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Abstract
 
This work explores a new approach in using genetic algorithm to predict RNA secondary 
structures with pseudoknots.  Since only a small portion of most RNA structures is 
comprised of pseudoknots, the majority of structural elements from an optimal 
pseudoknot-free structure are likely to be part of the true structure.  Thus seeding the 
genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the 
true structure than a randomly generated population.  The genetic algorithm uses the 
known energy models with an additional augmentation to allow complex pseudoknots.  
The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic 
parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation 
for simple pseudoknots.  Testing with known pseudoknot sequences from PseudoBase 
shows that it out performs some of the current popular algorithms. 
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1. Introduction 
 
Unlike DNA molecules, which consist of two complementary strands, RNA molecules 
are generally single stranded. The RNA strand forms its secondary structure when the 
bases within the molecule pair with each other. RNA’s are not just mere vessels for 
transferring genetic information from DNA to protein; they also act as “catalyst in 
cellular processes, and mediators in determining the expression level of genes” [1]. 
Pseudoknots are secondary structural elements; their common function is to induce 
frameshifts, a function that is found in viruses and is required in all retroviruses to enable 
their replication and proliferation [2]. Most of the research involving RNA secondary 
structural predictions has ignored pseudoknots because of their computational 
complexity. Unlike pseudoknots, all other structural elements, such as loops or helices, 
form a tree-like hierarchy where these structural elements are either disjoint or contained 
within another [3]; pseudoknots are formed when there are overlapping regions between 
structural elements. Consequently, a time and space complexity of O(n6) and O(n4), 
respectively, is required to fold restricted classes of pseudoknots [4] while unknotted 
structure only requires O(n³) time and O(n²) space complexity [5]. Although the running 
time is still polynomial, it is impractical for sequences over 200 bases long. The general 
problem of predicting arbitrary pseudoknots for energy based models has been proven to 
be NP-complete [16].  This work will go over some of the existing computation based 
prediction algorithms and present a new approach that uses dynamic programming and a 
genetic algorithm to predict secondary structures with pseudoknots.   
 

1.1 Pseudoknots  
 
Pseudoknots are tertiary structures formed by overlapping secondary structures.  The 
simplest type of pseudoknots is the H-type pseudoknot, which is shown in Figure 1; it 
consists of two stem-loops, where the loop from the first stem forms part of the second 
stem. As shown in Figure 2, other structural elements are well nested; pseudoknots are 
the only structures that exhibit the non-nested characteristic.  Pseudoknots have many 
important biological functions; perhaps, the most important one is their ability to alter 
gene expression “by inducing ribosomal frameshifting in many viruses” [2].   
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Figure 1: A naturally occurring pseudoknot in the human telomerase [22] 

 

 
Figure 2: Planar representation of RNA structural elements. [4] 

 

1.2 Purpose 
 
The purpose of this project is to explore a new approach in predicting RNA secondary 
structures with pseudoknots.  One may wonder why we care about pseudoknots in 
secondary structures since they are considered to be tertiary structural elements.  This is 
because in computation based predictions, the unpaired bases from the pseudoknot will 
go on to form false structural elements; moreover, the error can propagate and lead to 
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more false structures.  Therefore, prediction algorithms that do not include pseudoknot 
structures will not be able to achieve high accuracy. 
 

2.  Background and Related Works 
 
This section goes over popular approaches that have been proposed or undertaken to 
predict the secondary structures of RNA’s with pseudoknots.  Prediction algorithms fall 
into two main categories, comparative analysis and computation based.  With 
comparative analysis, multiple related sequences are needed since they rely on sequence 
covariations to predict the structure. Covariations are conserved, complementary regions 
determined from multiple sequence alignments [21].  Because of this requirement, we 
have decided to focus on computation based approaches, which relies on free energy 
estimations. 

2.1 Stochastic Context-Free Grammar 
 
A stochastic context-free grammar is an extension on Hidden Markov Model where each 
production rule is associated with a probability, just as the transition and emission rates in 
HMMs.  Figure 3 shows an example of production rules for recognizing RNA secondary 
structure.  
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Figure 3: Production rules for capturing a secondary structure and its associated derivation [14] 

 
Due to the non-nested characteristic of pseudoknots, it is impossible to create a context-
free grammar that can process pseudoknots.  As a result, two context-free grammars are 
necessary to recognize a pseudoknot; the first language will recognize the first half and 
the second language will recognize the second half, as shown in Figure 4.  The main 
drawback of using context free grammars for recognizing pseudoknots is that the 
grammar needs to be tailored for certain families of RNA’s.  Therefore, a context-free 
grammar is not the appropriate approach for predicting arbitrary pseudoknots; however, it 
is perfect for database searches where the main purpose is to find all RNA’s that have a 
certain secondary structure. 
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Figure 4: Pseudoknot is broken into two grammars [14] 

 

2.2 Hidden Markov Model (context sensitive) 
 
Traditional Hidden Markov Models are incapable of capturing the long range interaction 
that occurs in RNA secondary structures.  Moreover, it has roughly the same descriptive 
power as stochastic context-free grammar, which cannot recognize pseudoknots.  
Context-sensitive Hidden Markov Model, however, is able to capture the long-range 
interaction with the help of an auxiliary memory unit.  Figure 5 shows an example of two 
context-sensitive HMMs, the first uses a stack and the second uses a queue as the 
auxiliary memory unit; the first can recognize a palindrome and the second can recognize 
a single repeat.  Figure 6 shows a structure of a pseudoknot and the corresponding 
context-sensitive HMM for recognizing it.  As shown in Figure 6, the topology of the 
context-sensitive HMM is very similar to the topology of the structure that it is designed 
to recognize.  As a result, an extremely complicated model will be needed to be able to 
handle the different RNA secondary structural elements, as well as the various types of 
pseudoknots.  The larger model will take longer to process even when the input sequence 
is short.  Furthermore, the HMM will need to be trained; it will be difficult to find 
training data that is diverse enough for it to recognize the various structural elements, but 
not enough to generate false positives.  
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Figure 5: Context-sensitive HMM with a stack(a) and a queue(b) as the memory unit [11] 
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Figure 6: A pseudoknot and its corresponding context-sensitive HMM [11] 

2.3 Dynamic programming algorithms 
Dynamic programming algorithms are considered to be exact algorithms; they are 
guaranteed to provide optimal solutions.  This section will go over the popular dynamic 
programming algorithms for RNA structural predictions; starting with the Nussinov 
algorithm, from which all other dynamic programming algorithms are derived. 

2.3.1 Nussinov Algorithm 
 
Nussinov algorithm is a simple dynamic programming algorithm that is capable of 
finding pseudoknot-free secondary structures with the maximum number of base pairs.  
Although it is a simple algorithm, it is the foundation for more complex ones.  The 
Nussinov algorithm works in a fashion that is similar to the dynamic programming 
algorithm for pair-wise sequence alignment; the primary difference is that we are 
comparing the sequence against itself rather than another sequence; therefore, only half 
of the dynamic programming matrix is needed, which results in a triangular matrix.  The 
lower left of the dynamic programming matrix is ignored, or initialized to 0 (for all 
positions where i >= j, where i is the ith row and j is the jth column).  The recurrence 
relation below applies to every cell as we move from the main diagonal to the top-right 
corner, see Figure 8; the final cell at the top right corner will have the maximal score 
once the algorithm is completed.  The trace-back can applied in O(n3), and the algorithm 
has a space complexity of O(n2). 
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Recurrence relation: 
 
  V(i+1, j),    (1) 
V(i, j) = max{  V(i, j-1),    (2) 
  V(i+1, j-1) + 1,   (3) 
  Maxi<k<j [V(i, k) + V(k+1, j)]  (4) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                   Figure 7: Recurrence relation for the Nussinov algorithm [8] 

 

 
Figure 8: Dynamic programming matrix [8] 
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The Nussinov algorithm is a straight forward algorithm that is capable of finding an 
optimal solution with regards to base-pair maximization, which can result in impossible 
structures; this can easily be resolved by using thermodynamic energy as the scoring 
function. 
 

2.3.2 Pseudoknots (Eddy and Rivas) 
 
This is perhaps the most complicated algorithm for predicting pseudoknots; it extends 
upon the Nussinov algorithm to include pseudoknots and uses thermodynamic energy as 
the scoring function (same extension as Zuker and Stiegler [21]).  First, it relies on two 
dynamic programming matrices to incorporate thermodynamic energies into the 
Nussinov algorithm.  The two triangular matrices are called vx and wx; vx(i,j) is the 
optimal score between positions i and j in which i and j are paired; wx(i,j) is the optimal 
score between positions i and j regardless of whether i and j are paired or not.  The 
purpose of using two matrices instead of one is to help with identifying and applying 
thermodynamic rules to different substructures (hairpin, bulge, internal loop etc.).  vx is 
calculated as: 

 
 Figure 9: Recurrence relation for vx [4] 
 
The matrix wxI has the same recursion as wx; however, they have completely different 
interpretations.  The purpose of wxI is to truncate vx with regards to multiloops.  EISn(in, 
j1: i2, j2:…:in, jn) “represents the scoring function for an IS order of n, in which ik is paired 
to jk”[4]. IS is short for irreducible surface; a surface is “any alternating sequence of 
continuous and wavy lines that closes on itself.  An irreducible surface is a surface such 
that if one of the H-bonds (or secondary interaction) is broken, there is no longer a 
surface contained inside” [4].  In the planar representation (see figure 2), wavy lines 
between positions i and j in the RNA sequence indicate that the bases at i and j are paired 
together.  Hairpin loops constitute an IS order of one since there are no other 
substructures if the stem that formed the loop were to unfold; stems, bulges, and internal 
loops are of IS order two, and multi-branch loops are of IS order larger than two.  M is 
the penalty for generating a multi-branch loop, and PI is the penalty for each closing pairs 
in a multi-branch loop. The recurrence relation for wx is: 
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  Figure 10: Recurrence relation for wx [4] 

 
The recurrence relation for wx is more or less the same as the recurrence relation in the 
Nussinov algorithm; P is the score for an external base-pair, and Q is the for a single-
stranded nucleotide; both of which are approximate to zero in Turner’s thermodynamic 
parameters, which is being applied by Eddy and Rivas.  Performing the trace-back on wx 
will yield the optimal pseudoknot-free structure.  In order to recognize pseudoknots, 
Eddy and Rivas use one-hole or gap matrices; Figure 11 shows how a pseudoknot can be 
captured with gap matrices. 
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Figure 11: Using two gap matrices to capture a pseudoknot [4] 
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Figure 12: Matrices used in the pseudoknot algorithm [4] 

 
Figure 12 shows the primary matrices used in the dynamic programming algorithm.  The 
matrices vhx, zhx, yhx, and whz are gap matrices; each matrix captures a different 
configuration, but the matrix whx will contain the maximal score from the configurations 
captured by the other three matrices.  As a result, the recurrence relation for whx is 
extremely complex, as shown in Figure 13.  The matrix wx still remains as the matrix that 
will yield the secondary structural with minimal free energy; therefore, its recurrence 
relation must take pseudoknots into account, as shown in Figure 14.  Unfortunately, the 
expansions in gap matrices have to be truncated to keep algorithm polynomial.  
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Figure 13: Recurrence relation for whx [4] 

 
     Figure 14:  Updated recurrence relation for wx to include psuedoknots [4] 
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Figure 15: Non-planar pseudoknots [4] 

 
This a very attractive algorithm for predicting secondary structures with pseudoknots 
since it is capable of finding a solution with the minimal free energy with respect to the 
energy rules being applied.  Since the algorithm has a time and space complexity of O(n6) 
and O(n4), respectively, it cannot handle sequences longer than 150 bases in length.  
Another limitation of this algorithm is that it cannot recognize certain non-planar 
pseudoknots, such as the lower pseudoknot in Figure 14. Non-planar pseudoknots are 
pseudoknots that require lines to be crossed in the planar representation. 

2.3.4 Pseudoknots (Reeder and Giegerich) 
 
Reeder and Giegerich added restrictions to the pseudoknot algorithm by Eddy and Rivas 
to reduce its time complexity.  They introduced “canonization rules” to restrict the class 
of pseudoknots, thereby reducing the search space.  The first rule requires both strands in 
a helix to be of the same length; in short, helices that take parts in pseudoknots must not 
have bulges.  With rule one, two of the eight moving boundaries of the pseudoknots, as 
shown in Figure 16, can be calculated in term the remaining ones.  With rule one applied, 
boundaries f and h can be calculated as: f = l – (e – i) and h = j – (g – k). 
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Rule two states that the helices a,a’ and b,b’ must have maximal length and are fixed 
once i and l are chosen.  The maximal length stacklen(i, l) can be pre-computed in O(n2).  
Two more moving boundaries can be removed by rule two since they can be derived 
from remaining terms: e = i + stacklen(i, l) and g = k + stacklen(k, l).  Rule three states 
that if two helices overlap, when they compete for the same bases, their boundary is fixed 
at an arbitrary point.  Rule three does not reduce any additional boundaries; it helps to 
reduce computation when there are overlaps between helices.   
 
 

  
Figure 16: Moving boundaries of a pseudoknots [6] 

     
Reeder and Giegerich claim that the limitations added by the canonization rules will 
produce results with similar free energy as the original implementation.  Rule one affects 
length of the helices that can participate in a pseudoknot.  Since bulges are ignored, 
“there must be at least one pair of shorter helices without bulges…which serves as a 
canonical representative, albeit with somewhat higher free energy” [6].  They claim that 
rule two is justified by energy models that strongly favor extensions; they recognized that 
requiring helices to have maximal extents can limit other structures from forming (chain 
pseudoknots) that can yield a lower energy, but they claim that “the energy of the 
canonical pseudoknot must be very similar” [6].  Their reasoning for rule three is that an 
arbitrary decision can be made when helices are competing for the same bases since the 
difference between having the competed bases with either helix is minimal. 
 
With the removal of the four moving boundaries, Reeder and Giegerich was able to 
reduce the time and space complexity of Eddy’s and Riva’s algorithm down to O(n4) and 
O(n2), respectively.  However, the dramatic improvement is not without tradeoff; the 
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algorithm no longer produces an optimal solution.  Furthermore, since Reeder and 
Giergerich failed to provide, or show how much of a deviation from the minimum free 
energy caused by their canonization rules, solutions provided by this algorithm should 
fall into the same ranks as ones produced by heuristics.  Their result shows comparable 
results to the implementation by Eddy and Rivas; however, they noticed that they are less 
reliable as the sequence gets longer.  They attributed this to increased search space 
(exponential increase), and question whether the implementation by Eddy and Rivas 
would be able to produce better results if their algorithm was able to handle longer 
sequences. 

2.4 Heuristics 
Heuristics are algorithms that often provide good solutions, but it cannot provide any 
guarantees on the solutions produced.  Heuristics are often applied to problems that are 
known to be NP complete since their time complexity is much smaller than those of 
approximation and exact algorithms.   

2.4.1 HotKnots 
 
HotKnots is a heuristic algorithm that is based on the assumption that substructures with 
low energy are likely to be in the true structure.  The algorithm works by finding 
promising substructures, which are called “hotspots,” consisting of simple stem-like 
structures: “stacked pairs, bulge loops containing one unpaired base, and interior loops 
with two (opposing) unpaired bases” [1].  First, “a set of hotspots are computed, and each 
hotspot in the set are used as the basis for expanding a secondary structure” [1].  The 
algorithm iteratively adds new hotspots to the each of existing secondary structures 
building a tree-like structure.  Each node in the tree will contain a set of hotspots, the 
number of hotspots each node has is equal to its distance from the root node; the root 
node has no associated hotspots.   
 
To generate the set of initial hotspots, the algorithm employs the simple local alignment 
algorithm by Smith and Waterman, in which the two input sequences are the same; the 
first ordered from 5’ to 3’, and the second ordered from 3’ to 5’; with complementary 
pairs and the wobble base-pair G-U considered a match.  The parameters of 
thermodynamic energy model are built into the algorithm; extra penalties are added for 
bulges, identified by deletions and insertions, and internal loops, which are identified as 
mismatches in the local alignment.  Extra penalties are given to insertions/deletions and 
mismatches to prevent an alignment from getting too long.  A restriction is added to 
prevent subsequences that are no more than three bases apart from aligning with one 
another; researchers have established that the smallest hairpin loop has at least three 
bases in the loop.  Out of the set of initial hotspots, only k hotspots with lower than -0.4 
kcal/mol and have more than two base pairs; in their experiment, Ren et al. chose 20 as 
their k.  This results in a root node with 20 child node, one for each hotspot. 
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After the initial hotspots have been chosen, additional hotspots are selected by a different 
process.  A dynamic programming algorithm is employed for predicting pseudoknot free 
secondary structures; this algorithm is similar to the mfold algorithm, by Zuker and 
Stiegler, with additional constrains.  The additional constrains may include that certain 
bases must remain unpaired.  Each node in the tree will invoke this algorithm with the set 
of hotspots that it already contained as the bases that must remained unpaired; thus, the 
resulting pseudoknot-free structures are those that do not overlap with existing structures.  
Applying this algorithm to the root node will yield the optimal pseudoknot-free structure.  
Of the hotspots generated by the dynamic algorithm, only those with -0.4 kcal/mol or 
lower are selected.  A new child node will be added to the current node for each of the 
selected hotspots. 
 
To limit the running time of the algorithm, it needs to determine whether the set of 
hotspots at a given node is promising; if it is promising, then the node will continue its 
expansion; otherwise, its expansion will be terminated.  A set of hotspots is considered to 
be promising if its energy is no more than 80% higher than the energy of the root node, 
the pseudoknot-free structure; in addition, the energy cannot exceed 5kcal/mol.  The 80% 
was chosen through preliminary testing.  By only adding nodes to the tree for promising 
hotspots, the search space is reduced, which will help reduce the running time. 
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Figure 17: Pseudocode for HotKnots [1] 

 
The HotKnots algorithm run in a fashion that is very similar to branch-and-bound 
algorithms.  This makes its time complexity difficult to compute; however, since the 
algorithm made recursive calls to an O(n3) algorithm, we can be sure that it has a time 
complexity of Ω(n4).  Despite its simplicity, HotKnots can produce results that are 
comparable to those of well known approaches, see Figure 18. 
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Figure 18: Result comparisons for short sequences [1] 

2.4.2 Iterated Loop Matching  
 
Iterated Loop Matching, as the name implies the algorithm adds loops iteratively to form 
a secondary structure.  This algorithm is based on the loop matching algorithm by 
Nussinov et al. [6], which is a dynamic programming algorithm for finding pseudoknot-
free structures.  The modified algorithm takes on an additional constrain to ensure that 
the length of every loop is at least three bases long, which means that the distance 
between the paired subsequences is at least three bases apart.  Without this constrain, the 
dynamic programming algorithm by Nussinov et al. will generate impossible structures; 
the minimum length of a loop has been agreed by researchers to be at least three bases 
long.  Furthermore, the loop matching algorithm, in the simplest case, assigns a score of 
one to Watson-Crick or G-U base pair, and zero to all other matches.  This algorithm will 
favor structures with the maximal number of base pairs.  The algorithm also allows for 
more complex scoring function, through comparative analysis. 
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The loop matching algorithm is extended to accommodate pseudoknots.  Since 
pseudoknots can be seen as substructures with overlapping regions, and the simplest 
pseudoknot consists of just two overlapping structures, the loop matching algorithm can 
simply be ran twice to identify it.  Ruan et al. pointed out that by simply taking the 
secondary structure outputted from the first run of the loop matching algorithm and 
combining it with the output of the of the second run where the bases paired in the first 
are ignore produces erroneous because of the false positives generated by the first run.  
To resolve this problem, the loop matching algorithm needs to run multiple times, and 
only the base-pairs with the highest score will be selected; here, they assume that 
substructure with highest score will likely be in the true structure. 
 
 The sketch of the algorithm is as follows [7]: 
  

(1) Prepare a base-pairing score matrix B[1..n][1..n] from a sequence or a 
sequence alignment, where B[i][j] is the score for the i-th base to pair with the 
j-th base. 

(2) Run the basic LM algorithm using matrix B to produce matrix Z and trace-
back Z to get a base-pair list L. 

(3) Identify all helices in L and combine helices separated by small internal loops 
or bulges.  If no helix is identified, go to step 7. 

(4) Assign a score to each helix by summing up the scores of its constitutive base-
pairs.  Pick the helix H that has the highest score and merge H into the base-
pair list S to be reported. 

(5) ‘Remove’ positions of H from the initial sequence. Update the score matrix B 
accordingly. 

(6) Repeat steps 2-5 until no bases remain. 
(7) Report base-pair list S and terminate. 
 

All subsequent iterations after the initial run of the loop matching algorithm do not have 
to recreate everything from scratch.  Much of the dynamic programming matrix can be 
reused.  As shown in Figure 19, not every cells in the dynamic programming matrix need 
to be recomputed; B[i][j] only needs to be recomputed if any of the positions of the 
chosen structure is between i and j.  A subsequent iteration can simply treat the rows and 
columns corresponding to the bases of the chosen structure as if they have been removed 
from the dynamic programming matrix.  The loop matching algorithm has a time and 
space complexity of O(n3) and O(n2), respectively.  Since the algorithm is invoking the 
loop matching algorithm at every iteration, it will have a time complexity of O(n4); the 
space complexity remains the same since the same dynamic programming matrix is being 
reuse.  However, since the number of iterations will be substantially less than n (length of 
the input sequence) and the sequence length is getting shorter after every iteration, the 
average case time complexity is close to O(n3). 
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Figure 19: Regions that do not need to be recomputed (A, B, C) [7] 

 
If the loop matching algorithm uses base-pair maximization as the scoring function, it 
would prefer long stems that will often yield false positives due to the energy stacking 
characteristics of secondary structures.  Thus Ruan et al. came up with a new base-pairing 
score matrix that is based on comparative analysis and thermodynamics, a combination of 
“mutual information scores” and “helix plot scores.”  Mutual information scores are 
calculated from a given multiple sequence alignment; the scoring matrix is calculated as: 

 
Figure 20: Scoring matrix function for mutual score information [7] 

 
The function in Figure 20 calculates the mutual information score between positions i and 
j; ƒi(X) is the frequency of base X aligned at position i; ƒij(XY) is the frequency of 
finding X at position i and Y at position j.  The mutual information scores are combined 
with the helix plot scores, which is “formed by assigning good-pair scores to cells that 
represent Watson-Crick or G-U base-pairs, bad pair scores to other base-pairs and penalty 
scores to gaps…(good-pair score = 1, bad-pair score = 2, paired gap penalty = 3 and helix 
bonus = 2 x helix length)” [7].  Their combined score is calculated as: 

24 



 

 
     Figure 21: Combined scoring functions [7] 

 
HPij is the helix plot score, N is the number of sequences in the alignment, α and β are 
relative weight whose default values are one.  The coefficient 1000 and 20 are there to 
bring the mutual information and helix plot scores into approximately the same integer 
range.  The resulting scoring function is extended to include RNA-folding 
thermodynamics by assigning different scores to good pairs, and adding bonus for energy 
stacking.  The extended helix plot score will be calculated as: 

 
Figure 22: Extended helix plot function [7] 

 
The function above will replace HP in the Figure 21; GP is the good-pair score between 
positions i and j (“good-pair scores for G-C, A-U, and G-U are 80, 50, and 30, 
respectively” [7]).  The bonus from energy stacking is calculated as: 

 

 
Figure 23: Function for calculating bonus from energy stacking [7] 

All in all, iterated loop matching is a simple extension of the Nussinov algorithm to 
include pseudoknots.  The main drawback of this algorithm is that it only selects the best 
helix from each iteration; choosing the wrong helix (local best, but is not global best) will 
affect the helices produce by subsequent iterations.  Furthermore, the algorithm relies on 
having a multiple sequence alignment available to produce accurate results. 

2.4.3 Genetic Algorithms  
 
Genetic algorithm is an optimization method inspired by concepts in biological 
evolutions.  It works by creating new solutions at every generation, and only the more 
“fit” solutions will progress to the next one.  It generates new solutions through mutations 
and crossovers, and the fitter solutions that will progress to the next generation are 
chosen by the selection function.  Therefore, the three main steps for genetic algorithm 
are mutation, crossover, and selection.  The selection step is the most important step since 
mutation and crossover steps generate new solutions, but not necessarily better ones.  The 
general steps of genetic algorithm when applied to RNA secondary structural prediction 
are as follows: 
 

25 



 

1. create stem pool(s) 
2. generate initial population 
3. calculate “fitness” of solutions in the initial population 
4. repeat 

a. perform mutation and crossover 
b. calculate “fitness” of new solutions produced by mutation and crossover 
c. select set of solution to move to next generation 

until there’s no improvement and/or after a certain number of iterations [9] 
           
Genetic algorithm will generally produce suboptimal solutions in term of free energy 
when compared to dynamic programming approaches.  However, known RNA structures 
are often suboptimal structures in term of free energy; this is mainly a result of inaccurate 
energy models.  Therefore, genetic algorithms can often predict better structures than 
dynamic programming algorithms.  The sections below will summarize different aspects 
of applying genetic algorithms for RNA secondary structural prediction. 
 
Solution representation 
 
A candidate solution in genetic algorithm usually represented as a binary string, and is 
often referred to as either a genome or a chromosome.  This approach requires all 
possible stems that can take part in the secondary structure to be identified before the 
algorithm starts to iterate.  The length of the binary string will be as long as the number 
of possible stems; each position in the binary string will correspond to a stem; a one 
indicates that the associated stem is part of the solution, and a zero indicates exclusion.  
The main purpose of using a binary string representation is that it makes task such as 
mutations and crossovers easier to perform; however, when applied to RNA secondary 
structures, it makes more difficult to calculate the free energy of the solution as a whole.  
To overcome this problem, Shapiro and Wu used a tree structure to represent a solution 
instead.  In their implementation, the list of stems is structured into a tree structure; the 
stems are ordered by their 5’ ends.  “[T]he stems constitute the edges of the tree, the free 
strands are contained in the root of the tree (i.e. the 0th node), and the loops of the 
secondary structures are nodes of the tree” [10].  The tree structure allows the stems and 
loops in the secondary structure to be precisely determined, which will enable accurate 
energy rules to be applied. 

26 



 

 

Figure 24: Binary representation of a solution in GA [13]  

Generating initial population 
 
There are several ways to generate the initial population; however, each will either 
generate partial or complete solution.  In the approach used by Shapiro and Wu, as well 
as Gultyaev et al., each solution in the initial population contains only one stem; each 
stem is randomly chosen based on its energy contribution.  In the approach by Gultyaev 
et al., only stems from the first 20 nucleotides are allow to be chosen to start the initial 
population.  In their implementation, they try to simulate the RNA folding pathway; the 
length of the sequence is extended after each iteration, which will allow more stems to be 
considered in subsequent iterations.  In another approach (Lee and Han [13]), after stem 
have been chosen, all possible stems are added to the solution as long as they do not 
present any conflicts.   
 
Mutations 
 
Mutations are simply random changes to a solution; removal of some stems and additions 
of new ones.  Using the binary representation, a mutation is a random bit flip; in the case 
where the bit flip includes a new stem, that flip is only allowed if the associated stem do 
not conflict with existing ones.  The probability of a stem being added is based on its 
energy contribution; Gultyaev et al. uses the ratio between energy gained versus the 
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destabilizing energy of the new loop.  Besides adding new stems to the solutions, perhaps 
even more important, mutations allow the algorithm to escape from the pitfalls of local 
minima.  Figure 25 shows the process of mutations adopted by Gultyaev and company.  
First, mutation points are randomly chosen, and mutation regions of random lengths are 
generated.  Any stems that have an intersection with the mutation regions are removed 
from the solution.  The goal any mutation function, besides from adding new stems, is to 
prevent the algorithm from quickly converging to a local minimum and terminate the 
algorithm before a better solution can be found. 
 

 
Figure 25: Mutation process [9] 

 
Crossovers 
 
Crossover is a process in which new solutions are produced containing parts from both 
parental solutions; it often combines favorable stems from parental solutions.  Gultyaev 
and company handled crossover by combining all stems from the current population into 
one list and a new solution is constructed by iteratively adding each stem to it.  The 
crossover process adopted by Shapiro and Wu is completely different since their 
algorithm is designed to run on a system with 16,384 processors, in which each processor 
is connected to eight others and represents a single solution.  Each processor will choose 
two RNA structures from itself and its eight neighbors to perform the crossover; if the 
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resulting solution has a lower energy than the processor’s current one, it will replace it.  
Since Shapiro’s and Wu’s algorithm is designed for massively parallel machines, it has a 
completely different population interaction than other genetic algorithm approaches, 
which are designed for single-processor machines.   
 
Selections 
 
Selection is the process in which solutions are chosen to move onto the next iteration by a 
fitness function.  There are not many choices for fitness functions when it comes to 
deciding whether one secondary structure is better than another; the usual ones are 
minimum free thermodynamic energy, base-pair maximization, and maximum weighted 
sum.  However, thermodynamic energy is generally preferred as the fitness function, 
since base-pair maximization often result in impossible structures.  In a comparative 
study, Lee and Han [12] found that maximum weighted sum and minimum free yield 
similar solutions; perhaps, this is largely because only the stacking energies of stems 
were taken into account.  Maximum weighted sum is similar to base-pair maximization 
with the exception that stems in a pseudoknot are given a better score, or a higher base 
count.  This indicates that a simple and rough fitness function can be a good fitness 
function when thermodynamic information for a pseudoknot is not available.  Currently, 
thermodynamic energy is only available for the simple H-type pseudoknot, and even that 
is not very accurate [17].  Selection has the important task of deciding which solution 
gets to persist to the next generation; its main challenge is to select favorable solutions 
while maintaining diversity.  Through experimentations, Gultyaev et al. discovered that 
choosing only solutions with lowest energy for crossovers will often “resulted in a rapid 
convergence of all structures to the same locally favorable solution, which eventually 
prevented further improvement” [9].  To overcome this, structural differences between 
solutions were taken into account to help maintain diversity; a new parameter is assigned 
to each solution; this parameter is calculated as the difference between the energy of the 
solution and that of the best solution, divided by the number of stems in the solution.   
 

3.  Algorithm 
  
Since the problem of RNA secondary structural prediction with pseudoknots has been 
proven to be NP-complete [16], approximation and heuristic algorithms should be 
considered instead of exact ones.  Furthermore, there are no known exact algorithms for 
pseudoknot predictions.  The dynamic programming algorithm proposed Eddy and Rivas 
is considered to be comparable to an exact algorithm since the truncations that they 
introduced only restrict complex pseudoknots whose topologies have never been seen in 
RNA structures.  However, because of its time and space complexities (O(n6) and O(n4) 
[4]), this algorithm is not a viable approach for sequences over 150 bases long.  Out of 
the different heuristics reviewed in section 2, genetic algorithm seems to be one with the 
most potential.  Other heuristics, such as HotKnots and Iterated Loop Matching are 
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deterministic, greedy algorithms that are prone to local best pitfalls that can greatly 
reduce their search space.  Since genetic algorithms are nondeterministic, they can 
explore solutions in a much wider search space.  However, this is also its main drawback; 
due to the larger search space and its nondeterministic nature, genetic algorithm 
approaches are unlike to produce the same solution consistently.  Like other heuristics, 
genetic algorithms cannot provide any guarantees on the quality of the solutions 
produced.  To overcome this problem, the proposed approach uses the free energy of the 
optimal pseudoknot-free structure as the baseline for the genetic algorithm.  Unlike 
previous genetic algorithm approaches, this one’s primary focus is to find structures with 
pseudoknots that have a lower energy than that of the optimal pseudoknot-free structure.  
Furthermore, “for known true RNA structures [one] can usually find a set of at least 95% 
of the base pairs that does not contain any pseudoknot ; on the other hand, almost all 
RNA structures contain one or more pseudoknots” [3].  Since most of the structural 
elements of known secondary structures are not pseudoknots, the majority of the 
structural elements of an optimal pseudoknot-free structure are likely to part of the true 
structure.  Thus generating seeds from an optimal pseudoknot-free structure will help 
guide the genetic algorithm towards the true structure.  The subsections below go over 
the different aspects of the algorithm. 
   

3.1 Overview 
 
Figure 26 shows the overview of algorithm.  Before the genetic algorithm can begin, the 
initial population and stem pools need to be created.  The preprocessing steps need to 
generate the seeds and stem pools.  The subsequent sections will go into how these are 
accomplished in details.   

 
             Figure 26: Flowchart of the algorithm 
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3.2 Generating Seeds and Stem Pools 
 
The intent behind seeding is to provide the genetic algorithm with an initial population 
that will be more likely to lead to the optimal solution than one that is randomly 
generated.  The main motivation behind seeding with pseudoknot-free structures is that 
the majority of structural elements of a secondary structure are not pseudoknots.  
Therefore, it is reasonable to assume that the majority of structural elements predicted for 
an optimal pseudoknot-free structure are likely to be part of the true structure.  To 
generate the seeds, first the optimal pseudoknot-free structure needs to be predicted.  The 
algorithm that is employed for this task is a dynamic programming algorithm by Zuker 
and Stiegler [21]; this is the algorithm that Zuker implemented for mfold.  After the 
pseudoknot-free structure has been identified, N copies of it will be made, where N is the 
size of population that the genetic algorithm will work it.  Each copy of the pseudoknot-
free structure will be inserted with a different pseudoknot from pseudoknot stem pool.  
The stem pools will contain all the stems that will be available for the genetic algorithm.  
The normal stem pool will contain stems of length three and above.  The pseudoknot 
stem pool will contain only H-type pseudoknots; each H-type pseudoknot is made up of 
two normal stem.  The subsequent subsections will go over the pseudoknot-free 
prediction algorithm, and how the stem pools are generated. 
 

3.2.1 Finding Optimal Pseudoknot-free Structures 
 
The algorithm that is employed to generate the optimal pseudoknot-free structure is a 
dynamic programming algorithm by Zuker and Stiegler [21]; it is an extension of the 
Nussinov algorithm that uses energy minimization rather than base-pair maximization.  
To accomplish this task, another recurrence relation was introduced to keep track of the 
free energy of each sub-solution.  The recurrence relation V(i, j) calculates the energy of 
all the possible structures between positions i and j where the bases at those positions are 
forced to be paired; however, if they cannot be paired (not a Watson-Crick or G-U base 
pair), a score of infinity is assigned.  The function e(i, j) is a scoring function that 
calculates the free energy of having the bases at position i and j closing a hairpin loop.  
The function e(i, j, k, l) calculates the free energy of having the bases at position i and j 
closing an internal loop or bulge that is opened by the bases at positions k and l; however, 
if k is equal to i + 1 and l is equal to j - 1, then it becomes the stacking energy between 
two consecutive base pairs.  The function Wi is the same as the recurrence relation W; 
however, it is calculated under a different context.  It is similar to (7), which handles 
bifurcations (or branching); in the case of (3), it is for multi-branch loops since the bases 
at position i and j are forced to pair, forming a loop consisting of at least three stems.  
The scoring functions use the Nearest Neighbor energy rules described in section 3.3 
along with Turner’s thermodynamic parameters to handle energy calculations. 
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Figure 27: Recurrence relations for pseudoknot-free structural prediction with free energy [21] 

 
The recurrence relation W is nearly identical to the one from the Nussinov algorithm; the 
only difference is that it references the recurrence relation V instead of increasing the 
base count when the bases at position i and j are paired.  Entry (5) handles the case where 
the base at position i is paired with position j – 1, and the one at position j remains 
unpaired; similarly, entry (6) is for when i is unpaired.  Entry (7) handles bifurcations 
where i and j are paired, but not with each other. 

3.2.2 Generating Stem Pools 
 
A dynamic programming algorithm is employed to generate a set of possible stems.  For 
every possible stems, the algorithm will try to extend it as long as possible; the extension 
will terminate when it encounter an irregular pairing (not Watson-Crick base pair or the 
Wobble base pair G-U).  During the trace back, if a stem contains consecutive G-U base 
pairs that gives it destabilizing energy at either ends, those base pairs will be removed.  
From the list of all possible stems, stems of size two are removed to reduce the number of 
stems.  Qualifying stems of size two will greatly increase the size of the stem pool, and 
the loss of their energy contribution should be minimal. To further reduce the size of the 
stem pool any stems of size 3 that contains any base positions that is also  part of the stem 
with the lowest energy are removed;  the assumption is that the best stem will generally 
be part of the true structure.  The recurrence relation below is derived from the recurrence 
relation of the pseudoknot-free prediction algorithm; it only allows energy stacking 
between consecutive base pairs.  
 

V(i, j) = min{V(i+1, j-1) + e(i, j, i+1, j-1), 0} 
 
This set of possible stems forms the normal stem pool; the pseudoknot stem pool is 
formed with the stems from the normal stem pool.  The pseudoknot stem pool only 

32 



 

contains the H-type pseudoknots since it is the only pseudoknot type that has an energy 
model, see section 3.3.2 for more details.  Furthermore, the H-type pseudoknot is 
compact, which means that it does not enclose or overlap another stem.  This allows the 
H-type pseudoknot to be treated as a single stem.  All possible H-type pseudoknots that 
conform to the energy model by Gultyaev et al. are added to the pseudoknot stem pool.  
This does not mean that the genetic algorithm will only be able to predict the H-type 
pseudoknots; more complex ones can form with stems from the normal stem pool.   

3.3 Energy Rules 
 
This section will go over the energy rules that will be used to determine the free energy 
of a structure.   

3.3.1 Nearest Neighbor Energy Rules 
 
These are the pseudoknot-free energy rules that are implemented in mfold by Zuker [20].  
As the name suggests, in the nearest neighbor energy model, the stacking energy given to 
a base pair is only dependent upon the base pair that precedes it.  In other words, the 
stacking energy of a base pair with bases at position i and j is only dependent on the base 
pair with bases at position i+1 and j-1.  In this energy model, stabilizing energies are 
given to stems, which are comprised of consecutive base pairs, and dangling bases; 
destabilizing energies are assigned to loops: hairpin loops, internal loops, bulges, and 
multi-branch loops.  Dangling bases are unpaired bases that are adjacent to a paired base. 
The nearest neighbor energy model has three restrictions on the type of secondary 
structural elements that it can be applied to: 
 
 1. Hairpin loops need to be at least three bases long 
 2. Each base can pair with only one other base 
 3. No pseudoknot structures 
 
The free energy of a secondary structure is the sum of its stabilizing and destabilizing 
energies.  The nearest neighbor energy rules are used in conjunction with thermodynamic 
data provided by the Turner lab [26]; they perform wet lab tests to estimate energy 
parameters for the nearest neighbor rules.  Turner’s thermodynamic parameters provide 
pre-computed energies for loops of thirty nucleotides or less.  For any loop whose length 
is greater than thirty bases, its energy is computed as 
 

δδG = δδG30 + 1.75 x RT x ln(ls/30) [20],   
 

where R is the universal constant and T is the temperature.  The value 1.75 x RT is 
approximated and provided along with Turner’s thermodynamic parameters as 1.079.  
This interpolation formula applies to hairpin loops, internal loops, and bulge loops.  Table 
1 shows the free energies loop size from 1 to 30; hairpin loops smaller than 3 are not 
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allowed.  Internal loops of size 1 are not allowed because they considered to be bulge 
loops of size 1, see Figure 29 and 30 (bulge and internal loops).  Free energies for 
internal loops of size 2 and 3 are placed a separate table where energies are assigned base 
on the configuration of the loop, as well as the nucleotides involved. 
 
Table 1: Energies for internal, bulge, and hairpin loops from loops.dat (values between 8 and 30 are 
omitted) [25] 

 
 
Below are details on how free energies are calculated for the different type of loops. 
 

 

Figure 28: Hairpin loop of size 12 

The free energy of a hairpin loop is computed as 
 

δδGH = δδGH1 + δδGH2 + δδGH3 + δδGH4 [23], 
 
where δδGH1 is the energy contributed by the size of the loop; δδGH2 is the stacking 
energies from the two dangling bases inside the loop (only applies to loop whose length 
is greater than four); δδGH3 is the bonus free energy that applies to certain loops of size 3 
and 4 (tri-loops and tetra-loops); δδGH4 is any additional energy that is not already 
accounted by the previous values.  Hairpin loops consisting of only cytosine bases are 
given additional energy, as well ones with a guanine and uracil (G-U) closing base pairs 
that is preceded by guanines on either sides. 
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Figure 29: A bulge loop of size 2 

 
The free energy of a bulge loop is just simply the size of the loop in most cases. For bulge 
loops of size 1, the unpaired base and the opening and closing base pairs determine its 
energy. 

 
Figure 30: An asymmetric internal loop of size 5 

 
The free energy for an internal loop is computed as 
 

δδGI = δδGI1 + δδGI2 + δδGI3 + δδGI4 [23], 
 
where δδGI1 is free energy contributed by the loop; δδGI2 and δδGI3 are stacking energies 
between the dangling bases and the two base pairs that formed the loop; δδGI4 is the 
penalty for asymmetric loops. 
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Figure 31: A multi-branch loop with 4 stems and 8 free bases 

 
The free energy of a multi-branch loop is computed as 

 
δδG(L) = a + b x ls(L) + c x ld(L) + δδGstack [23], 

 
where a is the offset for starting a multi-branch loop; b is the free base penalty; c is helix 
penalty; ls(L) is the number of free bases in the loop; ld(L) is the number of stems in the 
loop; δδGstack is the energy stacking from dangling bases in the loop.  The constants a, 
b, and c are estimated by Turner’s thermodynamic parameters as 9.0 kCal/mol, 0, and 0, 
respectively. 
 

3.3.2 Pseudoknot Energy Rules 
 
One of the primary challenges of RNA secondary structural prediction with pseudoknots 
is the lack of thermodynamic information available for pseudoknots.  The only energy 
model that is available for pseudoknots only applies to the most simple and common one, 
the H-type pseudoknot (hairpin pseudoknot).  As shown in Figure 32, the H-type 
pseudoknot consists of only two stem-loop (hairpin) structural elements where the loop 
from the first stem help forms the second stem.  
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Figure 32: An H-type pseudoknot forms from two stem-loops [17] 

 
The energy contribution of a pseudoknot is the same as any other structures; it gains its 
stabilizing and destabilizing energies from the stems and loops that forms it.  The energy 
estimation of H-type pseudoknot loops is computed by Gultyaev et al. as  
 

GL1 = Adeep (S2) + 1.75  x RT x ln(1 + N - Nmindeep(S2)) 
 

GL1 = Ashallow (S2) + 1.75  x RT x ln(1 + N – Nminshallow(S1))  [17], 
 
where GL1 is the energy of the L1 loop and GL2 is the energy of the L2 loop from Figure 
32.  Adeep (S2) and Ashallow(S1) are estimated values Gultyaev et al. derived from the 
Nearest Neighbor rules and Turner’s thermodynamic parameters.  The remaining terms 
are for interpolation purposes when the size of the loop is not listed in Table 2.  
Nmindeep(S2) is minimum size of the deep loop L1; for instance, if the stem S2 has a size 
of 3 or 4, then the minimum size of the deep loop is 2 or 1, respectively.  Similarly, 
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Nminshallow(S1) is the minimum size of the shallow loop L2.  N is the length of the loop.  R 
is the universal gas constants, and T is the temperature.  
 
Table 2.  Energy approximations for H-type pseudoknot loops [17] 

 
 
Furthermore, the energy estimation only applies to H-type pseudoknots that have a 
junction size of 1 or 0.  The junction is the gap between the stems that form the 
pseudoknot in planar representation; it is labeled as L2 in Figure 33. 
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Figure 33: H-type pseudoknot in planar representation. (b) Same structure in 3D [18] 

 
In order to allow more complex pseudoknots to form, we have come up with a simple 
rule for complex pseudoknots that will still allow the nearest neighbor rules to be applied.  
Simply calculate the energy for the complex pseudoknot as separate pseudoknot-free 
structures; Figure 34 and 35 show how a complex pseudoknot is decomposed into 
separate unknotted structures.  The free energy will be higher when compared to energy 
estimations for the H-type pseudoknots; however, if the structure is stable enough, the 
stacking energy from the stems should be able to overcome it.  This rule only applies to 
complex pseudoknots; the estimation by Gultyaev et al. will be used for the H-type 
pseudoknots. 

 
Figure 34: A complex pseudoknot (kissing hairpins) decomposes into 3 separate hairpin loops. 
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Figure 35: A complex pseudoknot decomposes into a two hairpin loops and an internal loop. 

 

3.4 Genetic Algorithm 
This section will go over how different aspects of the genetic algorithm are handled. 

3.4.1 Solution Representation 
 
In genetic algorithms, a solution is generally represented as a binary string, which will 
allow mutations and crossovers to be easily carried out.  It is possible for a secondary 
structure to be represented as a list of stems in a binary string (see section 2.3.4); 
however, the free energy of the loops formed by the stems cannot be computed with the 
binary representation.  Consequently, genetic algorithm approaches that do use the binary 
string representation ([9], [13], and [19]), only use the stacking energies of the stems to 
determine the energy of the structure.  Therefore, my approach uses a tree structure 
instead of the binary string representation; Shapiro and Wu [10] also use a tree structure 
for the same reason.  The tree structure will allow loops to be properly identified, which 
will enable to the correct energy rules to be applied.  Another advantage of using the tree 
structure is speedy detection of stem collisions and overlaps.  Figure 36 shows an 
example of how a secondary structure in the planar representation is mapped to the tree 
structure.  In this tree structure, complex pseudoknots are treated as separate 
substructures; the H-type pseudoknot is treated as a single stem that does not contain nor 
overlap with any other stems. 
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Figure 36: Tree representation of a secondary structure 

3.4.2 Mutations 
 
There are two types of mutations possible for a candidate secondary structure, deletion 
and addition mutations.  A deletion mutation will randomly remove a stem from the 
structure, and an addition mutation will randomly insert a new one.  With the binary 
string representation, a deletion of a stem is accomplished by simply flipping a bit from 1 
to 0.  Additions are a bit more complex since it requires colliding stems (stems that 
occupy the same space as the new stem) to be removed.  This makes deletions 
unnecessary since it is an inherent part of additions.  Since the genetic algorithm being 
employed is a steady state genetic algorithm, mutations will not be performed directly on 
each candidate solution; it will be performed on a copy instead.  It starts out by randomly 
selecting a mutation point along the length of the RNA sequence. After which, a mutation 
range will be randomly selected (between 1 and 4); the mutation range will extend in 
both the 5’ and 3’ directions from the mutation point.  Once the mutation range has been 
established, all stems that occupy the mutation range from both stem pools are retrieved.  
From the retrieved stems, one is chosen in a roulette wheel fashion, where stems with 
lower energy will have a higher chance of being selected.  The primary task of mutations 
is to introduce new stems into the population. 
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3.4.3 Crossovers 
 
Unlike mutations, crossovers generate new variants from the existing elements in 
population rather than adding new ones.  With the binary string representation, crossover 
just simply cut the two strings in halves at an arbitrary point and swaps them.  However, 
after the crossover has been performed, colliding stems in the newly created structure 
need to be resolved.  Since a tree representation is being used instead of the binary string, 
crossover is handled differently; however, its concept is still preserved.  Crossover is 
performed on each candidate solution with randomly selected one.  The approach I have 
taken is similar to the one used by Gultyaev et al. [9]; the stems from both solutions will 
be sorted by their stacking energies and iteratively added to form a new one.  The only 
difference is that Gultyaev et al. used all stems in the current population, which yields 
only one new variant per iteration of the genetic algorithm. 
 

3.4.4 Selections 
 
Selection has the important task of calculating the fitness of each candidate structure, and 
deciding which structures will persist to the next iteration.  Generally, the effectiveness of 
a genetic algorithm is determined by how it handles selection.  There are a few different 
flavors of genetic algorithms, and it is decided by the type of selection that is 
implemented.  A genetic algorithm is considered to be generational if an entirely new 
population is selected at the end of each generation (an iteration of the genetic algorithm).  
Generational genetic algorithms tend to change more rapidly.  On the other side of the 
spectrum are steady state genetic algorithms, where a portion of the current population 
will persist to the next generation.  As a result, changes in a steady state genetic algorithm 
occur more slowly.  According to the comparative study by Lee and Han [12], steady 
state genetic algorithms produce better results than generational ones for secondary 
structure predictions.  Thus this is the approach we have taken. 
 
Minimum free energy is used to measure the fitness of a candidate structure, see section 
3.3 for more details.  The challenge of the selection step is to keep the low energy 
structures to the next iteration while maintaining diversity to avoid converging to a local 
best too rapidly.  In this pursuit, selection has been divided into three equal segments.  
The first segment will contain the best 33.3% of the current population.  The second 
segment will contain randomly selected structures from the top 30% of the new candidate 
structures generate through mutations and crossovers.  The last segment will consist of 
randomly selected structures from the remaining structures.  The first segment will ensure 
that the top structures from the current population will move onto the next iteration.  The 
second segment will ensure that the top structures from the variants generated through 
mutations and crossovers will have a place in the population.  The function of the last 
segment is to maintain diversity.  Furthermore, selection will only allow structures with 
at least one pseudoknot to be in the first two segments.    
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4.  Results 
 
The algorithm described in section 3 has been implemented in Java and tested with 
various known pseudoknot structures from PseudoBase [24], which is currently the only 
repository available for known pseudoknot structures.  All secondary structure 
visualizations were rendered by PseudoViewer [25].  Table 3 contains a set of short 
sequences that were used for testing; these specific sequences were chosen because they 
are also used by Ren et al. to compare their HotKnots algorithm against existing ones [1].   
 
Table 3. Test sequences from PseudoBase 

 
 
The accuracy of the predictions is measured by their sensitivities and specificities.  
Specificity is defined as the ratio between the number base pairs from the predicted 
structure that matches the known structure (true positives) and the total number of 
predicted base pairs.  Sensitivity is defined as a ratio between the number true positives 
and the number of base pairs from the known structure.  These are the same definitions 
used by Ren et al. to compare their HotKnots algorithm against five other well known 
ones.  Tables 4 and 5 show how the seeded genetic algorithm matches up with those six 
algorithms.  ILM is the Iterated Loop Matching algorithm by Ruan et al. [7]; pknotsRE is 
the dynamic programming algorithm by Rivas and Eddy [4]; STAR is a package that uses 
the genetic algorithm by Gultyaev et al. [9]; pknotsRG is a dynamic programming 
algorithm by Reeder and Giegerich [5]; NUPACK is a dynamic programming algorithm 
by Dirks and Pierce.  The sensitivity and specificity values for the seeded genetic 
algorithm are averaged from a 100 different runs for each sequence, in which the 
structure with the lowest energy is compared with the known structure. 
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Table 4. Sensitivity of predictions compared with 6 other algorithms  

 
 
Table 5.   Specificity of predictions compared with 6 other algorithms 

 
 
 
Overall, the seeded genetic algorithm yields a higher sensitivity and specificity average 
than any other algorithms for the chosen test sequences.  However, the sequence PKB206 
and PKB207 are the only sequences in which the seeded genetic algorithm is the clear 
winner.  This is because their known structures yield higher free energy than the optimal 
pseudoknot-free structure.  The primary focus other algorithms is to find the structure 
with the lowest free energy, whereas the seeded genetic algorithm’s primary focus is to 
find a low free energy structure that contains at least one pseudoknot.  Figure 37 shows 
the secondary structures for PKB206 predicted by pknotsRG and the seeded genetic 
algorithm.  Tables 6 and 7 show the algorithm’s performance for short and long 
sequences.  Unfortunately, there are no long sequences available on PseudoBase; the long 
sequences listed in table 7 are from PseudoViewer’s homepage.  These sequences are not 
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ideal candidates since most of their structural elements are pseudoknots; therefore, the 
assumption that only a small part a secondary structure is made up of pseudoknots does 
not apply.  For these sequences, seeding with pseudoknot-free structures has an adverse 
effect since the initial population is leading the genetic algorithm in the wrong direction.  
This is not a problem for shorter sequences since the search space is much smaller; it only 
takes a few generations for the genetic algorithm to recover.   

 
Figure 37: (A) PKB206 structure predicted by pknotsRG.  (B) PKB206 structure predicted by GA 
and is also the known structure. 

 
Table 6. Sensitivity and specificity of short test sequences (average from 100 runs) 
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Table 7. Sensitivity and specificity of long test sequences (average from 100 runs) 

 
 
 

 
Figure 38: (A) and (B) are TYMV structures predicted by the seeded GA, (B) is also the known 
TYVM structure. (C) TYMV structure predicted by pknotsRG. (D) Pseudoknot-free structure 
predicted by the seeding algorithm. 
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Figure 39:  (A) PKB173 structure predicted by pknotsRG and seeding algorithm.  (B) Known 
PKB173 structure.  (C) Best structure predicted by seeded GA. 
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Figure 40:  (A) PKB72 structure predicted by Seeded GA. (B) known PKB72 structure. (C) PKB72 
structure predicted by pknotsRG. 

 
The structure that a genetic algorithm will be able to predict relies heavily on the contents 
of the stem pools.  As shown in Figure 39, the true structure of sequence PKB173 
contains an irregular base pair between C and A (position 3 and 65).  None of the 
computation-based prediction algorithms will be able to identify PKB173’s true structure 
since current energy models do not allow irregular base pairings.  Furthermore, to 
improve accuracy, stems of all sizes need to be considered.  However, with the larger 
stem pools comes a larger search space, which leads to longer execution time and wider 
differences in results between multiple runs. 
 
The current energy model for pseudoknot is too restrictive since it is only applicable to 
H-type pseudoknots.  Consequently, algorithms that only use the existing model will only 
be able to predict the H-type pseudoknot, which consists of only two stems.  Figure 40 
shows a pseudoknot that consists of three different stems.  Although, pknotsRG is 
capable of predicting complex pseudoknots, it prefers simple pseudoknots over complex 
ones due to its restrictive “canonization” rules.  The addition of the new energy rule to 
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allow complex pseudoknots to form seems to be a good starting point for estimating their 
free energies. 

5.  Future Work 
 
The primary challenge in RNA secondary structural predictions is our lack of knowledge 
of its folding dynamics.  Besides pseudoknots, another obstacle for computation based 
prediction is irregular base pairing.  Perhaps, covariations can be included in the stem 
generation process to allow stems with irregular base pairings.  One of the main 
challenges of genetic algorithms is to prevent rapid convergence of the population that 
may prevent better solutions from forming.  Clustering algorithms can be employed to 
group candidate structures based on their topology or stems.  Clustering will allow the 
selection process to keep the top scoring and representative solutions from each clusters; 
this will help the population to maintain its diversity.   
 

6.  Conclusions 
 
With our current knowledge of RNA folding, pseudoknots in particular, it is impossible 
for any computation-based prediction algorithms to produce reliable solutions.  
Approximation approaches that use dynamic programming algorithms are not efficient at 
finding pseudoknots because of inaccurate energy estimations.  Until we have more 
accurate energy models, heuristic approaches are more appropriate.  The primary 
advantage that genetic algorithm has over other heuristics is that it is able to explore a 
much wider search space.  However, this is also one of its main drawbacks.  With the 
larger search space, it will take longer to complete and the solutions produced by each 
run will vary more widely.  Since only a small portion of a secondary structure is 
comprised of pseudoknots, seeding with optimal pseudoknot-free structures will help 
narrow the search space and guide the genetic algorithm toward the true structure.  
 
The proposed algorithm shows promising results.  It out performs the current popular 
approaches for the set of test sequences from PseudoBase.  This is largely because the 
algorithm favors structures with pseudoknots since its primary function is to add 
pseudoknots to the pseudoknot-free seeds.  Other algorithms ended up predicting the 
pseudoknot-free structures for some of the test sequences since they yield a lower free 
energy than the true structures that do contain pseudoknots.  Heuristics such as genetic 
algorithms can often produce better results than dynamic programming approaches 
because with the existing energy models true structures are often suboptimal structures in 
term of free energies. 
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