27 research outputs found

    Data-driven Feature Description of Heat Wave Effect on Distribution System

    Get PDF
    During the last years, the effects of the climate change have become more and more evident. In particular, urban regions, where is more common the use of underground cables, are experiencing the strong effect of extremely high temperature conditions and low humidity. This phenomenon, known in literature as “heat wave”, should be properly evaluated for highlighting its effect on the system operation and planning, as well as for properly scheduling appropriate maintenance interventions. This paper presents a three-step procedure aiming to characterize the heat wave phenomenon in terms of “most significant features” and, on this basis, recognizing the days as “critical” and “non-critical”. The weather conditions of the city of Turin (Italy) and the faults that have affected the local network in the last 10 years have been considered. This approach will be useful for system operators for integrating the weather information in distribution system operation and planning procedures

    Persistence and Anti-persistence: Theory and Software

    Get PDF
    Persistent and anti-persistent time series processes show what is called hyperbolic decay. Such series play an important role in the study of many diverse areas such as geophysics and financial economics. They are also of theoretical interest. Fractional Gaussian noise (FGN) and fractionally-differeneced white noise are two widely known examples of time series models with hyperbolic decay. New closed form expressions are obtained for the spectral density functions of these models. Two lesser known time series models exhibiting hyperbolic decay are introduced and their basic properties are derived. A new algorithm for approximate likelihood estimation of the models using frequency domain methods is derived and implemented in R. The issue of mean estimation and multimodality in time series, particularly in the simple case of one short memory component and one hyperbolic component is discussed. Methods for visualizing bimodal surfaces are discussed. The exact prediction variance is derived for any model that admits an autocovariance function and integrated (inverse-differenced) by integer d. A new software package in R, arfima, for exact simulation, estimation, and forecasting of mixed short-memory and hyperbolic decay time series. This package has a wider functionality and increased reliability over other software that is available in R and elsewhere

    OPERATIONAL RELIABILITY AND RISK EVALUATION FRAMEWORKS FOR SUSTAINABLE ELECTRIC POWER SYSTEMS

    Get PDF
    Driven by a confluence of multiple environmental, social, technical, and economic factors, traditional electric power systems are undergoing a momentous transition toward sustainable electric power systems. One of the important facets of this transformation is the inclusion of high penetration of variable renewable energy sources, the chief among them being wind power. The new source of uncertainty that stems from imperfect wind power forecasts, coupled with the traditional uncertainties in electric power systems, such as unplanned component outages, introduces new challenges for power system operators. In particular, the short-term or operational reliability of sustainable electric power systems could be at increased risk as limited remedial resources are available to the operators to handle uncertainties and outages during system operation. Furthermore, as sustainable electric power systems and natural gas networks become increasingly coupled, the impacts of outages in one network can quickly propagate into the other, thereby reducing the operational reliability of integrated electric power-gas networks (IEPGNs). In light of the above discussion, a successful transition to sustainable electric power systems necessitates a new set of tools to assist the power system operators to make risk-informed decisions amid multiple sources of uncertainties. Such tools should be able to realistically evaluate the hour- and day-ahead operational reliability and risk indices of sustainable electric power systems in a computationally efficient manner while giving full attention to the uncertainties of wind power and IEGPNs. To this end, the research is conducted on five related topics. First, a simulation-based framework is proposed to evaluate the operational reliability indices of generating systems using the fixed-effort generalized splitting approach. Simulations show improvement in computational performance when compared to the traditional Monte-Carlo simulation (MCS). Second, a hybrid analytical-simulation framework is proposed for the short-term risk assessment of wind-integrated power systems. The area risk method – an analytical technique, is combined with the importance sampling (IS)-based MCS to integrate the proposed reliability models of wind speed and calculate the risk indices with a low computational burden. Case studies validate the efficacy of the proposed framework. Third, the importance sampling-based MCS framework is extended to include the proposed data-driven probabilistic models of wind power to avoid the drawbacks of wind speed models. Fourth, a comprehensive framework for the operational reliability evaluation of IEPGNs is developed. This framework includes new reliability models for natural gas pipelines and natural gas-fired generators with dual fuel capabilities. Simulations show the importance of considering the coupling between the two networks while evaluating operational reliability indices. Finally, a new chance-constrained optimization model to consider the operational reliability constraints while determining the optimal operational schedule for microgrids is proposed. Case studies show the tradeoff between the reliability and the operating costs when scheduling the microgrids

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Time Series Modelling

    Get PDF
    The analysis and modeling of time series is of the utmost importance in various fields of application. This Special Issue is a collection of articles on a wide range of topics, covering stochastic models for time series as well as methods for their analysis, univariate and multivariate time series, real-valued and discrete-valued time series, applications of time series methods to forecasting and statistical process control, and software implementations of methods and models for time series. The proposed approaches and concepts are thoroughly discussed and illustrated with several real-world data examples

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Proceedings of the XXVIIIth TELEMAC User Conference 18-19 October 2022

    Get PDF
    Hydrodynamic

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore