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Abstract 

Video-based fire detection (VFD) technologies have 
received significant attention from both academic 
and industrial communities recently. However, 
existing VFD approaches are still susceptible to false 
alarms due to changes in illumination, camera noise, 
variability of shape, motion, colour, irregular 
patterns of smoke and flames, modelling and 
training inaccuracies. Hence, this work aimed at 
developing a VSD system that will have a high 
detection rate, low false-alarm rate and short 
response time. Moving blocks in video frames were 
segmented and analysed in HSI colour space, and 
wavelet energy analysis of the smoke candidate 
blocks was performed. In addition, Dynamic texture 
descriptors were obtained using Weber Local 
Descriptor in Three Orthogonal Planes (WLD-TOP). 
These features were combined and used as inputs to 
Support Vector Classifier with radial based kernel 
function, while post-processing stage employs 
temporal image filtering to reduce false alarm. The 
algorithm was implemented in MATLAB 8.1.0.604 
(R2013a). Accuracy of 99.30%, detection rate of 
99.28% and false alarm rate of 0.65% were obtained 
when tested with some online videos. The output of 
this work would find applications in early fire 
detection systems and other applications such as 
robot vision and automated inspection. 1
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1. Introduction

Fire is one of the major hazards of the modern 
society as it causes grave and significant losses of 
lives, properties and socio-economic infrastructures 
around the world every year. In the past decades, 
different technologies have been developed to detect 
and control fire at very early stage. These 
technologies can be broadly classified into 
conventional methods and video-based techniques. 
Conventional methods employ ion or particle 
sensors, heat sensors, optical sensors (infrared, 
visible, ultraviolet), relative humidity sampler or air 
transparency sampler; whereas video-based fire 
detection (VFD) systems use video camera and 
computational techniques in image processing, 
machine vision and pattern-recognition to 
intelligently detect fire in a manner like the way 
humans sense fire.  

Conventional methods have proven to be 
inefficient and unreliable in many applications and 
this could be attributed to many reasons, such as 
proximity of sensors to the source of the fire – to 
reduce transport delay. In addition, they are 
oftentimes difficult to use in places with excessive 
ceiling heights or large areas such as warehouses, 
tunnels, and outdoors. They are also not suitable in 
harsh environments and in areas with strong airflow- 
since the air flow may easily dilute the concentration 
of the smoke.  

Video-based Fire Detection (VFD) techniques 
detect fire by recognizing either smoke or flame 
anywhere within the field of view of the camera at a 
distance by using numerical analysis to model the 
monitored area [13]. Vision-based detection 
techniques can be used to sense the presence of 
flames within the camera’s field of view, reflected 
fire light when flames are covered, presence of 
ambient or pluming smoke clouds, and intrusion into 
monitored property. VFD techniques are becoming 
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viable alternatives to the conventional fire detection 
methods and have shown to be useful in solving 
several problems associated with conventional fire 
sensors [1]. VFD techniques have numerous 
advantages such as fast response, indoor and outdoor 
detection at a distance, non-contact, absence of 
spatial limits, ability to provide fire progress 
information, and forensic evidence for fire 
investigations [13]. 

Currently, available VFD algorithms mainly use 
models that are trained with observable 
characteristics of flame or smoke. In early studies, 
flame detection was the main subject of 
investigation. Recently, more attention is being 
focused on smoke detection. This is because smoke 
is usually produced before flames and can readily be 
observed from a long distance; therefore, it is an 
important sign for early fire detection [2]. 

Many smoke detection algorithms using video 
images captured in visible-spectrum have been 
proposed [3-13]. These algorithms extract structural 
and statistical features from visual signatures such as 
motion, colour, edge, obscuration, disorderliness, 
growth rate, contour, geometry, texture and energy 
of smoke regions. The extracted features are then 
used as inputs for rule-based, Bayesian, or rule-first-
Bayesian-next analysis to detect the presence of 
smoke. A survey of different methods used for 
smoke detection is discussed in our earlier study 
[13]. [9] proposed a wavelet-based real-time smoke 
detection algorithm, in which both temporal and 
spatial wavelet transformations were employed. The 
temporal wavelet transformation is used to analyse 
the flicker of smoke like objects, while the spatial 
wavelet transformation is implemented to calculate 
the decrease in high-frequency content 
corresponding to edges caused by the blurring effect 
of smoke. [10] proposed a method targeted at 
reducing the false alarms of the smoke detection 
systems in their previous works. The smoke is 
represented as a texture using the parameters 
obtained from background estimation, wavelet 
transform, and colour information. The model is 
trained using SVM, and promising simulation results 
were obtained. [12] proposed a smoke-detection 
approach that utilizes block-based spatial and 
temporal analyses. A candidate-region extraction 
step is firstly performed using a combination of 
temporal difference and GMM background 
subtraction techniques. Then, the method extracts 
energy-based and normalized-RGB colour-based 
features within the spatial, temporal, and spatial-
temporal wavelets domains [13]. The three features 
are combined and fed to a Gaussian kernel-based 
SVM for classification. To reduce the false alarm 
rate and maintain a high detection rate with a short 
reaction time, a temporal-based alarm decision unit 
(ADU) is introduced. An average detection rate of 

83.5 %, false-alarm rate of 0.1% with average 
reaction time of 1.34 seconds was reported. 

Smoke detection has been recognized as part of 
dynamic texture (DT) segmentation. Nonetheless, 
DT segmentation is very challenging due to their 
unknown spatiotemporal extension and stochastic 
nature of the motion fields. Leveraging on the 
remarkable results obtained by researchers in 
dynamic textures segmentation, [2] proposed feature 
extraction methods that exploit dynamic 
characteristics of smoke for video-based smoke 
detection [13]. The algorithm is made up of various 
block-based processing stages which include 
candidate smoke blocks detection using motion and 
colour in RGB colour space; and candidate smoke 
blocks verification using accumulative motion 
orientation, Histograms of Equivalent Patterns 
(HEP)-based spatial texture descriptors, and Space-
time Feature Analysis which consists of inter-frame 
difference and dynamic texture Descriptors on Three 
Orthogonal Planes [13]. They carried out extensive 
comparative studies on major spatial and dynamic 
texture descriptors. They introduced Edge 
Orientation Histogram (EOH) in three orthogonal 
planes. The performances of the proposed features 
are evaluated using SVM classifiers. Their 
experimental results show that improved detection 
accuracy and false alarm resistance are achieved 
compared with state-of-the-art technologies.  

Due to the irregular shapes of smoke, varied 
lighting conditions, occlusions, shadows, scene 
complexity, video-based smoke detection remains a 
challenging task. This study proposes an effective 
smoke-detection method using spatial-temporal 
wavelet energy analyses and Weber Local 
Descriptor in three orthogonal planes (WLD-TOP) 
as dynamic texture descriptor. In this paper, we 
introduce a novel method for smoke detection that 
exploits variations in wavelet energy of a scene 
covered with smoke and dynamic textural properties 
of smoke. [16] demonstrated that WLD outperforms 
in texture recognition than state-of-the-art best 
descriptors like LBP, Gabor, and SIFT. The basic 
WLD descriptor is a histogram where differential 
excitation values are integrated according to their 
gradient orientations. In this study, we generalize the 
spatial mode of WLD to a spatiotemporal mode as it 
was done in previous studies whereby LBP was 
generalized as a spatiotemporal descriptor, i.e., LBP 
in three orthogonal planes (LBP-TOP), which is 
very promising in DTs recognition. Likewise, we 
refer to the spatial-temporal mode of WLD as WLD-
TOP. 

The rest of the paper is organized as follows. The 
methodology used for the Smoke Detection system 
is discussed in Section 2. Experimental results are 
presented in Section 3. Section 4 concludes the 
paper. 
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2. Methodology

2.1. VSD System Architecture 

The proposed Video-based Smoke Detection (VSD) 
system uses a combination of attributes (motion, 
colour, energy and texture) whose mutual 
occurrence leaves smoke as their only combined 
possible cause; and detect smoke using SVM 
classifier by block processing. The block diagram of 
the proposed VSD system is shown in Fig. 1. The 
architecture comprises of data acquisition, pre-
processing, feature extraction, classification and 
post-processing stages.  

2.2. Pre-Processing 

The pre-processing stage comprised many sub-units 
which were interconnected to obtain regions that 
were suspected to contain smoke pixels. The sub-
units in this stage were: image sub-blocking, RGB-
Greyscale image conversion, colour analysis in HSI 
colour space, GMM background modelling and 
subtraction. For the purpose of model training and 
testing, video clips were collected from the test data 
previously used in [10], along with additional video 
clips downloaded from the following websites: 
http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample
Clips; http://cvpr.kmu.ac.kr and 
http://imagelab.ing.unimore.it/visor. The frame rate 
of the video data varied from 15 to 30 Hz and the 
size of the video clips varied between 320 by 240 
and 640 by 480 pixels. Brief description of the video 
clips used for system training and testing is shown in 
Table 1. Using video clips employed in previous 
studies allows quantitative comparison of proposed 
method with state-of-the-art methods in smoke 
detection. Since smoke is a non-rigid object, object-
based image segmentation is inefficient for smoke 
detection in video. Therefore, a block-based 
technique, which provided a more effective smoke 
detection was used. Input images were subdivided 
into non-overlapping ‘N by N' square blocks, and the 
features were extracted from these local regions for 
smoke detection. Generally, there is a trade-off 
between complexity and performance of block-based 
image segmentation. It was observed that as the 
number of sub-blocks increased, the classification 
accuracy improved. However, the computational 
cost and the complexity of the detection also 
increased. The block size of 16 by 16 pixels was 
found to be a good compromise between accuracy 
and complexity. Video clips with frame height or 
width that were not multiple of 16 were padded by 
repeating border elements of the frame to make the 
frame height and width to be a multiple of 16. Sub-
blocking was followed by a moving-block detection 
algorithm implemented using Gaussian Mixture 
Models (GMM). The video frames were then 

transformed into HSI colour space, where further 
analyses were performed to differentiate smoke 
candidate blocks from other non-smoke moving 
blocks. Smoke is semi-transparent when it initially 
starts to expand, which leads to a decrease in the 
chrominance values of pixels. YUV, YCbCr, HSV 
and HSI colour spaces were investigated on smoke 
of different colours to find robust colour model that 
will adequately characterize smoke of different 
colours with low computational complexity. Since 
smoke may have any colour (which can be grey, 
light grey, white, dark grey or black) depending on 
compositions of the fuel material, the chrominance 
based methods were found to be inadequate for 
smoke detection. HSI colour space was used for the 
proposed VSD as it provided colour-invariant 
characteristic feature that reliably differentiated 
smoke from other moving objects. Every pixel in 
each block was transformed from RGB colour space 
to HSI colour space using Eq (1) to (3).  Every 
frame in a video sequence was multiplied by the 
foreground mask obtained from GMM. Saturation 
(S) and Intensity (I) were obtained from the resulting 
frame. A pixel is considered to be a smoke candidate 
if its saturation and intensity were less than 
empirically determined thresholds. A binary mask, 
(Colour_Motion_mask), was then obtained which 
indicated whether a given pixel was a smoke 
candidate or not. Since the Hue component of HSI 
was not required in this analysis, only Saturation and 
Intensity were computed to reduce computational 
complexity of the smoke detection system. The 
Colour_Motion_mask, φ(i, j) is defined by Eq (4). 

Hue, H is given as 

H =    �θ, if B ≤  G
360 − θ, if  B ≥ G   (1)

where θ = cos−1 � 0.5[(R−G)+(R−B)]

[(R−G)2+(R−B)(G−B)]
1
2

′
 � 

Saturation, S is given as 

S =    1 − 3
R+G+B

[min(R, G, B)] (2) 

while intensity, I is given as 

I = (R+G+B)
3

 (3) 

Φ(𝑖𝑖,𝑗𝑗)

= � 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    𝑖𝑖𝑖𝑖 S(i,j) <   SThresh 𝑎𝑎𝑎𝑎𝑎𝑎  I(i,j) < IThresh
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(4) 

The flowchart for the HSI colour analysis of 
moving block is shown in Fig. 2. 
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Table 1 Brief description of the video clips used for system training and testing. 

Video 

Sequence 

Source Description Frame 

Rate 

Movie 1 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/ swindow.avi 

Burning truck 25 

Movie 2 http://imagelab.ing.unimore.it/visor/ smoky.avi Smoke from fire in a garden 30 

Movie 3 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/swastebaket.avi 

Smoke from burning cotton rope 25 

Movie 4 http://cvpr.kmu.ac.kr/movmt.avi People walking outside 15 

Movie 5 http://www.firesense.eu./black_smoke.avi Black smoke from burning tire  25 

Movie 6 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/sbehindthefence 

Fast-moving smoke with a 
pedestrian 

15 

Movie 7 Obtained using camera in an outdoor scene Burning foam mattress 25 

Movie 8 www.HDNatureFootage.com/trucks.mov Gray-coloured moving truck 30 

Movie 9 www.HDNatureFootage.com/rhinos.avi Two rhinos walking outside 25 

Movie 10 www.HDNatureFootage.com/men.mp4 Three men walking in a hallway 15 

Movie 11 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/ Sparkinglot.avi 

Crowded parking lot 15 

Movie 12 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/ carlight2.avi 

Light smoke in a tunnel with 
pedestrians 

30 

Movie 13 Obtained using camera in a poorly-lit room Candle Smoke in a room 30 

Movie 14 http://signal.ee.bilkent.edu.tr/VisiFire/Demo/Sample

Clips/ carlight2.avi 

Cars in a tunnel at night 25 

Movie 15 http://cvpr.kmu.ac.kr/forest_smoke.avi Light smoke in a forest fire 15 

Movie 16 Obtained using camera in an outdoor scene Moving cloud in a forest 15 

Movie 17 www.HDNatureFootage.com/ocean_wave.mov Ocean wave 30 

Movie 18 http://www.firesense.eu./ sparkinglot.avi Smoke from fire in a parking 
lots 

25 

Movie 19 Obtained using camera in an outdoor scene Fast moving cars on a tarred 
road 

30 

Pixels with the maximum number of changes 
across frames were selected from a large number of 
video sequences (smoke and non-smoke video 
clips). Saturation and Intensity values were 
computed for the selected pixels in each frame of the 
sequences. The results obtained for the selected 
pixels in a typical smoke video clip and non-smoke 
video clip are shown in Fig. 3(a to d). From the 
result, it was observed that variations in intensity 
and saturation of smoke pixels are significantly 
different from those of other moving objects. While 
variations in smoke pixels are gradual and irregular, 
that of rigid moving objects tends to be spontaneous 
and regular. The gradual and irregular nature of 

variations in intensities of smoke pixels could be 
attributed to irregular nature of smoke motion. Also, 
in the absence of strong wind, the intensity of smoke 
pixels varied slowly when compared with that of a 
pixel of a non-smoke solid moving object. 

As shown in Fig. 3(a) and Fig. 3(c), saturation 
values of the selected smoke pixel varied between 
0.061 and 0.318; while that of the selected non-
smoke moving pixel varied between 0.005 and 0.19. 
The results indicated that a smoke pixel could not 
have zero value -since saturation of zero value could 
only be obtained from objects with pure black 
colour. Though the minimum and maximum 
saturation values obtained for the selected non-
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smoke moving pixel were 0.005 and 0.19 
respectively, it should be noted that the saturation 
value of a non-smoke pixel could vary between 
0.000 (for pure black object) and 1.000 (for pure 
white object). To reduce the possibility of 
categorizing a smoke pixel as non-smoke a threshold 
value of 0.7 was selected for maximum saturation 
value that could be obtained from smoke pixel. As 
shown in Fig. 3(b) and Fig. 3(d), it was observed 
that the intensity values of the selected smoke pixel 
varied between 0.319 and 0.616 while that of 
selected non-smoke object varied between 0.290 and 
0.990. The intensity value of an ordinary non-smoke 
object can range from 0.000 (for black object) to 
1.000 (for shining white object). Though the 
maximum intensity value of the selected smoke 
pixel was 0.616, a threshold value of 0.900 was used 
to differentiate smoke pixel from other moving 
objects. This was important to reduce the possibility 
of rejecting a smoke candidate pixel at the pre-
processing stage. Though the selected threshold 
allowed other non-smoke blocks to pass the pre-
processing stage, the non-smoke blocks were easily 
rejected during SVM classification.        

Thus, in generating colour mask, a moving pixel 
was considered to be smoke candidate if its 
saturation was less than 0.7 and its intensity less 
than or equal to 0.9. An "AND" logical combination 
of the colour mask and motion mask was performed 
to obtain smoke candidate blocks that were fed to 
the feature extraction stage. 

2.3. Feature Extraction 

The input data (smoke candidate blocks in the video 
frame) was transformed into a reduced 
representation set of features at this stage. The 

outputs (marked blocks) of the pre-processing stage 
were used as the inputs for the feature extraction 
stage. Two processes used in this stage were 2-D 
spatial-temporal wavelet analysis and dynamic 
texture analysis. 

2.3.1. 2-D spatial-temporal wavelet analysis. 

Previous studies have shown that wavelet sub-
images contain the spatial texture and edge 
information of the original image in form of local 
extrema. Discrete Wavelet Transform (DWT) has 
become an efficient tool in evaluating the energy 
variation of an intensity image for smoke detection 
[8]. DWT has also proved useful in obtaining 
decomposed images through various sub-bands that 
allow extraction of smoke’s features at different 
resolutions and frequencies. The two-dimensional 
DWT is made up of approximation and detail parts. 
The original image is decomposed into four sub-
images, which are Wф, Wφ

H, Wφ
V and Wφ

D. The 
scale j + 1 approximation coefficients are again 
divided into four sub-images of smaller size. In other 
words, the output of DWT is a vector of the form 
[An, (Hj, Vj, Dj)j = 1,…, n] where An is a low-resolution 
approximation (low-frequency data of row and 
column, LL) of the original image, Hj is wavelet 
sub-image containing the image details in horizontal 
direction (high-frequency data of row and low-
frequency data of column, HL), Vj is wavelet sub-
images containing the image details in vertical 
direction (low-frequency data of row and high-
frequency data of column, LH) , Dj is wavelet sub-
image containing the image details in diagonal 
direction (high-frequency data of row and column, 
HH) at the j-level  decomposition. The output of n-
level DWT decomposition on the original image will 
produce 3n + 1 sub-images.  A 1-level 2D 
decomposition is shown in Fig. 4.   

  (a) Saturation variation               (b) Intensity variation 
Fig. 3 Saturation and intensity variation of selected pixels of video frames with smoke. 
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(c) Saturation variation             (d) Intensity variation 
Fig. 3 Saturation and intensity variation of selected pixels of non-smoke video frames. 
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Fig. 4  2-D Discrete wavelet transform. 

High-frequency energy of each block was 
computed using single stage 2-D discrete wavelet 
decomposition of the current image block using Eq 
(5). 

(It, bk) = � Ht
2(𝑚𝑚,𝑛𝑛)

m,n j ϵ bk

+ Vt2(𝑚𝑚,𝑛𝑛) + Dt
2(𝑚𝑚,𝑛𝑛)  

 (5) 

where bk is the kth block of the active frame and It is 
the input image at time t; H, V and D are vertical, 
horizontal and diagonal sub-band details 
respectively.  

One-level Daubechies (Haar) wavelet was used 
for the wavelet analysis. To extract spatial-temporal 
energy variations from video frames, wavelet energy 
was computed for W consecutive video frames and 
five derived features were calculated from the sub-
band energies. The five statistical parameters were 
variance, standard deviation, skewness, kurtosis and 
sum of inter-frame energy differences.  

Blocks with maximum temporal variation across 
frames were selected from a smoke video clip and 
non-smoke video clip. Each block’s energy was 
computed over the video sequences. Fig. 5 shows 
the results of a comparison of the energy analysis for 

smoke and an ordinary moving object. Smoke 
produced a smoother variation in the energy value. 
In contrast, non-smoke solid moving objects 
produced large instantaneous variations in the 
energy value. To obtain these variations irrespective 
of the absolute value of the block energy, several 
statistical parameters were computed. The computed 
parameters were: variance, standard deviation, 
skewness, kurtosis and sum of inter-frame energy 
differences.  

Fig. 5(a) and 5(b) show that changes in variance 
of wavelet energy produced when a selected block 
was obscured by smoke were more irregular than 
when a selected block was obscured by non-smoke 
moving objects. The variance of wavelet energy in 
the case of non-smoke moving block was 
predictably regular and varied from near zero to 
maximum value along the consecutive video frames. 
Fig. 5(c) and 5(d) show the plot of sum of energy 
change for the selected block in smoke and non-
smoke block respectively over time. It could be 
observed that the sum of energy change for non-
smoke moving objects exhibits more predictable, 
regular and oscillatory change than that of smoke. 
From the results, all the statistical parameters 
obtained from wavelet energy analysis were relevant 
in discriminating smoke from other moving objects.
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The results obtained showed that the spatial-
temporal features obtained from wavelet energy of a 
video clip could easily be used to distinguish smoke 
from non-smoke moving object.  

2.3.2.   Dynamic Texture analysis using Weber 
Local Descriptor (WLD) 

Weber Local Descriptor (WLD) descriptor is based 
on Weber’s Law which states that the change of a 
stimulus (such as sound or light) that is just 
noticeable is a constant ratio of the original stimulus. 
Inspired by this law, [16] proposed WLD descriptor 
for texture representation. WLD descriptor 
represents an image as a histogram of differential 
excitations and gradient orientations and possesses 
several desirable properties such as robustness to 
noise and illumination changes, elegant detection of 
edges and powerful image representation [16]. WLD 
is computationally simple and effective for texture 
classification, and it is complementary to LBP. 
Three steps which are required in computing basic 
WLD descriptor are: finding differential excitations, 
gradient orientations and building the histogram. 

To get differential excitation ℰ(xc) of a pixel xc, 
firstly the intensity differences of xc with its 
neighbours xi, i = 1, 2, …, p are calculated as 

 ∆Ii   = Ii   −  Ic (6) 

Then the ratio of total intensity difference of xc with 
its neighbours xi to the intensity of xc is calculated as 
follows: 

fratio        =  ∑ �∆Ii
Ic
�P−1

i=0  (7) 

Arctangent function can be used as a filter on 
fratio to enhance the robustness of WLD against noise 
which results in: 

ε(xc) = tan−1 �∑ �∆Ii
Ic
�P−1

i=0 �  (8) 

The resulting differential excitation ε(xc) may be 
positive or negative. The positive value indicates 
that the current pixel is darker than its surroundings 
and negative value means that the current pixel is 
lighter than the surroundings. Next main component 
of WLD is gradient orientation. For a pixel xc the 
gradient orientation is computed as follows: 

θ(xc) = tan−1 �Ixx
Iyy
� (9) 

where Ixx is the intensity difference between two 
pixels on the left and right of the current pixel xc, 
and Iyy is the intensity difference of two pixels 
directly below and above the current 
pixel, 𝜃𝜃 𝜖𝜖 �− 𝜋𝜋

2
, 𝜋𝜋
2
�

The gradient orientations are quantized into T 
dominant orientations as:  
𝜙𝜙𝑡𝑡 =  2𝑡𝑡

𝑇𝑇
𝜋𝜋; 

where 

t = mod �� θ′

2π/T
+ 1

2
� , T� (10) 

In our case T = 12 and the dominant orientations 
are 

Fig. 5(a) Variance of energy change for selected block in 
video with smoke. 

Fig. 5(b) Variance of energy change for selected block in 
non-smoke video. 

Fig. 5(c) Sum of energy change for selected block in 
video with smoke. 

Fig. 5(d) Sum of energy change for selected block in 
non-smoke video. 
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ϕt =  tπ
4

,  t = 0, 1, …,T -1; (11) 

Thus, all orientations located in the interval 

 [ 𝜙𝜙𝑡𝑡 −  �𝑡𝑡𝑡𝑡
4
� ,  𝜙𝜙𝑡𝑡 +  �𝑡𝑡𝑡𝑡

4
�] (12) 

are quantized as 𝜙𝜙𝑡𝑡 .  WLD descriptor is then 
subsequently built from the calculated differential 
excitation and dominant orientation. Corresponding 
to each dominant orientation,  𝜙𝜙𝑡𝑡: t = 0, 1, 2, …, T-1 
differential excitations are organized as a histogram 
Ht.   

2.3.3.   Spatial-Temporal WLD Descriptor 

To exploit dynamic textual properties of smoke, we 
use WLD-TOP as a local spatial-temporal texture 
descriptor. WLD-TOP is a spatial-temporal 
descriptor which computes the WLD feature in three 
orthogonal planes as shown in Fig. 6. Fig. 6(a) is a 
sequence of frames (or images) of a DT; 6(b) 
denotes the three orthogonal planes or slices XY, XT 
and  YT, where XY is the appearance of DT; XT 
shows the visual impression of a row changing in 
temporal space; and YT describes the motion of a 
column in temporal space; 6(c) illustrates the vertex 

coordinates of the three orthogonal planes for the 
feature computation of WLD of one pixel; 6(d) 
shows how to compute sub-histograms from three 
slices which are denoted as WLDXY, WLDXT  and 
WLDYT. 

The WLD-TOP descriptor’s underlying 
framework is shown in the flowchart in Fig. 7. The 
operator extracts differential excitation and gradient 
orientation of every pixel in a marked image block 
using its 3 by 3- spatial-temporal (XY, XT, YT) 
neighbourhood. This implies a circle of radius R = 
1.0 from the centre pixel, and 8 sampling points on 
the edge of this circle were taken and compared with 
the value of the centre pixel. 

WLD-TOP descriptors were extracted from 
30,000 pre-processed blocks obtained from smoke 
and non-smoke video clips. The scatter plot of the 
results obtained is presented in Fig. 8. The x-axis 
indicates the number of bins; while the y-axis is the 
mean value of normalized histogram which counts 
the number of patterns that fall into each bin from 
blocks of smoke and non-smoke blocks. From the 
results, WLD-TOP descriptors provide good 
discriminatory ability for separating smoke blocks 
from non-smoke blocks.  

Fig. 6 Three planes in spatial-temporal domain to extract TOP features, and the histogram concatenated from three planes. (a) 
Image frames, (b and c) the x-y, y-t, and x-t planes, and (d) concatenation of resulting histograms into a single feature set 

[17]. 
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Compute differential excitations; 
Compute gradient orientations. 

NO

YES
Build Concatenated histograms of differential 

excitations and dominant orientations.

Get Candidate 
Smoke Block

All Pixels 
in the block 

treated ?

WLD-TOP
ΩWLD

Start

Stop

Fig. 7 Flowchart of major steps in extracting (WLD-TOP) 
as dynamic texture descriptor. 

Fig. 8 Probability Distribution of WLD-TOP at (P, R) = 
(8,1) of Smoke and non-Smoke blocks. 

2.4. Classification 

Support Vector Machine (SVM) was used for 
training and testing of the model on the extracted 
feature vectors. Gaussian radial basis function was 
used in training and testing of the model. The size of 
feature sets generated from smoke and non-smoke 
video clips were usually very large, and this was 
computationally intensive for SVM model training –
especially when tuning the model for the best 
combination of parameters. The feature sets were 
thus sub-sampled using Random Sampling. Different 
parameters were tried, using unconstrained nonlinear 
optimization technique, for training, and checked via 
10-fold cross-validation to obtain the best 
parameters. The values of SVM parameters (RBF 
sigma, σ and misclassification penalty, ϛ) obtained 
for sub-samples were used to model SVM on feature 
sets extracted from 15,000 feature vectors of smoke 
and 15,000 feature vectors of non-smoke moving 

blocks. Ten-fold cross-validations were performed 
on the feature sets to avoid over-fitting. The SVM 
model structure obtained from the modelling was 
saved in a file for subsequent smoke detection. 

2.5. Post-Processing 

To reduce false alarm, after candidate smoke blocks 
have been classified, they were fed to post-
processing stage for further verification. Statistical 
smoke alarm data was obtained from frame to frame. 
The number of alarms in each block was computed 
over five consecutive video frames. If the value was 
greater than two, a real alarm was generated. 

2.6. Performance Evaluation 

Accuracy, Detection Rate (DR), False Alarm Rate 
(FAR) and Precision were used to evaluate the 
performance of the system. 

Accuracy (%) = TP +TN
TP +TN +FP+FN

 × 100% (13) 

DR (%)    =  TP
TP +FN

 × 100% (14) 

FAR (%) =  FP
TN + FP

 × 100% (15) 

Precision  (%) = TP 
TP +  FP

 × 100%  (16) 

where TP, TN, FP, and FN represent True Positive, 
True Negative, False Positive, and False Negative 
respectively. 

2.7. Implementation 

The algorithm was implemented in MATLAB 
8.1.0.604 (R2013a) on a computer with Pentium (R) 
Dual-Core 2.20 GHz CPU and 2GB RAM. Graphic 
User Interfaces (GUIs) were built to make utilization 
of developed functions to be user friendly. Using 
MATLAB’s ‘GUIDE’, three Graphical User 
Interfaces were developed to simplify the usage of 
developed VSD.  

3. Results

A total of 19 video clips were used from which 
30,000 blocks were generated to obtain feature sets 
for VSD modeling and testing. WLD-TOP without 
Wavelet Energy has 0.0362 s as average extraction 
time, while WLD-TOP with Wavelet Energy has 
average extraction time of 0.0376 s. Average time 
taken was 0.0019 s to classify WLD-TOP with 
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Wavelet Energy. As shown in Table 2, accuracy of 
99.30% and detection rate of 99.28% were obtained 
using WLD-TOP with Wavelet Energy, while the 
lower accuracy of 99.10% was obtained from WLD- 
TOP without Wavelet Energy. Table 3 shows the 
feature extraction and recognition time using 
different feature sets. 

The proposed VSD system was tested on several 
video clips of different scenarios. The developed 
VSD system achieved perfect detection results when 
tested on video clips from outdoor and indoor 
environmental situations with presence and absence 
of other non-smoke moving objects. Fig. 9 (a to f), 
show the performance of the developed VSD when 
tested on video clips of smoke in indoor 
environment, smoke in outdoor environment with 
other moving objects, smoke in outdoor environment 
with strong wind and non-smoke moving objects in 
outdoor environment. Red blocks indicate smoke 
regions while blue blocks indicate non-smoke 
moving region. The proposed system successfully 
generated alarm for smoke events in every test 

video. However, there were instances when the 
proposed system showed a very small number of 
false alarms as shown in Fig. 9 (c). 
The developed method was compared with other 
recent approaches, including the Spatial-Temporal 
Wavelet Analyses method proposed by [12]; and 
Histograms of Equivalent Patterns and Space-time 
Analysis method proposed by [2].  Table 4 shows a 
comparison of the results with the earlier smoke-
detection methods. Using false alarm rate and 
detection rate or accuracy as performance evaluation 
metrics, the proposed method WLD-TOP+W 
showed improvement in performance when 
compared to methods in previous studies. 

4. Conclusion

Algorithm for smoke detection in video were 
developed using effective combination of spatial and 
temporal features computed from wavelet energy 
and dynamic texture analysis. Moving blocks in 

Table 2 SVM model performances obtained for different feature sets. 
Dynamic Texture 

Descriptor 
Support Vector 

Dimension 
SVM 

Σ Ϛ 
Accuracy 

% 
DR 
% 

FAR 
% 

WLD-TOP + WE 44 3.5724 1.5583 99.30 99.28 0.65 

WLD-TOP 36 3.6036 1.1929 99.20 99.10 0.70 

Table 3 Feature Extraction and Recognition time using different feature sets. 
Dynamic Texture Descriptor Support Vector Dims Extraction Time (s) Recognition Time (s) 

WLD-TOP with Wavelet Energy. 44 0.0376 0.0019 
WLD-TOP. 36 0.0362 0.0016 

Table 4 Comparison with existing works. 

Method Features                 Classifier Accuracy DR
% 

FAR 
% 

Precision 
% 

Smoke Detection using Spatial and 
Temporal Analyses [12] 

2-D Spatial Wavelet Analysis SVM 
(RBF) -- 93.5 38.0 -- 

1-D Spatial-temporal Energy 
Analysis SVM 

(RBF) -- 91.7 13.1 -- 

1-D Temporal Chromatic 
Configuration Analysis 

SVM 
(RBF) -- 85.5 11.2 -- 

Early Fire Detection Using HEP 
and Space-time Analysis [2] 

EOH-TOP (with resolution of 
48 bins) 

SVM 
(RBF) 97.3511 -- -- -- 

Uniform LBP-TOP SVM 
(RBF) 97.4007 -- -- -- 

WLD-TOP +W 
(Proposed Method) 

WLD-TOP SVM 
(RBF) 99.20 99.10 0.70 99.30 

WLD-TOP + Wavelet Energy SVM 
(RBF) 99.30 99.28 0.65 99.74 
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video frames were firstly segmented and analysed in 
HSI colour space. Wavelet energy analyses were 
then performed on smoke candidate blocks. Weber 
Local Descriptors in Three Orthogonal Planes 
(WLD-TOP) were also obtained from candidate 
smoke block. Features extracted from energy 
analyses were separately combined with WLD-TOP 
and used as inputs to Support Vector Classifier with 
radial based kernel function. The algorithm was 
implemented in MATLAB 8.1.0.604 (R2013a). 
Using accuracy, precision, detection rate and false-
alarm rate as metrics for performance evaluation, it 
was observed that the combined features produced 
good results. The following results were obtained for 

accuracy, precision, detection rate and false alarm 
rate respectively, 99.30 %, 99.74 %, 99.28 % and 
0.65 %.   

5. Future Works

Future research work on video-based smoke 
detection will consider efficient method for 
extracting WLD-TOP at increased histogram 
resolution. This will not only reduce the response 
time of the system, it will also increase the 
effectiveness of the proposed system 

(a) Smoke in outdoor environment  (b) Smoke in outdoor environment with strong wind 

(c) Non-Smoke moving object in moving objects (d) Smoke in semi-outdoor outdoor environment 

(d) Smoke in outdoor environment  (f)    smoke in indoor environment 

Fig. 9 Performance of the developed VSD tested on video clips. 

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

46



Competing interests 

The authors have declared that no competing 
interests exist. 

References 

[1] E.A. Çetin, K. Dimitropoulos, B.  Gouverneur, 
H.Y. Habiboglu, B.U. Töreyin, and S. 
Verstockt, et al., “Video fire detection – 
review,” Digital Signal Processing, vol.  23, no. 
6, pp.  1827–1843, 2013. 

[2] J. Chen and Y. You, “Early Fire Detection 
Using HEP and Space-time Analysis,” 
Computer Vision and Pattern Recognition 
(cs.CV); Multimedia (cs.MM) arXiv:1310.1855, 
pp. 228 –312, 2013. 

[3] J. Chen, Y. You, and Q. Peng,  “Dynamic 
analysis for video-based smoke detection,” 
International Journal of Computer Science 
Issues, vol.  10, no. 2, pp. 298–304, 2013. 

[4] L. Wen-hui, F. Bo, C. Xiao-lin, W. Ying, and L. 
Pei-xun, “A Block-based Video Smoke 
Detection Algorithm,” Journal of Jilin 
University (Science Edition), vol.  50, no. 5, pp. 
979-986, 2012. 

[5] J. Gubbi, S. Marusic, and M.  Palaniswami, 
“Smoke detection in video using wavelets and 
support vector machines,” Fire Safety Journal, 
vol.  44, no.8, pp. 1110 –1115, (2009). 

[6] R.A. Gonzalez-Gonzalez, V. Alarcon-Aquino, 
O. Starostenko,  R. Rosas-Romero, J.M. 
Ramirez-Cortes, and J. Rodriguez-Asomoza, 
“Wavelet-based smoke detection in outdoor 
video sequences,” in Proceedings of the 53rd 
IEEE Midwest Symposium on Circuits and 
Systems (MWSCAS), pp. 383 –387, 2010. 

[7] F. Yuan, “A fast accumulative motion 
orientation model based on integral image for 
video smoke detection,” Pattern Recognition 
Letters, vol.  29, no. 7,  pp. 925 - 932, 2008. 

[8] B. U. Töreyin, Y. Dedeoglu, and A.E. Çetin, 
“Wavelet-based real-time smoke detection in 
video,” in European Signal Processing 
Conference (EUSIPCO), pp. 246- 302, 2005. 

[9] B. U. Töreyin, Y. Dedeoglu, and A.E. Çetin, 
“Flame Detection in Video Using Hidden 

Markov Models,” in International Conference 
on Image Processing (ICIP 2005), pp. 1230–
1233, 2005. 

[10]   B. U. Töreyin, Fire Detection Algorithms 
Using Multimodal Signal and Image Analysis. 
PhD thesis, Dept. Elect. Eng., Bilkent 
University, Ankara, Turkey. Available at: 
http://www.arehna.di.uoa.gr/thesis/uploaded_da
ta/Fire_Detection_Algorithms_Using_Multimod
al_Signal_and_Image_Analysis_2009_thesis_1
232106137.pdf,  2009. 

[11]  P. Piccinini, S. Calderara, and R. Cucchiara, 
“Reliable smoke detection system in the 
domains of image energy and colour,” in 
Proceedings of International Conference on 
Image Processing,  pp. 1376 –1379, 2008. 

[12]   L. Chen-Yu, L. Chin-Teng,  H. Chao-Ting, 
and  S. Miin-Tsair, “Smoke Detection using 
Spatial and Temporal Analyses,” International 
Journal of Innovative Computing, Information 
and Control, vol.  8, no. 6, pp.  200-300, 2012. 

[13]  J.A. Ojo and J.A. Oladosu, “Video-based 
Smoke Detection Algorithms: A Chronological 
Survey,” International Institute for Science, 
Technology and Education (IISTE), ISSN 2222-
1719 (Paper), ISSN 2222-2863 (Online) vol.  5, 
no. 7, 2014. 

[14]  B.U. Töreyin, Y.  Dedeoglu,  A.E. Çetin,  S. 
Fazekas, D. Chetverikov,  and  T. Amiaz, et al., 
“Dynamic texture detection, segmentation and 
analysis,”  Proceedings of ACM International 
Conference on Image and Video Retrieval 
(CIVR), pp. 131 –134, 2007, 

[15]  B.U. Töreyin  and A. E. Çetin, “Wildfire 
detection using LMS based active learning,” in 
Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal 
Processing,  pp. 12-100, 2009. 

[16]  U. Ihsan, H. Muhammad, M. Ghulam, A. 
Hatim, B. George, and M. M. Anwar, “Gender 
Recognition from Face Images with Local WLD 
Descriptor,” IWSSIP 2012, Vienna, Austria, 
vol.  5, no.6, pp. 11-13, 2012. 

[17]  D. Sloven, P. Renaud, and M. Michel, 
“Characterization and Recognition of Dynamic 
Textures based on 2D+T Curvelet Transform,” 
Signal, Image and Video Processing, pp. 146- 
272, 2013. 

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

47




