
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

A Seeded Genetic Algorithm for RNA Secondary
Structural Prediction with Pseudoknots
Ryan Pham
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Pham, Ryan, "A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots" (2008). Master's Projects. 105.
DOI: https://doi.org/10.31979/etd.tn97-fmrj
https://scholarworks.sjsu.edu/etd_projects/105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/105?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Seeded Genetic Algorithm for RNA Secondary Structural

Prediction with Pseudoknots

A Writing Project
Presented to

The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Ryan Pham

December 2008

Copyright © 2008
Ryan Pham

All Rights Reserved

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Sami Khuri
Professor of Computer Science, San Jose State University, San Jose, CA

Dr. Robert Chun
Professor of Computer Science, San Jose State University, San Jose, CA

__
Dr. Chris Tseng
Professor of Computer Science, San Jose State University, San Jose, CA

APPROVED FOR THE UNIVERSITY

Abstract

This work explores a new approach in using genetic algorithm to predict RNA secondary
structures with pseudoknots. Since only a small portion of most RNA structures is
comprised of pseudoknots, the majority of structural elements from an optimal
pseudoknot-free structure are likely to be part of the true structure. Thus seeding the
genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the
true structure than a randomly generated population. The genetic algorithm uses the
known energy models with an additional augmentation to allow complex pseudoknots.
The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic
parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation
for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase
shows that it out performs some of the current popular algorithms.

Table of Contents
Table of Contents.. 1
1. Introduction... 4

1.1 Pseudoknots .. 4
1.2 Purpose.. 5

2. Background and Related Works .. 6
2.1 Stochastic Context-Free Grammar.. 6
2.2 Hidden Markov Model (context sensitive) ... 8
2.3 Dynamic programming algorithms ... 10

2.3.1 Nussinov Algorithm... 10
2.3.2 Pseudoknots (Eddy and Rivas) .. 12
2.3.4 Pseudoknots (Reeder and Giegerich)... 17

2.4 Heuristics .. 19
2.4.1 HotKnots .. 19
2.4.2 Iterated Loop Matching.. 22
2.4.3 Genetic Algorithms.. 25

3. Algorithm... 29
3.1 Overview... 30
3.2 Generating Seeds and Stem Pools... 31

3.2.1 Finding Optimal Pseudoknot-free Structures... 31
3.2.2 Generating Stem Pools... 32

3.3 Energy Rules... 33
3.3.1 Nearest Neighbor Energy Rules... 33
3.3.2 Pseudoknot Energy Rules .. 36

3.4 Genetic Algorithm .. 40
3.4.1 Solution Representation ... 40
3.4.2 Mutations ... 41
3.4.3 Crossovers.. 42
3.4.4 Selections ... 42

4. Results.. 43
5. Future Works ... 49
6. Conclusions.. 49
7. References.. 50

1

List of Tables

Table 1: Energies for internal, bulge, and hairpin loops from loops.dat (values between 8

and 30 are omitted) [25].. 34
Table 2. Energy approximations for H-type pseudoknot loops [17] 38
Table 3. Test sequences from PseudoBase ... 43
Table 4. Sensitivity of predictions compared with 6 other algorithms 44
Table 5. Specificity of predictions compared with 6 other algorithms........................... 44
Table 6. Sensitivity and specificity of short test sequences (average from 100 runs) 45
Table 7. Sensitivity and specificity of long test sequences (average from 100 runs)....... 46

List of Figures

Figure 1: A naturally occurring pseudoknot in the human telomerase [22] 5
Figure 2: Planar representation of RNA structural elements. [4] 5
Figure 3: Production rules for capturing a secondary structure and its associated

derivation [14]... 7
Figure 4: Pseudoknot is broken into two grammars [14].. 8
Figure 5: Context-sensitive HMM with a stack(a) and a queue(b) as the memory unit [11]

... 9
Figure 6: A pseudoknot and its corresponding context-sensitive HMM [11] 10
Figure 7: Recurrence relation for the Nussinov algorithm [8].. 11
Figure 8: Dynamic programming matrix [8] .. 11
Figure 9: Recurrence relation for vx [4] ... 12
Figure 10: Recurrence relation for wx [4] .. 13
Figure 11: Using two gap matrices to capture a pseudoknot [4] 14
Figure 12: Matrices used in the pseudoknot algorithm [4] ... 15
Figure 13: Recurrence relation for whx [4] .. 16
Figure 14: Updated recurrence relation for wx to include psuedoknots [4] 16
Figure 15: Non-planar pseudoknots [4] .. 17
Figure 16: Moving boundaries of a pseudoknots [6] .. 18
Figure 17: Pseudocode for HotKnots [1] .. 21
Figure 18: Result comparisons for short sequences [1] .. 22
Figure 19: Regions that do not need to be recomputed (A, B, C) [7]............................... 24
Figure 20: Scoring matrix function for mutual score information [7] 24
Figure 21: Combined scoring functions [7] .. 25
Figure 22: Extended helix plot function [7].. 25
Figure 23: Function for calculating bonus from energy stacking [7] 25
Figure 24: Binary representation of a solution in GA [13]... 27
Figure 25: Mutation process [9].. 28
Figure 26: Flowchart of the algorithm.. 30

2

Figure 27: Recurrence relations for pseudoknot-free structural prediction with free energy
[21].. 32

Figure 28: Hairpin loop of size 12 .. 34
Figure 29: A bulge loop of size 2.. 35
Figure 30: An asymmetric internal loop of size 5... 35
Figure 31: A multi-branch loop with 4 stems and 8 free bases .. 36
Figure 32: An H-type pseudoknot forms from two stem-loops [17] 37
Figure 33: H-type pseudoknot in planar representation. (b) Same structure in 3D [18] .. 39
Figure 34: A complex pseudoknot (kissing hairpins) decomposes into 3 separate hairpin

loops.. 39
Figure 35: A complex pseudoknot decomposes into a two hairpin loops and an internal

loop. .. 40
Figure 36: Tree representation of a secondary structure... 41
Figure 37: (A) PKB206 structure predicted by pknotsRG. (B) PKB206 structure

predicted by GA and is also the known structure. .. 45
Figure 38: (A) and (B) are TYMV structures predicted by the seeded GA, (B) is also the

known TYVM structure. (C) TYMV structure predicted by pknotsRG. (D)
Pseudoknot-free structure predicted by the seeding algorithm................................. 46

Figure 39: (A) PKB173 structure predicted by pknotsRG and seeding algorithm. (B)
Known PKB173 structure. (C) Best structure predicted by seeded GA. 47

Figure 40: (A) PKB72 structure predicted by Seeded GA. (B) known PKB72 structure.
(C) PKB72 structure predicted by pknotsRG. .. 48

3

1. Introduction

Unlike DNA molecules, which consist of two complementary strands, RNA molecules
are generally single stranded. The RNA strand forms its secondary structure when the
bases within the molecule pair with each other. RNA’s are not just mere vessels for
transferring genetic information from DNA to protein; they also act as “catalyst in
cellular processes, and mediators in determining the expression level of genes” [1].
Pseudoknots are secondary structural elements; their common function is to induce
frameshifts, a function that is found in viruses and is required in all retroviruses to enable
their replication and proliferation [2]. Most of the research involving RNA secondary
structural predictions has ignored pseudoknots because of their computational
complexity. Unlike pseudoknots, all other structural elements, such as loops or helices,
form a tree-like hierarchy where these structural elements are either disjoint or contained
within another [3]; pseudoknots are formed when there are overlapping regions between
structural elements. Consequently, a time and space complexity of O(n6) and O(n4),
respectively, is required to fold restricted classes of pseudoknots [4] while unknotted
structure only requires O(n³) time and O(n²) space complexity [5]. Although the running
time is still polynomial, it is impractical for sequences over 200 bases long. The general
problem of predicting arbitrary pseudoknots for energy based models has been proven to
be NP-complete [16]. This work will go over some of the existing computation based
prediction algorithms and present a new approach that uses dynamic programming and a
genetic algorithm to predict secondary structures with pseudoknots.

1.1 Pseudoknots

Pseudoknots are tertiary structures formed by overlapping secondary structures. The
simplest type of pseudoknots is the H-type pseudoknot, which is shown in Figure 1; it
consists of two stem-loops, where the loop from the first stem forms part of the second
stem. As shown in Figure 2, other structural elements are well nested; pseudoknots are
the only structures that exhibit the non-nested characteristic. Pseudoknots have many
important biological functions; perhaps, the most important one is their ability to alter
gene expression “by inducing ribosomal frameshifting in many viruses” [2].

4

Figure 1: A naturally occurring pseudoknot in the human telomerase [22]

Figure 2: Planar representation of RNA structural elements. [4]

1.2 Purpose

The purpose of this project is to explore a new approach in predicting RNA secondary
structures with pseudoknots. One may wonder why we care about pseudoknots in
secondary structures since they are considered to be tertiary structural elements. This is
because in computation based predictions, the unpaired bases from the pseudoknot will
go on to form false structural elements; moreover, the error can propagate and lead to

5

more false structures. Therefore, prediction algorithms that do not include pseudoknot
structures will not be able to achieve high accuracy.

2. Background and Related Works

This section goes over popular approaches that have been proposed or undertaken to
predict the secondary structures of RNA’s with pseudoknots. Prediction algorithms fall
into two main categories, comparative analysis and computation based. With
comparative analysis, multiple related sequences are needed since they rely on sequence
covariations to predict the structure. Covariations are conserved, complementary regions
determined from multiple sequence alignments [21]. Because of this requirement, we
have decided to focus on computation based approaches, which relies on free energy
estimations.

2.1 Stochastic Context-Free Grammar

A stochastic context-free grammar is an extension on Hidden Markov Model where each
production rule is associated with a probability, just as the transition and emission rates in
HMMs. Figure 3 shows an example of production rules for recognizing RNA secondary
structure.

6

Figure 3: Production rules for capturing a secondary structure and its associated derivation [14]

Due to the non-nested characteristic of pseudoknots, it is impossible to create a context-
free grammar that can process pseudoknots. As a result, two context-free grammars are
necessary to recognize a pseudoknot; the first language will recognize the first half and
the second language will recognize the second half, as shown in Figure 4. The main
drawback of using context free grammars for recognizing pseudoknots is that the
grammar needs to be tailored for certain families of RNA’s. Therefore, a context-free
grammar is not the appropriate approach for predicting arbitrary pseudoknots; however, it
is perfect for database searches where the main purpose is to find all RNA’s that have a
certain secondary structure.

7

Figure 4: Pseudoknot is broken into two grammars [14]

2.2 Hidden Markov Model (context sensitive)

Traditional Hidden Markov Models are incapable of capturing the long range interaction
that occurs in RNA secondary structures. Moreover, it has roughly the same descriptive
power as stochastic context-free grammar, which cannot recognize pseudoknots.
Context-sensitive Hidden Markov Model, however, is able to capture the long-range
interaction with the help of an auxiliary memory unit. Figure 5 shows an example of two
context-sensitive HMMs, the first uses a stack and the second uses a queue as the
auxiliary memory unit; the first can recognize a palindrome and the second can recognize
a single repeat. Figure 6 shows a structure of a pseudoknot and the corresponding
context-sensitive HMM for recognizing it. As shown in Figure 6, the topology of the
context-sensitive HMM is very similar to the topology of the structure that it is designed
to recognize. As a result, an extremely complicated model will be needed to be able to
handle the different RNA secondary structural elements, as well as the various types of
pseudoknots. The larger model will take longer to process even when the input sequence
is short. Furthermore, the HMM will need to be trained; it will be difficult to find
training data that is diverse enough for it to recognize the various structural elements, but
not enough to generate false positives.

8

Figure 5: Context-sensitive HMM with a stack(a) and a queue(b) as the memory unit [11]

9

Figure 6: A pseudoknot and its corresponding context-sensitive HMM [11]

2.3 Dynamic programming algorithms
Dynamic programming algorithms are considered to be exact algorithms; they are
guaranteed to provide optimal solutions. This section will go over the popular dynamic
programming algorithms for RNA structural predictions; starting with the Nussinov
algorithm, from which all other dynamic programming algorithms are derived.

2.3.1 Nussinov Algorithm

Nussinov algorithm is a simple dynamic programming algorithm that is capable of
finding pseudoknot-free secondary structures with the maximum number of base pairs.
Although it is a simple algorithm, it is the foundation for more complex ones. The
Nussinov algorithm works in a fashion that is similar to the dynamic programming
algorithm for pair-wise sequence alignment; the primary difference is that we are
comparing the sequence against itself rather than another sequence; therefore, only half
of the dynamic programming matrix is needed, which results in a triangular matrix. The
lower left of the dynamic programming matrix is ignored, or initialized to 0 (for all
positions where i >= j, where i is the ith row and j is the jth column). The recurrence
relation below applies to every cell as we move from the main diagonal to the top-right
corner, see Figure 8; the final cell at the top right corner will have the maximal score
once the algorithm is completed. The trace-back can applied in O(n3), and the algorithm
has a space complexity of O(n2).

10

Recurrence relation:

 V(i+1, j), (1)
V(i, j) = max{ V(i, j-1), (2)
 V(i+1, j-1) + 1, (3)
 Maxi<k<j [V(i, k) + V(k+1, j)] (4)

 Figure 7: Recurrence relation for the Nussinov algorithm [8]

Figure 8: Dynamic programming matrix [8]

11

The Nussinov algorithm is a straight forward algorithm that is capable of finding an
optimal solution with regards to base-pair maximization, which can result in impossible
structures; this can easily be resolved by using thermodynamic energy as the scoring
function.

2.3.2 Pseudoknots (Eddy and Rivas)

This is perhaps the most complicated algorithm for predicting pseudoknots; it extends
upon the Nussinov algorithm to include pseudoknots and uses thermodynamic energy as
the scoring function (same extension as Zuker and Stiegler [21]). First, it relies on two
dynamic programming matrices to incorporate thermodynamic energies into the
Nussinov algorithm. The two triangular matrices are called vx and wx; vx(i,j) is the
optimal score between positions i and j in which i and j are paired; wx(i,j) is the optimal
score between positions i and j regardless of whether i and j are paired or not. The
purpose of using two matrices instead of one is to help with identifying and applying
thermodynamic rules to different substructures (hairpin, bulge, internal loop etc.). vx is
calculated as:

 Figure 9: Recurrence relation for vx [4]

The matrix wxI has the same recursion as wx; however, they have completely different
interpretations. The purpose of wxI is to truncate vx with regards to multiloops. EISn(in,
j1: i2, j2:…:in, jn) “represents the scoring function for an IS order of n, in which ik is paired
to jk”[4]. IS is short for irreducible surface; a surface is “any alternating sequence of
continuous and wavy lines that closes on itself. An irreducible surface is a surface such
that if one of the H-bonds (or secondary interaction) is broken, there is no longer a
surface contained inside” [4]. In the planar representation (see figure 2), wavy lines
between positions i and j in the RNA sequence indicate that the bases at i and j are paired
together. Hairpin loops constitute an IS order of one since there are no other
substructures if the stem that formed the loop were to unfold; stems, bulges, and internal
loops are of IS order two, and multi-branch loops are of IS order larger than two. M is
the penalty for generating a multi-branch loop, and PI is the penalty for each closing pairs
in a multi-branch loop. The recurrence relation for wx is:

12

 Figure 10: Recurrence relation for wx [4]

The recurrence relation for wx is more or less the same as the recurrence relation in the
Nussinov algorithm; P is the score for an external base-pair, and Q is the for a single-
stranded nucleotide; both of which are approximate to zero in Turner’s thermodynamic
parameters, which is being applied by Eddy and Rivas. Performing the trace-back on wx
will yield the optimal pseudoknot-free structure. In order to recognize pseudoknots,
Eddy and Rivas use one-hole or gap matrices; Figure 11 shows how a pseudoknot can be
captured with gap matrices.

13

Figure 11: Using two gap matrices to capture a pseudoknot [4]

14

Figure 12: Matrices used in the pseudoknot algorithm [4]

Figure 12 shows the primary matrices used in the dynamic programming algorithm. The
matrices vhx, zhx, yhx, and whz are gap matrices; each matrix captures a different
configuration, but the matrix whx will contain the maximal score from the configurations
captured by the other three matrices. As a result, the recurrence relation for whx is
extremely complex, as shown in Figure 13. The matrix wx still remains as the matrix that
will yield the secondary structural with minimal free energy; therefore, its recurrence
relation must take pseudoknots into account, as shown in Figure 14. Unfortunately, the
expansions in gap matrices have to be truncated to keep algorithm polynomial.

15

Figure 13: Recurrence relation for whx [4]

 Figure 14: Updated recurrence relation for wx to include psuedoknots [4]

16

Figure 15: Non-planar pseudoknots [4]

This a very attractive algorithm for predicting secondary structures with pseudoknots
since it is capable of finding a solution with the minimal free energy with respect to the
energy rules being applied. Since the algorithm has a time and space complexity of O(n6)
and O(n4), respectively, it cannot handle sequences longer than 150 bases in length.
Another limitation of this algorithm is that it cannot recognize certain non-planar
pseudoknots, such as the lower pseudoknot in Figure 14. Non-planar pseudoknots are
pseudoknots that require lines to be crossed in the planar representation.

2.3.4 Pseudoknots (Reeder and Giegerich)

Reeder and Giegerich added restrictions to the pseudoknot algorithm by Eddy and Rivas
to reduce its time complexity. They introduced “canonization rules” to restrict the class
of pseudoknots, thereby reducing the search space. The first rule requires both strands in
a helix to be of the same length; in short, helices that take parts in pseudoknots must not
have bulges. With rule one, two of the eight moving boundaries of the pseudoknots, as
shown in Figure 16, can be calculated in term the remaining ones. With rule one applied,
boundaries f and h can be calculated as: f = l – (e – i) and h = j – (g – k).

17

Rule two states that the helices a,a’ and b,b’ must have maximal length and are fixed
once i and l are chosen. The maximal length stacklen(i, l) can be pre-computed in O(n2).
Two more moving boundaries can be removed by rule two since they can be derived
from remaining terms: e = i + stacklen(i, l) and g = k + stacklen(k, l). Rule three states
that if two helices overlap, when they compete for the same bases, their boundary is fixed
at an arbitrary point. Rule three does not reduce any additional boundaries; it helps to
reduce computation when there are overlaps between helices.

Figure 16: Moving boundaries of a pseudoknots [6]

Reeder and Giegerich claim that the limitations added by the canonization rules will
produce results with similar free energy as the original implementation. Rule one affects
length of the helices that can participate in a pseudoknot. Since bulges are ignored,
“there must be at least one pair of shorter helices without bulges…which serves as a
canonical representative, albeit with somewhat higher free energy” [6]. They claim that
rule two is justified by energy models that strongly favor extensions; they recognized that
requiring helices to have maximal extents can limit other structures from forming (chain
pseudoknots) that can yield a lower energy, but they claim that “the energy of the
canonical pseudoknot must be very similar” [6]. Their reasoning for rule three is that an
arbitrary decision can be made when helices are competing for the same bases since the
difference between having the competed bases with either helix is minimal.

With the removal of the four moving boundaries, Reeder and Giegerich was able to
reduce the time and space complexity of Eddy’s and Riva’s algorithm down to O(n4) and
O(n2), respectively. However, the dramatic improvement is not without tradeoff; the

18

algorithm no longer produces an optimal solution. Furthermore, since Reeder and
Giergerich failed to provide, or show how much of a deviation from the minimum free
energy caused by their canonization rules, solutions provided by this algorithm should
fall into the same ranks as ones produced by heuristics. Their result shows comparable
results to the implementation by Eddy and Rivas; however, they noticed that they are less
reliable as the sequence gets longer. They attributed this to increased search space
(exponential increase), and question whether the implementation by Eddy and Rivas
would be able to produce better results if their algorithm was able to handle longer
sequences.

2.4 Heuristics
Heuristics are algorithms that often provide good solutions, but it cannot provide any
guarantees on the solutions produced. Heuristics are often applied to problems that are
known to be NP complete since their time complexity is much smaller than those of
approximation and exact algorithms.

2.4.1 HotKnots

HotKnots is a heuristic algorithm that is based on the assumption that substructures with
low energy are likely to be in the true structure. The algorithm works by finding
promising substructures, which are called “hotspots,” consisting of simple stem-like
structures: “stacked pairs, bulge loops containing one unpaired base, and interior loops
with two (opposing) unpaired bases” [1]. First, “a set of hotspots are computed, and each
hotspot in the set are used as the basis for expanding a secondary structure” [1]. The
algorithm iteratively adds new hotspots to the each of existing secondary structures
building a tree-like structure. Each node in the tree will contain a set of hotspots, the
number of hotspots each node has is equal to its distance from the root node; the root
node has no associated hotspots.

To generate the set of initial hotspots, the algorithm employs the simple local alignment
algorithm by Smith and Waterman, in which the two input sequences are the same; the
first ordered from 5’ to 3’, and the second ordered from 3’ to 5’; with complementary
pairs and the wobble base-pair G-U considered a match. The parameters of
thermodynamic energy model are built into the algorithm; extra penalties are added for
bulges, identified by deletions and insertions, and internal loops, which are identified as
mismatches in the local alignment. Extra penalties are given to insertions/deletions and
mismatches to prevent an alignment from getting too long. A restriction is added to
prevent subsequences that are no more than three bases apart from aligning with one
another; researchers have established that the smallest hairpin loop has at least three
bases in the loop. Out of the set of initial hotspots, only k hotspots with lower than -0.4
kcal/mol and have more than two base pairs; in their experiment, Ren et al. chose 20 as
their k. This results in a root node with 20 child node, one for each hotspot.

19

After the initial hotspots have been chosen, additional hotspots are selected by a different
process. A dynamic programming algorithm is employed for predicting pseudoknot free
secondary structures; this algorithm is similar to the mfold algorithm, by Zuker and
Stiegler, with additional constrains. The additional constrains may include that certain
bases must remain unpaired. Each node in the tree will invoke this algorithm with the set
of hotspots that it already contained as the bases that must remained unpaired; thus, the
resulting pseudoknot-free structures are those that do not overlap with existing structures.
Applying this algorithm to the root node will yield the optimal pseudoknot-free structure.
Of the hotspots generated by the dynamic algorithm, only those with -0.4 kcal/mol or
lower are selected. A new child node will be added to the current node for each of the
selected hotspots.

To limit the running time of the algorithm, it needs to determine whether the set of
hotspots at a given node is promising; if it is promising, then the node will continue its
expansion; otherwise, its expansion will be terminated. A set of hotspots is considered to
be promising if its energy is no more than 80% higher than the energy of the root node,
the pseudoknot-free structure; in addition, the energy cannot exceed 5kcal/mol. The 80%
was chosen through preliminary testing. By only adding nodes to the tree for promising
hotspots, the search space is reduced, which will help reduce the running time.

20

Figure 17: Pseudocode for HotKnots [1]

The HotKnots algorithm run in a fashion that is very similar to branch-and-bound
algorithms. This makes its time complexity difficult to compute; however, since the
algorithm made recursive calls to an O(n3) algorithm, we can be sure that it has a time
complexity of Ω(n4). Despite its simplicity, HotKnots can produce results that are
comparable to those of well known approaches, see Figure 18.

21

Figure 18: Result comparisons for short sequences [1]

2.4.2 Iterated Loop Matching

Iterated Loop Matching, as the name implies the algorithm adds loops iteratively to form
a secondary structure. This algorithm is based on the loop matching algorithm by
Nussinov et al. [6], which is a dynamic programming algorithm for finding pseudoknot-
free structures. The modified algorithm takes on an additional constrain to ensure that
the length of every loop is at least three bases long, which means that the distance
between the paired subsequences is at least three bases apart. Without this constrain, the
dynamic programming algorithm by Nussinov et al. will generate impossible structures;
the minimum length of a loop has been agreed by researchers to be at least three bases
long. Furthermore, the loop matching algorithm, in the simplest case, assigns a score of
one to Watson-Crick or G-U base pair, and zero to all other matches. This algorithm will
favor structures with the maximal number of base pairs. The algorithm also allows for
more complex scoring function, through comparative analysis.

22

The loop matching algorithm is extended to accommodate pseudoknots. Since
pseudoknots can be seen as substructures with overlapping regions, and the simplest
pseudoknot consists of just two overlapping structures, the loop matching algorithm can
simply be ran twice to identify it. Ruan et al. pointed out that by simply taking the
secondary structure outputted from the first run of the loop matching algorithm and
combining it with the output of the of the second run where the bases paired in the first
are ignore produces erroneous because of the false positives generated by the first run.
To resolve this problem, the loop matching algorithm needs to run multiple times, and
only the base-pairs with the highest score will be selected; here, they assume that
substructure with highest score will likely be in the true structure.

 The sketch of the algorithm is as follows [7]:

(1) Prepare a base-pairing score matrix B[1..n][1..n] from a sequence or a
sequence alignment, where B[i][j] is the score for the i-th base to pair with the
j-th base.

(2) Run the basic LM algorithm using matrix B to produce matrix Z and trace-
back Z to get a base-pair list L.

(3) Identify all helices in L and combine helices separated by small internal loops
or bulges. If no helix is identified, go to step 7.

(4) Assign a score to each helix by summing up the scores of its constitutive base-
pairs. Pick the helix H that has the highest score and merge H into the base-
pair list S to be reported.

(5) ‘Remove’ positions of H from the initial sequence. Update the score matrix B
accordingly.

(6) Repeat steps 2-5 until no bases remain.
(7) Report base-pair list S and terminate.

All subsequent iterations after the initial run of the loop matching algorithm do not have
to recreate everything from scratch. Much of the dynamic programming matrix can be
reused. As shown in Figure 19, not every cells in the dynamic programming matrix need
to be recomputed; B[i][j] only needs to be recomputed if any of the positions of the
chosen structure is between i and j. A subsequent iteration can simply treat the rows and
columns corresponding to the bases of the chosen structure as if they have been removed
from the dynamic programming matrix. The loop matching algorithm has a time and
space complexity of O(n3) and O(n2), respectively. Since the algorithm is invoking the
loop matching algorithm at every iteration, it will have a time complexity of O(n4); the
space complexity remains the same since the same dynamic programming matrix is being
reuse. However, since the number of iterations will be substantially less than n (length of
the input sequence) and the sequence length is getting shorter after every iteration, the
average case time complexity is close to O(n3).

23

Figure 19: Regions that do not need to be recomputed (A, B, C) [7]

If the loop matching algorithm uses base-pair maximization as the scoring function, it
would prefer long stems that will often yield false positives due to the energy stacking
characteristics of secondary structures. Thus Ruan et al. came up with a new base-pairing
score matrix that is based on comparative analysis and thermodynamics, a combination of
“mutual information scores” and “helix plot scores.” Mutual information scores are
calculated from a given multiple sequence alignment; the scoring matrix is calculated as:

Figure 20: Scoring matrix function for mutual score information [7]

The function in Figure 20 calculates the mutual information score between positions i and
j; ƒi(X) is the frequency of base X aligned at position i; ƒij(XY) is the frequency of
finding X at position i and Y at position j. The mutual information scores are combined
with the helix plot scores, which is “formed by assigning good-pair scores to cells that
represent Watson-Crick or G-U base-pairs, bad pair scores to other base-pairs and penalty
scores to gaps…(good-pair score = 1, bad-pair score = 2, paired gap penalty = 3 and helix
bonus = 2 x helix length)” [7]. Their combined score is calculated as:

24

 Figure 21: Combined scoring functions [7]

HPij is the helix plot score, N is the number of sequences in the alignment, α and β are
relative weight whose default values are one. The coefficient 1000 and 20 are there to
bring the mutual information and helix plot scores into approximately the same integer
range. The resulting scoring function is extended to include RNA-folding
thermodynamics by assigning different scores to good pairs, and adding bonus for energy
stacking. The extended helix plot score will be calculated as:

Figure 22: Extended helix plot function [7]

The function above will replace HP in the Figure 21; GP is the good-pair score between
positions i and j (“good-pair scores for G-C, A-U, and G-U are 80, 50, and 30,
respectively” [7]). The bonus from energy stacking is calculated as:

Figure 23: Function for calculating bonus from energy stacking [7]

All in all, iterated loop matching is a simple extension of the Nussinov algorithm to
include pseudoknots. The main drawback of this algorithm is that it only selects the best
helix from each iteration; choosing the wrong helix (local best, but is not global best) will
affect the helices produce by subsequent iterations. Furthermore, the algorithm relies on
having a multiple sequence alignment available to produce accurate results.

2.4.3 Genetic Algorithms

Genetic algorithm is an optimization method inspired by concepts in biological
evolutions. It works by creating new solutions at every generation, and only the more
“fit” solutions will progress to the next one. It generates new solutions through mutations
and crossovers, and the fitter solutions that will progress to the next generation are
chosen by the selection function. Therefore, the three main steps for genetic algorithm
are mutation, crossover, and selection. The selection step is the most important step since
mutation and crossover steps generate new solutions, but not necessarily better ones. The
general steps of genetic algorithm when applied to RNA secondary structural prediction
are as follows:

25

1. create stem pool(s)
2. generate initial population
3. calculate “fitness” of solutions in the initial population
4. repeat

a. perform mutation and crossover
b. calculate “fitness” of new solutions produced by mutation and crossover
c. select set of solution to move to next generation

until there’s no improvement and/or after a certain number of iterations [9]

Genetic algorithm will generally produce suboptimal solutions in term of free energy
when compared to dynamic programming approaches. However, known RNA structures
are often suboptimal structures in term of free energy; this is mainly a result of inaccurate
energy models. Therefore, genetic algorithms can often predict better structures than
dynamic programming algorithms. The sections below will summarize different aspects
of applying genetic algorithms for RNA secondary structural prediction.

Solution representation

A candidate solution in genetic algorithm usually represented as a binary string, and is
often referred to as either a genome or a chromosome. This approach requires all
possible stems that can take part in the secondary structure to be identified before the
algorithm starts to iterate. The length of the binary string will be as long as the number
of possible stems; each position in the binary string will correspond to a stem; a one
indicates that the associated stem is part of the solution, and a zero indicates exclusion.
The main purpose of using a binary string representation is that it makes task such as
mutations and crossovers easier to perform; however, when applied to RNA secondary
structures, it makes more difficult to calculate the free energy of the solution as a whole.
To overcome this problem, Shapiro and Wu used a tree structure to represent a solution
instead. In their implementation, the list of stems is structured into a tree structure; the
stems are ordered by their 5’ ends. “[T]he stems constitute the edges of the tree, the free
strands are contained in the root of the tree (i.e. the 0th node), and the loops of the
secondary structures are nodes of the tree” [10]. The tree structure allows the stems and
loops in the secondary structure to be precisely determined, which will enable accurate
energy rules to be applied.

26

Figure 24: Binary representation of a solution in GA [13]

Generating initial population

There are several ways to generate the initial population; however, each will either
generate partial or complete solution. In the approach used by Shapiro and Wu, as well
as Gultyaev et al., each solution in the initial population contains only one stem; each
stem is randomly chosen based on its energy contribution. In the approach by Gultyaev
et al., only stems from the first 20 nucleotides are allow to be chosen to start the initial
population. In their implementation, they try to simulate the RNA folding pathway; the
length of the sequence is extended after each iteration, which will allow more stems to be
considered in subsequent iterations. In another approach (Lee and Han [13]), after stem
have been chosen, all possible stems are added to the solution as long as they do not
present any conflicts.

Mutations

Mutations are simply random changes to a solution; removal of some stems and additions
of new ones. Using the binary representation, a mutation is a random bit flip; in the case
where the bit flip includes a new stem, that flip is only allowed if the associated stem do
not conflict with existing ones. The probability of a stem being added is based on its
energy contribution; Gultyaev et al. uses the ratio between energy gained versus the

27

destabilizing energy of the new loop. Besides adding new stems to the solutions, perhaps
even more important, mutations allow the algorithm to escape from the pitfalls of local
minima. Figure 25 shows the process of mutations adopted by Gultyaev and company.
First, mutation points are randomly chosen, and mutation regions of random lengths are
generated. Any stems that have an intersection with the mutation regions are removed
from the solution. The goal any mutation function, besides from adding new stems, is to
prevent the algorithm from quickly converging to a local minimum and terminate the
algorithm before a better solution can be found.

Figure 25: Mutation process [9]

Crossovers

Crossover is a process in which new solutions are produced containing parts from both
parental solutions; it often combines favorable stems from parental solutions. Gultyaev
and company handled crossover by combining all stems from the current population into
one list and a new solution is constructed by iteratively adding each stem to it. The
crossover process adopted by Shapiro and Wu is completely different since their
algorithm is designed to run on a system with 16,384 processors, in which each processor
is connected to eight others and represents a single solution. Each processor will choose
two RNA structures from itself and its eight neighbors to perform the crossover; if the

28

resulting solution has a lower energy than the processor’s current one, it will replace it.
Since Shapiro’s and Wu’s algorithm is designed for massively parallel machines, it has a
completely different population interaction than other genetic algorithm approaches,
which are designed for single-processor machines.

Selections

Selection is the process in which solutions are chosen to move onto the next iteration by a
fitness function. There are not many choices for fitness functions when it comes to
deciding whether one secondary structure is better than another; the usual ones are
minimum free thermodynamic energy, base-pair maximization, and maximum weighted
sum. However, thermodynamic energy is generally preferred as the fitness function,
since base-pair maximization often result in impossible structures. In a comparative
study, Lee and Han [12] found that maximum weighted sum and minimum free yield
similar solutions; perhaps, this is largely because only the stacking energies of stems
were taken into account. Maximum weighted sum is similar to base-pair maximization
with the exception that stems in a pseudoknot are given a better score, or a higher base
count. This indicates that a simple and rough fitness function can be a good fitness
function when thermodynamic information for a pseudoknot is not available. Currently,
thermodynamic energy is only available for the simple H-type pseudoknot, and even that
is not very accurate [17]. Selection has the important task of deciding which solution
gets to persist to the next generation; its main challenge is to select favorable solutions
while maintaining diversity. Through experimentations, Gultyaev et al. discovered that
choosing only solutions with lowest energy for crossovers will often “resulted in a rapid
convergence of all structures to the same locally favorable solution, which eventually
prevented further improvement” [9]. To overcome this, structural differences between
solutions were taken into account to help maintain diversity; a new parameter is assigned
to each solution; this parameter is calculated as the difference between the energy of the
solution and that of the best solution, divided by the number of stems in the solution.

3. Algorithm

Since the problem of RNA secondary structural prediction with pseudoknots has been
proven to be NP-complete [16], approximation and heuristic algorithms should be
considered instead of exact ones. Furthermore, there are no known exact algorithms for
pseudoknot predictions. The dynamic programming algorithm proposed Eddy and Rivas
is considered to be comparable to an exact algorithm since the truncations that they
introduced only restrict complex pseudoknots whose topologies have never been seen in
RNA structures. However, because of its time and space complexities (O(n6) and O(n4)
[4]), this algorithm is not a viable approach for sequences over 150 bases long. Out of
the different heuristics reviewed in section 2, genetic algorithm seems to be one with the
most potential. Other heuristics, such as HotKnots and Iterated Loop Matching are

29

deterministic, greedy algorithms that are prone to local best pitfalls that can greatly
reduce their search space. Since genetic algorithms are nondeterministic, they can
explore solutions in a much wider search space. However, this is also its main drawback;
due to the larger search space and its nondeterministic nature, genetic algorithm
approaches are unlike to produce the same solution consistently. Like other heuristics,
genetic algorithms cannot provide any guarantees on the quality of the solutions
produced. To overcome this problem, the proposed approach uses the free energy of the
optimal pseudoknot-free structure as the baseline for the genetic algorithm. Unlike
previous genetic algorithm approaches, this one’s primary focus is to find structures with
pseudoknots that have a lower energy than that of the optimal pseudoknot-free structure.
Furthermore, “for known true RNA structures [one] can usually find a set of at least 95%
of the base pairs that does not contain any pseudoknot ; on the other hand, almost all
RNA structures contain one or more pseudoknots” [3]. Since most of the structural
elements of known secondary structures are not pseudoknots, the majority of the
structural elements of an optimal pseudoknot-free structure are likely to part of the true
structure. Thus generating seeds from an optimal pseudoknot-free structure will help
guide the genetic algorithm towards the true structure. The subsections below go over
the different aspects of the algorithm.

3.1 Overview

Figure 26 shows the overview of algorithm. Before the genetic algorithm can begin, the
initial population and stem pools need to be created. The preprocessing steps need to
generate the seeds and stem pools. The subsequent sections will go into how these are
accomplished in details.

 Figure 26: Flowchart of the algorithm

30

3.2 Generating Seeds and Stem Pools

The intent behind seeding is to provide the genetic algorithm with an initial population
that will be more likely to lead to the optimal solution than one that is randomly
generated. The main motivation behind seeding with pseudoknot-free structures is that
the majority of structural elements of a secondary structure are not pseudoknots.
Therefore, it is reasonable to assume that the majority of structural elements predicted for
an optimal pseudoknot-free structure are likely to be part of the true structure. To
generate the seeds, first the optimal pseudoknot-free structure needs to be predicted. The
algorithm that is employed for this task is a dynamic programming algorithm by Zuker
and Stiegler [21]; this is the algorithm that Zuker implemented for mfold. After the
pseudoknot-free structure has been identified, N copies of it will be made, where N is the
size of population that the genetic algorithm will work it. Each copy of the pseudoknot-
free structure will be inserted with a different pseudoknot from pseudoknot stem pool.
The stem pools will contain all the stems that will be available for the genetic algorithm.
The normal stem pool will contain stems of length three and above. The pseudoknot
stem pool will contain only H-type pseudoknots; each H-type pseudoknot is made up of
two normal stem. The subsequent subsections will go over the pseudoknot-free
prediction algorithm, and how the stem pools are generated.

3.2.1 Finding Optimal Pseudoknot-free Structures

The algorithm that is employed to generate the optimal pseudoknot-free structure is a
dynamic programming algorithm by Zuker and Stiegler [21]; it is an extension of the
Nussinov algorithm that uses energy minimization rather than base-pair maximization.
To accomplish this task, another recurrence relation was introduced to keep track of the
free energy of each sub-solution. The recurrence relation V(i, j) calculates the energy of
all the possible structures between positions i and j where the bases at those positions are
forced to be paired; however, if they cannot be paired (not a Watson-Crick or G-U base
pair), a score of infinity is assigned. The function e(i, j) is a scoring function that
calculates the free energy of having the bases at position i and j closing a hairpin loop.
The function e(i, j, k, l) calculates the free energy of having the bases at position i and j
closing an internal loop or bulge that is opened by the bases at positions k and l; however,
if k is equal to i + 1 and l is equal to j - 1, then it becomes the stacking energy between
two consecutive base pairs. The function Wi is the same as the recurrence relation W;
however, it is calculated under a different context. It is similar to (7), which handles
bifurcations (or branching); in the case of (3), it is for multi-branch loops since the bases
at position i and j are forced to pair, forming a loop consisting of at least three stems.
The scoring functions use the Nearest Neighbor energy rules described in section 3.3
along with Turner’s thermodynamic parameters to handle energy calculations.

31

Figure 27: Recurrence relations for pseudoknot-free structural prediction with free energy [21]

The recurrence relation W is nearly identical to the one from the Nussinov algorithm; the
only difference is that it references the recurrence relation V instead of increasing the
base count when the bases at position i and j are paired. Entry (5) handles the case where
the base at position i is paired with position j – 1, and the one at position j remains
unpaired; similarly, entry (6) is for when i is unpaired. Entry (7) handles bifurcations
where i and j are paired, but not with each other.

3.2.2 Generating Stem Pools

A dynamic programming algorithm is employed to generate a set of possible stems. For
every possible stems, the algorithm will try to extend it as long as possible; the extension
will terminate when it encounter an irregular pairing (not Watson-Crick base pair or the
Wobble base pair G-U). During the trace back, if a stem contains consecutive G-U base
pairs that gives it destabilizing energy at either ends, those base pairs will be removed.
From the list of all possible stems, stems of size two are removed to reduce the number of
stems. Qualifying stems of size two will greatly increase the size of the stem pool, and
the loss of their energy contribution should be minimal. To further reduce the size of the
stem pool any stems of size 3 that contains any base positions that is also part of the stem
with the lowest energy are removed; the assumption is that the best stem will generally
be part of the true structure. The recurrence relation below is derived from the recurrence
relation of the pseudoknot-free prediction algorithm; it only allows energy stacking
between consecutive base pairs.

V(i, j) = min{V(i+1, j-1) + e(i, j, i+1, j-1), 0}

This set of possible stems forms the normal stem pool; the pseudoknot stem pool is
formed with the stems from the normal stem pool. The pseudoknot stem pool only

32

contains the H-type pseudoknots since it is the only pseudoknot type that has an energy
model, see section 3.3.2 for more details. Furthermore, the H-type pseudoknot is
compact, which means that it does not enclose or overlap another stem. This allows the
H-type pseudoknot to be treated as a single stem. All possible H-type pseudoknots that
conform to the energy model by Gultyaev et al. are added to the pseudoknot stem pool.
This does not mean that the genetic algorithm will only be able to predict the H-type
pseudoknots; more complex ones can form with stems from the normal stem pool.

3.3 Energy Rules

This section will go over the energy rules that will be used to determine the free energy
of a structure.

3.3.1 Nearest Neighbor Energy Rules

These are the pseudoknot-free energy rules that are implemented in mfold by Zuker [20].
As the name suggests, in the nearest neighbor energy model, the stacking energy given to
a base pair is only dependent upon the base pair that precedes it. In other words, the
stacking energy of a base pair with bases at position i and j is only dependent on the base
pair with bases at position i+1 and j-1. In this energy model, stabilizing energies are
given to stems, which are comprised of consecutive base pairs, and dangling bases;
destabilizing energies are assigned to loops: hairpin loops, internal loops, bulges, and
multi-branch loops. Dangling bases are unpaired bases that are adjacent to a paired base.
The nearest neighbor energy model has three restrictions on the type of secondary
structural elements that it can be applied to:

 1. Hairpin loops need to be at least three bases long
 2. Each base can pair with only one other base
 3. No pseudoknot structures

The free energy of a secondary structure is the sum of its stabilizing and destabilizing
energies. The nearest neighbor energy rules are used in conjunction with thermodynamic
data provided by the Turner lab [26]; they perform wet lab tests to estimate energy
parameters for the nearest neighbor rules. Turner’s thermodynamic parameters provide
pre-computed energies for loops of thirty nucleotides or less. For any loop whose length
is greater than thirty bases, its energy is computed as

δδG = δδG30 + 1.75 x RT x ln(ls/30) [20],

where R is the universal constant and T is the temperature. The value 1.75 x RT is
approximated and provided along with Turner’s thermodynamic parameters as 1.079.
This interpolation formula applies to hairpin loops, internal loops, and bulge loops. Table
1 shows the free energies loop size from 1 to 30; hairpin loops smaller than 3 are not

33

allowed. Internal loops of size 1 are not allowed because they considered to be bulge
loops of size 1, see Figure 29 and 30 (bulge and internal loops). Free energies for
internal loops of size 2 and 3 are placed a separate table where energies are assigned base
on the configuration of the loop, as well as the nucleotides involved.

Table 1: Energies for internal, bulge, and hairpin loops from loops.dat (values between 8 and 30 are
omitted) [25]

Below are details on how free energies are calculated for the different type of loops.

Figure 28: Hairpin loop of size 12

The free energy of a hairpin loop is computed as

δδGH = δδGH1 + δδGH2 + δδGH3 + δδGH4 [23],

where δδGH1 is the energy contributed by the size of the loop; δδGH2 is the stacking
energies from the two dangling bases inside the loop (only applies to loop whose length
is greater than four); δδGH3 is the bonus free energy that applies to certain loops of size 3
and 4 (tri-loops and tetra-loops); δδGH4 is any additional energy that is not already
accounted by the previous values. Hairpin loops consisting of only cytosine bases are
given additional energy, as well ones with a guanine and uracil (G-U) closing base pairs
that is preceded by guanines on either sides.

34

Figure 29: A bulge loop of size 2

The free energy of a bulge loop is just simply the size of the loop in most cases. For bulge
loops of size 1, the unpaired base and the opening and closing base pairs determine its
energy.

Figure 30: An asymmetric internal loop of size 5

The free energy for an internal loop is computed as

δδGI = δδGI1 + δδGI2 + δδGI3 + δδGI4 [23],

where δδGI1 is free energy contributed by the loop; δδGI2 and δδGI3 are stacking energies
between the dangling bases and the two base pairs that formed the loop; δδGI4 is the
penalty for asymmetric loops.

35

Figure 31: A multi-branch loop with 4 stems and 8 free bases

The free energy of a multi-branch loop is computed as

δδG(L) = a + b x ls(L) + c x ld(L) + δδGstack [23],

where a is the offset for starting a multi-branch loop; b is the free base penalty; c is helix
penalty; ls(L) is the number of free bases in the loop; ld(L) is the number of stems in the
loop; δδGstack is the energy stacking from dangling bases in the loop. The constants a,
b, and c are estimated by Turner’s thermodynamic parameters as 9.0 kCal/mol, 0, and 0,
respectively.

3.3.2 Pseudoknot Energy Rules

One of the primary challenges of RNA secondary structural prediction with pseudoknots
is the lack of thermodynamic information available for pseudoknots. The only energy
model that is available for pseudoknots only applies to the most simple and common one,
the H-type pseudoknot (hairpin pseudoknot). As shown in Figure 32, the H-type
pseudoknot consists of only two stem-loop (hairpin) structural elements where the loop
from the first stem help forms the second stem.

36

Figure 32: An H-type pseudoknot forms from two stem-loops [17]

The energy contribution of a pseudoknot is the same as any other structures; it gains its
stabilizing and destabilizing energies from the stems and loops that forms it. The energy
estimation of H-type pseudoknot loops is computed by Gultyaev et al. as

GL1 = Adeep (S2) + 1.75 x RT x ln(1 + N - Nmindeep(S2))

GL1 = Ashallow (S2) + 1.75 x RT x ln(1 + N – Nminshallow(S1)) [17],

where GL1 is the energy of the L1 loop and GL2 is the energy of the L2 loop from Figure
32. Adeep (S2) and Ashallow(S1) are estimated values Gultyaev et al. derived from the
Nearest Neighbor rules and Turner’s thermodynamic parameters. The remaining terms
are for interpolation purposes when the size of the loop is not listed in Table 2.
Nmindeep(S2) is minimum size of the deep loop L1; for instance, if the stem S2 has a size
of 3 or 4, then the minimum size of the deep loop is 2 or 1, respectively. Similarly,

37

Nminshallow(S1) is the minimum size of the shallow loop L2. N is the length of the loop. R
is the universal gas constants, and T is the temperature.

Table 2. Energy approximations for H-type pseudoknot loops [17]

Furthermore, the energy estimation only applies to H-type pseudoknots that have a
junction size of 1 or 0. The junction is the gap between the stems that form the
pseudoknot in planar representation; it is labeled as L2 in Figure 33.

38

Figure 33: H-type pseudoknot in planar representation. (b) Same structure in 3D [18]

In order to allow more complex pseudoknots to form, we have come up with a simple
rule for complex pseudoknots that will still allow the nearest neighbor rules to be applied.
Simply calculate the energy for the complex pseudoknot as separate pseudoknot-free
structures; Figure 34 and 35 show how a complex pseudoknot is decomposed into
separate unknotted structures. The free energy will be higher when compared to energy
estimations for the H-type pseudoknots; however, if the structure is stable enough, the
stacking energy from the stems should be able to overcome it. This rule only applies to
complex pseudoknots; the estimation by Gultyaev et al. will be used for the H-type
pseudoknots.

Figure 34: A complex pseudoknot (kissing hairpins) decomposes into 3 separate hairpin loops.

39

Figure 35: A complex pseudoknot decomposes into a two hairpin loops and an internal loop.

3.4 Genetic Algorithm
This section will go over how different aspects of the genetic algorithm are handled.

3.4.1 Solution Representation

In genetic algorithms, a solution is generally represented as a binary string, which will
allow mutations and crossovers to be easily carried out. It is possible for a secondary
structure to be represented as a list of stems in a binary string (see section 2.3.4);
however, the free energy of the loops formed by the stems cannot be computed with the
binary representation. Consequently, genetic algorithm approaches that do use the binary
string representation ([9], [13], and [19]), only use the stacking energies of the stems to
determine the energy of the structure. Therefore, my approach uses a tree structure
instead of the binary string representation; Shapiro and Wu [10] also use a tree structure
for the same reason. The tree structure will allow loops to be properly identified, which
will enable to the correct energy rules to be applied. Another advantage of using the tree
structure is speedy detection of stem collisions and overlaps. Figure 36 shows an
example of how a secondary structure in the planar representation is mapped to the tree
structure. In this tree structure, complex pseudoknots are treated as separate
substructures; the H-type pseudoknot is treated as a single stem that does not contain nor
overlap with any other stems.

40

Figure 36: Tree representation of a secondary structure

3.4.2 Mutations

There are two types of mutations possible for a candidate secondary structure, deletion
and addition mutations. A deletion mutation will randomly remove a stem from the
structure, and an addition mutation will randomly insert a new one. With the binary
string representation, a deletion of a stem is accomplished by simply flipping a bit from 1
to 0. Additions are a bit more complex since it requires colliding stems (stems that
occupy the same space as the new stem) to be removed. This makes deletions
unnecessary since it is an inherent part of additions. Since the genetic algorithm being
employed is a steady state genetic algorithm, mutations will not be performed directly on
each candidate solution; it will be performed on a copy instead. It starts out by randomly
selecting a mutation point along the length of the RNA sequence. After which, a mutation
range will be randomly selected (between 1 and 4); the mutation range will extend in
both the 5’ and 3’ directions from the mutation point. Once the mutation range has been
established, all stems that occupy the mutation range from both stem pools are retrieved.
From the retrieved stems, one is chosen in a roulette wheel fashion, where stems with
lower energy will have a higher chance of being selected. The primary task of mutations
is to introduce new stems into the population.

41

3.4.3 Crossovers

Unlike mutations, crossovers generate new variants from the existing elements in
population rather than adding new ones. With the binary string representation, crossover
just simply cut the two strings in halves at an arbitrary point and swaps them. However,
after the crossover has been performed, colliding stems in the newly created structure
need to be resolved. Since a tree representation is being used instead of the binary string,
crossover is handled differently; however, its concept is still preserved. Crossover is
performed on each candidate solution with randomly selected one. The approach I have
taken is similar to the one used by Gultyaev et al. [9]; the stems from both solutions will
be sorted by their stacking energies and iteratively added to form a new one. The only
difference is that Gultyaev et al. used all stems in the current population, which yields
only one new variant per iteration of the genetic algorithm.

3.4.4 Selections

Selection has the important task of calculating the fitness of each candidate structure, and
deciding which structures will persist to the next iteration. Generally, the effectiveness of
a genetic algorithm is determined by how it handles selection. There are a few different
flavors of genetic algorithms, and it is decided by the type of selection that is
implemented. A genetic algorithm is considered to be generational if an entirely new
population is selected at the end of each generation (an iteration of the genetic algorithm).
Generational genetic algorithms tend to change more rapidly. On the other side of the
spectrum are steady state genetic algorithms, where a portion of the current population
will persist to the next generation. As a result, changes in a steady state genetic algorithm
occur more slowly. According to the comparative study by Lee and Han [12], steady
state genetic algorithms produce better results than generational ones for secondary
structure predictions. Thus this is the approach we have taken.

Minimum free energy is used to measure the fitness of a candidate structure, see section
3.3 for more details. The challenge of the selection step is to keep the low energy
structures to the next iteration while maintaining diversity to avoid converging to a local
best too rapidly. In this pursuit, selection has been divided into three equal segments.
The first segment will contain the best 33.3% of the current population. The second
segment will contain randomly selected structures from the top 30% of the new candidate
structures generate through mutations and crossovers. The last segment will consist of
randomly selected structures from the remaining structures. The first segment will ensure
that the top structures from the current population will move onto the next iteration. The
second segment will ensure that the top structures from the variants generated through
mutations and crossovers will have a place in the population. The function of the last
segment is to maintain diversity. Furthermore, selection will only allow structures with
at least one pseudoknot to be in the first two segments.

42

4. Results

The algorithm described in section 3 has been implemented in Java and tested with
various known pseudoknot structures from PseudoBase [24], which is currently the only
repository available for known pseudoknot structures. All secondary structure
visualizations were rendered by PseudoViewer [25]. Table 3 contains a set of short
sequences that were used for testing; these specific sequences were chosen because they
are also used by Ren et al. to compare their HotKnots algorithm against existing ones [1].

Table 3. Test sequences from PseudoBase

The accuracy of the predictions is measured by their sensitivities and specificities.
Specificity is defined as the ratio between the number base pairs from the predicted
structure that matches the known structure (true positives) and the total number of
predicted base pairs. Sensitivity is defined as a ratio between the number true positives
and the number of base pairs from the known structure. These are the same definitions
used by Ren et al. to compare their HotKnots algorithm against five other well known
ones. Tables 4 and 5 show how the seeded genetic algorithm matches up with those six
algorithms. ILM is the Iterated Loop Matching algorithm by Ruan et al. [7]; pknotsRE is
the dynamic programming algorithm by Rivas and Eddy [4]; STAR is a package that uses
the genetic algorithm by Gultyaev et al. [9]; pknotsRG is a dynamic programming
algorithm by Reeder and Giegerich [5]; NUPACK is a dynamic programming algorithm
by Dirks and Pierce. The sensitivity and specificity values for the seeded genetic
algorithm are averaged from a 100 different runs for each sequence, in which the
structure with the lowest energy is compared with the known structure.

43

Table 4. Sensitivity of predictions compared with 6 other algorithms

Table 5. Specificity of predictions compared with 6 other algorithms

Overall, the seeded genetic algorithm yields a higher sensitivity and specificity average
than any other algorithms for the chosen test sequences. However, the sequence PKB206
and PKB207 are the only sequences in which the seeded genetic algorithm is the clear
winner. This is because their known structures yield higher free energy than the optimal
pseudoknot-free structure. The primary focus other algorithms is to find the structure
with the lowest free energy, whereas the seeded genetic algorithm’s primary focus is to
find a low free energy structure that contains at least one pseudoknot. Figure 37 shows
the secondary structures for PKB206 predicted by pknotsRG and the seeded genetic
algorithm. Tables 6 and 7 show the algorithm’s performance for short and long
sequences. Unfortunately, there are no long sequences available on PseudoBase; the long
sequences listed in table 7 are from PseudoViewer’s homepage. These sequences are not

44

ideal candidates since most of their structural elements are pseudoknots; therefore, the
assumption that only a small part a secondary structure is made up of pseudoknots does
not apply. For these sequences, seeding with pseudoknot-free structures has an adverse
effect since the initial population is leading the genetic algorithm in the wrong direction.
This is not a problem for shorter sequences since the search space is much smaller; it only
takes a few generations for the genetic algorithm to recover.

Figure 37: (A) PKB206 structure predicted by pknotsRG. (B) PKB206 structure predicted by GA
and is also the known structure.

Table 6. Sensitivity and specificity of short test sequences (average from 100 runs)

45

Table 7. Sensitivity and specificity of long test sequences (average from 100 runs)

Figure 38: (A) and (B) are TYMV structures predicted by the seeded GA, (B) is also the known
TYVM structure. (C) TYMV structure predicted by pknotsRG. (D) Pseudoknot-free structure
predicted by the seeding algorithm.

46

Figure 39: (A) PKB173 structure predicted by pknotsRG and seeding algorithm. (B) Known
PKB173 structure. (C) Best structure predicted by seeded GA.

47

Figure 40: (A) PKB72 structure predicted by Seeded GA. (B) known PKB72 structure. (C) PKB72
structure predicted by pknotsRG.

The structure that a genetic algorithm will be able to predict relies heavily on the contents
of the stem pools. As shown in Figure 39, the true structure of sequence PKB173
contains an irregular base pair between C and A (position 3 and 65). None of the
computation-based prediction algorithms will be able to identify PKB173’s true structure
since current energy models do not allow irregular base pairings. Furthermore, to
improve accuracy, stems of all sizes need to be considered. However, with the larger
stem pools comes a larger search space, which leads to longer execution time and wider
differences in results between multiple runs.

The current energy model for pseudoknot is too restrictive since it is only applicable to
H-type pseudoknots. Consequently, algorithms that only use the existing model will only
be able to predict the H-type pseudoknot, which consists of only two stems. Figure 40
shows a pseudoknot that consists of three different stems. Although, pknotsRG is
capable of predicting complex pseudoknots, it prefers simple pseudoknots over complex
ones due to its restrictive “canonization” rules. The addition of the new energy rule to

48

allow complex pseudoknots to form seems to be a good starting point for estimating their
free energies.

5. Future Work

The primary challenge in RNA secondary structural predictions is our lack of knowledge
of its folding dynamics. Besides pseudoknots, another obstacle for computation based
prediction is irregular base pairing. Perhaps, covariations can be included in the stem
generation process to allow stems with irregular base pairings. One of the main
challenges of genetic algorithms is to prevent rapid convergence of the population that
may prevent better solutions from forming. Clustering algorithms can be employed to
group candidate structures based on their topology or stems. Clustering will allow the
selection process to keep the top scoring and representative solutions from each clusters;
this will help the population to maintain its diversity.

6. Conclusions

With our current knowledge of RNA folding, pseudoknots in particular, it is impossible
for any computation-based prediction algorithms to produce reliable solutions.
Approximation approaches that use dynamic programming algorithms are not efficient at
finding pseudoknots because of inaccurate energy estimations. Until we have more
accurate energy models, heuristic approaches are more appropriate. The primary
advantage that genetic algorithm has over other heuristics is that it is able to explore a
much wider search space. However, this is also one of its main drawbacks. With the
larger search space, it will take longer to complete and the solutions produced by each
run will vary more widely. Since only a small portion of a secondary structure is
comprised of pseudoknots, seeding with optimal pseudoknot-free structures will help
narrow the search space and guide the genetic algorithm toward the true structure.

The proposed algorithm shows promising results. It out performs the current popular
approaches for the set of test sequences from PseudoBase. This is largely because the
algorithm favors structures with pseudoknots since its primary function is to add
pseudoknots to the pseudoknot-free seeds. Other algorithms ended up predicting the
pseudoknot-free structures for some of the test sequences since they yield a lower free
energy than the true structures that do contain pseudoknots. Heuristics such as genetic
algorithms can often produce better results than dynamic programming approaches
because with the existing energy models true structures are often suboptimal structures in
term of free energies.

49

7. References

[1] Ren J., Rastegari B., Condon A., and Hoos H.H. (2005). HotKnots: Heuristic
prediction of RNA secondary structures including pseudoknots. RNA, 11(10), 1494-504.

[2] Staples, David W., and Butcher, Samuel E. (2005). Pseudoknots: RNA Structures
with Diverse Functions. PLoS Biol, 3(6), e213, 0956-0959.

[3] Department of Statistics, University of Oxford. RNA Pseudoknot Prediction.
Retrieved December 20, 2007 from

http://www.stats.ox.ac.uk/research/genome/projects/rna/pseudoknots_in_rna_seco
ndary_structure/pseudoknots_in_rna_secondary_structure2

[4] Rivas, E. and Eddy, S. (1999). A dynamic programming algorithm for RNA structure
prediction including pseudoknots, Journal of Molecular Biology, 285(5), 2053-2068.

[5] Reeder, J. and Giegerich, R. (2004). Design, implementation and evaluation of a
practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics.
5:104.

[6] Nussinov, R. and Jacobson, A.B. (1980). Fast algorithm for predicting the secondary
structure of single-stranded RNA, Proceedings of the National Academy of Sciences of
the USA, 77, 6309-6313.

[7] Ruan, J., Stormo G. D., Zhang, W. (2004). An Iterated loop matching approach to the
prediction of RNA secondary structures with pseudoknots. Bioinformatics. 20(1), 58-66.

[8] Durbin, R., Eddy, S. Krogh, A., and Mitchison, G. (1998). Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press. 269-270.

[9] Gultyaev, A.P., van Batenburg, F.H.D. and Pleij, C.W.A. (1995). The computer
simulation of RNA folding pathways using a genetic algorithm. J. Mol. Biol., 250, 37-
51.

[10] Shapiro, B.A., and Wu, J.C. (1997). Predicting RNA H-Type pseudoknots with
massively parallel genetic algorithm, CABIOS, 13, 459-471.

[11] Yoon, B. and Vaidyanathan, P.P. (2004) HMM with auxiliary memory: a new tool
for modeling RNA secondary structures. IEEE, 2(7-10), 1651-1655.

[12] Lee, D. and Han, K. (2002). Prediction of RNA Pseudoknots – Comparative Study
of Genetic Algorithms, Genome Informatics, 13, 414-415.

50

[13] Lee, D. and Han, K. (2003). A Genetic Algorithm for Predicting RNA Pseudoknot
Structures, ICCS 2003, LNCS 2659, 130-139.

[14] Brown, M., and Wilson, C. (1995). RNA Pseudoknot Modeling Using Intersection
of Stochastic Context Free Grammars with Applications to Database Search. Retrieved
December 20, 2007 from

http://psb.stanford.edu/psb-online/proceedings/psb96/brown.pdf

[15] Matsui, H., Sato, K., and Sakakibara, Y. (2005). Pair stochastic tree adjoining
grammars for aligning and predicting pseudoknot RNA structures. Bioinformatics.
21(11), 2611- 2617.

[16] Lyngsø, R.B. and Pedersen, C.N.S. (2000). RNA Pseudoknot Prediction in Energy
Based Models, Journal of Computational Biology, 7(3/4), 409-428.

[17] Gultyaev, A., van Batenburg, A., and Pleij, C. (1999) An Approximation of loop free
energy values of RNA H-pseudoknots. RNA, 5. 609-617.

[18] Aalberts, D., and Hodas, N. (2005) Asymmetry in RNA pseudoknots: observation
and theory. Nucleic Acids Research, 33(7), 2210-2214.

[19] van BatenBurd, F., Gultyaev, A., and Pleij, C. (1995) An APL-programmed Genetic
Algorithm for the Prediction of RNA Secondary Structure. J. Theor. Biol., 174, 269-280.

[20] Zuker, M., Mathews, D.H., and Turner, D.H. (1999). Algorithms and
thermodynamics for RNA secondary structure prediction: A practical guide. In RNA
biochemistry and biotechnology (eds. J. Barciszewski and B. F. C. Clark), 11-43.

[21] Zuker, M., and Stiegler, P. (1981). Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information. Nucleic Acids Research,
9(1), 133-148.

[22] Mount, D. (2001). Bioinformatics: Sequence and Genome Analysis. New York:
Cold Spring Harbor Laboratory Press. 205-228.

[23] Pseudoknot. http://en.wikipedia.org/wiki/Pseudoknot

[24] PseudoBase homepage – http://wwwbio.leidenuniv.nl/~Batenburg/PKB.html

[25] PseudoViewer homepage – http://wilab.inha.ac.kr/pseudoviewer/

[26] Turner Lab homepage – http://rna.chem.rochester.edu/

51

[27] pknotsRG. http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/

52

	San Jose State University
	SJSU ScholarWorks
	2008

	A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots
	Ryan Pham
	Recommended Citation

	APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
	__
	Abstract
	Table of Contents
	Pseudoknots
	1.2 Purpose

	2. Background and Related Works
	2.1 Stochastic Context-Free Grammar
	2.2 Hidden Markov Model (context sensitive)
	2.3 Dynamic programming algorithms
	2.3.1 Nussinov Algorithm
	2.3.2 Pseudoknots (Eddy and Rivas)
	2.3.4 Pseudoknots (Reeder and Giegerich)

	2.4 Heuristics
	2.4.1 HotKnots
	2.4.2 Iterated Loop Matching
	2.4.3 Genetic Algorithms

	3. Algorithm
	3.1 Overview
	3.2 Generating Seeds and Stem Pools
	3.2.1 Finding Optimal Pseudoknot-free Structures
	3.2.2 Generating Stem Pools

	3.3 Energy Rules
	3.3.1 Nearest Neighbor Energy Rules
	3.3.2 Pseudoknot Energy Rules

	3.4 Genetic Algorithm
	3.4.1 Solution Representation
	3.4.2 Mutations
	3.4.3 Crossovers
	3.4.4 Selections

	4. Results
	5. Future Work
	6. Conclusions
	7. References

