rate also influence the spontaneous total
order. In a network with equal point-to-point latencies, all processes, except the
sequencer, observe similar spontaneous total order (Figure 4.9a) which decreases
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(c) Topology 3.
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(d) Topology 4.

Figure 4.9: Sequencer based protocol spontaneous total order (σ = 0%).

with the load in the system. The differences in the latencies of processes in differ-
ent clusters of topologies 3 and 4 is also observable in the spontaneous total order
by the distance among the lines of Figures 4.9c and 4.9d.

The sequencer based total order protocol is not very sensitive to message trans-
mission delays. The use of a standard deviation of message transmission delays
of 10% only marginally affects the spontaneous total order observed.

The spontaneous total order for the statistically estimated optimistic total order
protocol, depicted in Figure 4.10, presents better results except for topology 2.
The differences in the point-to-point latencies are much more noticeable in the
optimistic total order than in the total order protocol. Despite having better results
in the spontaneous total order, the processes of each cluster are easily identified
from Figures 4.10c and 4.10d than they were in Figures 4.9c and 4.9d

The statistically estimated optimistic total order, is much more sensible to vari-
ations of message transmission delays. Even so, for loads under 50 messages per
second it usually presents better spontaneous total order than the sequencer based
total order protocol.

In Figure 4.11 the improvements in spontaneous total order resulting from the
statistically estimated optimistic total order multicast protocol are presented. The
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(c) Topology 3.
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Figure 4.10: Statistically estimated protocol spontaneous total order (σ = 0%).
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Figure 4.11: Improvement in spontaneous total order.
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(a) Topology 1 (host 2).
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(b) Topology 2 (host 2).
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(c) Topology 3 (host 2).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250

O
pt

im
is

tic
 w

in
do

w
 (

m
s)

 (
σ=

0)

per process message rate/s

Sequencer based TO
Statistically estimated TO

(d) Topology 4 (host 4).

Figure 4.12: Optimistic windows.

improvements depend on the network topology, variation of message transmis-
sion delays and message rates. Higher variations on message transmission delays
imply lower improvements on the spontaneous total order.

For message transmission delays with standard deviation of 10%, the advantages
of the statistically estimated optimistic total order multicast protocol are only
marginal, but having such a variation in message transmission delays it is not
a very common situation. As observed in extensive measurements of the Inter-
net [Pax97], the standard deviation of transmission delays is mostly less than 10%
for large data packets and often less than 1% for small control packets. From
this, it is expectable that the statistically estimated optimistic total order multicast
protocol present better values when ordering small messages. In the case of large
messages it is also expected that messages can be split, one small message used
by the ordering protocol and large ones carrying the bulk of the data.

With respect to spontaneous total order, the usage of the optimistic protocol is
advantageous. It remains to be established what happens with respect to the op-
timistic window and protocol latency.

Figure 4.12 depicts for each of the studied network topologies the size of the op-
timistic window.
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For network topology 1, the size of the optimistic window is30 ms and is almost
independent from the per process message rate.

For network topology 2 each process presents different optimistic windows, and
the optimistic protocol clearly reduces the size of this window. Nevertheless the
size of this optimistic window is always higher than600 ms.

Network topologies 3 and 4 present two distinct values for the optimistic window.
One for the processes in the group of the sequencer, and another for the processes
in the other group.

The optimistic window measures the interval of elapsed time between the instant a
message is optimistically delivered and the instant its order is established. An im-
portant aspect of the statistically estimated total order protocol is that it should not
delay the delivery of the authoritatively ordered message. In order to establish that
the statistically estimated total order do not increases the protocol latency, we con-
sider delivery window which measures the interval between the message reception
and its authoritative delivery. This interval should be the same for both protocols
and is equal to the optimistic window for the sequencer based total order protocol,
which optimistically delivers the message immediately after its reception.
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Figure 4.13: Delivery windows.

The values of delivery window are presented in Figure 4.13. As expected, they are
equal to the optimistic window for the sequencer based total order protocol. The
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Figure 4.14: Sequencer delivery window.

statistically estimated total order protocol presents higher delivery window. The
higher delivery window of the statistically estimated total order protocol results
from the fact that messages from the sequencer are not ordered immediately after
being received but after suffering the delay the sequencer is imposing to its own
messages. This results in the sequencer having a delivery window different of 0
which is reflected in the other processes delivery window.

The sequencer’s delivery window is presented in Figure 4.14. It can be observed,
from Figures 4.13 and 4.14 that the differences in delivery windows are equal to
the sequencer delivery window.

4.4.3 Prototype Based Evaluation

In order to validate the results obtained with simulation, the performance of the
sequencer based and statistically estimated optimistic total order protocols imple-
mentation of Section 4.3 have been evaluated.

Measurements presented below were obtained by running the protocol implement-
ations on top of the simulation infrastructure described in Section 5.4.2.
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Figure 4.15: Network topologies.

The protocols were evaluated in the 3 network topologies depicted in Figure 4.15.
All the experiences were conducted with 5 processes sending messages at a sim-
ilar data rate. The star topology (Figure 4.15a) is a symmetric network composed
of a central router to which all the leaf networks connect through a 15 ms WAN
link. In the backbone network of the ring topology (Figure 4.15b), each router
is connected to two adjacent routers, through a 10 ms WAN link, forming a ring.
Each of the leaf networks is connected to one of those routers through a 10 ms
WAN link. In the bus topology (Figure 4.15c), the backbone network is composed
of 3 inner routers and 2 outer routers. Each outer router connects to one of the
inner routers, and the inner routers connect to two routers of the backbone net-
work. Each connection as a 10 ms latency. As in the ring topology, each of the
leaf networks is connected to one of the backbone routers through a 10 ms WAN
link. Common to all topologies is the fact that adjacent processes are separated by
a latency of 30 ms.

In the experiences, message inter-arrival for each process is obtained from a neg-
ative exponential distribution with the corresponding parameter to accomplish the
desired message rate. Each process records the instant it sends and receives each
message optimistically and authoritatively. After finishing the experience, those
records are processed and the value of the spontaneous total order calculated. The
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(b) Ring topology.
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(c) Bus topology.

Figure 4.16: Spontaneous total order.

values of spontaneous total order for each topology are depicted in Figure 4.16.

The star topology resembles network topology 1 of the simulation model where
the latency between every two processes is 30 ms. As predicted in the simulation
(Figure 4.11a), the optimistic protocol presents a much higher spontaneous total
order, being higher than 90% for message rates up to 100 messages per second
per process, as depicted in Figure 4.16a. The spontaneous total order of the op-
timistic protocol observed in the Ring topology, and depicted in Figure 4.16b is
lower than in the Star topology, but higher than the total order protocol. Even
in the Bus topology, depicted in the Figure 4.16c the optimistic protocol present
better spontaneous total order than the total order protocol. In this case the values
became similar for message rates higher than 80 messages per process.

The gain in spontaneous total order depends on the topology being considered
and on the message rate. Figure 4.17 presents, for each of the topologies, the ratio
of spontaneous total order between the statistically estimated total order protocol
and the sequencer based total order protocol. It can be seen that the statistically
estimated total order protocol presents better results than the sequencer based total
order algorithm, and in several situations it presents spontaneous total order values
3 to 4 times higher than the total order protocol.

Figures 4.18 and 4.19 compare the optimistic window and protocol latency of both
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(b) Ring topology.
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Figure 4.17: Comparison of spontaneous total order.
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(a) Star topology.
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(b) Ring topology.
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Figure 4.18: Optimistic window.
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(b) Ring topology.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80  90  100

D
el

iv
er

y 
w

in
do

w

per process message rate/s

Sequencer based TO
Statistically estimated TO

(c) Bus topology.

Figure 4.19: Delivery window.

protocols in each topology. From the figures it can be observed a small decrease
in the optimistic window and an increase in the protocol latency, as expected from
the results of the simulation model.

As in the simulation the results demonstrate that the higher degree of spontaneous
total order of the optimistic protocol is not obtained sacrificing the optimistic win-
dow nor the protocol latency. With respect to the optimistic window, as expected
it is smaller as it is being used to improve the spontaneous total order. The pro-
tocol latency suffers from the fact that the sequencer is delaying the ordering of
its own messages. Being so, there is a small increase in the protocol latency.

4.5 Summary and Open Issues

This chapter proposed a statistically estimated optimistic total order multicast pro-
tocol. The protocol is an optimization of the optimistic total order multicast pro-
tocol [KPAS99], by improving the spontaneous total order in WANs. The pro-
posed solution only marginally increases latency, due to the delays imposed to the
sequencer messages.
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The effectiveness of the solution depends on how applications deal with optimistic
deliveries and on their reaction to optimistic messages incorrectly delivered. A
simple evaluation of its effectiveness can be done as follows.

As an example, consider an application which cannot interrupt the processing of
a message after it has started. This means that even if meanwhile there is a final
delivery which shows that the optimistic delivery was wrong, it has to wait for
it to finish to start the processing of the correct message. Consider also that, the
penalty for undoing the effect of the computation when required is negligible. Let
g be the time required to process a message. If the latency of final delivery isl and
no optimistic processing is done then latency of the whole computation isl + g.

Let w be the size of the optimistic window. Ifg ≤ w and there is no penalty for
processing messages in incorrect order, then it is obvious that optimistic delivery
is useful, as its latency is never worse than the original computation after delivery
of the final message. However, ifg > w then the effective latency can be either:

• l + g − w, when the optimistic delivery is correct;

• l + g − w + g, when the optimistic delivery turns out to be wrong.

If r is the ratio of correct deliveries, the average latency isr(l+g−w)+(1−r)(l+
g − w + g). Therefore, optimistic delivery decreases latency ifg < w/(1− r).

A concern when using an optimistic algorithm is that the performance of the final
delivery is not affected, i.e., the optimistic delivery does not increase the algorithm
latency. This is not an issue when delaying only optimistic deliveries. In this case,
as soon as a sequence number for a message locally available is known it is im-
mediately delivered, even if its optimistic delivery has been erroneously delayed
by an excessive amount of time. Nevertheless, it is up to the application to, as
soon as possible, interrupt processing of an optimistic delivery if the final delivery
happens to be of a different message. A second concern when implementing this
technique is the granularity of operating system timers used to delay messages.

The application of the proposed technique to algorithms other than the simple
fixed sequencer algorithm presented, is a point that may be looked in the future.
This requires that messages are disseminated to receivers before suffering the
latency of ordering, excluding algorithms which delay dissemination until mes-
sages are ordered [HLvR99, AMMS+95b, ACM95]. It is also required that the
decided order is directly derived from the spontaneous ordering at some process,
which is not true for causal history algorithms [Lam78, PBS89, EMS95]. These
requirements are satisfied by consensus based algorithms [CT96] as long as the
coordinator for each instance of consensus is likely to be the same.
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Chapter 5

Partial Database Replication

Group based database replication has concentrate a lot of research efforts over
the last years [AAAS97, SAA98, PGS98, KPAS99, HAA99, PMJPKA00, KA00a,
KA00b, JPPMKA02, AT02, ADMA+02, CMZ04, WK05]. This interest has been
motivated by the fact that group communication primitives may be used to ensure
transactions’ properties [SR96]. Additionally group based replication protocols
present promising results regarding the scalability and performance problems of
traditional database replication protocols when ensuring strong consistency. The
use of group communication primitives allows for efficient data dissemination
while reducing the synchronization overheads which are the major problems of
traditional database replication protocols [GHOS96].

Common to all group based database replication protocols is the fact they adopt
the ROWAA replication protocol [GSC+83], which is the appropriated choice for
most of the applications [JPPMAK03].

The ROWAA protocol allows optimal scalability for read operations, as they can
be executed locally without interaction with the other database sites. The same
scalability for write operations is difficult to achieve, as write operations must be
executed by all database sites. This implies that each new replica added to the
system do not share the load with the others, as happens with read operations,
but instead increases it. Write operations increase the load either at database sites
local storage either at the required network bandwidth. The network bandwidth
may not be a concern in local area networks, but it is for sure in wide area networks
where it is much more limited and expensive.

Applications presenting data access locality, and those like the TPC-C [TPC01] in
which data can be easily fragmented, are applications that may reduce the storage
and network bandwidth requirements by having each database site replicating only
part of the database. This allows to reduce the impact of replication on the storage

71
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and network bandwidth requirements. A newer replica added to the system only
increases the load on the database sites replicating the same parts of the database
and not all database sites, as in the full replication scenario.

The adoption of partial replication poses several challenges to protocols such as
the Database State Machine (DBSM) protocol [PGS03], used for full replication.

In a full replication scenario, read operations can be executed by the database
site interacting with the client, while write operations require some coordination
among database sites. In an optimistic execution, write operations are executed
locally by the database site executing the transaction. Coordination between data-
base sites happens only once per transaction before commit.

In a partial replication scenario, local execution of read and write operations is
impossible if the database site does not replicates the accessed data items. This
requires the characterization of the execution model for partial replication, which
depending on the transactions a database site is allowed to execute, may require
interaction with other database sites during execution.

In the optimistic execution model, transactions are executed by a database site
without interaction with the others until commit time. At that point, transactions
must be globally validated, i.e., all database sites must agree on the transaction
outcome. This is ensured by a termination protocol responsible to ensure trans-
actions’ dissemination, atomicity and consistency properties. In the DBSM, the
termination protocol uses an atomic broadcast to disseminate and establish trans-
actions’ certification order and a deterministic certification test to ensure transac-
tions atomicity and consistency.

In a partial replication scenario, two approaches have been devised as possible
to the termination process. One delivers transaction information to each database
site according to the data items replicated by the database site, but requires and ad-
ditional agreement step. The other is similar to the DBSM approach, but requires
more resources from the database sites and possibly more network bandwidth.
The adoption of one solution in detriment of the other involves some trade-offs,
which are evaluated in the conducted experiences.

This Chapter starts by revising database replication with optimistic execution, and
associated database model in Section 5.1. Afterwards, in Section 5.2, it describes
the changes and refinements on the components of the database model in order to
support partial replication. It proposes two alternatives for the termination pro-
tocol and the trade-offs involved in the selection of each of the alternatives. Sec-
tion 5.3 describes the protocols implementations and finally, Section 5.4 describes
the evaluation environment and evaluates the protocols using the TPC-C [TPC01].
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5.1 Database Replication with Optimistic Execution

In contrast with replication based on distributed locking and atomic commit proto-
cols, group communication based protocols minimize interaction between replicas
and the resulting synchronization overhead by relying on total order multicast to
ensure consistency. Generically, the approach builds on the classical replicated
state machine [Sch93]: The exact same sequence of update operations is applied
to the same initial state, thus producing a consistent replicated output and final
state. The problem is then to ensure deterministic processing without overly re-
stricting concurrent execution, which would dramatically reduce throughput, and
avoid re-execution in all replicas.

The group based replication protocols of [KPAS99, PMJPKA00, PGS03, KA00a],
rely on a totally ordered multicast for consistency. They differ mainly on whether
transactions are executed conservatively [KPAS99, PMJPKA00] or optimistically
[PGS03, KA00a]. In the former, concurrency is restricted by a priori coordination
among the replicas. It is assured that when a transaction executes there is no con-
current conflicting transaction being executed remotely and therefore its success
depends entirely on the local database engine. In the latter, execution is optim-
istic and there is no restriction on where concurrent conflicting transactions are
executed. Each replica independently executes its locally submitted transactions
and only then, just before committing, sites coordinate and check for conflicts
between concurrent transactions.

Termination  Manager 

Lock Manager
(Scheduler)

Data Manager

Client

Ordering

Transaction Manager

Certification
AgreementCertification

test

Figure 5.1: Database model.
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Database replication with optimistic execution is based on the database system
model of [BHG87], augmented with a Termination Manager [PGS03], respons-
ible for the synchronization at commit time. The centralized database system is
composed by a Transaction Manager, a Lock Manager (or Scheduler) and a Data
Manager, as depicted in Figure 5.1. The Termination Manager is composed by an
ordering and a certification module. The first is responsible for the dissemination
and ordering of the transactions. The latter is responsible for execution’s validity
and assuring an agreed outcome.

Committed

executing

Aborted

Committing

request
commit

request
abort

acc
ept

tran
sac
tion

reject
transaction

Figure 5.2: Transaction states.

During its lifetime a transaction evolves through some well-defined states (Fig-
ure 5.2). It starts byexecutingall operations locally. When the client requests its
commitment, the transaction proceeds to thecommittingstate. Here, it is ensured
that all database sites agree on the transaction’s outcome. Lastly the transaction
evolves to one of its final statescommittedor aborted.

5.1.1 Transaction Manager

The Transaction Manager is responsible for interacting with the Lock Manager in
order execute transaction’s operations. This is done by forwarding the requested
transaction’s operations to the Lock Manager that coordinates the local execution
according to the database consistency criterion.

Until the reception of the transaction’s commit request, transactions are executed
locally without interaction with other database sites. When the commit request is
received, the transaction information is collected by the Transaction Manager and
the coordination task is delegated to the Termination Manager which is respons-
ible for determining the transaction’s outcome:commitor abort. The transaction
information collected by the Transaction Manager is of two kinds. Information
about the transaction itself, i.e. the data items accessed by the transaction for
reading and writing – the Read Set (RS) and Write Set (WS), and the new data
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produced by the transaction execution – the Write Values (WV). The Termination
Manager need also to be provided with information that allow it to establish which
transactions executed concurrently.

5.1.2 Lock Manager (Scheduler)

The Lock Manager is the responsible for controlling the local execution of con-
current transactions, i.e. to establish the order in which operations from different
transactions are executed.

The goal of the Lock Manager is to, given a set of transactions, produce an ex-
ecution equivalent to some sequential execution of the same set of transactions.
To obtain such result, the Lock Manager allows operations from different transac-
tions to execute concurrently, except when it results in an execution impossible to
occur if the transactions were effectively executed sequentially.

The definition of which transaction operations can and which can not be executed
concurrently depends on the adopted consistency criterion. The most commonly
used consistency criteria are the Serializable consistency criterion (SR) and the
Snapshot Isolation consistency criterion (SI) described next.

Serializable Consistency Criterion Serializable consistency ensures that the
concurrent execution of a set of transactions is equivalent to some serial execution
of the same set of transactions [BHG87]. I.e., a historys is conflict serializable if
there exists a serial historys′ such thats is conflict equivalent to s′ [GG02].

Snapshot Isolation Consistency Criterion Snapshot isolation consistency en-
sures that read operations are never blocked by conflicting transactions, as read
operations should always be performed on a snapshot of the (committed) data
prior to the transaction’s start. Also, update operations should be made on such
a snapshot, and will be visible only for transactions starting after the commit of
the executing transaction [BBG+95]. A formal definition of snapshot isolation
appears in [SWWW00]:

• A multiversion history of transactionsT = t1, ..., tn satisfies the criterion of
snapshot isolation (SI) if the following two conditions hold:
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SI-V SI version function: The version function maps each read actionri(x)
of ti to the most recent committed write actionwj(x) as of the time of
the begin ofti, or more formally:ri(x) is mapped towj(x) such that
wj(x) < cj < bi < ri(x) and there are no other actionswh(x) and
ch(h 6= j) with wh(x) < bi andcj < ch < bi.

SI-W disjoint write-sets: The write-sets of two concurrent transactions are
disjoint, or more formally: if, for two transactionsti and tj, either
bi < bj < ci or bj < bi < cj, thenti andtj must not write a common
objectx.

5.1.3 Data Manager

The Data Manager is the component responsible for reading and writing data from
and to stable storage. It ensures the durability of the data produced by transactions
processing. Upon commit, the transactions changes to the database are stored in
stable storage and survive database failures.

5.1.4 Termination Manager

The transaction’s termination, handled by the Termination Manager, is started by
the Transaction Manager when receiving the transaction’s commit request. The
transaction information and database state received from the Transaction Manager
are propagated to all database sites. Each database site will thencertify and, if
possible, commit the transaction. The Termination Manager has thus three goals:
i) to propagate the transaction to all database sites,ii) to certify it, and iii) to
commit it.

5.1.4.1 Transaction’s Dissemination and Ordering

The first step of the Termination protocol is to propagate transaction information
to all database sites, so it can be certified and committed at all replicas. After
receiving the transactions, each database site has to establish their certification
order.

The atomic broadcast is usually the protocol of choice for establishing a global
order among a set of transactions. Atomic broadcast blindly orders transactions
independently of being or not conflicting transactions.
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The generic broadcast [PS99] and the reordering certification test [Ped99] are two
technics that can be used in order to improve the number of committed transac-
tions. The former orders transactions based on a conflict relation. The conflict
relation is defined by the application, and is used to establish an ordering among
conflicting transactions. The latter, uses an atomic broadcast protocol to establish
the certification order, and a fixed size reorder list of certified transactions not yet
committed. This list allows to set different certification and commit orders for
each transaction by changing their order in the list. I.e., if the result of a trans-
action certification is abort but would be commit if the transaction was certified
before some of the transactions in the reorder list, then it will be inserted in the
reorder list before the transactions causing it to abort, thus improving the number
of committed transactions.

5.1.4.2 Transaction Certification

Transaction certification is based on the principle ofcertifiers[BHG87]. A certi-
fier is an optimistic scheduler that never delays operations, but that from time to
time verifies whether the operations it had allowed to execute do not violate the
database consistency criteria. This verification has to be done before committing
any transaction, possible of leading the database to an inconsistent state.

In order to be committed, a transaction,t, can not conflict with already committed
transactions. The aim of the certification procedure is thus to ensure thatt do not
conflicts with already committed transactions,t′. This is done by:i) establishing
which committed transactionst′ are concurrent witht, and which precede it. A
transactiont′ precedes a transactiont if t′ commits beforet start; ii) ensuring
there are no operation conflicts betweent and concurrent transactionst′ already
committed.

The definition of the certification procedures for the consistency criteria of Sec-
tion 5.1.2 are presented below, as the definition of operation conflicts depends on
the adopted consistency criteria

Serializable Certification In a database using serializable consistency criterion,
two operations conflict when they are issued by different transactions, access the
same data item and at least one of them is a write operation. Thus, operations
conflicts can be read-write, when one transaction reads a data item written by the
other, or write-write, when both transactions write the same data item.

In such a database, a transaction only reaches the commit request if it do not
conflicts with transactions committed during its optimistic execution. In the event
of a conflict the transaction should have been aborted.
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This fact can be used to reduce the set of concurrent transactions that must be
checked for conflicts by the certification procedure. Transactions,t′, committed
during the optimistic execution oft, can be considered as preceding it. If they
were conflicting then the transaction must have been aborted during its optimistic
execution. This is the precedence relation between transactionst andt′ appearing
in [PGS03]: (i) if t andt′ execute at the same database site,t′ precedest if t′ enters
the committing state beforet; or (ii ) if t andt′ execute at different database sites,
for examplesi andsj, respectively,t′ precedest if t′ commits atsi beforet enters
the committing state atsi.

In order to certify a transactiont the certification procedure has to ensure that
every committed transactiont′ either precedest, or there are no read-write nor
write-write conflicts between the read and write sets oft and the write set oft′.

Snapshot Isolation Certification In a database using snapshot isolation as the
consistency criterion, transaction’st read operations of a data item always return
the same value, independently of the data item being updated by concurrent trans-
actions duringt’s execution. In such a database, read operations never conflict
with write operations.

From the snapshot isolation consistency criteria definition, two write operations
are conflicting if, issued by concurrent transactions and update the same data item.
Being so, in order to certify a transactiont the certification procedure has to ensure
that every committed transactiont′ either precedest, or their write sets are disjoint.

5.1.4.3 Distributed Agreement

Having all database sites deterministically certifying transactions may not be suf-
ficient to ensure the replicas’ consistency. After certification there may be some
local constraints preventing a database site to commit a transaction.

The problem of ensuring that a group of database sites reach a common de-
cision on whether to commit or abort a transaction might require the use of an
atomic commitment protocol. When the protocol has to ensure that every par-
ticipant reaches a decision despite the failure of other participants, this atomic
commitment protocol is called Non-Blocking Atomic Commitment protocol (NB-
AC) [BHG87].

In an asynchronous distributed system, where perfect failure detection is not avail-
able, a weaker version of the protocol is required. Roughly, the Weak Non-
Blocking Atomic Commit protocol [Gue95], leads to a commit decision when all
database sites propose to do so and no one is suspected to have failed.
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To avoid aborting transactions due to constraints affecting a single database site
the atomic commitment may be replaced by a dictatorial atomic commit [AGP02],
a protocol in which database sites cannot propose to abort a transaction, but must
decide accordingly to the coordinator will. Disallowing a database site to unilat-
erally abort transactions, i.e. ensuring that after successfully certifying a trans-
action a database site cannot unilaterally abort it, the atomic commitment may
be avoided. In this case all database sites will propose the same transaction out-
come, and the result of the atomic commitment can only be the proposed value,
rendering it redundant.

In both cases, a database site failing to comply with the decision implies that the
database site quits and leaves the group.

5.1.4.4 High Priority Transactions

After successful completion of the termination process, the transaction outcome
is commit, so all its updates must be applied to all database sites. During the
update process, the Lock Manager must ensure that:i) the transaction will not be
aborted due to conflicts with other executing transactions;ii) transaction updates
are applied to the database in certification order.

The first requirement dictates that certified transactions have priority over locally
running transactions. This means, that whenever a conflict is detected by the local
Lock Manager it can only decide to abort the locally running transaction.

The second requirement dictates how conflicts between certified transactions are
handled. In this case, the conflict results from both transactions trying to update
the same data item. The solution is thus to ensure that updates are applied to the
database in the certification order, or else that only the updates resulting from the
latest certified transaction are reflected in the database.

5.2 Partial Replication

This section proposes a group based partial database replication protocol with
optimistic execution. It follows the structure of the previous one describing the
changes and refinements necessary in some of the modules to support partial rep-
lication.

Full and partial replication differ on the definition of which data items are rep-
licated in each database site. The definition of the database sites replicating each
data item is orthogonal to the replication protocol. It must be aware of which data
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items are replicated at each database site, in order to establish which database sites
are involved in each transaction. For instance, in a relational database fragmenta-
tion might be table based, or based on the horizontal or vertical fragmentation of
tables.

The partial replication execution model may require some changes to the Transac-
tion Manager to support it. Changes are required if the execution model does not
restrict database sites to execute transactions to access only data items replicated
locally. The changes are required in order to allow the Transaction Manager to
coordinate the transactions’ optimistic execution with other database sites. These
changes to the Transaction Manager are discussed in Section 5.2.1.

The Termination Manager, faces several challenges. It has to solve the problem
of delivering transaction’s information only to database sites replicating it, which
means delivering parts of the transaction information to different database sites.
It has to establish if transactions should be ordered before certification and the
necessity of an atomic commitment after certification.

To solve the challenges faced by the Termination Manager, we envision two ap-
proaches. Both require write values to be disseminated apart from the ordering
protocol, in order to reduce the required network bandwidth. Regarding read and
write sets dissemination, one of the approaches uses the one of the previous Sec-
tion. The other requires an atomic commitment after certification, uses an atomic
broadcast to define the transactions certification order and a reliable broadcast to
concurrently distribute parts of the read and write sets to the database sites replic-
ating them.

There are some trade-offs involved in the selection of one of the protocols in
detriment of the other, which are presented in Section 5.2.2.

5.2.1 Transaction Manager

The Transaction Manager, as in the full replication scenario is the responsible for
coordinating the transactions’ execution. The main difference compared to the
full replication is that some transactions can not be executed locally. That is, the
Transaction Manager has to deal with the fact that the database site only replicates
part of the database.

To deal with this problem the Transaction Manager may follow two distinct ap-
proaches. The first is to ignore the part of the database not replicated locally. Us-
ing this approach transactions running locally only access data items for which the
database site holds a replica. Using this approach there is no difference between
the Transaction Manager of a fully or partially replicated database.
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Alternatively, the Transaction Manager is aware that there are data items replic-
ated elsewhere. In this case, whenever a transaction tries to access these data
items the local Transaction Manager must ensure the transaction accesses them.
This problem occurs only during the optimistic execution and has been the subject
of the work in [Jún04]. The proposed solutions are briefly described below.

The referred work adopted a distributed query processing mechanism which uses a
two step-optimization to solve the problem of distributed execution. Roughly, the
two step-optimization facilitates the integration of the distributed query processing
into a centralized database management system, allowing the query to be locally
optimized without further modifications to the local optimization engine. After
the local optimization, which corresponds to the first step, the second step must
decide where the pre-processed query must have its operations executed. In this
case, for each operation, a simple approach which chooses the first database site
that is able to handle the request has been adopted.

Combined with the two-step optimization, a distributed execution that mimics a
nested transaction has been developed: (i) the initiator (i.e., the database site used
by the client to send transaction’s request) can distribute one sub-transaction per
database site; (ii) only the initiator can distribute sub-transactions, which avoids
the possibilities of deadlocks inside the same transaction; (iii) sub-transactions
execute optimistically at remote database sites and the concurrency control mech-
anism of the initiator database site controls its own transactions; (iv) upon the
initiator abort, all the sub-transactions are also aborted; (v) upon a sub-transaction
abort, all the other sub-transactions are also aborted.

In order to minimize the impact of the distributed execution on the overall per-
formance, which may increase resource usage and mainly bandwidth consump-
tion, a distributed cache mechanism was built. It is based on semantic entries,
which means that instead of using tuples or pages to identify the entries in cache,
the predicates of the queries are used as identifiers and the cache is populated
using the results of the queries. This avoided the management overhead of the
tuples, which usually involves retrieval, update and replacement per tuple.

The described protocol is easily integrated in the described architecture. Being
fully integrated in the Transaction Manager allows it to be used transparently, as
it does not imply changes in the validation process.

5.2.2 Termination Manager

In partial replication there are data items that are replicated only at some of the
replicas. Being so, it is natural that database sites are only interested in operations



82 CHAPTER 5. PARTIAL DATABASE REPLICATION

referring to data items replicated locally. This poses a challenge to the dissemin-
ation which must decide which parts of the read and write sets should be sent to
each database site.

There are two options regarding read and write sets dissemination: selectively
send to each database site parts of the read and write set containing the data items
it replicates; or send the read and write sets to every replica as it happens in full
replication. We analyze both approaches next.

5.2.2.1 Partial Certification

In this scenario, each database site delivering a transaction only receives the part
of the read and write sets and the write values relating to the data items replicated
locally. The received read and write sets only allows each database site to certify
part of the transaction, i.e. the part regarding the data items it replicates. Having
such an incomplete knowledge each database site can not decide the transaction
outcome without consulting the other database sites.

The need for a final agreement after the transaction’s certification leads to ques-
tion the utility of using a protocol ensuring a global order in the beginning of
the termination process. It turns out, however, that ordering transactions before
certifying them improves the ratio of committed transactions [PGS98].

The total order multicast to multiple groups protocol [GS97a], ensures that:i)
only database sites replicating the data items accessed by a transaction deliver the
transaction; andii) transactions are delivered in the same order by all database
sites replicating data items accessed by it.

This protocol fulfills all the requirements of transaction’s dissemination. The ma-
jor drawback is that implementing such a protocol is costly and the genuine mul-
ticast version is usually not implemented in group communication toolkits. In
this case, the option is to use an atomic multicast to all database sites. This is
an undesired situation as with partial replication we intend to reduce the required
network bandwidth.

To reduce the bandwidth required by the atomic multicast protocol we adopt a
protocol that is the combination of two distinct protocols. The first orders trans-
actions among all database sites, and the second uses a reliable multicast to send
to each database site only the parts of the transaction information referring data
items replicated locally. These two protocols run concurrently and their impact on
required network bandwidth should be marginal.

Using a global order to certify transactions, results in all replicas of a data item
x, Sites(x), detecting the same conflicts. Requiring database sites to propose the
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result of the certification for the atomic commitment, leads to, all database sites
replicating conflicting data items to proposeno, and all the other proposingyes.

From this, after receivingyesvotes from database sites representing all data items
accessed by a transactiont, Items(t), a participant in the atomic commitment
protocol knows that decision will be commit. At that point a participant knows that
the transaction passes the certification test in all data items, and that the remaining
votes must beyesbecause the participants are only allowed to propose the result
of the certification. Since, after collecting votes from a representative of each data
item all the remaining votes are redundant, it should be possible to tolerate the
failure of some database sites, without affecting the transaction’s outcome.

The weak non-blocking atomic commit decides to abort a transaction if a during
the protocol execution a database site is suspected of having failed. To circum-
vent this, and taking advantage of the fact that we should tolerate the failure of
some database sites, we propose the use of a new definition for the atomic com-
mitment problem, theResilient Atomic Commit (RAC). Resilient atomic commit
is an atomic commit protocol able to decide commit as long as there is a replica
of every data item that is not suspected of having crashed. In this protocol, parti-
cipants start by votingyesor no for the outcome of transactiont. The result should
fulfill the following conditions:

Termination . Every correct participant eventually decides.

Agreement. No two participants decide differently.

Validity : If a participant decidescommitfor t, then for eachx ∈ Items(t), there
is at least a participant inSites(x) that votedyesfor t.

Non-triviality : If for each x ∈ Items(t) there is at least a participants ∈
Sites(x) that votesyesfor t and is not suspected, then every correct parti-
cipant eventually decidescommitfor t.

Figure 5.3 depicts the execution of transactiont, which is committed using resi-
lient atomic commit but aborted if using atomic commit. In step 1, transactiont
executes at database sites1, and clientc sends a commit request to the database
sites1. In step 2,t is broadcast and at the end of this step, it is delivered, certified
ands2 crashes. Sitess1 ands3 start the Resilient Atomic Commit protocol voting
yesand usings1 as coordinator, which decidescommitat the end of step 3 (using
Atomic Commit, the transaction will be aborted sinces2 is eventually suspected
to have failed). In step 4,s1 sends its decision to all database sites. In step 5,
database sitess1 ands3 receive the decision of the Resilient Atomic Commit and
s1 sends the transaction result toc.
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Figure 5.3: Validation with Resilient Atomic Commit.

Resilient Atomic Commit presents better latencies than the Atomic Commit pro-
tocol. The Atomic Commit protocol has to wait until a vote is received from
each participant or until it is suspected of having failed to decide. On the other
hand, the Resilient Atomic Commit can decide when the collected votes are rep-
resentative of all data items accessed by the transaction. This particularity of the
Resilient Atomic Commit represents significant improvements in wide area net-
works, or when a database site becomes much slower than the others. The latency
of the Resilient Atomic Commit will be equal to the Atomic Commit protocol
only when the farthest or slower database site holds the only replica of certain
data items.

5.2.2.2 Independent Certification

In a scenario in which the read and write sets are disseminated with the atomic
multicast, every database site receive the transaction’s read and write sets, inde-
pendently of the data items it replicates.

As in the previous scenario, the write values are only sent to the replicas of each
data item using a reliable multicast.

Having the read and write sets sent to all replicas is a scenario similar to full
replication, i.e., every database site as the necessary information to certify the
transaction, and the final atomic commitment can be avoided.

This scenario establishes some trade-offs with the previous one, namely on the
additional bandwidth and memory required for transmitting the full read and write
sets and storing the full write sets, as well as the latency of the termination process.
These trade-off are discussed in the following section.
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5.2.2.3 Trade-offs

On the choice of the termination approach to use, both network and memory usage
need to be considered.

Network Bandwidth In order to evaluate the tradeoff involving the bandwidth
required by both approaches, the transactions’ read set, write set, and write val-
ues have been divided in two subsets:i) a subset of data items replicated locally
calledRSL, WSL andWVL, andii) a subset containing data items not replicated
locally calledRSR, WSR. AC represents the amount of data exchanged among
the replicas during the execution of the atomic commitment protocol.

In a system withn replicas the required bandwidth for each case is given by:

Full RS & WS≡
n−1∑
i=1

(RSLi
+ WSLi

+ WVLi
) +

n−1∑
i=1

(RSRi
+ WSRi

)
(5.1)

Partial RS & WS≡
n−1∑
i=1

(RSLi
+ WSLi

+ WVLi
) + AC

(5.2)

From 5.1 and 5.2 in terms of bandwidth requirements, selective read and write
sets are preferable as long as the required bandwidth for the atomic commitment
protocol does not exceed the required for transmitting the missing values of the
read and write sets, i.e. as long as

AC <

n−1∑
i=1

(RSRi
+ WSRi

) (5.3)

When the adopted consistency criteria is snapshot isolation, since the certification
test does not depend on the read set, the previous expression can be rewritten as:

AC <
n−1∑
i=1

(WSRi
) (5.4)
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Latency of the Termination Process The different protocols used during the
termination process as well as the size of the data being transferred should result
in different latencies among the different approaches.

The contributors for the latency of the termination process are the atomic broad-
cast latency and the certification latency. Additionally, when sending only parts of
the read set to each database site, the termination process also incurs in the latency
of the atomic commitment.

Regarding the atomic broadcast protocol, as this protocol propagates the messages
concurrently with the ordering mechanism, it is expected that it will mask the
differences in latency that should happen due to message size.

Regarding the certification test, the main difference among the two situations is
on the size of the read and write set. It is expected that the certification test only
marginally contributes to the overall latency.

The factor that should negatively impact the latency of the termination is the
atomic commitment protocol, and in this case the protocol sending full read and
write sets should be in advantage.

Memory Usage As in the case of the bandwidth, sending the read set and write
set to all database sites, requires additional memory at each database site. This
additional memory is required in order to hold the parts of the write sets referring
to data items not replicated at the database site.

The evaluation presented in Section 5.4.4 will provide concrete figures for the
involved trade-offs.

5.3 Implementation

This Section describes the implementation of the of the partial replication termin-
ation protocols. It starts with a description of the implementation architecture and
of the interfaces used by the termination protocols to interact with the database
and group communication.

Afterwards, Section 5.3.3 describes the class implementing transactions’ certific-
ation, which is used by the implementation of the termination protocols.

Section 5.3.4 describes the termination protocol with independent certification.
The refinements required to support optimistic delivery are also described. The
same protocol implementation can be used in the full replication scenario.
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Finally, Section 5.3.5 describes the implementation termination protocol with par-
tial certification, as well as the implementation of the resilient atomic commitment
protocol.

5.3.1 Architecture
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Figure 5.4: Implementation architecture.

The system architecture used for the implementation of the replication protocols is
depicted in Figure 5.4. The architecture presents three major blocks, the database
engine, the termination component and group communication. Communication
between the database engine and the termination component is mediated by the
termination interface and between the termination component and the group com-
munication by the group communication interface.
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Figure 5.5: Classes used in the implementation.

The classes and interfaces of the JAVA implementation of the presented architec-
ture are depicted in Figure 5.5. It presents four main components, the database
interface, the group communication interface, the termination component and the
atomic commitment component. It presents also three auxiliary components, the
replication information, messages and memory management components.

The database and group communication interfaces define the interfaces for inter-
action with the termination component.

The termination component defines an abstract class, theAbstractCertifier

which implements the certification test and is the base for the implementation of
the termination protocols.

The atomic commitment module defines interfaces and implements the resilient
atomic commitment protocol.
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The replication information module is used to store information about replicated
data, for instance the location of the replicas of data items.

The memory management module is responsible to exchange and collect informa-
tion about committed transactions, so memory occupied by transactions preceding
any running transaction can be freed.

The messages module defines the data formats of the information exchanged
between the database and the termination protocol, as well of the messages ex-
changed during the termination protocol.

5.3.2 Termination and Group Communication Interfaces

The interface between the database and the termination module is ensured by
the four interfaces depicted in Figure 5.6. The database implements the inter-
faceGordaReplicator which defines thedeliver method for the termination
process to send transactions originated remotely to be executed, and to commit
or abort transactions originated locally. This interface defines also the method
getOldestSnapShotTime to be used by the termination protocol to query the
database about the version of the oldest snapshot still in use. This is used to estab-
lish which committed transactions can be purged from memory by the termination
process.

deliver
getOldestSnapShotTime

Interface 
GordaReplicator

configure

Interface 
Configurable

init

Interface 
Initializable

submit

Interface 
GordaProtocolStack

Figure 5.6: Database interface.

The GordaProtocolStack interface is implemented by the termination pro-
tocol and defines the methodsubmit used by the database to trigger the ter-
mination process. The termination protocol implements theConfigurable and
Initializable interfaces on whichGordaProtocolStack depends. These
are used to handle information about replicated data and to initialize the instance
of termination protocol.

The group communication to termination protocol interface is ensured by the
interfaces depicted in Figure 5.7. theGordaBottom interface, which defines
methods for view managementflush and install , unblockMulticast for
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flow control and for message exchangedeliver and fastDeliver , is imple-
mented by the termination process. The group communication implements the
GordaCommAPI interface which defines the counterpart methods for view man-
agementdone , for flow control unblockDeliver and for message exchange
multicast .

flush
install
unblockMulticast
deliver
fastDeliver

Interface 
GordaBottom

done
init
multicast
unblockDeliver

Interface 
GordaCommAPI

createComm
createProc
run

Interface 
GordaCommAPIFactory

Figure 5.7: Group communication interface.

Theflush method ofGordaBottom is called before changing a view in order to
deliver the messages that should be delivered in the current view. When this task
is concluded, then thedone method in theGordaCommAPIshould be called. The
install is used to change the view due to a change in the group membership.

The unblockMulticast is used to inform aGordaBottom that it can resume
the sending of messages, which must have stopped after a multicast returning
false .

Thedeliver andfastDeliver are used to deliver to the termination protocol a
message when the required properties are achieved or to deliver it optimistically.
One of such calls returning the value offalse prevents the group communication
to deliver further messages until it receives aunblockDeliver .

The message delivery guarantees offered by the group communication may range
from reliable to uniform total order. Currently, the ones used are reliable, total or-
der and optimistic total order. The interface offered by the group communication
to the termination protocol, theGordaCommAPIFactory allows the termination
protocol to establish the desired properties when creating an instance of a commu-
nication channel by calling thecreateComm method. A communication channel
created by theGordaCommAPIFactory implements theGordaCommAPI .

5.3.3 Abstract Certification

The abstract classAbstractCertifier is the basic building block of the ter-
mination protocol. It implements the certification tests and interfaces with the
database. The serializable and snapshot isolation certification tests are implemen-
ted in the procedurescertification_sr andcertification_si depicted in
Listing 5.1 and 5.3 respectively.
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Depending on the transactions profile, the read sets may be quite large. Trans-
mitting these large read sets over high latency and low bandwidth links may be
problematic. To alleviate the replication protocol of transmitting such amounts of
information, applications may establish thresholds on the number of read items
from a relation. When such a threshold is reached, then the table is considered as
being fully read, which results in sending only a data item, representing the whole
table, over the network.

1 booleancertCheckSR(CertMessage curr, CertMessage[] conc){
long[] rTablesLocked = curr.rtLocks();
long[] rs = curr.RS();
for (int i = 0; i < conc.length; i++) {

5 if (rTablesLocked !=null && rTablesLocked.length > 0)
if (intersects(rTablesLocked, conc[i].wTables(), 0,rTablesLocked.length, 0,

(conc[i].wTables() !=null ? conc[i].wTables().length : 0)))
return false;

if (intersects(rs, conc[i].WS(), 0, rs.length, 0, (conc[i].WS() !=null ? conc[i].WS().length : 0)))
10 return false;

}
}

booleancertification_sr(CertMessage curr, CertMessage[] finalc, CertMessage[] fastc) {
15 if (finalc != null && !certCheckSR(curr,finalc))

return false;
if (fastc !=null &&!certCheckSR(curr,fastc))

return false;
return true;

20 }

Listing 5.1: Serializable certification test.

The serializable certification test starts to check for conflicts against concurrent
transactions already committed (line 15) and against optimistically delivered trans-
actions passing the certification test (line 17), when using optimistic delivery of
the transactions, using thecertCheckSR function. This function starts to check,
for each concurrent transaction, if due to its size the read set is a full table, and
looks for conflicts between tables (lines 5-7). Afterwards it looks for conflicts on
individual data items (line 9).

For conflict search, the certification test uses theintersects procedure which
looks for intersections between sets of sorted data items. This procedure is de-
picted in Listing 5.2 and receives as arguments, two ordered arrays of data item
identifiers, and the boundaries for the search of conflicts. It returns a boolean
value indicating whether a conflict has been found.

The snapshot isolation certification test is simpler than the serializable certifica-
tion test as it only has to look for conflicts on written data items. As the previous
one, it recurs to the intersects procedure depicted in Listing 5.2.
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1 booleanintersects(long[] src1, long[] src2, int frst1, int lst1, int frst2, int lst2) {
while (frst1 < lst1 && frst2 < lst2)

if (src1[frst1] < src2[frst2])
++frst1;

5 elseif (src2[frst2] < src1[frst1])
++frst2;

else
return true;

return false;
10 }

Listing 5.2: Check for conflicts on data items.

1 booleancertCheckSI(CertMessage curr, CertMessage[] conc){
long[] ws = curr.WS();
for (int i = 0; i < conc.length; i++)

if (conc[i] != null && intersects(ws, conc[i].WS(), 0, ws.length, 0, (conc[i].WS() !=null ? conc[i].WS().length : 0)))
5 return false;

}

booleancertification_si(CertMessage curr, CertMessage[] finalc, CertMessage[] fastc) {
if (finalc != null && !certCheckSI(curr,finalc))

10 return false;
if (fastc !=null && !certCheckSI(curr,fastc))

return false;
return true;

}

Listing 5.3: Snapshot isolation certification test.

The auxiliary classes used by the certification test and the termination protocol
are theCertMessage that holds transaction’s information, theRepInfo holding
information regarding tables identifiers, and replication maps in the case of partial
replication andcertMessage manipulation functions.

5.3.4 Termination Protocol with Independent Certification

The rational behind the implementation of the termination protocol with inde-
pendent certification, i.e., with read and write sets sent to all replicas is depic-
ted in Figure 5.8. The process relies on four queues, theLocalTransactions

queue for transactions submitted by the local database, theFNLDelivered queue
for transactions whose total order has been established, theTerminated queue
for transactions whose outcome is already known, and theCommitted queue for
transactions that have been committed and are still needed for certification.

The termination process for a transaction is triggered by calling thesubmit pro-
cedure. This in turn places the transaction in the queue ofLocalTransactions
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Figure 5.8: Termination protocol with independent certification.

and multicast it to all database sites. When received totally ordered from the
network the transaction is added to the end of theFNLDelivered queue. A
transaction is considered ready to be delivered when both its order, and remain-
ing information, i.e., the read set, the write set, the write values, and precedence
information has been received.

The existence of transactions in theFNLDelivered queue triggers the execution
of the processFinal procedure, depicted in Listing 5.4. It starts removing the
information at the head of theFNLDelivered queue (line 2), afterwards it ob-
tains the transaction information and certifies it (lines 3-5). After certification, the
transaction identification and certification outcome are added to theTerminated

queue (lines 6-12).

1 void processFinal() {
Object tid = FNLDelivered.remove(0);
CertHeader ctinf = (CertHeader) tid2tx.get(tid);
booleanres = certification(ctinf.payload(), build_prevs(

5 ctinf.payload().getSnapshotTime()));
CertWrapper<CertHeader> toTerm =newCertWrapper<CertHeader>(ctinf);
toTerm.setFinal();
if (res)

toTerm.setCommit();
10 else

toTerm.setAbort();
Terminated.add(toTerm);

}

Listing 5.4: processFinal procedure.
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TheprocessTerminated procedure, depicted in Listing 5.5, is triggered by the
existence of transactions in theTerminated queue. It starts removing the trans-
action at the head of the queue (line 2), and depending on the certification result
it calls thecommit (line 4) orabort (line 6) procedure, depicted in Listing 5.6.

1 void processTerminated() {
CertWrapper<CertHeader> tx = Terminated.remove(0);
if (tx.isCommit())

commit(tx.getWrapped());
5 else

abort(tx.getWrapped());
}

Listing 5.5: processTerminated procedures.

1 protectedvoid commit(CertHeader tx) {
localTrans.remove(tx.tid());
tx.payload().setAction(ACTION_FINAL_COMMIT);
replicator.deliver(tx.payload());

5

tx.payload().setCommitTime(dbVersion);
Committed.add(tx.payload());
dbVersion++;

}
10

void abort(CertHeader tx) {
localTrans().remove(tx.tid());
tx.payload().setAction(ACTION_FINAL_ABORT);
replicator.deliver(tx.payload());

15

tid2tx.remove(tx.tid());
}

Listing 5.6: commit and abort procedures.

Thecommit procedure starts by removing from theLocalTransactions queue
the transaction being committed (line 2). The previous operation is only relevant
for transactions for which the current database site has triggered the termination
process. Afterwards, thecommit procedure calls the database to inform it of the
transaction outcome (lines 3-4), sets the transaction commit time used for certific-
ation, ads it to theCommitted queue and increments the local database number
(lines 6-8). Theabort procedure starts by removing the transaction from the
LocalTransactions queue (line 12). Afterwards it calls the database to in-
form it of the transaction outcome (lines 13-14). Finally it removes the remaining
references to the transaction (line 16).
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5.3.4.1 Optimistic Total Order

The use of optimistic total order requires some changes on the protocol described
earlier, namely for process optimistically delivered transactions. These changes
are depicted in Figure 5.9.
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Figure 5.9: Termination protocol with optimistic total order.

In the implementation the changes resulted in the queueFSTDelivered for trans-
actions being optimistically delivered and theCertified queue for transactions
certified optimistically. The processing of optimistically delivered transactions
is handled by procedureprocessFast depicted in Listing 5.7. Once again, the
transaction is only considered after all its information have been received.

1 void processFast() {
Long tid = .remove(0);
CertHeader tx = (CertHeader) tid2tx.get(tid);
booleanres =super.certification(tx.payload(), build_prevs(tx.payload().getSnapshotTime()), build_fastprevs());

5 CertifiedTID.add(tid);
CertifiedRES.add(newBoolean(res));
if (res){

tx.payload().setAction(ACTION_FAST_COMMIT);
replicator.deliver(tx.payload());

10 }
}

Listing 5.7: processFast procedure.
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The processFast procedure starts by removing the transactions at the head of
the FSTDelivered queue, obtains the transaction information and certifies it
(lines 2-5). After certification it inserts the transaction identifier and the certi-
fication result into theCertified queue (lines 6-7). If the result of the certifica-
tion is commit, then the database is informed of the possibility of committing the
transaction (lines 8-11).

1 void processFinal() {
Object tid = FNLDelivered.get(0);
if (!CertifiedTID.isEmpty() && tid.equals(CertifiedTID.get(0))){

FNLDelivered.remove(0);
5 CertifiedTID.remove(0);

Boolean res=CertifiedRES.remove(0);
CertWrapper<CertHeader> toTerm =newCertWrapper<CertHeader>((CertHeader) tid2tx.get(tid));
toTerm.setFinal();
if (res.booleanValue())

10 toTerm.setCommit();
else

toTerm.setAbort();
Terminated.add(toTerm);

} else{
15 super.processFinal();

CertifiedTID.addAll(FSTDelivered);
FSTDelivered(CertifiedTID);
FSTDelivered.remove(tid);
CertifiedTID(newLinkedList<Long>());

20 CertifiedRES(newLinkedList<Boolean>());
}

}

Listing 5.8: processFinal procedure.

When the authoritative order for the transaction is received theprocessFinal

procedure depicted in Listing 5.8 is called. Depending on whether the transac-
tion in the head of theCertified queue is also the transaction in the head of
FNLDelivered queue the procedure executes the code corresponding to a trans-
action whose optimistic and authoritative orders match (lines 4-13) or the code
corresponding to a transaction whose optimistic and authoritative orders do not
match (lines 15-20). In the first case the references for the transaction are removed
from theFNLDelivered andCertified queues (lines 4-6) and the transaction
information and outcome are added to theTerminated queue (lines 7-13). In
the second case, the transaction is certified as if there is no optimistic delivery
calling the code on Listing 5.4 (line 15). Afterwards, since there was a mismatch
between the optimistic ant authoritative orders, the transactions in theCertified

queue are put on the head of theFSTDelivered queue (lines 16-20) for being
reprocessed.

TheprocessTerminated , commit andabort procedures remain unchanged.
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5.3.5 Termination Protocol with Partial Certification

In the termination protocol described in Section 5.2, the selection of which data-
base sites receive each part of the read and write set results in being mandatory to
use an atomic commitment protocol in order to ensure that all database sites agree
on the transaction’s outcome.

replicator

Committed
multicast

submit abort commit

RAC
Finish

Deliver FNL
Delivered Terminated Local

Transactions
FST

Delivered
CertifiedTID
CertifiedRES

RAC
Terminated

Process Final Process 
RACTerminated

FST
Deliver Process Fast Process 

Terminated

Network RAC

Figure 5.10: Termination protocol with partial certification.

Figure 5.10 describes the changes in the termination protocol in order to use an
atomic commitment protocol. The use of an such a protocol imposes some re-
strictions on the certification of transactions in theFNLDelivered queue. A
transaction at the head of theFNLDelivered queue can only be certified after
the previous one finishes, i.e. after the previous one have been committed or abor-
ted, as its outcome may influence the certification of the transaction at the head of
theFNLDelivered queue. To fulfill this restriction theprocessFinal proced-
ure is called only if there is no transaction waiting for the atomic commitment to
finish.

Another change is that transactions in theTerminated queue can not be sent to
the database, but instead theprocessTerminated procedure starts the atomic
commit proposing the result of the certification as the outcome of the atomic com-
mitment. This procedure is depicted in Listing 5.9. It starts by checking there is
no atomic commitment running (line 2). Aftrewards it gathers information about
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the atomic commitment it is about to start (line 3), registers that an atomic com-
mitment is running (line 4), and the identifier of the transaction associated to it
(line 5). Finally, it starts the protocol by proposing its vote (line 6)

1 void processTerminated() {
if (waiting_rac)return ;
CertWrapper<CertHeader> wtx=(CertWrapper<CertHeader>)Terminated.remove(0);
waiting_rac=true;

5 waiting_tid=wtx;
rac.propose(waiting_tid.getWrapped().tid(),wtx.isCommit());

}

Listing 5.9: processTerminated procedure.

When an atomic commitment protocol finishes, theRACTerminated queue is
used to store its outcome. TheprocessRACTerminated procedure depicted in
Listing 5.10 is called when the transaction it is waiting for is inserted into the
RACTerminated queue.

1 void processRACTerminated() {
booleanres=this.RAC_Terminated.remove(this.waiting_tid.getWrapped().tid());
if (res)

commit(waiting_tid.getWrapped());
5 else

abort(waiting_tid.getWrapped());
waiting_tid=null ;
waiting_rac=false;

}

Listing 5.10: processRACTerminated procedure

TheprocessRACTerminated procedure starts by removing the information as-
sociated to the transaction being finished from theRACTerminated queue (line
2). Afterwards depending on the outcome of the atomic commitment, it calls the
commit (line 4) or abort (line 6) procedures. Finally it prepares enables the
processing of the next transaction (lines 7-8), by eliminating references to the
transaction waiting for the atomic commitment and setting that there is n atomic
commitment running.

5.3.5.1 Resilient Atomic Commitment

As atomic commitment protocol, it is used the resilient atomic commitment pro-
tocol. The classes and interfaces used for its implementation are depicted in Fig-
ure 5.11.
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Figure 5.11: Classes and interfaces used in the resilient atomic commitment im-
plementation.

The implementation has two main components, theResilientAC class used for
database sites start the resilient atomic commitment protocol and for message
exchanging. TheRACInfo class maintains the state of the protocol and notifies
the protocol client when it needs some information. This information may be
whether a set of votes is already sufficient to decide the protocol outcome, or to
inform the database site that the protocol is expecting its vote.

TheResilientAC implementation relies on two procedures,propose which is
used to multicast the database site vote for a transaction resilient atomic com-
mitment, and theprocessRACMessage depicted in Listing 5.11, called when
receiving a vote.

1 void processRACMessage(RACMessage m){
RACInfo ac=this.ACs.get(m.id());
if (ac==null ){

ac=newRACInfo(m.id(),members.length,cli);
5 this.ACs.put(m.id(),ac);

}
ac.addvote(m.vote(),m.from());

}

Listing 5.11: processRACMessage procedure.

The first task of theprocessRACMessage procedure is to establish whether it
is the first vote for the protocol (lines 2-3). If it is the first vote, then a new
instance ofRACInfo is created and inserted into the map of transaction identifiers
to RACInfo (lines 4-5). Finally the vote is added to the instance ofRACInfo (line
7).

A RACInfo instance represents a resilient atomic commitment. Its main tasks are,
collect votes from other database sites, query its database site to establish which
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votes are sufficient for deciding commit, and to inform its database site of the
protocol outcome. The vote collection is implemented by theaddvote procedure
depicted in Listing 5.12.

1 void addvote(booleanv,int from){
vf[from]= true;
if (!v){

decided=true;
5 decision=false;

} else{
try {

if (cli.is_quorum(rac_id,vf)){
decided=true;

10 decision=true;
}

} catch(MissingTransactionException e){
cli.wait(this,rac_id);

}
15 }

if (decided && !decision_sent){
send_decision();

}
}

Listing 5.12: addvote procedure.

The addvote procedure starts by registering that database sitefrom has voted
for the protocol (line 2). Afterwards it analyses the vote, if it is an abort, then a
decision is reached and the decision is to abort (lines 4-5). If the vote is to commit,
then the client is queried to known whether the votes collected so far are sufficient
to reach a decision (line 8). If the answer is positive then a decision is reached and
the decision is to commit the transaction (lines 9-10). It is also possible that in
the database site there is a lack of information about the transaction. In this case,
when queried the database site throws aMissingTransactionException and
the RACInfo instance reacts to it asking the database site to inform it when it
knows about the transaction (line 13). Finally if during the processing of this vote
a decision is reached the database site is informed of the decision (line 17).

5.4 Evaluation

This section describes the evaluation of the partial replication termination pro-
tocols proposed using the full replication termination protocol as the basis for
comparison. All experiences were conducted in a centralized simulation model,
allowing to combine simulated components with implementations of the atomic
broadcast and termination protocols.
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It starts with a description of the WAN topology used in the evaluation of the
protocols, the application used and the clients setup. Afterwards we describe the
simulation model and its configuration to reproduce the behavior of the real sys-
tem. Finally, the results showing that partial replication requires fewer network
and storage resources without sacrificing performance are presented.

5.4.1 Experimental Scenario

5.4.1.1 Network Topology and Database Sites Configuration

The network topology used to evaluate the termination protocols on the simulation
infrastructure described consists on a WAN with 9 database sites. The database
sites are distributed over 3 LAN connected to a central router in a star topology.
Database sites in distinct LAN have 30ms latency and 4 communication hops
between them.

5.4.1.2 Application Profile

The application used for evaluating the replication protocols is the TPC-C in-
dustry standard benchmark [TPC01]. It is worth noting that, the interest in TPC-C
to evaluate the replication protocols is just in the workload specified by this bench-
mark. Therefore, the benchmark constraints of throughput, performance, screen
load and background execution of transactions are not considered. As the model is
coarse grained (e.g. the cache is modeled by a hit ratio), it is also not necessary to
observe the requirement to discard the initial 15 minutes of each run. The content
of each request is generated according to a simulated user based on the TPC-C
benchmark [TPC01].

The TPC-C benchmark proposes a wholesale supplier with a number of geograph-
ically distributed sales districts and associated warehouses as an application. This
environment simulates an OLTP workload with a mixture of read-only and up-
date intensive transactions. A client can request five different transactions:New
Order, adding a new order into the system (with 44% probability of occurrence);
Payment, updating the customer’s balance, district and warehouse statistics (44%);
Order Status, returning a given customer latest order (4%);Delivery, recording the
delivery of products (4%); andStock Level, determining the number of recently
sold items that have a stock level below a specified threshold (4%). Database
contents and transaction mix are summarized in Tables 5.1 and 5.2.

From the transaction mix,delivery transactions are CPU bound;paymenttrans-
actions are prone to conflicts by updating a small number of data items in the
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Number of items
Relations 100 (Cli.) 1000 (Cli.) Tuple size
Warehouse 10 100 89 bytes
District 1× 102 1× 103 95 bytes
Customer 3× 105 3× 106 655 bytes
History 3× 105 3× 106 46 bytes
Order 3× 105 3× 106 24 bytes
New Order 9× 104 9× 105 8 bytes
Order Line 3× 106 3× 107 54 bytes
Stock 1× 106 1× 107 306 bytes
Item 1× 105 1× 105 82 bytes
Total ≈ 5× 106 ≈ 5× 107

Table 5.1: Size of tables in TPC-C.

Transaction Probability Description Read-only?
New Order 44% Adds a new order into the sys-

tem.
No

Payment 44% Updates the customer’s bal-
ance, district and warehouse
statistics.

No

Order Status 4% Returns a given customer’s
latest order.

Yes

Delivery 4% Records the delivery of or-
ders.

No

Stock Level 4% Determines the number of re-
cently sold items that have a
stock level below a specified
threshold.

Yes

Table 5.2: Transaction types in TPC-C.

Warehousetable;paymentandorder statusexecute some code conditionally. The
database size is configured for each simulation run according to the number of
clients as each warehouse supports 10 emulated clients [TPC01]. As an example,
with 100 clients, the database contains in excess of5 × 106 tuples, each ranging
from 8 to 655 bytes.

In partial replication setups, database relations history, order, new order and or-
der line have been horizontally fragmented by warehouse. The other relations,
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warehouse, district, customer, stock and item have not been fragmented and are
replicated by all database sites.

5.4.1.3 Client

A database client is attached to a database site and produces a stream of transaction
requests. After each request is issued, the client blocks until the server replies, thus
modeling a single threaded client process. After receiving a reply, the client is then
paused for some amount of time (think-time) before issuing the next transaction
request. The content of each request is generated according to a simulated user
based on the TPC-C benchmark [TPC01].

During the run of the simulation, the client logs the time at which a transaction is
submitted, the time at which it terminates, the outcome (either abort or commit)
and a transaction identifier. The latency, throughput and abort rate of the server
can then be computed for one or multiple users, and for all or just a subclass of
the transactions.

5.4.2 Simulation Model

The simulation model proposed uses the centralized simulation model of [AC97].
It allows to combine simulated environment components, such as database servers,
database clients and network, using discrete-event simulation, with real code for
the components under study, namely the atomic broadcast and the termination
protocols.

Figure 5.12, describes the architecture of the simulation model, and the following
sections describe its components:

The simulation kernel offering the primitives upon which the simulation model
is implemented ;

The centralized simulation runtime (CSRT) responsible for the integration of
simulated code with real code;

The database serverresponsible for local database management;

The database clientresponsible for the workload generation, i.e. submitting
transactions to database servers;

The network responsible for carrying messages exchanged by database servers.
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Figure 5.12: Architecture of the simulation model.

5.4.2.1 Simulation Kernel

SSF and SSFNet The simulation kernel is based on the Java version of the Scal-
able Simulation Framework (SSF) [Cow99], which provides a simple yet effect-
ive infra-structure for discrete-event simulation [SSF04]. It comprises five base
interfaces:Entity, Process, Event, inChannelandoutChannel. An entity owns
processes and channels, and holds simulation state. The communication among
entities in the simulation model occurs by exchanging events through channels:
An event is written to anoutChannel, which relays it to all connectedinChan-
nels. Processes retrieve events by polling. Simulation time is updated according
to delays associated with event transmission. The simulation kernel includes also
a simple language, that can be used to configure large models from components
by instantiating concrete entities and connecting them with channels.

Simulation models are therefore built as libraries of components that can be re-
used. This is the case of the SSFNet framework [CNO99], which models network
components (e.g. network interface cards and links), operating system compon-
ents (e.g. protocol stacks), and applications (e.g. traffic generators). Complex
network models can be configured using such components, mimicking existing
networks or exploring particularly large or interesting topologies. The SSFNet
framework provides also extensive facilities to log events.

Centralized Simulation A centralized simulation model combines real soft-
ware components with simulated hardware, software and environment compon-
ents to model a distributed system. It has been shown that such models can ac-



5.4. EVALUATION 105

curately reproduce the performance and dependability characteristics of real sys-
tems [AC97]. The centralized nature of the system allows for global observation
of distributed computations with minimal intrusion as well as for control and ma-
nipulation of the experiment.

The execution of the real software components is timed with a profiling timer
and the result is used to mark the simulated CPU busy during the corresponding
period, thus preventing other jobs, real or simulated, to be attributed simultan-
eously to the same CPU. In detail, a simulated CPU is obtained as follows: A
boolean variable indicates whether the CPU is busy and a queue holds pending
jobs, with their respective durations. A job with durationδ can be executed at a
specific instantt by scheduling a simulation event to enqueue it at simulated time
t. If the CPU is free, the job is dequeued immediately and the CPU marked as
busy. A simulation event is then scheduled with delayδ to free the CPU. Further
pending jobs are then considered.
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(b) Scheduling events from real code.

Figure 5.13: Handling simulated and real jobs in centralized simulation.

Executing jobs with real code is layered on top of the same simulation mechanism.
Figure 5.13 illustrates this with an example of how three queued jobs are executed.
The second job is assumed to contain real code. Thex-axis depicts simulated time
and they-axis depicts relevant real-time (i.e. real-time consumed during execution
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of pure simulation code is ignored and thus pure simulation progresses horizont-
ally). Thex-axis shows also with a wiggly line when the simulated CPU is busy.
Solid dots represent the execution of discrete simulation events. Scheduling of
events is depicted as an arrow and execution of real code as a double line.

The first job in the queue is a simulated job with durationδ1. The CPU is marked
as busy and an event is scheduled to free the CPU. Afterδ1 has elapsed, execution
proceeds to a real job. In contrast with a simulated job, it is not known beforehand
which is the durationδ2 to be assigned to this job. Instead, a profiling timer
is started and the real code is run. When it terminates, the elapsed time∆1 is
measured. Thenδ2 = ∆1 is used to schedule a simulation event to proceed to
the next job. This brings into the simulation time-line the elapsed time spent in a
real computation. Finally the second simulated job is run with durationδ3 and the
CPU marked as free afterward, as the queue is empty.

As a consequence of such setup, queuing (real code or simulated) jobs from sim-
ulated jobs poses no problem. Only when being run, they have to be recognized
and treated accordingly. Problems arise only when real code needs to schedule
simulation events, for instance, to enqueue jobs at a later time. Consider in Fig-
ure 5.13b a modification of the previous example in which the third job is queued
by the real code with a delayδq. If real code is allowed to call directly into the
simulation runtime two problems would occur:

• Current simulation time still does not account for∆1 and thus the event
would be scheduled too early. Actually, ifδq < ∆1 the event would be
scheduled in the simulation past!

• The final elapsed real time would include the time spent in simulation code
scheduling the event, thus introducing an arbitrary overhead inδ2.

These problems can be avoided by stopping the real-time clock when re-entering
the simulation runtime from real code and adding∆1 to δq to schedule the event
with a delayδ′q. The clock is restarted upon returning to real code and thusδ2 is
accurately computed as∆1 + ∆2. In addition to safe scheduling of events from
simulation code, which can be used to communicate with simulated network and
application components, the same technique must be used to allow real code to
read the current time and measure elapsed durations.

5.4.2.2 Replicated Database Model

The replicated database is modeled as a set of database sites. Each database site
is modeled as a stack of components, configured as a hosts in a SSFNet network,
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and includes a number of clients issuing transaction requests. After being ex-
ecuted and when entering the committing state, transactions are submitted to the
termination protocol, which uses group communication to disseminate the up-
dates to other replicas. When finished, the outcome of the termination protocol is
returned to the client.

Database Server The database server is modeled as a scheduler and a collec-
tion of resources, such as storage and CPUs, and a concurrency control policy
(Lock Manager). A database server handles multiple clients, executing transac-
tions submitted by them. Each transaction is modeled as a sequence of operations,
which can be one of:i) fetch a data item;ii ) do some processing;iii ) write back a
data item. Upon receiving a transaction request each operation is scheduled to ex-
ecute on the corresponding resource. The transaction execution path is shown on
Figure 5.12 as a solid line traversing the resources of the database server. The pro-
cessing time of each operation is previously obtained by profiling a real database
server.

First, operations fetching and storing items are submitted to the Lock Manager
for concurrency control. Depending on the policy being used, the execution of a
transaction can be blocked between operations. When a transaction commits, all
other transactions waiting on locks of written items are aborted due to write-write
conflicts. If the transaction aborts, the locks are released and can be acquired
by the next transaction. In addition, all locks are atomically acquired when the
transaction starts executing, and atomically released when the transaction commits
or aborts, thus avoiding the need to simulate deadlock detection. This is possible
as all items accessed by the transaction are known beforehand.

Processing operations are scaled according to the configured CPU speed. Each
is then executed in a round-robin fashion by any of the configured CPUs. Notice
that a simulated CPU accounts both simulated jobs and real jobs scheduled using
the centralized simulation runtime. Real jobs have higher priority, so a simulated
transaction executing can be preempted to reassign the simulated CPU to a real
job.

A storage element is used for fetching and storing data items and is defined by its
latency and number of allowed concurrent requests. Each request manipulates a
single storage sector, hence storage bandwidth becomes configured indirectly. A
cache hit ratio determines the probability of a read request being handled instant-
aneously without consuming storage resources.

When a commit operation is reached, the corresponding transaction enters the
termination protocol. This involves the identification of data items read and writ-
ten as well as the values of the written data items. As the termination protocol
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is handled by real code, the representation of data item identifiers and values of
updated data items must accurately correspond to those of real traffic. When the
termination protocol is concluded, the transaction is committed by finishing writ-
ing and releasing all locks held. The outcome can then be returned to the issuing
client. Remotely initiated transactions must also be handled. In this case, locks are
acquired before writing to disk. However, as such transactions have already suc-
cessfully concluded the termination protocol and must be committed, local trans-
actions holding the same locks are preempted and aborted right away. Note that
local transactions which conflict with concurrent committed transactions would
abort later during certification anyway.

5.4.3 Model Instantiation

This section describes how the model is configured to reproduce the behavior of a
real system. This allows to validate the model by comparing the results of simple
benchmarks run both in the simulator and in a real system.

5.4.3.1 Configuration Parameters

The model is configured according to the equipment used for testing. In this case,
a dual processor AMD Opteron at 2.4GHz with 4GB of memory, running the
Linux Fedora Core 3 Distribution with kernel version 2.6.10. For storage it uses
a fiber-channel attached box with 4, 36GB SCSI disks in a RAID-5 configuration
and the Ext3 file system.

The configuration of the centralized simulation runtime reduces to four paramet-
ers: fixed and variable CPU overhead when a message is sent and received. These
can easily be determined with a simple network flooding benchmark with variable
message sizes (described in detail in Section 5.4.3.2).

The database server configuration issues are the CPU time and disk bandwidth
consumed by each transaction. The amount of CPU consumed by the execution
of each transaction is tightly related to the database system used and to the size
of the database, although not significantly affected by concurrency. In order to
obtain these parameters, we use a profiled PostgreSQL [PSQ] running the TPC-C
benchmark [TPC01], configured for up to 2000 clients but with a small number of
actual running clients. In PostgreSQL, each process handles a single transaction
from start to end, so this configuration task reduces to profiling a process in the
host operating system.
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In detail, the task of profiling a process uses the CPU time-stamp counter which
provides accurate measure of elapsed clock cycles. By using a virtualization of
the counter for each process [Pet04], it is also possible to obtain the time elapsed
only when the process is scheduled to run. A comparison of these timers is used
to estimate the time that the process is blocked, most likely waiting for I/O. To
minimize the influence in the results, the elapsed times are transmitted over the
network only after the end of each query (and thus out of the measured interval),
along with the text of the query itself.

The time consumed by the transaction execution is then computed from the logs.
By examining the query itself, each transaction is classified. Interestingly, the pro-
cessor time consumed during commit is almost the same for all transactions (i.e.,
less than 2ms). In read-only transactions the real time of the commit operation
equals processing time, meaning that no I/O is performed. This does not happen
in transactions that update the database. The observation that the amount of I/O
during processing is negligible indicates that the database is correctly configured
and has a small number of cache misses.

After discarding aborted transactions and the initial 15 minutes, as specified by the
TPC-C standard, the system runs 5000 transactions and uses the resulting logs to
obtain empirical distributions for each transaction class. Some transaction classes
perform some work conditionally and would produce bimodal distributions. How-
ever, as analysis of results is simplified if each transaction class is homogeneous,
these transactions were split in two different classes.

Throughput for the storage was determined by running the IOzone disk bench-
mark [IOZ04] on the target system with synchronous writes of 4KB pages and a
variable number of concurrent process. This resulted in a maximum throughput of
9.486MBps. As the cache hit ratio observed has always been above 98%, the sim-
ulation was configured with a hit ratio of 100%. This means that read data items
do not directly consume storage bandwidth. CPU resources are already accounted
for in the CPU times as profiled in PostgreSQL.

5.4.3.2 Validation

The model and its configuration were validated by comparing the resulting per-
formance measurements of the model to those of the real system running the same
benchmark. Notice that abstraction prevents the model to completely reproduce
the real system and thus the validation step is only approximate. This is accept-
able as simulated components are used only to generate a realistic load and not
the subject themselves of evaluation. The validation of the SSFNet has been done
previously [CNO99].
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Figure 5.14: Validation of the centralized simulation runtime.

The centralized simulation kernel is configured and validated according to [AC97].
Figure 5.14a shows the maximum bandwidth that can be written to an UDP socket
by a single process in the test system with various message sizes. Notice that
crossing the 4KB virtual memory page boundary impacts performance in the real
system. This is most likely due to memory management overhead, but it is irrel-
evant for the presented results as the protocol prototype uses a smaller maximum
packet size. Figure 5.14b shows the result of the same benchmark at the receiver,
limited by the network bandwidth. Finally, Figure 5.14c shows the result of a
round-trip benchmark. The difference observed with packets with size greater
than 1000 bytes is due to SSFNet not enforcing the Ethernet MTU in UDP/IP
traffic. Deviations from the real system are avoided by restricting the size of
packets used to a safe value.

To validate the architecture of the simulated database server which has been used
before in [ACL87], a run of the TPC-C benchmark with only 20 clients and a total
of 5000 transactions was used. This solution was adopted as it is not feasible to
run the benchmark in a real setting with thousands of clients. Quantile-quantile
plots (Q-Q plot) of observed latencies is presented in Figure 5.15 showing that
simulation results successfully approximate the real system.
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Figure 5.15: Validation of transactions latency.

5.4.4 Experimental Results

Partial replication has been proposed as a technique to reduce resource require-
ments while ensuring performance comparable to full replication. In this section
demonstrates that partial replication termination protocols fulfill the requirements
of requiring less network bandwidth and local storage while providing a perform-
ance similar to the full replication termination protocol, in terms of transaction
throughput and abort rate.

To demonstrate our goal we start by comparing the full replication termination
protocol with the partial replication termination protocol with independent certi-
fication. As you may recall from Section 5.2.2.2, these protocols are similar, apart
from the fact that the partial replication termination protocol only sends the write
values to the replicas of the referred data items.

Figure 5.16 presents the protocols performance in terms of transaction throughput,
latency and abort rate. The values presented consider a variable number of clients
in the 90 to 360 clients interval. From the Figure 5.16, it can be observed that the
protocols present similar values of transaction throughput, execution latency and
abort rate. This is an expected result due to the similarity of both protocols, and a
positive result for partial replication as it presents performance comparable to full
replication, accomplishing one of the proposed objectives of partial replication.

The other objective of partial replication, and the motivation to its adoption in-
stead of full replication, is that partial replication should required fewer resources
at the local storage and network bandwidth. The demonstration that partial rep-
lication also fulfills these requirements is presented in the following. Regarding
storage requirements its bandwidth utilization is presented in Figure 5.17a, and, as
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Figure 5.16: Protocols performance.

expected, partial replication effectively reduces the required storage bandwidth.
Furthermore, it can be observed that the growth of the required storage bandwidth
with the number of clients is smaller for partial replication than for full replication.
The smaller growth in the storage bandwidth requirements for partial replication
results from the partitioning used. For the tables partially replicated, there is a
linear growth of its size with the number of clients for full replication, while this
growth is only of one third in the case of partial replication. This partitioning
reduces the write load when compared to full replication, resulting also in a smal-
ler growth on the required storage bandwidth with an increase in the number of
clients, and consequent database growth.

Regarding the required network bandwidth, its utilization at the central router and
at the LAN router is presented in Figures 5.17b and 5.17c respectively. It can be
observed that the full replication termination protocol requires more bandwidth
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Figure 5.17: Resources usage.

than the partial replication termination protocol with independent certification. At
the central router the required bandwidth is also higher than at the LAN router, as
it must handle the network traffic generated at each LAN target to the other two
LAN.

At this point our goal is accomplished. Partial replication with independent certi-
fication reduces the required storage and network bandwidths while maintaining
the overall performance. The goal now is to establish if the partial replication
with partial certification termination protocol can reduce even further the required
network bandwidth for the partial replication with independent certification ter-
mination protocol.

The partial replication with independent certification termination protocol requires
the transmission of the full read and write sets over the network, which may re-
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quire more network bandwidth than the required for the RAC protocol used by the
partial replication with partial certification termination protocol.

In the following, for both partial replication termination protocols the memory
requirements for storing the information used for certify concurrent transactions
is depicted in Figure 5.18a and the number of transactions used for certification is
depicted in Figure 5.18b. The network bandwidth used at the central router and
at the LAN router are depicted in Figure 5.18c and in Figure 5.18d respectively.
In terms of storage there are no differences in the written data by both protocols,
resulting in the same storage usage which have been presented in Figure 5.17a.
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Figure 5.18: Resources usage.

The memory utilization as well as the number of transactions used for certific-
ation, are quite low in both cases. This excludes the memory utilization as a
parameter influencing the decision on the best protocol for the selected scenarios.
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Figure 5.19: Protocols performance.

From the network bandwidth utilization figures it can be seen that the termination
protocol with partial certification (PC) requires less network bandwidth than the
termination protocol with independent certification (IC), i.e., the network band-
width required for the RAC protocol is smaller than the network bandwidth re-
quired to transmit the full read and write sets. The divergence of the network band-
width requirements with the increase in the number of clients, is a consequence of
the lower performance values presented by the termination protocol with partial
certification, as can be observed in Figure 5.19

From Figure 5.19, it can be observed a decrease in the performance of the ter-
mination protocol with partial certification with the increase in the number of
clients, when compared with the termination protocol with independent certifica-
tion. This decrease is a consequence of the latency growth which can be observed
in Figure 5.19b and of the growth of the abort rate which can be observed in Fig-
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ure 5.19c.

As a conclusion of the analysis of the partial replication termination protocols, it
can be said that, the usage of the termination protocol with partial certification
is preferable to the termination protocol with independent certification in terms
of network bandwidth as it requires fewer resources. In terms of performance,
above 180 clients, the termination protocol with partial certification presents lower
transaction throughput, and much higher latencies and abort rates, which may
advise the utilization of the termination protocol with independent certification in
those situations, and the termination protocol with partial certification until 180
clients.
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Figure 5.20: Network bandwidth usage.

Regarding resource usage, the termination protocols using the serializable consist-
ency criterion require the transmission of the read and write sets over the network.
On the other hand, if using snapshot isolation as the consistency criteria, then only
the write sets need to be transmitted over the network. This should narrow the
difference in the network bandwidth required by the full and partial replication
termination protocols, and also between the two partial replication termination
protocols.

As the partial replication with independent certification termination protocol gen-
erally presents better results than the partial replication with partial certification
termination protocol, it will be the selected one for the comparison of the ter-
mination protocols using snapshot isolation as the consistency criterion. The net-
work bandwidth utilization graphics are presented in Figure 5.20 and, as expec-
ted, present a reduction in the required network bandwidth, compared to the one
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presented in Figure 5.18 for the same termination protocols using the serializable
consistency criterion.
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Figure 5.21: Snapshot isolation abort rate.

In terms of performance, there are no differences in the transactions throughput
and execution latency from the values presented in Figure 5.16. In terms of abort
rate, the utilization of the snapshot isolation consistency criterion reduces the abort
rate, as can be seen by observing the values of the abort rate for the serializable
consistency criteria presented in Figure 5.16c and those for the snapshot isolation
consistency criterion presented in Figure 5.21.

5.5 Summary

This chapter described the major contributions of this thesis. The partial replic-
ation termination protocols and the simulation environment used to evaluate the
termination protocols.

This chapter started with a review of database replication with optimistic execu-
tion, presenting the database model and a detailed description of its components.

Following that review we introduced partial replication and the changes it requires
to the model presented earlier. The changes occur in the transaction and termina-
tion managers.

Regarding the transaction manager, two possibilities should be considered. Either
the database site executing a transaction has a replica of every data item accessed
by the transaction or not. The first case, requires no changes in the transaction
manager, and should be the common situation in a well fragmented database. The
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second case requires changes in the transaction manager in order to access the
database sites holding a replica of the data required by the transaction, and has
been the subject of the work in [Jún04].

The major differences between partial and full replication occur in the termination
manager. To deal with partial replication issues we proposed two approaches.
One uses a protocol similar to the full replication termination protocol, in which
every database site receives the complete read and write sets and independently
certify every transaction. The second approach is to send to each database site only
the relevant part of the read and write sets. In this case, each database site only
certifies part of the transaction and an atomic commitment protocol is required in
order to establish the transaction outcome.

In the proposed partial replication termination protocols, transactions are ordered
before being certified, which results in all database sites reaching the same de-
cision on the conflicting data items. To take advantage of all replicas of a data
item reaching the same decision regarding its conflicts, we propose a new defin-
ition for the atomic commitment problem – the resilient atomic commit (RAC),
which allows to decide to commit transactions as long as at least a replica of each
data item accessed by the transaction does not fail.

The JAVA implementation of the termination protocols was described in Sec-
tion 5.3 and its evaluation in Section 5.4.

To evaluate the termination protocols we proposed a simulation model using the
centralized simulation model which allows to combine the implementations of the
termination protocols with with simulated components such as the network, the
database server and database client.

The TPC-C benchmark as been used to evaluate the termination protocols. From
the experiences conducted, it was possible to demonstrate that partial replica-
tion effectively reduces the storage and network bandwidth requirements. It also
shows that up to 180 clients partial replication with partial certification presents
higher savings in network bandwidth, while maintaining similar performance to
the full and partial replication with independent certification termination proto-
cols. Above 180 clients the latency and abort rate of partial replication with
partial certification grows rapidly, making the use of the partial replication with
independent certification termination protocol preferable.

In cases where the application tolerates a consistency criterion weaker than the
serializable consistency criterion, then the use of the snapshot isolation consist-
ency criterion may be a solution to reduce the network bandwidth requirements. In
this case only the write sets need to be transmitted over the network thus reducing
the required network bandwidth.
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Conclusions

The replication and communication protocols behave differently depending on the
network topology, i.e., their behavior changes depending on being executed in a
LAN or in a WAN. The responsible for the changes in the protocols behavior is
the increased latency, and point to point latency variations, presented in WAN
scenarios.

The WAN increased latency reduces the network spontaneity used by the optim-
istic total order protocols, rendering its adoption questionable in such a scenario.
In the replication protocols, the increase in the latency augments the number
of concurrent transactions augmenting also the probability of conflicts between
transactions, and the abort rate.

Regarding the optimistic total order protocols, in a LAN, a message sent to several
destinations is received in the same order by all destinations with high probability.
Optimistic total order protocols take advantage of this property of the LAN to tent-
atively deliver messages, assuming their tentative order matches the authoritative
order, allowing for earlier processing of the messages.

In a WAN the network spontaneity is much lower, but can be improved using
the strategy proposed by the statistically estimated optimistic total order protocol.
Using this protocol, it is possible, in some network configurations, to improve the
network spontaneity to values above 80% with message rates up to 250 messages
per second. Unfortunately, it is not possible to obtain such a level of network
spontaneity for all message rates. Above certain message rates, the network spon-
taneity degrades, becoming similar to the network spontaneity without using the
strategy of the statistically estimated optimistic total order protocol.

Some interesting properties of the statistically estimated optimistic total order pro-
tocol, are that the higher values of spontaneity are obtained without sacrificing the

119
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optimistic window which is only marginally inferior to the one of the sequen-
cer based protocol. The protocol latency is only marginally augmented, due to
the adjusts made in the sequencer that delays the ordering of its own messages,
reflecting these delays into the protocol latency.

The effectiveness of the approach and validity of the results obtained by the statist-
ically estimated optimistic total order protocol have been independently confirmed
in an evaluation of total order protocols in wide area networks [ADGS03], and has
been the basis of some other works on optimistic total order [RMC06, MRR06].
The protocol have been also implemented in the Appia toolkit [MPR01].

Regarding the replication protocol, with partial replication it is possible to im-
prove system dependability while reducing the required network bandwidth and
storage space. These results are obtained by judiciously selecting which data is
replicated at each replica, avoiding to replicate remotely, data that will not be used
by the remote replicas.

The replication protocols with optimistic execution minimize replicas interaction
by locally executing transactions and only interacting with the other replicas at
commit time. The replicas interaction is governed by the termination protocol
which can be decomposed in three generic steps, transaction’s dissemination and
ordering, transaction’s certification and transaction’s outcome agreement.

In the first step, transaction information is disseminated to all replicas. The trans-
action information can be split in two sets, the concurrency control information
and the produced data. The information disseminated during the first step dictates
the available choices for the certification and agreement steps.

Regarding the produced data, it is only of interest for the replicas replicating it, so
there are no advantages in sending it to every replica, which have to discard part
of the produced data before writing the data to stable storage. If the produced data
is sent to every replica, then the network bandwidth used will be wasted and the
objective of reducing its usage compromised.

The partial replication with partial certification termination protocol sends to each
replica only the parts of the read and write sets related to the data they replicate.
This allows to reduce the network bandwidth utilization, although requiring the
execution of the outcome agreement step, responsible for some network band-
width utilization. As the agreement step we propose the resilient atomic commit.
It presents lower latency than the existing atomic commitment protocols, but still
requires a communication step being penalized by the network latency. For a small
number of clients the effects of this additional communication step is not reflected
in the performance values, it is only visible in the transaction’s execution latency.
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With the growth of the number of clients its effects start to be noticeable also in
the performance values, rendering its utilization questionable in those scenarios.

The partial replication with independent certification termination protocol, sends
the read and write sets to every replica independently of which data it replicates.
Comparing to the previous approach it increases the network bandwidth utiliza-
tion, but does not require the execution of the outcome agreement step. Instead
it uses the certification test result to impose the transaction outcome. As a result
of not requiring the additional communication step it presents lower transaction
execution latencies and is able to support a higher number of clients without de-
grading its performance as happens with the partial replication with partial certi-
fication termination protocol. It is the right choice for a larger number of clients,
as it presents a reduction on the required network bandwidth when compared to
full replication, while maintaining the same performance.

The memory required to hold the transaction information of committed transac-
tions used in the certification of concurrent transactions has been defined as a
comparison parameter among termination protocols. It results from the values ob-
tained, that this parameter is not crucial as the memory used to hold this kind of
information is always low, and the memory used by each protocol is almost the
same. The per transaction memory for the partial replication with partial certi-
fication termination protocol is inferior to the one required by the partial replica-
tion with independent certification termination protocol. However, the number of
transactions being stored to be used by the certification is higher due to the higher
latency of the partial replication with partial certification termination protocol.
This results the memory used by both protocols being almost the same.

The network bandwidth used by the partial replication protocol can be further re-
duced by changing the adopted consistency criterion from serializable to snapshot
isolation. Databases using snapshot isolation as the consistency criterion are gain-
ing popularity because of the performance improvements that may be achieved
relatively to serializable databases. With the proper precautions it is possible that
snapshot isolation executions are serializable [FLO+05]. In this case the network
bandwidth savings result from the fact that for snapshot isolation certification only
the write sets are required.

6.1 Future Work

The statistically estimated total order protocol improves the spontaneity in a WAN,
allowing the use of optimistic protocols in such networks. These protocols are
interesting as their optimistic delivery may be used to mask some of the WAN
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latency, if it allows the early start of other tasks. For instance, optimistic delivery
allow for optimistic certification of transactions, and to start to update the database
immediately after the reception of the transaction authoritative delivery, when the
optimistic and authoritative orders match. Another improvement that should be
possible, when using optimistic certification, is to optimistically start the database
update, allowing the authoritative delivery to immediately commit the transaction.

The dissemination protocol uses point to point connections to send the transaction
information to all replicas. In a LAN where there are no bandwidth limitations
and the point to point latencies among any two database sites is the same, this
seems to be the obvious choice. In a WAN, usually not all database sites have the
same bandwidth and their point to point latency is also different. If the dissemin-
ation protocols can take advantage of the network topology to reduce the required
bandwidth at the database sites and possibly also reducing the overall latency, then
the replication protocols may benefit from such improvements.
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