
Partial Replication in the Database State Machine∗

António SOUSA
Universidade do Minho

als@di.uminho.pt

Fernando PEDONE
Hewlett-Packard Labs
pedone@hpl.hp.com

Rui OLIVEIRA
Universidade do Minho

rco@di.uminho.pt

Francisco MOURA
Universidade do Minho

fsm@di.uminho.pt

Abstract

This paper investigates the use of partial replication in

the Database State Machine approach introduced ear-

lier for fully replicated databases. It builds on the or-

der and atomicity properties of group communication

primitives to achieve strong consistency and proposes

two new abstractions: Resilient Atomic Commit and

Fast Atomic Broadcast.

Even with atomic broadcast, partial replication re-

quires a termination protocol such as atomic commit

to ensure transaction atomicity. With Resilient Atomic

Commit our termination protocol allows the commit of

a transaction despite the failure of some of the par-

ticipants. Preliminary performance studies suggest

that the additional cost of supporting partial replica-

tion can be mitigated through the use of Fast Atomic

Broadcast.

1. Introduction

Database replication protocols based on group
communication primitives have recently been the sub-
ject of a considerable body of research [2, 18, 1, 19, 11,
16, 10, 6]. The reason for this stems from the adequacy
of the order and atomicity properties of group commu-
nication primitives to implement synchronous replica-

tion (i.e., strong consistent) strategies. Unlike database
replication schemes based on traditional transactional

∗Research partially supported by FCT, ESCADA project
(POSI/33792/CHS/2000).

mechanisms, group-based replication mechanisms use
atomic broadcast primitives to broadcast transactions
to all replicas of the database. The approach allows the
delegation of much of the synchronization complexity
to the group communication layer and can accommo-
date different replication strategies.

Most previous work related to group-based
database replication [2, 18, 1, 19, 11, 16, 10] consid-
ers full replication strategies, i.e., the whole database
is available at every replica. This paper investigates the
use of partial replication in the context of the Database
State Machine (DBSM) [16]. Partial replication is usu-
ally favored, or even required, by environments ex-
hibiting strong access locality. Representative exam-
ples of such settings are geographically dispersed in-
formation systems with location-dependent database
sites (eg. banking, public administration) and large-
scale distributed information retrieval systems [13].

Our approach is to extend the Database State Ma-
chine protocol to handle partial replication while pre-
serving its replication characteristics, namely syn-
chronous replication strategy and the deferred up-
date technique. Synchronous replication strategies
extend the atomicity concept of transactions to all
database sites, instead of applying it only locally at
each database. Unlike asynchronous replication strate-
gies, synchronous strategies ensure serializable execu-
tions. Deferred update techniques execute transactions
locally at some database site, and when the commit op-
eration is requested for a transaction, the site where the
transaction executed communicates the transaction to
all the other sites, reducing the communication over-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


head.

To handle partial replication efficiently in the
Database State Machine, we introduce in the paper
two abstractions: Resilient Atomic Commit and Fast
Atomic Broadcast. Resilient Atomic Commit extends
traditional atomic commit protocols to be used with
data replication. Roughly speaking, Resilient Atomic
Commit requires that only a subset of the sites storing
a copy of the data updated by a transaction vote for
the commit of the transaction. Fast Atomic Broadcast
exposes preliminary message delivery orders to the ap-
plication before providing the application with a final
definitive order — an idea that generalizes the broad-
cast protocol presented in [12].

Previous work [2, 18, 1, 19, 11, 16, 10] concen-
trates on full replication strategies. Along with the
assumption of the deterministic processing of transac-
tions at every replica, the resulting protocols, charac-
terized as non voting [21], take advantage of not re-
quiring a termination protocol such as Atomic Com-
mit [7]. In a partial replication scenario where each
replica only holds a subset of the database, even when
using atomic broadcast, transaction’s commit atom-
icity requires a termination protocol such as Atomic
Commit (See Section 4.1). Otherwise replicas may not
agree on transaction’s outcome.

To the best of our knowledge, the work in [6] is the
only one, apart from ours, to consider partial database
replication with group communication protocols. The
approach uses group communication primitives to im-

mediately broadcast read operations to all replicas of
an item, and broadcast all write operations along with
the transaction’s commit request. Transaction atomic-
ity is ensured by a final atomic commit protocol. By
contrast, we eliminate replica interaction during trans-
action processing by using only one atomic broadcast
message per transaction when commit is requested.
Furthermore, we investigate whether the atomic broad-
cast can be executed concurrently with the termination
protocol in an attempt to lower execution times.

The rest of the paper is structured as follows: we
start by defining in Section 2 our model of the system

and the abstractions upon which our solution is based.
Section 3 recalls with some detail the Database State
Machine protocol. Section 4 extends the DBSM to
handle partial replication. Section 5 describes a proto-
type of the extended DBSM and presents performance
measures. Section 6 concludes the paper.

2. System Model and Definitions

In this section, we present the system model and
introduce Resilient Atomic Commit and Fast Atomic
Broadcast, two abstractions used throughout the paper.

2.1. Databases and Transactions

We consider a system S = {s1, . . . , sn} of
database sites. Sites communicate through message
passing (i.e., no shared memory). The system is asyn-
chronous in that we make no assumptions about the
time it takes for a site to execute a step nor the time it
takes for messages to be transmitted.

Sites may only fail by crashing (i.e., no Byzantine
failures), and we do not rely on site recovery for cor-
rectness. A site that never crashes is correct, and a site
that is not correct is faulty. We assume that our asyn-
chronous model is augmented with a Failure Detector
Oracle [5] so that Atomic Broadcast — defined next
— can be solved.

A database Γ = {x1, . . . , xn} is a finite set of
data items. Database sites have a partial copy of the
database. We assume that for each data item xi ∈ Γ

there is at least one correct site that stores xi. For each
site s ∈ S, Items(s) is defined as the set of data items
replicated in s; the set of all database sites replicating
a data item xi ∈ Γ is denoted by Sites(xi).

A transaction is a sequence of read and write oper-
ations followed by a commit or abort operation, issued
by a client on behalf of the transaction. Every trans-
action belongs to the set T of all possible transactions.
For each transaction t ∈ T , Items(t) is defined as
the set of data items read or written by t. RS(t) de-
notes the set of data items read by t and WS(t) the



set of data items written by t. Furthermore, we denote
RS(t).s and WS(t).s the data items read or written,
respectively, by t and stored in a particular database
site s.

For the sake of simplicity, we consider a replication
model where a transaction t can only be executed at a
site s if Items(s) ⊇ Items(t), that is, s contains all
data items read or written by t. This assumption can
be released by allowing sites to re-direct transaction
requests to other sites. Finally, Sites(t) denotes the
set of sites that contain data items read or written by t.

2.2. Atomic Commit and Resilient Atomic
Commit

In order to ensure consistent termination of dis-
tributed transactions, database systems usually recur
to an Atomic Commit protocol [7]. When each trans-
action participant must reach a decision despite the
failure of other participants, Non-Blocking Atomic
Commit protocols (NB-AC) [3], or, as presented next,
Weak Non-Blocking Atomic Commit protocols [8],
are used.1

In the (Weak Non-Blocking) Atomic Commit prob-
lem, every participant starts by voting yes or no and
can reach one of two decisions: commit or abort. A
NB-AC protocol is an algorithm fulfilling the follow-
ing properties:

Agreement. No two participants decide different
outcomes.

Termination. Every correct participant eventually
decides.

Validity. If a participant decides commit, then all par-
ticipants have voted yes.

Non-Triviality. If all participants vote yes, and no
participant is ever suspected to have failed, then
every correct participant eventually decides com-

mit.
1Throughout the paper we refer to Weak Non-Blocking Atomic

Commit as simply “Atomic Commit”.

In the above specification, the suspicion2 of a single
participant may lead the remaining ones to decide to
abort a transaction regardless of the participants votes.
If data items are replicated, this means that if at least
one site storing a data item read or written by a transac-
tion is suspected, the transaction can be aborted. This
clearly goes against the motivation for replicating data
items — the more replicas a data item has, the higher
the chances of a suspicion, and the lower the chances
that transactions that read or write this data item will
be committed.

Resilient Atomic Commit solves this problem by
allowing participants to decide commit even if some of
the replicas of a data item read or written by the trans-
action are suspected to have failed. Resilient Atomic
Commit satisfies the same agreement and termina-
tion properties of Weak Non-Blocking Atomic Com-
mit and the following validity and non-triviality prop-
erties:

Validity: If a site decides commit for t, then for each
x ∈ Items(t), there is at least a site in Sites(x)

that voted yes for t.

Non-triviality: If for each x ∈ Items(t) there is at
least a site s ∈ Sites(x) that votes yes for t and
is not suspected, then every correct site eventually
decides commit for t.

2.3. Atomic Broadcast and Fast Atomic Broad-
cast

Atomic Broadcast and Fast Atomic Broadcast are
the communication abstractions used by database sites
to communicate. Atomic Broadcast is defined by the
primitives broadcast(m) and deliver(m), and satisfies
the following properties [9]:

Validity. If a correct site broadcasts a message m,
then it eventually delivers m.

Agreement. If a correct site delivers a message m,
then every correct site eventually delivers m.

2This information is provided locally to each participant by the
Failure Detector Oracle [5].



Integrity. For every message m, every site delivers
m at most once, and only if m was previously
broadcast.

Total Order. If two correct sites deliver two mes-
sages m and m′, then they do so in the same or-
der.

When using an atomic broadcast primitive, all sites
must wait until they agree on message order before
atomically delivering it. In the following, we present
Fast Atomic Broadcast, which allows sites to deliver
messages tentatively, that is, before the order has been
agreed.

Fast Atomic Broadcast is defined by the primitives
broadcast(m), FST-deliver(m), and FNL-deliver(m),
which satisfy the following properties:

Validity. If a correct site broadcasts a message m,
then it eventually FNL-delivers m.

FST-Agreement. For any k ≥ 0, if a correct site
FST-delivers a message m k times, then every
correct site also FST-delivers m k times.

FNL-Agreement. If a correct site FNL-delivers a
message m, then every correct site eventually
FNL-delivers m.

Integrity. For every message m, every site FST-
delivers m only if m was previously broadcast;
and every site FNL-delivers m only once, and
only if m was previously broadcast.

Local Order. No site FST-delivers a message m af-
ter having FNL-delivered m.

Final Order. If two sites FNL-deliver two messages
m and m′, then they do so in the same order.

Fast Atomic Broadcast allows sites to guess the
definitive order of messages and expose this order to
the application. The application can then start treat-
ing the message concurrently with the underlying or-
dering mechanism used by Fast Atomic Broadcast to

finally order the message. Notice that if a site FST-
delivers a message and then changes its initial guess,
it may FST-deliver the message again. Obviously, ap-
plications must be able to cope with messages FST-
delivered in the wrong order.

Figure 1 compares the execution, as seen by the
application, of Atomic Broadcast and Fast Atomic
Broadcast. In Figure 1(a) messages are broadcast and
delivered to the sites only when their order is de-
termined, while in Figure 1(b), messages are FST-
delivered twice before being FNL-delivered.

Fast Atomic Broadcast is similar to Atomic Broad-
cast with Optimistic Delivery, introduced in [12]. Ac-
tually, Atomic Broadcast with Optimistic Delivery is a
special case of Fast Atomic Broadcast, where k = 1

(see the FST-Agreement property).

3. Database State Machines

The Database State Machine [16], or DBSM, as-
sumes the full replication of the database and is based
on the deferred update replication technique [3]. In
this section we recall the principle of the deferred up-
date replication and the DBSM approach.

3.1. Deferred Update Replication Principle

The deferred update replication technique is a way
to reduce the need for distributed coordination among
concurrent transactions during their execution. Us-
ing this technique, a transaction is locally synchro-
nized during its execution at the database where it ini-
tiated according to some concurrency control mech-
anism [3] (e.g., two-phase locking). Interaction with
other database sites on behalf of the transaction only
occurs when the client requests the transaction com-
mit. At this time, the transaction updates and some
control structures are propagated to all database sites.
Each such database site will then certify and, if possi-
ble, commit the transaction. The termination protocol,
started with the commit request, has three goals: (i)
propagate the transaction to all database sites, (ii) cer-



p

¶¶'
''
''
''
''
''
'

q

A-broadcast

((
((
(

¶¶(
((
((

r
A-deliver¯̄
¯

FF̄
¯̄

DDªªªªªªªªªª

DD©©©©©©©©©©©©©©

IIµµµµµµµ

FF±±±±±±±±±±±

EĒ
¯¯¯¯¯¯¯¯¯¯¯¯¯¯

(a) Atomic broadcast.

p

¶¶'
''
''
''
''
''
'

q

A-broadcast

((
((
(

¶¶(
((
((

r FF̄

¯
¯

DDª
ª

ª
ª

ª

DD©
©

©
©

©
©

©

FF̄
¯̄
¯̄
¯

DDªªªªªªªªªª

DD©©©©©©©©©©©©©©FST-deliver

IIµ
µ
µ
µ

>>}
}

}
}

}
}

}
}

??Ä
Ä

Ä
Ä

Ä
Ä

Ä
Ä

Ä
Ä

IIµ
µ
µ
µ

FF±
±
±
±
±
±

EĒ

¯
¯

¯
¯

¯
¯

¯

FNL-deliverµµµµ

IIµµµµ

FF±±±±±±±±±±±

EĒ
¯¯¯¯¯¯¯¯¯¯¯¯¯¯

(b) Fast atomic broadcast.

Figure 1. Atomic Broadcast vs. Fast Atomic Broadcast.

tify, and (iii) commit it.

3.2. Transaction Execution

From the time it starts until it finishes, a transaction
passes through some well-defined states (Figure 2).
The starting state is the executing state, a state where
all operations are executed locally at the database site
where the transaction starts. When the client that initi-
ates the transaction requests its commitment, the trans-
action passes to the committing state. At this point,
transaction t, is sent to all database sites. A transaction
received by a database site s is in the committing state
until its fate is known. The transaction then evolves to
one of its final states committed or aborted.

The algorithm executed by a database site si when
executing a transaction received from client c is briefly
described as follows:

1. Initially, during the executing state, the transac-
tion is locally executed at database site si. All
operations requested by client c are executed at
si using strict two-phase locking.

2. When client c requests transaction t’s commit-
ment, t is immediately committed if it is a read-
only transaction. Otherwise, t enters the commit-
ting state and database site si starts the termina-
tion protocol for t: the updates performed by t, as
well as its readset and writeset, are broadcast to
all database sites.

3. Eventually every database site sj delivers the
message sent by si concerning transaction t. Af-

ter delivering this message, sj starts t’s certifica-
tion to ensure that t it does not conflict with pre-
viously committed transactions.

4. If t passes the certification test, all t’s updates are
applied to the database and t passes to the com-
mitted state. Transactions in the execution state
at sj holding locks on data items updated by t are
aborted.

5. The database site si sends t’s result to client c as
soon as si establishes the final state of t.

3.3. Conflicting Transactions

In order for a database site to certify a committing
transaction t, it must be able to determine which trans-
actions conflict with t. A transaction t′ conflicts with

t if: (i) t and t′ have conflicting operations and (ii) t′

does not precede t.

Two operations conflict when they are issued by
different transactions, access the same data item and
at least one of them is a write operation. The prece-
dence relation between transactions t and t′ is denoted
t′ → t (i.e., t′ precedes t) and defined as: (1) if t and
t′ execute at the same database site, t′ precedes t if t′

enters the committing state before t; or (2) if t and t′

execute at different sites, for example si and sj , re-
spectively, t′ precedes t if t′ commits at si before t

enters the committing state at si.

Furthermore, we say that two transactions are
write-conflicting if they both perform a write opera-
tion on the same data item and one transaction does



Figure 2. Transaction states

not precede the other.

3.4. DBSM Architecture

Transaction processing in the DBSM [16] is han-
dled by the Transaction Manager, the Lock Manager,
and the Data Manager modules presented in Figure 3.
The termination protocol is handled by the Atomic

Broadcast, and the Certification modules.

After receiving a transaction delivered by the
Atomic Broadcast module, the certification module
executes the certification test. On certifying a trans-
action, the data manager may be inquired about al-
ready committed transactions. If the transaction is
successfully certified, its write operations are transmit-
ted to the lock manager, and, once the write locks are
granted, the updates can be performed.

To ensure that each database site reaches the same
state after processing committing transactions, each
certification module has to (i) reach the same deci-
sion when certifying transactions, and (ii) guarantee
that write-conflicting transactions are applied to the
database in the same order. The first constraint can be
fulfilled by providing each certification module with
the same set of transactions in the same order. To
satisfy the second constraint, the certification module
ensures that write-conflicting transactions grant their
locks in the same order as they are delivered.

4. Handling Partial Replication

In this section we consider partial replication in the
context of the DBSM. We point out that the DBSM

as it is does not support partial replication and discuss
ways of extending the termination protocol to handle
partial replication. We start with a simple approach
based on Atomic Broadcast and Atomic Commit, and
then refine it to reach more sophisticated solutions
based on Fast Atomic Broadcast and Resilient Atomic
Commit.

4.1. DBSM and Partial Replication

The DBSM assumes that databases contain full
copies of all data items. This assumption is neces-
sary to make sure that upon certifying a transaction,
all database sites reach the same decision, whether to
commit or abort the transaction. As we show next, par-
tially replicated data items may lead to inconsistencies,
with some databases deciding to commit a transaction
and some deciding to abort it.

For example, consider a system composed of three
database sites, s1, s2, and s3 — database site s1

replicates data items a and b, database site s2 repli-
cates data items b and c and database site s3 repli-
cates data items a and c — and two clients c1 and
c2 which submit, respectively, transactions t1 =

〈r[a];w[a];w[b]; c〉 and t2 = 〈r[a];w[a];w[c]; c〉.

If transactions t1 and t2 are executed concurrently
in different databases (i.e., neither t1 precedes t2 nor
t2 precedes t1) and t2 is delivered and certified before
t1, t2 commits at all sites while t1 commits at s2 (i.e.,
WS(t2).s2 ∩ RS(t1).s2 = ∅ at s2) and aborts at s1

(i.e., WS(t2).s1 ∩ RS(t1).s1 = {a} at s1) and at s3

(i.e., WS(t2).s3 ∩ RS(t1).s3 = {a} at s3).

At first glance, one way of solving this problem is



Figure 3. DBSM architecture

to have every database to store all the read and write
sets of previously committed transactions so that the
certification test performed by each database results in
the same outcome, as it is done with the DBSM; how-
ever, such an approach would have the overhead of full
replication (i.e., every database has to keep track of all
data items read and written by transactions) without its
benefits. Since databases do not store all data items,
transactions cannot execute in any database!

4.2. DBSM with Atomic Commit

As discussed, database sites that hold a partial copy
of the data items cannot decide to commit a transac-
tion based only on the certification test — they should
also consider data items stored in other database sites
and decide on a common basis. This is typically done
by an atomic commit protocol, and, in this case, each
database should use the result of the certification test
as its vote for the atomic commit protocol.

The certification of a transaction involves now (i)

a certification test and (ii) an atomic commit among
the database sites that store copies of the data items
used by the transaction (see Figure 4). The procedure
of certifying a transaction t at database site si is de-
scribed as:

1. Certification test. The certification test at
database site si involves every data item accessed
by t for which si holds a replica. Database si

votes yes if all committed transactions at si pre-
cede t, or if there is no committed transaction t′

at si that conflicts with t; si votes no otherwise.
The vote of site si on transaction t is formally
described as follows.

votei(t) ≡






∀t′, Committed(t′, si) :

t′ → t ∨ (WS(t′).si ∩ RS(t).si = ∅)







2. Atomic commit. The atomic commit protocol is
executed by all database sites holding a replica of
a data item accessed by the transaction. After ap-
plying the certification test to transaction t, every
database site si involved in t’s commit starts an
atomic commit using as its vote the outcome of
the certification test. If the result of the atomic
commit protocol is commit, then t passes to the
commit state at si, all updates issued by t for data
items stored in si are performed, and the locks
associated with t released.

Atomic Broadcast-based termination. The need to
execute an atomic commit as part of the certifica-



Figure 4. DBSM with Atomic Commit

tion procedure leads to question the necessity for the
Atomic Broadcast used in the beginning of the termi-
nation protocol. Instead of ordering distributed trans-
actions before certifying them, one might simply for-
ward the transactions to all sites without any ordering
guarantees. It turns out, however, that ordering trans-
actions before certifying them allows a more efficient
certification test [15].

For example, consider again the case presented in
Section 4.1, and assume that both transactions t1 and
t2 start their termination protocols concurrently — that
is, t1 (respectively, t2) is forwarded to the other sites
before t2 (respectively, t1) is certified. Since t1 and
t2 conflict, they cannot be both committed, and one of
them should be aborted. But because databases do not
necessarily receive and certify t1 and t2 in the same
order, some databases may certify t1 first and vote to
commit t1 and abort t2, while others may certify t2 be-
fore t1, and vote to commit t2 and abort t1, a situation
where both transactions end up aborted.

4.3. DBSM with Resilient Atomic Commit

The combination of atomic broadcast and atomic
commit enables to support partial replication without
compromising consistency. However, with such an
approach, the suspicion of a single database site is
enough to abort a transaction (see the non-triviality
property of atomic commit), which defeats the purpose

of introducing replication. In fact, such a replicated
system is less resilient than a non-replicated one. This
approach also introduces extra overhead — the execu-
tion of the atomic commit protocol.

In order to overcome the former problem, i.e., com-
mitting transactions even when some database site is
suspected to have crashed, we replace atomic commit
by Resilient Atomic Commit in the termination pro-
tocol. With Resilient Atomic Commit, a transaction t

passes to the committed state at every site s in Sites(t)

if: every database site holding a replica of a data item
accessed by t either votes yes for t or is suspected; and
for each data item read or written by t, there is a site
that votes yes for t and is never suspected.

Figure 5 depicts the execution of transaction t,
which is committed using DBSM with Resilient
Atomic Commit but aborted if using DBSM with
Atomic Commit. In step 1, transaction t executes at
database site s1, and client c sends a commit request
to the database site s1. In step 2, t is broadcast and
at the end of this step, it is delivered, certified and
s2 crashes. Sites s1 and s3 start the Resilient Atomic
Commit protocol voting yes and using s1 as coordina-
tor, which decides commit at the end of step 3 (using
Atomic Commit, the transaction will be aborted since
s2 is eventually suspected to have failed). In step 4,
s1 sends its decision to all database sites. In step 5,
database sites s1 and s3 receive the decision of the Re-



Â
Â
Â
Â
Â
Â
Â
Â
Â oo AB //

Â
Â
Â
Â
Â
Â
Â
Â
Â oo RAC //

Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â

c //• commit(t)

%%L
LL

LL
LL •

s1 //• ""

%%KK
KKK

KKK

¿¿9
99

99
99

99
9 •

y
""•

c ""
c

%%c
99

99
9

¿¿9
99

99

•

commit(t)
99rrrrrrr

s2 • /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

s3 //•

y

LL

oo 1 // oo 2 // oo 3 // oo 4 // oo 5 //

Figure 5. DBSM with Resilient Atomic Commit

silient Atomic Commit and s1 sends the transaction
result to c.

4.4. DBSM with Fast Atomic Broadcast

The addition of an atomic commitment step in the
termination protocol introduces an unavoidable over-
head. To alleviate this problem we replace the Atomic
Broadcast protocol with a Fast Atomic Broadcast pro-
tocol. The idea is simple and consists in starting the
certification process earlier, as soon as the transaction
is delivered with a tentative order. Whenever this ten-
tative order matches the final delivery, this allows us to
overlap the final delivery (FNL-deliver) of the transac-
tion with the certification test and the atomic commit
protocol.

In more detail, the protocol runs as follows. When
a transaction t is broadcast, it is FST-delivered to all
replicas in Sites(t) with a tentative order. This order
is expected to be the network’s spontaneous order, i.e.
not yielded by the ordering algorithm, and thus allow-
ing a fast delivery. As soon as t is FST-delivered at a
site s, s starts t’s certification and afterwards a resilient
atomic commit for t. Upon the FNL-delivery of t, if
the final and tentative orders match then the outcome
of the antecipated atomic commit is used to decide the
final state of t. Should the orders of the two deliveries
mismatch, both the certification and the atomic com-
mit started for t are discarded and the process repeated
for the final order.

In our current prototype of the system (Section 5),
any transaction t′ that might be FST-delivered between
the FST-deliver and the FNL-deliver of some transac-

tion t is discarded. While this might seem a clear loss
of opportunities by the protocol, doing it differently
involves further research as discussed in Section 6.

5. Prototype and Results

In this section we describe a prototype of the
DBSM extended to support partial replication. Per-
formance results show how the use of a Fast Atomic
Broadcast primitive mitigates the overhead introduced
by the additional atomic commit protocol.

5.1. Implementation

The prototype strictly follows the architecture de-
picted Figure 4: a transaction processing module con-
sisting of a transaction manager, a lock manager,
a data manager, and a certification module. The
atomic broadcast and atomic commit modules have
been built as separate modules to independently allow
several implementations, i.e., different combinations
of atomic broadcast and atomic commit protocols can
be used by the prototype.

The prototype has been implemented in JAVA, using
the GROUPZ group communication toolkit [17].

Concurrency control and conflict detection is per-
formed by a lock manager accessed by transactions ei-
ther running locally or being certified. Database ac-
cess is done using a data manager which has been
implemented using JDBC [20] to access a Post-
greSQL [14] database. The concurrency control mech-
anisms of PostgreSQL are not used as, in our model,
remote transactions have priority over local transac-



tions and PostgreSQL concurrency control does not
distinguishes between them.

The Atomic Broadcast and Fast Atomic Broad-
cast protocols have similar implementations: They
use GROUPZ’s reliable broadcast primitive3 and a se-
quencer database site determined by GROUPZ’s Group
Membership service. When a transaction’s commit is
requested, the transaction is broadcast. In the Fast
Atomic Broadcast this message is FST-delivered at
every (correct) site. The distinguished site acting as
sequencer assigns the message’s order and reliably
broadcasts it. When delivered (or FNL-delivered in
the Fast Atomic Broadcast protocol) the message pro-
vides the ordered transaction.

The Resilient Atomic Commit is a simple n to
n, single step, decentralized protocol. When starting
the protocol every participant broadcasts its vote, and
starts gathering votes from the other participants until
it can reach a decision.

5.2. Experiments

For our experiments we used a database of 2000
data items considered as hot-spots of a larger database
— we chose a relatively small database to introduce a
reasonable amount of data contention in the database.
The transactions submitted by clients contain between
5 and 10 operations. Update transactions, with 50% of
write operations, represent 95% of all submitted trans-
actions. We used a 100 Mb/s local-area network con-
sisting of ten 333MHz Intel-based processor machines
with 128MB of RAM running the Linux operating sys-
tem.

The tests aim to compare the performance of
the system using either Atomic Broadcast and Fast
Atomic Broadcast followed by a Resilient Atomic
Commit protocol. The graphs in Figure 6 present
the histograms of transaction execution times using
Atomic Broadcast and Resilient Atomic Commit (Fig-
ure 6(a)) and Fast Atomic Broadcast and Resilient

3This primitive is actually a View Synchronous Multicast primi-
tive [4] ensuring view atomicity of the messages.

Atomic Commit (Figure 6(b)). Figure 6(a) presents
curves for the atomic delivery of transactions, the end
of the certification execution, the end of the atomic
commit protocol and the end of the transaction exe-
cution. Figure 6(b) also includes the fast delivery of
transactions.

Both tests were run under a system workload of
5 tps, allowing a stable flow of transactions without
queuing. Certification consisted in the management of
a lock table resident on disk and accounts for an av-
erage of 20 ms of each transaction processing time.
Messages did not suffered from reordering.

A comparison of the graphs of Figure 6 reveals that
the protocol with Fast Atomic Broadcast consistently
outperforms the Atomic Broadcast configuration. In-
deed, it can be observed that the Fast Atomic Broad-
cast configuration is on average 10 ms faster. Roughly,
this corresponds to a 10% gain since it can be seen that
in 90% of the transactions the termination protocol fin-
ishes in less than 100 ms (Figure 6(b)).

These results are encouraging and justify the use
of a Fast Atomic Broadcast primitive. However, it is
worth noting that the protocol is actually very sensitive
to message processing overheads and to the nature of
the certification step. It can be seen in Figure 6(b) that
the FNL-delivery of the transaction happens at a later
time than the delivery in Figure 6(a). This is the de-
lay introduced by the processing overhead of the fast
delivery at the sequencer site. As long as the certifi-
cation step and message delivery can be executed con-
currently the delayed FNL-delivery does not constitute
a problem.

6. Conclusions

This paper investigates the use of partial replication
in the context of the Database State Machine, intro-
duced in [16] for fully replicated databases. In order
to handle partial replication efficiently, we have intro-
duced in the paper two abstractions: Resilient Atomic
Commit, an atomic commit protocol tailor-made for
replicated databases, and Fast Atomic Broadcast, a



0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

%
 o

f T
ra

ns
ac

tio
ns

time (ms)

AC
CERT

AB
END TRANS

(a) Atomic Broadcast

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

%
 o

f T
ra

ns
ac

tio
ns

time (ms)

AC
CERT

FNLAB
FSTAB

END TRANS

(b) Fast Atomic Broadcast

Figure 6. Execution times for the two configurations of the termination protocol

communication primitive that allows applications to be
exposed to tentative delivery orders before the final or-
der is known.

Preliminary performance studies of our protocol us-
ing PostgreSQL [14] have shown that the introduced
techniques are very promising. We intend to con-
tinue with experimental work to better understand the
strengths and weaknesses of our the approach. In par-
ticular, we currently pursue two directions: one is to
make the protocol more agressive regarding the fast
deliveries of transactions, the other is the study of the
protocol’s behavior in heterogeneous large-scale net-
works.

As described in Section 4.4, the protocol only con-
siders one fast delivery at a time. When treating the
FST-delivery of a transaction, say t, instead of dis-
carding a subsequent FST-delivery of a transaction t′

(which may happen before a FNL-delivery), the pro-
tocol can possibly be improved in two ways. Either,
consider that t and t′ are both equally good candidates
for the FNL-delivery and so start the certification of
both transactions concurrently, or consider that t′ will
be FNL-delivered after the FNL-delivery of t in which
case the protocol should be able to “pipeline” the cer-
tification of t′ assuming the the tentative certification
of t. Which method to choose is the subject of on-
going research. However, the important issue to note

is that whatever is the most appropriate depends on
a number of factors such as the accuracy of the net-
work’s spontaneous ordering of messages, the delay
between FST and FNL-deliveries, certification costs,
processing power, etc. Considering a heterogeneous
large-scale network, instead of the homogenoeus lo-
cal network of the experiments of Section 5, definitely
introduces substantial variations on these factors.

References

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi.

Exploiting atomic broadcast in replicated databases.

In Proceedings of EuroPar (EuroPar’97), Passau (Ger-

many), 1997.
[2] Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser.

Robust and efficient replication using group communi-

cation. Technical Report CS94-20, The Hebrew Uni-

versity of Jerusalem, November 1994.
[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-

currency control and recovery in Database Systems.

Addison-Wesley, 1987.
[4] K. Birman and T. Joseph. Reliable communication in

the presence of failures. ACM Transactions on Com-

puter Systems, 5(1), February 1987.
[5] T. D. Chandra and S. Toueg. Unreliable failure de-

tectors for reliable distributed systems. Journal of the

ACM, 43(2), Mar. 1996.
[6] U. Fritzke and P. Ingels. Systéme transactionnel pour

donnés partiellement dupliqués, fondé sur la commu-



nication de groupes. Technical Report 1322, INRISA,

Rennes, France, April 2000.
[7] J. Gray and A. Reuter. Transaction processing: con-

cepts and techniques. Morgan Kaufmann, 1993.
[8] R. Guerraoui. Revisiting the relationship between

non-blocking atomic commitment and consensus. In

Proceedings of the 9th International Workshop on

Distributed Algorithms (WDAG-9), LNCS 972, pages

87–100, Le Mont-St-Michel, France, Sept. 1995.

Springer-Verlag.
[9] V. Hadzilacos and S. Toueg. Fault-tolerant broad-

casts and related problems. Technical Report 94-1425,

Department of Computer Science, Cornell University,

May 1994.
[10] J. Holliday, D. Agrawal, and A. E. Abbadi. The per-

formance of database replication with group multicast.

In Proceedings of IEEE International Symposium on

Fault Tolerant Computing (FTCS29), pages 158–165,

1999.
[11] B. Kemme and G. Alonso. A suite of database repli-

cation protocols based on communication primitives.

In Proceedings of the 18th International Conference

on Distributed Computing Systems, Amsterdam, The

Netherlands, May 1998.
[12] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Pro-

cessing transactions over optimistic atomic broadcast

protocols. In 19th IEEE International Conference on

Distributed Computing Systems (ICDCS ’99), pages

424–431. IEEE, May 1999.
[13] Z. Lu and K. McKinley. Partial collection replica-

tion versus caching for information retrieval systems.

In The ACM International Conference on Research

and Development in Information Retrieval, Athens,

Greece, July 2000.
[14] B. Momjian. PostgreSQL: Introduction and Concepts.

Addison-Wesley, 2000.
[15] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting

atomic broadcast in replicated databases. In Proceed-

ings of EuroPar (EuroPar’98), Southampton, England,

Sept. 1998.
[16] F. Pedone, R. Guerraoui, and A. Schiper. The

database state machine approach. Technical Report

SSC/1999/008, École Polytechnique Fédérale de Lau-

sanne, Switzerland, March 1999.
[17] J. Pereira and R. Oliveira. Object-oriented open im-

plementation of reliable communication protocols. In

OOPSLA’97 Workshop on, Atlanta, USA, October

1997.
[18] A. Schiper and M. Raynal. From group communica-

tion to transactions in distributed systems. Communi-

cations of the ACM, 39:84–87, April 1996.
[19] I. Stanoi, D. Agrawal, and A. E. Abbadi. Using broad-

cast primitives in replicated databases. In Proceedings

of the 18
th IEEE International Conference on Dis-

tributed Computing Systems ICDCS’98, pages 148–

155, Amsterdam, The Netherlands, May 1998. IEEE.
[20] S. White and M. Hapner. JDBC 2.1 API. Sun Mi-

crosystems, December 1999.
[21] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,

and G. Alonso. Database replication techniques:

a three parameter classification. In Proceedings of

19th IEEE Symposium on Reliable Distributed Sys-

tems (SRDS2000), pages 206–215, Nürnberg, Ger-

many, Oct. 2000. IEEE Computer Society.


