3 research outputs found

    From Understanding Genetic Drift to a Smart-Restart Parameter-less Compact Genetic Algorithm

    Full text link
    One of the key difficulties in using estimation-of-distribution algorithms is choosing the population size(s) appropriately: Too small values lead to genetic drift, which can cause enormous difficulties. In the regime with no genetic drift, however, often the runtime is roughly proportional to the population size, which renders large population sizes inefficient. Based on a recent quantitative analysis which population sizes lead to genetic drift, we propose a parameter-less version of the compact genetic algorithm that automatically finds a suitable population size without spending too much time in situations unfavorable due to genetic drift. We prove a mathematical runtime guarantee for this algorithm and conduct an extensive experimental analysis on four classic benchmark problems both without and with additive centered Gaussian posterior noise. The former shows that under a natural assumption, our algorithm has a performance very similar to the one obtainable from the best problem-specific population size. The latter confirms that missing the right population size in the original cGA can be detrimental and that previous theory-based suggestions for the population size can be far away from the right values; it also shows that our algorithm as well as a previously proposed parameter-less variant of the cGA based on parallel runs avoid such pitfalls. Comparing the two parameter-less approaches, ours profits from its ability to abort runs which are likely to be stuck in a genetic drift situation.Comment: 4 figures. Extended version of a paper appearing at GECCO 202

    Clustering based population size reduction method for evolutionary algorithms

    Get PDF
    Nowadays, due to the growing dimensionality of optimisation problems, numerous studies are dedicated to reduction of metaheuristics computational requirements. Reducing size of the population during optimisation process is one of the promising research trends in the field of Evolutionary Algorithms. The purpose of this paper is to clarify the subject in form of a survey of population size reduction methods already proposed and to present preliminary results of a new method based on the clustering technique. Introduced method was implemented in the framework of Differential Evolution algorithm and verified on a set of real-parameter benchmark functions

    Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    Get PDF
    corecore