345 research outputs found

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Classification using semantic feature and machine learning: Land-use case application

    Get PDF
    Land cover classification has interested recent works especially for deforestation, urban are monitoring and agricultural land use. Traditional classification approaches have limited accuracy especially for non-heterogeneous land cover. Thus, using machine may improve the classification accuracy. The presented paper deals with the land-use scene recognition on very high-resolution remote sensing imagery. We proposed a new framework based on semantic features, handcrafted features and machine learning classifiers decisions. The method starts by semantic feature extraction using a convolutional neural network. Handcraft features are also extracted based on color and multi-resolution characteristics. Then, the classification stage is processed by three learning machine algorithms. The final classification result performed by majority vote algorithm. The idea behind is to take advantages from semantic features and handcrafted features. The second scope is to use the decision fusion to enhance the classification result. Experimentation results show that the proposed method provides good accuracy and trustable tool for land use image identification

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    GPU Accelerated Number Plate Localization in Crowded Situation

    Get PDF
    Number Plate Localization (NPL) has been widely used as part of Automatic Number Plate Recognition (ANPR) system. NPL method determines the accuracy of ANPR system. Although it is a mature research, the challenge stills persist especially in crowded situation where many vehicles present. Therefore, a method is proposed to localize number plate in crowded situation. The proposed NPL method uses vertical edge density to extract potential region of number plate then detect the number plate using combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). The method employs GPU to deal with multiple number plate detection, to handle multi-scale detection window, and to perform real time detection. The test result shows good results, 0.9883 value of AUC (Area Under Curve), and 0.9362 of BAC (Balance Accuracy). Moreover, potential real time detection is foreseen because total process is executed in less than 50 ms. Errors are mainly caused by background that contain letters, non-standard number plate and highly covered number plat

    Effective Smoke Detection Using Spatial-Temporal Energy and Weber Local Descriptors in Three Orthogonal Planes (WLD-TOP)

    Get PDF
    Video-based fire detection (VFD) technologies have received significant attention from both academic and industrial communities recently. However, existing VFD approaches are still susceptible to false alarms due to changes in illumination, camera noise, variability of shape, motion, colour, irregular patterns of smoke and flames, modelling and training inaccuracies. Hence, this work aimed at developing a VSD system that will have a high detection rate, low false-alarm rate and short response time. Moving blocks in video frames were segmented and analysed in HSI colour space, and wavelet energy analysis of the smoke candidate blocks was performed. In addition, Dynamic texture descriptors were obtained using Weber Local Descriptor in Three Orthogonal Planes (WLD-TOP). These features were combined and used as inputs to Support Vector Classifier with radial based kernel function, while post-processing stage employs temporal image filtering to reduce false alarm. The algorithm was implemented in MATLAB 8.1.0.604 (R2013a). Accuracy of 99.30%, detection rate of 99.28% and false alarm rate of 0.65% were obtained when tested with some online videos. The output of this work would find applications in early fire detection systems and other applications such as robot vision and automated inspection.Facultad de Informátic

    Deep learning for feature extraction in remote sensing: A case-study of aerial scene classification

    Get PDF
    Scene classification relying on images is essential in many systems and applications related to remote sensing. The scientific interest in scene classification from remotely collected images is increasing, and many datasets and algorithms are being developed. The introduction of convolutional neural networks (CNN) and other deep learning techniques contributed to vast improvements in the accuracy of image scene classification in such systems. To classify the scene from areal images, we used a two-stream deep architecture. We performed the first part of the classification, the feature extraction, using pre-trained CNN that extracts deep features of aerial images from different network layers: the average pooling layer or some of the previous convolutional layers. Next, we applied feature concatenation on extracted features from various neural networks, after dimensionality reduction was performed on enormous feature vectors. We experimented extensively with different CNN architectures, to get optimal results. Finally, we used the Support Vector Machine (SVM) for the classification of the concatenated features. The competitiveness of the examined technique was evaluated on two real-world datasets: UC Merced and WHU-RS. The obtained classification accuracies demonstrate that the considered method has competitive results compared to other cutting-edge techniques
    • …
    corecore