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Time series consist of data observed sequentially in time, and they are assumed to
stem from an underlying stochastic process. The scope of time series approaches thus
covers models for stochastic processes as well as inferential procedures for model fitting,
model diagnostics, forecasting, and various other applications. While time series data
have been collected for a relatively long time in history (one may recall the famous time
series on sunspot numbers), the development of methods and stochastic models for such
time series is more recent. Indeed, one of the motivations for announcing the Special
Issue in 2020 was the fact that this year can be considered a twofold ’anniversary year’
of time series modeling. On the one hand, the correlogram, the autoregressive (AR), and
the moving-average (MA) models for time series, all of which are nowadays part of any
course on time series analysis and covered by any statistical software, date back to the
1920s (mainly driven by G. U. Yule, G. T. Walker, and E. E. Slutzky; see Nie and Wu [1]
for a detailed discussion). On the other hand, the first comprehensive textbook on time
series was published by Box and Jenkins [2] in 1970, so 2020 allowed the celebration of
both the semi-centennial and centennial anniversary at the same time. In keeping with this
anniversary, it was indeed possible to collect articles on a wide range of topics in this Special
Issue: stochastic models for time series as well as methods for their analysis, univariate and
multivariate time series, real-valued and discrete-valued time series, applications of time
series methods to forecasting and statistical process control, and software implementations
of methods and models for time series. The remainder of this editorial provides a brief
summary of the contributions to this Special Issue, grouping the articles thematically.

Roughly one-half of the contributed articles deal with real-valued time series (thus
having a continuous range). In Nono et al. [3], an entropy-based Student’s t-process dynam-
ical model is proposed for dealing with non-Gaussian and non-linear univariate time series,
whose relevance is demonstrated by an application to financial time series. The paper by
Davidescu et al. [4] is centered around the time series of Romanian unemployment rates,
which serves as the base for comparing the forecast performance of several well-established
time series models. Not a single time series, but a large collection of univariate time series
is considered by Lindstrom et al. [5], who use functional kernel density estimation for
uncovering anomalous time series within such a collection. They apply their approaches
to time series on aviation safety events as provided by the International Air Transport
Association. Another data-intensive application area is electrical power forecasting, where
both statistical and machine-learning methods are used. Vivas et al. [6] provide a sys-
tematic review of both types of methods (as well as of hybrid models) regarding forecast
performance. Multiple time series are also considered by Sundararajan et al. [7], but now
with a focus on multivariate time series having unequal dimensions. They propose and
investigate a frequency-specific spectral ratio statistic, which is used to uncover differences
in the spread of spectral information in a pair of such time series, and which is applied to
data from stroke experiments. Another article on multivariate time series, following types
of integrated vector ARMA models, is the one by Bauer and Buschmeier [8], who inves-
tigate estimators resulting from canonical variate analysis as well as novel cointegration
tests. For illustration, they present an application to hourly electricity consumption data.
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The final article presented in the group of real-valued time series also constitutes a bridge
to the next group of articles—namely, to those on discrete-valued time series. Nüßgen
and Schnurr [9] consider a multivariate long-range dependent Gaussian time series, but
they analyze its dependence structure based on discrete ordinal patterns derived thereof.
The estimators of ordinal pattern dependence are analyzed asymptotically and within a
simulation study.

The second half of contributed articles deals with time series having a discrete range, or
more precisely, with count time series, where the observations are count values from the set
of non-negative integers. A common approach to adapt the ARMA model known for real-
valued time series to the case of count time series consists of substituting the multiplications
within the ARMA recursive model by types of thinning operators; see Chapters 2–3
in Weiß [10] for detailed background. The resulting integer-valued counterparts to the
ordinary AR and MA models are then referred to as INAR and INMA models, respectively.
In Huang and Zhu [11], a new type of the classical INAR model using binomial thinning is
proposed, where the innovations follow the one-parameter Bell distribution. Stochastic
properties and estimation approaches are investigated, and applications to time series
consisting of crime counts and strike counts are presented. Liu and Zhu [12], by contrast,
develop an extension of the INAR model, where a new type of thinning operator is used,
relying on the extended binomial distribution. The resulting model is able to flexibly
adapt to different types of dispersion behavior, which is also demonstrated by several
real-data examples. Furthermore, Yu and Wang [13] consider an extension of the binomial
thinning operator, achieved by allowing for a dependent counting series, and this time, the
operator is used within the class of INMA models. Properties of, and estimation for, this
new type of INMA model are investigated, and they are illustrated by an application to a
crime-counts time series. While the three aforementioned articles consider stationary and
linear count time series, the contribution by Liu et al. [14] deals with non-stationary and
non-linear time series as obtained from the periodic self-exciting threshold INAR model.
Properties and estimation are discussed, and an application to monthly counts of claimants
is presented. In Li et al. [15], again an INAR model is considered (using a randomized
binomial thinning operator); however, now the main focus is not on the model itself, but
on an approach for statistical process control. The authors use a cumulative sum chart for
process monitoring, discuss its performance evaluation, and apply it to a crime-counts
time series. Contrary to the aforementioned papers, the articles by Kim et al. [16] and
Shapovalova et al. [17] refer to multivariate count time series. For a bivariate count time
series following an integer-valued generalized AR conditional heteroscedastic (INGARCH)
model, Kim et al. [16] propose a minimum density power divergence estimator being robust
against outliers. The asymptotics of the estimator are investigated, and an application to
bivariate crime counts is presented. Shapovalova et al. [17] consider two types of models for
multivariate count time series: a log-linear multivariate INGARCH model and a non-linear
state-space model. These models serve as a base for a forecast performance comparison.
As real-world applications, count time series about bank failures and transactions are used.
Last but not least, Stapper [18] developed a comprehensive software package (in the Julia
language) for count time series modeling. The package fits different types of INARMA
and INGARCH models, and it offers functions for model diagnostics, forecasting, etc. In
his paper, Stapper [18] illustrates the application and the potential of “CountTimeSeries.jl”
with several real-data examples and simulation experiments.
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Issue, to the anonymous peer-reviewers for carefully reading the submissions as well as for their
constructive feedback.
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Abstract: Volatility, which represents the magnitude of fluctuating asset prices or returns, is used in
the problems of finance to design optimal asset allocations and to calculate the price of derivatives.
Since volatility is unobservable, it is identified and estimated by latent variable models known
as volatility fluctuation models. Almost all conventional volatility fluctuation models are linear
time-series models and thus are difficult to capture nonlinear and/or non-Gaussian properties of
volatility dynamics. In this study, we propose an entropy based Student’s t-process Dynamical model
(ETPDM) as a volatility fluctuation model combined with both nonlinear dynamics and non-Gaussian
noise. The ETPDM estimates its latent variables and intrinsic parameters by a robust particle filtering
based on a generalized H-theorem for a relative entropy. To test the performance of the ETPDM, we
implement numerical experiments for financial time-series and confirm the robustness for a small
number of particles by comparing with the conventional particle filtering.

Keywords: finance; volatility fluctuation; Student’s t-process; entropy based particle filter; relative
entropy

1. Introduction

Asset allocation and pricing derivatives have been studied in both academia and
industry as significant problems in financial engineering and quantitative finance. For
these problems, various methodologies have been developed based on the variation of
asset returns. In an idealized situation, the variation of returns has been assumed to
follow the Gaussian distribution [1]. However, it is known that the variation of returns
follows non-Gaussian distributions with fat tails [2]. To explain this observed fact, volatility,
which quantifies the magnitude of fluctuating returns, has been introduced and utilized.
Volatility, in particular, is often used as an indicator for constructing asset allocations
that focus on macroeconomic fundamentals, and there are many studies related to them.
Both researchers and investors have begun to attend to develop mathematical models of
volatility fluctuations. For example, Yuhuang et al. investigated the impact of fundamental
data on oil price volatility by focusing on time-varying skewness and kurtosis [3]. Hou et al.
studied volatility spillovers between the Chinese fuel oil futures market and the stock index
futures market, taking into account the time-varying characteristics of the markets [4].

In general, volatility is defined as the variance of a conditional Gaussian distribution
for the variation of returns, namely, given as a latent variable in the literature of Bayesian
statistical modeling. Based on this idea, various time-series models for the dynamics of
asset returns have been developed and proposed. Such time-series models are generally
called volatility fluctuation models, on which forecasting, state estimation and smoothing
can be implemented.

In recent years, volatility fluctuation models with a machine learning technique have
been proposed [5]. Since volatility is a latent variable, it is necessary for machine learning
models to incorporate latent variables into their own methodology. The Gaussian process

Entropy 2021, 23, 560. https://doi.org/10.3390/e23050560 https://www.mdpi.com/journal/entropy
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is a candidate, such as a Bayesian learning model [6], and its applications for several
problems in finance have been reported [7,8]. The Student’s t-process is an extension of the
Gaussian, for non-Gaussian distributed data such as asset returns. It has been proposed [9]
and applied to the analysis of financial time-series and asset allocations, and it is confirmed
for this model to estimate robustly [10].

This study extends the Student’s t-process latent variable model to a dynamic latent
variable model incorporating the structure of time-series. To estimate dynamic latent vari-
ables, we used the particle filter method [11]. The particle filter is used to estimate the latent
variables. Conventional particle filters have problems called weight bias and the particle
impoverishment problem (PIP), directly affecting the estimation accuracy [12]. Then, the
merging particle method [13] and Monte Carlo filter particle filter [14] have been proposed.
However, these methods are computationally expensive because they need a large number
of particles. Therefore, we used an Entropy-based particle filter (EBPF), which constructs
a parametric prior distribution on the generalized H-theorem for relative entropy [15]. It
is expected to prevent the bias of particle weights and the loss of particle diversity while
reducing the computational cost. Using EBPF in this experiment, and comparing it with
conventional methods, we confirmed that it is effective for finance problems.

In summary, to estimate robustly and avoid the particle filter’s problem, we combined
t-process dynamical model and EBPF. We call the proposed model an entropy based
Student’s t-process dynamical model (ESTDM), in the following. We will verify this
model’s usefulness. The remains of this paper are summarized as follows—Section 2
introduces related statistical and machine learning models. In Section 3, we derive and
propose ESTDM with its filtering method. In Section 4, we show the performance of
volatility estimation using the proposed method and discuss the results. Section 5 is
devoted to our conclusions and future perspectives.

2. Related Work

2.1. Volatility Fluctuation Models

One of the most basic and utilized volatility fluctuation models is the GARCH
model [16] given as follows:

xt∼N (0, σ2
t ), (1)

σ2
t = α0 +

q

∑
j=1

αjσ
2
t−j +

p

∑
i=1

βix2
t−i, (2)

where xt is a time-dependent random variable sampled from a Gaussian distribution with
mean 0 and variance σ2

t , and the time evolution of the variance is given by Equation (2).
The parameters αj and βi take positive values, which can be estimated by observed data.
Positive integers p and q are the order of the regression, respectively. Then this model is
known as the GARCH(p, q) model. For the sake of simplicity, the order parameters are often
fixed as p = q = 1. Various families of GARCH model have been developed and proposed
in the area of econometrics and quantitative finance [17]. For instance, asymmetric effect
has been introduced into a multivariate GARCH model [18,19].

2.2. Gaussian Process

For any finite number of vectors {x1, x2, · · ·, xn} and a stochastic process f (·), if the
joint probability density function { f (x1), f (x2), · · ·, f (xn)} is a Gaussian distribution, f (·)
is called a Gaussian process [6]. Since the Gaussian process samples an infinite-dimensional
vector, the mean value function m(·) and the covariance function K(·, ·) are introduced
as follows:

m(x) = E[ f (x)], (3)

K(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))T]. (4)

6
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Then, given a matrix X = [x1, x2, · · ·, xn]T, p( f |X) = N (m(X), K(X, X)) is the probability
density function of the Gaussian process. When we explicitly state that the stochastic
process f is sampled from the Gaussian process, we write f∼GP(m, K). Without loss
of generality, the mean function of the Gaussian process is often assumed to be zero.
The covariance function is represented by the kernel function k(·, ·), which is a positive
symmetric bi-variate function, satisfying

K(x, x′) = k(x, x′). (5)

Hence, K(X, X) is a positive definite symmetric matrix. As a kernel function, for example,
the radial basis function

kRBF(x, x′) = αexp(−l−2||x − x′||2) (6)

is often used. Here, α and l are hyper parameters.
For a pair of observed data D = {(x1, y1), (x2, y2), · · ·, (xn, yn)}, let X = [x1, x2, · · ·, xn]T,

Y = [y1, y2, · · ·, yn]T. The hyper parameters of the Gaussian process can be estimated by
gradient and Monte Carlo methods on D. From the trained Gaussian process, the prediction
Y∗ = [y∗

1, y∗
2, · · ·, y∗

m]
T for unknown input X∗ = [x∗

1 , x∗
2 , · · ·, x∗

m]
T is sampled from the condi-

tional Gaussian distribution N ( f ∗, K∗). The mean function f ∗ and the covariance function
K∗ of the conditional Gaussian distribution are given by

f ∗ = mX + KX∗ ,XK−1
X,XY, (7)

K∗ = KX∗ ,X∗ − KX∗ ,XK−1
X,XKX,X∗ . (8)

It is seen that the mean and covariance functions of the Gaussian process propagate the
information of previously observed data to predicted values.

2.3. Student’s t-Process

In the Gaussian process, it is assumed for the probability density function to be the
Gaussian distribution. Thus, when we apply the Gaussian process to data following a
probability distribution with fat tails, such as financial time-series, it is impossible to
perform an accurate estimation. A model that extends the Gaussian process to such data
is the Student’s t-process [9]. The Student’s t-process is a stochastic process f (·) with ν
degrees of freedom and a Student’s t-distribution defined as follows:

T (m, K, ν) =
Γ
(

ν+n
2
)

[(ν − 2)π]
n
2 Γ
(

ν
2
)
|KX,X | 1

2

[
1 +

1
ν − 2

(Y − mX)
TK−1

X,X(Y − mX)

]− ν+n
2

. (9)

Here, m(·) and K(·, ·) are the mean and covariance functions, respectively, and Γ(·) is the
gamma function. When the stochastic process f (·) is a Student’s t-process, it is denoted by
f∼T P(m, K; ν). As with the Gaussian process, the mean function of the Student’s t-process
is often assumed to be zero without loss of generality.

The predictive distribution of the Student’s t-process is also the Student’s t-distribution
T (m∗, K∗, ν∗), where degrees of freedom, mean and covariance functions are then updated
as follows:

ν∗ = ν + n, (10)

m∗ = mX + KX∗ ,XK−1
X,X(Y − mX) (11)

K∗ =
ν − β − 2
ν − n − 2

[
KX∗ ,X∗ − KX∗ ,XK−1

X,XKX,X∗
]

β = (Y − mX)
TK−1

X,X(Y − mX). (12)

7
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Unlike the Gaussian process, in the Student’s t-process, we can confirm that the effect of
the number of data is reflected in the update equations of the degrees of freedom and the
covariance function.

2.4. Student’s t-Process Latent Variable Model

In the Student’s t-process latent variable model, the input matrix X is given as a latent
variable. Assume that the observed data y∈RD and the latent variable x∈RQ are related
as y = f (x) by the Student’s t-process f∼T P(m, K; ν). When we let Y∈RD×N be the
sequence of N observed data, and X∈RQ×N be the sequence of N latent variables, we can
define the following model as Student’s t-process latent variable model [10]:

p(Y|X) =
Γ
(

ν+D
2

)
[(ν − 2)π]

D
2 Γ
(

ν
2
)
|KX,X | 1

2

[
1 +

1
ν − 2

(Y − mX)
TK−1

X,X(Y − mX)

]− ν+D
2

. (13)

Since the Student’s t-distribution converges to the Gaussian distribution in the limit of
ν→∞, we can see that the Student’s t-process latent variable model embraces the Gaussian
process latent variable model [20].

3. Proposed Model

3.1. Student’s t-Process Dynamical Model

Since volatility fluctuations cannot be observed directly, they are modeled as dynamic
latent variables, such as the family of GARCH models, most of which are given by linear
time-series models [18]. To describe nonlinear dynamics of volatility fluctuations, we
extend the Student’s t-process latent variable model to dynamic latent variables, namely,
Student’s t-process dynamical model (TPDM), which is expected to be robust for both
observable and unobservable with outliers.

Suppose pt represents an asset price at time t, the log-return is given by rt = log (pt/pt−1).
Let σ2

t denote the volatility of rt. Here, for an observable rt and a latent variable σ2
t , we

provide a volatility fluctuation model by a TPDM as follows:

rt∼T (0, σ2
t ; ν), (14)

vt ≡ log σ2
t , (15)

vt = f (vt−1, rt−1; ν) + εt (16)

εt∼N (0, σ2
n), (17)

where the observable rt as centered at 0 and following a Student’s t-distribution with ν
degrees of freedom, whose parameter is given by σ2

t . The dynamic latent variable vt is
defined by Equation (15) to take the whole real number as its range of value. The time
evolution of the dynamic latent variable vt is given by Equation (16) with a Gaussian white
noise whose variance is σn. The stochastic process f on the right-hand side of Equation (16)
follows a Student’s t-process given by

f∼T P(m, K; ν), (18)

m(ξt−1) = avt−1 + bxt−1, (19)

k(ξt−1, ξ ′
t−1) = γ exp (−l−2||ξt−1 − ξ ′

t−1||2), (20)

where ξt = (xt, vt) , and the hyper parameters are θ = (ν, σn, a, b, γ, l). Given a series of
observed data r1:T = {r1, r2, · · ·, rT}, it is possible to obtain the volatility fluctuations by
estimating a series of dynamic latent variables v1:T = {v1, v2, · · ·, vT}.

3.2. Particle Filter

Particle filter is a method of state estimation by Monte Carlo sampling, where a large
number of particles approximates posterior distributions. Hence, it can be applied to

8
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nonlinear systems, where posterior distributions are intractable [21]. For N particles, let
{vi

1:t−1}N
i=1 and Wi

t−1 (i = 1, 2, · · ·, N) be the realizations of the dynamic latent variables
and their associated weights up to time t − 1, respectively. The weights are normalized to
∑N

i=1 Wi
t−1 = 1. With these values, the posterior distribution p(v1:t−1|x1:t−1) at time t − 1

can be approximated as follows [22]:

p̂(v1:t−1|x1:t−1) =
N

∑
i=1

Wi
t−1δ(v1:t−1), (21)

where δ(·) is the Dirac’s delta function. In other words, the posterior distribution is
approximated by a mixture of the delta functions.

It is however known that an insufficient number of particles fails to approximate
the posterior distribution by the degeneracy of ensemble. Indeed, each particle’s weights
become unbalanced and biased toward a tiny number of particles as the time step pro-
gresses [11,12]. To overcome this problem, a huge amount of particles is used for filtering
processes in practice.

3.3. Entropy-Based Particle Filter

In the use of the conventional particle filter, it is necessary to sample a large number
of particles for accuracy. That leads to the growth of estimation time. In the case of online
estimation, reducing run time is desired. For this purpose, we introduce a robust particle
filter for a small number of particles.

Let us reconsider approximating the probability density function for the dynamic
latent variable, Q(v, t), called a background distribution. In the conventional particle
filter, the background distribution is approximated by the mixture of delta functions. This
approximation works well only when the background distribution exhibits an extensively
sharp peak. Nevertheless, the delta function has no width, and the distribution peaks only
at a single point.

To improve the accuracy for the approximation of the background distribution, we
replace the mixture of the delta functions with that of Gaussian distributions as

Q̂(v, t) =
M

∑
i=1

Wi
tN (μi

t, σ2,i
t ), (22)

where μi
t, σ2,i

t (1 ≤ i ≤ M) are the mean and variance of the Gaussian distributions at t.
Unlike the delta function, the Gaussian distribution has a certain width in its distribution.
Hence, the mixture of the Gaussian distributions is capable of fitting properly to data with
large variance and fat tails.

With the use of finite samples from the background distribution Q(v, t), the poste-
rior/filter distribution P(v, t) is inferred by the minimum principal for relative entropy,
which is known as an entropy based particle filter [15]. The relative entropy (Kullback-
Liebler divergence) between the filter distribution P(v, t) and the background distribution
Q(v, t) are defined as follows [23–25]:

H[P|Q] =
∫

Ωv
P(v, t) log

(
P(v, t)
Q(v, t)

)
dv, (23)

where Ωv is the domain of the dynamic latent variable vt. On the properties of the relative
entropy as a quasi-distance for probability density functions, the filter distribution is
obtained as the minimizer for the relative entropy in Equation (23). Combined with
the entropy based particle filter, the state estimation of the ESTDM is implemented. An
overview of its algorithm is explained in the following Algorithm 1.

9
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Algorithm 1 Entropy Based Student’s t-Process Dynamical Model (ETPDM)

Require: Initial particles X0 =
[
X0

0 , ..., X M
0
]
, Initial particles’ weights Wi

0 = 1/M
Ensure: ∑M

i=1 Wi
t = 1.0 at any time t

1: while There are observations to be assimilated do
2: Compute importance weights proportional to the likelihood with observation xt

Wi
t ∝ p(yt|Xt) (24)

According to weights {Wi
t}, resample M particles {X j

t}M
j=1.

Then we can compute filter distribution Q′(x) at time t

Q′
t =

M

∑
i=1

Wj
tN (X j

t ). (25)

At the same time, we’re also able to estimate expected status vt , extracting any finite
number of samples {vk} from background density Qt

vt = E(vk). (26)

With stochastic process f ∼ T (m, k; ν), generate new particles

{X i
t+1} = f (X j

t , xt) (27)

Then we can predict distribution Q̂(x) at time t + 1

Q̂t+1 =
M

∑
i=1

Wi
tN (X i

t+1). (28)

3: return Log likelihood for estimation p(yt|vt).
4: end while

4. Numerical Experiments

In this section,we implement numerical experiments to validate the ETPDM for the
time-series of a foreign exchange rate. As a dataset, we use USD/JPY exchange rate in
2010—every 1-min sampled, 30-min sampled and 1-h sampled. Figures 1–3 show the
time-series of the log-return of the USD/JPY exchange rate rt and volatility fluctuations
estimated by respective the ETPDM, the conventional particle filter for the GARCH model
(cp-GARCH) and the conventional particle filter for the Student’s t-process dynamical
model (cp-TPDM). Warm up period of the estimations is 0 ≤ t ≤ 20, where the values of
volatility show zeros. In Figure 1a, intermittent jumps are observed, which are evidence
of the non-Gaussian behavior of rt. Indeed, the estimated volatility fluctuations show
higher peaks at the same time point of the intermittent jumps in Figure 1b–d. That means
all of the models capture the nature of volatility fluctuations of the USD/JPY exchange
rate effectively. Besides, the same can be said for other types of data sets—30-min and
1-h—in Figure 2 or Figure 3, which means that these models can be applied to data of any
sampling rate. Previous volatility estimation studies used the GARCH model with various
estimation methods. A typical example is the particle filter [26], or the Markov chain Monte
Carlo simulation [27]. In all of these studies, including this experiment, the GARCH model
has been implemented well.
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Figure 1. Overview of estimation results in 1-min chart.

Figure 2. Overview of estimation results in 30-min chart.
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Figure 3. Overview of estimation results in 1-h chart.

Figure 4 show the estimated log-likelihoods of the ETPDM, cp-GARCH and the cp-
TPDM. The likelihood tends to be higher for the ETPDM, the cp-TPDM and cp-GARCH in
that order. As mentioned in Section 2, TPDM is a superordinate model that encompasses
Gaussian process dynamical model, the GPDM, and the fact that the likelihood of the
GARCH was at a lower level than that of TPDM is consistent with the results of previous
studies comparing the GARCH and the GPDM [26]. Likelihood is the most reliable indicator
to quantify the model performance, and the EPTDM had the best performance of three
models. Besides, in the case of cp-TPDM, the log-likelihoods scatter around −0.7 in the
range of particle numbers from 10 to 500 without convergence. This means the performance
of the conventional particle filter is insufficient for the given data. On the other hand, the
log-likelihoods of the ETPDM exhibit good convergence for the particle numbers larger than
100 in Figure 4b, which indicates the ETPDM is expected to be robust for fewer sampling.

To investigate the effectiveness of particle filtering, we introduce an effective parti-
cles rate

Re f f =
1

N ∑N
i=1(W

i
t )

2
(29)

as a measure for evaluating the bias of sampled particles. This value gives the maximum
value Re f f = 1 when the weights are uniformly distributed as Wi = 1/N (i = 1, 2, ..., N).
In Figure 5a, the effective particle rates for the cp-TPDM scatter for whole particle numbers
from 10 to 500. This kind of worse performance for the effective particle rates stems from
the weight bias problem of the particle filtering. In other words, the conventional particle
filter is hard to overcome the particle impoverishment problem, even if, by increasing
particle numbers. On the contrary, for the case of the ETPDM as shown in Figure 5b, we can
see that the effective particle rate converges beyond 50%. This is the expected advantage of
the ETPDM, which stems from the finite band of each Gaussian distribution as a component
of the prior distribution. Thus, the ETPDM serves as an accurate estimation for lower
particle numbers and then would contribute to effective online estimation. Focusing on
another comparison of the ETPDM, the cp-GARCH, also looks good in the view of the
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effective particles rate. However, when we also consider the likelihood in Figure 4a, we
can say that the practical ensembles didn’t affect to performance because cp-GARCH was
less suitable for this problem than the ETPDM. This is another evidence that the ETPDM
have better potential.

Figure 4. Estimated log-likelihoods of (a) the cp-GARCH, the cp-TPDM and (b) the ETPDM.

Figure 5. Effective particle rates of (a) cp-GARCH, the cp-TPDM and (b) the ETPDM.

In order to validate the robustness for estimating intermittent return dynamics, we
investigate the degree of freedom ν of the Student’s t-process dynamical models. For
this purpose, we split time window of return fluctuations; one is low volatility window
(50 ≤ t ≤ 250) and the other is high volatility counterpart (360 ≤ t ≤ 560). The descriptive
statistics of the return fluctuations in the two windows are shown in Table 1. As is seen
in the table, kurtoses in both time windows are larger than 3, namely, corresponding
return fluctuations follow non-Gaussian statistics. Prior research has confirmed that when
the data set follows a Gaussian distribution, the strengths of models that excel at robust
estimation do not come into play [28]. Therefore, such a data set that follows a non-
Gaussian distribution is appropriate for the purpose of this experiment. Figure 6 exhibit the
log-likelihoods of the cp-TPDM and the ETPDM in (a) low volatility window and (b) high
volatility one. In these figures, the log-likelihoods of the ETPDM in both time windows
have maxima in 6 ≤ ν ≤ 7 though the estimations by the the cp-TPDM are unstable. This
result evidences the robustness of the ETPDM.
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Figure 6. Log-likelihoods of the cp-TPDM and the ETPDM in (a) low volatility window and (b) high
volatility one.

Table 1. Two types of window.

Window Type Mean Variance Skewness Kurtosis

high volatility window −1.0 × 10−6 8.31 × 10−4 −0.974 5.22
low volatility window 1.0 × 10−6 4.41 × 10−4 −0.531 3.56

5. Conclusions

In this study, we proposed the ETPDM to implement robust estimation for dynamical
latent variables of nonlinear and non-Gaussian fluctuations. In estimating the dynamic
latent variables and hyper parameters, the entropy based particle filter with the Gaussian
mixture distribution was adopted. To validate the performance of the ETPDM, we carried
out the numerical experiment for the return fluctuations of a foreign exchange rate com-
pared with the cp-GARCH and the cp-TPDM. As a result, we confirmed the advantages
of the ETPDM; (i) good convergence property, (ii) high effective particle rate and (iii)
robustness for a small number of particles.

Based on its advantages, the ETPDM is applicable for online volatility estimation for
the problem of asset allocation and derivative pricing in a short time span. As a basis
distribution for background distribution, we employed the Gaussian distribution in our
numerical experiments. Nevertheless, the framework of the entropy based particle filter
is able to be extended to other probability density functions. Additionally, we can adapt
this research to any other time-series data, not just asset data. It has the potential to be
applied to control engineering, such as the self-positioning estimation problem. These are
our future works.
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Abstract: Unemployment has risen as the economy has shrunk. The coronavirus crisis has affected
many sectors in Romania, some companies diminishing or even ceasing their activity. Making
forecasts of the unemployment rate has a fundamental impact and importance on future social policy
strategies. The aim of the paper is to comparatively analyze the forecast performances of different
univariate time series methods with the purpose of providing future predictions of unemployment
rate. In order to do that, several forecasting models (seasonal model autoregressive integrated
moving average (SARIMA), self-exciting threshold autoregressive (SETAR), Holt–Winters, ETS (error,
trend, seasonal), and NNAR (neural network autoregression)) have been applied, and their forecast
performances have been evaluated on both the in-sample data covering the period January 2000–
December 2017 used for the model identification and estimation and the out-of-sample data covering
the last three years, 2018–2020. The forecast of unemployment rate relies on the next two years,
2021–2022. Based on the in-sample forecast assessment of different methods, the forecast measures
root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percent error
(MAPE) suggested that the multiplicative Holt–Winters model outperforms the other models. For the
out-of-sample forecasting performance of models, RMSE and MAE values revealed that the NNAR
model has better forecasting performance, while according to MAPE, the SARIMA model registers
higher forecast accuracy. The empirical results of the Diebold–Mariano test at one forecast horizon for
out-of-sample methods revealed differences in the forecasting performance between SARIMA and
NNAR, of which the best model of modeling and forecasting unemployment rate was considered to
be the NNAR model.

Keywords: unemployment rate; SARIMA; SETAR; Holt–Winters; ETS; neural network autoregres-
sion; Romania

1. Introduction

Unemployment is a socio-economic problem facing all countries of the world, affecting
both the standard of living of the people and the socio-economic status of the nations. Un-
employment represents the result of a poor demand in the economy; a low demand implies
a lower need for labor, which will lead either to reduced working hours or redundancies.
Although unemployment is a consequence of a fundamental change in an economy, its
frictional, structural, and cyclical behavior contributes to its existence.

The pandemic led to a large number of unemployed in Romania; in March, the un-
employment rate rose to 4.6% compared to 3.9% in February 2020. The provisions of the
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military ordinances on stopping the spread of the new coronavirus have led many compa-
nies to partially or completely cease operations, which has led to the highest unemployment
rate in the last two years.

Given the pandemic context, the unemployment rate in March was still low, due to
the fact that in March, the effects of the pandemic were not entirely felt; companies waited
until the last moment to see what measures the state would take to support technical
unemployment. The first measures taken by companies were rest leave and other types of
leave to be granted to employees.

The projection was that the unemployment rate in 2020 will increase, the month of
March being only the beginning of the health crisis in Romania. According to the Ministry
of Labor and Social Protection, more than 276,000 people were in a position where their
employment contract was terminated on 30 April 2020. The industries with the most
terminated employment contracts were wholesale and retail trade, manufacturing, and
construction.

Although the effects of the coronavirus crisis have been seen in the economy since the
measures taken in March 2020, forecasts indicated that the highest level of unemployment
will reach 3.98% in the second quarter of 2020. Even the most pessimistic forecasts indicated
that the unemployment rate in 2020 will not exceed 7%. The explanations for these low
values compared to real figures were given by the fact that the persons returned to the
country and the persons with terminated employment contracts are not included in the
number of unemployed; at the end of March 111,340 terminated employment contracts had
been registered and 250,000 people returned to Romania from abroad. Another explanation
is the fact that the labor market was not growing at all during the crisis; therefore, people
were not searching for a job, which is an essential condition to be declared unemployed.

The crisis caused by the coronavirus affected activities in many sectors and the number
of unemployed increased, but this has not been reflected by the unemployment rate, as
the real number of those unemployed was not included in the reporting base. Therefore,
unemployment was lower, but this was not real, as the unemployed were not included in
the statistics but rather in structural unemployment: the employment rate was reduced.

In this context, it becomes even more important to be able to provide future predictions
of unemployment rate, and in order to do that, different univariate forecasting models
(seasonal model autoregressive integrated moving average (SARIMA), self-exciting thresh-
old autoregressive (SETAR), Holt–Winters, ETS (error, trend, seasonal), neural network
autoregression (NNAR)) have been applied in order to identify the most appropriate model
and to forecast the future values of unemployment rate. In order to do that, the period
January 2000 to December 2020 has been used and divided into two sub-samples: the
in-sample data or the training dataset covering the period January 2000–December 2017
used in the model identification and estimation and the test dataset or the out-of-sample
data covering the last three years, 2018–2020. The forecast of unemployment rate relies on
the next two years, 2021–2022.

Analyzing the patterns of unemployment rate, the research aims to respond to the
following questions: Does the unemployment rate exhibits a non-stationary nonlinear
pattern? Does the unemployment rate exhibit a seasonal pattern? Do the more sophisticated
methods such as SETAR, NNAR, or SARIMA performs better than simple methods (HW
or ETS)? What is the univariate forecasting method that performs best within in-sample
data? What is the univariate forecasting method that has the best performance for the
out-of-sample dataset? Which is the method that best captures the pandemic shock?

What is the combination of methods that could offer reliable future values for the
Romanian unemployment rate?

Relying on these questions, the following three main hypotheses can be formulated:

Hypotheses 1 (H1). The Romanian unemployment rate exhibits a non-stationary nonlinear and
seasonal pattern over the period January 2000 to December 2017.
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Hypotheses 2 (H2). NNAR and SARIMA models registered the best out-of-sample forecast
performance from the all four methods applied.

Hypotheses 3 (H3). The combination of NNAR and SARIMA models offers the best approach in
forecasting the unemployment rate for 2021–2022.

The paper is organized as follows. The literature review presents an overview of
the most important studies regarding this topic of forecasting unemployment rate, while
Section 3 is dedicated to the presentation of five different forecasting models (SARIMA,
NNAR, SETAR, Holt Winters, ETS). Section 4 incorporates information related to the data
used in the analysis and the main empirical results of all five forecasting methods. The
last part of this section ends with the comparison of models forecasting performance both
for in sample and out-of-sample datasets. The final section of the paper presents the main
conclusions about the relevance of this research.

2. Literature Review

The phenomenon of unemployment is the result of the dysfunctions of the economy,
in the field of employment, being present both in the period of market economy transition
and in the period of economic growth [1]. Unemployment is a very important labor market
issue, being a mismatch between the labor demand and supply. This indicator has major
social and economic implications, being one of the factors to be examined in macroeconomic
growth and very important in comparing the country’s economic performance from a work
perspective [2], affecting people’s living standard and the nation’s socio-economic status.

In this context, unemployment represents one of the biggest social problems of the
world, being present in each country, the intensity of the phenomenon differing according
to the economic development of a society. Population growth implies an increase regarding
workforce, the jobs being insufficient in the short term [3]. The adjustment of the economic
structure, the education system, and the establishment of the specialty does not satisfy the
needs of economic restructuring; the professional skills of the rural labor force cannot satisfy
the demand for jobs, aggravating the severity of unemployment. One of the solutions to
this problem is the establishment of an early unemployment warning system, the forecast
being absolutely necessary [4].

Forecasting the unemployment rate is very important for many economic decisions,
especially setting relative policies by the government. The unemployment rate is correlated
to the economic development of a society; therefore, different forecasting techniques are
used for its forecast, from the simple OLS (ordinary least squares) method to the GARCH
(generalized autoregressive conditional heteroskedasticity) models and neural networks.
The econometric models are often related to stationary time series, seasonality, and trend
analysis, and exponential smoothening to the simple OLS technique including ARIMA
(autoregressive integrated moving average) models [5].

The ARMA and GARCH models were used by Chiros [6] to predict the unemployment
rate in the UK; Parker and Rothman [7] modeled quarterly unemployment rates using the
AR model (2), Power and Gasser [8] highlighted that the ARIMA (1,1,0) model has better
forecasting performance for unemployment rates in Canada. Etuk et al. [9] indicated that
the ARIMA (1,2,1) model is suitable for forecasting the unemployment rate in Nigeria.

Rothman [10] used six nonlinear models for out-of-sample forecasting, Koop and Pot-
ter [11] used the autoregressive threshold (ART) for modeling and forecasting the monthly
unemployment rate, and Proietti [12] used seven forecasting models (linear and nonlinear).
Johnes [13] used autoregressive models, GARCH, SETAR (Self-Exciting Threshold AutoRe-
gressive) and neural networks in order to predict the monthly unemployment rate in the
United Kingdom, the SETAR model registering the best results. Peel and Speight [14] also
concluded that the SETAR model is better, in terms of root mean squared error (RMSE),
compared to AR models.
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As an alternative to ARMA models, Gil-Alana [15] used an exponential Bloomfield
spectral model to model unemployment in the UK, the results indicating that this model is
suitable for forecasting this phenomenon.

Forecasting the unemployment rate in Italy, Naccarato et al. [16] used both official
data and the Google Trends query rate, estimating two different models: ARIMA and VAR
(vector-autoregressive models), the VAR model registering a lower forecast error.

The autoregressive integrated moving average (ARIMA) models were introduced
by Box and Jenkins [17], also developing the practical process to select the most suitable
ARIMA model. ARIMA models are more secure in case of short-term forecasts compared to
long-term forecasts [18]. For seasonal and non-seasonal data, the SARIMA (seasonal model
autoregressive integrated moving average) is used. The SARIMA model is an extension
of the simple ARIMA models, being used for inflation forecasting [19–21], for exchange
rate forecasting [22,23], for tourist arrivals and income forecasting [24,25], as well as for
unemployment forecasting. The literature includes a lot of studies on forecasting using
ARIMA models, respectively the Box–Jenkins methodology, which is widely used by many
researchers to highlight future unemployment rates [26].

Among them, Wong et al. [27] developed autoregressive integrated moving average
(ARIMA) models in order to analyze and forecast important indicators in the Hong Kong
construction labor market: employment level, productivity, unemployment rate, underem-
ployment rate, and real wage. Ashenfelter and Card [28] analyzed unemployment, nominal
wages, consumer prices, and the nominal interest rate, using the autoregressive moving
average model. Kurita [29] forecasted the unemployment rate using autoregressively
integrated fractional moving average, the model being much better than naive predictions.

Predictions of unemployment rate in the world using the ARIMA model were made
by Chih-Chou and Chao-Ton [30], Etuk et al. [22] and Nkwatoh [31] in Nigeria using the
ARIMA and ARCH model, Kanlapat et al. [32] in Thailand, Nlandu et al. [33] in Barbados,
using the seasonal integrated autoregressive moving average model (SARIMA), Dritsakis
and Klazoglou [34] in the USA using SARIMA and GARCH models, and Didiharyono and
Syukri [35] in South Sulawesi using the ARIMA model.

In the European Union, the unemployment rate is forecasted using Box–Jenkins and
TRAMO/SEATS methods [36,37]. In European countries, the unemployment rate was
predicted using the Box–Jenkins methodology in Germany using the ARIMA and VAR
models [38], in the Czech Republic using the SARIMA model [39,40], in the German
regions using a model spatial GVAR [41], in Greece, both as a dynamic process and as a
static process using SARIMA models [42,43], and in Slovakia using ARIMA and GARCH
models [44].

Unemployment predictions using VAR were realized also by Kishor and Koenig [45],
taking into account that data are subject to revisions. The accuracy of forecasts based on
VAR models can be measured using the trace of the mean-squared forecasts error matrix,
generalized forecasts error second moment [46], transfer functions [47], and combined
forecasts based on VAR models are a good strategy for improving predictions’ accuracy [48].

Wang et al. [49] used back propagation neural networks (BPNN) and the Elman neural
network to predict unemployment rate. Neural networks are also used by Peláez [50] to
forecast the unemployment rate, together with econometric models.

As the asymmetric behavior of unemployment rate can be modeled using a nonlin-
ear time series model, Skalin and Terasvirta [51] proposed STAR. Peel and Speight [14]
forecasted the unemployment rate in the UK using self-exciting threshold autoregressive
(SETAR) models and an autoregressive model, in terms of RMSE, SETAR models registering
better forecasting performance. Koop and Potter [11] used threshold autoregressive (TAR)
in order to forecast the US unemployment rate, Johns [13] forecasted the unemployment
rate using AR(4), AR(4)-GARCH(1,1), SETAR(3,4,4), and neural network, highlighting that
SETAR is the best model.

According to the international definition [52], the unemployed are people aged be-
tween 15 and 74 who at the same time satisfy three conditions: they do not have a job,
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are available to start work in the next two weeks, and have been actively looking for a
job anytime in the last four weeks. The unemployment rate represents the share of the
unemployed in the active population, the active population in a country including all
persons who provide labor available for the production of goods and services during the
reference period, including employees and the unemployed.

Unemployment was first introduced in Romania in 1991, and the first study to assess
unemployment according to ILO standards was conducted in 1994 [1]. Specific to a country
in transition, unemployment in Romania was the result of the enterprise restructuring and
the contraction of production [53].

In the first period after 1990, although many occupations appeared in Romania,
the number of unemployed increased; 1994 had the highest registered unemployment
rate [54]. In the period 1995–1996, the number of unemployed decreased by 46.28% and
then increased significantly until 1999 due to socio-economic imbalances that arose from the
closure of other productive structures. After 1999, the economic activities were restructured
and privatized, especially in the case of large companies, leading to large layoffs, but also
to the emergence of new jobs, the result being the unemployment reduction. Since 2000,
employment in Romania has registered a continuous increase, with small fluctuations,
leading to a reduction in unemployment [55].

In order to substantiate the macroeconomic policies in Romania, it is important and
topical to forecast the labor supply, employment, and unemployment. In Romania, as in
other European countries, unemployment is monitored and assessed very seriously. The
most common method used in order to predict the unemployment in Romania involves
ARIMA models.

Son et al. [56] analyzed the unemployment rate in EU-27 countries, focusing on
Romania, concluding that the unemployment rate can be modeled by using a linear autore-
gressive model. Others studies using ARIMA models in order to predict the unemployment
rate in Romania were realized by Madaras [57], Bratu [58], and Simionescu [59], while
Dobre and Alexandru used the VARMA and VAR models [60], and at the level of two
Romanian counties (Brasov and Harghita), studies used the Box–Jenkins methodology and
NAR model based on the artificial neural network. Comparing the forecasted values with
the officially recorded unemployment rate from the same period, we noticed that by the
end of the period, the differences between the real and the predicted values became larger
in the NAR model than in the ARMA model forecast, medium-term forecasts, forecasts
based on the ARMA model being more accurate.

Other forecasts of the unemployment rate in Romania were realized by Bratu and
Marin [61] using several techniques: econometric, exponential modeling, smoothing tech-
nique, and moving average method; of these, predictions based on the exponential smooth-
ing technique recording the highest degree of accuracy. Voinegu et al. [62] predicted the
unemployment rate using Holt’s improved model, the monthly series being constructed
and disseminated in three forms: adjusted, seasonally adjusted, and trend adjusted. Other
predictions used the Kalman approach, the Kalman filter being appropriate for calcu-
lating the natural unemployment rate [63]. In the short term, Zamfir [64] modeled the
unemployment rate using stochastic models.

Simionescu [65] predicted the unemployment rate in Romanian counties using Internet
data and official data as well as a methodology consisting of different types of models with
panel data. In the case of the quarterly unemployment rate, updated vector-autoregressive
models (VAR models) and a Bayesian VAR model were used, but the VAR model exceeded
the Bayesian approach in terms of predicted accuracy [66].

In order to analyze the dynamics of the unemployment rate in Eastern Europe, in-
cluding Romania, Lukianenko et al. [67] constructed econometric regression models with
nonlinearities due to discrete changes in modes. Using the Markov switching model,
regularities were captured by modeling the asymmetry in the unemployment rate during
contractionary states, revealing the specifics of the labor market for each country and the
differences in the flexibility of reactions to changes in the economic environment.
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3. Data and Methodology

In order to determine the best model to forecast the Romanian unemployment rate, we
have investigated the monthly unemployment rate covering the period 2000M01 to 2020M12.
The data were provided by Eurostat (European Union labour force survey, EU-LFS).

When choosing models, it is common practice to split the available data into two
portions, training and test data, where the training data are used to estimate any parameters
of a forecasting method and the test data are used to evaluate its accuracy. Therefore, the
training set or “in-sample data” was set to the period 2000M01–M2017M12, and the test
set or the “out-of-sample data” was set to the period 2018M01-2020M12. The forecast of
unemployment rate will rely on the next two years of the period 2021–2022.

The main objective of the paper is to compare the forecasting potential of five models:
exponential smoothing models (additive and multiplicative Holt–Winters (HW) models,
and ETS model), the SARIMA model, the neural network autoregression (NNAR) model,
and the SETAR model, and to predict future values of unemployment rate beyond the
period under consideration.

Therefore, with the study, the forecasting performance was derived from the five
models in view of identifying the best suited forecasting procedure for the monthly unem-
ployment rate, taking into account the following steps:

1. Fit the Holt–Winters models (additive and multiplicative) on the training dataset
(January 2000 to December 2017)

2. Fit the ETS model on the training dataset
3. Fit the NNAR model on the training dataset
4. Fit the SARIMA model on the training dataset
5. Fit the SETAR model on the training dataset
6. Compare the in-sample forecast accuracy measures for the all models
7. Compare the out-of-sample forecast accuracy measures for the models over the period

January 2018 to December 2020
8. Compare the forecast projections of unemployment rate for all models over the period

January 2021 to December 2022.

3.1. Holt–Winters Method and ETS Models

We will start our technical demarche by introducing the class of exponential smoothing
methods as widely used forecasting procedures referring particularly to the Holt–Winters
(HW) method, which is a commonly used forecasting method in time series analysis incor-
porating both trend and seasonal components, irrespective of whether they are additive or
multiplicative in nature. The additive method is preferred when the seasonal variations
are roughly constant through the series, while the multiplicative method is preferred when
the seasonal variations are changing proportional to the level of the series.

The Holt–Winters’ additive method can be written as follows:

Lt = α(yt − St−s) + (1 − α)(Lt−1 + bt−1) (1)

bt = γ(Lt − Lt−1) + (1 − γ)bt−1 (2)

St = δ(yt − Lt) + (1 − δ)St−1. (3)

The Holt–Winters’ multiplicative method can be written as follows:

Lt = α
yt

St−s
+ (1 − α)(Lt−1 + bt−1) (4)

b1 = γ(Lt − Lt−1) + (1 − β)bt−1 (5)

St = δ
yt

Lt
+ (1 − δ)St−1 (6)
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where t = 1, . . . , n, s represents the length of seasonality (months), Lt represents the level of
the series, and bt denotes the trend and St seasonal component [22]. The constants used for
this model are α (level smoothing constant), γ (trend smoothing constant), and δ (seasonal
smoothing constant). In order to choose the most adequate smoothing constants, we tested
different values of the smoothing constants. The model is selected according to the certain
forecast accuracy such as MAPE (the mean absolute percentage error), the best model being
the model who register the minimum value for MAPE.

The ETS (error, trend, seasonal) model represents time series models that support
the exponential smoothing methods, consisting of a trend component (T), a seasonal
component (S), and an error term (E). These are based on error–trend–season probabilities
of Hyndman, being defined an extended class of ES methods using probability calculations
based on the state space, with support for model selection and the calculation of standard
forecast errors [68].

The long-term movement is characterized by the trend term, the pattern with known
periodicity is reflected by the seasonal term, and the error term represents the irregular,
unpredictable component of the series.

ETS models generate both point forecasts and prediction intervals (or forecast). If the
same values of the smoothing parameters are used, the point forecasts are identical but
will generate different prediction intervals.

The individual components of an ETS specification may be specified as being of the
following form: N = none, A = additive, M = multiplicative:

E: A, M
T: N, A, M
S: N, A, M.
An ETS (A,A,A) decomposition is a Holt–Winters method with an additive seasonal

component, and an ETS (M,A,M) represents a Holt–Winters method with a multiplicative
seasonal component.

The automatic selection of the model is based on the ETS smoothing. For each
ETS model, the probability and the forecast error can be calculated by comparing the
information criterion based on probability or an out-of-sample AMSE (The average mean
square error estimator finds the parameter values and initial state values that minimize
the average mean square error of the step forecasts of the specified ETS model) in order to
determine the model that best fits the most accurate data or forecasts. Automatic selection
for unemployment rate forecasting using the ETS framework will be done using Akaike
Information Criterion corrected (AICc) minimization.

3.2. The Neural Network Autoregression Model

Artificial neural networks are used to model complex nonlinear relationships between
input variables and output variables. An autoregression model of the neural network
(NNAR) has delayed values of a time series as input in the model, and it predicted values
of the time series as output. The major difference of the NNAR method compared to the
HW method is the non-existence of the restriction of stationary parameters. Considering
the seasonality of the monthly unemployment rate, the specification of the neural network
will be NNAR(p,P,k)m, and the graphical representation from Figure 1. By adding an
intermediate layer with hidden neurons, the neural network becomes nonlinear, and
without the hidden layer, NNA(p,P,0)m becomes SARIMA(p,0,0) (P,0,0)m.
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Figure 1. A diagrammatic representation of the NNAR(p,P,k)m model. Source: Touplan [69]. NNAR:
neural network autoregression.

The NNAR model represents a feedforward neural network, involving a linear com-
bination function and an activation function. The linear combination function has the
following form [70,71]:

netj = ∑
i

wijyij. (7)

The hidden layer has a nonlinear sigmoid function in order to issue the input for the
next layer:

s(z) =
1

1 + e−z . (8)

In the case of NNAR(p,k) with p delayed entries and k nodes in the hidden layer, the
model involves delayed time series values as entries in a neural network, considering a
feed-forward network with a single hidden layer. The seasonal component is present in
the data (m = 12), so the last observed values from the same season will be added as inputs,
NNAR becoming NNAR(p,P,k)12.

The forecasting procedure is iterative; the one-step ahead forecast uses historical
inputs; and the two-steps ahead forecast uses the one-step ahead forecast and the histori-
cal data.

3.3. Seasonal Autoregressive Integrated Moving Average Model (SARIMA) Model

Taking into account the seasonal pattern exhibited by the monthly unemployment
rate, a seasonal process may be considered; therefore, the ARIMA model will become a
SARIMA model. The seasonal autoregressive integrated moving average (SARIMA) model
is a generalized form of an ARIMA model that accounts for both seasonal and non-seasonal
data. The SARIMA model is denoted as ARIMA(p,d,q) (P,D,Q)S and has the following
specification based on the backshift operator [72,73]:

φ(B)φ(Bs)(1 − B)d(1 − Bs)DYt = (B)(Bs)εt (9)

φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp (10)

φ(Bs) = 1 − φ1Bs − φ2B2s − . . . − φpB2Ps (11)

(B) = 1 +1 B +2 B2 + . . . +q Bq (12)

(Bs) = 1 +1 Bs +2 B2s + . . . +Q BQs (13)
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where Yt represents the time series data at period t, B denotes the backshift operator, εt is a
sequence of i.i.d. variables (mean zero and variance σ2), s is the seasonal order, φi and φj
are the non-seasonal and seasonal AR parameters, θi and θj are respectively non-seasonal
and seasonal MA parameters, p, d, and q denote the non-seasonal AR, I, and MA orders,
respectively, and P, D, and Q respectively represent the seasonal AR, I, and MA orders.

Similar to the Box–Jenkins methodology, also, the SARIMA model follows a five-step
iterative procedure: identification, estimation, selection, diagnostics, and forecasting [34,60,69].

Before fitting a particular model to time series data, the stationarity of a series must be
checked [74]. In order to identify if the time series in stationary, the graphical representation
of the series together with the correlogram of the series in level, Bartlett test, and Ljung–
Box test can be applied. In order to test if the series has a unit root, the Augmented
Dickey–Fuller and Philips–Perron tests can be used. To obtain a stationary time series, the
corresponding value of d is estimated, in the case of a non-stationary series in mean, the
series is differentiated, and in the case of a non-stationary series in variance, the series
is logarithmized.

In addition, the series needs to be tested against the presence of a structural break
using the Zivot–Andrews test. The Zivot and Andrews endogenous structural break test is
a sequential test that uses the full sample and a different dummy variable for each possible
break date. The break date is selected where the t-statistics of a unit root ADF (Augmented
Dickey Fuller) test is at a minimum (most negative). Consequently, a break date will be
chosen when the null hypothesis of a unit root will be rejected. The Zivot–Andrews test
uses three scenarios: a structural break in the level of the series, a one-time change in
the slope of the trend, and a structural break in the level and slope of the trend function
of the series. Therefore, under the test, the null hypothesis assumes that the series yt
contains a unit root without any structural break, against the alternative that the series is a
trend-stationary process with a one-time break occurring at an unknown time point.

Another important feature that needs to be investigated for a series exhibiting a
seasonal pattern under the stationarity condition is to test for the presence of a seasonal
unit root using the HEGY test [75]. The HEGY test is used in case of a seasonal and non-
seasonal unit root in a time series. A time series yt is considered as an integrated seasonal
process if it has a seasonal unit root as well as a peak at any seasonal frequency in its
spectrum other than the zero frequency.

The test distinguishes between deterministic seasonality—which can be removed by
seasonal adjustment—and stochastic seasonality—which refers to unit roots at the seasonal
frequencies [76].

Once the stationarity has been achieved, the identification stage involves determining
the proper values of p, P, and q, Q based on the correlogram of the stationary series (ACF
and PACF plot). Checking the ACF and PACF plots, we should both look at the seasonal
and nonseasonal lags. Usually, the ACF and the PACF have spikes at lag k and cut off after
lag k at the non-seasonal level. The ACF and the PACF also have spikes at lag ks and cut
off after lag ks at the seasonal level. The number of significant spikes suggests the order of
the model [74].

An SAR signature usually occurs when the autocorrelation at the seasonal period
is positive, whereas an SMA signature usually occurs when the seasonal autocorrelation
is negative.

In the model selection stage, we need to decide on the optimal model from several
alternative estimated models in the situation in which two or more models compete in the
selection of the best model for the study.

In order to be able to make a decision, we can rely on the penalty information criteria
(Akaike Information Criterion (AIC), the Akaike Information Criterion corrected (The AICc
includes a penalty that discourages overfitting, and increasing the number of parameters
improves the goodness of fit [72]) (AICc), and the Bayesian Information Criterion (BIC),
choosing as an optimal model the model with the smallest values of AIC, AICc, and BIC.
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In the model estimation stage, the parameters of the chosen model are estimated using
the method of maximum likelihood estimation (MLE).

The diagnostic checking stage is the next stage investigating if the estimated model or
models are firstly validated in accordance with the classical tests: t-test for the statistical
significance of the parameters and F-test for the statistical validity of the model.

Secondly, the main hypotheses on the model residuals need to be tested, showing that
they are white noise, homoscedastic, and do not exhibit autocorrelation. The normality of
the residuals has been checked using Jarque–Bera test, while for non-autocorrelation, the
Ljung–Box test has been applied. When the variance of the residuals is not constant, the
issue of conditional heteroscedasticity is one of the key problems that is likely to encounter
when fitting models. For checking autoregressive conditional heteroskedasticity (ARCH)
in the residuals, the squared residuals correlograms and the ARCH-LM test can be used. In
case there is no ARCH in the residuals, the autocorrelations and partial autocorrelations
should be zero; regardless, the lags and the Q-statistics should be insignificant.

If at the level of this stage, one of the hypotheses is invalidated, we need to return to
the first stage of the model and rebuild a better model. Otherwise, if the model passes this
stage, the forecasting process can be implemented to predict future time series based on
the most reliable model validated in the previous stages.

The final stage is forecasting in order to design future time series values, using the
most convenient model according to previous stages [43].

3.4. SETAR Model

The SETAR model is part of the more general class of threshold autoregressive models
(TAR) and represents an extension of autoregressive models, bringing as its main advantage
in modeling a time series and a higher flexibility in parameters due to a regime-switching
behavior. Thus, this particular type of model allows for the prediction of future values of
unemployment rate, assuming that the behavior of the time series changes when the series
switch the regime, and this switching is dependent on the past values of the series. The
model relies on an autoregressive model of lags p, on each regime, and it is denoted to be
SETAR(k,p), where k is the number of thresholds (k + 1 regime assumed in the model) and
p is the order of an AR(p).

Even if the process is assumed to be linear in each regime, the switching from one
regime to another transforms the process into a nonlinear one.

The general specification of a two-regime SETAR(2,p,d) of the following regime to
the others proves the entire regime as nonlinear [66,67,73]. The two-regime version of the
SETAR model of order p is given by:

yt = φ
(1)
0 +

p(1)

∑
i=1

φ
(1)
i yt−i + ε

(1)
t , if yt−d ≤ τ (14)

yt = φ
(2)
0 +

p(2)

∑
i=1

φ
(2)
i yt−i + ε

(2)
t , if yt−d > τ (15)

where φ
(1)
i and φ

(2)
i are the coefficient in the lower and higher regime, respectively, which

needs to be estimated; τ is the threshold value; p(1) and p(2) are the order of the linear AR
model in the low and high regime, respectively. yt-d is the threshold variable governing
the transition between the two regimes, d being the delay parameter, which is a positive
integer (d < p); ε

(1)
t and ε

(2)
t are a sequence of independently and identically distributed

random variables with zero mran and constant variance [77].
The main phases for setting a SETAR model are the order selection of the model

based on AR(p) order identification together with the test for threshold nonlinearity, model
identification requiring the selection of the delay parameter d together with the location of
the threshold value, model estimation and evaluation, and the last stage forecasting the
future values of unemployment rate.
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Thus, the first stage in applying the SETAR model is to analyze the existence of a
nonlinearity behavior, and for that, it is important to first determine the appropriate lag
length of the autoregressive model AR(p) for the analyzed time series, and the choice could
rely on the minimum value of AIC. Secondly, we will test the existence of nonlinearity
using the Tsay F test, the null hypothesis of linearity being rejected if the p-value of the test
is smaller than the significance level assumed.

Proving that there is nonlinearity in the time series, we can pass to the second stage—
model identification—and we will consider a two-regime SETAR model with the order p
of autoregressive parts equal in both regimes, SETAR(2,p,d).

In the third stage, the selection of delay parameter together with the location of the
threshold value is realized, taking into account that the possible value d is less than order.
Therefore, several SETAR models with different delay parameters and threshold values
can be identified, and based on a grid search method, the best model is selected to be the
model with the smallest value for the residual sum of squares.

The model is estimated using the MLE, and then, the adequacy of the selected model is
evaluated based on diagnostics tests on residuals. The ARCH-LM test is used for testing the
hypothesis of constant variance and Breusch–Godfrey is used for testing for higher-order
serial correlation in the residuals.

3.5. Forecasting Performance Comparison

In order to provide predictions of the future values of unemployment rate based on
past and present data and analysis of trends, it is important to use both in-sample and
out-of-sample forecasting performance methods, even if the out-of-sample is known to
offer more reliable results. Therefore, a model with good performance in the out-of-sample
forecasting performance is picked as the best model. The forecasting performance of models
was evaluated on two sub-samples: in-sample data, 2000M01–2017M12, which is used to
estimate and identify the model and also to provide in-sample forecasting performance,
and out-of-sample data, 2018M01–2020M12, which is used for analyzing the forecasting
performance.

Forecasting accuracy offers valuable information about the goodness fit of the forecast-
ing model and shows the capacity of the model to predict future values of unemployment
rate. Three criteria have been used to evaluate the performance of models both on in-sample
data and out-of-sample data: the root mean squared error (RMSE), the mean absolute error
(MAE), and the mean absolute percent error (MAPE). The better forecast performance of
the model is that with the smaller error statistics.

Another test used to check the existence of differences between the forecast accuracy
of two models was the Diebold–Mariano test [78], which assumes in the null hypothesis the
absence of such a difference against the alternative of the existence of a statistical difference
between the forecast accuracy of the models.

4. Data and Empirical Results

We have used in the empirical analysis the ILO unemployment rate for Romania
covering the period 2000M01–2020M12, summing up a total of 252 monthly observations.
The data source is the Employment and Unemployment database of Eurostat. We used for
the model estimation and identification the estimation period 2000M1–2017M12 as training
data and the period 2018M01–2020M12 as test data, while the forecast projections have
been made for the next two years, 2021–2023.

The evolution of unemployment rate revealed an oscillating trend, from peaks (8.1%
in January 2001 and January–March 2002) to minimum levels (5% in September 2008). The
winter months of the years 2000, 2001, and 2002 registered increases in the unemployment
due to lack of jobs, the year 2002 recording the highest rate of the monthly unemployment
rate (144%). A potential explanation could be the dismissals that took place as a result
of the implementation of restructuring and privatization programs of different sectors of
activity. The impasse in the general economic and social development of Romania, the low
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living standard, and the lack of future perspectives from the period 1998–2000 reactivated
the migration phenomenon, causing many Romanians to look for a job in more developed
countries. However, after 1998, illegal migration predominated, which was mainly directed
to Italy and Spain.

Compared to previous years, in 2004, the unemployment rate decreased; the number
of persons entering unemployment was lower than the previous year by 92,442 persons.
The 278,080 unemployed related to 2004 came from the redundancies that took place as a
result of restructuring and privatization programs of different sectors of activity, and of
these, only 67,042 people came from collective redundancies; the remaining 211,038 people
came from current redundancies personal.

Young people represent the best professionally trained age group in Romania, but
also the most exposed to unemployment, highlighting the brain-drain phenomenon. The
decrease in the unemployment rate in the period 2002–2006 is due both to legal and illegal
departures of persons to work abroad. Thus, in 2006, according to the figures offered
by Eurostat, it was estimated that over two million Romanians work in the countries of
Western Europe or other developed countries. The economic crisis from 2008 created
another peak in the evolution of unemployment rate, registering in the first three months
of 2010 the values of 7.7%, 7.7%, and 7.9% and oscillating around this value until the first
three months of 2015 (7.5%, 7.4%, and 7.2%).

The unemployment rate in 2008 decreased compared to the previous year (6.4%),
but during the economic crisis of 2008–2009, there was a substantial increase in the un-
employment rate. Although the number of jobs in the economy is constantly decreasing,
the unemployment rate is decreasing, the explanation of this paradox being given by
the following:

1. Working abroad: according to official estimates, in the first nine months of 2010, the
number of those who went to work abroad exceeded 380,000, of which 140,000 went
on their own, 140,000 went through recruitment agencies, and 102,000 went through
the NAE (National Agency for Employment)

2. Retirement of some of the employees. Quarterly, 70,000–80,000 people retire; therefore
200–300,000 employees must be replaced annually. It is very likely that companies
will no longer replace some of the people who have retired, so that the number of
employees can decrease without increasing the number of unemployed.

3. Undeclared work. In second quarter of 2010, the number of undeclared workers
increased by almost 100,000.

For the last years, the trend for unemployment rate was continuously downward,
with a minimum point in the first month of 2020 (3.8%), and since February 2020, the
unemployment rate registered an ascendant trend. The reversed trend was due to the
high unemployment rate (18.5%) among young people (15–24 years) and seasonality in the
construction and tourism sectors.

In 2019, the unemployment rate decreased to 3.9%, compared to 4.2% in 2018, affecting
to a greater extent the graduates of lower and secondary education, for which the rate was
6.3% and 4%, respectively, according to data from the National Institute of Statistics (NIS).
On the other hand, the unemployment rate for people with higher education was much
lower, 1.6% in 2019.

In 2020, in the context of the coronavirus crisis, the unemployment rate started to
increase since February, with the taking of safety measures, reaching 5.2% in May, which
was the highest level since 2017. According to the NIS, the number of unemployed people
exceeded 460,000, with over 110,000 more people than the same period last year.

In August, the unemployment rate decreased by 0.1 points compared to the previous
month, but it increased by 1.5 points compared to the same month last year. Thus, August
was the first month since the beginning of the COVID-19 pandemic on the Romanian
territory when the unemployment rate registered a decrease. In March, the unemployment
rate was 4.6%.
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In autumn, in October 2020, the unemployment rate increased by 0.2 points compared
to the previous month (5.1%), unemployment among men being higher than among women
by 0.5 percentage points, according to the NIS. Unfortunately, youth unemployment
(18–24 years) is approaching 20%. As for the number of unemployed, Romanians looking
for a job were 477,000, with over 100,000 more than in October of the previous year.

In January–October 2020, the medium unemployment rate stood at 4.9%, which was
up 1.1 points year/year, an evolution determined by the incidence of the health crisis (and
the consequences of this unprecedented shock), partially offset by the implementation of
an unprecedented relaxed mix of economic policies.

Figure 2 revealed that the Romanian unemployment rate exhibited seasonal fluctu-
ations over the period 2000–2020, with peaks in the last and the first months of the year.
Figure 2 depicts the evolution of the monthly unemployment rate, revealing a clear seasonal
component in the data, which was confirmed also by the autocorrelation plot (Figure 3).

 

Figure 2. The seasonal pattern in the monthly ILO unemployment rate.

  

Figure 3. Autocorrelation and partial correlation plot of Romania’s monthly unemployment rate for
the horizon 2000–2020.

4.1. Holt–Winters Results

The empirical results of Holt–Winters additive and multiplicative models revealed that
because both models have exactly the same number of parameters to estimate, the training
RMSE from both models can be compared, revealing that the method with multiplicative
seasonality fits the data best. In addition, based on the informational criteria (AIC, AICc, or
BIC), the optimal model is also the multiplicative version of HW. Table 1 gives the results of
the both in-sample and out-of-sample forecasting accuracy measures of the Holt–Winters
methods for the unemployment rate.

According to the RMSE measure, the multiplicative model performs better than the
additive one, while based on the other forecast accuracy measures (MAPE, MASE, or
MAE), the optimal model is the additive one, for which they registered the minimum
values (Table 2).

Analyzing the evolution of monthly unemployment rate for the period 2021–2022, it
can be highlighted the fact that the forecast projections tend to under evaluate the actual
series, not capturing the impact of the pandemics, and revealing a downward trend in both
cases, which is more accentuated in the case of the multiplicative model (Figure 4).
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Table 1. The empirical results of HW for the forecast of unemployment rate.

Model 1: Holt–Winters’ Multiplicative
Method

Model 2: Holt–Winters’ Additive Method

Smoothing parameters: Smoothing parameters:
Alpha (level) = 0.6928 Alpha (level) = 0.7503
Beta (trend) = 0.0001 Beta (trend) = 0.0001

Gamma (seasonal) = 0.0001 Gamma (seasonal) = 0.0001

AIC = 630.187 AIC = 645.789
AICc = 633.278 AICc = 648.8807
BIC = 687.566 BIC = 703.169

Table 2. Forecasting performance of Holt–Winters.

Holt–Winters’ Multiplicative Method Holt–Winters’ Additive Method
Training Dataset Testing Dataset Training Dataset Testing Dataset

ME −0.0124 −0.2670 0.0006 −0.0371
RMSE 0.2771 0.6906 0.2804 0.7480
MAE 0.2086 0.6524 0.2109 0.6273
MPE −0.3191 −7.8322 −0.1259 −2.6101

MAPE 3.0368 15.1393 3.0699 13.8268
MASE 0.3317 1.0374 0.3353 0.9974

Figure 4. The forecast of unemployment rate based on Holt–Winters (HW) models for the period 2021–2022.

4.2. ETS Models Results

In the process of obtaining a reliable forecast of the monthly unemployment rate, the
ETS automatic selection framework, based on minimizing the AICc, revealed the optimal
model to be an ETS(M,N,M) with multiplicative error, no trend, and multiplicative season.
The empirical results highlighted that on the training dataset, the ETS model produces
better results in comparison with HW additive or multiplicative methods (Table 3). The
ETS(M,N,M) model will provide different point forecasts to the multiplicative Holt–Winters’
method, because the parameters have been estimated differently, the default estimation
method being maximum likelihood rather than minimum sum of squares (Table 4).
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Table 3. The empirical results of ETS (error, trend, seasonal) models for the forecast of unemployment rate.

ETS(M,N,M) Model: Multiplicative Error, No Trend, Multiplicative Season

Smoothing parameters:
Alpha(level) = 0.7914

Gamma(seasonal) = 0.0001

AIC = 627.799
AICc = 630.199
BIC = 678.428

Table 4. Forecasting performance of ETS model.

ETS Model

Training dataset
ME −0.0166

RMSE 0.2788
MAE 0.2097
MPE −0.3682

MAPE 3.0569
MASE 0.3335

The plot of ETS(M,N,M) components displays the states over time, while Figure 3
shows point forecasts and prediction intervals generated from the model. The empirical
results of the model pointed out an under evaluation of the real values during the period
of the test dataset from 2018 to 2020, highlighting an oscillating evolution characterized by
a strong seasonal pattern also for the forecast projections period, 2021–2022 (Figure 5).

 

 

 

 
Figure 5. The forecast of unemployment rate based on the results of ETS(M,N,M).

4.3. NNAR Model

In order to fit the NNAR model, the series of unemployment rate has been explored
on the training dataset in the process of identifying the order of an AR term present in
the data, using the correlogram of the series. Based on the ACF and PACF plots, a pure
AR(1) process can be highlighted for the non-seasonal part. Analyzing the ACF plot, the
decaying spikes at every 12-month interval indicate a seasonal component present in the
data (Figure 6). As the autocorrelation at the seasonal period (ACF at lag 12) is positive, an
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autoregressive model for the seasonal part should be considered; therefore, the order P was
set to 1. Therefore, a NNAR(1,1,k)12 model is fitted, and the in-sample and out-sample root
mean square error (RMSE), mean absolute error (MAE), mean absolute scale error (MASE),
and mean absolute percentage error (MAPE) are provided in Table 5 where k = 1, . . . , 14.

 

Figure 6. Autocorrelation and partial correlation plot of Romania’s monthly unemployment rate.

Table 5. Forecasting performance of NNAR(1,1,k)12.

Training Dataset Test Dataset

k RMSE MAE MAPE MASE RMSE MAE MAPE MASE
1 0.3570 0.2734 3.9654 0.4348 0.6792 0.6399 16.2143 1.0174
2 0.3477 0.2662 3.8562 0.4233 0.9019 0.8542 21.6274 1.3582
3 0.3402 0.2604 3.7626 0.4141 0.8510 0.8044 20.3754 1.2790
4 0.3329 0.2553 3.6772 0.4059 2.0452 1.8630 47.2547 2.9622
5 0.3297 0.2524 3.6264 0.4013 1.6242 1.4196 36.1478 2.2572
6 0.3228 0.2464 3.5341 0.3918 0.7710 0.7208 18.2993 1.1461
7 0.3195 0.2443 3.5057 0.3884 0.7739 0.7221 18.3387 1.1482
8 0.3173 0.2421 3.4737 0.3850 0.8042 0.7518 19.0849 1.1954
9 0.3167 0.2421 3.4681 0.3850 0.7873 0.7356 18.6744 1.1696
10 0.3150 0.2411 3.4513 0.3834 0.5979 0.5508 14.0168 0.8758
11 0.3087 0.2362 3.3860 0.3757 0.6936 0.6450 16.3913 1.0256
12 0.3033 0.2329 3.3456 0.3704 0.6220 0.5747 14.6184 0.9139
13 0.3058 0.2339 3.3533 0.3719 0.7008 0.6510 16.5462 1.0351
14 0.3064 0.2357 3.3779 0.3749 0.6944 0.6452 16.4001 1.0260

The selection of the best model relied on the lowest values of all the forecast accuracy
measures (RMSE, MAE, MAPE, and MASE), but especially on the values of MAPE and
MASE, which are scale independent and used to compare forecast accuracy across series on
different scales and seen as an appropriate measure when the out-of-sample data are not of
the same length as the in-sample data. Based on the results of Table 5, MASE and MAPE are
lower for the training dataset with 12 nodes in the hidden layer, whereas the out-of-sample
MASE and MAPE are lower for 10 nodes in the hidden layer. Therefore, we can consider
as the best choice the model NNAR(1,1,10)12. The forecast of the unemployment rate based
on the NNAR(1,1,10)12 model results revealed a downward trend with a peak in September
2018 (4.43%) and with a forecasting value for 2021–2022 oscillating around the value of
4.35% (Figure 7).

4.4. SARIMA Model

For fitting a SARIMA model, we used data covering the period January 2000 to
December 2017. The descriptive statistics values of the unemployment rate for the training
dataset are displayed in Figure 8. The series exhibited a strong seasonal pattern over the
horizon 2000–2017.
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Figure 7. Forecasts from a neural network with one seasonal and non-seasonal lagged input and one hidden layer containing
ten neurons.

  

Figure 8. Descriptive statistics of unemployment rate for the horizon 2000–2017.

4.4.1. Testing for Non-Stationarity

In order to fit a suitable time series model, the stationarity need to be investigated
based on Augmented Dickey–Fuller and Philips–Perron tests. The graphical inspection of
the autocorrelation and partial correlation plot of Romania’s quarterly unemployment rate
(Figure 9) revealed that the values of autocorrelation coefficients decrease slowly, pointing
out a nonstationary and relatively stable seasonal pattern of our time series.

The time-series plot of the first difference of the series highlighted that the unemploy-
ment rate is a non-stationary mean time series. The information is also confirmed by the
empirical results of Bartlett and Ljung–Box tests.

The time-series plot of the first difference of the series highlighted that the first
difference of the unemployment rate seems to be a stationary mean time series. Therefore,
the original quarterly series is a non-stationary time series.

Diagram (b) from Figure 9 indicates that a possible stationarity exists in first differences.
Alternately, we investigated the presence of unit roots by applying the Augmented Dickey–
Fuller and Phillips–Peron tests initially to the series in level and then to the series in
first differences. The empirical results on unemployment rate are displayed in Table 6,
indicating that the series of unemployment rate is stationary in first differences, being
integrated of order 1.
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(a) (b) 

Figure 9. Autocorrelation and partial correlation plot of Romania’s monthly unemployment rate (a) and first difference of
the original time series (b).

Table 6. Unit root analysis of the Romanian unemployment rate.

Variable
Unit Root
[Transf.]

Level First Difference

ADF PP ADF PP

Unemployment
rate

I(1)
[ΔUR]

T&C −3.56 ** −3.52 ** −15.87 *** −16.20 ***
C −2.58 * −2.72 * −15.90 *** −16.01 ***

None −0.90 −0.98 −15.91 *** −16.01 ***
Note: ***, **, and * means stationary at 1%, 5%, and 10%; T&C represents the most general model with a constant
and trend; C is the model with a constant and without trend; None is the most restricted model without a drift
and trend. For the ADF test, the number of lags was determined using SCH criterion for a maximum of 14 lags to
remove serial correlation in the residuals. For both PP tests, the value of the test was computed using Newey–West
Bandwith (as determined by Bartlett kernel). Tests for unit roots have been carried out in E-VIEWS 11.

The next step was to test the presence of a structural break around 2009 (from
Figure 10), taking into account that the presence of a structural break will invalidate the
results of unit root tests. Therefore, the Zivot–Andrews test has been used, the empirical
result revealing that there is not enough evidence to reject both the null hypothesis that
unemployment has a unit root with structural break in trend, and in both intercept and
trend (Table 7).

Thus, the empirical results proved that the unemployment rate is non-stationary and
integrated of order 1, I(1).

However, because the series of unemployment exhibits a seasonal pattern over the
training period, the study will use a seasonal ARIMA model instead of non-seasonal models;
therefore, it is necessary to check whether the seasonality is needed to be differenced or not,
testing if the stochastic seasonality is present within the data, the empirical results of Hegy
test revealing the rejection of seasonal unit root and the acceptance of only a non-seasonal
unit root. Therefore, seasonal difference is not needed.

Therefore, we can conclude that the unemployment rate is a non-stationary series,
without stochastic seasonality and integrated of order 1. Thus, the rate of unemployment
will be modeled at the first difference of the series within the SARIMA model and self-
exciting threshold autoregressive (SETAR) model.
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Figure 10. The Romanian ILO unemployment rate for the period 2000M1–2020M12.

Table 7. Zivot–Andrews unit root test having a structural break for unemployment rate.

Series
(Trend Specification:
Trend and Intercept)

Allowing for Break
in Trend

Allowing for Break
in Both Intercept

and Trend

Unemployment Rate

Minimum t-stat
(Lag length has been
established using SBC

criterion for
maximum 14 lags)

p-value

−4.139
(0.13)

−4.484
(0.243)

Critical values

1% −5.067 −5.719

5% −4.524 −5.175

10% −4.261 −4.893

Potential break point
at 2015M09

Potential break point
at 2009M06

4.4.2. Identification of the Model

For the first difference of the UR, the model identification implies the identification of
proper values of p, P, q, and Q using the ACF and PACF plot. The seasonal part of an AR
or MA model will be seen in the seasonal lags. The ACF plot has a spike at lags 4 and 6 and
an exponential decay starting from seasonal lag 12, suggesting a potential non-seasonal
MA component-MA(4) or MA(6) (Table 8).

Table 8. HEGY test of seasonality for level of unemployment series.

Null Simulated p-Value *
The Presence of
Non-Seasonal
Unit Root **

The Presence
of Seasonal
Unit Root **

Unemployment rate
Non-seasonal unit root (zero frequency)
Seasonal unit root (2 months per cycle)
Seasonal unit root (4 months per cycle)

0.736310
0.005643
0.000000

Yes No
Seasonal unit root (2.4 months per cycle) 0.000177
Seasonal unit root (12 months per cycle) 0.000177
Seasonal unit root (3 months per cycle) 0.000000
Seasonal unit root (6 months per cycle) 0.000000

Note: The HEGY test was applied taking into account intercept and trend and seasonal dummies; the maximal
number of lags was eight following Schwarz criterion and a number of 1000 simulations. * If the probability is
higher than 0.10, then the presence of the non-seasonal unit root cannot be rejected. ** If the probability is higher
than 0.10, then the presence of a seasonal unit root cannot be rejected.

The PACF plot shows that lags 4, 6, and 12 are significant, capturing also potential non-
seasonal AR components together with a seasonal AR(1) (Figure 11). In our case, because
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the autocorrelation at the seasonal lags (12, 24) is positive, a combination of seasonal and
non-seasonal autoregressive models can be identified. Thus, several models have been
specified, and based on AIC and BIC together with the goodness of fit measures, the best
model has been identified.

 
 

Figure 11. Autocorrelation and partial correlation plot of the first difference of the unemployment rate.

Thus, several models have been specified, and based on AIC and BIC together with the
goodness of fit measures, the best model has been identified, taking into account the lowest
values of AIC and SBC. The best model has been an ARIMA(0,1,6)(1,0,1)12 considered
based on the minimum value of AIC and SBC (Table 9).

Table 9. AIC and SBC for the suggested ARIMA models.

Model AIC AICc BIC

ARIMA(4,1,4)(1,0,0)12 133.2 134.28 166.9

ARIMA(4,1,4)(2,0,0)12 129.99 131.29 167.07

ARIMA(4,1,4)(3,0,0)12 124.03 125.58 164.48

ARIMA(4,1,4)(3,0,1)12 116.73 118.54 160.55

ARIMA(0,1,4)(3,0,0)12 148.39 149.09 175.36

ARIMA(4,1,4)(0,0,3)12 130.87 132.41 171.31

ARIMA(4,1,4)(0,0,1)12 136.36 137.43 170.06

ARIMA(6,1,0)(1,0,0)12 148.51 149.21 175.48

ARIMA(6,1,0)(2,0,0)12 132.34 133.22 162.68

ARIMA(6,1,0)(3,0,0)12 124.33 125.41 158.04

ARIMA(6,1,6)(3,0,0)12 128.28 131.03 182.21

ARIMA(0,1,6)(1,0,0)12 146.22 146.92 173.19

ARIMA(0,1,6)(2,0,0)12 131.15 132.03 161.49

ARIMA(0,1,6)(3,0,0)12 124.17 125.25 157.87

ARIMA(0,1,6)(1,0,1)12 108.42 109.3 138.76

ARIMA(0,1,6)(2,0,1)12 109.83 110.91 143.54

4.4.3. Model Estimation

Based on the model identified in the previous stage, we can proceed to the phase of
model estimation using maximum likelihood method (ML), the empirical results being pre-
sented in Table 10. All coefficients statistically are significant at the 10% significance level.
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Table 10. Estimates of parameters for SARIMA(0,1,6)(1,0,1)12.

Estimate S td. Error z Value Pr(>|z|)

ma6 −0.12316 0.069532 −1.7712 0.07653 *
sar1 0.983605 0.015399 63.8766 2.2 × 10–16 ***
sma1 −0.8462 0.066935 −12.6421 2.2 × 10–16 ***

Note: *** and * means stationary at 1% and 10%.

4.4.4. Diagnostic Checking of the Model

Apart from classical tests, the t-test for the statistical significance of the parameters,
and the F-test for the validity of the model, the selection of the best model depends also
on the performance of residuals. For that, the series of residuals has been investigated to
follow a white noise. The empirical results of the Ljung–Box test show that the p-values of
the test statistic exceed the 5% level of significance for all lag orders, which implies that
there is no significant autocorrelation in residuals (Figure 12).

 

Figure 12. Diagnostic plot of SARIMA(0,1,6)(1,0,1)12.

For checking autoregressive conditional heteroskedasticity (ARCH) in the residuals,
the ARCH-LM test has been used, and the empirical results confirmed that there is no
autoregressive conditional heteroscedasticity (ARCH) in the residuals (Table 11). Therefore,
we can conclude that residuals are not autocorrelated and do not form ARCH models, the
SARIMA(0,1,6)(1,0,1)12 model being reliable for forecasting (Table 12).

Table 11. Empirical results of JB test and autoregressive conditional heteroskedasticity (ARCH)-LM
test for model residuals.

Ljung–Box Test p-Value ARCH-LM Test p-Value

12 2.9459 0.5669 9.1184 0.6928
24 15.123 0.5157 44.267 0.2345
36 25.531 0.5988 51.336 0.1878
48 40.434 0.4511 58.159 0.1495

Table 12. Forecasting performance of SARIMA(0,1,6)(1,0,1)12.

Training Dataset Testing Dataset

RMSE 0.28861 0.764092
MAE 0.22163 0.615342

MAPE 3.20478 13.37031
MASE 0.35240 0.97840

The forecast of the unemployment rate based on the ARIMA(0,1,6)(1,0,1)12 model
results revealed a downward trend with a forecasting value for 2021–2022 oscillating
around the value of 3–4% (Figure 13).
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Figure 13. Forecasts of unemployment rate based on the results of ARIMA(0,1,6)(1,0,1)12.

4.5. Self-Exciting Threshold Autoregressive (SETAR Model)

In fitting a SETAR model for the Romanian unemployment rate, the first stages re-
quire the identification of the autoregressive order and testing the existence of nonlinear
thresholds. The autoregressive order has been identified based on the PACF plot. Fol-
lowing Desaling [74], we explored the unemployment rate in level for identifying the lag
autoregressive order, since the non-stationarity in UR does not cause the non-stationarity
of nonlinear thresholds in the SETAR model, even if the existence of a unit root in one
regime can occur. Significant spikes can be observed at lags 1, 7, and 13 (Figure 14).

 

Figure 14. Partial autocorrelation plot of unemployment series.

At these lags, we have tested the presence of nonlinear thresholds applying the Tsay
test of threshold nonlinearity, the empirical results being presented in Table 13, revealing
that there is enough evidence to reject the null hypothesis of no nonlinear threshold in
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autoregressive order 1, 7, 8, 9, 10, 11, 12, and 13, the p-value being mostly less than 1%.
Therefore, at these lags, the SETAR model is better than the simple AR model.

Table 13. The empirical results of the Tsay test.

Order F-Statistics p-Value AIC

AR(1) 4.798 0.029 ** 0.734
AR(2) 1.935 0.125 -
AR(3) 1.363 0.231 -
AR(4) 1.097 0.366 -
AR(5) 1.119 0.341 -
AR(6) 1.267 0.202 -
AR(7) 1.744 0.016 ** 0.689
AR(8) 1.994 0.001 *** 0.693
AR(9) 2.116 0.001 *** 0.697

AR(10) 1.989 0.001 *** 0.696
AR(11) 2.151 0.001 *** 0.698
AR(12) 2.257 0.001 *** 0.702
AR(13) 2.034 0.003 *** 0.628

Note: ***, ** means statistical significance at 1%, 5%.

For the lags exhibiting a nonlinear threshold, we have used the lowest values of AIC
to select the optimal model for which we will design the SETAR model. Thus, an AR(13)
with possible values of delay parameter d = 1 . . . 12 < p has been used in setting the SETAR
model. Since the number of potential regimes in the autoregressive model depends on
the number of threshold values, a grid search method has been performed to determine
the regimes and estimate the thresholds value under the condition of one threshold in AR
based on the smallest value of sum of squared residuals. Thus, the delay parameter d = 10
registered the smallest value for residuals sum of squares; therefore, a SETAR model with
two regimes of order 13 and threshold decay 1, a SETAR(2,13,1) model with a threshold
variable could be appropriate to explain the nonlinearity in the data (Figure 15).

Figure 15. Grid search method estimation of one threshold value.

Table 14 displays the estimated parameters of the SETAR(2,13,1) with the threshold of
7.79, the model having the following specification:

yt =

{
0.13 + 0.82yt−1 + . . . − 0.307yt−13, i f yt−1 < 7.799

2.344 + 0.539yt−1 + . . . − 0.019yt−13, i f yt−1 > 7.799

}
.
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Table 14. Estimates of parameters for SETAR(2,13,1).

Variable Coefficient Std. Error Prob.

UR(−1) < 7.7999999–171 obs
C 0.130 0.264 0.623

UR(−1) 0.820 0.079 0.000 ***
UR(−2) 0.254 0.099 0.011 ***
UR(−3) −0.055 0.099 0.579
UR(−4) −0.136 0.098 0.168
UR(−5) 0.063 0.092 0.499
UR(−6) −0.126 0.092 0.172
UR(−7) 0.078 0.092 0.401
UR(−8) 0.069 0.097 0.475
UR(−9) 0.010 0.093 0.917

UR(−10) −0.030 0.099 0.762
UR(−11) 0.103 0.101 0.310
UR(−12) 0.237 0.099 0.018 **
UR(−13) −0.307 0.076 0.000 ***

7.7999999 <= UR(−1)–32 obs
C 2.344 2.092 0.264

UR(−1) 0.539 0.202 0.008 ***
UR(−2) 0.214 0.184 0.247
UR(−3) 0.022 0.194 0.909
UR(−4) −0.643 0.207 0.002 ***
UR(−5) 0.682 0.335 0.043
UR(−6) 0.062 0.264 0.814
UR(−7) 0.141 0.299 0.637
UR(−8) −0.639 0.267 0.018 **
UR(−9) −0.526 0.301 0.083

UR(−10) 0.479 0.218 0.030 **
UR(−11) 0.833 0.181 0.000 ***
UR(−12) −0.440 0.257 0.089
UR(−13) −0.019 0.198 0.923

Note: ***, ** means statistical significance at 1%, 5%.

After the estimation stage, the residuals of the model have been checked for best fit,
verifying them for the information of serial autocorrelation, constant variance, and zero
mean based on ARCH-LM and Breusch–Godgrey tests. Having the p-values greater than a
1% significance level, we can conclude that the residuals are not autocorrelated and with
constant variance (Table 15).

Table 15. Residuals diagnostic test for SETAR(2,13,1).

BG Test
(F-Stat)

p-Value ARCH-LM Test p-Value

12 1.180 0.301 0.722 0.728
24 0.99 0.473 0.738 0.805
36 1.179 0.247 0.991 0.493
48 1.197 0.213 1.068 0.381

The forecast of unemployment rate based on the results of the SETAR(2,13,1) model
(Table 16) revealed an upward trend, over evaluating the phenomenon (Figure 16).
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Table 16. Forecasting performance of SETAR(2,13,1).

Training Data Set Testing Data Set

RMSE 0.931 0.834
MAE 0.803 0.715

MAPE 11.598 17.742
MASE 12.022 15.770

Figure 16. Forecasts of unemployment rate based on the results of the SETAR(2,13,1) model.

4.6. Comparison of Models Forecasting Performance

Analyzing the forecasting performance of all models for the in-sample dataset based
on RMSE, MAE, and MAPE as well as on the results of the Diebold and Marino test, it
can observed that all three criteria suggested that multiplicative HW registered better
forecast performance for the training dataset. The p-value of the Diebold and Marino test
highlighted the existence of differences in forecast accuracy between almost all models,
with the exception of multiplicative HW and ETS, for which the probability being higher
than 10% does not provide enough evidence to reject the null hypothesis (Table 17).

The out-of-sample forecasting performance of models has performed with a one-
step ahead recursive method. Based on RMSE and MAE values, the NNAR model has
better forecasting performance, while MAPE stipulates the SARIMA model to register
higher performance. For the out-of-sample data, the empirical results of the DM test
pointed out differences in the predictive power for almost all models, with the exception of
multiplicative HW and NNAR, for which the p-value is greater than the 10%, so the null
hypothesis can not be rejected (Table 18).

Analyzing comparatively the forecast performance of all methods during the period
2018–2022 and taking into account the presence of the pandemic shock, it is worth mention-
ing that ETS and Multiplicative HW are the methods that best capture the pandemic shock
from 2020, offering forecast values relatively close to the real values of unemployment rate
from the pandemics (Figure 17).
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Table 17. In-sample forecasting performance of models.

Measures

Model

Holt–Winters
Additive

Holt–Winters
Multiplicative

ETS NNAR SARIMA SETAR

RMSE 0.2804 0.2771 0.2788 0.315 0.28861 0.931
MAE 0.2109 0.2086 0.2097 0.2411 0.22163 0.803

MAPE 3.0699 3.0368 3.0569 3.4513 3.20478 11.598

DM Test for in Sample at h = 1

Models DM Test Statistics p-Value

HW Additive vs. HW
Multiplicative 7.7819 0

HW Additive vs. ETS −7.7841 0
HW Additive vs. NNAR 4.2089 0

HW Additive vs. SARIMA 1.6588 0.0986
HW Additive vs. SETAR 55.592 0

HW Multiplicative vs. ETS 0.3324 0.7399
HW Multiplicative vs. NNAR 8.1815 0

HW Multiplicative vs. SARIMA 8.0321 0
HW Multiplicative vs. SETAR 55.568 0

ETS vs. NNAR 8.1791 0
ETS vs. SARIMA 8.0342 0
ETS vs. SETAR 55.568 0

NNAR vs. SARIMA −3.3088 0.001
NNAR vs. SETAR 54.421 0

SARIMA vs. SETAR −55.615 0

Table 18. Out-of-sample forecasting performance of models.

Measures

Model

Holt–Winters
Additive

Holt–Winters
Multiplicative

ETS NNAR SARIMA SETAR

RMSE 0.748 0.6906 0.5979 0.764092 0.834
MAE 0.6273 0.6524 0.5508 0.615342 0.715

MAPE 13.8268 15.1393 14.0168 13.37031 17.742

DM Test for Out of Sample at h = 1

Models DM Test Statistics p-Value
HW Additive vs. HW

Multiplicative −13.541 0

HW Additive vs. ETS 14.388 0
HW Additive vs. NNAR 7.4791 0

HW Additive vs. SARIMA 16.703 0
HW Additive vs. SETAR −11.61 0

HW Multiplicative vs. ETS 13.616 0
HW Multiplicative vs. NNAR 1.4745 0.1457

HW Multiplicative vs. SARIMA 17.175 0
HW Multiplicative vs. SETAR −16.362 0

ETS vs. NNAR −3.2896 0.0016
ETS vs. SARIMA −15.773 0
ETS vs. SETAR 17.254 0

NNAR vs. SARIMA −12.841 0
NNAR vs. SETAR 18.072 0

SARIMA vs. SETAR −17.303 0
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Figure 17. Forecast combination of the Romanian unemployment rate.

Based on the methods offering the best results for out-of-sample forecasting, NNAR
and SARIMA, the forecasted values of unemployment rate for the period 2021–2022 have
been examined, revealing the existence of a slight difference (Figure 18).

Figure 18. The forecasts of unemployment rate for the period 2021–2022.

According to NNAR, the predicted value of unemployment rate for January 2021 is
estimated to be 4.35% compared with 5% in December 2020, and over the whole period,
the forecast values oscillate around 4.35%. On the other hand, the forecast values based
on the SARIMA model revealed a predicted value of 4.22% for the unemployment rate
of January 2021 and highlighted a descending trend over the horizon 2021–2022, with a
predicted value of 3.54% in December 2022.

An alternative to improving the forecast accuracy is to average the resulting forecasts
based on these two methods, which are considered to be suitable for the modeling and
forecasting of unemployment rate.
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5. Conclusions

Making predictions about unemployment rate, one of the core indicators of the Ro-
manian labor market with fundamental impact on the government future social policy
strategies, is of great importance, mostly in this period of a major shock in the economy
caused by the pandemic.

In this context, the aim of the research has been to evaluate the forecasting performance
of several models and to build future values of unemployment rate for the period 2021–
2022 using the most suitable results. In order to do that, we have employed exponential
smoothing models, both additive and multiplicative Holt–Winters (HW) models together
with an ETS model, the SARIMA model, the neural network autoregression (NNAR)
model, and the SETAR model, which allow taking into account a nonlinear behavior and a
switching regime on the time series and predicting future values of unemployment rate
beyond the period under consideration.

The empirical results revealed for unemployment rate a non-stationary nonlinear and
seasonal pattern in data. The out-of-sample forecasting accuracy of the models based on
the performance measures RMSE and MAE pointed out the NNAR model as performing
better, while MAPE indicated SARIMA to have the best performance. The empirical results
of the Diebold–Mariano test at one forecast horizon for out-of-sample methods revealed
differences in the forecasting performance between SARIMA and NNAR; of these, the
best model of modeling and forecasting unemployment rate was considered to be the
NNAR model.
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Abstract: We present an unsupervised method to detect anomalous time series among a collection
of time series. To do so, we extend traditional Kernel Density Estimation for estimating probability
distributions in Euclidean space to Hilbert spaces. The estimated probability densities we derive
can be obtained formally through treating each series as a point in a Hilbert space, placing a kernel
at those points, and summing the kernels (a “point approach”), or through using Kernel Density
Estimation to approximate the distributions of Fourier mode coefficients to infer a probability density
(a “Fourier approach”). We refer to these approaches as Functional Kernel Density Estimation for
Anomaly Detection as they both yield functionals that can score a time series for how anomalous it is.
Both methods naturally handle missing data and apply to a variety of settings, performing well when
compared with an outlyingness score derived from a boxplot method for functional data, with a
Principal Component Analysis approach for functional data, and with the Functional Isolation Forest
method. We illustrate the use of the proposed methods with aviation safety report data from the
International Air Transport Association (IATA).

Keywords: time series; anomaly detection; unsupervised learning; kernel density estimation;
missing data

1. Introduction

Being able to detect anomalies has many applications, including in the fields of medicine and
healthcare management [1,2]; in data acquisition, such as filtering out anomalous readings [3];
in computer security [4]; in media monitoring [5]; and many in the realm of public safety such
as identifying thermal anomalies that may precede earthquakes [6], identifying potential safety issues
in bridges over time [7], detecting anomalous conditions for trains [8], system level anomaly detection
among different air fleets [9], and identifying which conditions pose increased risk in aviation [10].
Given a dataset, anomaly detection is about identifying individual data that are quantitatively
different from the majority of other members of the dataset. Anomalous data can come in a variety
of forms such as an abnormal sequence of medical events [11] and finding aberrant trajectories of
pantograph-caternary systems [12]. In our context, we look for time series of aviation safety incident
frequencies for fleets of aircrafts that differ substantially from the rest. By identifying the aircraft types
or airports that have significant different patterns of frequencies of specific incidents, our model can
provide insights on the potential risk profile for each aircraft type or airport and highlight areas of
focus for human analysts to perform further investigations.

Identifying anomalous time series can be divided into different types of anomalous behaviour [13]
such as: point anomalies (a single reading is off), collective anomalies (a portion of a time series
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that reflects an abnormality), or contextual anomalies (when a time series behaves very differently
from most others). Identifying anomalous time series from a collection of time series, as in our
problem, can be done through dimensionality reduction (choosing representative statistics of the
series, applying PCA, and identifying points that are distant from the rest) and through studying
dissimilarity between curves (a variant of classical clustering like kmeans) [14]. After reducing
the dimension, some authors have used entropy-based methods, instead, to detect anomalies [15].
Archetypoid analysis [16] is another method, which selects time series as archetypeoids for the dataset
and identifies anomalies as those not well represented by the archetypeoids. Very recently, authors
have used a generalization of Isolation Forests to identify anomalies [17] and have examined the
Fourier spectrum of time series and looked at shifting frequency anomalies [18]. Our approach, like
Functional Isolation Forest, is geometric in flavor and we employ Kernel Density Estimation and
analysis of Fourier modes to detect anomalies.

In this manuscript, we present two alternative means of anomaly detection based on Kernel
Density Estimation (KDE) [19]. We use two approaches: the first and simplest considers each time
series as element of a Hilbert space H and employs KDE, treating each time series in H as if it were a
point in one-dimensional Euclidean space, placing a Gaussian kernel at each curve with scale parameter
ξ > 0. We refer to this as the point approach to Functional KDE Anomaly Detection, because each
curve in H is treated as a point. This approach then formally generates a proxy for the “probability
density” over H. Anomalous series are associated with smaller values of this density. This is distinct
from considering a single time series as collection of points sampled from a distribution and using KDE
upon points in the time series as has been done before [20]. This is a very simple, and seemingly effective
method, with ξ chosen as a hyper-parameter. We also present a Fourier approach, which approximates
a probability density over H through estimating empirical distributions for each Fourier mode with
KDE. This allows us to estimate the likelihood of a given curve. Curves with lower likelihoods
are more anomalous. Both methods naturally handle missing data, without interpolating. In real
flight operations, sometimes it is not possible to capture and record complete information because
incident data is documented from voluntary reporting, which may result in incomplete datasets.
Therefore, model robustness to the impact of missing data is crucial to derive the correct understanding,
which may save human lives and prevent damaged aircrafts.

The rest of our paper is organized as follows: in Section 2, we present the details and implementation
of our methods; in Section 3, we conduct some experiments to investigate the strengths and weaknesses
of the approaches and compare them with three other methods (Functional Isolation Forest available
in Python and the PCA and functional boxplot methods available in R); following this, we apply our
techniques to data from the International Air Transport Association (IATA); finally, in Section 4, we discuss
our results and present some recommendations.

2. Functional Kernel Density Estimation

2.1. Review of Kernel Density Estimation

We first recall KDE over Rd, d ∈ N. Given a sample S ⊂ Rd of n points from a distribution with
probability density function (pdf) f : Rd → [0, ∞) with

∫
Rd f (x)dx = 1, KDE provides an empirical

estimate for the probability density given by [19]

f̃ (x) =
1
n ∑

y∈S
|Ξ|−1/2K(Ξ−1/2(x − y)) (1)
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where Ξ is a symmetric, positive definite matrix known as the bandwidth matrix and K is a Kernel
function. We choose the form of a multivariate Gaussian function so

f̃ (x) =
1
n ∑

y∈S

e−
1
2 (x−y)TΞ−1(x−y)

(2π)d/2|Ξ|1/2 , x ∈ Rd (2)

and we choose [19]
Ξ = α diag(σ̃1, σ̃2, ..., σ̃d) (3)

where σ̃i is the sample standard deviation of the ith-coordinate of the sample points in S and

α =
( 4
(d + 2)n

)1/(d+4)
. (4)

We used tilde (~) rather than hat ( ˆ ) to denote estimators as later on we use the hats for Fourier
Transform modes and wish to avoid ambiguities. In general tildes will be used for estimates derived
from samples.

2.2. Setup, Assumptions, and Notation

The proposed methods are applicable to situations where we look for anomalous time-series
relative to the sample we have. We study time series, which we consider more abstractly as being
discrete samples from curves of form x(t) where x : [0, T] → R for some T > 0. The space of all
such curves is quite general and we limit the scope to Hilbert spaces on [0, T]. For example, we may
consider spaces H = L2([0, T]) or H1([0, T]), the space of square integrable functions or the space of
square integrable functions whose derivative is also square integrable, respectively. Within our Hilbert
space, H, there is an inner product (·, ·) : H2 → C and an induced norm, || · || : H → [0, ∞) where
||x|| = (x, x)1/2. With this norm, we can define distances between elements of H.

Observations are made at p different times, t0, t1, ..., tp−1 where ti = iΔ with Δ = T/p and
i = 0, 1, ..., p − 1. We also have tp = T, but this time is not included in the data. Although observations
are made at these times, some time series could have missing values. When a value is missing, we will
say its "value" is Not-a-Number (NaN). While the set of observation points are uniformly spaced,
the times at which a given time series has non-NaN values may not be.

We denote by n the number of time series observed, given to us as a sample of form X =

{{(t(k)j , x(k)j )}Pk−1
j=0 }n

k=1, where k = 1, ..., n indexes the time series, Pk is the number of available

(i.e., non-NaN) points for time series k, 0 ≤ t(k)0 < t(k)1 < ... < t(k)Pk−1 < T are the times for series

k, with corresponding non-NaN values x(k)0 , x(k)1 , ..., x(k)Pk−1 ∈ R.

2.3. Preprocessing

The methods often performed better if we normalized the data by a standard centering and
rescaling. At each fixed observation time, the values of the time series were shifted to have mean zero
and then rescaled to have unit variance. When the variance was already zero, the values were mapped
to 0. Further remarks are given in Section 4.

Even though our methods do not assume stationary or other similar properties, applying
transformations to the data before applying them can be done. For example, we may wish to make the
series stationary, or to extract some characteristics (e.g., the cyclical part, or the seasonal part). This can
be useful if we want to focus on finding specific types of anomalies.
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2.4. Point Approach to Functional KDE Anomaly Detection

Our first method can be summarized as follows: treat each x ∈ H as a point in one dimension.
Select a value for the KDE scale hyper-parameter ξ > 0, and define a score functional over H by

SP[a] = ∑
x∈X

e
− ||x−a||2

2ξ2 , a ∈ H, (5)

which, at least formally, can be thought of as a proxy to a “probability density” functional.
More rigorously, one should consider measures on Hilbert spaces [21]. Assuming anomalous curves
are truly rare, they should be very distant from the majority of curves and SP[·] should be smaller
at such curves. See Figure 1 for a conceptual illustration. We find that choosing ξ to be the mean
of {||a||}a∈X to work well; another natural choice would be the median. These choices are natural
because they represent a natural size/scale for the series. This approach can also be interpreted from a
Fourier perspective which we remark on in Appendix A.

Figure 1. A visual depiction of the Point method. The curves are time series in a Hilbert space H
but after applying KDE, there is a score associated to each point in H. In the cartoon, curves 1 and
2 are similar and curve 3 is anomalous. (Left): the time series. (Right): a representation of them
with associated scores in the color scale. In reality, the space is infinite dimensional and this is only a
conceptual illustration.

This method can be implemented with the following steps:

1. Choose ξ > 0.
2. For each x ∈ X , compute its score from (5) where, for example, in the case of H = L2([0, T]),

||x − a||2 =
∫ T

0
|(x(t)− a(t)|2dt. (6)

3. Identify anomalies as curves with the lowest score.

The integral in (6), even with some data points missing, can be computed as below:

1. To compute I =
∫ T

0 |(x(t) − a(t)|2dt, determine all t-values where both x and a are not NaN.
Call these t∗0, t∗1, ..., t∗r−1.

2. Define t∗r = T − t∗r−1 + t∗0, x∗
r = x∗

0 and y∗
r = y∗

0.
3. Estimate the integral as

I ≈ 1
2

r−1

∑
m=0

(t∗m+1 − t∗m)(|x(t∗m)− y(t∗m)|2 + |x(t∗m+1)− y(t∗m+1)|2).

This is a second-order accurate (trapezoidal) approximation to I where we have extended the signal
periodically at the endpoint. This ensures that in a pathological case such as there being only a single
point of observation for the integrand with value v, then the inner product evaluates to Tv.
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2.5. Fourier Approach to Functional KDE Anomaly Detection

We first observe that most Hilbert spaces of interest such as L2([0, T]) have a countable,
orthogonal basis B = {exp(2πikt/T)|k ∈ Z}. By considering time series as being represented by these
basis vectors, we can more accurately consider a true probability density over H. In practice, we pick
L ∈ N large and represent a ∈ H by

a(t) ≈
L

∑
j=−L

âke2πikt/T .

Then, up to a Fourier mode of size L, we can define a probability density at a ∈ H by ∏L
k=−L ζk(âk)

where ζk is a pdf over C for mode k.
Our time series are discrete with finitely many points so we consider a Non-Uniform Discrete

Fourier Transform (NUDFT). To estimate the probability density over H at a, we:

1. Compute p∗ = min{P1, P2, ..., Pn}.
2. Compute the Discrete Fourier coefficients

x̂(k)j =
1
Pk

Pk−1

∑
m=0

exp(−2πijtm/T)x(k)(tm)

for each k = 1, ..., n and for j = 0, 1, ..., p∗ − 1.
3. For each 0 ≤ j ≤ p∗ − 1, use KDE to estimate the pdf over C for x̂j, by using KDE

(Equations (2)–(4)) for R or R2 when the coefficients are all purely real/imaginary or contain a
mix of real and imaginary components, respectively. Call the empirical distribution ζ̃ j for each j.

4. For any a ∈ H define an estimated pdf via

ρF[a] =
p∗−1

∏
j=0

ζ j(âj). (7)

5. Let the score of a ∈ H be
SF[a] = log ρF[a]. (8)

6. Identify anomalies in X as those whose scores given by (8) are smallest.

Due to missing data, this method does lose some information since the higher Fourier modes
necessary to fully reconstruct a given time series may be discarded. Additionally, as the missing data
may result in non-uniform sampling, the typical aliasing of the Discrete Fourier Transform does not

take effect. In general for one of the series x(k), we will not have x̂(k)Pk−j = x̂(k)j , where the bar denotes
complex conjugation. See the remark on aliasing in Appendix B.

In multiplying the pdfs in each mode to estimate the probability density at a point in the Hilbert
space, we have implicitly assumed the modes are independent. It may seem intuitive to decouple the
modes by applying a Mahalanobis transformation upon the modes prior to KDE, but this results in
poor outcomes. Thus, this implicit independence seems to work well in practice, without adjustments.

A Discrete Fourier transform of a signal x0, x1, ..., xPS−1 measured at times t̃0, t̃1, ..., t̃PS−1 is a

representation in a new basis {e(k)}PS−1
k=0 where e(k)j = e2πikt̃j/T for j = 0, ..., PS − 1. In general, such a

basis of vectors for a NUDFT will not be orthogonal [22]. However, if m = p − PS � p and the t̃’s are
a subset of a uniformly spaced set of times, we can show that the vectors are almost orthogonal with
a cosine similarity of size O(m/p). Details appear in Appendix C. This orthogonality is not strictly
necessary to run the method, but doing so allows a deeper justification of multiplying the pdfs in
each mode if the Fourier modes are truly independent because the Discrete Fourier Transform is then
approximately a projection onto an orthogonal basis of modes, each of which are independent.
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3. Method Performance

We begin by illustrating the performance of our methods for some synthetic data and compare
Functional KDE to other methods. The first one is the Functional Boxplot (FB) [23]. The fbplot function
in the R package fda is used to obtain a center outward ordering of the time series based on the band
depth concept which is a generalization to functional data of the univariate data depth concept [24].
The idea is that anomalous curves will be the ones with the largest ranks, that is, the ones that are
farther away from the center. The second method is the recently proposed Functional Isolation Forest
(FIF) [17], which is also depth-based and assigns a score to a curve, with higher values indicating that it
is more anomalous. We used the code provided for FIF directly on GitHub [25] with the default settings
given. The third is the method proposed in [26] and implemented in the R package anomalousACM [27].
This method works in three steps: (i) extract features (e.g., mean, variance, trend) from the time-series;
(ii) use Principal Component Analysis (PCA) to identify patterns; (iii) Use a two dimensional outlier
detection algorithm with the first two principal components as inputs. It will be referenced as the PCA
method in what follows After testing them on synthetic data, we apply our techniques to real data to
identify anomalies in time series for aviation events.

The methods against which we compare our methods did not have standard means of managing
missing entries. For these methods, we replace missing data (NaN) in a series using Python’s default
interpolation scheme. For the methods proposed in this paper, we do not have to use imputation.

3.1. Synthetic Data

We apply the Point and Fourier Approaches to Functional KDE, Functional Boxplot, and Functional
Isolation Forest to the two scenarios described below.

Scenario 1 : we define a base curve

x0(t) = a0(1 + tanh(b0(t − t0))) + c0 sin(ω0t/T),

with a0 = 5, b0 = 2, T = 50, t0 = T/2 = 25, and ω0 = 2π. Ordinary curves are generated via

x0(t) + ε(t),

where ε(t) represents Gaussian white noise at every t with mean μg = 0 and standard deviation
σg = 0.05. We then consider a series of 7 anomalous curves:

• C1(t) = x0(t)
(

1 + r1
(t−t∗)2

1+(t−t0)2 Θ(t − t0)
)
+ ε(t), where r1 = 0.05 and Θ denotes the Heaviside

function. Thus, the function is scaled up after t0.
• C2(t) = x0(t) +

(
1 + r2Θ(t − t0)

)
ε(t), where r2 = 3. Thus, the noise is larger after t0.

• C3(t) = x0(t) − r3(t − t0)Θ(t − t0) + ε(t), where r3 = 0.05. Thus, there is a decreasing
component added to the function after t0.

• C4(t) = 2a0Θ(t − t0) + c0 sin(ω0t/T) + ε(t), i.e., the tanh is replaced by a
discontinuous function.

• C5(t) = x0(t) + E(t), where E(t) represents an exponential random variable at every t with
mean 0.05.

• C6(t) = a0(1+ tanh(2b0(t − t0))) + c0 sin(ω0t/T) + ε(t), which has a slightly steeper transition
rate than the base curve.

• C7(t) = a0(1 + tanh(b0(t − t0))+ c0 sin((1 + r7t/T)ω0t/T) + ε(t), where r7 = 0.1 so the
frequency increases with time.

Over 50 trials, we generate 70 time series, 63 normal curves, and 7 anomalous curves with each of
C1 through C7 being used once. See Figure 2 for an illustration. We used a uniform mesh with 50 points,
0, 1, ..., 49. Since we used a 9 : 1 ratio of regular to anomalous series, successful methods, after ranking
curves in ascending order of “regular,” should rank anomalous curves as among the bottom 10%.
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We can also determine the 95th percentile for the percentile rank of each curve, to give an estimate for
how much of the data would need to be re-examined to capture such anomalies. These trials can also
be done by dropping data points independently at random with a fixed probability to simulate missing
data. We ran sets of trials with 0% and 10% of drop probabilities. Results for the mean percentile rank
and 95th percentile of the percentile ranks are presented in Tables 1 and 2.

Figure 2. Plot of 63 normal curves and the 7 anomalous curves Ci(t), i = 1, ..., 7. Left: un-normalized.
Right: normalized.

Table 1. Mean percentiles (out of 100) for curves C1–C7 in Scenario 1. A correct classification is a
percentile less than or equal to 10 (in bold in the table). The -N suffix denotes the data were normalized
by the pre-processing described in Section 2.3; the -U suffixed denotes the data were un-normalized.
Note that method FB is not affected by the normalization.

Method Lost C1 C2 C3 C4 C5 C6 C7

Point-N 0% 4.3 5.8 1.4 21 12 24 2.9
Point-U 0% 4.3 5.7 1.4 14 8.8 16 2.9

Fourier-N 0% 4.7 1.9 2.8 28 51 29 8.5
Fourier-U 0% 5.8 4.0 2.8 38 43 35 1.7

FIF-N 0% 51 24 72 56 79 58 13
FIF-U 0% 19 2.2 4.8 18 53 19 5.3
PCA 0% 7.5 20. 4.3 7.5 53 9.4 11
FB 0% 4.5 5.6 1.8 36 21 37 2.5

Point-N 10% 4.3 6.0 1.4 23 18 29 2.9
Point-U 10% 4.3 5.7 1.4 20. 14 23 2.9

Fourier-N 10% 4.3 4.5 2.5 28 43 36 4.0
Fourier-U 10% 45 59 50 46 49 53 49

FIF-N 10% 50. 21 75 48 74 51 13
FIF-U 10% 45 15 29 42 48 44 32
PCA 10% 32 20. 6.1 36 47 35 7.7
FB 10% 7.5 8.7 4.2 47 24 49 5.1

Scenario 2: we utilized the testing examples of Staerman et al. [17]. The data consist of 105 time
series over [0, 1] with 100 time points. There are 100 regular curves defined by x(t) = 30(1 − t)qtq

where q is equi-spaced in [1, 1.4]–thus there is a large family of normal curves. Then, there are
5 anomalous curves:

• D1(t) = 30(1 − t)1.2t1.2 + βχ[0.2,0.8], where β is chosen from a Normal distribution with mean 0
and standard deviation 0.3 and χI is the characteristic function of I (there is a jump discontinuity
at 0.2 and 0.8).

• D2(t) = 30(1 − t)1.6t1.6, being anomalous in its magnitude.
• D3(t) = 30(1 − t)1.2t1.2 + sin(2πt).
• D4(t) = 30(1 − t)1.2t1.2 + 2χ{τ}, where τ = 0.7 is a single point.
• D5(t) = 30(1 − t)1.2t1.2 + 1

2 sin(10πt).

Each curve was sampled uniformly at 100 points. We did not drop any data points and, owing to
the limited randomness, we only present the results of one trial. The results are presented in Table 3.
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Table 2. The 95th percentile of the percentile ranks (out of 100) for curves C1–C7 in Scenario 1.
See Table 1 caption for -N vs. -U distinction.

Method Lost C1 C2 C3 C4 C5 C6 C7

Point-N 0% 4.3 6.5 1.4 47 42 62 2.9
Point-U 0% 4.3 5.7 1.4 30. 12 46 2.9

Fourier-N 0% 8.6 3.6 4.3 67 99 74 13
Fourier-U 0% 5.7 4.3 4.2 84 94 77 2.9

FIF-N 0% 84 69 92 90 100 96 30
FIF-U 0% 57 7.5 11 55 97 53 11
PCA 0% 25 67 7.1 17 96 27 47
FB 0% 5.7 5.7 2.9 75 74 75 2.9

Point-N 10% 4.3 7.1 1.4 52 51 72 2.9
Point-U 10% 4.3 5.7 1.4 46 43 59 2.9

Fourier-N 10% 6.5 10. 5.1 61 91 89 5.7
Fourier-U 10% 84 97 92 93 93 92 89

FIF-N 10% 81 67 97 91 99 95 39
FIF-U 10% 84 27 56 88 95 94 56
PCA 10% 82 60. 31 73 94 73 19
FB 10% 11 13 10. 75 75 75 9.4

Table 3. Percentiles (out of 100) for curves D1–D5 in Scenario 2. A correct classification is a percentile
less than or equal to 4.8 (in bold in the table) since 5/105 = 4.8%. See Table 1 caption for -N vs.
-U distinction.

Method D1 D2 D3 D4 D5

Point-N 74 0.95 6.7 73 1.9
Point-U 83 0.95 44 85 71

Fourier-N 3.8 4.8 1.9 2.9 0.95
Fourier-U 1.9 8.6 30 0.95 2.9

FIF-N 1.9 28 3.8 10 0.95
FIF-U 1.9 2.9 3.8 4.8 0.95
PCA 4.8 2.9 3.8 1.9 0.95
FB 75 0.95 21 75 75

Our method is unsupervised and thus the distinction as to what constitutes an anomaly requires
considering a curve’s score relative to the others and making a decision based upon this. This can involve
human judgment. However, since our method returns a scalar score, we can also use a univariate outlier
test on the score to formally test the hypothesis H0: There are no anomalies. The Rosner test [28] is
such a test and is available in the R package EnvStats [29]. In Appendix D, by considering scenarios
where anomalies are present or absent, we show the validity of this approach.

3.2. Aviation Safety Reports

We now consider how our methods behave in identifying anomalous time series for aviation
safety events. A discussion on method performance is deferred to Section 4.

We were provided IATA data for safety-related events of different types on a month-by-month
basis from 2018–2020 for different aircraft types and airports. Aircraft types were given IDs from 1
to 64 (not every ID in the range was included). We were also given separate data pertaining to flight
frequency in order to normalize and obtain event rates (cases per 1000 flights). Events of interest could
include phenomena occurring during a flight such as turbulence or striking birds, or physical problems
such as a damaged engine. We study two events: A and B. Event Type A is a contributing factor for one
specific type of accident; Event Type B is the aircraft defense against that type of accident. To illustrate
our method while preserving the confidentiality of the data, we do not state what A and B represent.

We plot histograms for the scores of Type A and B Events in Figure 3. These histograms suggest
that, for events A and B, anomalous curves could be those with scores below 10 for the Point approach.
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Then, we consider curves anomalous by the Fourier method if they have scores below −60 for event A
and −30 for event B. As the method is unsupervised, the notion of where to draw the line of being
anomalous is somewhat subjective. The idea here is to raise a flag so that experts can investigate
the anomalous cases more closely. The aircraft types identified as anomalous for both methods are
presented in Table 4. It appears for these data, the curves deemed anomalous by the Fourier method
are a subset of the curves deemed anomalous by the Point method. In Figure 4, we plot the anomalous
curves (with markers) along with the normal curves (dotted lines) for the fleet IDs that were common
to both approaches.

Figure 3. Histogram of scores for Point and Fourier methods for Type A Point (top-left), Type A
Fourier(top-right), Type B Point (bottom-left) and Type B Fourier (bottom-right). The dashed vertical
line represents the division we chose between anomalous (left of line) and normal (right of line).
The Sturges estimate was used to set bin widths [30].

Figure 4. Plots of the time series for Type A and Type B events. Anomalous are dotted curves with
markers in the legend; normal curves are solid black curves.
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Table 4. IDs of anomalous flights for events A and B. Columnwise, the bolded IDs are common to both
methods for a given event type.

Method Type A Type B

Point 14, 21, 22, 23, 35 1, 2, 4, 5, 6, 7, 8, 9, 25, 34
Fourier 14, 21, 22, 35 1, 2, 4, 7, 8, 9

4. Discussion and Conclusions

4.1. Method Performance

From Tables 1 and 2 with regards to Scenario 1, the Point method and FB are superior.
They correctly classify C1–C3 and C7 as anomalous. The Point and PCA methods significantly
outperform the other methods in the more difficult C4–C6 curves. With these data, the Point
method generally performs better without normalization. Generally all methods failed to identify
the replacement of Gaussian white noise with exponential noise (C5) as anomalous, although the
un-normalized Point approach succeeded. Additionally, all methods considered, except PCA,
had difficulty identifying the discontinuous replacement of the hyperbolic tangent (C4) and a slightly
steeper hyperbolic tangent (C6). The PCA method was not as good as the others for identifying the
noise increases (C2) and the frequency increase with time (C7). This suggests that not all methods are
effective at detecting the same types of anomalies and that they may be complementary.

From Table 3 for Scenario 2, the Fourier approach with normalized data, FIF on un-normalized
data, and PCA classify equally correctly. Data can always be normalized and this is therefore not a
problem for the Fourier method. In this example, the Point approach fares better with normalization.
However, this method and the FB method are not as effective as the FIF, PCA, and Fourier methods.

From our experiments, when there was a large family of curves as with Scenario 2, the Fourier
method performed better at detecting anomalies, especially when provided normalized data. But when
the family of curves were all close to the same, except for noise, the Point method was better, with or
without normalization. Providing more theoretical understanding as to whether these are general
phenomena is left for future work.

4.2. Aviation Safety Data

From Figure 4, it appears the methods can detect different sorts of anomalies. In the case of Type
A events, the anomalous curves appear to have anomalously large values at an isolated point or over
small range of values. The anomalies in Type B events are more interesting and subtle. Even some of
the normal curves have sizeable event frequencies, sometimes even exceeding the anomalous curves.
But on the average it seems the anomalous curves are higher. In the case of curve 9, the reason it is
deemed anomalous is not immediately intuitive. Whether such differences are of a concern to safety
would require follow-up from safety inspectors.

To prevent aviation accidents, identifying the potential hazards and risks before they evolve into
accidents is the key to proactive safety management. While collecting and analyzing data manually
is a time-consuming process, especially on a global scale, the risk identification process may remain
reactive process if there is not an automated process. The application of the anomaly detection will
enable proactive data-driven risk identification in global aviation safety, by continuously monitoring
aviation safety data across multiple criteria (e.g., airport, aircraft type and date), then automatically
raising a flag when the model detects any anomalous patterns.

The proposed model shows potential value in automatically detecting potential risk areas with
robustness from missing data; however, the interpretation of the model still requires future study.
As safety risk is an outcome of complex interactions between multiple factors, including human,
machine, environment, and other hidden factors, understanding the full context of such risk requires
in-depth investigation and validation from multiple experts. While the model can identify some
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anomalous patterns, this does not take into consideration the interactions. For example, some aircraft
fleets fly more frequently over certain pathways than others. Thus, some differences identified as
anomalous due to aircraft type may actually stem from location. Therefore, there will always be a
human layer between the model and the interpretation of the model.

4.3. Comments on the Models

There are various degrees of freedom the proposed methods allow for, which are worth noting.
Firstly, the point method could be generalized to compute H1([0, T]), and higher Sobolev norms too,
but that could lead to additional hyper-parameters in how heavily to weigh the derivative terms.
With the Fourier approach, it may seem more appropriate to replace the NUDFT with a weighted
combination of terms that more accurately reflects the non-uniform spacing, i.e., a Riemann Sum.
Interestingly such an approach tends to make the results slightly worse, hence our choice to use the
standard NUDFT.

We anticipate these methods perform well when the time series are sampled at regular intervals
and a small portion of entries are missing. If the number of missing entries is very large, this makes
inner products computed with the Point method less accurate (without additional interpolations) and
the preprocessing of shifting and rescaling could result in poorer outcomes due to a limited sample
size upon which to base the normalizations. For many applications, however, most data are present.

4.4. Future Work

We note that our proposed methods aim to identify anomalous time series relative to the sample
taken. In general, even if all time series are sampled from the same distribution, due to low probability
events, some time series could still be anomalous relative to the sample given. As such, our work
has mostly been an empirical investigation of the methods; however, by adding further assumptions
on the underlying distribution of time series, it could be possible to obtain a more theoretical basis
for the method performance. This would be worth investigating, but is beyond our current work.
Going hand-in-hand with this theory it would be interesting to investigate the optimal choice of ξ

in the point approach, to understand how the Fourier modes being treated as independent works as
effectively as it does, or to more rigorously establish classes of problems when the Point or Fourier
approaches are superior.

In conclusion, we have presented two approaches to detecting anomalous time series using KDE
to generate functionals to score a series for its degree of anomalousness. The methods handle missing
data and perform well in comparison to other methods.
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Appendix A. Fourier Perspective of the Point Method

From Parseval’s identity [31], we can also write the terms of (5) as

e
− ||x−a||2

2ξ2 = e
− ∑k∈Z |x̂k−âk |2

2Tξ2 ,

i.e., each kernel can be thought of as a Gaussian in C∞ with constant variance in all directions.
Unfortunately this thinking can only be true in spirit because such a series would not be in L2([0, T])
as ∑k∈Z |âk|2 would almost surely diverge.

Appendix B. Aliasing

Observe that if the real time series x0, x1, ..., xN−1 is observed at p equally spaced points tj = jΔ,
Δ = T/p, j = 0, ..., p − 1 then for j = 1, ..., p − 1:

x̂p−j =
p−1

∑
m=0

e−2πitp−jmΔ/Txm

=
p−1

∑
m=0

e−2πi(p−j)mΔ/Txm

=
p−1

∑
m=0

e2πijmΔ/Txm

= x̂j

where in getting from the first to second line we used exp(−2πipmΔ/T) = exp(−2πim) = 1. On the
other hand, if data are only observed at t̃0 < t̃1 < ... < t̃PS , a subset of the times t0, ..., tp with PS < p
then t̃j is not, in general jΔ and the identity does not hold.

Appendix C. Approximate Orthogonality

Before our approximate orthogonality result, we first define the standard inner product for vectors
over CN :

(x, y) =
N

∑
j=1

x̄iyi.

Theorem A1 (Approximate Orthogonality). Let tj = jΔ for j = 0, 1, ..., p − 1 where Δ = T/p for T > 0.

Let {t̃j}PS−1
j=0 ⊂ {t0, t1, ..., tp−1}. Define m = p − PS and define the basis vectors {e(k) = e2πikt̃j/T , j =

0, ..., PS|k = 0, ..., PS}. Then
(e(k), e(k

′))

|e(k)||e(k′)|
=

{
1, k = k′

O(m/p), k �= k′
.

In other words the cosine similarity of the two vectors is either 1 or O(m/p).

Proof. We trivially note that |e(k)| = √
PS for any k. Next, if k = k′ then

(e(k), e(k
′))

|e(k)||e(k′)|
=

1
PS

PS−1

∑
j=0

1

= 1.

Let us define the set B = {j|tj /∈ {t̃k|k = 0, ..., PS} for j = 0, ..., p}, i.e., it is a listing of all regular time
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values that have been lost in only observing at the t̃’s. Note that |B| = m. Also let q = k′ − k so that
when k �= k′ :

(e(k), e(k
′))

|e(k)||e(k′)|
=

1
PS

NS−1

∑
j=0

exp(2πiqt̃j/T)

=
1
PS

( p−1

∑
j=0

exp(2πiqtj/T)− ∑
j∈B

exp(2πiqtj/T)
)

=
−1
PS

∑
j∈B

exp(2πiqtj/T)

where in arriving at the final equality we used that the sum of e2πiqtj over j = 0, ..., p − 1 is 0 (1 + η +

η2 + ... + ηp−1 = 0 if ηp = 1 and η �= 1). As each term in the remaining sum is bounded by 1 and
|B| = m, we have that

(e(k), e(k
′))

|e(k)||e(k′)|
= O(m/PS)

= O(m/p).

Appendix D. Rosner Test on the Scores

We briefly explore the capacity of our methods to test the hypothesis H0: There are no anomalies.
The idea is to compute the scores from our methods, which are scalars, and use a univariate outlier test
on them. In this experiment, we use Rosner test [28] with the R package EnvStats [29]. Specifically,
we test H0 for each of the 50 trial datasets of Scenario 1 and report the proportion of time the null
hypothesis is rejected at the α = 0.05 level. In this case, the proportion of rejection measures the
power of the test and we wish to have the highest values possible. However, to verify the validity
of the test, we also run the tests on the samples containing only the 63 normal curves. This time,
we want the proportion of rejection to be close to the level α = 0.05. The results, presented in Table A1,
show that this method is working. Setting aside the un-normalized Fourier approach (Fourier-U) with
10% of missing data, the proportion of rejection varies between 0.02 and 0.08 when the data contain
no anomalies, showing that the test is able to maintain its prescribed level. When the data contain
anomalies, the power ranges between 0.98 and 1, showing that the anomalies are detected in almost all
cases. The only exception is the Fourier-U method with 10% of missing data, which never rejects H0

whether or not the data contain anomalies. But this is consistent with the fact that this method had a
very poor performance in this case and was not able to detect the anomalies as seen in Table 1.

Table A1. Proportions of time the null hypothesis H0 is rejected at the α = 0.05 level. See Table 1
caption of main manuscript for -N vs -U distinction.

Method Lost Anomalies Present H0 Reject Fraction

Point-N 0% No 0.04
Point-N 0% Yes 1
Point-U 0% No 0.08
Point-N 0% Yes 1

Fourier-N 0% No 0.08
Fourier-N 0% Yes 0.98
Fourier-U 0% No 0.02
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Table A1. Cont.

Method Lost Anomalies Present H0 Reject Fraction

Fourier-U 0% Yes 1
Point-N 10% No 0.04
Point-N 10% Yes 1
Point-U 10% No 0.08
Point-N 10% Yes 1

Fourier-N 10% No 0.06
Fourier-N 10% Yes 1
Fourier-U 10% No 0
Fourier-U 10% Yes 0
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Abstract: Electric power forecasting plays a substantial role in the administration and balance of
current power systems. For this reason, accurate predictions of service demands are needed to
develop better programming for the generation and distribution of power and to reduce the risk
of vulnerabilities in the integration of an electric power system. For the purposes of the current
study, a systematic literature review was applied to identify the type of model that has the highest
propensity to show precision in the context of electric power forecasting. The state-of-the-art model
in accurate electric power forecasting was determined from the results reported in 257 accuracy tests
from five geographic regions. Two classes of forecasting models were compared: classical statistical
or mathematical (MSC) and machine learning (ML) models. Furthermore, the use of hybrid models
that have made significant contributions to electric power forecasting is identified, and a case of study
is applied to demonstrate its good performance when compared with traditional models. Among our
main findings, we conclude that forecasting errors are minimized by reducing the time horizon,
that ML models that consider various sources of exogenous variability tend to have better forecast
accuracy, and finally, that the accuracy of the forecasting models has significantly increased over the
last five years.

Keywords: electric power; forecasting accuracy; machine learning

1. Introduction

Electric power forecasting plays a substantial role in the administration and balance of
current power systems. The load forecasts help to identify strategies to optimize the operating
mechanisms in a determined period and thus ensure the demand even in situations adverse to the
system [1]. Accompanying the rapid advances in forecasting theory [2,3] and machine learning [4–6],
the technology in the energy forecasting research area has also developed rapidly [7]. Additionally,
the popular prediction methods for the generation and demand of energy can be divided into two
categories. The first category is statistical or mathematical methods, and the second category is modern
statistical-learning-based methods (also known as machine learning). In addition, hybrid methods can
be found that apply not only statistical tools but also other elements, such as mathematical optimization
or signal processing [8,9]. Additionally, other authors [10] consider hybrid approaches that focus
on a series of individual methods, such as noise reduction, seasonal adjustment and clustering,
to process the data in advance, whereas combined methods use weight coefficients. With respect to
the techniques implemented to forecast energy in recent years, in the international context, we can
find a wide diversity; e.g., the application of kernel-based multitask learning methodologies [11],
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energy load forecasting methodologies based on deep neural networks as in [12,13], methodologies
based on the classic time series approach as in [14–16], and mathematical representations as in [17–19].
Developing a model that achieves the highest forecasting precision in the context of electric power
has been the object of study in recent years. Additionally, the determination of the appropriate
input variables in load forecasting constitutes an important part of the forecasting procedure [20].
Due to the importance of the area, several review papers have appeared that present insights into
current applications and future challenges and opportunities [21,22]. However, existing review papers
examine the applications of a single model, e.g., an ANN [23], or cover only one energy domain,
e.g., solar radiation prediction [24,25], and do not perform comparisons among specific metrics, such as
MAPE, for multiple applications. Therefore, a systematic review to identify the type of model that has
the highest propensity to show precision in the forecast is the main objective of this paper.

Motivation and Scope of the Review

The number of papers published on the topic of electric power forecasting has been growing at an
exponential rate throughout the last decade, as Figure 1 shows. The order of magnitude of the increase
in the number of scientific publications on the subject revolves around 61.59%, between 2016–2020,
with respect to 2011–2015. Generally, the studies are site-specific, and the results strongly depend
on the nature of the model and the time horizon of the forecast, along with a large number of
other characteristics pertaining to the data and models. This is a major limitation, which makes a
generalization of the results difficult. A test of a given model over all different mentioned factors is
needed to measure the average effect of the model [25]. Consequently, the contribution of this paper is
to present the state-of-the-art of models in electric power systems and discuss their likely future trends,
considering:

• (I) The models that tend to provide precision in electric power forecasts according to the literature.
• (II) Exogenous sources that tend to lead to accurate forecasting of electrical energy according to

the literature.
• (III) Relationships between the times of forecasting and the accuracy of existing models.

Figure 1. Number of articles published per year. The line represents an exponential fit, highlighting
the yearly growth trend. The publications from 2020 are excluded since only partial data are available.

The rest of this paper is organized as follows. In Section 2, the methodology of the research is
presented. In Section 3, a description of the data set is presented. In Section 4, a performance analysis of
the forecasting models is presented, and finally, the overall discussion and conclusions are presented.

2. Theoretical and Referential Framework

This chapter presents an analysis of the documents found in the literature during the last 15 years
on the subject of electric power forecasting.
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2.1. Selection Criteria

The number of documents published on the topic of electric power forecasting has been growing
at an exponential rate throughout the last 15 years, as Figure 1 shows. We analyze in the review
the documents published for electric power forecasting contained in SCOPUS, Web of Sciences,
Science Direct and IEEE (Figure 2), according to the criteria shown in Figure 3 and following the steps
of the PRISMA (Preferred Reporting items for Systematic Review and Meta-Analyses) methodology.

A large number of papers published between January 2005 and March 2020 were analyzed.
The qualitative and quantitative synthesis of the analysis was collected from 164 documents selected
based on the criteria shown in Figure 3; the documents that only forecast electric power in buildings,
universities, homes, and rooms were excluded; likewise, if the time horizons are not mentioned in the
Abstract, the article was also skipped in our research. Similarly, if in an article, MAPE was not used as
a criterion for accuracy, it was not considered in our review. When considering the accuracy of the
results reported by the selected papers in terms of the MAPE Equation (1), we can compare samples of
different magnitudes, thus ensuring a common basis for intercomparison analyses.

It is important to highlight that under our filtering criteria a significant volume of valuable
references may have been excluded; in this sense, our searches may not be specific. If the readers are
interested exclusively in consulting documents related to forecasting under machine learning methods,
then they could consult [21], or if they are interested in specific documents on solar energy, they could
consult [25]; in the case of documents associated with the forecast under classical statistical techniques,
there are specific documents that can be consulted, such as [26].

Figure 2. PRISMA Flow Diagram.

67



Entropy 2020, 22, 1412

Figure 3. Search methodology for finding relevant literature.

2.2. Statistical Indicators of Accuracy in Electric Power Forecasting

The number of papers from the publications we studied that are eligible according to the criteria
was 164. We collected the mean absolute percentage error (MAPE), a statistical indicator of accuracy.
This index indicates an average of the absolute percentage errors (Equation (1)); the lower the MAPE, the higher
is the accuracy [27].

MAPE =
1

mk

m

∑
k=1

∣∣∣∣ tk − yk
tk

∣∣∣∣ ∗ 100 (1)

where tk is the actual value of electric power, yk is the forecasting value produced by the model, and m
is the total number of observations. The final quality-controlled database from the 164 documents
contained 4883 entries (MAPE, type of MAPE, country, date, input variables, model, type of model,
latitude, longitude, and size of sample), and we saved 257 entries associated with a MAPE value
linked to the best model proposed in the cases of study with data from 33 countries. The locations
are represented on the world map in Figure 4. We can see that the studied publications cover all
continents. Occupying the first positions in the list of the countries with the most electrical energy
forecast documents, under the criteria used, are Australia, China, Iran, and Turkey.

Figure 4. Number of forecasts by country considered in the review.

3. Description of the Dataset

The analysis was performed from five perspectives: the class of a forecasting model (MSC or ML),
the type of model (hybrid or not), the time horizon, and the input variables and performance trend
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over time (MAPE). The dataset analyzed in this paper contains 257 entries associated with a MAPE
value linked to the best model proposed in the document.

The MAPE value was classified according to the criteria drawn up by [28], which contain typical
MAPE values for business and industrial data and their interpretation in four evaluation criteria (in our
case, four prediction capabilities); this table was used in [29–32], and can be seen in Table 1.

Table 1. MAPE qualitative criteria.

MAPE (%) Prediction Capability

<10 Highly accurate prediction (HAP)
10–20 Good prediction (GPR)
20–50 Reasonable prediction (RP)
>50 Inaccurate prediction (IPR)

Table 2 shows that of the 164 documents processed in the systematic review, 99 contain a highly
accurate prediction (HAP). Additionally, more ML documents with an HAP were found than MSC
documents. Regarding the sources of variability considered by the documents that contained HAPs,
it can be seen that multivariate models have a higher recurrence than univariate models. As explained
in [10], despite the introduction of artificial intelligence, each of the individual methods are still not
able to produce the desired outcomes because of their disadvantages. For instance, neural networks
attain local optimal results instead of global optimal results. Expert systems excessively rely on
knowledge and cannot always obtain optimal results, whereas grey prediction systems are suitable for
exponential growth models. Thus, by considering every method’s merits and taking full advantage of
them, the concept of hybrid and combination methods developed rapidly.

Table 2. Systematic review documents. Techniques type used in electric power forecast and qualitative
values of the average MAPE.

MAPE Type
Multivariate Model Univariate Model Total

Not Hybrid Hybrid Not Hybrid Hybrid

HAP ML [33–72] [6,27,73–91] [1,14,17,18,92–107] [29,32,85,108–122] 99

HAP MSC [15,123–147] [148,149] [1,14,17,18,92–107] [19,150–152] 52

GPR ML [153–157] [158] [159–162] − 10

GPR MSC [16,163] − − − 2

RP ML [164] − − − 1

Total 74 24 44 22 164

3.1. Forecasting Horizon

Figure 5 shows that the minimum MAPE values (<2) were reached more frequently when the
forecast time horizon is 5 min.
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Figure 5. MAPE value interval and the percent of forecasts extracted from the 164 documents
considered by time horizon.

3.2. Exogenous Influence

Because forecasting electric power demand is typically based on historical electricity consumption
and its relationship with exogenous influences, such as gross domestic product (GDP), population,
urbanization, income and exports, research on forecasting electric power demand has evolved using
both univariate and multivariate time-series models [15].

Similarly, weather associated variables such as humidity, temperature, and dew point are pertinent
for electric power forecasting for extensive time scales. For short-term forecasting such as minutes
ahead, the climate changes are already captured in the electric power series [165]. Forecasting models
using only previous electricity data (univariate) have been shown to provide HAP and to perform
better than models that also use weather variables as exogenous influences (multivariate) [166].
Nevertheless, the use of weather influences was found to be beneficial for electric power forecasting
horizons beyond several hours [166,167]. In Figure 6, it can be seen that the precision of the electric
energy forecast on average tends to improve when various sources of variability are considered.
In our sample of filtered documents, the average MAPE is lower for the forecasts whose models
consider sources of variability from the calendar information, weather information, and economic or
sociodemographic information, as in [60,125,130,146].

Figure 6. Average MAPE according to the considered source of variability.

4. Classes of Forecasting Models

From the multitude of methods that have been tested and evaluated, the ML and MSC classes
seem to be the main competitors.
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4.1. Classical Statistical Models

A popular technique such as time series forecasting is applied in several areas [25]. The most
widely used statistical method is the ARIMA of Box and Jenkins, which was applied with more force
during the eighties, when intelligent systems began to appear [168]. Several time series models make
use of the high autocorrelation for small lags in the time series of electric power, and supply electric
power forecasts using only previously measured values of electric power as input.

From the multitude of methods that have been tested and evaluated in this review, in this class,
regression analysis and ARIMA modeling seem to be the main competitors (Figure 7).

4.2. Classical Regression in the Time Series Context

To explain linear regression in the the context of time series, we assume some output or dependent
time series. Assume xt for t = 1, · · · , n, is being influenced by a collection of possible inputs or
independent series, such as zt1 , zt2 , · · · , ztq , where we first regard the inputs as fixed and known [169].
We express this relation through the linear regression model:

xt = β0 + β1zt1 + β2zt2 + · · ·+ βqztq + wt (2)

where β0, β1, · · · , βq are unknown fixed regression coefficients, and wt is a random error or noise
process consisting of independent and identically distributed (iid) normal variables with a zero mean
and variance σ2

w. For time series regression, it is rarely the case that the noise is white, and we will
need to eventually relax that assumption.

Classical regression models have been used in several academic papers for electric power
forecasting [97,98,102,124,130,134,138,140], reaching an accuracy in the forecast with an average MAPE
value of 1.569%. Classical regression is often insufficient for explaining all of the interesting dynamics
of a time series; instead, the introduction of correlations that may be generated through lagged linear
relations led to the autoregressive (AR) and autoregressive moving average (ARMA) models that were
presented in [169,170]. Adding nonstationary models to the mix led to the autoregressive integrated
moving average (ARIMA) model popularized in the landmark work by Box and Jenkins [169,171].

4.3. Autoregressive Integrated Moving Average

Autoregressive models are based on the idea that the current value of the series, xt, can be
explained as a function of p past values, xt−1, xt−2, · · · , xt−p, where p determines the number of
previous steps required to forecast the current value [169].

The acronym ARIMA refers to an autoregressive integrated moving average model.
ARIMA models can be applied to non-stationary data, and when the data are seasonal, the SARIMA
model can be implemented. The ARIMA and SARIMA models have been used in many studies for
forecasting [14–16,99,100,103,127,136], reaching forecast accuracies with an average MAPE value of
3.214%. A typical ARIMA (p, d, q) model can be expressed by Equation (3), where the variable ut is
replaced by a new variable wt obtained by differencing ut d times [25]:

wt = (1 − B)dut. (3)

4.4. Machine Learning (ML) Models

ML methods have been suggested in the academic literature as an alternative to MSC methods
for time series prediction, with the same objective. They attempt to improve the forecasting accuracy
precision by minimizing some loss functions, as for example the sum of squared errors. The distinction
between ML and MSC is in how the minimization is performed: the ML methods use nonlinear
algorithms while the MSC method use linear processes. The ML methods require a greater dependence
on computer science to be implemented and are more demanding than MSC methods, as they are
positioned at the intersection of MSC and computer science [172]. There are several approaches
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developed under ML theory. In this review, artificial neural networks (ANNs), support vector machines
(SVMs), decision trees (DTs), adaptive neuro fuzzy inference systems (ANFISs), and recurrent neural
networks (RNNs) were found to support the bases of the models that were implemented more
frequently in electric power forecasting (Figure 7).

Figure 7. Graph with nodes weighted by sample size for the case of the techniques (light-gray node)
and probability of occurrence for the MAPE intervals (dark-gray node).

4.4.1. Artificial Neural Networks (ANN)

Neural networks have been the subject of great interest for many decades due to the desire
to understand the brain and to build learning machines [173]. A neural network is an interconnected
assembly of simple processing elements, units or nodes whose functionalities are loosely based on animal neurons.
The processing ability of a network is stored in the inter-unit connection strengths, or weights, obtained by a
process of adaptation to, or learning from, a set of training patterns [174].

The ANN models have been used in many studies for electric power forecasting [6,39,44,46,48,53–
55,57–62,65,70,75,77,81,82,86,108,153,155,165,175,176] and have reached a forcasting accuracy with an
average MAPE value of 3.781%.

4.4.2. Recurrent Neural Networks (RNN)

Models known as a recurrent neural networks allow feedback connections; these models define
nonlinear dynamical systems but do not have simple probabilistic interpretations [173]. RNN models
have been used in many studies for electric power forecasting [64,69,71,73,88,90,157,177,178] and have
reached a forecasting accuracy with an average MAPE value of 3.610%.

4.4.3. Fuzzy Neural Network-Based Forecasting Methods

Fuzzy logic systems (or, simply, fuzzy systems (FSs)) and neural networks are universal
approximators; that is, they can approximate any nonlinear function (mapping) with any desired
accuracy and have found wide application in the identification, planning, and model-free control of
complex nonlinear systems, such as robotic systems and industrial processes. Fuzzy logic offers a
linguistic (approximate) approach to drawing conclusions from uncertain data, and neural networks
offer the capability of learning and training with or without a teacher (supervisor) [179].

Fuzzy logic algorithms have been used in many studies for electric power forecasting [10,27,33,
45,50,52,63,79,80,83,85,91,113,118,122,154,160,180,181] and have reached a forecasting accuracy with
an average MAPE value of 4.013%.
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4.4.4. Support Vector Machines (SVMs)

Support vector machines are supervised learning algorithms used for solving binary classification
and regression problems. The main idea of support vector machines is to construct a hyperplane such
that the margin of separation between the two classes is maximized. In this algorithm, each of the data
points is plotted as a data point in n-dimensional hyperspace. Then, a hyperplane that maximizes the
separation between the two classes is constructed [182]. This technique was originally designed for binary
classification but can be extended to regression and multiclass classification [173]. Support vector regression
algorithms have been used in many studies for electric power forecasting [41,47,49,76,109,110,112,114,
119,164,183–185] and have reached a forecasting accuracy with an average MAPE value of 4.326%.

5. Evaluation of Model Accuracy

As can be seen in Table 3, as mentioned in [77], there are many factors, such as economic
development, regional industrial production, holiday periods, weather conditions, social change,
electricity price, and population, that are unavoidable, affect electric power randomly, and allow the
data to demonstrate different features.

Short-term load forecast models that rely on weather information require the prediction of weather
parameters for the next few hours or at most the next few days [75]. Similarly, economic indicators and
electrical infrastructure measures are usually useful in forecasting electric power with a long forecast
horizon, e.g., a prediction of the annual peak load at least one year in advanced [39]. However, in the
daily peak load forecasting for the following month, these indicators are not effective, since the forecast
step and horizon are too short to observe their effect [75]; this behavior is shown in Table 3.

Similarly, from Figure 8, it can be seen that among the records of documents that reach HAP,
the average MAPE value is lower in the frameworks that implement hybrid models of ML and
multivariate dependency, such as those developed in [6,27,73–91]. To verify the hypotheses of the
differences in the means and variances in the MAPE, three hypothesis tests are carried out. Table 4
shows that for small and medium effects, the alternative hypothesis on the minor indicates that the
MAPE is accepted for the ML model, based on a hybrid method and with multivariate dependencies.

Figure 8. Boxplot of the papers included in the systematic review, with HAP-MAPE.
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Table 4. Hypothesis Test for Difference in Means. 1/ Levene Test (p-value); 2/ test (p-value).

Variable Hypothesis (H0) Homogeneity of Variance 1/ Difference in Means 2/ Effect Size
(Cohen’s)

Model μML ≥ μMSC 0.00386 0.07252 Small
Hybrid μYes ≥ μNo 0.09063 0.04321 Small

Dependency μMulti ≥ μUni 0.00125 0.00059 Medium

In this sense, a summary of the documents found in the review with MAPEs and HAPs that base
their models on ML with a hybrid approach and multivariate dependence is presented in the Table 3.
When we analyzed these documents, we observed that there are common elements; for example,
when building a word cloud from the abstracts, keywords and titles of these documents, we can identify
that in 24% of the cases multiple scale decomposition and wavelet theory (WT) were mentioned.

The wavelet transform, including filtering and forecasting, has been suggest for detailed
examination of the elements or structure of time series in several academic papers in recent years [73].
WT has been extensively implemented in electric power forecasting for decomposing electricity series
into series with particular characteristics that can be predicted more accurately than the original time
series [186–188].

6. Case Study

In this section, we propose a hybrid model to forecast the electric power by using a type of
recurrent artificial neural network known as long short-term memory (LSTM), developed by [189];
we also implemented wavelet decomposition for the data preprocessing (WD-LSTM), as was used
in [90]. We use the acronym WD-LSTM for the proposed hybrid model. The results were compared
with those of traditional neural network models (LSTM), as was applied in [71,177] and with results of
the lagged regression analysis as in [96].

The performance of this methods is demonstrated with a case study using an actual dataset
collected from Chile (Table 5). The objective is to illustrated the approach that allows the electric power
demand forecasting, in terms of its lagged values, identifying the type of model that tends to show
better forecast accuracy.

Maximum daily and hourly electric power demand data over a diverse period were used (Table 5).
Figure 9 shows that there is a regularity in electric power demand data. We observe a clear pattern
based on the year and day of the week. The electric power demand also follows a group of patterns
within any day and depending on the time of the day.

Table 5. Electric power demand object of forecasting.

Type Variable Date
Set Size

Training Validation Test

Local
Energy

Dmax Maximum daily electricity demand (MW). 2006–2019 2475 1516 1062
Hed Hourly electricity demand (MW). 2016–2020 865 371 530

The values of four performance evaluation indicators—RMSE: root mean square error,
MAE: mean absolute error, R2: coefficient of determination, and MAPE: mean absolute percentage
error—showed that the hybrid deep learning model (WD-LSTM) exhibits superior performance in
both forecasting accuracy and stability.
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Figure 9. Electric power demand series (MW) in Chile.

Figures 10 and 11 provide the comparative hourly and daily-ahead performance results for
three types of days (weekday, weekend, and all days). They likewise provide the performance
evaluation results of regression, LSTM, and WD-LSTM applied to each dataset (training, validation,
and test). The hybrid deep learning model (WD-LSTM) had the best performance of all forecasting
models. The WD-LSTM method generated forecasting results with the lowest MAE, MAPE, and RMSE
and with the higher R2 in most cases. The results further reveal the robustness of the hybrid deep
learning model. The superior accuracy of the hybrid model is primarily due to the deep learning
framework comprising between two and four independent LSTM networks, which provide an
effective means to approximate inherent invariant features and structures. In addition, the low-
and high-frequency components exhibited in the electric power datasets can be better extracted by
wavelet decomposition. Likewise, each LSTM network managed to focus more on capturing the linear
and nonlinear relationships in the energy series, which could not be done with the lagged regression,
at least in non-linear cases.

Figure 10. Performance evaluations of different methods for each type of day.
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Figure 11. Performance evaluations of different methods for hour.

7. Discussion and Conclusions

This paper presented a systematic review of the forecasting models for electric power from
the last 15 years based on ML and MSC techniques. We presented an in-depth analysis of the
performance of electric power forecasting models and compared different forecasting models based on
their MAPE values. A rigorous framework for comparing different classes of models was introduced,
thus generating a reliable picture of the state-of-the-art models’ accuracy of electric power forecasting.
We were able to identify that a large number of techniques are being used and are aimed at forecasting
electrical energy; the techniques with the greatest use are in the fields of ML and ANNs, followed by
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those that implement algorithms with fuzzy logic and RNNs, while in the MSC area, the use of ARIMA
models and regression analysis predominates.

The results can be stratified from three perspectives. The forecasting models (I) from the hybrid
class, (II) of multivariate dependency, and (III) based on the machine learning approach demonstrate
the best performance for electric power forecasting. Regarding the hybrid models, it is highlighted that
24% of the adjustments with the greatest forecasting precision merged wavelet theory into their models.
With regard to multivariate models, we were able to identify that those models that incorporate various
sources of variability in their adjustment tend to have, on average, greater precision in their forecasts.

A case of study was presented, in which the implementation of MSC and ML models was
compared; we found that the linear models, such as lagged regression, are relatively simple and cannot
capture with precision the inherent nonlinear structure of the electric power time series, whereas the
deep learning models implemented have a better performance.

Likewise, it was observed that when decomposing the series according to the type of day of
electricity consumption (workday or weekend), the models tend to have better forecast accuracy and,
in the same way, forecasting errors are minimized by reducing the time horizon (hourly).

Due to electric power systems’ participation in the growing trend of environmental optimization
around the world, a substantial increase in the contribution of diverse sources to the energy generation
is observed. This trend brings about challenges in terms of electric power generation and distribution
system operation, because the dimension and complexity of such advances, among other aspects,
require the use of a computational intelligence systems that act as sources of data and deal with the
control, management, and trading needs at the distribution level in an efficient and robust manner.
In this sense, further research could deepen the understanding of the relationship between the type of
energy, climate, preprocessing techniques, and performance of machine learning models under various
normalized metrics of residuals.
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Abbreviations

The following abbreviations are used in this manuscript:

Nomenclature

Artificial bee colony ABC Gray model GM
Ant Colony Optimization ACO Gross domestic product GDP
Adaptive Neuro Fuzzy Inference System ANFIS Hybrid Monte Carlo HCM
Artificial Neural Network ANN Humidity HM
Autoregressive Integrated Moving Aevrage ARIMA Horizontal Radiation HR
Bayesian Clustering by Dynamics BCD Holt Winters HW
Bayesian neural network BNN Jaya optimization algorithm JOA
Biogeography based optimization BOA K-nearest neighbors KNN
Back propagation BP Long short term memory LSTM
Calendar information CI Number of subscribers NS
Convolution Neural Network CNN Numerical Weather Prediction NWP
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Cuckoo Search Algorithm COA Principal component analysis PCA
Consumer Price Index CPI Population POP
Deep Belief Network DBN Air pressure PRS
Dew point DP Particle Swarm Optimization PSO
Evolutionary Algorithm EA Radial basis function network RBF
Extreme learning machine ELM Rainfall RFL
Electricity price EP Rainy time RT
Elman Recurrent Neural Network ERNN Recurrent Neural Network RNN
Exponential smoothing ES Regression Analysis RA
Exports EXP Support Vector Regression SVR
Fuzzy Neural Network FNN Temperature TM
Gaussian Process GP Wind direction WDD
Genetic algorithm GA Wind speed WS
Generalized Additive Model GAM Wavelet theory WT

Appendix A

Figure A1. Classification of the forecasting models.
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Abstract: In some applications, it is important to compare the stochastic properties of two multivariate
time series that have unequal dimensions. A new method is proposed to compare the spread of spectral
information in two multivariate stationary processes with different dimensions. To measure discrepancies,
a frequency specific spectral ratio (FS-ratio) statistic is proposed and its asymptotic properties are derived.
The FS-ratio is blind to the dimension of the stationary process and captures the proportion of spectral
power in various frequency bands. Here we develop a technique to automatically identify frequency
bands that carry significant spectral power. We apply our method to track changes in the complexity
of a 32-channel local field potential (LFP) signal from a rat following an experimentally induced stroke.
At every epoch (a distinct time segment from the duration of the experiment), the nonstationary LFP
signal is decomposed into stationary and nonstationary latent sources and the complexity is analyzed
through these latent stationary sources and their dimensions that can change across epochs. The analysis
indicates that spectral information in the Beta frequency band (12–30 Hertz) demonstrated the greatest
change in structure and complexity due to the stroke.

Keywords: multivariate time series; nonstationary; spectral matrix; local field potential

MSC: 62M10; 62M15

1. Introduction

Numerous applications require comparing two multivariate time series of unequal dimensions.
Neuroscience experiments result in a stationary or nonstationary multivariate signal from different epochs
(distinct non-overlapping successive time segments of the duration of the experiment). A popular approach
to modeling such data decomposes the observed signal at every epoch into useful latent sources that
can be stationary or nonstationary. These latent sources are lower dimensional time series obtained by
linear transforms of the components of the observed multivariate series and they aim to capture important
statistical properties of the observed series. At these epochs, dimension reduction techniques such as principal
component analysis (PCA), factor modeling, independent component analysis (ICA), stationary subspace
analysis (SSA) are often applied to extract useful lower-dimensional latent sources. Artificially setting the
dimension of these latent sources to be the same across the epochs results in loss of important information
since these changes could be indicative of useful brain processes such as learning (Fiecas and Ombao [1]).
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Indeed brain processes evolve across the entire recording period (Fiecas and Ombao [1], Ombao et al. [2])
leading to changes in the dimension of the latent sources across epochs. Moreover, the evolution of the
dimension can itself serve as a feature in understanding how the brain function evolves during an experiment.
As another example in neuroscience, the aim in functional connectivity is to model dependence between
different brain regions at various epochs in an experiment; Cribben et al. [3], Cribben et al. [4], Cribben and
Yu [5], Zhu and Cribben [6]. To mitigate the problem of high-dimensionality arising due to signal from
densely voxelated cortical surface, parcellation leads to disjoint regions of interest (ROI) of the brain and
signal summaries are obtained in each of these regions. Dependence measures between these ROIs are then
computed using their respective signal summaries. In the above pursuit of region-wise comparison of the
brain, it is natural to encounter the problem of comparing multivariate processes, say from two different
regions that have unequal dimensions. In Wang et al. [7] the problem of modeling effective connectivity in
high-dimensional cortical surface signal is pursued wherein a factor analysis is carried out on each ROI
and vector autoregressive (VAR) models are used to jointly model the latent factors. Here again, one can
potentially end up with unequal number of optimal latent factors from different ROIs thereby making the
comparisons challenging.

The application that motivates our methodology is the analysis of local field potentials (LFP) in an
experiment that simulates ischemic stroke in humans (Data source: Stroke experiment conducted in the lab
of co-author (Ron Frostig) at his Neurobiology lab; http://frostiglab.bio.uci.edu/Home.html). The dataset
comprises of 600 epochs worth of LFP recordings (each epoch is 1 s long) from 32 microelectrodes implanted
in a rat’s cortex. Figure 1 below depicts the rat’s cortex and the locations of the 32 sensors implanted on
the cortical surface from which the LFP signal is recorded. This 32-dimensional signal is our observed time
series. A stroke is induced midway through the experiment (epoch 300) by clamping the medial cerebral
artery. The goal is to develop a method that tracks changes in the complexity of signals following the
stroke. From the observed LFP signal, useful lower-dimensional sources are extracted at each epoch and
we shall characterize complexity in LFP through these useful latent sources and their varying dimensions
across epochs.

Figure 1. (A) Visual representation of the 32 microelectrodes on the rat’s cortex from which the local field
potential (LFP) signal is recorded. (B) The distance between microelectrodes is 0.65 mm and the total
distance between microelectrode 1 and microelectrode 8 is 3.9 mm.
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Motivated by such applications, we propose a new method to compare spectral information in
different multivariate stationary processes of varying dimensions. More specifically, the aim is to capture
the amount of spectral information in various frequency bands in different stationary processes of unequal
dimensions. There are already many methods and models that discuss evolution of spectral information
but the key contribution of this paper is in modeling evolution of the spectrum while allowing dimension
to also evolve over time. We introduce a frequency-specific spectral ratio, which we call the FS-ratio,
statistic that measures the proportion of spectral power in various frequency bands. FS-ratio can be used to
(i). identify frequency bands where there is significant discrepancies between pre and post stroke epochs,
(ii). identify frequency bands that account for most variation within pre (and post) stroke epochs and
(iii). identify the frequency bands that are consistent (vs inconsistent) across all the 600 epochs. One of the
key features of this statistic is that it is blind to the dimension of the multivariate stationary process and
can be used to compare successive epochs with possibly different dimensions in the stationary sources.
Thus, the proposed FS-ratio is very useful in (a). discriminating between the pre and post stroke onset
and (b). tracking changes over the entire course of the experiment while allowing for varying dimensions.
In Section 2 we develop our FS-ratio statistic and derive its asymptotic properties. We return to the LFP
dataset in Section 3 and discuss the usefulness of the proposed ratio statistic in discriminating between pre
and post stroke onset. Section 4 concludes. Finally, we evaluate the performance of the proposed FS-ratio
statistic through several simulation examples and the results are provided in Appendix A.

2. Methodology

In this section, we first describe our FS-ratio statistic and the method to analyze the evolution
of spectral information in stationary processes with varying dimensions. Using the FS-Ratio statistic,
a technique to locate the frequency bands carrying significant spectral power is discussed in Section 2.1.1.
The theoretical properties of the proposed statistic along with the required assumptions are discussed in
Section 2.1.2.

2.1. The FS-Ratio Statistic

Let Xt be a d1-variate time series and Yt be a d2-variate time series where d1 �= d2 and t = 1, 2, . . . , T.
The spectral matrices of the two zero-mean multivariate stationary series are given by fX(ω) ∈ Cd1×d1 and
fY(ω) ∈ Cd2×d2 for ω ∈ (−π, π). Here (−π, π) represents the normalized frequency range used to take
care of aliases in the frequency components outside this range. This range (−π, π) is sometimes referred
to as angular frequency scale with frequency 2π being called the Nyquist or folding frequency. With the
discrete Fourier transforms of Xt and Yt expressed as JX,T(ω) = 1√

2πT
Xte−itω and JY,T(ω) = 1√

2πT
Yte−itω ,

respectively, the periodogram matrices IX,T(ω) ∈ Cd1×d1 and IY,T(ω) ∈ Cd2×d2 of the two series are
obtained by

IX,T(ω) = JX,T(ω)JX,T(ω)∗ and IY,T(ω) = JY,T(ω)JY,T(ω)∗, (1)

where JX,T(ω)∗ denotes the conjugate transpose. The estimated spectral matrices, for ω ∈ (−π, π),
are given by

f̂X(ω) =
1
T

� T
2 �

∑
j=−� T

2 �+1

Kh(ω − ωj) IX,T(ωj) and f̂Y(ω) =
1
T

� T
2 �

∑
j=−� T

2 �+1

Kh(ω − ωj) IY,T(ωj), (2)

where ωj =
2π
T j and Kh(·) = 1

h K( ·
h ) where K(·) is a nonnegative symmetric kernel function and h denotes

the bandwidth. Assumptions on the kernel and bandwidth to ensure uniform consistency in ω ∈ (−π, π)

of the estimated spectral matrices are listed in Section 2.1.2.
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The aim of this work is to compare the two spectral matrices fX(ω) and fY(ω) over a specific
frequency range (a, b) for some 0 < a < b < π. The challenge here, however, is that the dimensions of
the processes Xt and Yt are unequal and hence their spectral matrices have varying dimensions. We thus
focus on the spread or distribution of spectral power in each of these stationary processes across different
frequency ranges. More precisely, for the d1-variate series Xt we define the frequency-specific spectral
(FS-ratio) parameter as

RX,a,b =
rX,a,b

rX,0,π
=

∫ b
a ||vec( fX(ω))||22dω∫ π
0 ||vec( fX(ω))||22dω

(3)

for some frequency band (a, b) ⊂ (0, π) where vec(·) denotes vectorization of a matrix into a single column
vector and || · ||22 is the squared Euclidean norm. Observe that RX,a,b ∈ (0, 1) can be viewed as a measure
that captures the proportion of spectral power found in the frequency range (a, b). Similarly using the
spectral matrix fY(ω), RY,a,b ∈ (0, 1) can be defined for the d2-variate series Yt. Comparisons can now
be made between the parameters RX,a,b and RY,a,b to understand the amount of spectral power in the
frequency range (a, b) for the two multivariate series with unequal dimensions.

The data analogue of the FS-ratio parameter in (3) is then given by the FS-ratio statistic:

R̂X,a,b =
r̂X,a,b

r̂X,0,π
=

∫ b
a ||vec( f̂X(ω))||22dω∫ π
0 ||vec( f̂X(ω))||22dω

(4)

for some 0 < a < b < π. Similarly, the data analogue R̂Y,a,b can be obtained for the d2-variate series Yt.
The asymptotic properties of the quantities r̂X,a,b and R̂X,a,b are discussed in Section 2.1.2. In neuroscience
applications such as the one in Section 3, pre-defined frequency bands such as Theta, Alpha, Beta and
Gamma are often used to understand the distribution of spectral power across these frequency bands.
As opposed to using pre specified frequency bands, in Section 2.1.1 below we provide a data-driven
technique to locate the various frequency ranges (a, b) that carry significant spectral power.

2.1.1. Finding Frequency Bands of Interest

In this section we describe our technique that uses the FS-Ratio statistic to find the frequency bands
of interest. More precisely, we aim to locate the intervals (a, b) used in (3) and (4) wherein the multivariate
time series has significant proportions of spectral power.

Let Xt be a d1-variate zero-mean second order stationary time series with its d1 × d1 spectral matrix
given by fX(ω). With the FS-Ratio parameter defined in (3), we consider the scan parameter

λX,a = 1 − RX,0,a−Δ

RX,0,a
= 1 −

∫ a−Δ
0 ||vec( fX(ω))||22dω∫ a

0 ||vec( fX(ω))||22dω
(5)

for a small Δ > 0 and 0 < a < π. For the data analogue of the parameter above we consider a discretized
sequence of frequency points 0 < a1 < a2 < . . . < aQ < π and evaluate the scan statistic as

λ̂X,aj = 1 −
R̂X,0,aj

R̂X,0,aj+1

(6)

for j = 1, 2, . . . , Q − 1. A plot of the scan statistic λ̂X,aj across the various frequency points aj will indicate
the frequency ranges over which the spectral matrix of Xt has significant proportions of spectral power.
Typically, one notices upward bumps in these plots over frequency ranges that carry significant spectral
power; see Example 1 below and the top panel of Figure 2. Similarly for the d2-variate series Yt one can
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define λY,a, find the estimated version λ̂Y,aj and obtain the plot of it across the various frequency points aj.
Comparisons can then be made between the series Xt and Yt using these plots. The choice for Δ in (5) and
number of points Q in (6) depends on the application under consideration. Certain applications demand
attention to spectral power in very small frequency ranges and certain others might not. A multiscale
approach can also be used where one obtains plots of the scan statistic λ̂X,aj across frequency points aj
for a sequence of Δ values. Visual inspection of these plots will help detect frequency ranges wherein
the upward bumps are consistent across most values of Δ. If we let the interval (0, 0.5) correspond to
the interval (0, π), our simulation study and real data analysis indicate a choice of Δ = 0.01 and Q = 49
as reasonable.

Figure 2. Example 1 (Top) Plot of average scan statistic λ̂X,aj for epochs i < 300 (left) and i ≥ 300 (right) at
a discretized sequence of frequency points 0 < a1 = 0.01 < a2 = 0.02 < . . . < a49 = 0.49 < 0.5 (Δ = 0.01).
Here (0, 0.5) corresponds to the interval (0, π). (Bottom) Plot of the average of the statistic R̂X,0,aj at the
same frequency points.

We next provide a simple illustration of the scan statistic λ̂X,a through the following simulation
example and show how it is useful in detecting important frequency ranges. The simulation scheme in
this illustration is designed to mimic the real data situation in Section 3. There the entire duration of the
neuroscience experiment is divided into non-overlapping successive time segments (a total of N epochs).
The multivariate stationary processes of interest in these N epochs tend to have different dimensions and
we attempt to mimic that scenario.

Example 1. We consider N stationary processes, X1,t, X2,t, . . . , XN,t, with the series Xi,t given by

Xi,t =

{
V(1)

i,t if i < N
2

V(2)
i,t if i ≥ N

2

(7)

where i = 1, 2, . . . , N = 600 epochs, t = 1, 2, . . . , T = 1000. Here V(1)
i,t ∈ R3 and its components are given

by v0,t+k−1 + v1,t+k−1 for k = 1, 2, 3 and v0,t follows a AR(2) with (−0.8,−0.7) and v1,t follows a AR(2) with
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(0.25,−0.75). The components of V(2)
i,t ∈ R2 are given by v2,t+k−1 for k = 1, 2 and v2,t follows a AR(2) with

(1.25, −0.75).

We consider a discretized set of frequency points {a1, a2, . . . , aQ} of the interval (0, π). At each point
aj we evaluate the average of the scan statistic λ̂X,aj over epochs 1-299 and the average of the scan statistic

over epochs 300–600. More precisely at each frequency point aj and at each epoch, we obtain λ̂X,aj and
compute averages of these quantities over the respective epochs. In the top panel of Figure 2 we plot
this average scan statistic. For epochs 1–299, V(1)

i,t from (7) is a combination of two AR(2) processes with
spectral density peaks at roughly 0.22 and 0.33. The top left plot in Figure 2 witnesses the scan statistic
exhibiting bumps around those frequencies. Similarly for epochs 300–600, V(2)

i,t from (7) is generated from
an AR(2) process with peak at roughly 0.12. The top right plot in Figure 2 witnesses the scan statistic
exhibiting a bump around that frequency.

In the bottom panel of Figure 2 we plot averages of the statistic R̂X,0,aj for j = 1, 2, . . . , Q − 1.

We observe that this statistic is not as capable as the scan statistic λ̂X,aj in bringing out the frequency ranges
of significant spectral proportions.

2.1.2. Theoretical Properties of the FS-Ratio Statistic

In this section we list the required assumptions and discuss the asymptotic properties of the statistics
r̂X,a,b and FS-ratio R̂X,a,b.

Assumption 1. Let Zt = (Xt, Yt)
′
, t ∈ Z be a (d1 + d2)-variate zero-mean second-order stationary time series.

For any k > 0, the kth order cumulants of Zt satisfy

∑
u1,u2,...,uk−1∈Z

[ 1 + |uj|2 ] cb1,b2,...,bk
(u1, u2, ..., uk−1) < ∞

for j = 1, 2, ..., k − 1 and b1, b2, ..., bk = 1, 2, ..., d = d1 + d2 where cb1,b2,...,bk
(u1, u2, ..., uk−1) is the kth order

joint cumulant of Zb1,u1 , ..., Zbk−1,uk−1
, Zbk ,0 as defined in Brillinger [8].

Please note that the kth order cumulant is given by cb1,b2,...,bk
(u1, u2, ..., uk−1) =

cum{Zb1,u1 , ..., Zbk−1,uk−1
, Zbk ,0} where Zbr ,us refers to component br of the vector Zus with us being

the time point; see Theorem 2.3.2 of Brillinger [8]. For example when k = 2, the 2nd order cumulant
cum{Zb1,u1 , Zb2,u2} = cov(Zb1,u1 , Zb2,u2) is the covariance between those two random variables.

Assumption 2. (a). The kernel function K(·) is bounded, symmetric, nonnegative and Lipschitz-continuous with
compact support [−π, π] and ∫ π

−π
K(ω)dω = 1.

where K(ω) has a continuous Fourier transform k(u) such that∫
k2(u)du < ∞ and

∫
k4(u)du < ∞.

(b). The bandwidth h is such that h9/2T → 0 and h2T → ∞ as T → ∞.

Remark 1. Assumptions 1 and 2 above are the same as in Eichler [9] where the first requires existence of all
order moments of Yt and the second ensures consistency of the estimated spectral matrix. It must be noted that
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the assumptions on the kernel and bandwidth are primarily for establishing asymptotic result in (13) and can be
weakened for Theorem 1.

Theorem 1. Suppose that Assumptions 1,2 are satisfied. Then as T → ∞,

(a). r̂X,a,b
P−→
∫ b

a

d1

∑
r,s=1

fX,rs(ω) fX,rs(ω) dω, (8)

where fX(ω) =
(

fX,rs

)
r,s=1,2,...,d1

is the d1 × d1 spectral matrix of Xt and P−→ denotes convergence in probability.

Furthermore, let Π(a,b) = (0, π) \ (a, b) for some 0 < a < b < π. If rX,a,b > 0 and rX,Π(a,b)
> 0,

(b). R̂X,a,b
P−→
(

1 +
rX,Π(a,b)

rX,a,b

)−1
(9)

where rX,Π(a,b)
=
∫

Π(a,b)
fX(ω)2dω.

Proof. See Appendix B for details of the proof.

Please note that in finite sample situations explored using simulation examples in Appendix A and the real
data application in Section 3, we use the block bootstrap technique of Politis and Romano [10] for resampling
from a stationary process. This is done to obtain sample quantiles of the FS-ratio statistic R̂X,a,b.

Remark 2. In a special case wherein the dimensions of the two processes are the same (d1 = d2), we wish to test for
the equality of spectral matrices of same dimensions over an interval 0 < a < b < π. Let us assume d1 = d2 and
d = d1 + d2 and define the d × d spectral matrix of Zt = (Xt, Yt)

′
as

fZ(ω) =

[
fZ,11(ω) fZ,12(ω)

fZ,21(ω) fZ,22(ω)

]
(10)

where the d1 × d1 matrix fZ,12(ω) is the cross-spectral matrix of the processes Xt and Yt and fZ,11(ω) and fZ,22(ω)

are the spectral matrices of Xt and Yt respectively. We consider testing

H0 : fX(ω) = fY(ω) ∀ ω ∈ (a, b) (11)

where 0 < a < b < π. The test statistic is

D̂X,Y =
∫ b

a
||vec( f̂X(ω)− f̂Y(ω))||22dω. (12)

The L2 norm above in (12) on the spectral matrices is similar to the statistics considered in Eichler [9] and Dette
and Paparoditis [11] wherein the problem of testing equality of spectral matrices is discussed. Suppose that Assumptions
1,2 are satisfied, an application of Theorem 3.5 of Eichler [9] yields, under H0,

2πT
√

h D̂X,Y − μXY√
h

D−→ N(0, σ2
XY) (13)

where
μXY = AK

∫ π

−π
1ω∈(a,b)

( 2

∑
p1,p2=1

(
− 1 + 2δp1 p2

)
tr( fZ,p1 p2(ω))2

)
dω (14)

and

95



Entropy 2020, 22, 1375

σ2
XY = BK

∫ π

−π
1ω∈(a,b)

( 2

∑
p1,p2,p3,p4=1

( −1 + 2δp1 p2 ) ( −1 + 2δp3 p4 )tr( f ij
Z,p1 p3

(ω)( f ij
Z,p2 p4

(ω))T )2
)

dω. (15)

where D−→ denotes convergence in distribution,

AK =
∫ π

−π
K2(v)dv, BK = 4

∫ b+π

a−π

( ∫ π

−π
K(u)K(u + v)du

)2
dv

and δrs = I(r = s) is the Kronecker delta and tr(·) denotes the trace of a matrix.

Remark 3. In the neuroscience application in Section 3, the entire duration of the experiment is divided into
non-overlapping successive time segments (a total of N epochs). Each epoch results in a multivariate stationary
process of interest with the dimensions of these processes varying across epochs. Letting X1,t, X2,t, . . . , XN,t be the
N stationary processes at these epochs, one can obtain the FS-ratio statistics R̂Xi ,a,b, for i = 1, 2, . . . , N, and view
this is a series with time index being the epoch index i. Applying change point detection to this series to formally
test for the significance of change points would require use of a divergence measure that measures distance between
R̂Xi ,a,b and R̂Xj ,a,b when i �= j. Different norms can be used to construct this divergence measure and this would
serve as the test statistic. Large sample distributions of this statistic would provide critical values necessary for the
test. One of the issues here would be in dealing with differing errors in estimating the FS-ratio statistics when the
dimensions of the two series are very different and this needs further investigation.

3. Analysis of Complexity of Rat Local Field Potentials in a Stroke Experiment

In this section, we investigate the ability of the FS-ratio statistic to identify changes in the spectral
properties of the local field potential (LFP) of a rat (Local field potential data on the experimental rat
comes from the stroke experiment conducted at Frostig laboratory at University of California Irvine:
http://frostiglab.bio.uci.edu/Home.html). The aim is to identify changes in complexity and structure
of the multivariate cortex signal over the course of the experiment. It is also of interest to understand
the differential roles of frequency bands and determine the specific bands that demonstrate the most
significant changes that occurred due to the stroke.

At 32 locations on the rat’s cortex, microelectrodes are inserted: 4 layers in the cortex, at 300 μm,
700 μm, 1100 μm and 1500 μm and 8 microelectodes lined up in each of the 4 layers. We look at the
field potential specific to the 32 locations recorded for a total duration of 10 min. This 10 min duration is
divided into N = 600 epochs (distinct successive non-overlapping time segments of the duration of the
experiment) with each epoch comprising of 1 s worth of data. The sampling rate here is 1000 Hz resulting
in T = 1000 observations per epoch. Midway through the recording period (after epoch 300) a stroke is
artificially induced by clamping the medial cerebral artery that supplied blood to the recorded area.

As a first step in our analysis, we applied a component-wise univariate test of second-order stationarity
(Dwivedi and Subba Rao [12]) of the LFP signal at each epoch. In Figure 3, we present the p-values from a
test of second-order stationarity carried out on each of the p = 32 microelectrodes at each epoch. We notice
that these individual microelectrodes are more stationary after the stroke than before.

Next, we model the observed 32-dimensional signal as a multivariate nonstationary time series using
the stationary subspace analysis (SSA) setup. We assume the observed p = 32 dimensional LFP signal Si,t
is linearly generated by stationary and nonstationary sources in the cortex. More precisely we have,

Si,t = AiXi,t + εi,t, i = 1, 2, . . . , N = 600, (16)

where Xi,t ∈ Rdi is latent stationary source, Ai is a p× di unknown demixing matrix, εi,t are the nonstationary
sources. This setup of starting with an observed nonstationary time series and, after some transformation,
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getting to a lower dimensional stationary time series has interesting applications in neuroscience.
For instance, EEG signals measuring brain activity appear often as a multivariate nonstationary time
series; see Ombao et al. [13], Srinivasan [14], Nunez and Srinivasan [15], von Bünau et al. [16], Wu et al. [17],
Gao et al. [18], Euán et al. [19] for examples. Kaplan et al. [20] regard the nonstationarity as background
activity in the brain signal and removing this nonstationarity was seen to improve prediction accuracy
in neuroscience experiments; von Bünau et al. [21] and von Bünau et al. [16]. Thus, the aim of SSA is to
separate the stationary from the nonstationary sources within each epoch and focus attention on the
stationary sources. From a stroke neuroscientist’s perspective, the stationary sources within a short epoch
of 1 s are considered to be the “stable” components of the signal since they are consistent within that short
interval. The word consistent here refers to the statistical properties of the signal remaining the same
within an epoch. Of course the transient components (nonstationary components) may also be of interest
in other applications.

Figure 3. p-values from the test of second-order stationarity on each of the p = 32 LFP microelectrodes
(y-axis) for all 600 epochs (x-axis).

The next goal in the data analysis is to estimate the epoch-evolving dimension di and the latent
stationary time series Xi,t ∈ Rdi where di < p. In Figure 4, we apply SSA and plot the estimates of the
stationary subspace dimension di across N = 600 epochs using the method in Sundararajan et al. [22].

The evolutionary dimension di of the latent stationary sources were presented in Figure 4. The plot
indicates increase in the number of stationary sources in post-stroke epochs (after epoch 300) and this
agrees with the results in Figure 3 wherein more epochs after the stroke witness stationary behavior in
the individual LFP components. It is indeed interesting that immediately post-occlusion (or immediately
after stroke onset), the LFPs are highly synchronized: the plots of the observed LFP Si,t and the estimated
squared coherence between the 32 components (Figure 5) suggest that different electrodes look very similar
and there is high coherence in between the entire network of electrodes at various frequency bands. Please
note that for the observed 32 dimensional signal Si,t in epoch i, the squared coherence between two
components Sp,i,t and Sq,i,t, for p �= q, at frequency ω is given by

Cp,q(ω) =
| fS,pq(ω)|2

fS,pp(ω) fS,qq(ω)
(17)
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where fS,pq(ω) denotes the cross-spectrum between those two components and fS,pp(ω) and fS,qq(ω)

are the univariate spectra of the components series Sp,i,t and Sq,i,t respectively. This observation of high
coherence across electrodes immediately post-occlusion was confirmed by the neuroscientists and also
reported in Ellen Wann’s PhD dissertation (Wann [23]). Next, we investigate further into the lead-lag
cross-dependence between microelectrodes. We pre-whitened the observed time series to make the lag-0
covariance matrix identity. More precisely, one considers Σ−1/2

i Si,t where Σ−1/2
i is the inverse square root

of the lag-0 covariance matrix V(Si,t). We observe, in Figure 5, the significant drop in the magnitude
of squared coherence after pre-whitening indicating that the dependence among the 32 components is
predominantly due to a contemporaneous (i.e., lag-0) dependence. One can also notice, from the right plot
in Figure 5, a drop in the coherence in the gamma frequency band after the stroke.

Figure 4. Plot of estimated stationary subspace dimensions d̂i for the i = 1, 2, . . . , N = 600 epochs in the
stroke experiment. Please note that for each epoch i there is a single estimated dimension d̂i that is plotted.

We then estimated the latent stationary sources Xi,t for the i = 1, 2, . . . , N = 600 epochs using the
DSSA method in Sundararajan and Pourahmadi [24]. In order to overcome identifiability issues in the
model in (16), SSA and PCA methods for time series assume an identity lag-0 covariance matrix for Xi,t
and resort to a pre-whitening technique to achieve this. Figure 6 plots the average squared coherence in
the non pre-whitened and pre-whitened stationary sources across different frequency bands. Similar to the
coherence pattern in the observed LFP in Figure 5, the left plot in Figure 6 witnesses an increase in the
coherence after the occurrence of the stroke. This indicates the importance of the stationary components
in explaining the high degree of synchronicity. Also, the right plot in Figure 6 indicates a substantial
drop in the magnitude of coherence in the stationary sources. The pre-whitened stationary sources have
lower coherence than the coherence of the stationary sources based on the non pre-whitened. As noted,
previous findings have already indicated an increased coherence post stroke onset. Our analysis provided
an additional insight that the increase in the coherence post-stroke is due only to contemporaneous
(or lag-0) dependence. This indicates perfect temporal synchrony in a sense that there is no lead-lag
cross-dependence between the electrodes. This was suggested by visual inspection of the LFP traces and
hypothesized by neuroscientists though never formally confirmed until now with our analysis.
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Figure 5. (Left) average squared coherence among the 32 components of the observed LFP signal across
600 epochs. The averages are computed across the specified frequency bands. (Right) average squared
coherence among the 32 components of the pre-whitened LFP signal across 600 epochs.

Figure 6. (Left) average squared coherence in the estimated stationary sources across 600 epochs.
The averages are computed across the specified frequency bands. (Right) average squared coherence
in the pre-whitened stationary sources across 600 epochs.

Next, the FS-ratio statistic was evaluated on these estimated stationary sources at each of
the 600 epochs at various frequency bands. Figure 7 plots the estimated FS-ratio statistic R̂Xi ,a,b,
i = 1, 2, . . . , N = 600, for the known frequency bands: theta (4–8 Hertz), alpha (8–12 Hertz),
beta (12–30 Hertz) and gamma (30–50 Hertz). At each epoch i, we obtained a 95% confidence interval for
the FS-ratio statistic using the block bootstrap technique of Politis and Romano [10]. To select the block
length, we follow the procedure in Politis and White [25], Patton et al. [26]. Please note that this procedure
is for the univariate case and hence we apply it to each component of the multivariate process Xi,t and
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obtain the block length as the average over all components. The confidence intervals are the blue shaded
regions in Figures 7 and 8.

Figure 7. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for various frequency bands. The blue
shaded region corresponds to a 95% confidence interval.

Figure 8. Plot of the FS-ratio statistic R̂Xi ,a,b for i = 1, 2, . . . , N = 600 for specified frequency ranges (a, b).
Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to the interval (0, π). The blue shaded region corresponds to
a 95% confidence interval.

The FS-ratio statistic is seen to have differences in the pre and post stroke epochs in the Theta, Alpha,
and Beta bands but not in the Gamma band. It can also be seen that the biggest difference in FS-ratio
between pre and post stroke is in the Beta band wherein there is a decrease in the amount of spectral
information after the stroke. Figure 8 also presents the FS-ratio statistic on other specified frequency bands
wherein one notices differences between the pre and post stroke epochs.

Tables 1 and 2 contain numerical summaries of the FS-ratio statistic for the pre and post stroke epochs
at various frequency bands. We notice that the Beta band is where there is maximum difference observed
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between the pre and post stroke epochs. The Gamma band is consistent throughout the experiment’s
600 epochs. Within the pre stroke epochs (and also within the post-stroke epochs), the most variation in
FS-ratio is observed in the Beta band.

Table 1. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for pre stroke epochs i = 1, 2, . . . , 300.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.079 0.079 0.004 0.061 0.081

Alpha (8–12 Hz) 0.076 0.077 0.0035 0.059 0.078

Beta (12–30 Hz) 0.332 0.332 0.0129 0.267 0.341

Gamma (30–50 Hz) 0.144 0.144 0.006 0.141 0.191

Table 2. Numerical summaries of FS-ratio statistic R̂Xi ,a,b for post stroke epochs i = 301, 302, . . . , 600.

Frequency Band Mean Median SD Lower Upper
CI CI

Theta (4–8 Hz) 0.062 0.062 0.004 0.0422 0.0669

Alpha (8–12 Hz) 0.060 0.061 0.004 0.041 0.064

Beta (12–30 Hz) 0.283 0.285 0.018 0.202 0.292

Gamma (30–50 Hz) 0.146 0.146 0.006 0.135 0.187

Discussion

The p-values presented in Figure 3 represent a test of second-order stationarity carried out on each
of the p = 32 microelectrodes at each epoch. We noticed that immediately after stroke the individual
microelectrodes behaved in a more stationary manner and this was visibly different from what was
observed before the stroke. Based on this analysis, it might be plausible that the LFP signal, under normal
circumstances, exhibits nonstationary behavior and immediately post stroke the signal behaves in a
more stationary manner thereby showing that the brain’s typical functions are affected. The plots of the
observed LFP Si,t and the estimated squared coherence between the 32 components (Figure 5) indicate
high cross-electrode coherence at various frequency bands immediately post stroke. This observation was
also confirmed by the neuroscientists and also reported in Ellen Wann’s PhD dissertation (Wann [23]).

In Fontaine et al. [27], a univariate LFP microelectrode-wise change point analysis was performed
on the same dataset. In their work, for various frequency bands, changes in the non-linear spectral
dependence of the LFP signal is modeled using parametric copulas. They detected change-points for a
fixed microelectrode and fixed frequency band. One can notice the detection of numerous change points in
the Delta, Theta, Alpha, Beta and Gamma bands for individual microelectrodes 1, 9 and 17. The detected
change points include several epochs with very few of them being close to the time of the occlusion
(or induced stroke) which was epoch i = 300.

In contrast, the advantages of our method are as follows: (i). The method treats the observed LFP
signal as a multivariate nonstationary time series. Using (16), we model this observed multivariate signal
as a mixture of stationary and nonstationary components. Figure 4 presents the dimension of stationary
subspace (dimension of Xi,t) across the 600 epochs and this is seen to be a useful feature in understanding
changes in the cortical signal after the occurrence of the induced stroke (epoch 300). In other words,
an increase in the dimension di after the stroke points to a more stationary behavior of the LFP signal after
the stroke. (ii). The FS-ratio statistic, with the ability to compare two multivariate processes with unequal
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dimensions, is applied on the estimated processes Xi,t for each of the 600 epochs and frequency band
specific numerical summaries are presented. The Beta frequency band is seen to be display the greatest
changes within the pre stroke and post stroke epochs and also between the pre stroke and post stroke
epochs. Also, from Figures 7 and 8, it is very easy to spot a change point at epoch 300 when the stroke
was induced.

4. Concluding Remarks

In this work, we proposed a new frequency-specific spectral ratio statistic FS-ratio that is demonstrated
to be useful in comparing spectral information in two multivariate stationary processes of different
dimensions. The method is motivated by applications in neuroscience wherein brain signal is recorded
across several epochs and the widely used tactic is to assume the observed signal be linearly generated by
latent sources of interest in lower dimensions. Applying PCA/ICA/SSA and other dimension reduction
methods to the observed signal in different epochs in the experiment results in different estimates of the
dimensions of latent sources. In these situations, the FS-ratio is seen to be useful because (i). It captures
the proportion of spectral power in various frequency bands by means of a L2-norm on the spectral
matrices and (ii). It is blind to the dimension of the stationary process as it only looks at the proportion
of spectral power at frequency bands. Under mild assumptions, the asymptotic properties of FS-ratio
statistic are derived. We also provide a data-driven technique to locate the frequency bands that carry
significant proportions of spectral power. In the application of our method to the LFP dataset, we witness
the ability of our method in (i). identifying frequency bands where the pre and post stroke epochs are
different, (ii). identifying frequency bands that accounts for most discrepancies within pre (and post)
stroke epochs, (iii). identifying the frequency bands that are consistent across all the 600 epochs of the
experiment and (iv). understanding the importance of contemporaneous dependence, both in the observed
LFP and the stationary sources, across the 600 epochs and this indicated perfect synchrony (no lead-lag
cross-dependence) among microelectrodes immediately after the stroke.

Topological data analysis (TDA) methods for characterizing complexity and detecting phase
transitions exist in the literature; M. Piangerelli [28], Rucco et al. [29], Wang et al. [30]. Topological features
from the observed series are extracted using techniques such as persistent entropy, persistence diagrams
and Betti numbers and this can be viewed as another approach to identify changes in the multivariate
time series due to events such as epilepsy and seizure.
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Appendix A. Simulation Study

In this section, we illustrate the performance of the FS-ratio statistic in capturing spread of spectral
information using simulated examples. We consider four simulation schemes and report the key summaries
of the FS-ratio statistic across repetitions of each of the four schemes. In addition, 95% bootstrap confidence
limits for the FS-ratio statistic are computed from B = 500 bootstrap replications. Here we use the block
bootstrap procedure of Politis and White [25], Patton et al. [26]. For an estimate of the spectral matrix
defined in (2), the Bartlett-Priestley kernel with bandwidth h = T−0.3 and the Daniell kernel, see Example
10.4.1 in Brockwell and Davis [31] with m =

√
T were implemented. Similar results were obtained for the

two kernel choices and only the results from the latter are presented.
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The simulation schemes presented below are designed to mimic the real data situation in Section 3.
There, the entire duration of the neuroscience experiment is divided into non-overlapping successive
time segments (N epochs). Then from these N epochs, lower dimensional stationary sources of varying
dimensions were extracted. Similarly, in our simulations below we shall simulate N stationary processes
with varying dimensions and investigate the evolution of the FS-ratio statistic. We now present 4 simulation
schemes to assess the behavior of our FS-ratio statistic. Scheme 1 simulates N multivariate stationary
VAR(2) processes, Xi,t where i = 1, 2, . . . , N = 500, with dimensions randomly chosen from {2, 3, . . . , 30}
and the error vectors are component-wise i.i.d N(0, 1). The phase parameter θ of the AR components are
allowed to vary across epochs i.e two different choices, θ1 and θ2, are included with θ1 = 4π

25 for epochs
i < N/2 and θ2 = 4π

5 for epochs i ≥ N/2. This causes a shift in the frequency bands of interest as we
move across the epochs. Scheme 2 is similar to Scheme 1 but an interaction between the dimension and
frequency is included. More precisely, lower dimensional signals simulated in epochs i < N/2 have
a peak at frequency θ1 = 4π

25 , and the higher dimensional signals simulated in epochs i ≥ N/2 have a
peak at frequency θ2 = 4π

5 . Scheme 3 is also similar to Scheme 1 but the error vectors are allowed to
have contemporaneous dependence. The N multivariate processes in Scheme 4 are first simulated as
in Scheme 1 but are then pre-multiplied with a half-orthogonal matrix. This is in line with the model
assumption (16) made in Section 3.

Scheme 1: We simulate N stationary process X1,t, X2,t, . . . , XN,t, for t = 1, 2, . . . , T, where the ith
process includes a di-variate process Xi,t = (X1,i,t, X2,i,t, . . . , Xdi ,i,t)

′
where each Xk,i,t, k = 1, 2, . . . , di,

are independently generated univariate stationary AR(2) process given by

Xk,i,t = φi,1Xk,i,t−1 + φi,2Xk,i,t−2 + εk,i,t

φi,1 = 2ξi cos(θi), φi,2 = −ξ2
i , εk,i,t are i.i.d N(0, 1) and k = 1, 2, . . . , di, i = 1, 2, . . . , N = 500, t = 1, 2, . . . ,

T = 1000. The dimension di for Xi,t is randomly chosen from {2, 3, . . . , 30}. Here ξi ∼ U(0.8, 0.98) and θi
is given by

θi =

{
cos( 4π

25 ) if i < N
2

cos( 4π
5 ) if i ≥ N

2

Scheme 2: We follow Scheme 1 in generating N process X1,t, X2,t, . . . , XN,t, for t = 1, 2, . . . , T = 1000 and
i = 1, 2, . . . , N = 500. Unlike Scheme 1, the dimension di for Xi,t is chosen such that

di =

{
d1,i if i < N

2
d2,i if i ≥ N

2

where d1,i is simulated from discrete uniform distribution over {1, 2, . . . , 14} and d2,i is simulated from
discrete uniform distribution over {15, 16, . . . , 30}. Observe that in Scheme 2 there is an interaction between
the dimension and frequency. The lower dimensional signals simulated in epochs i < N/2 has a peak at
frequency 4π

25 , and the higher dimensional signals simulated in epochs i ≥ N/2 has a peak at frequency 4π
5 .

Scheme 3: Similar to Scheme 1, the di-variate process in the ith epoch Xi,t = (X1,i,t, X2,i,t, . . . , Xdi ,i,t)
′

are
where each Xk,i,t are independently generated univariate stationary AR(2) process given by

Xk,i,t = φi,1Xk,i,t−1 + φi,2Xk,i,t−2 + εk,i,t

φi,1 = 2ξi cos(θi), φi,2 = −ξ2
i . The di × di variance matrix of the Gaussian noise εi,t is given by
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V(εi,t) =

⎡⎢⎢⎢⎢⎣
1 ρ ρ2 . . . ρpi−1

ρ 1 ρ . . . ρpi−2

...
ρpi−1 ρpi−2 ρpi−3 . . . 1

⎤⎥⎥⎥⎥⎦
ρ = 0.4 and k = 1, 2, . . . , di, i = 1, 2, . . . , N = 500, t = 1, 2, . . . , T = 1000. The dimension di for Xi,t is
randomly chosen from {2, 3, . . . , 30}. Here again, ξi ∼ U(0.8, 0.98) and θi is given by

θi =

{
cos( 4π

25 ) if i < N
2

cos( 4π
5 ) if i ≥ N

2

Scheme 4: Here we let ∑N
i=1 di = 30 and follow Scheme 1 in generating the N process X1,t, X2,t, . . . , XN,T ,

for t = 1, 2, . . . , T = 1000 and i = 1, 2, . . . , N = 500. Then we obtain Mi,t = AiXt where Ai =

1(i< N
2 ) Idi A1 + 1(i≥ N

2 ) Idi A2 and A1 and A2 are two 30 × 30 randomly generated orthogonal matrices and

Idi is the di × d matrix containing the first di rows of the identity matrix I30. We consider Mi,t ∈ Rdi and
study the spread of spectral properties across the N = 500 epochs.

Tables A1 and A2 contain the numerical summaries of the FS-ratio statistic over 100 replications
of Scheme 1. Please note that the phase parameter θi for i < N/2 in Scheme 1 is at 4π/25 on a (0, π)

scale or equivalently at 0.0796 on a (0, 0.5) scale. We see from Table A1 that almost all of the spectral
information is contained in the first two chosen frequency ranges around this peak. Similarly for i ≥ N/2,
the phase parameter is at 4π/5 on a (0, π) scale or equivalently at 0.3981 on a (0, 0.5) scale. Figure A1
plots a histogram density of the FS-ratio statistic from the 100 replications and similar histogram densities
for Schemes 2, 3 and 4 can be found in Figures A2–A4. From Table A2 we notice that the last two chosen
frequency ranges have all of the spectral information.

Figure A1. Scheme 1: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).
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Table A1. Scheme 1, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5342 0.5391 0.0221 0.4984 0.6253

(0.08,0.16) 0.4486 0.4544 0.0227 0.3566 0.4831

(0.16,0.24) 0.0002 0.0002 0.0001 0.0005 0.0019

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

Table A2. Scheme 1, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0

(0.24,0.32) 0.0003 0.0002 0.0002 0.0005 0.0017

(0.32,0.40) 0.4561 0.4595 0.0181 0.3786 0.4903

(0.40,0.48) 0.5205 0.5210 0.0169 0.4759 0.5826

Tables A3 and A4 include numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 2. Similar to Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5) scale
for i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. The results from Table A3 indicate most of the
spectral information are present in the first two chosen frequency ranges. Similarly for i ≥ N/2, Table A4
shows that the last two chosen frequency ranges have all of the spectral information.

Table A3. Scheme 2, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5407 0.5349 0.0286 0.5041 0.6360

(0.08,0.16) 0.4423 0.4482 0.0284 0.3475 0.4778

(0.16,0.24) 0.0002 0.0003 0.0002 0.0006 0.0022

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0
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Table A4. Scheme 2, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0002 0.0001 0.0005 0.0016

(0.32,0.40) 0.4605 0.4616 0.0108 0.3862 0.4938

(0.40,0.48) 0.5194 0.5186 0.0096 0.4800 0.5863

Figure A2. Scheme 2: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Tables A5 and A6 contain the numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 3. As in Scheme 1, the phase parameter θi for i < N/2 is at 0.0796 on a (0, 0.5) scale for
i < N/2 and at 0.3981 on a (0, 0.5) scale for i ≥ N/2. As in Scheme 1, results from Table A5 indicate most
of the spectral information are present in the first two chosen frequency ranges. Similarly for i ≥ N/2,
Table A6 shows that the last two chosen frequency ranges have all of the spectral information.

Table A5. Scheme 3, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5371 0.5327 0.0238 0.4977 0.6284

(0.08,0.16) 0.4459 0.4504 0.0239 0.3549 0.4843

(0.16,0.24) 0.0002 0.0002 0.0001 0.0005 0.0020

(0.24,0.32) 0 0 0 0 0.0002

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0

106



Entropy 2020, 22, 1375

Table A6. Scheme 3, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Xi ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0002 0.0005 0.0018

(0.32,0.40) 0.4531 0.4566 0.0196 0.3758 0.4907

(0.40,0.48) 0.5252 0.5225 0.0172 0.4810 0.5948

Figure A3. Scheme 3: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Tables A7 and A8 contain the numerical summaries of the FS-ratio statistic over 100 replications of the
model in Scheme 4. Here we look at Mi,t = AiXi,t which is a mixture of the components of Xi,t generated
as in Scheme 1. Please note that the peak of the spectral densities of the components of Mi,t is still at the
phase parameter θi defined in Scheme 1. Hence, the results from Tables A7 and A8 are similar to the results
from Scheme 1.

Table A7. Scheme 4, epochs 1–249: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 1, 2, . . . , 249 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds
to the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0.5342 0.5321 0.0155 0.4871 0.5955

(0.08,0.16) 0.4489 0.4510 0.0159 0.3872 0.4949

(0.16,0.24) 0.0002 0.0002 0.0001 0.0003 0.0011

(0.24,0.32) 0.0001 0.0001 0 0 0.0001

(0.32,0.40) 0 0 0 0 0

(0.40,0.48) 0 0 0 0 0
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Table A8. Scheme 4, epochs 250–500: Numerical summaries of FS-ratio statistic R̂Mi,t ,a,b for epochs
i = 250, 2, . . . , 500 for specified frequency ranges (a, b). Here (a, b) ⊂ (0, 0.5) and (0, 0.5) corresponds to
the interval (0, π).

Frequency Range Mean Median SD Lower Upper
(a,b) CI CI

(0,0.08) 0 0 0 0 0

(0.08,0.16) 0 0 0 0 0

(0.16,0.24) 0 0 0 0 0.0001

(0.24,0.32) 0.0003 0.0003 0.0001 0.0003 0.0011

(0.32,0.40) 0.4553 0.4570 0.0130 0.4021 0.4987

(0.40,0.48) 0.5234 0.5219 0.0119 0.4782 0.5738

Figure A4. Scheme 4: Histogram density of the FS-ratio statistic for different frequency ranges (a, b) ⊂ (0, 0.5).

Appendix B. Proofs

Here we present the proofs of the theoretical results in Section 2.1.2.

Proof of Theorem 1 (a). Recall that for some 0 < a < b < π,

r̂X,a,b =
∫ b

a
||vec( f̂X(ω))||22dω =

∫ b

a
|| 1

T

�T/2�
∑

j=−�T/2�
Kh(ω − ωj)vec(IX,T(ωj))||2 dω

=
∫ b

a

1
T2

�T/2�
∑

j1,j2=−�T/2�
Kh(ω − ωj1)Kh(ω − ωj2)

di

∑
r,s=1

IX,T,rs(ωj1)IX,T,rs(ωj2) dω.

We first consider the expected value of this quantity.

E(r̂X,a,b) =
∫ b

a

1
T2

�T/2�
∑

j1,j2=−�T/2�
Kh(ω − ωj1)Kh(ω − ωj2)

di

∑
r,s=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

dω

=
∫ b

a

1
T2

�T/2�
∑

j1,j2=−�T/2�
Kh(ω − ωj1)Kh(ω − ωj2)

di

∑
r,s=1

fX,rs(ωj1) fX,rs(ωj2) dω + o(1).
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It can be seen that as T → ∞, h → 0 and Th → ∞ the above quantity converges to

∫ b

a

di

∑
r,s=1

( ∫ π

−π
K(v)dv

)2
fX,rs(ω) fX,rs(ω) dω =

∫ b

a

di

∑
r,s=1

fX,rs(ω) fX,rs(ω) dω.

Next, for the variance we have V(r̂X,a,b) = A1 − A2, where

A1 =
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj3)Kh(λ − ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ and

A2 =
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj3)Kh(λ − ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ.

For the difference in the expectations between A1 and A2 we discuss the relevant cases and their
convergence to 0. Firstly, it can be seen that for the following three cases the difference in the expectations
is asymptotically 0: (a). ωj1 �= ωj2 �= ωj3 �= ωj4 , (b). ωj1 = ωj2 �= ωj3 �= ωj4 , (c). ωj1 = ωj2 �= ωj3 = ωj4 .
Next, when ωj1 = ωj3 �= ωj2 = ωj4 we have,

∫ b

a

∫ b

a

1
T4 ∑

j1,j2

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj1)Kh(λ − ωj2)
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)×

IX,T,tu(ωj1)IX,T,tu(ωj2)
)
− E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj1)IX,T,tu(ωj2)
)]

dω dλ

=
∫ b

a

∫ b

a

1
T4 ∑

j1,j2

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj1)Kh(λ − ωj2)
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,tu(ωj1)
)
×

E
(

IX,T,rs(ωj2)IX,T,tu(ωj2)
)
− E
(

IX,T,rs(ωj1)
)

E
(

IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj1)
)

E
(

IX,T,tu(ωj2)
)]

dω dλ + o(1)

=
1

T4 ∑
j1,j2

( ∫ b

a
Kh(ω − ωj1)Kh(ω − ωj2) dω

)2 di

∑
r,s,t,u=1

[(
fX,rt(ωj1) fX,su(ωj1) + fX,rs(ωj1) fX,tu(ωj1)

)
×

(
fX,rt(ωj2) fX,su(ωj2) + fX,rs(ωj2) fX,tu(ωj2)

)
−
(

fX,rs(ωj1) fX,rs(ωj2) fX,tu(ωj1) fX,tu(ωj2)
)]

+ o(1) =
1

T4h2 ∑
j1,j2

( ∫ b−ωj1
h

a−ωj1
h

K(u)K(u +
ωj1 − ωj2

h
)du
)2 di

∑
r,s,t,u=1

[
· · ·
]

= O(
1

T2h
).
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The case when ωj1 = ωj2 = ωj3 �= ωj4 would have the same rate of decay as above.
Next, when ωj1 = ωj3 �= ωj2 �= ωj4 we have,

∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j4

Kh(ω − ωj1 )Kh(ω − ωj2 )Kh(λ − ωj1 )Kh(λ − ωj4 )
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1 )IX,T,rs(ωj2 )×

IX,T,tu(ωj1 )IX,T,tu(ωj4 )
)
− E
(

IX,T,rs(ωj1 )IX,T,rs(ωj2 )
)

E
(

IX,T,tu(ωj1 )IX,T,tu(ωj4 )
)]

dω dλ

=
∫ b

a

∫ b

a

1
T4 ∑

j1,j2,j4

Kh(ω − ωj1 )Kh(ω − ωj2 )Kh(λ − ωj1 )Kh(λ − ωj4 )
di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1 )IX,T,tu(ωj1 )
)
×

E
(

IX,T,rs(ωj2 )
)

E
(

IX,T,tu(ωj4 )
)
− E
(

IX,T,rs(ωj1 )
)

E
(

IX,T,rs(ωj2 )
)

E
(

IX,T,tu(ωj1 )
)

E
(

IX,T,tu(ωj4 )
)]

dω dλ + o(1)

=
1

T4 ∑
j1,j2,j4

( ∫ b

a
Kh(ω − ωj1 )Kh(ω − ωj2 ) dω

)( ∫ b

a
Kh(λ − ωj1 )Kh(λ − ωj4 ) dλ

) di

∑
r,s,t,u=1

[(
fX,rt(ωj1 )×

fX,su(ωj1 ) + fX,rs(ωj1 ) fX,tu(ωj1 )
)
×
(

fX,rs(ωj2 ) fX,tu(ωj4 )
)
−
(

fX,rs(ωj1 ) fX,rs(ωj2 ) fX,tu(ωj1 ) fX,tu(ωj4 )
)]

+ o(1) =
1

T4h2 ∑
j1,j2,j4

( ∫ b−ωj1
h

a−ωj1
h

K(u)K(u +
ωj1 − ωj2

h
) du

)( ∫ b−ωj1
h

a−ωj1
h

K(v)K(v +
ωj1 − ωj4

h
) dv

)
×

di

∑
r,s,t,u=1

[
· · ·
]
+ o(1) = O(

1
T
).

Finally, we look at the case ωj1 = ωj2 = ωj3 = ωj4 . We have

∫ b

a

∫ b

a

1
T4 ∑

j1

K2
h(ω − ωj1)K

2
h(λ − ωj1)

di

∑
r,s,t,u=1

[
E
(

IX,T,rs(ωj1)IX,T,rs(ωj1)×

IX,T,tu(ωj1)IX,T,tu(ωj1)
)
− E
(

IX,T,rs(ωj1)IX,T,rs(ωj1)
)

E
(

IX,T,tu(ωj1)IX,T,tu(ωj1)
)]

dω dλ

=
1

T4 ∑
j1

( ∫ b

a
K2

h(ω − ωj1) dω
)2 di

∑
r,s,t,u=1

[
· · ·
]
=

1
T4h4 ∑

j1

( ∫ b

a
K2(

ω − ωj1
h

)dω
)2 di

∑
r,s,t,u=1

[
· · ·
]

=
1

T4h2 ∑
j1

( ∫ b−ωj1
h

a−ωj1
h

K2(u)du
)2 di

∑
r,s,t,u=1

[
· · ·
]
= O(

1
T3h2 )

Proof of Theorem 1 (b). First, we observe that

R̂X,a,b =

∫ b
a ||vec( f̂X(ω))||22dω∫ π
0 ||vec( f̂X(ω))||22dω

=

∫ b
a ||vec( f̂X(ω))||22dω∫ b

a ||vec( f̂X(ω))||22dω +
∫

Π(a,b)
||vec( f̂X(ω))||22dω

=
(

1 +

∫
Π(a,b)

||vec( f̂X(ω))||22dω∫ b
a ||vec( f̂X(ω))||22dω

)−1
. (A1)

110



Entropy 2020, 22, 1375

A sufficient condition for joint consistency of (r̂X,a,b, r̂X,Π(a,b)
)�. Following the proof of Theorem 1 (a),

we have cov(r̂X,a,b, r̂X,Π(a,b)
) = C1 − C2, where

C1 =
∫

Π(a,b)

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj3)Kh(λ − ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ and

C2 =
∫

Π(a,b)

∫ b

a

1
T4 ∑

j1,j2,j3,j4

Kh(ω − ωj1)Kh(ω − ωj2)Kh(λ − ωj3)Kh(λ − ωj4) ×

di

∑
r,s,t,u=1

E
(

IX,T,rs(ωj1)IX,T,rs(ωj2)
)

E
(

IX,T,tu(ωj3)IX,T,tu(ωj4)
)

dω dλ.

As in the proof of Theorem 1 (a), it can be seen that, for the various cases, the covariance terms are of
O( 1

Tδ1 hδ2
) where δ1, δ2 ∈ {0, 1, 2, 3} and δ1 > δ2. The result above along with Theorem 1 implies

(
r̂X,a,b, r̂X,Π(a,b)

)� P−→
(

rX,a,b, rX,Π(a,b)

)�
.

Finally, an application of the continuous mapping theorem yields the result.
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Abstract: This paper investigates the asymptotic properties of estimators obtained from the so called
CVA (canonical variate analysis) subspace algorithm proposed by Larimore (1983) in the case when the
data is generated using a minimal state space system containing unit roots at the seasonal frequencies
such that the yearly difference is a stationary vector autoregressive moving average (VARMA) process.
The empirically most important special cases of such data generating processes are the I(1) case
as well as the case of seasonally integrated quarterly or monthly data. However, increasingly also
datasets with a higher sampling rate such as hourly, daily or weekly observations are available, for
example for electricity consumption. In these cases the vector error correction representation (VECM)
of the vector autoregressive (VAR) model is not very helpful as it demands the parameterization of
one matrix per seasonal unit root. Even for weekly series this amounts to 52 matrices using yearly
periodicity, for hourly data this is prohibitive. For such processes estimation using quasi-maximum
likelihood maximization is extremely hard since the Gaussian likelihood typically has many local
maxima while the parameter space often is high-dimensional. Additionally estimating a large number
of models to test hypotheses on the cointegrating rank at the various unit roots becomes practically
impossible for weekly data, for example. This paper shows that in this setting CVA provides consistent
estimators of the transfer function generating the data, making it a valuable initial estimator for
subsequent quasi-likelihood maximization. Furthermore, the paper proposes new tests for the
cointegrating rank at the seasonal frequencies, which are easy to compute and numerically robust,
making the method suitable for automatic modeling. A simulation study demonstrates by example
that for processes of moderate to large dimension the new tests may outperform traditional tests
based on long VAR approximations in sample sizes typically found in quarterly macroeconomic data.
Further simulations show that the unit root tests are robust with respect to different distributions for
the innovations as well as with respect to GARCH-type conditional heteroskedasticity. Moreover,
an application to Kaggle data on hourly electricity consumption by different American providers
demonstrates the usefulness of the method for applications. Therefore the CVA algorithm provides
a very useful initial guess for subsequent quasi maximum likelihood estimation and also delivers
relevant information on the cointegrating ranks at the different unit root frequencies. It is thus a
useful tool for example in (but not limited to) automatic modeling applications where a large number
of time series involving a substantial number of variables need to be modelled in parallel.

Keywords: cointegration; subspace algorithms; VARMA models; seasonality

JEL Classification: C13; C32

1. Introduction

Many time series show seasonal patterns that, according to [1] for example, cannot be
modeled appropriately using seasonal dummies because they exhibit a slowly trending
behavior typical for unit root processes.
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To model such processes in the vector autoregressive (VAR) framework, Ref. [2]
(abbreviated as JS in the following) extend the error correction representation for seasonally
integrated autoregressive processes pioneered by [3] to the multivariate case. This vector
error correction formulation (VECM) models the yearly differences of a process observed S
times per year. The model includes systems having unit roots at some or all of the possible
locations zj = exp( 2π j

S i), j = 0, ..., S − 1 of seasonal unit roots. In JS all unit roots are
assumed to be simple such that the process of yearly differences is stationary.

In this setting JS propose an estimator for the autoregressive polynomial subject to
restrictions on its rank (the so-called cointegrating rank) at the unit roots zj based on an
iterative scheme focusing on a pair of complex-conjugated unit roots (or the unit roots
zj = 1 or zj = −1 respectively) at a time. The main idea here is the reformulation of the
model using the so called vector error correction representation. Beside estimators JS also
derived likelihood ratio tests for the cointegrating rank at the various unit roots.

Refs. [4,5] propose simpler estimation schemes based on complex reduced rank
regression (cRRR in the following). They also show that their numerically simpler algorithm
leads to test statistics for the cointegrating rank that are asymptotically equivalent to the
quasi maximum likelihood tests of JS. These schemes still typically alternate between cRRR
problems corresponding to different unit roots until convergence, although a one step
version estimating only once at each unit root exists. Ref. [6] provides updating equations
for quasi maximum likelihood estimation in situations where constraints on the parameters
prohibit focusing on one unit root at a time.

The leading case here is that of quarterly data (S = 4) where potential unit roots are
located at ±1 and ±i, implying that the VECM representation contains four potentially rank
restricted matrices. However, increasingly time series of much higher sampling frequency
such as hourly, daily or weekly observations are available. In such cases it is unrealistic
that all unit roots are present. If a unit root is not present, the corresponding matrix in the
VECM is of full rank. Therefore in situations with only a few unit roots being present, the
VECM requires a large number of parameters to be estimated. Also in cases with a long
period length (such as for example hourly data with yearly cycles) usage of the VECM
involves the estimation of all coefficient matrices for lags for at least one year.

In general, for processes of moderate to large dimension the VAR framework involves
estimation of a large number of parameters which potentially can be avoided by using
the more flexible vector autoregressive moving average (VARMA) or the—in a sense—
equivalent state space framework. This setting has been used in empirical research for
the modeling of electricity markets, see the survey [7] for a long list of contributions.
In particular, ref. [8] use the model described below without formal verification of the
asymptotic theory for the quasi maximum likelihood estimation.

Recently, ref. [9] show that in the setting of dynamic factor models, typically used
for observation processes of high dimension, the common assumption that the factors are
generated using a vector autoregression jointly with the assumption that the idiosyncratic
component is white noise (or more generally generated using a VAR or VARMA model
independent of the factors) leads to a VARMA process. Also a number of papers (see for
example [10–12]) show that in their empirical application the usage of VARMA models
instead of approximations using the VAR model leads to superior prediction performance.
This, jointly with the fact that the linearization of dynamic stochastic general equilibrium
models (DSGE) leads to state space models, see e.g., [13], has fuelled recent interest
in VARMA—and thus state space—modeling in particular in macroeconomics, see for
example [14].

In this respect, quasi maximum likelihood estimation is the most often used approach
for inference. Due to the typically highly non-convex nature of the quasi likelihood function
(using the Gaussian density) in the VARMA setting, the criterion function shows many
local maxima where the optimization can easily get stuck. Randomization alone does not
solve the problem efficiently, as typically the parameter space is high-dimensional causing
problems of the curse of dimensionality type.
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Moreover, VARMA modeling requires a full specification of the state space unit root
structure of the process, see [15]. The state space unit root structure specifies the number
of common trends at each seasonal frequency (see below for definitions). For data of
weekly or higher sampling frequency it is unlikely that the state space unit root structure is
known prior to estimation. Testing all possible combinations is numerically infeasible in
many cases.

As an attractive alternative in this respect the class of subspace algorithms is inves-
tigated in this paper. One particular member of this class, the so called canonical variate
analysis (CVA) introduced by [16] (in the literature the algorithm is often called canonical
correlation analysis; CCA), has been shown to provide system estimators which (under
the assumption of known system order) are asymptotically equivalent to quasi maximum
likelihood estimation (using the Gaussian likelihood) in the stationary case [17]. CVA shares
a number of robustness properties in the stationary case with VAR estimators: [18] shows
that CVA produces consistent estimators of the underlying transfer function in situations
where the innovations are conditionally heteroskedastic processes of considerable general-
ity. Ref. [19] shows that CVA provides consistent estimators of the transfer function even for
stationary fractionally integrated processes, if the order of the system tends to infinity as a
function of the sample size at a sufficient rate.

In the I(1) case [20] introduce a heuristic adaptation of the algorithm using the as-
sumption of known cointegrating rank in order to show consistency for the corresponding
transfer function estimators. However, the specification of the cointegrating rank is no
easy task in itself. In case of misspecification of the cointegrating rank the properties
of this approach are unclear. Ref. [21] states without proof that also the original CVA
algorithm delivers consistent estimates in the I(1) case without the need to impose the true
cointegrating rank.

Furthermore for I(1) processes [20] proposed various tests for the cointegrating rank
and compared them to tests in the Johansen framework showing superior finite sam-
ple performance in particular for multivariate data sets with a large dimension of the
modeled process.

This paper builds on these results and shows that CVA can also be used in the seasonally
integrated case. The main contributions of the paper are:

(i) It is shown that the original CVA algorithm in the seasonally integrated case provides
strongly consistent system estimators under the assumption of known system order
(thus delivering the currently unpublished proof of the claim in the I(1) case in [21]).

(ii) Upper bounds for the order of convergence for the estimated system matrices are
given, establishing the familiar superconsistency for the estimation of the cointegrating
spaces at all unit roots.

(iii) Several tests for separate (that is for each unit root irrespective of the specification at
the other potential unit roots) determination of the seasonal cointegrating ranks are
proposed which are based on the estimated systems and are simple to implement.

The derivation of the asymptotic properties of the estimators is complemented by a
simulation study and an application, both demonstrating the potential of CVA and one of
the suggested tests. Jointly our results imply that CVA constitutes a very reasonable initial
estimate for subsequent quasi likelihood maximization in the VARMA case. Moreover
the method provides valuable information on the number of unit roots present in the
process, which can be used for subsequent investigation at the very least by providing
upper bounds on the number of common trends present at each unit root frequency.
Contrary to the JS approach in the VAR framework these tests can be performed in parallel
for all unit roots, eliminating the interdependence of the results inherent in the VECM
representation. Moreover, they do not use the VECM representation involving a large
number of parameters in the case of high sampling rates.

These properties make CVA a useful tool in automatic modeling of multivariate (with a
substantial number of variables) seasonally (co-)integrated processes.
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The paper is organized as follows: in the next section the model set and the main
assumptions of the paper are presented. The estimation methods are described in Section 3.
Section 4 states the consistency results. Inference on the cointegrating ranks is proposed in
Section 5. Data preprocessing is discussed in Section 6. The simulations are contained in
Section 7, while Section 8 discusses an application to real world data. Section 9 concludes
the paper. Appendix A contains supporting material, Appendix C provides the proofs
of the main results of this paper, which are based on preliminary results presented in
Appendix B.

Throughout the paper we will use the symbols o(gT) and O(gT) to denote orders of
almost sure convergence where T denotes the sample size, i.e., xT = o(gT) if xT/gT → 0
almost surely and xT = O(gT) if xT/gT is bounded almost surely for large enough T (that
is there exists a constant M < ∞ such that lim supT→∞ xT/gT ≤ M a.s.). Furthermore,
oP(gT), OP(gT) denote the corresponding in probability versions.

2. Model Set and Assumptions

In this paper state space processes (yt)t∈Z, yt ∈ Rs, are considered which are defined
as the solutions to the following equations for given white noise (εt)t∈Z, εt ∈ Rs,Eεt =
0,Eεtε

′
t = Ω > 0:

xt+1 = Axt + Kεt,
yt = Cxt + εt.

(1)

Here xt ∈ Rn denotes the unobserved state and A ∈ Rn×n, C ∈ Rs×n and K ∈ Rn×s define
the state space system typically written as the tuple (A, C, K).

In this paper we consider without restriction of generality only minimal state space
systems in innovations representation. For a minimal system the integer n is called the
order of the system. As is well known (cf. e.g., [22]) minimal systems are only identified up
to the choice of the basis of the state space. Two minimal systems (A, C, K) and (Ã, C̃, K̃)
are observationally equivalent if and only if there exists a nonsingular matrix T ∈ Rn×n

such that A = T ÃT −1, C = C̃T −1, K = T K̃. For two observationally equivalent systems
the impulse response sequences k0 = Is, kj+1 = CAjK = C̃ÃjK̃, j = 0, 1, ... coincide.

Ref. [15] shows that the structure of the Jordan normal form of the matrix A determines
the properties (such as stationarity) of the solutions to (1) for t ∈ Z. Eigenvalues of A on
the unit circle lead to unit root processes in the sense of [15] who also define a state space
unit root structure indicating the location and multiplicity of unit roots. A process (yt)t∈Z
with state space unit root structure ΩS = {(0, (c0)), (2π/S, (c1)), ..., (π, (cS/2))} for some
even integer S is called multi frequency I(1) (in short MFI(1)). Even S is chosen because
it simplifies the notation by implying that S/2 also is an integer and z = −1 is a seasonal
unit root. By adjusting the notation appropriately all results hold true for odd S as well).

If, moreover, such a process is observed for S periods per year, it is called seasonal
MFI(1). In this case the canonical form in [15] takes the following form:

A = diag(A0, A1, . . . , AS/2, A•),
A0 = Ic0 ,

Aj =

[
cos(ωj)Icj sin(ωj)Icj

− sin(ωj)Icj cos(ωj)Icj

]
, 0 < j < S/2,

AS/2 = −IcS/2 ,
C =

[
C0,R C1,R C1,I . . . . . . CS/2−1,R CS/2−1,I CS/2 C•

]
=

[
C0 C1 . . . CS/2−1 CS/2 C•

]
,

K =
[

K′
0,R K′

1,R K′
1,I . . . . . . K′

S/2−1,R K′
S/2−1,I K′

S/2 K′
•
]′

(2)

where ωj = 2π j/S, j = 0, . . . , S/2 denote the unit root frequencies and Cj,R ∈ Rs×cj , Cj,I ∈
Rs×cj , Kj,R ∈ Rcj×s, Kj,I ∈ Rcj×s where 0 ≤ cj ≤ s, 0 ≤ j ≤ S/2. Furthermore for Cj,C :=
Cj,R − iCj,I it holds that C′

j,CCj,C = Icj and Kj,C = Kj,R + iKj,I is of full row rank and
positive upper triangular (C0,I = CS/2,I = 0, K0,I = KS/2,I = 0), see [15] for details. Finally
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|λmax(A•)| < 1, where λmax(A) denotes an eigenvalue of the matrix A with maximal
modulus. The stable subsystem (A•, C•, K•) is assumed to be in echelon canonical form
(see [22]).

Using this notation the assumptions on the data generating process (dgp) in this paper
can be stated as follows:

Assumption 1. (yt)t∈Z has a minimal state space representation (A◦, C◦,K◦),A◦ ∈ Rn×n of
the form (2) with minimal (A◦,•, C◦,•,K◦,•),A◦,• ∈ Rn•×n• in echelon canonical form where
c = n − n• > 0.

Furthermore the stability assumption |λmax(A◦,•)| < 1 and the strict minimum-phase
condition ρ0 := |λmax(A◦ −K◦C◦)| < 1 hold.

The state at time t = 1 is given by x1 = [x′
1,0, ..., x′

1,S/2, x′
1,•]

′ where x1,j ∈ Rδjcj (for

δj = 2, 0 < j < S/2 and δj = 1 else) is deterministic and x1,• = ∑∞
j=1 A

j−1
◦,• K◦,•ε1−j is such that

(xt,•)t∈Z is stationary.
The noise process (εt)t∈Z is assumed to be a strictly stationary ergodic martingale difference

sequence with respect to the filtration Ft with zero conditional mean E(εt|Ft−1) = 0, deterministic
conditional variance E(εtε

′
t|Ft−1) = Ω > 0 and finite fourth moments.

Due to the block diagonal form of A the state equations are in a convenient form such
that partitioning the state vector accordingly as

xt =

⎛⎜⎜⎜⎜⎜⎝
xt,0
xt,1

...
xt,S/2
xt,•

⎞⎟⎟⎟⎟⎟⎠, (3)

the blocks (xt,j)t∈Z, xt,j ∈ Rδjcj for cj > 0 are unit root processes with state space unit root
structure {(ωj, (cj))}. Finally (xt,•)t∈Z is assumed to be stationary due to the assumptions
on x1,•. If (ỹt)t∈N denotes a different solution to the state space equations corresponding to
x̃1 then (for t > 1)

ỹt − yt = CAt−1(x̃1 − x1) =
S/2

∑
j=0

Cj At−1
j (x̃1,j − x1,j) + C•At−1

• (x̃1,• − x1,•).

Note that Cj At−1
j z12 = cos(ωjt)z1 + sin(ωjt)z2, 0 < j < S/2 (for appropriate vectors

z12, z1, z2),
C0 At−1

0 = C0, CS/2 At−1
S/2 = (−1)t−1CS/2.

Therefore the sum ∑S/2
j=0 Cj At−1

j (x̃1,j − x1,j) can be modeled using a constant and

seasonal dummies. The term C•At−1
• (x̃1,• − x1,•) tends to zero with an exponential rate as

t → ∞ and hence does not influence the asymptotics.
Assumption 1 implies that the yearly difference

yt − yt−S = CASxt−S + εt + ∑S
i=1 CAi−1Kεt−i − Cxt−S − εt−S

= (CAS − C)xt−S + vt = (C•AS
• − C•)xt−S,• + vt

is a stationary VARMA process where vt = εt + ∑S
i=1 CAi−1Kεt−i − εt−S since AS

j = Iδjcj .
Thus the process according to Assumption 1 is a unit root process in the sense of [15]. Note
that we do not assume that all unit roots are contained such that the spectral density of
the stationary process (yt − yt−S)t∈Z may contain zeros due to overdifferentiation and
hence the process potentially is not stably invertible. The special form of A0 implies that
I(1) processes are a special case of our dgp while I(d), d > 1, d ∈ N, processes are not
allowed for.
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3. Canonical Variate Analysis

The main idea of CVA is that, given the state, the system equations (1) are linear in the
system matrices. Therefore, based on an estimate of the state sequence, the system can be
estimated using least squares regression. The estimate of the state is based on the following
equation (for details see for example [17]):

Let Y+
t, f := [y′

t, y′
t+1, . . . , y′

t+ f−1]
′ denote the vector of stacked observations for some

integer f ≥ n and let E+
t, f := [ε′t, ε′t+1, . . . , ε′t+ f−1]

′. Further define Y−
t,p := [y′

t−1, . . . , y′
t−p]

′.
Then (for t > p)

Y+
t, f = O f xt + E f E+

t, f = O f KpY−
t,p +O f (A◦ −K◦C◦)pxt−p + E f E+

t, f
= β1Y−

t,p + N+
t, f

(4)

where Kp := [K◦, Ā◦K◦, Ā◦
2K◦, . . . , Ā◦

p−1K◦] for Ā◦ := A◦ −K◦C◦ and O f := [C′
◦, A′

◦C′
◦,

. . . , (A f−1
◦ )′C′

◦]
′. The strict minimum-phase assumption implies Ā◦

p → 0 for p → ∞.
Let 〈at, bt〉 := T−1 ∑

T− f+1
t=p+1 atb′t for sequences (at)t∈N and (bt)t∈N. Then an estimate of

β1 is obtained from the reduced rank regression (RRR) Y+
t, f = β1Y−

t,p + N+
t, f under the rank

constraint rank(β1) = n. This results in the estimate Ô f K̂p := [(Ξ̂+
f )

−1ÛnŜn][V̂′
n(Ξ̂

−
p )

−1]

of β1 using the singular value decomposition (SVD)

Ξ̂+
f β̂1Ξ̂−

p = ÛŜV̂′ = ÛnŜnV̂′
n + R̂n.

Here β̂1 = 〈Y+
t, f , Y−

t,p〉〈Y−
t,p, Y−

t,p〉−1 denotes the unrestricted least squares estimate of β1

and
Ξ̂+

f := 〈Y+
t, f , Y+

t, f 〉−1/2, Ξ̂−
p := 〈Y−

t,p, Y−
t,p〉1/2. (5)

Here the symmetric matrix square root is used. The definition is, however, not of im-
portance and other square roots such as Cholesky factors could be used. Ûn ∈ R f s×n

denotes the matrix whose columns are the left singular vectors to the n largest singular
values which are the diagonal entries in Ŝn := diag(σ̂1, σ̂2, . . . , σ̂n), σ̂1 ≥ · · · ≥ σ̂n > 0 and
V̂n ∈ Rps×n contains the corresponding right singular vectors as its columns. R̂n denotes
the approximation error.

The system estimate (Â, Ĉ, K̂) is then obtained using the estimated state x̂t := K̂pY−
t,p, t =

p + 1, . . . , T + 1 via regression in the system equations.
In the algorithm a specific decomposition of the rank n matrix Ô f K̂p into the two

factors Ô f and K̂p is given such that K̂pΞ̂−
p (Ξ̂−

p )
′K̂p

′
= In. It is obvious that every other

decomposition of Ô f K̂p produces an estimated state sequence in a different coordinate
system, leading to a different observationally equivalent representation of the same transfer
function estimator. Therefore, with respect to consistency of the transfer function estimator
it is sufficient to show that there exists a factorization of Ô f K̂p leading to convergent system
matrix estimators (Ã, C̃, K̃), even if this factorization cannot be used in actual computations,
as it requires information not known at the time of estimation.

In order to generate a consistent initial guess for subsequent quasi likelihood optimiza-
tion in the set of all state space systems corresponding to processes with state space unit
root structure ΩS := {(ω0, (c0)), ..., (ωS/2, (cS/2))}, however, we will derive a realizable
(for known integers cj and matrices Ej such that E′

jC◦,j,C = Icj ) consistent system estimate.
To this end note that consistency of the transfer function implies (see for example [23])
that the eigenvalues λ̃l of Â converge (in a specific sense) to the eigenvalues λj of A◦.
Therefore transforming Â into complex Jordan normal form (where Â is almost surely
diagonalizable), ordering the eigenvalues such that groups of eigenvalues λ̃l(j), l = 1, ..., cj,
converging to λj are grouped together, we obtain a realizable system (Ǎ, Č, Ǩ) where the
diagonal blocks of the block diagonal matrix Ǎ corresponding to the unit roots converge to
a diagonal matrix with the eigenvalues zj on the diagonal:
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Ǎj,C =

⎡⎢⎢⎢⎢⎣
λ̃1(j) 0 . . . 0

0 λ̃2(j)
. . .

...
...

. . . . . . 0
0 . . . 0 λ̃cj(j)

⎤⎥⎥⎥⎥⎦→ Aj,C =

⎡⎢⎢⎢⎢⎣
zj 0 . . . 0

0 zj
. . .

...
...

. . . . . . 0
0 . . . 0 zj

⎤⎥⎥⎥⎥⎦.

Replacing Ǎj,C by the limit Aj,C and transforming the estimates to the real Jordan normal
form, we obtain estimates (Ă, Č, Ǩ) corresponding to unit root processes with state space
unit root structure ΩS.

Note, however, that this representation not necessarily converges as perturbation
analysis only implies convergence of the eigenspaces. Therefore in the final step the
estimate (Ă, Č, Ǩ) is converted such that we obtain convergence of the system matrix
estimates. In the class of observationally equivalent systems with the matrix

ĂC = diag(A0,C, A1,C, A1,C..., AS/2−1,C, AS/2,C, Ǎ•), Aj,C = Icj zj,

block diagonal transformations of the form T = diag(T0, T1, T1, ..., TS/2, I) do not change
the matrix ĂC. Here the basis of the stable subsystem can be chosen such that the cor-
responding transformed (Ă•, C̆•, K̆•) is uniquely defined using an overlapping echelon
form (see [22], Section 2.6). The impact of such transformations on the blocks of C is given
by Čj,CT −1

j . Therefore, if for each j = 0, ..., S/2 a matrix Ej ∈ Cs×cj is known such that

E′
jC◦,j,C ∈ Ccj×cj is nonsingular, the restriction E′

jC̆j,C = Icj picks a unique representative

(Ă, C̆, K̆) of the class of systems observationally equivalent to (Ă, Č, Ǩ).
Note that this estimate (Ă, C̆, K̆) is realizable if the integers cj (needed to identify the

cj eigenvalues of Â closest to zj), the matrices Ej (needed to fix a basis for xt,j) and the index
corresponding to the overlapping echelon form for the stable part are known. Furthermore,
this estimate corresponds to a process with state space unit root structure ΩS and hence
can be used as a starting value for quasi likelihood maximization.

Finally in this section it should be noted that the estimate of the state x̂t here mainly
serves the purpose of obtaining an estimator for the state space system. Based on this
estimate, Kalman filtering techniques can be used to obtain different estimates of the state
sequence. The relation between these different estimates is unclear and so is their usage
for inference. For this paper the state estimates x̂t are only an intermediate step in the
CVA algorithm.

4. Asymptotic Properties of the System Estimators

As follows from the last section, the central step in the CVA procedure is a RRR problem
involving stationary and nonstationary components. The asymptotic properties of the
solution to such RRR problems are derived in Theorem 3.2. of [24]. Using these results the
following theorem can be proved (see Appendix C.1):

Theorem 1. Let the process (yt)t∈Z be generated according to Assumption 1. Let (Â, Ĉ, K̂)
denote the CVA estimators of the system matrices using the assumption of correctly specified order
n with f ≥ n not depending on the sample size and finite and p = o((log T)ā) for some real
0 < ā < ∞, p ≥ −d log T/ log ρ0 for some d > 1 where 0 < ρ0 = |λmax(A◦ −K◦C◦)| < 1.
Let (A◦, C◦, K◦) be in the form given in (2) where (A◦,•, C◦,•, K◦,•) is in echelon canonical form
and for each j = 0, ..., S/2 there exists a row selector matrix Ej ∈ Rs×cj such that E′

jC◦,j,C is
non-singular. Then for some integer a:

(I) ĈÂjK̂ − C◦Aj
◦K◦ = OP((log T)a/

√
T) for each j ≥ 0.

(II) Using Dx = diag(T−1 Ic, T−1/2 In−c) where c = ∑S/2
j=0 cjδj we have

(Ă −A◦)D−1
x = OP((log T)a),

√
T(K̆ −K◦) = OP((log T)a), (C̆ − C◦)D−1

x = OP((log T)a)
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for some integer a < ∞.
(III) If the noise is assumed to be an iid sequence, then results (I) and (II) hold almost surely.

Beside stating consistency in the seasonal integration case, the theorem also improves
on the results of [20] in the I(1) case by showing that no adaptation of CVA is needed in order
to obtain consistent estimators of the impulse response sequence or the system matrices.
Note that this consistency result for the impulse response sequence concerns both the short
and the long-run dynamics. In particular it implies that short-run prediction coefficients
are consistent. Moreover the theorem establishes strong consistency rather than weak
consistency as opposed to [20]. (II) establishes orders of convergence which, however,
apply only to a transformed system that requires knowledge of the integers cj and matrices
Ej to be realized. No tight bounds for the integer a are derived, since they do not seem to
be of much value.

Note that the assumptions on the innovations rule out conditionally heteroskedastic
processes. However, since the proof mostly relies on convergence properties for covariance
estimators for stationary processes and continuous mapping theorems for integrated
processes, it appears likely that the results can be extended to conditionally heteroskedastic
processes as well. For the stationary cases this follows directly from the arguments in [18],
while for integrated processes results (using different assumptions on the innovations)
given for example in [25] can be used. The conditions of [25] hold for example in a large
number of GARCH type processes, see [26]. The combination of the different sets of
assumptions on the innovations is not straightforward, however, and hence would further
complicate the proofs. We refrain from including them.

It is worth pointing out that due to the block diagonal structure of A◦ the result
(C̆ − C◦)D−1

x = OP((log T)a) implies consistency of the blocks C̆j corresponding to unit
root zj (or the corresponding complex pair) of order almost T−1. Using the complex valued
canonical form this implies consistent estimation of C◦,j,C by the corresponding C̆j,C. In
the canonical form this matrix determines the cointegrating relations (both the static as
well as the dynamic ones, for details see [15]) as the unitary complement to this matrix. It
thus follows that CVA delivers estimators for the cointegrating relations at the various unit
roots that are (super-)consistent. In fact, the proof can be extended to show convergence in
distribution of (C̆ − C◦)D−1

x . This distribution could be used in order to derive tests for
cointegrating relations. However, preliminary simulations indicate that these estimates
and hence the corresponding tests are not optimal and can be improved upon by quasi
maximum likelihood estimation in the VARMA setting initialized by the CVA estimates.
Therefore we refrain from presenting these results.

Note that the assumptions impose the restriction ρ0 > 0 excluding VAR systems. This
is done solely for stating a uniform lower bound on the increase of p as a function of T.
This bound is related to the lag length selection achieved using BIC, see [27]. In the VAR
case the lag length estimator using BIC will converge to the true order and thus remain
finite. All results hold true if in the VAR case a fixed (that is independent of the sample
size) p ≥ n is used.

5. Inference Based on the Subspace Estimators

Beside consistency of the impulse response sequence also the specification of the
integers c0, ..., cS/2 is of interest. First, following [20] this information can be obtained by
detecting the unity singular values in the RRR step of the procedure. Second, from the
system representation (2) it is clear that the location of the unit roots is determined by the
eigenvalues of A◦ on the unit circle: The integers cj denote the number of eigenvalues
at the corresponding locations on the unit circle (provided the eigenvalues are simple).
Due to perturbation theory (see for example Lemma A2) we know that the eigenvalues
of Â will converge (for T → ∞) to the eigenvalues of A◦ and the distribution of the mean
of all eigenvalues of Â converging to an eigenvalue of A◦ can be derived based on the
distribution of the estimation error Â −A◦. This can be used to derive tests on the number

120



Entropy 2021, 23, 436

of eigenvalues at a particular location on the unit circle. Third, if n ≤ s the state process is a
VAR(1) process and hence in some cases allows for inference on the number of cointegrating
relations and thus also on the integers cj as outlined in [4]. Tests based on these three
arguments will be discussed below.

Theorem 2. Under the assumptions of Theorem 1 the test statistic T ∑c
i=1(1 − σ̂2

i ) converges in
distribution to the random variable

Z = tr

[
E(ε̃t,⊥ ε̃′t,⊥)

(∫ 1

0
W(r)W(r)′

)−1
]

where ε̃t,⊥ = ε̃t,1 − Eε̃t,1 ε̃′t,•(Eε̃t,• ε̃′t,•)
−1 ε̃t,• (for definition of ε̃t,1 and ε̃t,• see the proof in Ap-

pendix C.2) and where W(r) denotes a c-dimensional Brownian motion with variance

S−1

∑
i=0

Ai
uKuΩK′

u(Ai
u)

′

with Au denoting the c × c heading submatrix of A and Ku denoting the submatrix of K composed
of the first c rows such that (Au, Cu, Ku) denotes the unstable subsystem.

The theorem is proved in Appendix C.2, where also the many nuisance parameters of
the limiting random variable are explained and defined. The proof also corrects an error in
Theorem 4 of [20], where the wrong distribution is given since the second order terms were
neglected.

As the distribution is not pivotal and in particular contains information that is un-
known when performing the RRR step, it is not of much interest for direct application. Nev-
ertheless the order of convergence allows for the derivation of simple consistent estimators
of the number of common trends: Let ĉT denote the number of singular values calculated
in the RRR that exceed

√
1 − h(T)/T for arbitrary h(T) → ∞, h(T) < T, h(T)/T → 0, for

T → ∞. Then it is a direct consequence of Theorem 2 in combination with σ̂j → σj < 1, j > c,
that ĉT → c in probability, implying consistent estimation of c. Based on these results
also estimators for c could be derived, for example along the lines of [28]. However,
as [29] shows, such estimators have not performed well in simulations and thus are not
considered subsequently.

The singular values do not provide information on the location of the unit roots. This
additional information is contained in the eigenvalues of the matrix A◦:

Theorem 3. Under the assumptions of Theorem 1 let λ̂i(m), i = 1, ..., cm denote the cm eigenvalues
of Â closest to the unit root zm, |zm| = 1. Then defining μ̂m = ∑cm

i=1(λ̂i(m)− zm) we obtain

Tμ̂m
d→ tr

[(∫
B(r)B(r)dr

)−1 ∫
B(r)dB(r)′

]

where B(r) denotes a cm-dimensional Brownian motion with zero expectation and variance Icm for
zm = ±1 and a complex Brownian motion with expectation zero and variance equal to the identity
matrix else.

Further if Ã := 〈xt+1, xt〉〈xt, xt〉−1 using the true state xt and μ̃m = ∑cm
i=1(λ̃i(m)− zm)

where λ̃i(m), i = 1, ..., cm denote the cm eigenvalues of Ã closest to zm, then T(μ̂m − μ̃m) = oP(1).

Therefore the estimated eigenvalues can be used in order to obtain a test on the
number of common trends at a particular frequency for each frequency separately. The test
distribution is obtained as the limit to

Ttr[〈K◦,m,Cεt, xt,m,C〉〈xt,m,C, xt,m,C〉−1]
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where xt,m,C = zmxt−1,m,C +K◦,m,Cεt−1, x1,m,C = 0. The distribution thus does not depend
on the presence of other unit roots or stationary components of the state. Furthermore it
can be seen that it is independent of the noise variance or the matrix K◦,m,C. Hence critical
values are easily obtained from simulations. Also note that the limiting distribution is
identical for all complex unit roots.

Therefore, for each seasonal unit root location zm we can order the eigenvalues of the
estimated matrix Â with increasing distance to zm. Then starting from the assumption
of H0 : cm = c̄ (for a reasonable c̄ obtained, e.g., from a plot of the eigenvalues) one can
perform the test with statistic Tμ̂m. If the test rejects, then the hypothesis H0 : cm = c̄ − 1 is
tested, until the hypothesis is not rejected anymore, or H0 : cm = 1 is reached. This is then
the last test. If H0 is rejected again, no unit root is found at this location. Otherwise we do
not have evidence against cm = 1. In any case, the system needs to be estimated only once
and the calculation of the test statistics is easy even for all seasonal unit roots jointly.

The third option for obtaining tests is to use the tests derived in [4] based on the JS
framework for VARs. In the case n ≤ s the state process xt+1 = Axt +Kεt is a seasonally
integrated VAR(1) process (for n > s the noise variance is singular). The corresponding
VECM representation equals

p(L)xt =
S

∑
m=1

(In −Azm)X(m)
t−1 +Kεt−1 =

S

∑
m=1

αmβ′
mX(m)

t−1 +Kεt−1

where zm = exp( 2πm
S i), m = 1, ..., S and

p(L) = 1 − LS , pt = p(L)xt = xt − xt−S,

pm(L) =
p(L)

1 − zmL
, X(m)

t = − pm(L)
pm(zm)zm

xt.

Note that in this VAR(1) setting no additional stationary regressors of the form p(L)xt−j
occur. Also no seasonal dummies are needed but could be added to the equation. In this
setting [4] suggests to use the eigenvalues λ̂i (ordered with increasing modulus) of the
matrix (the superscript (.)π denotes the residuals with respect to the remaining regressors
X(j)

t−1, j �= m)

〈X(m),π
t−1 , pπ

t 〉〈pπ
t , pπ

t 〉−1〈pπ
t , X(m),π

t−1 〉〈X(m),π
t−1 , X(m),π

t−1 〉−1

as the basis for a test statistic

C̃m := −δm

cm

∑
i=1

log(1 − λ̂i).

where δm = 2 for complex unit roots and δm = 1 for real unit roots. In the I(1) case this
leads to the familiar Johansen trace test, for seasonal unit roots a different asymptotic
distribution is obtained.

Theorem 4. Under the assumptions of Theorem 1 let Ĉm be calculated based on the estimated
state and let C̃m denote the same statistic based on the true state. Then for n ≤ s it holds that
Ĉm − C̃m = oP(T−1) and

TĈm
d→ tr

[∫
dB(r)B(r)′

(∫
B(r)B(r)dr

)−1 ∫
B(r)dB(r)′

]

where B(r) is a real Brownian motion for zm = ±1 or a complex Brownian motion else.

Thus again under the null hypothesis the test statistic based on the estimated state and
the one based on the true state reject jointly asymptotically with probability one. Therefore
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for n ≤ s the tests of JS can be used to obtain information on the number of common cycles,
ignoring the fact that the estimated state is used in place of the true state process.

After presenting three disjoint ideas for providing information on the number and
location of unit roots, the question arises, which one to use in practice. In the following a
number of ideas are given in this respect.

The criterion based on the singular values given in Theorem 2 is of limited information
as it only provides the overall number of unit roots. Since the limiting distribution is not
pivotal it cannot be used for tests and the choice of the cutoff value h(T) is somewhat
arbitrary. Nevertheless, using a relatively large value one obtains a useful upper bound on
c which can be included in the typical sequential procedures for tests for cj.

Using the results of Theorem 4 has the advantage of using a framework that is well
known to many researchers. It is remarkable that in terms of the asymptotic distributions
there is no difference involved in using the estimated state in place of the true state. The
assumption n ≤ s, however, is somewhat restrictive except in situations with a large s.

Finally the results of Theorem 3 provide simple to use tests for all unit roots, indepen-
dently of the specification of the model for the remaining unit roots. Again it is remarkable
that, under the null, inference is identical for known and for estimated state.

Since our estimators are not quasi maximum likelihood estimators the question of
a comparison with the usual likelihood ratio tests arises. For VAR models simulation
exercises documented in Section 7 below demonstrate that there are situations where the
proposed tests outperform tests in the VAR framework. Comparisons with tests in the state
space framework (or equivalently in the VARMA framework) are complicated by the fact
that no results are currently available in the literature of this framework. One difference,
however, is given by the fact that quasi likelihood ratio tests in the VARMA setting require
a full specification of the cj values for all unit roots. This introduces interdependencies such
that the tests for one unit root depend on the specification of the cointegrating rank at the
other roots. The interdependencies can be broken by performing tests based on alternative
specifications for each unit root. The test based on Theorem 3 does not require this but can
be performed based on the same estimate Â. This is seen as an advantage.

The question of the comparison of the empirical size in finite samples as well as power
to local alternatives between the CVA based tests and tests based on quasi-likelihood ratios
is left as a research question.

6. Deterministic Terms

Up to now it has been assumed that no deterministic terms appear in the model
contrary to common practice. In the VAR framework dealing with trends is complicated by
the usage of the VECM representation, see e.g., [30]. In the state space framework used in
this paper, however, deterministic terms are easily incorporated.

Theorem 5. Let the process (yt)t∈Z be generated according to Assumption 1 and assume that the
process (ỹt)t∈Z is observed where ỹt = yt + Φdt with

dt =
[

1, cos( 2π
S t), sin( 2π

S t), · · · (−1)t ]′ ∈ RS

and Φ ∈ Rs×S.
Then if the CVA estimation is applied to

ỹπ
t := yt −

(
T

∑
t=1

ytd′
t

)(
T

∑
t=1

dtd′
t

)−1

dt, t = 1, ..., T,

the results of Theorem 1 hold, i.e., the system is estimated consistently and the orders of convergence
for the transformed system (Ă, C̆, K̆) hold true.
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Furthermore the convergence in distribution results in Theorems 2–4 hold true where in the
limits the Brownian motions B(r) occurring in the distributions must be replaced by their demeaned
versions B(r)−

∫ 1
0 B(s)ds.

In this sense the results are robust to some operations typically termed preprocessing
of data such as demeaning and deseasonalizing using seasonal dummies. More general
preprocessing steps such as detrending or the extraction of more general deterministic
terms analogous to [30] can be investigated along the same lines.

7. Simulations

The estimation of the seasonal cointegration ranks and spaces is usually carried out
via quasi maximum likelihood methods that originated from the VAR model class. Typical
estimators in this setting are those of [2,4,5,31]. In the first two experiments we focus on
the estimation of the cointegrating spaces and the specification of the cointegration ranks
in the classical situation of quarterly data and show that there are certain situations in
which CVA estimators and the test in Theorem 3 possess finite sample properties superior to
those of the methods above. In a third experiment the test performance is evaluated for a
daily sampling rate. Moreover, the prediction accuracy of CVA is investigated as well as its
robustness to innovations exhibiting behaviors often encountered at such higher sampling
rates. All simulations are carried out using 1000 replications.

To investigate the practical usefulness of the proposed procedures we generate quar-
terly data using two VAR dgps of dimension s = 2 first and then two more general VARMA
dgps with s = 8. Each pair contains dgps with different state space unit root structures

{(0, (1)), (π/2, (cπ/2)), (π, (1))}, cπ/2 = 1, 2.

From all four dgps samples of size T ∈ {50, 100, 200, 500} are generated with initial values
set to zero. Although none of the dgps contains deterministics, the data is adjusted for
a constant and quarterly seasonal dummies as in [5]. For reasons of comparability, the
adjustment for deterministic terms is done before estimation.

In the third experiment we generate daily data with dimension s = 4 from a state
space system including unit roots corresponding to weekly frequencies (that is a period
length of seven days). In the simulations we use several years of data (excluding new
year’s day to account for 52 weeks of seven days each). The first 200 observations are
discarded to include the effects of different starting values. In this example the focus lies
on a comparison of the prediction accuracy. Furthermore we investigate the robustness
of the test procedures to conditional heteroskedasticity of the GARCH type as well as to
non-normality of the innovations.

To assess the performance of specifying the cointegrating rank at unit root z using CVA,
the following test statistic is constructed from the results in Theorem 3

Λ(c) = T|(1
c

c

∑
i=1

λ̂i)− z| . (6)

Here λ̂1, . . . , λ̂n are the eigenvalues of Â ordered increasingly according to the distance
from z. Note that a similar test in [20] only uses the c-th largest eigenvalue, whereas
here the average over the nearest c eigenvalues is taken. Critical values have been ob-
tained by simulation using large sample sizes (sample size 2000 (JS) and 5000 (CVA), 10,000
replications).

In our first two experiments usage of Λ(c) is compared with variants of the likelihood
ratio test from [2] (JS), [4] (Q1), and [5] (Q2, Q3). Q1 is Cubadda’s trace test for complex-
valued data, Q2 takes the information at frequency π/2 into account when the analysis is
carried out at frequency 3π/2, and Q3 iterates between π/2 and 3π/2 in the alternating
reduced rank regression (ARR) of [5]. For the procedure of [2] the likelihood maximization
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at frequency π/2 is carried out using numerical optimization (BFGS) with initial values
obtained from an unrestricted regression.

All tests are evaluated by comparing the percentages of correctly detected common
trends, or hit rates, with 0.95, the hit rate to be expected from a nominal significance level of
0.05. The testing procedure employed for all tests is the same: at each of the frequencies
it is started from a null hypothesis of s unit roots against less than s unit roots. In case of
rejection, s − 1 unit roots are tested versus less than s − 1 and so on, until there are zero
unit roots under the alternative.

For the first two experiments the estimation performance of CVA for the simultaneous
estimation of the seasonal cointegrating spaces is compared with the maximum likelihood
estimates of [2,4,31] (cRRR), and also with an iterative procedure (Generalized ARR or
GARR) of [5]. The comparison is carried out by means of the gap metric, measuring the
distance between the true and the estimated cointegrating space as in [32]. The smaller
the mean gap over all replications, the better is the estimation performance. Throughout a
difference between two mean gaps or two hit rates is considered statistically significant if it
is larger than twice the Monte Carlo standard error.

For all procedures used in this section, an AR lag length has to be chosen first. For CVA
this can be done using the AIC as in ([33], Section 5), as is done in the third experiment.

In the first two experiments where sample sizes are rather small, we estimate the lag
length via minimization of the corrected AIC (AICc) ([34], p. 432), k̂AICc, benefitting the
simulation results. For larger sample sizes the two criteria lead to the same choices. Due to
the quarterly data we work with, the lag length is then chosen to be k̂ = max{k̂AICc, 4}.

Other information criteria could be chosen here. An anonymous referee also suggested
the application of the Modified Akaike Information Criterion (MAIC) of [35], proposed
there for the I(1)-case. In an attempt to apply it to the seasonally integrated case considered
here, it performed considerably worse than the AICc. Thus we refrain from using the
MAIC in the following and also omit the results of that attempt. They can be obtained from
the authors upon request.

For CVA the truncation indices f and p are chosen as f̂ = p̂ = 2k̂ ([33], Section 5). The
system order n is estimated by minimizing ([33], Section 5)

SVC(n) = σ̂2
n+1 + 2ns

log T
T

. (7)

Here σ̂i denotes the i-th largest singular value from the singular value decomposition
of Ξ̂+

f β̂1Ξ̂−
p (Step 2 of CVA). Note that selecting the number of states by SVC is made

less influential insofar as n̂ = max{c0 + 2cπ/2 + cπ , n̂SVC}, where n̂SVC denotes the SVC
estimated system order.

In Section 7.1 we start with the two VAR dgps and find that the likelihood-based
procedures are mostly superior. Continuing with the VARMA dgps in Section 7.2, CVA
performs better and is superior for the smaller sample sizes in terms of size and gap and
better for all sample sizes in terms of power. Section 7.3 evaluates the performance of the
tests for unit roots for larger sample sizes together with the prediction performance in this
setting. We find that the tests are robust to the distribution of the innovations as well as
to conditional heteroskedasticity of the GARCH type. Furthermore the empirical size of
the tests lies close to the size already for moderate sample sizes, where the tests also show
almost perfect power properties.

7.1. VAR Processes

The VAR dgps considered in this paper are given by,

Xt = Π1Xt−1 + Π2Xt−2 + Π3Xt−3 + Π4Xt−4 + εt, εt ∼ N
([

0
0

]
,
[

1 0.5
0.5 1

])
(8)
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where (εt)t∈Z is white noise and the coefficient matrices are

Π1 =

[
γ 0
0 0

]
, Π2 =

[ −0.4 0.4 − γ
0 0

]
,

Π3 =

[ −γ 0
0 0

]
, Π4 =

[
0.6 − (γ/10) 0.4 + γ

0 1

]
.

This dgp is adopted from [5] with a slight adjustment to Π4. The corresponding VECM
representation in the notation of [5] equals

X0,t =

[ −0.2
0

][
1 + γ/8 −1

]
X1,t−1 +

[
0.2
0

][
1 + γ/8 −1

]
X2,t−1 +[

γ
0

][
1 + 0.05L −L

]
X3,t−1 + εt.

As can be seen from Table 1, the dgps possess unit roots at frequencies 0, π, and π/2,
where cπ/2 = 2[1] for γ = 0[0.2], respectively. Note that in all cases the order of integration
equals 1, while the number of common cycles at π/2 is varied.

Table 1. Eigenvalues of the coefficient matrix of the companion form.

j

1 2 3 4 5 6 7 8

γ = 0.2 zj −1 1 i −i 0.126 + i0.99 0.126 − i0.99 −0.790 0.737
|zj| 1 1 1 1 0.998 0.998 0.790 0.737

γ = 0 μj −1 i −i 1 i −i 0.775 −0.775
|μj| 1 1 1 1 1 1 0.775 0.775

Table 2 exhibits the hit rates from the application of the different test statistics. At
frequencies 0 and π, Λ is compared with the trace test of Johansen (J; based on [31] for unit
roots z = −1), whereas at π/2 it is competing with JS, Q1, Q2, and Q3. All competitors are
likelihood-based tests which is the term we are referring to when we compare Λ to them as
a whole.

Table 2. Hit rates for the different tests (VAR dgp). Twice the maximum (over all entries) Monte
Carlo standard error is 0.005.

0 π/2 π

T Λ J Λ JS Q1 Q2 Q3 Λ J

γ = 0

50 0.685 0.348 0.351 0.903 0.844 0.851 0.844 0.681 0.343
100 0.841 0.732 0.490 0.925 0.900 0.902 0.900 0.831 0.724
200 0.897 0.951 0.841 0.934 0.925 0.924 0.925 0.876 0.936
500 0.931 0.938 0.916 0.949 0.941 0.942 0.941 0.927 0.948

γ = 0.2

50 0.550 0.367 0.811 0.796 0.777 0.778 0.788 0.604 0.297
100 0.711 0.801 0.087 0.920 0.913 0.908 0.908 0.799 0.806
200 0.907 0.922 0.855 0.954 0.949 0.948 0.947 0.854 0.939
500 0.944 0.953 0.927 0.939 0.938 0.938 0.936 0.924 0.942

The results for 0 and π are very similar for both dgps in that Λ scores more hits than
the likelihood-based tests when the sample size is small, T ∈ {50, 100}. Convergence of its
finite sample distribution is slower than for the other test statistics, however, as J is closer
to 0.95 from T = 200 on. For T = 500 the distribution of Λ only seems to have converged
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to its asymptotic distribution when cπ/2 = 2 at frequency 0, whereas convergence of the
likelihood-based tests has occurred in all cases.

At π/2 the likelihood ratio test of JS strictly dominates all implementations of [5] for
all sample sizes and both dgps. It strictly dominates the CVA-based test procedure as well,
except for one case, it seems: when cπ/2 = 1 and T = 50 Λ scores slightly, but significantly,
more hits than the likelihood ratio test of JS. Surprisingly, Λ is drastically worse when
T = 100 with only 8.7%, only to be up at 85% for T = 200.

The behavior of Λ is explained by z5 and z6 being close to ±i when cπ/2 = 1, cf.
Table 1. For future reference we will call the corresponding roots false unit roots.

For T = 50 the estimates of eigenvalues corresponding to actual unit roots are rather
not very close to ±i in contrast to the false unit roots. Thus the latter are mistaken for actual
unit roots (cf. the first panel in Figure 1), leading to a hit rate of 81.1%, one that is even
larger than the rates at 0 and π. As the sample size increases, the eigenvalue estimates of
the true unit roots become more and more accurate, visible from the second and third panel
in Figure 1. Accordingly they can be detected correctly more often. Unfortunately however,
for T = 100 the false unit roots remain to be detected such that often two instead of just
one unit root are found by Λ, resulting in a hit rate of only 8.7%. For T ∈ {200, 500} Λ is
able to distinguish the false unit roots from the true ones and the detection rate is getting
closer to the asymptotic rate, 85.5% and 92.7%, respectively.

Figure 1. Eigenvalues around z = i of 1000 replications when γ = 0.2 (cπ/2 = 1).

When the VAR dgp without false unit roots and cπ/2 = 2 is considered, it is visible
that the hit rates of Λ at π/2 are monotonously increasing in the sample size again. The
rates are smaller than those of the likelihood-based tests, however, and also clearly worse
than those of Λ at 0 and π, cf. Table 2 again.

Taken together, at frequencies 0 and π which correspond to real-valued unit roots,
the use of Λ was advantageous for T = 50. It also scored more hits for T = 100 and
cπ/2 = 1. For higher sample sizes the likelihood-based tests clearly dominate Λ at these
two frequencies. At π/2 this superiority of the likelihood-based tests for all sample sizes
and both dgps continues. The example also points to a general weakness: if the sample
size is low and false unit roots are present, it can be difficult for Λ to distinguish them from
actual unit roots.

7.2. VARMA Processes

The second setup consists of VARMA data generated by a state space system (Ar, Cr, Kr),
r = 1, 2, as in (1), where the matrices A1 and A2 are constructed as in (2) and are taken to be

A1 =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

⎤⎥⎥⎦, A2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

These two choices yield the same state space unit root structures as those of the two VAR
dgps with cπ/2 = 1 and cπ/2 = 2 for A1 and A2, respectively. The other two system
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matrices Kr ∈ R(2+2r)×s and Cr ∈ Rs×(2+2r) with s = 8 are drawn randomly from a
standard normal distribution in each replication and (εt)t∈Z is multivariate normal white
noise with an identity covariance matrix.

Note that these systems are within the VARMA model class such that the dgp is
contained in the VAR setting only by increasing the lag length as a function of the sample
size. While superiority of the CVA approach in such a setting might be expected, this is
far from obvious. Moreover, using a long VAR approximation is the industry norm in
such situations.

From the hit rates in Table 3 it can be seen that the combination of large s, small T, and
a minimal lag length of four render the likelihood-based tests useless at all frequencies with
hit rates below ten percent for T = 50. Λ in contrast does not suffer from this problem and
is already close to 95% for this sample size. Only when T = 200 do the likelihood-based
tests appear to work, exhibiting hit rates close to 95%.

Table 3. Hit rates for the different tests (VARMA dgp). Twice the maximum (over all entries) Monte
Carlo standard error is 0.005.

0 π/2 π

T Λ J Λ JS Q1 Q2 Q3 Λ J

A1

50 0.890 0.003 0.906 0.024 0.027 0.032 0.025 0.897 0.008
100 0.928 0.434 0.944 0.755 0.783 0.783 0.761 0.930 0.440
200 0.936 0.937 0.923 0.925 0.915 0.916 0.915 0.925 0.924
500 0.852 0.901 0.853 0.919 0.906 0.904 0.904 0.853 0.894

A2

50 0.863 0.008 0.785 0.062 0.047 0.063 0.039 0.867 0.006
100 0.917 0.500 0.880 0.582 0.596 0.596 0.571 0.916 0.518
200 0.931 0.927 0.882 0.908 0.915 0.913 0.911 0.919 0.922
500 0.824 0.882 0.786 0.878 0.860 0.859 0.861 0.812 0.865

For all tests alike, however, it is striking that hit rates move away from 95% when
T = 500. This behavior is most pronounced for Λ, e.g., from T = 200 to T = 500 its hit rate
drops from 93.1% to 82.4% at 0 when A2 is used. This phenomenon is a consequence of the
fact that f and k in the algorithm are chosen data dependent. An inspection of how the hit
rates depend on f and k and a comparison with the actually selected f̂ , k̂ reveals that for
T = 500 too large values of f and k are chosen too often and leave room for improvement
in the hit rates, cf. Figure 2. The figure stresses an important point: The performance of the
unit root tests is heavily influenced by the selected lag lengths for all procedures. We tested
a number of different information criteria in this respect. AICc turned out to be the best
criterion overall, but not uniformly. Figure 2 indicates advantages for this example of BIC
over AIC as it on average selects smaller lag lengths, associated here with higher hit rates.

To study the power of the different procedures, the transition dynamics Ar in (9) are
multiplied by ρ ∈ {0.8, 0.85, 0.9, 0.95} so that the systems do not contain unit roots at any
of the frequencies. Here empirical power is defined as the frequency of choosing zero
common trends. This is why for ρ = 1, when there are in fact common trends present
in our specifications, the empirical power values plotted in Figure 3 are not equal to the
actual size we could define as one minus the hit rate: our measure of empirical power in
this situation only counts the false test conclusion of zero common trends, but there are of
course multiple ways the testing procedure could conclude falsely.
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(a) Λ, T = 500 (b) Q1, T = 500
Figure 2. Relationship between hit rates and chosen values of f and k, illustration for the VARMA
dgp using A2. The lower x-axes show f or k, above are the choice frequencies of the selection criteria.

Figure 3. Empirical power of the different test procedures (VARMA dgp with A2). Twice the Monte
Carlo standard error is 0.005.

As expected, rejection of the null hypothesis is easiest when ρ is small and is very
difficult when it is close to 1, cf. Figure 3 for the case of A2.

Further, there are almost no differences among the likelihood-based tests over all
combinations of sample size and frequency, only for T = 100 is JS significantly worse than
the Qi, i = 1, 2, 3 at π/2. It is also clearly visible at all frequencies that the likelihood-based
tests possess no or only very limited power when T = 50 and T = 100, respectively.
Λ, in contrast, is clearly more powerful in these cases. As the sample size increases to
T = 200, the power of each test improves, still Λ remains the most powerful option. Only
for T = 500 have the differences almost vanished with small, but significant, advantages
for Λ at 0 and π.
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The results are the same when A1 is used and cπ/2 = 1 and all of the differences
described here are statistically significant.

Next the estimation performance of CVA is evaluated by calculation of the gaps between
the true and the estimated cointegrating spaces. At all frequencies these gaps are compared
with the GARR procedure of [5] which cycles through frequencies. At π/2 CVA and GARR
are also compared with our implementation of JS and cRRR of [4], whereas it is also
compared with the usual Johansen procedure at 0 and π. All estimates are conditional on
the true state space unit root structure in the sense that the minimal number of states used
is larger or equal to the number of unit roots over all frequencies. Other than imposing a
minimum state dimension, the estimation of the order using SVC is not influenced. The
likelihood-based procedures, on the other hand, take the unit root structure as given, i.e.,
do not perform CI rank testing for this estimation exercise.

From the results in Table 4 it can be noted first that the likelihood-based procedures
show mostly equal mean gaps. Only for π/2 and T = 50 and both dgps does JS possess
significantly larger gaps than cRRR and GARR and other differences are not statistically
significant. Thus it does not matter in our example whether the iterative procedure is used
or not.

Second, CVA is again superior for T = 50 where it exhibits mean gaps that are signifi-
cantly smaller than those of the other estimators at all frequencies. This advantage is turned
around for higher sample sizes, though: mean gaps are smaller for the likelihood-based
procedures when T ∈ {100, 200, 500} and A2 is used, if only slightly. When A1 is used
instead, mean gaps do not differ significantly from each other at π/2 when T > 50 and at
0, π when T = 100 and those of CVA are only very modestly worse when T ∈ {200, 500} at
0, π.

Table 4. Mean gaps between estimated and true cointegrating spaces (VARMA dgp). 2MCse denotes
twice the maximal Monte Carlo standard error for the corresponding row.

0 π/2 π

T 2MCse CVA J GARR CVA JS cRRR GARR CVA J GARR

A1

50 0.016 0.116 0.189 0.192 0.091 0.147 0.130 0.130 0.111 0.192 0.197
100 0.004 0.047 0.048 0.048 0.039 0.035 0.035 0.035 0.047 0.046 0.046
200 0.003 0.023 0.019 0.019 0.019 0.016 0.016 0.016 0.024 0.019 0.019
500 0.003 0.012 0.007 0.007 0.008 0.008 0.006 0.006 0.011 0.007 0.007

A2

50 0.016 0.174 0.245 0.242 0.250 0.349 0.331 0.331 0.165 0.231 0.234
100 0.004 0.072 0.061 0.061 0.098 0.080 0.078 0.078 0.069 0.060 0.060
200 0.003 0.031 0.026 0.026 0.047 0.036 0.034 0.034 0.032 0.027 0.027
500 0.003 0.016 0.011 0.010 0.021 0.015 0.013 0.013 0.017 0.011 0.011

Thus, when it comes to estimating the cointegrating spaces, CVA is superior for T = 50
and equally good or only slightly worse than the likelihood-based procedures for higher
sample sizes. For the systems analyzed, decreasing cπ/2 leads to gaps that are smaller for all
methods and these improvements are slightly larger for CVA than for the other estimators.

7.3. Robustness of Unit Root Tests for Daily Data

In this last simulation example we examine the robustness of the proposed procedures
with regard to test performance and prediction accuracy with respect to the innovation
distribution and the existence of conditional heteroskedasticity of the GARCH-type, as
these features are often observed in data of higher frequency, for example in financial
applications. While our asymptotic results do not depend on the distribution of the
innovations (subject to the assumptions), the assumptions do not include GARCH effects.
Nevertheless, the theory in [25,26] suggests that the tests might be robust also in this
respect.
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We generate a state space system of order n = 8 using the matrix A = [Ai,j]i,j=1,...,8
where Ai,i+1 = 1, i = 1, ..., 6, A7,1 = 1, A8,8 = 0.8 and Ai,j = 0 else. This implies that
the eigenvalues of this matrix are λj = exp(2πij/7), j = 1, ..., 7, λ8 = 0.8. Therefore the
corresponding process has state space unit root structure

((0, (1)), (2π/7, (1)), (4π/7, (1)), (6π/7, (1))).

The entries of the matrices C and K are chosen as independent standard normally dis-
tributed random variables as before.

A process (yt)t=1,...,T is generated from filtering an independent identically distributed
innovation process (εt)t=−199,...,T+1 through the system (A, C, K). The first 200 observations
are discarded, the last are used for validation purposes. A total of 1000 replications are
generated where in each replication a different system is chosen.

With the generated data three different estimates are obtained: An autoregressive
model (called AR in the following) is estimated with lag length chosen using AIC of maximal
lag length equal to �

√
T�. Second, an autoregressive model with large lag length (called

ARlong) is estimated. This estimate is used to hint at the behavior of an autoregression using
the lag length equal to a full year. This would correspond to estimating a VECM without
rank restrictions, when accounting for yearly differences. The third method consists of the
CVA estimates, where f = p = 2k̂AIC is chosen. The order is estimated by minimizing SVC.
However, we correct for orders smaller than n = 7 which would limit the possibilities of
finding all unit roots.

First, we compare the prediction accuracy for the three methods for two different
distributions of the innovations: Beside the standard normal distribution also the student
t-distribution with v = 5 degrees of freedom (scaled to unit variance) is used. This
distribution shows considerably heavier tails than the normal distribution but nevertheless
is covered by our assumptions.

Figure 4 provides the results for out-of-sample one day ahead mean absolute predic-
tion error (over all coordinates) for the sample sizes T = 364 days (one year), T = 1092
(3 years) and T = 3276 (nine years). The long AR model is estimated with lag lengths of
8 weeks for the smallest sample size, 10 weeks for the medium sample size and 12 weeks
for the largest sample size.

Figure 4. Mean of absolute value of one day ahead prediction error over all four components. CVA
(blue), AR (red) and long AR (black). Dash-dot lines refer to the t-distribution.

In the figure the results for the normally distributed innovations are presented as
well as the ones for the t-distributed residuals (scaled to unit variance). It can be seen
that for the two larger sample sizes the mean absolute error for the residuals for CVA is
smaller in all cases. For the smallest sample size, by contrast, results are mixed. For CVA the
results for the heavy tailed distribution in this case are much worse than for the normal
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distribution. For the larger sample sizes the differences are small. The maximal standard
error of the estimated means over 1000 replications for T = 1092 and T = 3276 amounts to
0.05. This allows the conclusion that CVA performs better for the two larger sample sizes.
For T = 364 there are no statistically significant differences between the performance of the
three methods: CVA seems to suffer more from few very large errors (using the root mean
square errors the CVA results are worse for T = 364 in comparison; if one uses the 95%
percentiles CVA performs best also for the smallest sample size). This results in a standard
error over the replications of the mean absolute error for T = 364 of 0.18 for normally
distributed innovations and 3.4 for t-distributed innovations. The long AR models are
clearly worse than the two other approaches. This happens even if we are still far from
using a full year as the lag length.

With regard to the unit root tests we investigate results for the tests of the hypotheses
H0 : cm = 1 versus H1 : cm = 0 at all frequencies 2πm/364, m = 0, ..., 363. The data
generating process features unit roots with cm = 1 at the seven frequencies 2πk/7, k =
0, ..., 6. Therefore the tests should not reject at these frequencies, but should reject at
all others.

Consequently we compare the minimum of the non-rejection rates for the seven unit
roots (called empirical size below) as well as the maximum of the non-rejection rates for
the non-unit root frequencies ωj = 2π j/364, j �= 52k, k = 0, 1, 2, ..., 6 (called empirical
power below).

For the larger sample sizes the empirical size is practically 95% while the empirical
power is 100%. For T = 364 we obtain an empirical size of 90% for the normal distribution
and 91.5% for the t-distribution. The worst empirical power equals 89.3% (normal) and
87.6% (t-distribution). Hence even for one year of data the discrimination properties of the
unit root tests are good and we do not observe differences between the normal distribution
for the innovations and the heavy tailed t-distribution.

Finally we compare the empirical size and power of the tests for the various unit roots
for smaller sample sizes T ∈ {104, 208, 312, 416, 520}. For the experiments we consider
univariate GARCH models of the form

εt,i = ht,iηt,i, h2
t,i = 1 + αε2

t−1,i + βh2
t−1,i, i = 1, .., 4,

where (ηt,i)t∈Z is independent and identically standard normally distributed. α, β ≥ 0 are
reals. It follows that the component processes (εt,i)t∈Z show conditional heteroskedasticity,
the persistence of which is governed by α + β. Here 0 < α + β < 1 implies stationarity
while α+ β = 1 implies persistent conditional heteroskedasticity usually termed I-GARCH.
We include five different processes for the innovations:

1. norm: α = β = 0, no GARCH effects
2. G1: α = 0.8, β = 0.1
3. IG1: α = 0.8, β = 0.2
4. IG2: α = 0.5, β = 0.5
5. IG3: α = 0.2, β = 0.8

For the five different sample sizes 1000 replications of the estimates using the CVA

algorithm are obtained. For each estimate we calculate the test statistic for testing H0 : cm =
1 versus H0 : cm = 0 for m = 0, ..., 363 corresponding to the unit roots zm = exp(2πim/364).
This set of unit roots contains all seven unit roots exp(2πik/7), k = 0, ..., 6.

Figure 5 provides the mean over the 1000 replications of the test statistics Λ(1) for
zj, j = 0, ..., 363 and the five sample sizes. It can be seen that the test Λ(1) is able to pinpoint
the seven unit roots present in the data generating process fairly accurately even for sample
size T = 104. The zoom on the region around the unit root frequency 2π/7 shows that the
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mean value is larger than the cutoff value of the test (the dashed horizontal line) for the
adjacent frequency 2π 53

364 already for T = 312.

(a) Mean of unit root test statistics. (b) Zoom of mean unit root tests.
Figure 5. Results of the unit root tests for all seasonal unit roots jointly.

Table 5 lists the minimum of the achieved percentages of non-rejections of the test
statistic for the seven unit root frequencies as well as the maximum over all non-unit root
frequencies. It can be seen that for all GARCH models for T = 312 the test rejects unit
roots at all non unit root frequencies every time, while the empirical size is close to the
nominal 5%. For small sample sizes the tests are slightly undersized while for T = 208 a
slight oversizing is observed. The two larger sample sizes are omitted as the tests perform
perfectly there.

Table 5. Percentage of accept (minimum for all unit root frequencies) and reject (maximum for non
unit root frequencies) of Λ(1) test statistic.

Unit Root Frequencies Non Unit Root Frequencies

T norm G1 IG1 IG2 IG3 norm G1 IG1 IG2 IG3

104 0.94 0.89 0.87 0.88 0.87 0.87 0.82 0.79 0.82 0.79
208 0.98 0.96 0.95 0.94 0.96 0.78 0.75 0.72 0.72 0.69
312 0.97 0.96 0.96 0.95 0.95 0.00 0.00 0.00 0.00 0.00

It follows from the examples presented in this subsection that the test is robust also
in small samples with respect to heavy tailed distributions of the innovations (subject to
the assumptions). Furthermore also a remarkable robustness with respect to GARCH-type
conditional heteroskedasticity is observed.

8. Application

In this section we apply CVA to the modeling of electricity consumption using a data set
from [36]. The dataset contains hourly consumption data (in megawatts) from a number of
US regions, scraped from the webpage of PJM Interconnection LLC, a regional transmission
organization. The number of regions have changed over time, thus the data set contains
many missing values. It also contains data aggregated into regions called east and west,
which are not used subsequently.

In order to avoid problems with missing values, we restrict the analysis to four regions,
for which data over the same time period is available: American Electric Power (AEP; in
the following printed in blue), the Dayton Power and Light Company (DAYTON; black),
Dominion Virginia Power (DOM; red) and Duquesne Light Co. (DUQ; green). We use
data from 1 May 2005 until 31 July 2018. In this period only 3 data points are missing for
the four regions and their imputation is handled by interpolation of the corresponding
previous values. One observation in this sample is an obvious outlier which is corrected
for analogously.
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The data is split into an estimation sample covering observations up to the end of 2016
(102,291 observations on 4263 days) and a validation sample containing data in 2017 and
2018 (13,845 observations on 577 days). Data is equally sampled, but contains two hour
segments when switching from winter to summer time or back. Table 6 contains some
summary statistics.

Table 6. Summary of data sets.

Region
Daily Obs. (4263 est., 577 val.) Hourly Obs. (102,291 est., 13,845 val.)

Mean Mean(log) Std.(log) AIC BIC Mean(log) Std.(log) AIC BIC

AEP 371,844 12.82 0.127 43 12 9.63 0.168 782 532
DAYTON 48,897 10.79 0.144 43 3 7.60 0.193 772 531
DOM 262,727 12.47 0.158 17 3 9.28 0.215 795 554
DUQ 39,837 10.58 0.130 23 7 7.40 0.177 800 529

Figure 6 provides an overview of the data: Panel (a) shows the full data on an hourly
basis, while (b) presents aggregation to daily frequency. Panel (c) zooms in on a two
year stretch of daily consumption. Panel (d) finally provides hourly data for the first
month in the validation data. The figures clearly document strong daily, weekly and yearly
patterns. From these figures it appears that these seasonal fluctuations are somewhat
regular with changes throughout time. It is hence not clear whether a fixed seasonal pattern
is appropriate. Also note that the sampling frequency is on an hourly basis such that a year
roughly covers 8760 observations.

(a) Full hourly data (b) Log of daily consumption on estimation set

(c) Log of daily consumption from 2010 to 2012
(d) Log of hourly consumption on first month

of validation set
Figure 6. Electricity consumption data.

In the following we estimate (on the estimation part) and compare (on the validation
part) a number of different models, first for the full hourly data set and afterwards for
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the aggregated daily data. As a benchmark we will use univariate AR models including
deterministic seasonal patterns for daily, weekly and yearly variations. Subsequently we
estimate models using CVA including different sets of such seasonal patterns.

First in the analysis using dummy variables fixed periodic patterns have been es-
timated. We model the natural logarithm of consumption (to reduce problems due to
heteroskedasticity) and include dummies for weekdays, hours and sine and cosine terms
corresponding to the first 20 Fourier frequencies with respect to annual periodicity. The
corresponding results can be viewed in Figure 7. It is obvious that there is quite some
periodic variation. Also the four data sets show very similar patterns as expected.

After the extraction of these deterministic terms the next step is univariate autoregres-
sive (AR) modeling. Figure 8 shows the BIC values of AR models of lag lengths zero to 800
for the four series as well as the BIC of a multivariate AR model for the same number of
lags. The chosen values are given in Table 6.

(a) Yearly fluctuation (b) Weekly fluctuation (c) Daily fluctuation
Figure 7. Periodic patterns from dummy variables.

Figure 8. BIC values for univariate models and multivariate model (dashed line; divided by four
to fit).

The BIC curve is extremely flat for the univariate models. Noticeable drops in BIC
occur around lag 24 (one day), 144 (six days), 168 (one week), 336 (two weeks), 504 (three
weeks). BIC selects large lag lengths from 529 (DUQ) up to 554 (DOM). AIC selects lag
lengths close to the maximum allowed with a minimum at 772 lags. The BIC pattern of
the multivariate model differs in that the two drops at two and three weeks are missing.
Instead, the optimal BIC value is obtained at lag 194, well below the optimal lag lengths in
the univariate cases. AIC here opts for lag length 531, just over 22 days.

Subsequently CVA is applied with f = k̂BIC, p = k̂AIC as estimated for the multivariate
model. This differs from the usual recommendation of f = p = 2k̂AIC in order to avoid
numerical problems with huge matrices. The order is chosen according to SVC, resulting
in n̂ = 240. The corresponding model is termed Mod 1 in the following. Note that this
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configuration of f , n̂ does not fulfill the requirements of our asymptotic theory. The bound
f ≥ n ensures that the matrix O f has full column rank. Generically this will be the case
for f s ≥ n leading to a less restrictive assumption. In practice too low values of f will be
detected by n̂ estimated close to the maximum, which is not the case here.

As a second model we only use weekday dummies but neglect the other deterministics.
Again AIC (k̂AIC = 531) and BIC (k̂BIC = 195) are used to determine the optimal lag length
in the multivariate AR model. The corresponding CVA estimated model uses n̂ = 245
according to SVC, resulting in Mod 2.

The third model uses only a constant as deterministic term. Again similar AIC (555)
and BIC (195) values are selected. A state space model, Mod 3, using CVA is estimated with
n̂ = 209.

Figure 9 provides information on the results. Panel (a) shows the coefficients of the
univariate AR models. It can be seen that lags around one day and one to three weeks play
the biggest role for all four datasets. Panel (b) shows that the multivariate models lead to
better one step ahead predictions in terms of the root mean square error (RMSE). Mod 1

and Mod 2 show practically equivalent out of sample prediction error for all four data sets,
while Mod 3 delivers the best out of sample fit for all four regions.

(a) AR coefficients (b) RMSE on validation data set
Figure 9. Results for the hourly datasets.

In particular in financial applications data of high sampling frequency shows per-
sistent behaviour, also in terms of conditional heteroskedasticity, as well as heavy tailed
distributions of the innovations. For our data sets Figure 10 below provides some infor-
mation in this respect for the residuals according to Mod 3. Panel (a) provides a plot of
the residuals in the year 2018 (contained in the validation period). It can be seen that
large deviations occur occasionally, while else residuals vary in a tight band around 0.
The kernel density estimates for the normalized (to unit variance) residuals on the full
validation data set in panel (b) show the typical heavy tailed distributions. Panel (c) con-
tains an ACF plot for the four regions again calculated using the full validation sample. It
demonstrates that the model successfully eliminates all autocorrelations with only a few
ACF values occurring outside the confidence interval. Panel (d) provides the ACF plot for
the squared innovations to examine GARCH-type effects. While GARCH-effects are clearly
visible, the ACF drops to zero fast with occasional positive values (except maybe for the
Duquesne data).

Applying the eigenvalue based test Λ(1) for c = 1 and all Fourier frequencies ωj =
2π j/(365 ∗ 24) we find that for Mod 2 and Mod 3 the largest p-value is obtained for ω365
corresponding to a period length of one day with 0.0187 for Mod 2 (test statistic 6.6) and
0.02 for Mod 3 (with a statistic of 6.5). This implies that the unit root at frequency ω365 is
not rejected for a significance level of 1%, but is rejected for 5%. All other unit roots are
rejected at every usual significance level. For Mod 1 the test statistic for ω365 equals 41.2
corresponding to a p-value of practically 0. This implies that on top of a deterministic
daily pattern the series show strong persistence at the daily period. Excluding the hourly
dummies pulls the roots closest to ω365 closer to the unit circle resulting in insignificant

136



Entropy 2021, 23, 436

unit root tests and improves the one step ahead forecasts. Including the dummies weakens
the evidence of a unit root while leading to worse predictions.

The analysis is repeated with data aggregated to daily sampling frequency. The
aggregation reduces the required lag lengths, as is visible from Table 6 in the univariate case,
and hence we use CVA with the recommended f = p = 2k̂AIC. Beside the univariate models,
in this case also a naive model of predicting the consumption for today as yesterday’s
consumption is used. Three multivariate models are estimated: Mod 1 contains weekday
dummies and sine and cosine terms for the first twenty Fourier frequencies corresponding
to a period of one year. Mod 2 only contains the weekday dummies, while Mod 3 only uses
the constant. Figure 11 provides the out-of-sample RMSE for one day ahead predictions
(panel (a)) and seven days ahead predictions (panel (b)).

(a) Residuals for 2018.
(b) Kernel density estimate for normalized

residuals. Blue dashed line refers to standard
normal distribution.

(c) ACF of residuals. (d) ACF of squared residuals.
Figure 10. Residual analysis.

(a) RMSE of one day ahead predictions (b) RMSE of seven day ahead predictions
Figure 11. Results for the hourly datasets.
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It can be seen that both Mod 1 and Mod 2 beat the univariate AR models in terms
of one step ahead prediction error, while Mod 3 performs better for seven days ahead
prediction. Mod 1 performs on par with Mod 2 for one step ahead prediction but performs
better in predicting seven steps ahead. In Figure 12 poles and zeros for the three estimated
state space models are plotted. Here the poles (marked with ‘x’) are the eigenvalues of
the matrix A. These are the inverses of the determinantal roots of the autoregressive
matrix polynomial in the equivalent VARMA representation. The zeros are the inverses
of zeros of the determinant of the MA polynomial. We can see that for Mod 3 with only a
constant, poles close to 2π j/7, j = 1, ..., 6 arise to capture the weekly pattern. The other two
models only show one pole close to the unit circle, a real pole of almost z = 1. The pole
corresponding to Mod 1 is closer to the unit circle than the one for Mod 2 (see (b)).

For Mod 3 we obtain p-values for the tests of three complex unit roots of 0.05 (ω =
2π/7), 0.165 (4π/7) and 0.01 (6π/7), which are hence all not statistically significant for
significance level α = 0.01. The corresponding test for z = 1 shows a p-value of 0.004.
This provides evidence against the null hypothesis of the root being present. For Mod 1 the
p-value for the test of z = 1 is 0.28 and hence we cannot reject the null. Mod 2 provides a
p-value of 0.023 and hence weak evidence for the presence of the unit root. This can be
seen from the distance of the nearest pole from the point z = 1 in Figure 12.

(a) Poles and zeros of the three models. (b) Zoom around z = 1.

Figure 12. Poles (x) and zeros (o) of the transfer functions corresponding to the three models: Mod 1
(red), Mod 2 (blue), Mod 3 (magenta).

Jointly this indicates that the location and strength of persistence due to the estimated
roots is influenced by the presence of deterministic terms: if the deterministic terms are
not included in the model, the cyclical patterns are generated by poles situated close to the
unit circle.

The decision whether on top of the deterministic seasonality unit roots exist, is not
easy in all cases: for the daily data the locations of the poles indicate that deterministic
seasonality is enough to capture weekly fluctuations while a unit root at z = 1 appears to
be needed to capture yearly variations. For hourly data there is evidence that the daily
cycle is best captured with a unit root at frequency ω365. This leads to the best predictive
fit. Finally note that temporal aggregation from hourly data to daily data implies that the
frequency ω365 for hourly data aliases to the frequency ω = 0 in the daily data. Therefore
the higher evidence of a unit root at z = 1 found in daily data might be a consequence of
the unit root at frequency ω365 found for hourly data, compare [37].

The system matrix estimates as well as the evidence in support of unit roots at ω365
for hourly data and z = 1 for daily data that we obtain from the CVA modeling can be taken
as starting points in subsequent quasi maximum likelihood estimation.

9. Conclusions

In this paper the asymptotic properties of CVA estimators for seasonally integrated
unit root processes are investigated. The main results can be summarized as follows:
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• CVA provides consistent estimators for long-run and short-run dynamics without
knowledge of the location and number of unit roots. Hence the algorithm is robust
with respect to the presence of trending components at frequency zero as well as at
the other seasonal unit root frequencies.

• The singular values calculated in the RRR step reveal information on the total number
of unit roots. The distance of the singular values to one can be used to construct a
consistent estimator of this quantity.

• The eigenvalues of Â can be used in order to test for the number of common trends.
Under the null hypothesis these tests are asymptotically equivalent to the correspond-
ing tests using the true state, making the derivation of asymptotic results and the
simulation of the test distribution simple.

• An analogous statement holds for the Johansen trace test in the I(1) case and anal-
ogous tests in the MFI(1) case calculated on the basis of the estimated state in the
restrictive setting of n ≤ s. Under the null hypothesis these tests reject and accept
asymptotically jointly with the corresponding tests calculated using the true state.

• From the simulation exercises we conclude that CVA performs best when the dgp is
of the more general VARMA type, the process dimension is moderate to large and
the sample size is small. Then it is superior to the likelihood-based procedures based
on VAR approximations in terms of the estimation performance and the size and
power of Λ, the test developed from CVA. For higher sample sizes the likelihood-based
procedures are clearly superior when it comes to the size of the corresponding tests,
whereas Λ remains the best test choice in terms of empirical power. The estimation
performance is about equal for all procedures when the sample size is high with slight
advantages for the likelihood-based procedures.

• The simulations also demonstrate that the unit root test results are robust with respect
to the distribution of the innovation sequence as well as some forms of conditional
heteroskedasticity of the GARCH-type.

Because of the promising performance of CVA and in particular its robustness it can be
recommended as a simple way to extract information on the number of common trends
from the estimated matrix of transition dynamics. This information can be used in order to
reduce the uncertainty in a subsequent likelihood ratio analysis where quasi maximum
likelihood estimates can be obtained starting from the CVA estimates. Since the CVA estimates
can be obtained for a range of orders numerically fast they are seen as a valuable starting
point for the empirical modeling of time series potentially including seasonal cointegration.
Moreover they can also be used in situations where the number of seasons is large or even
unclear as in hourly data sets as demonstrated in the case study.
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Appendix A. Supporting Material

Appendix A.1. Complex Valued Canonical Form

Additionally to the real valued canonical form (2) we will also use the corresponding
complex valued representation obtained by transforming each block corresponding to unit
root zj = cos(ωj) + i sin(ωj) with the transformation matrix

Tj =

[
Icj iIcj

Icj −iIcj

]

leading to the triple of system matrices in the j-th block as:

Aj,C =

[
zj Icj 0

0 zj Icj

]
, Kj,C =

[
Kj,C
Kj,C

]
, Cj,C =

[
Cj,C/2 Cj,C/2

]
,

such that

xt+1,j,C = zjxt,j,C + Kj,Cεt, xt,j = T −1
j

[
xt,j,C
xt,j,C

]
.

Lemma A1. Let xt = [x′
t,0, x′

t,1, . . . , x′
t,S/2, x′

t,•]
′ where xt,j is generated according to xt+1,j =

Ajxt,j + Kjεt, t ∈ N with Aj as in (2) and Kj = [K′
j,R, K′

j,I ]
′ ∈ Rδjcj×s using iid white noise

process (εt)t∈N where x0,j is deterministic. Further let (xt,•)t∈N denote the stationary solution to
the equation xt+1,• = A•xt,• + K•εt such that M• = Ext,•x′

t,• > 0.
(I) Then using QT =

√
(log log T)/T for ut = ∑

q
i=0 ϕiεt+i for arbitrary q ∈ N, q < ∞, and

coefficients ϕi, i = 0, ..., q we have

〈xt,•, ut〉 = O(QT) , 〈ut−j, ut〉 −Eut−ju′
t = O(QT),

〈xt,j, xt,•〉 = O(log T) , 〈xt,j, ut〉 = O(log T)
〈xt,j, xt,k〉/T = O(log log T) , j, k = 0, ..., S/2.

If (εt)t∈Z only fulfills Assumptions 1 then the order bounds hold in probability rather than almost
surely.
(II) Furthermore for 0 < j, k < S/2

〈xt,j,C, εt〉 d→ 1
2

∫ 1
0 WjdB′

j,C =: Mj,

〈xt,j,C, xt,k,C〉/T d→
{

1
2

∫ 1
0 WjW ′

j := Nj , j = k,

0 , j �= k

〈xt,j, εt〉 d→
[

1
2

∫ 1
0 (Wj,RdB′

j,R + Wj,I dB′
j,I)

1
2

∫ 1
0 (Wj,I dB′

j,R − Wj,RdB′
j,I)

]
,

〈xt,k , xt,j〉/T d→

⎧⎪⎪⎨⎪⎪⎩
1
2

[ ∫ 1
0 (Wk,RW ′

k,R + Wk,IW ′
k,I)

∫ 1
0 (Wk,RW ′

k,I − Wk,IW ′
k,R)

−
∫ 1

0 (Wk,RW ′
k,I − Wk,IW ′

k,R)
∫ 1

0 (Wk,RW ′
k,R + Wk,IW ′

k,I)

]
, j = k

0 , j �= k

where Wj = Wj,R + iWj,I = Kj,CBj,C, Kj,C = Kj,R + iKj,I , Bj,C = Bj,R + iBj,I and Bj,R, Bj,I are
two independent Brownian motions with covariance matrix Ω. For j = 0 and j = S/2 the results
hold analogously:

〈xt,0, εt〉 d→
∫ 1

0
W0,RdW ′

0,R , 〈xt,0, xt,0〉/T d→
∫ 1

0
W0,RW ′

0,R,

〈xt,S/2, εt〉 d→
∫ 1

0
WS/2,RdW ′

S/2,R , 〈xt,S/2, xt,S/2〉/T d→
∫ 1

0
WS/2,RW ′

S/2,R.

Proof. Most evaluations in (I) are standard, see for example Lemma 4 in [38].
(II) follows from the results in Section 4 of [2] for the complex valued representations or [39]
for the corresponding real case.
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Appendix A.2. Perturbation of Eigendecompositions

Lemma A2 (Rayleigh-Schrödinger expansion). Let Ât = A − δAt where ‖δAt‖ → 0 and
where A = UΛU−1 ∈ Rn×n, Λ = diag(λ1 Ic1 , ..., λJ IcJ ), ∑J

j=1 cj = n is diagonalizable. U =

[U1, ..., UJ ] ∈ Cn×n is a nonsingular matrix such that for U−1 = [V1, ..., VJ ]
′ we have V′

j Uj = Icj .
Then for each circle B(λj, δ) around λj not containing any other eigenvalue of A there exist

from some t onwards

• cj eigenvalues of Ât in the circle B(λj, δ) around λj

• a basis Ût,j for the space spanned by the eigenspaces to these cj eigenvalues such that V′
j Ût,j =

Icj ,
• a sequence of matrices B̂t,j = V′

j ÂtÛt,j ∈ Ccj×cj .

Then Ût,j = ∑∞
k=0 Zk, B̂t,j = ∑∞

k=0 Ck where

Z0 = Uj , C0 = λj Icj ,

Zk = Σ(δAtZk−1 +
k−1

∑
i=1

Zk−iCi) , Ck = −V′
j δAtZk−1.

Here Σ = U(Λ − Inλj)
+U−1 where diag(s1, ..., sn)+ = diag(s+1 , ..., s+n ) and x+ = 1/x, x �= 0

and zero else, that is (Λ − Inλj)
+ denotes a quasi-inverse.

Furthermore for ρ = ‖δAt‖ < 1 we obtain: ‖Ck‖ ≤ μCρk, ‖Zk‖ ≤ μZρk, k ≥ 0.

The results follow directly from Section 2.9 of [23], see in particular Proposition 2.9.1
and the discussion below this proposition. Further note that the results hold for each root
separately and hence the restriction �j = 1 needs to hold only for the investigated root for
the results to apply. Finally note that a second order approximation Ût,j = Z0 + Z1 + Z2

and B̂t,j = C0 + C1 + C2 is accurate to the order o(‖δAt‖2).

Appendix A.3. Random Transformation of Systems

Lemma A3. Let the assumptions of Theorem 1 hold and use the same notation as given there. Let
(Ã, C̃, K̃) denote a sequence of systems converging a.s. to (A, C,K) such that (Ã − A)D−1

x =
O((log T)a),

√
T(K̃−K) = O((log T)a), (C̃ − C)D−1

x = O((log T)a) and let A0 = S0AS−1
0 =

diag(A0,11, A0,22), K0 = S0K, C0 = CS−1
0 . Further let

ST =

[
ST,11 ST,12

0 ST,22

]
→ S0

such that (ST − S0)D−1
x = O((log T)a). Let ΔS = (ST − S0)D−1

x , ΔA = (Ã − A)D−1
x and

denote the sequence of transformed systems as (Â, Ĉ, K̂) = (STÃS−1
T , C̃S−1

T , STK̃). Let the block
entries of S0 be denoted as Sij and the blocks of ΔS be denoted as ΔSij. Then:

T(Â11 −A0,11) = (ΔS11A11 −A0,11ΔS11 + S11ΔA11 + S12ΔA21)S−1
11 + o(1),

√
T(Â12 −A0,12) = (S11ΔA12 + S12ΔA22)S−1

22 + ΔS12S−1
22 A0,22 −A0,11ΔS12S−1

22 + o(1),

T(Â21 −A0,21) = S22ΔA21S−1
11 + o(1),

√
T(Â22 −A0,22) = ΔS22S−1

22 A0,22 + S22ΔA22S−1
22 −A0,22ΔS22S−1

22 + o(1),
√

T(K̂ − K0) =

[
ΔS12K2 + S11

√
T(K̃1 −K1) + S12

√
T(K̃2 −K2)

ΔS22K2 + S22
√

T(K̃2 −K2)

]
+ o(1),

(Ĉ − C0)D−1
x = (C̃ − C)D−1

x

[
S−1

11 0
0 S−1

22

]
− C0

[
ΔS11S−1

11 ΔS12S−1
22

0 ΔS22S−1
22

]
+ o(1).

Proof. The proof follows from straightforward computations using the various orders of
convergence by neglecting higher order terms.
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Appendix B. Reduced Rank Regression with Integrated Variables

The main results of this paper are based on a more general result documented in [24]
(henceforth called BRRR). BRRR uses a slightly different setting and in particular a different
dgp. The following lemma provides the essence of the results of BRRR that will be used
below.

Lemma A4. Let (yt)t∈N, (zr
t)t∈N, (zu

t )t∈N, yt ∈ Rs, zr
t ∈ Rm, zu

t ∈ Rl be three processes re-
lated via

yt = brzr
t + buzu

t + ut

where the zero mean stationary process (ut)t∈N is such that Eut(zr
t)

′ = 0,Eut(zu
t )

′ = 0,Eutu′
t >

0 and where n = rank(br) < min(s, m), that is br is of reduced rank.
Further assume that there exist square nonsingular matrices Ty ∈ Rs×s, Tr ∈ Rm×m, Tu ∈

Rn×n such that

ỹt = Tyyt = (TybrT −1
r )(Trzr

t) + (TybrT −1
r )(Trzr

t) + Tyut = b̃r z̃t + b̃uz̃u
t + ũt

such that with c• = n − c we have

b̃r =

[
Ic 0 0
0 0 b̃r,•

]
, b̃r,• = Õ•Γ′

•, Õ• ∈ R(s−c)×c• , Γ• ∈ Rm•×c• .

Here the partitioning corresponds to z̃′t = [z̃′t,1, z̃′t,2, z̃′t,•] where z̃t,1 ∈ Rc, z̃t,2 ∈ Rm−c−m• are
MFI(1) processes and (z̃t,•)t∈N, z̃t,• ∈ Rm• is stationary, z̃u

t = [(z̃u
t,1)

′, (z̃u
t,•)

′]′ where (z̃u
t,1)t∈N is a

MFI(1) process and (z̃u
t,•)t∈N is stationary and where the following bounds hold (z̃t,: = [z̃′t,1, z̃′t,2]

′):

〈ũt, ũt〉 = O(1) , 〈ũt, z̃t,•〉 = O(QT) , 〈ũt, z̃u
t,•〉 = O(QT),

〈ũt, ũt〉 −Eũtũ′
t = O(QT) , 〈ũt, z̃t,:〉 = O(log T) , 〈ũt, z̃u

t,1〉 = O(log T),

M̂• = 〈
(

z̃t,•
z̃u

t,•

)
,
(

z̃t,•
z̃u

t,•

)
〉 , M̂−1

• = O(1) , M̂• = O(1), M• > 0

M̂1 = 〈
(

z̃t,:
z̃u

t,1

)
,
(

z̃t,:
z̃u

t,1

)
〉 , M̂1/T = O(log log T) , (M̂1)

−1 = O(Q2
T),

〈
(

z̃t,•
z̃u

t,•

)
,
(

z̃t,:
z̃u

t,1

)
〉 = O(log T) , M̂• − M• = O(QT).

Then the reduced rank regression estimator b̂RRR = [b̂r,RRR, b̂u,RRR] maximizing the Gaussian
likelihood subject to rank(βr) = n = c + c• is consistent: b̂RRR − b = O((log T)a/

√
T) for

some a < ∞. Furthermore b̃RRR,r − b̃r = [O((log T)a/T), O((log T)a/
√

T)] with b̃RRR,r =
Tyb̂RRR,rT −1

r , where the second block has m• columns and corresponds to the stationary components
of the regressor vector.

Proof. The theorem slightly extends the results of BRRR by adding high level assumptions
instead of low level assumptions on the data generating process. The proof hence consists
in adjusting the proof in BRRR. In the following we only indicate where arguments in
BRRR need to be replaced. A detailed proof would replicate much of the arguments in
BRRR and hence is omitted.

The representation of Theorem 3.1 in BRRR is contained in the assumptions. Then
consistency follows from examining the proof of the first part of Theorem 3.2 in BRRR:
essential for the norm bounds are Lemma A.1 (I) and (III). The norm bounds stated under
point (I) are directly assumed in this lemma except for the filtered version using nt in place
of xt. Instead, here the results for nt which are needed in the proof of Theorem 3.2 of BRRR
are directly assumed. (III) then follows. Lemmas A.3–A.5 in BRRR do not depend on
the assumptions on the various processes and hence continue to hold. Then the proof for
consistency in Appendix A.3.1 of BRRR only uses these norm bounds referring also to [38]
(which is also only based on the norm bounds contained in the assumptions of this lemma)
and hence continues to hold.
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Appendix C. Proofs of the Theorems

Appendix C.1. Proof of Theorem 1

For proving consistency of the transfer function estimators it is sufficient to find
a (possibly) random matrix S̃T such that the least squares estimates (Ã, C̃, K̃) of one
representation (A, C,K) of the true system obtained using x̃t := S̃Tx̂t converges (a.s.) to
(A, C, K). This will be done in two steps: First a particular basis (which is not realizable in
practice) will be chosen such that K̃p −Kp = o(1) sufficiently fast such that in the second
step the regressions in the system equations based on the resulting state estimator x̃t are
consistent. The derivation of the first step will also provide an approximation of the error
term which can be used in order to derive the asymptotic distribution.

Appendix C.1.1. Proof of Theorem 1 (I)

The central step in CVA is the solution to the RRR problem. The following proof heavily
draws on the results contained in [24] (henceforth called BRRR) collected in Lemma A4
for easier reference. As in BRRR, in order to derive the asymptotic properties we first
transform the vectors in order to separate stationary and nonstationary terms. In order to
achieve the separation let Zt = [y′

t−1, y′
t−2, ..., y′

t−S]
′ ∈ RsS. Then for p = kS we obtain

Y−
t,p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yt−1
yt−2

...
yt−S

yt−S−1
...

yt−kS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
Zt

Zt−S
...

Zt−(k−1)S

⎞⎟⎟⎟⎠.

It is easy to see that for each j the process (ZrS−j)r∈N is an I(1) process. Moreover the strict
minimum-phase condition for (A◦, C◦, K◦) implies that also for the system corresponding
to (ZrS−j)r∈N the strict minimum-phase condition holds.

Define the transformation TS := [OS,1, OS,⊥]′ where OS,1 ∈ RsS×c denotes the matrix
containing the first c columns of OS for the system (A◦, C◦,K◦) in the canonical form.
Further OS,⊥ is a block column of an orthonormal matrix such that O′

S,⊥OS,1 = 0. Then
the argument of [20] shows that in TSZt the first c components are integrated while the
remaining sS − c components are stationary. Then consider for p = kS < t ≤ T − f + 1
(using O†

S,1 = (O′
S,1OS,1)

−1O′
S,1)

z̃t,p :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O†
S,1OS(xt − Āp

◦xt−p)

O′
S,⊥Zt

O†
S,1(Zt − Zt−S)

O′
S,⊥Zt−S

...
O†

S,1(Zt−(k−2)S − Zt−(k−1)S)

O′
S,⊥Zt−(k−1)S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ỹt :=

[
O†

f ,1
O′

f ,⊥

]
Y+

t, f . (A1)

Here O f ,⊥ is a matrix such that O′
f ,⊥O f ,1 = 0,O′

f ,⊥O f ,⊥ = I. Obviously z̃t,p is a linear
transformation of Y−

t,p and ỹt of Y+
t, f . It can be shown that the linear transformation is

nonsingular such that there is a one-one relation between Y−
t,p and z̃t,p. In z̃t,p and ỹt only

the first c components are unit root processes, the remaining components being stationary.
For p �= kS the final p − kS block rows of z̃t,p are defined as yt−(k−1)S−j − yt−kS−j, j =

1, ..., p − kS. Clearly also these components are stationary.
Partition z̃t,p = [z̃′t,1, z̃′t,•]

′, z̃t,1 ∈ Rc, into its first c and the remaining coordinates
(omitting the subscript p on the right hand side for notational convenience). Similarly
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partition ỹt = [ỹ′
t,1, ỹ′

t,•]
′, ỹt,1 ∈ Rc. Using these transformed matrices, Y+

t, f = β1Y−
t,p + N+

t, f
can be written as

ỹt = b̃1z̃t,p + Ñ+
t, f ,p =

[
ỹt,1
ỹt,•

]
=

[
Ic 0
0 b̃•,p

][
z̃t,1
z̃t,•

]
+ Õ f Āp

◦xt−p +

[
ε̃t,1
ε̃t,•

]
(A2)

where

b̃1 =

[
Ic 0
0 b̃•,p

]
, b̃•,p = Eỹt,• z̃′t,•

(
Ez̃t,• z̃′t,•

)−1
= O•,pΓ′

•,p, b̃1 = OpΓ′
p

and where b̃•,p is of rank n − c providing a representation of the form given in Theorem 3.1
of BRRR except that the error term Ñ+

t, f ,p (defined by the equation) is not white. Finally (A2)

also defines the sub blocks ε̃t,i of Ñ+
t, f ,p which are hence linear combinations of E+

t, f and
therefore typically MA(f) processes. Note that z̃t,1, z̃t,•, ỹt,• depend on the choice of f and p
which is not reflected in the notation.

Here
(
Ez̃t,• z̃′t,•

)−1 and Eỹt,• z̃′t,• are worth a remark: for p = kS the results of [20]
can be directly used to obtain upper and lower bounds for the norms of these matrices
uniformly in k ∈ N. For p �= kS the additional rows in z̃t,• add entries to Eỹt,• z̃′t,• that
are of order O(λp) for some 0 < λ < 1 as yt − yt−S is a VARMA process. Similarly the
smallest eigenvalue of Ez̃t,• z̃′t,• can be bounded from below based on arguments for p = kS
following [20] which in turn refer to Theorem 6.6.10 of [22]. The additional terms for p �= kS
correspond to backward innovations with non-singular covariance matrix thus also leading
to a lower bound of the smallest eigenvalue uniformly in k. (The backward innovations
representation for a stationary VARMA process (yt)t∈Z equals yt = ∑∞

j=1 kb
j yt+j + εb

t and
can be obtained from the complex conjugate of the spectral density. Nonsingularity of
the spectral density implies that the backward innovation εb

t have nonsingular covariance
matrix. This implies a lower bound on the accuracy with which components of yt−(k−1)S−j
can be predicted based on yt−i, i ≤ (k − 1)S.)

Furthermore the strict minimum-phase assumption for the state space representation
(A◦, C◦,K◦) of the process (yt)t∈Z implies the strict minimum-phase assumption for the
sub-sampled process (ZkS+j)k∈Z. Thus the arguments of [20] show that [b̃•,p, 0] → b̃•,∞

where the norm of the difference is of order O(‖Āp
◦‖). The increase of p as a function of the

sample size jointly with the strict minimum-phase assumption implies that O(‖Āp
◦‖) =

o(T−1). This also implies that Õ f Āp
◦xt−p = op(T−1/2).

Correspondingly there exists a limiting decomposition b̃•,∞ = O•Γ′
• such that Γ′

•S• =
In−c where S• denotes a selector matrix whose columns contain the vectors of the canonical
basis of R∞. Since [K◦, (A◦ −K◦C◦)K◦, (A◦ −K◦C◦)2K◦, ..., (A◦ −K◦C◦)n−1K◦] is of full
row rank it can be assumed that S• only has nonzero entries in its first ns rows. Denoting
the submatrix of the first ps rows by Sp,2 then also [Γ′

•]1:pSp,2 = In−c where [.]1:p denotes
the first p block columns of a matrix. This fixes a unique decomposition of b̃• and hence
O• and Γ• do not depend on p. Convergence of b̃•,p to b̃• jointly with the lower bound
on p(T) then implies convergence of order o(T−1) of O•,p to O• and Γ′

•,p to [Γ′
•]1:p using

the decomposition of b̃•,p such that Γ′
•,pSp,2 = In−c. Correspondingly Op → O and

‖Γ′
p − [Γ′]1:p‖ → 0.

Therefore the reduced rank regression in the CVA procedure shows the same structure
as investigated in Lemma A4 with the differences that z̃t,2 and z̃u

t do not occur, and z̃t,•
has increasing size as a function of the sample size. The next lemma therefore extends the
results of BRRR to the RRR used in CVA:

In the following we will use a generic a ∈ N in statements like O((log T)a), not
necessarily the same in each occurrence. In this sense e.g., the product of two terms that
are O((log T)a) is again taken to be O((log T)a).
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Lemma A5. Let the assumptions of Theorem 1 hold where additionally (εt)t∈Z is iid. Introduce
the notation

D̃z = diag(T−1/2 Ic, Ips−c), D̃y = diag(T−1/2 Ic, I f s−c), D̃x = diag(T−1/2 Ic, In−c).

Let Ḡp denote a solution to

(D̃z〈z̃t,p, ỹt〉D̃y)(D̃y〈ỹt, ỹt〉D̃y)
−1(D̃y〈ỹt, z̃t,p〉D̃z)Ḡp = (D̃z〈z̃t,p, z̃t,p〉D̃z)ḠpR̄2

using the notation of (A1) where R̄2 → Θ2 = diag(Ic, Θ•) ∈ Rn×n and where Ḡp is normalized
such that Ḡ1,1,p = Ic, Ḡ′

•,2,pSp,2 = In−c for a selector matrix Sp,2. Further let

Γ̄p =

[
Ic 0
0 Γ̄•,p

]
, Γ̄′

•,pSp,2 = In−c

denote the solution to the decoupled problem where the stationary and the nonstationary subproblem
are separated:( 〈z̃t,1, ỹt,1〉〈ỹt,1, ỹt,1〉−1〈ỹt,1, z̃t,1〉Γ̄1,1,p

〈z̃t,•, ỹt,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, z̃t,•〉Γ̄•,p

)
=

( 〈z̃t,1, z̃t,1〉Γ̄1,1,pΘ̄1
〈z̃t,•, z̃t,•〉Γ̄•,pΘ̄•

)
.

(I) Then if f ≥ n fixed independent of T and p ≥ −d log T/ log ρ0, d > 1, p = o((log T)a) for
some a < ∞ the a.s. results of Lemma A.6 (I)-(III) and Lemma A.7 of [24] hold true for (log T)3

replaced by (log T)a for some integer a < ∞. In particular Ḡp − Γ̄p = O((log T)a/T1/2).
(II) Using the notation δGp := Ḡp − Γ̄p define

S̃T :=

[
Ic −

√
TδG′

•,1,p〈z̃t,•, z̃t,•〉Γ̄†
•,p

0 Ips−c

]
, Γ̄†

•,p := Γ̄•,p(Γ̄′
•,p〈z̃t,•, z̃t,•〉Γ̄•,p)

−1.

Then for Γ̃′
p := S̃T D̃−1

x Ḡ′
pD̃z and

Γ′ =
[

I 0
0 Γ′

•

]
we obtain Γ̃′

p − [Γ′]1:p = [O((log T)a/T), O((log T)a/T1/2)] where the partitioning corresponds
to the partitioning of z̃t,p into z̃t,1 and z̃t,•. Here Γ′

• denotes the right factor of b̃•,∞ = O•Γ′
• such

that [Γ′
•]1:pSp,2 = In−c holds.

(III) Let the assumptions of Theorem 1 hold. Then ẐT := Tvec
(
(Γ̃′

p − [Γ′]1:p)

[
Ic
0

])
converges in distribution.

Proof. (I) First consider the entries of the vectors ỹt,• and z̃t,• (see (A1)) more closely.
Since in

O′
f ,⊥Y+

t, f = O′
f ,⊥(O f ,•xt,• + E f E+

t, f )

the nonstationary directions are filtered by definition, ỹt,• is stationary and does not depend
on T.

Further, also z̃t,• is stationary for fixed p as the nonstationary directions are either
filtered by pre-multiplication with O′

S,⊥ or by yearly differencing Zt − Zt−S.
Therefore we obtain from stationary theory for fixed p = kS that

‖Eỹt,• z̃′t,•(Ez̃t,• z̃′t,•)
−1 − 〈ỹt,•, z̃t,•〉〈z̃t,•, z̃t,•〉−1‖ = o(1).

Here supp ‖(Ez̃t,• z̃′t,•)
−1‖ < ∞ has been discussed before. Now Eỹt,• z̃′t,•(Ez̃t,• z̃′t,•)

−1 =

β̃•,p + o(T−1/2) = O•,p[Γ′
•]1:p + o(T−1/2) where the o(T−1/2) term appears due to ne-

glecting Õ f Āpxt−p. It follows that det
[
(β̃•,pSp,2)

′(β̃•,pSp,2)
]
= det[O′

•,pO•,p] > 0 and
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hence ‖β̂•,p − β̃•,p‖Fr = o(1) implies limT→∞ det
[
(β̂•,pSp,2)

′(β̂•,pSp,2)
]
> 0 a.s. where

β̂•,p := 〈ỹt,•, z̃t,•〉〈z̃t,•, z̃t,•〉−1. Since Ô•,pΓ̄′
•,p − β̃•,p = o(1) due to consistency, also

lim
T→∞

det
[
(Ô•,pΓ̄′

•,pSp,2)
′(Ô•,pΓ̄′

•,pSp,2)
]
= lim

T→∞
det Ô′

•,pÔ•,p det(Γ̄′
•,pSp,2)

2 > 0 a.s.

Since Γ̄•,p − Γ•,p = o(1) due to the definition of Γ̄•,p and the continuity of the solution of the
eigenvalue problem it follows that Ô•,p −O•,p = o(1) and therefore lim supT det Ô′

•,pÔ•,p >

0. As in Lemma 6 of [40] it can be shown that Γ′
•,p − [Γ′

•]1:p = o(T−1) and O•,p =

O• + o(T−1) for the range of p given in Theorem 1 since these matrices correspond to
a stationary problem. Hence the chosen normalization of Γ̄•,p can be used a.s.

Next in order to obtain the convergence of Ḡ to Γ̄p, Lemma A.6 of BRRR is slightly
extended to the current situation (for details and notation see there). Lemma A.6 of BRRR
contains three parts: BRRR(I) gives bounds on the error in the matrices (with lT = log T)

δyz =

[ 1
T 〈ỹt,1, z̃t,1〉 1√

T
〈ỹt,1, z̃t,•〉

1√
T
〈ỹt,•, z̃t,1〉 〈ỹt,•, z̃t,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈ỹt,•, z̃t,•〉

]
=

[
O( 1

T la
T) O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
,

δyy =

[ 1
T 〈ỹt,1, ỹt,1〉 1√

T
〈ỹt,•, ỹt,•〉

1√
T
〈ỹt,•, ỹt,1〉 〈ỹt,•, ỹt,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈ỹt,•, ỹt,•〉

]
=

[
O( 1

T la
T) O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
,

δzz =

[ 1
T 〈z̃t,1, z̃t,1〉 1√

T
〈z̃t,1, z̃t,•〉

1√
T
〈z̃t,•, z̃t,1〉 〈z̃t,•, z̃t,•〉

]
−
[ 1

T 〈z̃t,1, z̃t,1〉 0
0 〈z̃t,•, z̃t,•〉

]
=

[
0 O( 1√

T
la
T)

O( 1√
T

la
T) 0

]
.

BRRR(II) deals with J = Q̄ − Φ̄ =

D̃z〈z̃t, ỹt〉D̃y(D̃y〈ỹt, ỹt〉D̃y)
−1D̃y〈ỹt, z̃t〉D̃z −

[
1
T 〈z̃t,1, z̃t,1〉 0

0 〈z̃t,•, ỹt,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, z̃t,•〉

]
and BRRR(III) shows that there exists a solution Ḡp converging to a solution Γ̄p of the
separated problem.

For showing the orders of convergence of δzz the arguments are unchanged except
for noting that in 〈z̃t,1, z̃t,•〉 the number of columns increases as a function of the sample
size. Since the a.s. bounds on the entries of this expression hold uniformly (as follows
straightforwardly from the arguments of Lemma A.1 of BRRR) this does not change the
arguments. With respect to δyz note that now ỹt = β̃1z̃t,p + ε̃t + Õ f Āpxt−p. Due to the
increase of p as a function of the sample size, Āp = o(T−1−ε) for small enough ε > 0
and therefore Õ f Āpxt−p = o(T−1/2−ε/2) since xt = o(T(1+ε)/2) (uniformly in 1 ≤ t ≤ T)
whether (xt)t∈Z is a unit root process or stationary. Hence 〈Õ f Āpxt−p, Õ f Āpxt−p〉 = o(1).
Further 〈Õ f Āpxt−p, ε̃t〉 = o(T−1/2) follows from 〈xt−p, ε̃t〉 = O(log T) (see Lemma A.1
(I)). This shows that the additional term is always of lower order and can be neglected.
The remaining arguments follow exactly as in the proof of Lemma A.6 of BRRR. The proof
of Lemma A.7 of BRRR only uses the order bounds derived above and hence follows
immediately. This shows (I).

(II) Using the definition of S̃T we obtain:

Γ̃′
p = S̃T D̃−1

x Ḡ′
pD̃z = S̃T

[
Ic

√
TδG′

•,1,p
δG′

1,2,p/
√

T Ḡ′
•,2,p

]

=

[
Ic − δG′

•,1,p〈z̃t,•, z̃t,•〉Γ̄†
•,pδG′

1,2,p

√
TδG′

•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†
•,pḠ′

•,2,p)

δG′
1,2,p/

√
T Ḡ′

•,2,p

]
.

From (I) and Lemma A.7 of BRRR δG•,1,p = O((log T)a/T1/2), δG1,2,p = O((log T)a/T1/2)

and Ḡ•,2,p − Γ̄•,p = o((log T)a/T1/2). Finally

δG′
•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†

•,pḠ′
•,2,p) = δG′

•,1,p(I − 〈z̃t,•, z̃t,•〉Γ̄†
•,p Γ̄′

•,p) + O((log T)a/T) = O((log T)a/T)
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as in the proof of Lemma A.7 of BRRR. Using Lemma A.5 (III) of BRRR with Ξ̂ f =

〈ỹt,•, ỹt,•〉−1/2 it follows that Γ̄′
•,p −Γ′

•,p = O((log T)aT−1/2). Since Ḡ•,2,p − Γ̄•,p = o((log T)a/
T1/2) the same rate of convergence holds for Ḡ′

•,2,p − Γ′
•,p = O((log T)a/T1/2). It follows

that Γ̃′
p − [Γ′]1:p = [O((log T)a/T), O((log T)a/T1/2)].

(III) From above we have

T(Γ̃′
p − [Γ′]1:p)

(
Ic
0

)
=

[
−(

√
TδG′

•,1,p〈z̃t,•, z̃t,•〉Γ̄†
•,p

√
TδG′

1,2,p)√
TδG′

1,2,p

]
+ oP(1). (A3)

Now from the proof of Lemma A.7 of BRRR we obtain

[
√

TδG•,1,p]
′ = ΞO•(I − Θ2

•)
−1Γ̄′

•,p + oP(1).

Furthermore using the expression given in Lemma A.7 of BRRR:

√
TδG1,2,p =

√
TZ−1

11 [δ1•
zz Γ•,pΘ2

• − J1,•Γ•,p](I − Θ2
•)

−1 + oP(1)

=
√

TZ−1
11 [δ1•

zz Γ•,p(Θ2
• − I) + [δ1,•

zz − J1,•]Γ•,p](I − Θ2
•)

−1 + oP(1)

= −Z−1
11 〈z̃t,1, xt,•〉 − Z−1

11

√
T[J1,• − δ1,•

zz ]Γ•,p(I − Θ2
•)

−1 + oP(1)

= −Z−1
11 〈z̃t,1, xt,•〉 − Z−1

11 Eε̃t,1 ε̃′t,•(Eỹt,•(ỹt,•)′)−1Eỹt,•x′
t,•(I − Θ2

•)
−1 + oP(1).

This shows the result.

The transformations in the representation lead to an estimator Ḡ taking the place of
K̂p. Using S̃T as defined in Lemma A5 the corresponding estimator Γ̃′

p = S̃T D̃−1
x Ḡ′

pD̃z

fulfills Γ̃′
p − Γ′

p = [O((log T)a/T), O((log T)a/
√

T)].
Based on this result let (A, C,K) denote the realization of the true transfer function

in the state basis corresponding to Γ′
p where Γ′

pSp = In and let (Ã, C̃, K̃) denote the
(unfeasible) CVA estimates using x̃t := Γ̃′

pz̃t,p. The next lemma then provides the main
ingredients for the rest of the proofs:

Lemma A6. Let the assumptions of Theorem 1 hold and define Dx := diag(IcT−1, In−cT−1/2).
Then there exists an integer a < ∞ such that

(Ã − A)D−1
x = O((log T)a), (C̃ − C)D−1

x = O((log T)a), (K̃ − K) = O((log T)a/T1/2).

Proof. First note that the regression of Y+
t, f onto Y−

t,p includes time points t = p + 1, ..., T −
f + 1 whereas for estimating the system matrices we can use x̂t, t = p + 1, ..., T + 1 and
yt, t = p + 1, ..., T. Thus in this proof we use 〈at, bt〉T

p+1 := T−1 ∑T
t=p+1 atb′t instead of

〈at, bt〉 = T−1 ∑
T− f+1
t=p+1 atb′t.

The following orders of convergence are straightforward to derive using the re-
sults of Lemma A1, Āp = o(T−1), (Γ̃′

p − [Γ′]1:p)D−1
z = O((log T)a) and x̃t − xt = (Γ̃′

p −
[Γ′]1:p)z̃t,p − Āpxt−p, t > p according to Lemma A5 and Lemma A1 for the range of p given
in Theorem 1:

〈εt, x̃t − xt〉T
p+1 = O(p(log T)a/T) , D̃z〈z̃t,p, x̃t − xt〉T

p+1 = O(p(log T)a/T1/2)

D̃z〈z̃t+1,p, x̃t − xt〉T
p+1 = O(p(log T)a/T1/2) , D̃x〈xt, x̃t − xt〉T

p+1 = O(p(log T)a/T1/2)

〈x̃t − xt, x̃t − xt〉T
p+1 = O(p2(log T)a/T) .

Using these orders of convergence we obtain

D̃x〈x̃t, x̃t〉T
p+1D̃x = D̃x〈xt, xt〉T

p+1D̃x + O(p2(log T)a/T1/2) > 0 a.s.
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From Lemma A1 also (D̃x〈x̃t, x̃t〉T
p+1D̃x)−1 = (D̃x〈xt, xt〉T

p+1D̃x)−1(1+ o(1)) = O((log T)a).
Therefore

(C̃ − C)D−1
x =

√
T
(
〈εt, x̃t〉T

p+1 − C〈x̃t − xt, x̃t〉T
p+1

)
D̃x(D̃x〈x̃t, x̃t〉T

p+1D̃x)
−1

=
√

T〈εt, xt〉T
p+1D̃x(D̃x〈xt, xt〉T

p+1D̃x + o(1))−1 (A4)

−
√

TC〈x̃t − xt, xt〉T
p+1D̃x(D̃x〈xt, xt〉T

p+1D̃x)
−1 + o(1) = O(p(log T)a).

This in particular establishes consistency for the estimate. Next analogously (using the
notation δxt = x̃t − xt) we obtain (Ã − A)D−1

x =

√
T〈x̃t+1 −Ax̃t, x̃t〉T

p+1D̃x(D̃x〈x̃t, x̃t〉T
p+1D̃x)

−1

=
√

T
(
〈(x̃t+1 − xt+1) + (xt+1 −Axt) +A(xt − x̃t), x̃t〉T

p+1D̃x

)
(D̃x〈xt, xt〉T

p+1D̃x + o(1))−1

=
√

T
(
〈δxt+1, xt〉T

p+1 −A〈δxt, xt〉T
p+1 + 〈Kεt, xt〉T

p+1

)
D̃x(D̃x〈xt, xt〉T

p+1D̃x)
−1 + o(1) (A5)

= O(p(log T)a)

and therefore consistency for Ã is established. Finally note that for

ε̂t = yt − C̃ x̃t = εt + C(xt − x̃t) + (C − C̃)x̃t

it follows that 〈ε̂t, ε̂t〉T
p+1 = Ω + O(p2(log T)a/T1/2). Furthermore since ε̂t denotes the

residuals of the regression of yt onto x̃t it follows that 〈ε̂t, x̄t〉T
p+1 = 0. From this we obtain

√
T(K̃ − K) =

√
T(〈x̃t+1 −Kε̂t, ε̂t〉T

p+1(〈ε̂t, ε̂t〉T
p+1)

−1

=
√

T
(
〈(x̃t+1 − xt+1)−Aδxt +K(εt − ε̂t), ε̂t〉T

p+1

)
(〈ε̂t, ε̂t〉T

p+1)
−1

=
√

T
(
〈δxt+1 −Aδxt +K(εt − ε̂t), ε̂t〉T

p+1

)
Ω−1(1 + o(1)) (A6)

=
√

T
(
〈δxt+1 −Aδxt +K(εt − ε̂t), εt〉T

p+1

)
Ω−1(1 + o(1)) + o(1)

=
(√

T〈δxt+1, εt〉T
p+1

)
Ω−1 + o(1) =

(√
T〈(Γ̃′

p − Γ′
p)z̄t+1,p, εt〉T

p+1

)
Ω−1 + o(1)

= O(p(log T)a).

These expressions do not only show consistency of a specific order, but also give the
relevant highest order terms for the asymptotic distribution, which are used below.
As ĈÂjK̂ = C̃ÃjK̃ → CAjK = C◦Aj

◦K◦, Lemma A6 establishes consistency for the
impulse response sequence ĈÂjK̂ (thus proofs Theorem 1 (I)) as well as, jointly with
p = O((log T)a), the rate of convergence O((log T)a/T1/2) for the not realizable choice of
the basis and the impulse response sequence CAjK.

Appendix C.1.2. Proof of Theorem 1 (II)

In order to arrive at the canonical representation (Ǎ, Č, Ǩ) two steps are performed:
first the reordered Jordan normal form is calculated, afterwards the matrices C̃j,C are
transformed such that E′

jČj,C = Icj holds. We will follow these steps below.

In the first step a transformation matrix Û needs to be found such that Ã = ÛÃÛ−1

is in reordered Jordan normal form. In this respect Ã and A are used in Lemma A2. Ac-
cordingly Ût = [Ût,1, ..., Ût,S/2, Ût,•] can be defined such that V′

j Ût,j = Icj where U ∈ Rn×n

corresponds to the transformation from A to A◦ as given in the theorem. An appropriate
choice of z̃t,1 leads to U = In. Furthermore the basis in the space spanned by the columns
of Ût,• where Û′

t,jÛt,• = 0 can be chosen such that [0, I]Ût,• = I for large enough T.
A first order approximation according to Lemma A2 then leads to

Ût,j = Uj + Z1 + O(‖Â −A‖2) = Uj − Σ(Â − A)Uj + O(‖Â −A‖2)
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for j = 0, ..., S/2. Consequently ‖Ût,j − Uj‖ = O((log T)aT−1) and thus also Ût − U =

O((log T)aT−1). Consequently the order of convergence for the transformed system
(Â, Ĉ, K̂) is unchanged. In a second step an upper triangular transformation matrix Ũ can
be found transforming (Â, Ĉ, K̂) such that Ã corresponds to the reordered Jordan normal
form. Due to the upper block triangularity of this transform we can apply Lemma A3 to
show that the order of convergence remains identical.

For the second step note that Lemma A3 provides the required terms: An application
to the block diagonal transformation ST = diag(E′

1C̃1,C, ..., E′
S/2C̃S/2,C,ST,•), where ST,•

transforms the stationary subsystem to echelon form, concludes the proof.

Appendix C.1.3. Proof of Theorem 1 (III)

The only argument that uses the iid assumption is the almost sure convergence of
(D̃x〈xt, xt〉D̃x)−1. Weakening the assumptions on the noise implies that this order of
convergence still holds in probability while the almost sure version cannot be shown with
the tools of this paper. This concludes the proof of Theorem 1.

Appendix C.2. Proof of Theorem 2

Using the notation introduced in (A1),

X̂ = D̃z〈ỹt, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ỹt〉D̃z(D̃z〈ỹt, ỹt〉D̃z)

−1 → X◦ =

[
Ic 0
0 X◦,•

]
for a suitable matrix X◦,•. The eigenvalues of X̂ are the squares of the singular values of
the RRR problem in the first step of CVA. Therefore

T
c

∑
i=1

(1 − σ̂2
i ) = −Ttr

[
U′

c(X̂ − X◦)[Uc − (X◦ − I)†(X̂ − X◦)Uc]
]
+ oP(1)

= −Ttr
[
ΔX11 − ΔX12(X◦,• − I)†ΔX21

]
+ oP(1)

according to a second order approximation in the Rayleigh-Schrödinger expansions (Lemma A2).

Now, in the current situation we obtain (I − X̂)

[
I
0

]
=

=
(

D̃y〈ỹt, ỹt〉D̃y − D̃y〈ỹt, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ỹt〉D̃y

)
(D̃y〈ỹt, ỹt〉D̃y)

−1

[
I
0

]

=
(

D̃y〈ε̃t, ε̃t〉D̃y − D̃y〈ε̃t, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)
−1D̃z〈z̃t,p, ε̃t〉D̃y

)
(D̃y〈ỹt, ỹt〉D̃y)

−1

[
I
0

]
.

Furthermore 〈ε̃t, z̃t,p〉D̃z(D̃z〈z̃t,p, z̃t,p〉D̃z)−1D̃z〈z̃t,p, ε̃t〉 = OP(T−1) and

(D̃y〈ỹt, ỹt〉D̃y)
−1
[

I
0

]
=

[
I

−〈ỹt,•, ỹt,•〉−1〈ỹt,•, ỹt,1〉/
√

T

]
(〈ỹπ

t,1, ỹπ
t,1〉/T)−1

where ỹπ
t,1 = ỹt,1 − 〈ỹt,1, ỹt,•〉〈ỹt,•, ỹt,•〉−1ỹt,•.

From this we get using Eε̃t,• ε̃′t,• = Eỹt,•ỹ′
t,• − X◦,•Eỹt,•ỹ′

t,•:

T(Ic − X̂1,1) =
(
〈ε̃t,1, ε̃t,1〉 − 〈ε̃t,1, ε̃t,•〉〈ỹt,•, ỹt,•〉−1〈ỹt,•, ỹt,1〉

)
(〈ỹπ

t,1, ỹπ
t,1〉/T)−1 + oP(1),

√
TΔX2,1 = (−〈ε̃t,•, ε̃t,1〉+ (I − X◦,•)〈ỹt,•, ỹt,1〉)(〈ỹπ

t,1, ỹπ
t,1〉/T)−1 + oP(1)√

TΔX1,2 = −Eε̃t,1 ε̃′t,•(Eỹt,•ỹ′
t,•)

−1 + oP(1).
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Thus T ∑c
i=1(1 − σ̂2

i ) =

= tr
[(

〈ε̃t,1, ε̃t,1〉 −Eε̃t,1 ε̃′t,•(Eỹt,•ỹ′
t,•)

−1(I − X0,•)−1Eε̃t,• ε̃′t,1
)
(〈ỹt,1, ỹt,1〉/T)−1

]
+ oP(1)

= tr
[(

〈ε̃t,1, ε̃t,1〉 −Eε̃t,1 ε̃′t,•(Eε̃t,• ε̃′t,•)
−1Eε̃t,• ε̃′t,1

)
(〈ỹt,1, ỹt,1〉/T)−1

]
+ oP(1)

d→ Z.

Appendix C.3. Proof of Theorem 3

The proof of Theorem 3 follows the same path as the proof of Theorem 1. In (A5) it
was shown that the asymptotic distribution of T(Ã11 −A◦,11) depends on

〈x̃t+1,j − xt+1,j, xt,k〉, 〈x̃t,j − xt,j, xt,k〉 , 〈εt, xt,j〉, 〈xt,k, xt,j〉/T

for j, k = 0, ..., S/2. Note that

δxt+i = x̃t+i − xt+i = (Γ̃′
p − [Γ′]1:p)z̃t+i,p + oP(T−1)

for i = 0, 1. Then the results of Lemma A5 show that the first c columns of (Γ̃′
p − [Γ′]1:p)

converge to a random variable (below denoted as ZΓ) when multiplied with T while the
remaining columns converge in distribution when multiplied with

√
T. Therefore

〈δxt+i, xt,k〉 = T(Γ̃′
p − [Γ′]1:p)

〈z̃t+i,p, xt,k〉
T

+ oP(1) = T(Γ̃′
p − [Γ′]1:p)

[
Ic
0

] 〈z̃t+i,1, xt,k〉
T

+ oP(1).

Due to the definition (A1), z̃t,1 = [xt,j]j=0,...,S/2 + o(T−1) and hence (usingA◦ = diag(A◦,u,A◦,•))

〈z̃t+1,1, xt,k〉/T = A◦,u〈z̃t,1, xt,k〉/T + o(1).

Considering now the complex-valued representation and using the notation

ΔΓ1 := T(Γ̃′
p − [Γ′]1:p)

[
Ic
0

]
, Sj = [0cj ,∑i<j ci , Icj , 0cj ,∑i>j cj ]

where Sjz̃t,1 = xt,j,C, it follows that the contribution of these two terms to the limiting
distribution of the diagonal block corresponding to the unit root zj amounts to (using
〈xt,j,C, xt,k,C〉/T → 0 for k �= j and δxt,j,C = x̃t,j,C − xt,j,C)

〈δxt+1,j,C, xt,j,C〉 − A◦,jj〈δxt,j,C, xt,j,C〉 =

= SjΔΓ1A◦,u
〈z̃t,1, xt,j,C〉

T
−A◦,jjSjΔΓ1

〈z̃t,1, xt,j,C〉
T

+ oP(1)

= SjΔΓ1S′
jA◦,jj

〈xt,j,C, xt,j,C〉
T

−A◦,jjSjΔΓ1S′
j
〈xt,j,C, xt,j,C〉

T
+ oP(1)

= SjΔΓ1S′
jzj

〈xt,j,C, xt,j,C〉
T

− zjSjΔΓ1S′
j
〈xt,j,C, xt,j,C〉

T
+ oP(1) = oP(1).

Therefore, for the diagonal blocks in (A5) these two terms do not contribute and the
asymptotic distribution is determined by

T〈K◦,jεt, xt,j〉〈xt,j, xt,j〉−1

for which the asymptotic results are provided in Lemma A1. This also shows that estimating
the state does not change the asymptotic distribution in the diagonal blocks as the impact
of Γ̃p − Γp is of lower order.
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In order to derive the distribution of the sum of the eigenvalues note that as in the
proof of Theorem 2, according to Lemma A2 the sum of the eigenvalues of Ã converging
to zj obeys the following second order approximation:

T
cj

∑
i=1

(λ̂i − zj) = Ttr
[
U′

j(Â − A◦)[Uj −A◦(zj)
†(Â − A◦)Uj]

]
+ oP(T−1)

= Ttr
[
Â◦,jj − zj Icj

]
+ oP(1)

since (Â − A◦)Uj = O((log T)aT−1) in this case implying that the second order terms
vanish. Thus we obtain the asymptotic distribution under the null hypothesis as the
limiting distribution of

Ttr[〈K◦,j,Cεt, xt,j,C〉〈xt,j,C, xt,j,C〉−1].

It is easy to verify that this test statistic is pivotal for complex and real unit roots. This
proves Theorem 3.

Appendix C.4. Proof of Theorem 4

The result for C̃m can be shown using the results of [4]. As the eigenvalues are
insensitive to changes in the basis we can assume without restriction of generality that the
only unit root components in T X(m)

t are contained in the first cm rows:

c(m)
t := T X(m)

t =

[
c(m)

t,u

c(m)
t,•

]
, D̃c =

[
T−1 Icm 0

0 In−cm

]
.

Due to the filtering, c(m)
t,• is stationary while c(m)

t,u contains the unit root zm. Then the relevant
matrix X̂m can be written as

X̂m := 〈cπ
t−1, pπ

t 〉〈pπ
t , pπ

t 〉−1〈pπ
t , cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1.

Since pt = Kεt−1 + ∑S
j=1,j �=m αjβ

′
jX

(j)
t−1 + [0, α̃m]c

(m)
t−1, we consequently have pπ

t = Kεπ
t−1 +

[0, α̃m]cπ
t−1. Therefore, for the three components of X̂m we obtain with appropriate defini-

tions of the random variables Sm, Tm and using standard asymptotics

〈pπ
t , pπ

t 〉 = 〈Kεπ
t−1 + α̃mcπ

t−1,•, Kεπ
t−1 + α̃mcπ

t−1,•〉 → K
(
Eεt−1ε′t−1

)
K′ + α̃mEcΠ

t−1,•(c
Π
t−1,•)

′ α̃′
m > 0,

〈pπ
t , cπ

t−1〉 = 〈Kεπ
t−1 + α̃mcπ

t−1,•, cπ
t−1〉

d→ [Sm, α̃mEcΠ
t−1,•(c

Π
t−1,•)

′],

〈pπ
t , cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1D̃−1
c = [0, α̃m] + 〈Kεπ

t−1, cπ
t−1〉〈cπ

t−1, cπ
t−1〉−1D̃−1

c

〈Kεπ
t−1, cπ

t−1〉〈cπ
t−1, cπ

t−1〉−1D̃−1
c

d→ [Tm, 0].

Correspondingly the first block column X̂m,u of X̂m converges to zero such that TX̂m,u
converges in distribution while the second block column converges in probability without
normalization. This shows that

T
cm

∑
i=1

λ̂i = Ttr
[
U′

m(X̂m − Xm)[Um − X†
m(X̂m − Xm)Um

]
+ oP(1) = tr

[
TX̂m,uu

]
+ oP(1)

converges in distribution. The limit is given in [4].
For the case of the estimated state note that the difference between the estimated and

the true state is given as

x̃t − xt = Γ̃′
pz̃t,p − Γ′

pz̃t,p − Āpxt−p = (Γ̃p − Γp)
′ z̃t,p − Āpxt−p.
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The strict minimum-phase assumption and the assumption on the increase of p = p(T)
implies that the second term can be neglected being oP(T−1). Furthermore

(Γ̃p − Γp)
′ z̃t,p = (Γ̃p − Γp)

′D̃−1
z D̃zz̃t,p, (Γ̃p − Γp)

′D̃−1
z = OP(T−1/2).

Using this it can be concluded that

〈 p̂t, p̂t〉 = 〈pt, pt〉+ OP(T−1/2) , 〈 p̂t, ĉ(m)
t−1,•〉 = 〈pt, c(m)

t−1,•〉+ OP(T−1/2),

〈 p̂t, ĉ(m)
t−1,u〉 = 〈pt, c(m)

t−1,u〉+ OP(T−1/2) , 〈ĉ(m)
t,u , ĉ(k)t,u 〉 = 〈c(m)

t,u , c(k)t,u 〉+ OP(1).

These equations imply that the difference between the expression using the true state and
the one using the estimated state converges to zero, implying that the two tests accept and
reject jointly asymptotically under the null hypothesis.

References

1. Rodrigues, P.M.; Taylor, A. Alternative estimators and unit root tests for seasonal autoregressive processes. J. Econom. 2004,
120, 35–73. [CrossRef]

2. Johansen, S.; Schaumburg, E. Likelihood Analysis of Seasonal Cointegration. J. Econom. 1999, 88, 301–339. [CrossRef]
3. Hylleberg, S.; Engle, R.; Granger, C.; Yoo, B. Seasonal Integration and Cointegration. J. Econom. 1990, 44, 215–238. [CrossRef]
4. Cubadda, G. Complex Reduced Rank Models For Seasonally Cointegrated Time Series. Oxf. Bull. Econ. Stat. 2001, 63, 497–511.

[CrossRef]
5. Cubadda, G.; Omtzigt, P. Small-sample improvements in the statistical analysis of seasonally cointegrated systems. Comput. Stat.

Data Anal. 2005, 49, 333–348. [CrossRef]
6. Ahn, S.K.; Cho, S.; Seong, B. Inference of Seasonal Cointegration: Gaussian Reduced Rank Estimation and Tests for Various Types

of Cointegration. Oxford Bull. Econ. Stat. 2004, 66, 261–284. [CrossRef]
7. Vivas, E.; Allende-Cid, H.; Salas, R. A Systematic Review of Statistical and Machine Learning Methods for Electrical Power

Forecasting with Reported MAPE Score. Entropy 2020, 22, 1412. [CrossRef]
8. García-Martos, C.; Rodríguez, J.; Sánchez, M.J. Forecasting electricity prices and their volatilities using Unobserved Components.

Energy Econ. 2011, 33, 1227–1239. [CrossRef]
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Abstract: Ordinal pattern dependence is a multivariate dependence measure based on the co-
movement of two time series. In strong connection to ordinal time series analysis, the ordinal
information is taken into account to derive robust results on the dependence between the two
processes. This article deals with ordinal pattern dependence for a long-range dependent time series
including mixed cases of short- and long-range dependence. We investigate the limit distributions
for estimators of ordinal pattern dependence. In doing so, we point out the differences that arise for
the underlying time series having different dependence structures. Depending on these assumptions,
central and non-central limit theorems are proven. The limit distributions for the latter ones can be
included in the class of multivariate Rosenblatt processes. Finally, a simulation study is provided to
illustrate our theoretical findings.

Keywords: ordinal patterns; time series; long-range dependence; multivariate data analysis; limit theorems

1. Introduction

The origin of the concept of ordinal patterns is in the theory of dynamical systems. The
idea is to consider the order of the values within a data vector instead of the full metrical
information. The ordinal information is encoded as a permutation (cf. Section 3). Already
in the first papers on the subject, the authors considered entropy concepts related to this
ordinal structure (cf. [1]). There is an interesting relationship between these concepts and
the well-known Komogorov–Sinai entropy (cf. [2,3]). Additionally, an ordinal version of
the Feigenbaum diagram has been dealt with e.g., in [4]. In [5], ordinal patterns were used
in order to estimate the Hurst parameter in long-range dependent time series. Furthermore,
Ref. [6] have proposed a test for independence between time series (cf. also [7]). Hence,
the concept made its way into the area of statistics. Instead of long patterns (or even letting
the pattern length tend to infinity), rather short patterns have been considered in this
new framework. Furthermore, ordinal patterns have been used in the context of ARMA
processes [8] and change-point detection within one time series [9]. In [10], ordinal patterns
were used for the first time in order to analyze the dependence between two time series.
Limit theorems for this new concept were proven in a short-range dependent framework
in [11]. Ordinal pattern dependence is a promising tool, which has already been used in
financial, biological and hydrological data sets, see in this context, also [12] for an analysis
of the co-movement of time series focusing on symbols. In particular, in the context of
hydrology, the data sets are known to be long-range dependent. Therefore, it is important
to also have limit theorems available in this framework. We close this gap in the present
article.

All of the results presented in this article have been established in the Ph.D. thesis of I.
Nüßgen written under the supervision of A. Schnurr.

The article is structured as follows: in the subsequent section, we provide the reader
with the mathematical framework. The focus is on (multivariate) long-range dependence.
In Section 3, we recall the concept of ordinal pattern dependence and prove our main

Entropy 2021, 23, 670. https://doi.org/10.3390/e23060670 https://www.mdpi.com/journal/entropy
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results. We present a simulation study in Section 4 and close the paper by a short outlook
in Section 5.

2. Mathematical Framework

We consider a stationary d-dimensional Gaussian time series
(
Yj
)

j∈Z (for d ∈ N), with:

Yj :=
(

Y(1)
j , . . . , Y(d)

j

)t
(1)

such that E
(

Y(p)
j

)
= 0 and E

((
Y(p)

j

)2
)

= 1 for all j ∈ Z and p = 1, . . . , d. Furthermore,

we require the cross-correlation function to fulfil
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, . . . , d and k ≥ 1,

where the component-wise cross-correlation functions r(p,q)(k) are given by r(p,q)(k) =

E
(

Y(p)
j Y(q)

j+k

)
for each p, q = 1, . . . , d and k ∈ Z. For each random vector Yj, we denote the

covariance matrix by Σd, since it is independent of j due to stationarity. Therefore, we have
Σd =

(
r(p,q)(0)

)
p,q=1,...,d

.

We specify the dependence structure of
(
Yj
)

j∈Z and turn to long-range dependence:

we assume that for the cross-correlation function r(p,q)(k) for each p, q = 1, . . . , d, it
holds that:

r(p,q)(k) = Lp,q(k)kdp+dq−1, (2)

with Lp,q(k) → Lp,q (k → ∞) for finite constants Lp,q ∈ [0, ∞) with Lp,p �= 0, where the
matrix L =

(
Lp,q
)

p,q=1,...,d has full rank, is symmetric and positive definite. Furthermore,

the parameters dp, dq ∈
(

0, 1
2

)
are called long-range dependence parameters. Therefore,(

Yj
)

j∈Z is multivariate long-range dependent in the sense of [13], Definition 2.1.
The processes we want to consider have a particular structure, namely for h ∈ N, we

obtain for fixed j ∈ Z:

Yj,h :=
(

Y(1)
j , . . . , Y(1)

j+h−1, Y(2)
j , . . . , Y(2)

j+h−1, . . . , Y(d)
j , . . . , Y(d)

j+h−1

)t
∈ Rdh. (3)

The following relation holds between the extendend process
(

Yj,h

)
j∈Z

and the primarily

regarded process
(
Yj
)

j∈Z. For all k = 1, . . . , dh, j ∈ Z we have:

Y(k)
j,h = Y� k−1

h �+1
j+(k mod h)−1, (4)

where �x� = max{k ∈ Z : k ≤ x}. Note that the process
(

Yj,h

)
j∈Z

is still a centered

Gaussian process since all finite-dimensional marginals of
(
Yj
)

j∈Z follow a normal distri-
bution. Stationarity is also preserved since for all p, q = 1, . . . , dh, p ≤ q and k ∈ Z, the
cross-correlation function r(p,q,h)(k) of the process

(
Yj,h

)
j∈Z

is given by

r(p,q,h)(k) = E
(

Y(p)
j,h Y(q)

j+k,h

)
= E

(
Y

⌊
p−1

h

⌋
+1

j+(p mod h)−1Y

⌊
q−1

h

⌋
+1

j+k+(q mod h)−1

)

= r(
⌊

p−1
h

⌋
+1,
⌊

q−1
h

⌋
+1)

(k + ((q − p) mod h)) (5)
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and the last line does not depend on j. The covariance matrix Σd,h of Yj,h has the follow-
ing structure:

(Σd,h) p,q=1,...,d,
p≤q

=
(

r(p,q,h)(0)
)

p,q=1,...,dh,
p≤q,

,

(Σd,h) p,q=1,...,d,
p>q

=
(

r(q,p,h)(0)
)

p,q=1,...,dh,
q<p

.

Hence, we arrive at:

Σd,h =
(

Σ(p,q)
h

)
1≤p,q≤d

, (6)

where Σ(p,q)
h = E

((
Y(p)

1 , . . . , Y(p)
h

)t(
Y(q)

1 , . . . , Y(q)
h

))
=
(

r(p,q)(i − k)
)

1≤i,k≤h
, p, q = 1, . . . , d.

Note that Σ(p,q)
h ∈ Rh×h and r(p,q)(k) = r(q,p)(−k), k ∈ Z since we are studying cross-

correlation functions.
Therefore, we finally have to show that based on the assumptions on

(
Yj
)

j∈Z, the
extended process is still long-range dependent.

Hence, we have to consider the cross-correlations again:

r(p,q,h)(k) = r(
⌊

p−1
h

⌋
+1,
⌊

q−1
h

⌋
+1)

(k + ((q − p) mod h))

= r(p∗ ,q∗)(k + m∗)

� r(p∗ ,q∗)(k) (k → ∞), (7)

since p∗, q∗ ∈ {1, . . . , d} and m∗ ∈ {0, . . . , h − 1}, with p∗ :=
⌊

p−1
h

⌋
+ 1, q∗ :=

⌊
q−1

h

⌋
+ 1

and m∗ = (q − p) mod h.
Let us remark that ak � bk ⇔ limk→∞

ak
bk

= 1.
Therefore, we are still dealing with a multivariate long-range dependent Gaussian

process. We see in the proofs of the following limit theorems that the crucial parameters
that determine the asymptotic distribution are the long-range dependence parameters dp,
p = 1, . . . , d of the original process

(
Yj
)

j∈Z and therefore, we omit the detailed description
of the parameters dp∗ herein.

It is important to remark that the extended process
(

Yj,h

)
j∈Z

is also long-range depen-

dent in the sense of [14], p. 2259, since:

lim
k→∞

kDr(p,q,h)(k)
L(k)

= lim
k→∞

kDr(p∗ ,q∗)(k)
L(k)

= lim
k→∞

kDLp∗ ,q∗kdp∗+dq∗−1

L(k)
=: bp∗ ,q∗ , (8)

with:

D := min
p∗∈{1,...,d}

{1 − 2dp∗} ∈ (0, 1) (9)

and L(k) can be chosen as any constant Lp,q that is not equal to zero, so for simplicity, we
assume without a loss of generality L1,1 �= 0, and therefore, L(k) = L1,1, since the condition
in [14] only requires convergence to a finite constant bp∗ ,q∗ . Hence, we may apply the
results in [14] in the subsequent results.

We define the following set, which is needed in the proofs of the theorems of this section.
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P∗ := {p ∈ {1, . . . , d} : dp ≥ dq, for all q ∈ {1, . . . , d}} (10)

and denote the corresponding long-range dependence parameter to each p ∈ P∗ by

d∗ := dp, p ∈ P∗.

We briefly recall the concept of Hermite polynomials as they play a crucial role in
determining the limit distribution of functionals of multivariate Gaussian processes.

Definition 1. (Hermite polynomial, [15], Definition 3.1)
The j-th Hermite polynomial Hj(x), j = 0, 1, . . ., is defined as

Hj(x) := (−1)j exp
(

x2

2

)
dj

dxj exp
(
− x2

2

)
.

Their multivariate extension is given by the subsequent definition.

Definition 2. (Multivariate Hermite polynomial, [15], p. 122)
Let d ∈ N. We define as d-dimensional Hermite polynomial:

Hk(x) := Hk1,...,kd
(x) := Hk1,...,kd

(x1, . . . , xd) =
d

∏
j=1

Hkj

(
xj
)
,

with k = (k1, . . . , kd) ∈ Nd
0 \ {(0, . . . , 0)}.

Let us remark that the case k = (0, . . . , 0) is excluded here due to the assumption
E( f (X)) = 0.

Analogously to the univariate case, the family of multivariate Hermite polynomials{
Hk1,...,kd

, k1, . . . , kd ∈ N
}

forms an orthogonal basis of L2
(
Rd, ϕId

)
, which is defined

as

L2
(
Rd, ϕId

)
:=
{

f : Rd → R,
∫
Rd

f 2(x1, . . . , xd)ϕ(x1) . . . ϕ(xd)dxd . . . dx1 < ∞
}

.

The parameter ϕId denotes the density of the d-dimensional standard normal dis-
tribution, which is already divided into the product of the univariate densities ϕ in the
formula above.

We denote the Hermite coefficients by

C( f , X, k) := C( f , Id, k) := 〈 f , Hk〉 = E( f (X)Hk(X)).

The Hermite rank m( f , Id) of f with respect to the distribution N (0, Id) is defined as
the largest integer m, such that:

E

(
f (X)

d

∏
j=1

Hkj

(
X(j)
))

= 0 for all 0 < k1 + . . . kd < m.

Having these preparatory results in mind, we derive the multivariate Hermite expan-
sion given by

f (X)−E f (X) = ∑
k1+...+kd≥m( f ,Id)

C( f , X, k)
k1! . . . kd!

d

∏
j=1

Hkj

(
X(j)
)

. (11)
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We focus on the limit theorems for functionals with Hermite rank 2. First, we introduce
the matrix-valued Rosenblatt process. This plays a crucial role in the asymptotics of
functionals with Hermite rank 2 applied to multivariate long-range dependent Gaussian
processes. We begin with the definition of a multivariate Hermitian–Gaussian random
measure B̃(dλ) with independent entries given by

B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)t

, (12)

where B̃(p)(dλ) is a univariate Hermitian–Gaussian random measure as defined in [16],
Definition B.1.3. The multivariate Hermitian–Gaussian random measure B̃(dλ) satisfies:

E
(

B̃(dλ)
)
= 0,

E
(

B̃(dλ)B̃(dλ)∗
)
= Id dλ

and:

E
(

B̃(p)(dλ1)B̃(q)(dλ2)
)
= 0, |λ1| �= |λ2|, p, q = 1, . . . , d,

where B̃(dλ)∗ =
(

B(1)(dλ), . . . , B(d)(dλ)
)

denotes the Hermitian transpose of B̃(dλ).
Thus, following [14], Theorem 6, we can state the spectral representation of the matrix-
valued Rosenblatt process Z2,H(t), t ∈ [0, 1] as

Z2,H(t) =
(

Z(p,q)
2,H (t)

)
p,q=1,...,d

where each entry of the matrix is given by

Z(p,q)
2,H (t) =

∫ ′′

R2

exp(it(λ1 + λ2))− 1
i(λ1 + λ2)

B̃(p)(dλ1)B̃(q)(dλ2).

The double prime in
∫ ′′
R2 excludes the diagonals |λi| =

∣∣λj
∣∣, i �= j in the integration.

For details on multiple Wiener-Itô integrals, as can be seen in [17].
The following results were taken from [18], Section 3.2. The corresponding proofs

were outsourced to the Appendix A.

Theorem 1. Let
(
Yj
)

j∈Z be a stationary Gaussian process as defined in (1) that fulfils (2) for

dp ∈
(

1
4 , 1

2

)
, p = 1 . . . , d. For h ∈ N we fix:

Yj,h :=
(

Y(1)
j , . . . , Y(1)

j+h−1, . . . , Y(d)
j , . . . , Y(d)

j+h−1

)t
∈ Rdh

with Yj,h ∼ N (0, Σd,h) and Σd,h as described in (6). Let f : Rdh → R be a function with Hermite
rank 2 such that the set of discontinuity points Df is a Null set with respect to the dh-dimensional

Lebesgue measure. Furthermore, we assume f fulfills E
(

f 2
(

Yj,h

))
< ∞. Then:

n−2d∗
(C2)

− 1
2

n

∑
j=1

(
f
(

Y(1)
j , . . . , Y(d)

j+h−1

)
−E
(

f
(

Y(1)
j , . . . , Y(d)

j+h−1

)))
D−→ ∑

p,q∈P∗
α̃(p,q)Z(p,q)

2,d∗+1/2(1), (13)
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where:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
B̃(p)

L (dλ1)B̃(q)
L (dλ2).

The matrix K(d∗) is a normalizing constant, as can be seen in [18], Corollary 3.6. Moreover,
B̃L(dλ) is a multivariate Hermitian–Gaussian random measure with E(BL(dλ)BL(dλ)∗) = L dλ
and L as defined in (2). Furthermore, C2 := 1

2d∗(4d∗−1) is a normalizing constant and:

α̃(p,q) :=
h

∑
i,k=1

α
(p,q)
i,k

where α
(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q ∈ P∗ and i, k = 1, . . . , h and:

(αi,k)1≤i,k≤dh = Σ−1
d,hCΣ−1

d,h

where C denotes the matrix of second order Hermite coefficients, given by

C = (ci,k)1≤i,k≤dh = E
(

Y1,h( f (Y1,h)−E( f (Y1,h)))Yt
1,h

)
.

It is possible to soften the assumptions in Theorem 1 to allow for mixed cases of short-
and long-range dependence.

Corollary 1. Instead of demanding in the assumptions of Theorem 1 that (2) holds for
(
Yj
)

j∈Z with

the addition that for all p = 1, . . . , d we have dp ∈
(

1
4 , 1

2

)
, we may use the following condition.

We assume that:

r(p,q)(k) = kdp+dq−1Lp,q(k) (k → ∞)

with Lp,q(k) as given in (2), but we do no longer assume dp ∈
(

1
4 , 1

2

)
for all p = 1, . . . , d but soften

the assumption to d∗ ∈
(

1
4 , 1

2

)
and for dp �= d∗, p = 1, . . . , d we allow for dp ∈ (−∞, 0)∪

(
0, 1

4

]
.

Then, the statement of Theorem 1 remains valid.

However, with a mild technical assumption on the covariances of the one-dimensional
marginal Gaussian processes that is often fulfilled in applications, there is another way
of normalizing the partial sum on the right-hand side in Theorem 1, this time explicitly
for the case #P∗ = 2 and h ∈ N, such that the limit can be expressed in terms of two
standard Rosenblatt random variables. This yields the possibility of further studying the
dependence structure between these two random variables. In the following theorem, we
assume #P∗ = d = 2 for the reader’s convenience.

Theorem 2. Under the same assumptions as in Theorem 1 with #P∗ = d = 2 and d∗ ∈
(

1
4 , 1

2

)
and the additional condition that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h − 1, and L1,1 + L2,2 �=
L1,2 + L2,1, it holds that:

n−2d∗
(C2)

− 1
2

n

∑
j=1

(
f
(

Y(1)
j , . . . , Y(d)

j+h−1

)
−E f

(
Y(1)

j , . . . , Y(d)
j+h−1

))
D−→
(

α̃(1,1) − α̃(1,2)
) L2,2 − L2,1 − L1,2 + L1,1

2
Z∗

2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
) L2,2 + L2,1 + L1,2 + L1,1

2
Z∗∗

2,d∗+1/2(1)
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with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 1, (αi,k)1≤i,k≤dh =

Σ−1
d,hCΣ−1

d,h and C = (ci,k)1≤i,k≤dh = E
(

Y1,h( f (Y1,h)−E f (Y1,h))Yt
1,h

)
. Note that Z∗

2,d∗+1/2(1)
and Z∗∗

2,d∗+1/2(1) are both standard Rosenblatt random variables whose covariance is given by

Cov
(

Z∗
2,d∗+1/2(1), Z∗∗

2,d∗+1/2(1)
)
=

(L2,2 − L1,1)
2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 . (14)

3. Ordinal Pattern Dependence

Ordinal pattern dependence is a multivariate dependence measure that compares
the co-movement of two time series based on the ordinal information. First introduced
in [10] to analyze financial time series, a mathematical framework including structural
breaks and limit theorems for functionals of absolutely regular processes has been built
in [11]. In [19], the authors have used the so-called symbolic correlation integral in order
to detect the dependence between the components of a multivariate time series. Their
considerations focusing on testing independence between two time series are also based on
ordinal patterns. They provide limit theorems in the i.i.d.-case and otherwise use bootstrap
methods. In contrast, in the mathematical model in the present article, we focus on
asymptotic distributions of an estimator of ordinal pattern dependence having a bivariate
Gaussian time series in the background but allowing for several dependence structures
to arise. As it will turn out in the following, this yields central but also non-central limit
theorems.

We start with the definition of an ordinal pattern and the basic mathematical frame-
work that we need to build up the ordinal model.

Let Sh denote the set of permutations in {0, . . . , h}, h ∈ N0 that we express as (h + 1)-
dimensional tuples, assuring that each tuple contains each of the numbers above exactly
once. In mathematical terms, this yields:

Sh =
{

π ∈ Nh+1
0 : 0 ≤ πi ≤ h, and πi �= πk, whenever i �= k, i, k = 0, . . . , h

}
,

as can be seen in [11], Section 2.1.
The number of permutations in Sh is given by #Sh = (h + 1)!. In order to get a better

intuitive understanding of the concept of ordinal patterns, we have a closer look at the
following example, before turning to the formal definition.

Example 1. Figure 1 provides an illustrative understanding of the extraction of an ordinal pattern
from a data set. The data points of interest are colored in red and we consider a pattern of length
h = 3, which means that we have to take n = 4 data points into consideration. We fix the points in
time t0, t1, t2 and t3 and extract the data points from the time series. Then, we search for the point
in time which exhibits the largest value in the resulting data and write down the corresponding
time index. In this example, it was given by t = t1. We order the data points by writing the time
position of the largest value as the first entry, the time position of the second largest as the second
entry, etc. Hence, the absolute values are ordered from largest to smallest and the ordinal pattern
(1, 0, 3, 2) ∈ S3 is obtained for the considered data points.

t

x t ⇒

t0 t1 t2 t3

⇒ (1, 0, 3, 2)

Figure 1. Example of the extraction of an ordinal pattern of a given data set.
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Formally, the aforementioned procedure can be defined as follows, as can be seen
in [11], Section 2.1.

Definition 3. As the ordinal pattern of a vector x = (x0, . . . , xh) ∈ Rh+1, we define the unique
permutation π = (π0, . . . , πh) ∈ Sh:

Π(x) = Π(x0, . . . , xh) = (π0, . . . , πh),

such that:

xπ0 ≥ . . . ≥ xπh ,

with πi−1 < πi if xπi−1 = xπi , i = 1, . . . , h.

The last condition assures the uniqueness of π if there are ties in the data sets. In
particular, this condition is necessary if real-world data are to be considered.

In Figure 2, all ordinal patterns of length h = 2 are shown. As already mentioned in
the introduction, from the practical point of view, a highly desirable property of ordinal
patterns is that they are not affected by monotone transformations, as can be seen in [5],
p. 1783.

(2, 1, 0) (0, 1, 2) (0, 2, 1) (2, 0, 1) (1, 0, 2) (1, 2, 0)

Figure 2. Ordinal patterns for h = 2.

Mathematically, this means that if f : R → R is strictly monotone, then:

Π(x0, . . . , xh) = Π( f (x0), . . . , f (xh)). (15)

In particular, this includes linear transformations f (x) = ax + b, with a ∈ R+ and
b ∈ R.

Following [11], Section 1, the minimal requirement of the data sets we use for ordinal
analysis in the time series context, i.e., for ordinal pattern probabilities as well as for
ordinal pattern dependence later on, is ordinal pattern stationarity (of order h). This property
implies that the probability of observing a certain ordinal pattern of length h remains
the same when shifting the moving window of length h through the entire time series
and is not depending on the specific points in time. In the course of this work, the time
series, in which the ordinal patterns occur, always have either stationary increments or are
even stationary themselves. Note that both properties imply ordinal pattern stationarity.
The reason why requiring stationary increments is a sufficient condition is given in the
following explanation.

One fundamental property of ordinal patterns is that they are uniquely determined
by the increments of the considered time series. As one can imagine in Example 1, the
knowledge of the increments between the data points is sufficient to obtain the correspond-
ing ordinal pattern. In mathematical terms, we can define another mapping Π̃, which
assigns the corresponding ordinal pattern to each vector of increments, as can be seen in [5],
p. 1783.

Definition 4. We define for y = (y1, . . . , yh) ∈ Rh the mapping Π̃ : Rh → Sh:

Π̃(y1, . . . , yh) := Π(0, y1, y1 + y2, . . . , y1 + . . . + yh),
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such that for yi = xi − xi−1, i = 1, . . . , h, we obtain:

Π̃(y1, . . . , yh) = Π(0, y1, y1 + y2, . . . , y1 + . . . + yh)

= Π(0, x1 − x0, x2 − x0, . . . , xh − x0)

= Π(x0, x1, x2, . . . , xh).

We define the two mappings, following [5], p. 1784:

S : Sh → Sh, (π0, . . . , πh) → (πh, . . . , π0),

T : Sh → Sh, (π0, . . . , πh) → (h − π0, . . . , h − πh).

An illustrative understanding of these mappings is given as follows. The mapping
S(π), which is the spatial reversion of the pattern π, is the reflection of π on a horizontal
line, while T (π), the time reversal of π, is its reflection on a vertical line, as one can observe
in Figure 3.

π = (1, 3, 2, 0) T (π) = (2, 0, 1, 3)

S(π) = (0, 2, 3, 1) T ◦ S(π) = (3, 1, 0, 2)

Figure 3. Space and time reversion of the pattern π = (1, 3, 2, 0).

Based on the spatial reversion, we define a possibility to divide Sh into two disjoint sets.

Definition 5. We define S∗
h as a subset of Sh with the property that for each π ∈ Sh, either π or

S(π) are contained in the set, but not both of them.

Note that this definition does not yield the uniqueness of S∗
h .

Example 2. We consider the case h = 2 again and we want to divide S2 into a possible choice of S∗
2

and the corresponding spatial reversal. We choose S∗
2 = {(2, 1, 0), (2, 0, 1), (1, 2, 0)}, and therefore,

S2 \ S∗
2 = {(0, 1, 2), (1, 0, 2), (0, 2, 1)}. Remark that S∗

2 = {(0, 1, 2), (2, 0, 1), (1, 2, 0)} is also a
possible choice. The only condition that has to be satisfied is that if one permutation is chosen for S∗

2 ,
then its spatial reverse must not be an element of this set.

We stick to the formal definition of ordinal pattern dependence, as it is proposed
in [11], Section 2.1. The considered moving window consists of h + 1 data points, and
hence, h increments. We define:

p : = pX(1) ,X(2) := P
(

Π
(

X(1)
0 , . . . , X(1)

h

)
= Π

(
X(2)

0 , . . . , X(2)
h

))
(16)

and:

q : = qX(1) ,X(2) := ∑
π∈Sh

P
(

Π
(

X(1)
0 , . . . , X(1)

h

)
= π

)
P
(

Π
(

X(2)
0 , . . . , X(2)

h

)
= π

)
.
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Then, we define ordinal pattern dependence OPD as

OPD := OPDX(1) ,X(2) :=
p − q
1 − q

. (17)

The parameter q represents the hypothetical case of independence between the two
time series. In this case, p and q would obtain equal values and therefore, OPD would
equal zero. Regarding the other extreme, the case in which both processes coincide or
one is a strictly monotone increasing transform of the other one, we obtain the value 1.
However, in the following, we assume p ∈ (0, 1) and q ∈ (0, 1).

Note that the definition of ordinal pattern dependence in (17) only measures posi-
tive dependence. This is no restriction in practice, because negative dependence can be
investigated in an analogous way, by considering OPDX(1) ,−X(2) . If one is interested in both

types of dependence simultaneously, in [11], the authors propose to use
(

OPDX(1) ,X(2)

)
+
−(

OPDX(1) ,−X(2)

)
+

. To keep the notation simple, we focus on OPD as it is defined in (17).

We compare whether the ordinal patterns in
(

X(1)
j

)
j∈Z

coincide with the ones in(
X(2)

j

)
j∈Z

. Recall that it is an essential property of ordinal patterns that they are uniquely

determined by the increment process. Therefore, we have to consider the increment
processes

(
Yj
)

j∈Z =
((

Y(1)
j , Y(2)

j

))
j∈Z

as defined in (1) for d = 2, where Y(p)
j = X(p)

j −

X(p)
j−1, p = 1, 2. Hence, we can also express p and q (and consequently OPD) as a probability

that only depends on the increments of the considered vectors of the time series. Recall the
definition of

(
Yj,h

)
j∈Z

for d = 2, given by

Yj,h =
(

Y(1)
j , . . . , Y(1)

j+h−1, Y(2)
j , . . . , Y(2)

j+h−1

)t
,

such that Yj,h ∼ N (0, Σ2,h) with Σ2,h as given in (6).
In the course of this article, we focus on the estimation of p. For a detailed investigation

of the limit theorems for estimators of OPD, we refer to [18]. We define the estimator of
p, the probability of coincident patterns in both time series in a moving window of fixed
length, by

p̂n =
1

n − h

n−h−1

∑
j=0

1{
Π
(

X(1)
j ,...,X(1)

j+h

)
=Π
(

X(2)
j ,...,X(2)

j+h

)}

=
1

n − h

n−h

∑
j=1

1{
Π̃
(

Y(1)
j ,...,Y(1)

j+h−1

)
=Π̃
(

Y(2)
j ,...,Y(2)

j+h−1

)},

where:

Π̃(Y1, . . . , Yh) : = Π(0, Y1, Y1 + Y2, . . . , Y1 + . . . + Yh)

= Π(0, X1 − X0, . . . , Xh − X0)

= Π(X0, X1, . . . , Xh).

Figure 4 illustrates the way ordinal pattern dependence is estimated by p̂n. The
patterns of interest that are compared in each moving window are colored in red.
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X
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. . . tn−2 tn

X
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t . . .
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X
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Figure 4. Illustration of estimation of ordinal pattern dependence.

Having emphasized the crucial importance of the increments, we define the following
conditions on the increment process

(
Yj
)

j∈Z: let
(
Yj
)

j∈Z be a bivariate, stationary Gaussian

process with Y(p)
j ∼ N (0, 1), p = 1, 2:

(L) We assume that
(
Yj
)

j∈Z fulfills (2) with d∗ in
(

1
4 , 1

2

)
. We allow for min{d1, d2} to

be in the range (−∞, 0) ∪
(

0, 1
4

]
.

(S) We assume d1, d2 ∈ (−∞, 0) ∪
(

0, 1
4

)
such that the cross-correlation function of(

Yj
)

j∈Z fulfills for p, q = 1, 2:

r(p,q)(k) = kdp+dq−1Lp,q(k) (k → ∞)

with Lp,q(k) → Lp,q and Lp,q ∈ R holds.

Furthermore, in both cases, it holds that
∣∣∣r(p,q)(k)

∣∣∣ < 1 for p, q = 1, 2 and k ≥ 1 to
exclude ties.

We begin with the investigation of the asymptotics of p̂n. First, we calculate the Her-
mite rank of p̂n, since the Hermite rank determines for which ranges of d∗ the estimator p̂n
is still long-range dependent. Depending on this range, different limit theorems may hold.

Lemma 1. The Hermite rank of f (Yj,h) = 1{
Π̃
(

Y(1)
j+1,...,Y(1)

j+h

)
=Π̃
(

Y(2)
j+1,...,Y(2)

j+h

)} with respect to Σ2,h

is equal to 2.

Proof. Following [20], Lemma 5.4 it is sufficient to show the following two properties:

(i) m( f , Σ2,h) ≥ 2,
(ii) m( f , I2,h) ≤ 2.

Note that the conclusion is not trivial, because m( f , Σ2,h) �= m( f , I2,h) in general,
as can be seen in [15], Lemma 3.7. Lemma 5.4 in [20] can be applied due to the following
reasoning. Ordinal patterns are not affected by scaling, therefore, the technical condition
that Σ−1

2,h − I2,h is positive semidefinite is fulfilled in our case. We can scale the standard
deviation of the random vector Yj,h by any positive real number σ > 0 since for all j ∈ Z

we have: {
Π̃
(

Y(1)
j , . . . , Y(1)

j+h−1

)
= Π̃

(
Y(2)

j , . . . , Y(2)
j+h−1

)}
=
{

Π̃
(

σY(1)
j , . . . , σY(1)

j+h−1

)
= Π̃

(
σY(2)

j , . . . , σY(2)
j+h−1

)}
.
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To show property (i), we need to consider a multivariate random vector:

Y1,h :=
(

Y(1)
1 , . . . , Y(1)

h , Y(2)
1 , . . . , Y(2)

h

)t

with covariance matrix Σ2,h. We fix i = 1, . . . , 2h. We divide the set Sh into disjoint sets,
namely into S∗

h , as defined in Definition 5 and the complimentary set Sh \ S∗
h . Note that:

−Yj,h
D
= Yj,h

holds. This implies:

E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)
=π
}) = −E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)
=S(π)

})
for π ∈ Sh. Hence, we arrive at:

E
(

Y(i)
j,h f (Yj,h)

)
= E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)})
= ∑

π∈Sh

E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)
=π
})

= ∑
π∈S∗

h

E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)
=π
})

− ∑
π∈Sh\S∗

h

E

(
Y(i)

j,h 1{
Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)
=S(π)

})
= 0

for i = 1, . . . , 2h.
Consequently, m( f , Σ2,h) ≥ 2.
In order to prove (ii), we consider:

U1,h :=
(

U(1)
1 , . . . , U(1)

h , U(2)
1 , . . . , U(2)

h

)t

to be a random vector with independent N (0, 1) distributed entries. For i = 1, . . . , h and
k = h + 1, . . . , 2h such that k − h = i, we obtain:

E
(

U(i)
1,hU(k)

1,h f (U1,h)
)
= E

(
U(1)

i U(2)
k−h1{

Π̃
(

U(1)
1 ,...,U(1)

h

)
=Π̃
(

U(2)
1 ,...,U(2)

h

)})
= ∑

π∈Sh

E

(
U(1)

i U(2)
i 1{

Π̃
(

U(1)
1 ,...,U(1)

h

)
=Π̃
(

U(2)
1 ,...,U(2)

h

)
=π
})

= ∑
π∈Sh

(
E

(
U(1)

i 1{
Π̃
(

U(1)
1 ,...,U(1)

h

)
=π
}))2

�= 0,

since E

(
U(1)

i 1{
Π̃
(

U(1)
1 ,...,U(1)

h

)
=π
}) �= 0 for all π ∈ Sh. This was shown in the proof of

Lemma 3.4 in [20].
All in all, we derive m( f , Σ2,h) = 2 and hence, have proven the lemma.

The case m( f , Σ2,h) = 2 exhibits the property that the standard range of the long-range

dependence parameter d∗ ∈
(

0, 1
2

)
has to be divided into two different sets. If d∗ ∈

(
1
4 , 1

2

)
,

the transformed process f
(

Yj,h

)
j∈Z

is still long-range dependent, as can be seen in [16],
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Table 5.1. If d∗ ∈
(

0, 1
4

)
, the transformed process is short-range dependent, which means

by definition that the autocorrelations of the transformed process are summable, as can be
seen in [13], Remark 2.3. Therefore, we have two different asymptotic distributions that
have to be considered for the estimator p̂n of coincident patterns.

3.1. Limit Theorem for the Estimator of p in Case of Long-Range Dependence

First, we restrict ourselves to the case that at least one of the two parameters d1 and d2

is in
(

1
4 , 1

2

)
. This assures d∗ ∈

(
1
4 , 1

2

)
. We explicitly include mixing cases where the process

corresponding to min{d1, d2} is allowed to be long-range as well as short-range dependent.
Note that this setting includes the pure long-range dependence case, which means

that for p = 1, 2, we have dp ∈
(

1
4 , 1

2

)
, or even d1 = d2 = d∗. However, in general, the

assumptions are lower, such that we only require dp ∈
(

1
4 , 1

2

)
for either p = 1 or p = 2 and

the other parameter is also allowed to be in (−∞, 0) or
(

0, 1
4

)
.

We can, therefore, apply the results of Corollary 1 and obtain the following asymptotic
distribution for p̂n:

Theorem 3. Under the assumption in (L), we obtain:

n1−2d∗
(C2)

− 1
2 ( p̂n − p) D−→ ∑

p,q∈P∗
α̃(p,q)Z(p,q)

2,d∗+1/2(1) (18)

with Z(p,q)
2,d∗+1/2(1) as given in Theorem 1 for p, q ∈ P∗ and C2 := 1

2d∗(4d∗−1) being a normalizing
constant. We have:

α̃(p,q) :=
h

∑
i,k=1

α
(p,q)
i,k , where α

(p,q)
i,k = αi+(p−1)h,k+(q−1)h,

for each p, q ∈ P∗ and i, k = 1, . . . , h and (αi,k)1≤i,k≤dh = Σ−1
2,hCΣ−1

2,h , where the variable:

C = (ci,k)1≤i,k≤2h = E

(
Y1,h

(
1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)} − p
)

Yt
1,h

)
denotes the matrix of second order Hermite coefficients.

Proof. The proof of this theorem is an immediate application of the Corollary 1 and
Lemma 1. Note that for p̂n it holds that it is square integrable with respect to Yj,h and that
the set of discontinuity points is a Null set with respect to the 2h-dimensional Lebesgue
measure. This is shown in [18], Equation (4.5).

Following Theorem 2, we are also able to express the limit distribution above in terms
of two standard Rosenblatt random variables by modifying the weighting factors in the
limit distribution. Note that this requires slightly stronger assumptions as in Theorem 1.

Theorem 4. Let (L) hold with d1 = d2. Additionally, we assume that r(1,1)(l) = r(2,2)(l), for
l = 0, . . . , h − 1, and L1,1 + L2,2 �= L1,2 + L2,1. Then, we obtain:

n1−2d∗
(C2)

− 1
2 ( p̂n − p) D−→

(
α̃(1,1) − α̃(1,2)

) L2,2 − L2,1 − L1,2 + L1,1

2
Z∗

2,d∗+1/2(1)

+
(

α̃(1,1) + α̃(1,2)
) L2,2 + L2,1 + L1,2 + L1,1

2
Z∗∗

2,d∗+1/2(1),
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with C2 and α̃(p,q) as given in Theorem 3. Note that Z∗
2,d∗+1/2(1) and Z∗∗

2,d∗+1/2(1) are both
standard Rosenblatt random variables, whose covariance is given by

Cov
(

Z∗
2,d∗+1/2(1), Z∗∗

2,d∗+1/2(1)
)
=

(L2,2 − L1,1)
2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 . (19)

Remark 1. Following [18], Corollary 3.14, if additionally r(1,1)(k) = r(2,2)(k) and r(1,2)(k) =
r(2,1)(k) is fulfilled for all k ∈ Z, then the two limit random variables following a standard
Rosenblatt distribution in Theorem 4 are independent. Note that due to the considerations in [21],
Equation (10), we know that the distribution of the sum of two independent standard Rosenblatt
random variables is not standard Rosenblatt. However, this yields a computational benefit, as it
is possible to efficiently simulate the standard Rosenblatt distribution, for details, as can be seen
in [21].

We turn to an example that deals with the asymptotic variance of the estimator of p in
Theorem 3 in the case h = 1.

Example 3. We focus on the case h = 1 and consider the underlying process
(
Yj,1
)

j∈Z =(
Y(1)

j , Y(2)
j

)
j∈Z

. It is possible to determine the asymptotic variance depending on the correla-

tion r(1,2)(0) between these two increment variables.
We start with the calculation of the second order Hermite coefficients in the case π = (1, 0).

This corresponds to the event
{

Y(1)
j ≥ 0, Y(2)

j ≥ 0
}

, which yields:

cπ,2
1,1 = E

(((
Y(1)

j

)2
− 1
)

1{
Y(1)

j ≥0,Y(2)
j ≥0

})
and:

cπ,2
1,2 = E

((
Y(1)

j Y(2)
j

)
1{

Y(1)
j ≥0,Y(2)

j ≥0
}).

Due to r(1,2)(0) = r(2,1)(0), we have
(

Y(1)
j , Y(2)

j

) D
=
(

Y(2)
j , Y(1)

j

)
and therefore, cπ,2

1,1 = cπ,2
2,2 .

We identify the second order Hermite coefficients as the ones already calculated in [20], Example 3.13,
although we are considering two consecutive increments of a univariate Gaussian process there.
However, since the corresponding values are only determined by the correlation between the Gaussian
variables, we can simply replace the autocorrelation at lag 1 by the cross-correlation at lag 0. Hence,
we obtain:

cπ,2
1,1 = ϕ2(0)r(1,2)(0)

√
1 −
(
r(1,2)(0)

)2,

cπ,2
1,2 = ϕ2(0)

√
1 −
(
r(1,2)(0)

)2.

Recall that the inverse Σ−1
2,1 =

(
gi,j
)

i,j=1,2 of the correlation matrix of
(

Y(1)
j , Y(2)

j

)
is given by

Σ−1
2,1 =

1

1 −
(
r(1,2)(0)

)2

(
1 −r(1,2)(0)

−r(1,2)(0) 1

)
.

By using the formula for α̃(p,q) obtained in [18], Equation (4.23), we derive:

α̃
(1,1)
π,2 = απ,2

1,1 =
(

g2
1,1 + g2

1,2

)
cπ,2

1,1 + 2g1,1g1,2cπ,2
1,2 ,

α̃
(1,2)
π,2 = απ,2

1,2 =
(

g2
1,1 + g2

1,2

)
cπ,2

1,2 + 2g1,1g1,2cπ,2
1,1 .
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Plugging the second order Hermite coefficients and the entries of the inverse of the covariance
matrix depending on r(1,2)(0) into the formulas, we arrive at:

α̃
(1,1)
π,2 =

−ϕ2(0)r(1,2)(0)(
1 −
(
r(1,2)(0)

)2
)1/2

and:

α̃
(1,2)
π,2 =

ϕ2(0)(
1 −
(
r(1,2)(0)

)2
)1/2 .

Therefore, in the case h = 1, we obtain the following factors in the limit variance in Theorem 3:

α̃(1,1) = α̃(2,2) =
−2ϕ2(0)r(1,2)(0)(

1 −
(
r(1,2)(0)

)2
)1/2

α̃(1,2) = α̃(2,1) =
2ϕ2(0)(

1 −
(
r(1,2)(0)

)2
)1/2 .

Remark 2. It is not possible to analytically determine the limit variance for h = 2, as this includes
orthant probabilities of a four-dimensional Gaussian distribution. Following [22], no closed formulas
are available for these probabilities. However, there are fast algorithms at hand that calculate the limit
variance efficiently. It is possible to take advantage of the symmetry properties of the multivariate
Gaussian distribution to keep the computational cost of these algorithms low. For detail, as can be
seen in [18], Section 4.3.1.

3.2. Limit Theorem for the Estimator of p in Case of Short-Range Dependence

In this section, we focus on the case of d∗ ∈ (−∞, 0) ∪
(

0, 1
4

)
. If d∗ ∈

(
0, 1

4

)
, we

are still dealing with a long-range dependent multivariate Gaussian process
(

Yj,h

)
j∈Z

.

However, the transformed process p̂n − p is no longer long-range dependent, since we
are considering a function with Hermite rank 2, see also [16], Table 5.1. Otherwise, if
d∗ ∈ (−∞, 0), the process

(
Yj,h

)
j∈Z

itself is already short-range dependent, since the cross-

correlations are summable. Therefore, we obtain the following central limit theorem by
applying Theorem 4 in [14].

Theorem 5. Under the assumptions in (S), we obtain:

n
1
2 ( p̂n − p) D−→ N

(
0, σ2

)
with:

σ2 =
∞

∑
k=−∞

E

[(
1{

Π̃
(

Y(1)
1 ,...,Y(1)

h

)
=Π̃
(

Y(2)
1 ,...,Y(2)

h

)} − p
)

×
(

1{
Π̃
(

Y(1)
1+k ,...,Y(1)

h+k

)
=Π̃
(

Y(2)
1+k ,...,Y(2)

h+k

)} − p
)]

.

We close this section with a brief retrospect of the results obtained. We established limit
theorems for the estimator of p as probability of coincident pattern in both time series and
hence, on the most important parameter in the context of ordinal pattern dependence. The
long-range dependent case as well as the mixed case of short- and long-range dependence
was considered. Finally, we provided a central limit theorem for a multivariate Gaussian
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time series that is short-range dependent if transformed by p̂n. In the subsequent section,
we provide a simulation study that illustrates our theoretical findings. In doing so, we
shed light on the Rosenblatt distribution and the distribution of the sum of Rosenblatt
distributed random variables.

4. Simulation Study

We begin with the generation of a bivariate long-range dependent fractional Gaussian
noise series

(
Y(1)

j , Y(2)
j

)
j=1,...,n

.

First, we simulate two independent fractional Gaussian noise processes
(

U(1)
j

)
j=1,...,n

and
(

U(2)
j

)
j=1,...,n

derived by the R-package “longmemo”, for a fixed parameter H ∈
(

1
2 , 1
)

in both time series. For the reader’s convenience, we denote the long-range dependence
parameter d by H = d + 1

2 as it is common, when dealing with fractional Gaussian noise
and fractional Brownian motion. We refer to H as Hurst parameter, tracing back to the work
of [23]. For H = 0.7 and H = 0.8 we generate n = 106 samples, for H = 0.9, we choose
n = 2 · 106. We denote the correlation function of univariate fractional Gaussian noise by
r(1,1)

H (k), k ≥ 0. Then, we obtain
(

Y(1)
j , Y(2)

j

)
j

for j = 1, . . . , n:

Y(1)
j = U(1)

j ,

Y(2)
j = ψU(1)

j + φU(2)
j , (20)

for ψ, φ ∈ R.
Note that this yields the following properties for the cross-correlations of the two

processes for k ≥ 0:

r(1,2)
H (k) = E

(
Y(1)

j Y(2)
j+k

)
= ψr(1,1)

H (k)

r(2,1)
H (k) = r(1,2)(−k) = ψr(1,1)

H (k)

r(2,2)
H (k) = E

(
Y(2)

j Y(2)
j+k

)
=
(

ψ2 + φ2
)

r(1,1)
H (k).

We use ψ = 0.6 and φ = 0.8 to obtain unit variance in the second process.
Note that we chose the same Hurst parameter in both processes to get a better simu-

lation result. The simulations of the processes
(

Y(1)
j

)
j∈Z

and
(

Y(2)
j

)
j∈Z

are visualized in

Figure 5. On the left-hand side, the different fractional Gaussian noises depending on the
Hurst parameter H are displayed. They represent the stationary long-range dependent
Gaussian increment processes we need in the view of the limit theorems we derived in
Section 3. The processes in which we are comparing the coincident ordinal patterns, namely(

X(1)
j

)
j∈Z

and
(

X(2)
j

)
j∈Z

, are shown on the right-hand side in Figure 5. The long-range de-

pendent behavior of the increment processes is very illustrative in these processes: roughly
speaking, they become smoother the larger the Hurst parameter gets.
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Figure 5. Plots of 500 data points of one path of two dependent fractional Gaussian noise processes (left) and the paths of
the corresponding fractional Brownian motions (right) for different Hurst parameters: H = 0.7 (top), H = 0.8 (middle),
H = 0.9 (bottom).

We turn to the simulation results for the asymptotic distribution of the estimator
p̂n. The first limit theorem is given in Theorem 3 for H = 0.8 and H = 0.9. In the case
of H = 0.7, a different limit theorem holds, see Theorem 5. Therefore, we turn to the
simulation results of the asymptotic distribution of the estimator p̂n of p, as shown in
Figure 6 for pattern length h = 2. The asymptotic normality in case H = 0.7 can be clearly
observed. We turn to the interpretation of the simulation results of the distribution of
p̂n − p for H = 0.8 and H = 0.9 as the weighted sum of the sample (cross-)correlations: we
observe in the Q–Q plot for H = 0.8 that the samples in the upper and lower tail deviate
from the reference line. For H = 0.9, a similar behavior in the Q–Q plot is observed.
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Figure 6. Histogram, kernel density estimation and Q–Q plot with respect to the normal distribution (H = 0.7) or to
the Rosenblatt distribution of p̂n − p with h = 2 for different Hurst parameters: H = 0.7 (top); H = 0.8 (middle);
H = 0.9 (bottom).

We want to verify the result in Theorem 4 that it is possible, by a different weighting,
to express the limit distribution of p̂n − p as the distribution of the sum of two independent
standard Rosenblatt random variables. The simulated convergence result is provided in
Figure 7. We observed the standard Rosenblatt distribution.
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Figure 7. Histogram, kernel density estimation and Q–Q plot with respect to the Rosenblatt distribu-

tion of 1
n ∑n

j=1 H2

(
Y∗

j

)
for different Hurst parameters: H = 0.8 (top); H = 0.9 (bottom).

5. Conclusions and Outlook

We considered limit theorems in the context of the estimation of ordinal pattern
dependence in the long-range dependence setting. Pure long-range dependence, as well
as mixed cases of short- and long-range dependence, were considered alongside the
transformed short-range dependent case. Therefore, we complemented the asymptotic
results in [11]. Hence, we made ordinal pattern dependence applicable for long-range
dependent data sets as they arise in the context of neurology, as can be seen in [24]
or artificial intelligence, as can be seen in [25]. As these kinds of data were already
investigated using ordinal patterns, as can be seen, for example, in [26], this emphasizes
the large practical impact of the ordinal approach in analyzing the dependence structure
multivariate time series. This yields various research opportunities in these fields in the
future.

Our results rely on the assumption of Gaussianity of the considered multivariate
time series. If we focus on comparing the coincident ordinal patterns in a stationary long-
range dependent bivariate time series, we highly benefit from the property of ordinal
patterns not being affected by monotone transformations. It is possible to transform the
data set to the Gaussian framework without losing the necessary ordinal information. In
applications, this property is highly desirable. If we consider the more general setting,
that is, stationary increments, the mathematical theory in the background gets a lot more
complex leading to the limitations of our results. A crucial argument used in the proofs
of the results in Section 2 is given in the Reduction Theorem, originally proven in Theorem
4.1 in [27] in the univariate case and extended to the multivariate setting in Theorem 6
in [14]. For further details, we refer the reader to the Appendix A. However, this result
only holds in the Gaussian case. Limit theorems for the sample cross-correlation process
of multivariate linear long-range dependent processes with Hermite rank 2 have recently
been proven in Theorem 4 in [28]. This is possibly an interesting starting point to adapt the
proofs in the Appendix A to this larger class of processes without requiring Gaussianity.
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Considering the property of having a discrete bivariate time series in the background, an
interesting extension is given in time continuous processes and the associated techniques
of discretization to still regard the ordinal perspective. To think even further beyond our
scope, a generalization to categorical data is conceivable and yields an interesting open
research opportunity.

Author Contributions: Conceptualization, I.N. and A.S.; methodology and mathematical theory, I.N.;
simulations, I.N.; validation, I.N. and A.S.; writing—original draft preparation, I.N.; writing—review
and editing, A.S.; funding acquisition, A.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the German Research Foundation (DFG) grant number SCHN
1231/3-2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, Ines Nüßgen, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Technical Appendix

All proofs in this appendix were taken from [18], Chapter 3.

Appendix A.1. Preliminary Results

Before turning to limit theorems, we introduce a possibility to decompose the d-
dimensional Gaussian process

(
Yj
)

j∈Z using the Cholesky decomposition, as can be seen
in [29]. Based on the definition of the multivariate normal distribution, as can be seen
in [30], Definition 1.6.1, we find an upper triangular matrix Ã, such that ÃÃt = Σd. Then,
it holds that:

Yj
D
= ÃU∗

j , (A1)

where U∗
j is a d-dimensional Gaussian process where each U∗

j has independent and identi-

cally N (0, 1) distributed entries. We want to assure that
(

U∗
j

)
j∈Z

preserves the long-range

dependent structure of
(
Yj
)

j∈Z. Since we know from (2) that:

E
(

YjYj+k

)
= ΓY(k) � kD− 1

2 Id LkD− 1
2 Id (k → ∞),

the process
(

U∗
j

)
has to fulfill:

E
(

U∗
j U∗

j+k

)
= ΓU∗(k) � kD− 1

2 Id LUkD− 1
2 Id (k → ∞), (A2)

with L = ÃLU∗ Ãt.
Then, it holds for all n ∈ N that:(

Yj, j = 1, . . . , n
) D
=
(

ÃU∗
j , j = 1, . . . , n

)
. (A3)

Note that the assumption in (A2) is only well-defined because we assumed
∣∣∣r(p,q)(k)

∣∣∣ <
1 for k ≥ 1 and p, q = 1, . . . , d in (1). This becomes clear in the following considerations.
In the proofs of the theorems in this chapter, we do not only need a decomposition of Yj,
but also of Yj,h. As Yj,h is still a multivariate Gaussian process, the covariance matrix of Yj,h
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given by Σd,h is positive definite. Hence, it is possible to find an upper triangular matrix A,
such that AAt = Σd,h. It holds thatL

Yj,h
D
= AUj,h

for:

Uj,h =
(

U(1)
(j−1)h+1, . . . , U(1)

jh , . . . , U(d)
(j−1)h+1, . . . , U(d)

jh

)t
.

The random vector Uj,h consists of (d · h) independent and standard normally dis-
tributed random variables. We notice the different structure of Uj,h compared to Yj,h. We
assure that for consecutive j, the entries in Uj,h are all different while there are identical

entries, for example in Y1,h =
(

Y(1)
1 , Y(1)

2 , . . . , Y(d)
h

)t
and Y2,h =

(
Y(1)

2 , . . . , Y(d)
h , Y(d)

h+1

)t
.

This complicates our aim that:(
Yj,h, j = 1, . . . , n

)t D
=
(

AUj,h, j = 1, . . . , n
)t

(A4)

holds.
The special structure of

(
Yj,h

)
j∈Z

, namely that consisting of h consecutive entries

of each marginal process
(

Y(p)
j

)
, p = 1, . . . , d, alongside the dependence between two

random vectors in the process
(

Yj,h

)
, has to be reflected in the covariance matrix of(

Uj,h, j = 1, . . . , n
)

. Hence, we need to check whether such a vector
(

Uj,h, j = 1, . . . , n
)

exists, i.e., if there is a positive semi-definite matrix that fulfills these conditions. We define
A as a block diagonal matrix with A as main-diagonal blocks and all off-diagonal blocks as
dh × dh-zero matrix.

We denote the covariance matrix of
(

Yj,h, j = 1, . . . , n
)t

by ΣY,n and define the follow-
ing matrix:

ΣU,n := inv(A)ΣY,ninv
(
At). (A5)

We know that ΣY,n is a positive semi-definite for all n ∈ N because
(
Yj
)

is a Gaussian
process. Mathematically described, this means that:

xtΣY,nx ≥ 0, (A6)

for all x = (x1, . . . , xnhd)
t ∈ Rnhd. We conclude:

xtΣU,nx = xtinv(A)ΣY,ninv
(
At)x

=
(
inv
(
At)x)tΣY,n

(
xtinv(A)

)
(A6)
≥ 0.

Therefore, ΣU,n is a positive semi-definite matrix for all n ∈ N and the random vector:(
Uj,h, j = 1, . . . , n

)t
N ∼ (0, ΣU,n)

exists and (A4) holds. Note that we do not have any further information on the dependence
structure within the process

(
Uj
)
, in general, this process neither exhibits long-range

dependence, nor independence, nor stationarity.
We continue with two preparatory results that are also necessary for proving Theorem

2.1.
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Lemma A1. Let
(
Yj
)

j∈Z be a d-dimensional Gaussian process as defined in (1) that fulfills (2)
with d1 = . . . = dd = d∗, such that:

ΓY(k) = E
(

YjYt
j+k

)
� Lk2d∗−1, (k → ∞).

Let C2 be a normalization constant:

C2 =
1

2d∗(4d∗ − 1)

and let BY be an upper triangular matrix, such that:

BYBt
Y = L.

Furthermore, for l ∈ N we have:

Γ̂Y,n(l) =
1

n − l

n−l

∑
j=1

YjYt
j+l .

Then, for h ∈ N it holds that:(
n1−2d∗

(C2)
−1/2(BY ⊗ BY)

−1vec
(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h − 1

)
D−→
(

vec
(

Z(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

, l = 0, . . . , h − 1
)

,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
B̃(p)(dλ1)B̃(q)(dλ2)

where:

K2
p,q(d

∗) =

⎧⎨⎩
1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p �= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is a multivariate Hermitian–Gaussian random measure
as defined in (12).

Proof. First, we can use (A1):

Yj
D
= ÃU∗

j ,

such that
(

U∗
j

)
is a multivariate Gaussian process with U∗

j ∼ N (0, Id) and
(

U∗
j

)
is still

long-range dependent, as can be seen in (A2). It is possible to decompose the sample
cross-covariance matrix Γ̂Y,n(l)− ΓY(l) with respect to

(
Yj
)

at lag l given by

Γ̂Y,n(l)− ΓY(l) =
1

n − l

n−l

∑
j=1

YjYt
j+l −E

(
YjYt

j+l

)
to:

Γ̂Y,n(l)− ΓY(l)
D
= Ã

(
Γ̂U∗ ,n(l)− ΓU∗(l)

)
Ãt,
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where we define the sample cross-covariance matrix Γ̂U∗ ,n(l)− ΓU∗(l) with respect to
(

U∗
j

)
at lag l by

Γ̂U∗ ,n(l)− ΓU∗(l) =
1

n − l

n−l

∑
j=1

U∗
j U∗

j+l −E
(

U∗
j U∗

j+l

)
.

Each entry of:

Γ̂U∗ ,n(l)− ΓU∗(l) =
(

r̂(p,q)
n,U∗ (l)− r(p,q)

U∗ (l)
)

p,q=1,...,d

is given by

r̂(p,q)
n,U∗ (l)− r(p,q)

U∗ (l) :=
n

∑
j=1

U∗ (p)
j U∗ (q)

j+l −E
(

U∗ (p)
j U∗ (q)

j+l

)
.

Following [31], proof of Lemma 7.4, the limit distribution of:(
Γ̂U∗ ,n(l)− ΓU∗(l), l = 0, . . . , h − 1

)
is equal to the limit distribution of:(

Γ̂U∗ ,n(0)− ΓU∗(0), l = 0, . . . , h − 1
)
.

We recall the assumption that d∗ = dp for all p = 1, . . . , d. We follow [14], Theorem
6 and use the Cramer–Wold device: Let a1,1, a1,2, . . . , ad,d ∈ R. We are interested in the
asymptotic behavior of:

n1−2d∗ d

∑
p,q=1

ap,q

(
r̂(p,q)

n,U (0)− r(p,q)
U (0)

)

=n−2d∗ n

∑
j=1

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)
j −E

(
U∗ (p)

j U∗ (q)
j

))
.

We consider the function:

f
(

U∗
j

)
=

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)
j −E

(
U∗ (p)

j U∗ (q)
j

))
(A7)

and may apply Theorem 6 in [14]. Using the Hermite decomposition of f as given in (11),
we observe that f and therefore, ap,q, p, q = 1, . . . , d, only affects the Hermite coefficients.
Indeed, using [15], Lemma 3.5, the Hermite coefficients reduce to ap,q for each summand
on the right-hand side in (A7). Hence, we can state:

n−2d∗ n

∑
j=1

d

∑
p,q=1

ap,q

(
U∗ (p)

j U∗ (q)
j −E

(
U∗ (p)

j U∗ (q)
j

))
(A8)

D−→
d

∑
p,q=1

ap,qZ(p,q)
2,d∗+1/2(1), (A9)

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
B̃(p)(dλ1)B̃(q)(dλ2) (A10)
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where:

K2
p,q(d

∗) =

⎧⎨⎩
1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p �= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is an appropriate multivariate Hermitian–Gaussian
random measure. Thus, we proved convergence in the distribution of the sample-cross
correlation matrix:

n1−2d∗(
Γ̂U∗ ,n(0)− ΓU∗(0)

) D−→
(

Z(p,q)
2,d∗+1/2(1)

)
p,q=1,...,d

.

We take a closer look at the covariance matrix of vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
. Follow-

ing [28], Lemma 5.7, we observe:

n1−2d∗
(4d∗(4d∗ − 1))1/2Cov

(
vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
, vec

(
Γ̂U∗ ,n(0)− ΓU∗(0)

))
=(Id2 + Kd2)(LU∗ ⊗ LU∗),

with LU∗ as defined in (A3) and ⊗ denotes the Kronecker product. Furthermore, Kd denotes
the commutation matrix that that transforms vec(A) into vec

(
At) for A ∈ Rd×d. Further

details can be found in [32].
Hence, the covariance matrix of the vector of the sample cross-covariances is fully

specified by the knowledge of LU∗ as it arises in the context of long-range dependence
in (A3).

We obtain a relation between L and LU∗ , since:

ΓY(·) = ÃΓU(·)Ãt.

Both:

ΓY(k) � Lk2d∗−1 (k → ∞)

and:

ΓU∗(k) � LU∗k2d∗−1 (k → ∞)

hold and we obtain:

L = ÃLU∗ Ãt.

We study the covariance matrix of: vec
(
Γ̂Y,n(0)− ΓY(0)

)
:

n1−2d∗
(4d∗(4d∗ − 1))1/2Cov

(
vec
(
Γ̂Y,n(0)− ΓY(0)

)
, vec

(
Γ̂Y,n(0)− ΓY(0)

)t
)

→ (Id2 + Kd2)(L ⊗ L) (A11)

= (Id2 + Kd2)
(

ÃLU∗ Ãt)⊗ (ÃLU∗ Ãt)
= (Id2 + Kd2)

(
Ã ⊗ Ã

)
· (LU∗ ⊗ LU∗) ·

(
Ãt ⊗ Ãt).

Let BU∗ be an upper triangular matrix, such that:

BU∗ Bt
U∗ := LU∗ .

We know that such a matrix exists because LU∗ is positive definite. Analogously, we
define BY:

BY := ÃBU∗ .
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Then, it holds that:

BYBt
Y = L.

We arrive at:

n1−2d∗
(C2)

−1/2(BY ⊗ BY)
−1vec

(
Γ̂Y,n(0)− ΓY(0)

)
D
= n1−2d∗

(C2)
−1/2(BU∗ ⊗ BU∗)−1(A ⊗ A)−1vec

(
Ã
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
Ãt)

= n1−2d∗
(C2)

−1/2(BU∗ ⊗ BU∗)−1vec
(
Γ̂U∗ ,n(0)− ΓU∗(0)

)
D−→ vec

(
Z(p,q)

2,d∗+1/2(1)
)

p,q=1,...,d
,

where Z(p,q)
2,d∗+1/2(1) has the spectral domain representation:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
B̃(p)(dλ1)B̃(q)(dλ2)

where:

K2
p,q(d

∗) =

⎧⎨⎩
1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p �= q.

and B̃(dλ) =
(

B̃(1)(dλ), . . . , B̃(d)(dλ)
)

is a multivariate Hermitian–Gaussian random mea-
sure as defined in (12). Note that the standardization on the left-hand side is appropriate
since the covariance matrix of vec(Z2,d∗+1/2(1)) is given by

E

(
K2(d∗)

∫ ′′

R2

∫ ′′

R2
Eλ1,λ2 Eλ3,λ4vec

(
B̃(dλ1)

(
B̃(dλ2)

)t
)

(
vec
(

B̃(dλ3)
(

B̃(dλ4)
)t
))t

)
. (A12)

by denoting:

Eλ1,λ2 :=
exp(i(λ1 + λ2))− 1

i(λ1 + λ2)
|λ1λ2|−d∗

.

We observe:

E

(
vec
(

B̃(dλ1)B̃(dλ2)
t
)(

vec
(

B̃(dλ3)
(

B̃(dλ4)
)t
))t

)

=

{
Id2dλ1dλ2, |λ1| = |λ3| �= |λ2| = |λ4|,
Kd2dλ1dλ2, |λ1| = |λ4| �= |λ2| = |λ3|,

(A13)

following [28], (27). Neither the case |λ1| = |λ2| nor |λ3| = |λ4| has to be incorporated as
the diagonals are excluded in the integration in (A12).

Corollary A1. Under the assumptions of Lemma A1, there is a different representation of the limit
random vector. For h ∈ N, we obtain:(

n1−2d∗
(C2)

−1/2vec
(
Γ̂n(l)− Γ(l)

)
, l = 0, . . . , h − 1

)
D−→ (vec(Z2,d∗+1/2(1)) l = 0, . . . , h − 1),
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where vec(Z2,d∗+1/2(1)) has the spectral domain representation:

vec(Z2,d∗+1/2(1)) = DK(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
vec
(

B̃L(dλ1)B̃L(dλ2)
t
)

.

The matrix DK(d∗) is a diagonal matrix:

DK(d∗) = diag(vec(K(d∗))),

and K(d∗) =
(
Kp,q(d∗)

)
p,q=1,...,d is such that:

K2(d∗)p,q =

⎧⎨⎩
1

2C2(2Γ(1−2d∗) sin(πd∗))2 , p = q
1

C2(2Γ(1−2d∗) sin(πd∗))2 , p �= q.

Furthermore, B̃L(dλ) is a multivariate Hermitian–Gaussian random measure that fulfills:

E
(

B̃L(dλ)B̃L(dλ)∗
)
= L dλ.

Proof. The proof is an immediate consequence of Lemma A1 using B̃L(dλ) = BYB̃(dλ)
with BYBt

Y = L and B̃(dλ) as defined in (12).

Appendix A.2. Proof of Theorem 2.1

Proof. Without loss of generality, we assume E
(

f
(

Yj,h

))
= 0. Following the argumenta-

tion in [20], Theorem 5.9, we first remark that Yj,h
D
= AUj,h with Uj,h and A as described

in (A4) and (A5). We now want to study the asymptotic behavior of the partial sum
n
∑

j=1
f ∗
(
Uj
)

where f ∗
(

Uj,h

)
:= f

(
AUj,h

) D
= f

(
Yj,h

)
. Since m( f ∗, Idh) = m( f ◦ A, Idh) =

m( f , Σd,h) = 2, as can be seen in [15], Lemma 3.7, hence, we know by [14], Theorem 6, that
these partial sums are dominated by the second order terms in the Hermite expansion of
f ∗:

n

∑
j=1

f ∗
(

Uj,h

) n

∑
j=1

∑
l1+...+ldh=2

E
(

f ∗
(

Uj,h

)
Hl1,...,ldh

(
Uj,h

))
Hl1,...,ldh

(
Uj,h

)
+ oP

(
n2d∗)

.

This follows from the multivariate extension of the Reduction Theorem as proven
in [14]. We obtain:

∑
l1+...+ldh=2

E
(

f ∗
(

Uj,h

)
Hl1,...,ldh

(
Uj,h

))
Hl1,...,ldh

(
Uj,h

)

=
dh

∑
i=1

E

(
f ∗
(

Uj,h

)((
U(i)

j,h

)2
− 1
))((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i �=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

=
dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
)((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i �=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h ,

since E
(

f ∗
(

Uj,h

))
= E

(
f
(

Yj,h

))
= 0. This results in:

dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
)((

U(i)
j,h

)2
− 1
)
+ ∑

1≤i,k≤dh,i �=k
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

= ∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h −

dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
)

. (A14)
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Note that:

∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
E
(

U(i)
j,h U(k)

j,h

)
=

dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
)

(A15)

since the entries of Uj,h are independent for fixed j and identically N (0, 1) distributed.
Thus, the subtrahend in (A14) equals the expected value of the minuend.

Define B := (bi,k)1≤i,k≤dh ∈ R(dh)×(dh) with:

bi,k := E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
= E

(
f ∗(U1)U

(i)
1 U(k)

1

)
since we are considering a stationary process. We obtain:

B = E
(

Uj,h f ∗
(

Uj,h

)
Ut

j,h

)
= E

(
A−1Yj,h f

(
Yj,h

)
Yt

j,h

(
A−1

)t
)

.

Hence, we can state the following:

∑
1≤i,k≤dh

E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h

= Ut
j,hBUj,h

D
= Yt

j,h

(
A−1

)t
BA−1Yj,h

= Yt
j,h

(
A−1

)t
A−1E

(
Yj,h f

(
Yj,h

)
Yt

j,h

)(
A−1

)t
A−1Yj,h

= Yt
j,hΣ−1

d,hE
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
Σ−1

d,hYj,h

= Yt
j,hAYj,h

= ∑
1≤i,k≤dh

Y(i)
j Y(k)

j αik, (A16)

where we define A := (αik)1≤ik≤dh := Σ−1
d,hCΣ−1

d,h , with C := E
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
as the

matrix of second order Hermite coefficients, in contrast to B now with respect to the
original considered process

(
Yj,h

)
j∈Z

.

Remembering the special structure of Yj,h =
(

Y(1)
j , . . . , Y(1)

j+h−1, . . . , Y(d)
j , Y(d)

j+h−1

)t
,

namely that Y(k)
j,h = Y(

� k−1
h �+1)

j+(k mod h)−1, k = 1, . . . , dh, we can see that:

n

∑
j=1

∑
1≤ik≤dh

Y(i)
j,h Y(k)

j,h αik =
n

∑
j=1

∑
1≤ik≤dh

Y(�
i−1

h �+1)
j+(i mod h)−1Y(�

k−1
h �+1)

j+(k mod h)−1αik

=
n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik , (A17)

where we divide:

A =

⎛⎜⎜⎜⎜⎝
A(1,1) A(1,2) . . . A(1,d)

A(2,1) A(2,2) . . . A(2,d)

...
...

...
A(d,1) A(d,2) . . . A(d,d)

⎞⎟⎟⎟⎟⎠,
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with A(p,q) =
(

α
(p,q)
i,k

)
1≤i,k≤h

∈ Rh×h such that α
(p,q)
i,k = αi+(p−1)h,k+(q−1)h for each p, q =

1, . . . , d and i, k = 1, . . . , h.
We can now split the considered sum in (A17) in a way such that we are afterwards

able to express it in terms of sample cross-covariances. In order to do so, we define the
sample cross-covariance at lag l by

r̂(p,q)
n (l) :=

1
n

n−l

∑
j=1

X(p)
j X(q)

j+l

for p, q = 1, . . . , d.
Note that in the case h = 1, it follows directly that:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik =

d

∑
p,q=1

α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j = n
d

∑
p,q=1

r̂(p,q)
n (0).

The case h = 2 has to be regarded separately, too, and we obtain:

n

∑
j=1

d

∑
p,q=1

2

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik

=
d

∑
p,q=1

(
α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j + α
(p,q)
1,2

n

∑
j=1

Y(p)
j Y(q)

j+1 + α
(p,q)
2,1

n

∑
j=1

Y(p)
j+1Y(q)

j + α
(p,q)
2,2

n

∑
j=1

Y(p)
j+1Y(q)

j+1

)

=
d

∑
p,q=1

(
α
(p,q)
1,1 nr̂(p,q)

n (0) + α
(p,q)
1,2

⎛⎜⎜⎝nr̂(p,q)
n (1) + Y(p)

n Y(q)
n+1︸ ︷︷ ︸

�

⎞⎟⎟⎠+ α
(p,q)
2,1

⎛⎜⎜⎝nr̂(q,p)
n (1) + Y(p)

n+1Y(q)
n︸ ︷︷ ︸

�

⎞⎟⎟⎠

+ α
(p,q)
2,2

⎛⎜⎜⎝nr̂(p,q)
n (0) + Y(p)

n+1Y(q)
n+1︸ ︷︷ ︸

�

−Y(p)
1 Y(q)

1︸ ︷︷ ︸
�

⎞⎟⎟⎠
)

,

Note that for each of the terms labeled by �, the following holds for d∗ ∈
(

1
4 , 1

2

)
:

n−2d∗� P−→ 0, (n → ∞).

We use this property later on when dealing with the asymptotics of the term in (A17).
Finally, we consider the term in (A17) for h ≥ 3 and arrive at:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

Y(p)
j+i−1Y(q)

j+k−1α
(p,q)
ik

=
d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

n+i−1

∑
j=i

Y(p)
j Y(q)

j+k−i

=
d

∑
p,q=1

h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l +
d

∑
p,q=1

−1

∑
l=−(h−1)

h

∑
i=1−l

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l

=
d

∑
p,q=1

h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l

+
d

∑
p,q=1

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j (A18)
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=
d

∑
p,q=1

h

∑
i=1

α
(p,q)
i,i

n+i−1

∑
j=i

Y(p)
j Y(q)

j

+
d

∑
p,q=1

h−1

∑
l=1

h−l

∑
i=1

(
α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l + α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j

)
(A19)

=
d

∑
p,q=1

(
α
(p,q)
1,1

n

∑
j=1

Y(p)
j Y(q)

j +
h

∑
i=2

α
(p,q)
i,i

n+i−1

∑
j=i

Y(p)
j Y(q)

j

)

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+l

n

∑
j=1

Y(p)
j Y(q)

j+l + α
(p,q)
1+l,1

n

∑
j=1

Y(p)
j+l Y

(q)
j

)

+
h−l

∑
i=2

(
α
(p,q)
i,i+l

n+i−1

∑
j=i

Y(p)
j Y(q)

j+l + α
(p,q)
i+l,i

n+i−1

∑
j=i

Y(p)
j+l Y

(q)
j

))

+
d

∑
p,q=1

(
α
(p,q)
1,h

n

∑
j=1

Y(p)
j Y(q)

j+h−1 + α
(p,q)
h,1 Y(p)

j+h−1Y(q)
j

)
(A20)

=
d

∑
p,q=1

(
α
(p,q)
1,1 nr̂(p,q)

n (0) +
h

∑
i=2

α
(p,q)
i,i

(
n+i−1

∑
j=n+1

Y(p)
j Y(q)

j︸ ︷︷ ︸
�

+nr̂(p,q)
n (0)−

i−1

∑
j=1

Y(p)
j Y(q)

j︸ ︷︷ ︸
�

))

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+lnr̂(p,q)

n (l) + α
(p,q)
1+l,1nr̂(q,p)

n (l)

)

+
h−l

∑
i=2

(
α
(p,q)
i,i+l

(
n+i−1

∑
j=n−l+1

Y(p)
j Y(q)

j+l︸ ︷︷ ︸
�

+nr̂(p,q)
n (l)−

i−1

∑
j=1

Y(p)
j Y(q)

j+l︸ ︷︷ ︸
�

)

+ α
(p,q)
i+l,i

(
n+i−1

∑
j=n−l+1

Y(p)
j+l Y

(q)
j︸ ︷︷ ︸

�

+nr̂(q,p)
n (l)−

i−1

∑
j=1

Y(p)
j+l Y

(q)
j︸ ︷︷ ︸

�

)))

+
d

∑
p,q=1

(
α
(p,q)
1,h

(
n

∑
j=n−h+2

Y(p)
j Y(q)

j+h−1︸ ︷︷ ︸
�

+nr̂(p,q)
n (h − 1)

)
(A21)

+ α
(p,q)
h,1

(
n

∑
j=n−h+2

Y(p)
j+h−1Y(q)

j︸ ︷︷ ︸
�

+nr̂(q,p)
n (h − 1)

))
. (A22)

Again for each of the terms labeled by � it holds for d∗ ∈
(

1
4 , 1

2

)
:

n−2d∗� P−→ 0, (n → ∞),

since each � describes a sum with a finite number (independent of n) of summands.
Therefore, we continue to express the terms denoted by � by oP

(
n2d∗)

.
With these calculations, we are able to re-express the partial sum, whose asymptotics

we are interested in, in terms of the sample cross-correlations of the original long-range
dependent process

(
Yj
)

j∈Z.
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Finally, the previous calculations lead to:

n

∑
j=1

f
(

Yj,h

)
D
=

n

∑
j=1

f ∗
(

Uj,h

)
(A14)
=

n

∑
j=1

(
∑

1≤i,k≤dh
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
U(i)

j,h U(k)
j,h −

dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
))

+ oP(n2d∗
)

D
=

(A17)

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

(
Y(p)

j+i−1Y(q)
j+k−1 −E

(
Y(p)

j+i−1Y(q)
j+k−1

))
+ oP(n2d∗

), (A23)

where (A23) follows, since (A15) yields:

dh

∑
i=1

E

(
f ∗
(

Uj,h

)(
U(i)

j,h

)2
)
= ∑

1≤i,k≤dh
E
(

f ∗
(

Uj,h

)
U(i)

j,h U(k)
j,h

)
E
(

U(i)
j,h U(k)

j,h

)
(A17)
=

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik E

(
Y(p)

j+i−1Y(q)
j+k−1

)
.

Taking the parts containing the sample cross-correlations into account, we derive:

n

∑
j=1

d

∑
p,q=1

h

∑
i,k=1

α
(p,q)
ik

(
Y(p)

j+i−1Y(q)
j+k−1 −E

(
Y(p)

j+i−1Y(q)
j+k−1

))
+ oP(n2d∗

)

(A22)
=

d

∑
p,q=1

(
α
(p,q)
1,1 n

(
r̂(p,q)

n (0)− r(p,q)(0)
)
+

h

∑
i=2

α
(p,q)
i,i n

(
r̂(p,q)

n (0)− r(p,q)(0)
))

+
d

∑
p,q=1

h−2

∑
l=1

((
α
(p,q)
1,1+ln

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+ α

(p,q)
1+l,1n

(
r̂(q,p)

n (l)− r(q,p)(l)
))

+
h−l

∑
i=2

(
α
(p,q)
i,i+l n

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+ α

(p,q)
i+l,i n

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

+
d

∑
p,q=1

(
α
(p,q)
1,h n

(
r̂(p,q)

n (h − 1)− r(p,q)(h − 1)
)
+ α

(p,q)
h,1 n

(
r̂(q,p)

n (h − 1)− r(q,p)(h − 1)
))

(A24)

+ oP(n2d∗
)

= n
d

∑
p,q=1

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

+ oP(n2d∗
). (A25)

We take a closer look at the impact of each long-range dependence parameter dp,
p = 1, . . . , d to the convergence of this sum. The setting we are considering does not allow
for a normalization depending on p and q for each cross-correlation

(
r̂(p,q)

n (l)− r(p,q)(l)
)

,
l = 0, . . . , h − 1, but we need to find a normalization for all p, q = 1, . . . , d. Hence, we need
to remember the set P∗ := {p ∈ {1, . . . , d} : dp ≥ dq∀q ∈ {1, . . . , d}} and the parameter
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d∗ = max
p=1,...,d

dp, such that for each p ∈ P∗, we have dp = d∗. For each p, q ∈ {1, . . . , d} with

(p, q) /∈ (P∗ × P∗) and l = 0, . . . , h − 1, we conclude that:

E

((
n1−2d∗(

r̂(p,q)
n (l)− r(p,q)(l)

))2
)
= n2(dp+dq−2d∗)E

((
n1−dp−dq

(
r̂(p,q)

n (l)− r(p,q)(l)
))2
)

= n2dp+2dq−4d∗
C2
(

Lp,pLq,q + Lp,qLq,p
)

(n→∞)−−−−→ 0, (A26)

since dp + dq − 2d∗ < 0.
This implies that:

n1−2d∗(
r̂(p,q)

n (0)− r(p,q)(0)
)

P−→ 0

Hence, using Slutsky’s theorem, the crucial parameters that determine the normal-
ization and therefore, the limit distribution of (A27) are given in P∗. We have an equal
long-range dependence parameter d∗ to regard for all p ∈ P∗. Applying Lemma A1, we
obtain the following, by using the symmetry in l = 0 of the cross-correlation function
r(p,q)(0) = r(q,p)(0) for p, q ∈ P∗:

d

∑
p,q=1

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (l)− r(p,q)(l)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (l)− r(q,p)(l)
)))

= ∑
p,q∈P∗

(
h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l

(
r̂(p,q)

n (0)− r(p,q)(0)
)
+

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

(
r̂(q,p)

n (0)− r(q,p)(0)
)))

+ oP(n2d∗−1)

= ∑
p,q∈P∗

(
r̂(p,q)

n (0)− r(p,q)(0)
)( h−1

∑
l=0

h−l

∑
i=1

α
(p,q)
i,i+l +

h−1

∑
l=1

h−l

∑
i=1

α
(p,q)
i+l,i

)
+ oP(n2d∗

)

= ∑
p,q∈P∗

(
r̂(p,q)

n (0)− r(p,q)(0)
)( h

∑
i,k=1

α
(p,q)
i,k

)
+ oP(n2d∗

)

= ∑
p,q∈P∗

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗

), (A27)

by defining α̃(p,q) :=
h
∑

i,k=1
α
(p,q)
i,k . Applying the continuous mapping theorem given in [33],

Theorem 2.3, to the result in Corollary A1, we arrive at:

n−2d∗
(C2)

−1/2
n

∑
j=1

f
(

Yj,h

)
= n−2d∗

(
n

d

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(n2d∗

)

)

= n1−2d∗
(C2)

−1/2
d

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
+ oP(1)

D−→ ∑
p,q∈P∗

α̃(p,q)Z(p,q)
2,d∗+1/2(1),

where:

Z(p,q)
2,d∗+1/2(1) = Kp,q(d∗)

∫ ′′

R2

exp(i(λ1 + λ2))− 1
i(λ1 + λ2)

|λ1λ2|−d∗
B̃(p)

L (dλ1)B̃(q)
L (dλ2).
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The matrix K(d∗) is given in Corollary A1. Moreover, B̃L(dλ) is a multivariate
Hermitian–Gaussian random measure with E(BL(dλ)BL(dλ)∗) = L dλ and L as defined
in (2).

Appendix A.3. Proof of Corollary 2.2

Proof. We assumed d∗ ∈
(

1
4 , 1

2

)
, because otherwise we leave the long-range dependent

setting, since we are studying functionals with Hermite rank 2 and the transformed process
would no longer be long-range dependent and limit theorems for functionals of short-range
dependent processes would hold, as can be seen in Theorem 4 in [14]. This choice of d∗

assures that the multivariate generalization of the Reduction Theorem as it is used in the
proof of Theorem 2.1 still holds for these softened assumptions, as explained in (8).

We turn to the asymptotics of g(p,q)(Yj
)
. We obtain for all p, q ∈ {1, . . . , d} \ P∗, i.e.,

excluding dp = dq = d∗ and for all l = 0, . . . , h − 1 as in (A26), that:

E

((
n1−2d∗(

r̂(p,q)
n (l)− r(p,q)(l)

))2
)
= n2(dp+dq−2d∗)E

((
n1−dp−dq

(
r̂(p,q)

n (l)− r(p,q)(l)
))2
)

= n2dp+2dq−4d∗
C2
(

Lp,pLq,q + Lp,qLq,p
)

(n→∞)−−−−→ 0, (A28)

since dp + dq − 2d∗ < 0.
This implies that:

n1−2d∗(
r̂(p,q)

n (0)− r(p,q)(0)
)

P−→ 0.

Applying Slutsky’s theorem, we observe that only p, q ∈ P∗ have an impact on the
convergence behavior as it is given in (A27) and hence, the result in Theorem 2.1 holds.

Appendix A.4. Proof of Theorem 2.3

Proof. We follow the proof of Theorem 2.1 until (A27), in order to obtain a limit distribution
that can be expressed by the sum of two standard Rosenblatt random variables:

2

∑
p,q=1

α̃(p,q)
(

r̂(p,q)
n (0)− r(p,q)(0)

)
=

1
n

n

∑
j=1

2

∑
p,q=1

α̃(p,q)
(

Y(p)
j Y(q)

j − r(p,q)(0)
)

=
1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t

−E

((
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t
)

. (A29)

We remember that α̃(p,q) = ∑h
i,k=1 α

(p,q)
i,k = ∑h

i,k=1 αi+(p−1)h,k+(q−1)h for p, q = 1, 2 and
A = (αi,k)1≤i,k≤2h = Σ−1

2,hCΣ−1
2,h . Since Σ−1

2,h is the inverse of the covariance matrix Σ2,h
of Y1,h it is a symmetric matrix. The matrix of second order Hermite coefficients C has

the representation C = E
(

Yj,h f
(

Yj,h

)
Yt

j,h

)
and therefore, ci,k = E

(
Y(i)

j,h Y(k)
j,h f
(

Yj,h

))
= ck,i

for each i, k = 1, . . . , 2h. Then, A is also a symmetric matrix, since At =
(

Σ−1
2,hCΣ−1

2,h

)t
=(

Σ−1
2,h

)t
Ct
(

Σ−1
2,h

)t
= A. We can now show that

(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
is a symmetric matrix,
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i.e., α̃(1,2) = α̃(2,1). To this end, we define Ip = (0, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)t ∈ R2h such

that I(i)p = 1 only if i = (p − 1)h + 1, . . . , ph, p = 1, 2. Then, we obtain:

α̃(1,2) =
h

∑
i,k=1

α
(1,2)
i,k =

(
α̃(1,2)

)t
=
(
It

1AI2
)t

= It
2AI1 = α̃(2,1).

We now apply the new assumption that r(1,1)(l) = r(2,2)(l), for l = 0, . . . , h − 1 and
show α̃(1,1) = α̃(2,2) with the symmetry features of the multivariate normal distribution
discussed in (2.2) and in (2.3) in [18], since ci,j = c2h−i+1,2h−j+1, i, j = 1, . . . , 2h.
We have to study:

α̃(2,2) =
(
It

2AI2
)t

= It
2Σ−1

2,hCΣ−1
2,hI2.

Since Σ−1
2,h = (gi,k)1≤i,k≤2h is a symmetric and persymmetric matrix, we have gi,k = gk,i and

gi,k = g2h−i+1,2h−k+1 for i, k = 1, . . . , 2h. Then, we obtain:

It
2Σ−1

2,h =

(
2h

∑
i=h+1

gi,1, . . . ,
2h

∑
i=h+1

gi,2h

)

=

(
h

∑
i=1

gi+h,1, . . . ,
h

∑
i=1

gi+h,2h

)

=

(
h

∑
i=1

gh−i+1,2h, . . . ,
h

∑
i=1

gh−i+1,1

)

=

(
h

∑
i=1

gi,2h, . . . ,
h

∑
i=1

gi,1

)

=

(
h

∑
i=1

g2h,i, . . . ,
h

∑
i=1

g1,i

)
=: (g̃2h, . . . , g̃1).

Note that:

Σ−1
2,hI1 =

(
h

∑
i=1

g1,i, . . . ,
h

∑
i=1

g2h,i

)t

= (g̃1, . . . , g̃2h)
t.

Then, we arrive at:

α̃(2,2) =
(
It

2AI2
)t

= It
2Σ−1

2,hCΣ−1
2,hI2

=
2h

∑
i,k=1

g̃2h−i+1 g̃2h−k+1ci,k

=
2h

∑
i,k=1

g̃2h−i+1 g̃2h−k+1c2h−i+1,2h−k+1

=
2h

∑
i,k=1

g̃i g̃kci,k

= It
1Σ−1

2,hCΣ−1
2,hI1

= α̃(1,1).
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Therefore, we have to deal with a special type of 2 × 2 matrix, since the original matrix

in the formula (A27), namely

(
α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)
, has now reduced to

(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

Finally, we know that any real-valued symmetric matrix A can be decomposed via
diagonalization into an orthogonal matrix V and a diagonal matrix D, where the entries of
the latter one are determined via the eigenvalues of A, for details, as can be seen in [34],
p. 327.

We can explicitly give formulas for the entries of these matrices here:

V =

(−2−1/2 2−1/2

2−1/2 2−1/2

)
, D =

(
λ1 = α̃(1,1) − α̃(1,2) 0

0 λ2 = α̃(1,1) + α̃(1,2)

)
,

such that:

VDV =

(
λ1+λ2

2
λ2−λ1

2
λ2−λ1

2
λ1+λ2

2

)
=

(
α̃(1,1) α̃(1,2)

α̃(1,2) α̃(1,1)

)
.

Therefore, continuing with (A29), we now have the representation:

1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)

α̃(2,1) α̃(2,2)

)(
Y(1)

j , Y(2)
j

)t

−E

((
Y(1)

j , Y(2)
j

)(α̃(1,1) α̃(1,2)
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)(
Y(1)

j , Y(2)
j

)t
)

=
1
n

n

∑
j=1

(
Y(1)

j , Y(2)
j

)
VDV

(
Y(1)

j , Y(2)
j

)t
−E

((
Y(1)

j , Y(2)
j

)
VDV

(
Y(1)

j , Y(2)
j

)t
)

=
1
n

n

∑
j=1

α̃(1,1) − α̃(1,2)

2

((
Y(2)

j − Y(1)
j

)2
−E
(

Y(2)
j − Y(1)

j

)2
)

+
1
n

n

∑
j=1

α̃(1,1) + α̃(1,2)

2

((
Y(1)

j + Y(2)
j

)2
−E
(

Y(1)
j + Y(2)

j

)2
)

=
1
n

n

∑
j=1

(
α̃(1,1) − α̃(1,2)

)(
1 − r(1,2)(0)

)⎛⎜⎝
⎛⎝ Y(2)

j − Y(1)
j√

2 − 2r(1,2)(0)

⎞⎠2

− 1

⎞⎟⎠
+

1
n

n
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α̃(1,1) + α̃(1,2)

)(
1 + r(1,2)(0)

)⎛⎜⎝
⎛⎝ Y(1)

j + Y(2)
j√

2 + 2r(1,2)(0)

⎞⎠2

− 1

⎞⎟⎠
=

1
n

(
α̃(1,1) − α̃(1,2)

)(
1 − r(1,2)(0)

) n

∑
j=1

H2

(
Y∗

j

)
+

1
n

(
α̃(1,1) + α̃(1,2)

)(
1 + r(1,2)(0)

) n

∑
j=1

H2

(
Y∗∗

j

)
, (A30)

with Y∗
j :=

Y(2)
j −Y(1)

j√
2−2r(1,2)(0)

and Y∗∗
j :=

Y(1)
j +Y(2)

j√
2+2r(1,2)(0)

.

Now, note that:

E
(

Y∗
j Y∗∗

j

)
= E

⎛⎝ Y(2)
j − Y(1)

j√
2 − 2r(1,2)(0)

Y(1)
j + Y(2)

j√
2 + 2r(1,2)(0)

⎞⎠ = 0.
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Therefore, we created a bivariate long-range dependent Gaussian process, since:(−1 1
1 1

)(
Y(1)

j , Y(2)
j

)t
=
(

Y∗
j , Y∗∗

j

)t
∼ N (0, I2)

with cross-covariance function:

r(1,2)
∗ (k) := E

(
Y∗

j Y∗∗
j+k

)
= E

⎛⎝ Y(2)
j − Y(1)

j√
2 − 2r(1,2)(0)

Y(1)
j+k + Y(2)

j+k√
2 + 2r(1,2)(0)

⎞⎠
=

r(2,1)(k) + r(2,2)(k)− r(1,1)(k)− r(1,2)(k)

2
√(

1 − r(1,2)(0)
)(

1 + r(1,2)(0)
)

� L2,2 + L2,1 − L1,2 − L1,1

2
√(

1 − r(1,2)(0)
)(

1 + r(1,2)(0)
) k2d∗−1. (A31)

Note that the covariance functions have the following asymptotic behavior:

r(1,1)
∗ (k) := E

(
Y∗

j Y∗
j+k

)
= E

⎛⎝ Y(2)
j − Y(1)

j√
2 − 2r(1,2)(0)

Y(2)
j+k − Y(1)

j+k√
2 − 2r(1,2)(0)

⎞⎠
=

r(2,2)(k)− r(2,1)(k)− r(1,2)(k) + r(1,1)(k)
2 − 2r(1,2)(0)

� L2,2 − L2,1 − L1,2 + L1,1

2 − 2r(1,2)(0)︸ ︷︷ ︸
=:L∗

1,1

k2d∗−1

and analogously:

r(2,2)
∗ (k) := E

(
Y∗∗

j Y∗∗
j+k

)
� L2,2 + L2,1 + L1,2 + L1,1

2 + 2r(1,2)(0)︸ ︷︷ ︸
=:L∗

2,2

k2d∗−1.

We can now apply the result of [14], Theorem 6, since we created a bivariate Gaussian
process with independent entries for fixed j. Note that for the function we apply here,
namely f̃

(
Y∗

j , Y∗∗
j

)
= H2

(
Y∗

j

)
+ H2

(
Y∗∗

j

)
the weighting factors in [14], Theorem 6, reduce

to e1,1 = e2,2 = 1 and e1,2 = e2,1 = 0. These weighting factors fit into the result in [14],
(3.6) and (3.7), which even yields the joint convergence of the vector of both univariate
summands,

(
H2

(
Y∗

j

)
, H2

(
Y∗∗

j

))
, suitably normalized to a vector of two (dependent)

Rosenblatt random variables. Since the long-range dependence property in [13], Defini-
tion 2.1 is more specific than in [14], p. 2259, (3.1) (see the considerations in (8)), we are
able to scale the variances of each Rosenblatt random variable to 1 and give the covariance
between them, by using the normalization given in [15], Theorem 4.3. We obtain:
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n−2d∗(2C2)
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)
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)
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2
Z∗∗
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with C2 := 1
2d∗(4d∗−1) being the same normalizing factor as in Theorem 2.1.

We observe that Z∗
2,d∗+1/2(1) and Z∗∗

2,d∗+1/2(1) are both standard Rosenblatt random
variables. Following Corollary A1, their covariance is given by

Cov
(

Z∗
2,d∗+1/2(1), Z∗∗

2,d∗+1/2(1)
)
=

(
L∗

1,2 + L∗
2,1

)2
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1,1L∗
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2
)

4
(
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1 + r(1,2)(0)

) (L∗
1,1L∗
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)−1

=
(L2,2 − L1,1)

2

(L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 .

Note that (L1,1 + L2,2)
2 − (L1,2 + L2,1)

2 �= 0 is fulfilled since L1,1 + L2,2 �= L1,2 + L2,1.
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Abstract: A Poisson distribution is commonly used as the innovation distribution for integer-valued
autoregressive models, but its mean is equal to its variance, which limits flexibility, so a flexible,
one-parameter, infinitely divisible Bell distribution may be a good alternative. In addition, for a
parameter with a small value, the Bell distribution approaches the Poisson distribution. In this
paper, we introduce a new first-order, non-negative, integer-valued autoregressive model with Bell
innovations based on the binomial thinning operator. Compared with other models, the new model
is not only simple but also particularly suitable for time series of counts exhibiting overdispersion.
Some properties of the model are established here, such as the mean, variance, joint distribution
functions, and multi-step-ahead conditional measures. Conditional least squares, Yule–Walker, and
conditional maximum likelihood are used for estimating the parameters. Some simulation results are
presented to access these estimates’ performances. Real data examples are provided.

Keywords: Bell distribution; count time series; estimation; INAR; overdispersion

1. Introduction

In recent years, studying count time series has attracted a lot of attention in different
fields, such as finance, medical science, and insurance. There are many models for count
data that have been proposed by scholars. The most famous model was first introduced by
McKenzie (1985) [1] and Al-Osh and Alzaid (1987) [2] based on the binomial thinning ◦
operator (Steutel and van Harn 1979 [3]) called the first-order integer-valued autoregressive
(INAR(1)) process. Given a non-negative integer-valued random variable (r.v.) X and a
constant α ∈ (0, 1), the binomial thinning operator ◦ is defined as α ◦ X = ∑X

i=1 ξi, where
the counting series ξi is a sequence of independent identically distributed (i.i.d.) Bernoulli
r.v.s with P(ξi = 1) = 1 − P(ξi = 0) = α. Then, the form of the INAR(1) model is

Xt = α ◦ Xt−1 + εt, t = 0, 1, 2, . . . , (1)

where εt is a sequence of i.i.d. discrete r.v.s, with the mean με and finite variance σ2
ε . εt is

independent of ξi and Xt−s for s ≥ 1. According to Alzaid and Al-Osh (1988) [4], we know
that the mean and variance of the INAR(1) model are

μ := μX =
με

1 − α
and σ2 := σ2

X =
σ2

ε + αμε

1 − α2 , respectively.

For innovation εt, the Poisson distribution is often assumed as the distribution of
εt in the INAR(1) model. A natural characteristic of the Poisson distribution is equidis-
persion; i.e., its mean and variance are equal to each other. In practice, however, many
data examples are overdispersed (variance is greater than mean) relative to the Poisson
distribution. For this reason, the INAR(1) model with Poisson innovations is not always
suitable for modeling integer-valued time series. Therefore, several models which describe
the overdispersion phenomena have been discussed in the statistical literature.
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One common approach is to change the thinning operation in the INAR(1) model.
Weiß (2018) [5] summarized several alternative thinning operators, such as random co-
efficient thinning, iterated thinning and quasi-binomial thinning. Ristić et al. (2009) [6]
proposed the negative binomial thinning operator and defined the corresponding INAR(1)
process with geometric marginal distributions. Liu and Zhu (2021) [7] generalized the
binomial thinning operator to the extended binomial one.

Changing the distribution of innovations is also used to modify the INAR(1) model.
Jung et al. (2005) [8] indicated that the INAR(1) model with negative binomial inno-
vations (NB-INAR(1)) is appropriate for generating overdispersion. Jazi et al. (2012) [9]
defined a zero-inflated Poisson ZIP(ρ, λ) for innovations (ZIP-INAR(1)), because a fre-
quent occurrence in overdispersion is that the incidence of zero counts is greater than
expected from the Poisson distribution. Jazi et al. (2012) [10] proposed a modification of
the INAR(1) model with geometric innovations (G-INAR(1)) for modeling overdispersed
count data. Schweer and Weiß (2014) [11] investigated the compound Poisson INAR(1)
(CP-INAR(1)) model, which is suitable for fitting datasets with overdispersion. Accord-
ing to Schweer and Weiß (2014) [11], we can also know that the negative binomial dis-
tribution and the geometric distribution both belong to the compound Poisson distri-
bution. Livio et al. (2018) [12] presented the INAR(1) model with the Poisson–Lindley
innovations, i.e., PL-INAR(1). Bourguignon et al. (2019) [13] introduced the INAR(1) model
with the double Poisson (DP-INAR(1)) and generalized Poisson innovations (GP-INAR(1)).
Qi et al. (2019) [14] considered zero-and-one inflated INAR(1)-type models, and Cunha et al.
(2021) [15] introduced an INAR(1) model with Borel innovations to model zero truncated
count time series.

This paper applies the second approach to dealing with overdispersion. Although sev-
eral models have been proposed in recent years, most of the considered distributions
are based on some generalizations of the Poisson distribution and have more than one
parameter, such as the zero-inflated Poisson, compound Poisson, double Poisson, and gen-
eralized Poisson distributions. Here we use a relatively simple distribution introduced by
Castellares et al. (2018) [16] for the innovations, i.e., the Bell distribution. It has the advan-
tages of having only one parameter, belonging to the exponential family, having a simple
probability mass function, and having infinite divisibility. Infinite divisibility is significant
for constructing the binomial thinning INAR(1) model. Further, the Bell distribution is
suitable for modeling some overdispersed count data. Therefore, we introduce a new
INAR(1) model with Bell innovations (BL-INAR(1)), which can account for overdispersion
in an INAR(1) framework.

In order to observe whether the BL-INAR(1) model has advantages, we compare it
with the INAR(1) model with Poisson innovations (P-INAR(1)), G-INAR(1), PL-INAR(1),
NB-INAR(1), ZIP-INAR(1), DP-INAR(1), and GP-INAR(1) models. Different informa-
tion criteria, such as Akaike’s information criterion (AIC) [17], the Bayesian informa-
tion criterion (BIC) [18], the consistent Akaike information criterion (CAIC) [19], and the
Hannan–Quinn information criterion (HQIC) [20], are used to compare the above eight
models. By comparing the results of different information criteria, it can be seen that the
BL-INAR(1) model is competitive when modeling the overdispersed integer-valued time
series data, which shows that the proposed BL-INAR(1) model is meaningful; see Section 5
for more details.

We organize the remaining parts of this paper as follows. In Section 2, we briefly
review the Bell distribution, including its definition and some properties. Then we propose
the BL-INAR(1) model, and its basic properties are constructed; conditional mean and
variance are obtained. Section 3 discusses estimates of the model parameters by using the
conditional least squares (CLS), Yule–Walker (YW), and conditional maximum likelihood
(CML) methods. In Section 4, a numerical simulation of the estimates is presented with
some discussions. In Section 5, we compare the proposed model with the other seven
INAR(1)-type models when fitting two real data examples, which show the superior
performances of the proposed model. The paper concludes in Section 6.

194



Entropy 2021, 23, 713

2. The BL-INAR(1) Model

In this section, we present a brief review of the Bell distribution (Castellares et al., 2018 [16]).
Its definition and some properties are presented. Later we introduce the BL-INAR(1) model
and derive some basic properties of it.

2.1. The Bell Distribution

At first, we introduce the Bell numbers. Bell (1934) [21] has provided the following expansion:

exp(ex − 1) =
∞

∑
n=0

Bn

n!
xn, x ∈ R,

where Bn is the Bell number defined by

Bn =
1
e

∞

∑
k=0

kn

k!
. (2)

The Bell number Bn is the n-th moment of the Poisson distribution with parameter equal
to 1. Some Bell numbers are listed as follows. B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21,147, B10 = 115,975, B11 = 678,570,
B12 = 4,213,597 and B13 =27,644,437.

For the convenience of the reader, we introduce the following definition and properties
of the Bell distribution described in Castellares et al. (2018) [16]:

Definition 1. A discrete r.v. Z taking values in N0 = {0, 1, 2, . . .} has a Bell distribution with
parameter θ > 0, denoted as Z ∼ Bell(θ), if its probability mass function is given by

Pr(Z = z) =
θze−eθ+1Bz

z!
, z ∈ N0, (3)

where Bz is the Bell number in (2).

We can see that the Bell distribution has only one parameter, and it belongs to the one-
parameter exponential family of distributions. If Z ∼ Bell(θ), the probability generating
function is

GZ(s) = E
(

sZ
)
= exp

(
esθ − eθ

)
, |s| < 1.

The mean and variance of Z are

E(Z) = θeθ and Var(Z) = θ(1 + θ)eθ , respectively. (4)

Note that Var(Z)/E(Z) = 1+ θ > 1; hence, the Bell distribution is overdispersed, which means
the Bell distribution may be suitable for count data with overdispersion in certain situations.

There are some other interesting properties of the Bell distribution, including the
following: (i) the Poisson distribution is not nested in the Bell family, but for small values of
the parameter, the Bell distribution approaches the Poisson distribution; (ii) it is identifiable,
strongly unimodal and infinitely divisible; (iii) a r.v. Z ∼ Bell(θ) has the same distribution
as Y1 + Y2 + · · ·+ YN , where Yn has zero-truncated Poisson distribution with parameter θ,
and N ∼ Poisson(eθ − 1). See Castellares et al. (2018) [16] for more properties.

Additionally, there are some papers based on the Bell distribution, and the following
are a few related references: Batsidis et al. (2020) [22] proposed and studied a goodness-
of-fit test for the Bell distribution, which is consistent against fixed alternatives; Castel-
lares et al. (2020) [23] presented a new two-parameter Bell–Touchard discrete distribution;
Lemonte et al. (2020) [24] introduced a zero-inflated Bell regression model for count data;
Muhammad et al. (2021) [25] proposed a Bell ridge regression as a solution to the multi-
collinearity problems.
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2.2. Definition and Properties of the BL-INAR(1) Process

In this section, we give the definition of the BL-INAR(1) process, and its basic statistical
properties are derived.

Definition 2. Let {Xt}t∈N0 be an INAR(1) process according to (1). It refers to a BL-INAR(1)
model if the innovations {εt}t∈N0 are a sequence of i.i.d. Bell(θ) r.v.s given by (3); i.e.,{

Xt = α ◦ Xt−1 + εt, t ≥ 1,
εt ∼ Bell(θ),

(5)

where 0 < α < 1 and θ > 0, and εt is independent of ξi and Xt−1 for t ≥ 1.

According to Equation (4), we know the mean and variance of εt are finite; therefore,
the process of {Xt}t∈N0 in (5) is an ergodic stationary Markov chain (Du and Li, (1991) [26])
with transition probabilities

Pij = P(Xt = i|Xt−1 = j) = P(α ◦ Xt−1 + εt = i|Xt−1 = j)

=
min(i,j)

∑
m=0

P(α ◦ Xt−1 = m|Xt−1 = j)P(εt = i − m)

=
min(i,j)

∑
m=0

(
j

m

)
αm(1 − α)j−m θi−me−eθ+1Bi−m

(i − m)!
, i, j = 0, 1 . . .

Further, we can obtain the joint probability function as follows:

f (i1, i2 . . . iT) = P(X1 = i1, X2 = i2, . . . , XT = iT)

= P(X1 = i1)P(X2 = i2|X1 = i1) . . . P(XT = iT |XT−1 = iT−1)

= P(X1 = i1)
T−1

∏
k=1

[
min(ik ,ik+1)

∑
m=0

(
ik
m

)
αm(1 − α)ik−mP(εk+1 = ik+1 − m)

]
. (6)

The conditional mean, conditional variance, mean, variance, covariance and autocor-
relation function of the BL-INAR(1) process are given in the following lemma.

Lemma 1. Let Xt be the process in Definition 2. Then it has the following properties:
(i) E[Xt|Xt−1] = αXt−1 + με = αXt−1 + θeθ ;
(ii) Var[Xt|Xt−1] = α(1 − α)Xt−1 + σ2

ε = α(1 − α)Xt−1 + θ(1 + θ)eθ ;
(iii) μ := E[Xt] =

θeθ

1−α ;

(iv) σ2 := Var[Xt] =
θeθ(1+α+θ)

1−α2 ;
(v) γk := Cov(Xk, Xk+1) = αkσ2;
(vi) ρk := Corr(Xk, Xk+1) = αk.

The proof of Lemma 1 is similar to that of Theorem 1 of Qi et al. (2019) [14], so it
is omitted.

According to Lemma 1, the dispersion index (Fisher, 1950 [27]) of Xt is derived
as follows:

Ix :=
σ2

μ
= 1 +

θ

1 + α
> 1;

thus, the BL-INAR(1) process is suited for overdispersed integer-valued time series.
Additionally, we can obtain the k-step ahead conditional mean and k-step ahead

conditional variance of the BL-INAR(1) process in the following theorem.
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Theorem 1. The k-step ahead conditional mean and k-step ahead conditional variance of the
BL-INAR(1) process are given, respectively, by:

E(Xt+k|Xt) = αkXt + με
1 − αk

1 − α
,

and

Var(Xt+k|Xt) = αk
(

1 − αk
)

Xt + με
(α − αk)(1 − αk)

1 − α2 + σ2
ε

1 − α2k

1 − α2 .

For more details about the proof of this theorem, see Qi et al. (2019) [14] and Ristić,

Bakouch, and Nastić (2009) [6]. It is easy to see that if k → ∞, E(Xt+k|Xt) →
με

1 − α
=

θeθ

1 − α

and Var(Xt+k|Xt) → αμε + σ2
ε

1 − α2 =
θeθ(1 + α + θ)

1 − α2 , which are the unconditional mean and

unconditional variance of Xt, respectively.

3. Estimation of Parameters

The true values of parameters α and θ are unknown in practice; therefore, we need to
estimate the value of (α, θ). Sometimes we have to give an estimate of (α, μ) first to get the
estimate of (α, θ). In this section, we consider three methods for estimating parameters,
namely, CLS, YW and CML.

3.1. Conditional Least Squares Estimation

The CLS estimates of the parameters α and θ are obtained by

(α̂, θ̂) = arg min
T

∑
t=2

[Xt − E(Xt|Xt−1)]
2,

and the CLS estimates of (α, μ) are given by

α̂CLS =
(T − 1)∑T

t=2 XtXt−1 − ∑T
t=2 Xt ∑T

t=2 Xt−1

(T − 1)∑T
t=2 X2

t−1 −
(

∑T
t=2 Xt−1

)2 ,

and

μ̂CLS =
∑T

t=2 Xt − α̂CLS ∑T
t=2 Xt−1

(T − 1)(1 − α̂CLS)
.

Then, the CLS estimate of θ can be obtained by solving the equation θ̂CLSeθ̂CLS = μ̂CLS(1 − α̂CLS).
According to Theorems 3.1 and 3.2 in Tjøstheim (1986) [28], we can establish the

consistency and asymptotic normality of the CLS estimates α̂CLS and μ̂CLS in the following
theorem. The proofs of Theorem 2 and the following theorem are given in Appendix A.

Theorem 2. Let α̂CLS and μ̂CLS be the CLS estimates of the BL-INAR(1) process; then (α̂CLS, μ̂CLS)
′

is strongly consistent for (α, μ); and the asymptotic distribution follows as:

√
T(α̂CLS − α, μ̂CLS − μ)′ d−→ N(0, Σ),

where

Σ =

⎡⎣ α(1+α)μ+σ2
ε

(1−α)2
ασ2

μ(1+μ)

ασ2

μ(1+μ)
α(1−α)(μ3−2μσ2−μ3)+σ2

ε σ2

μ2(1+μ)2

⎤⎦,

and μ3 = E(X3
t ) =

(1−α3)μ3+(1+2α2−3α3)μσ2+α2(1−α)σ2

1−α3 .
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Using the delta method, we can obtain the limit distribution of (α̂, θ̂), and we can also
know that θ̂ is consistent.

3.2. Yule–Walker Estimation

Let X1, . . . , XT come from the process {Xt} in Definition 2. The sample mean is
X̄ = 1

T ∑T
t=1 Xt, and the sample autocorrelation function is

ρ̂k =
∑T−k

t=1 (Xt − X̄)(Xt+k − X̄)

∑n
t=1(Xt − X̄)

2 .

From Lemma 1, we know ρk = αk, thus the Yule–Walker (YW) estimate of α is given by

α̂YW = ρ̂(1) =
∑T−1

t=1 (Xt − X̄)(Xt+1 − X̄)

∑T
t=1(Xt − X̄)

2 ,

and
μ̂YW = X̄,

with μ =
θeθ

1 − α
; then the estimate of θ can be obtained.

For asymptotic properties of the YW estimates, Freeland and McCabe (2005) [29]
showed that the YW and CLS estimates are asymptotically equivalent for a Poisson INAR(1)
process. The next theorem shows that the conclusion holds for our BL-INAR(1) process.

Theorem 3. In the BL-INAR(1) process, CLS and YW estimates are asymptotically equivalent, i.e.,

α̂CLS − α̂YW = op(T− 1
2 ) and θ̂CLS − θ̂YW = op(T− 1

2 ).

3.3. Conditional Maximum Likelihood Estimation

According to the joint probability function (6), the likelihood function can be obtained as:

f (x1, x2, . . . , xT) = P(X1 = x1)
T−1

∏
t=1

P(Xt+1 = xt+1|Xt = xt)

= f (x1)
T−1

∏
t=1

[
min(xt ,xt+1)

∑
m=0

(
xt
m

)
αm(1 − α)xt−mP(εt+1 = xt+1 − m)

]
.

To condition on variable X1, we can obtain the conditional log likelihood function as:

L(α, θ) =
T−1

∑
t=1

log P(Xt+1 = xt+1|Xt = xt),

the CML estimates of (α, θ) are the values of (α̂CML, θ̂CML) obtained by maximizing the
conditional log likelihood function L(α, θ). It is easy to check that the BL-INAR(1) process
satisfies conditions (C1)–(C6) of Franke and Seligmann (1993) [30]; thus, the CML estimates
(α̂CML, θ̂CML) are consistent and asymptotically normal. The proof is similar to those of
Theorems 22.4 and 22.5 of Franke and Seligmann (1993) [30], so it is omitted.

4. Simulation

A Monte Carlo simulation was conducted to study the performances of the CLS, YW,
and CML estimates of the BL-INAR(1) model. The CML estimates were obtained by using
the BFGS quasi-Newton nonlinear optimization algorithm with numerical derivatives. We
considered YW estimates as initial values for the algorithm. The simulation was conducted
using R programming language, and the size of the sample was 100, 250, 500, or 1000.
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The number of replicates was 1000. For the true values of parameters, we considered
α = 0.25, 0.5, and 0.75 and θ = 0.5, and 1.5.

First, we give the Q–Q plots of the CLS, YW, and CML estimates for the BL-INAR(1)
model with sample size T = 1000, α = 0.5, and θ = 1.5 in Figure 1. From the six Q–
Q plots, we can see that they contain roughly straight lines; i.e., the estimates of the
parameters are normally distributed. Then, the numerical simulation results are presented
in Tables 1 and 2. By comparing the two tables, we can find that with the same θ and
T, the mean squared error (MSE) for the estimate of θ increased with the increase of α,
but the MSE for the estimate of α decreased. Additionally, the MSE for the estimate of θ
increased with the increase of θ with the same α and T, but the MSE for the estimate of
α decreased. Furthermore, we can observe that the estimates of CLS and YW are similar,
and the bias tended toward zero for all estimates as the sample size increased. The estimates
of CML converged faster to the true parameter values. We conclude that the CML estimates
produced the smallest mean square errors, and CML performed better than CLS and YW.

Table 1. Empirical means and mean squared errors (in parentheses) of the estimates of the parameters
for some values of α and θ of the BL-INAR(1) model.

T α̂CLS θ̂CLS α̂YW θ̂YW α̂CML θ̂CML

(α, θ) = (0.25, 0.5)
100 0.220445 0.507901 0.218464 0.508838 0.238497 0.500617

(0.011615) (0.003871) (0.011564) (0.003814) (0.007120) (0.003049)
250 0.240011 0.502610 0.239107 0.503039 0.246433 0.500099

(0.004665) (0.001520) (0.004653) (0.001501) (0.002658) (0.001146)
500 0.245254 0.500707 0.244710 0.500965 0.247766 0.499777

(0.002286) (0.000758) (0.002284) (0.000759) (0.001300) (0.000603)
1000 0.246458 0.500868 0.246197 0.500974 0.249120 0.499768

(0.001195) (0.000379) (0.001197) (0.000380) (0.000714) (0.000290)

(α, θ) = (0.5, 0.5)
100 0.475430 0.508229 0.469977 0.512782 0.495566 0.497046

(0.010198) (0.005396) (0.010256) (0.005296) (0.004046) (0.003083)
250 0.488517 0.504259 0.486491 0.505890 0.497636 0.499045

(0.003895) (0.002128) (0.003911) (0.002123) (0.001723) (0.001332)
500 0.493426 0.502160 0.492388 0.503029 0.498222 0.499355

(0.001857) (0.001026) (0.001868) (0.001025) (0.000866) (0.000643)
1000 0.496426 0.501635 0.495922 0.502043 0.499262 0.499936

(0.000914) (0.000530) (0.000916) (0.000529) (0.000412) (0.000322)

(α, θ) = (0.75, 0.5)
100 0.714977 0.535092 0.707308 0.543643 0.745993 0.500460

(0.006966) (0.011276) (0.007639) (0.011838) (0.001321) (0.003355)
250 0.736256 0.513360 0.733057 0.517222 0.748974 0.498915

(0.002354) (0.004357) (0.002456) (0.004432) (0.000494) (0.001352)
500 0.743674 0.505799 0.742084 0.507695 0.749245 0.499568

(0.001052) (0.001967) (0.001079) (0.001983) (0.000243) (0.000681)
1000 0.746006 0.504828 0.745283 0.505726 0.749925 0.500221

(0.000546) (0.001001) (0.000554) (0.001011) (0.000132) (0.000309)
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Table 2. Empirical means and mean squared errors (in parentheses) of the estimates of the parameters
for some values of α and θ of the BL-INAR(1) model.

T α̂CLS θ̂CLS α̂YW θ̂YW α̂CML θ̂CML

(α, θ) = (0.25, 1.5)
100 0.230059 1.508538 0.227601 1.510489 0.252786 1.492707

(0.010409) (0.007500) (0.010294) (0.007323) (0.004877) (0.004375)
250 0.243290 1.503077 0.242313 1.503896 0.250278 1.498450

(0.003994) (0.002928) (0.003976) (0.002898) (0.001810) (0.001660)
500 0.244804 1.503143 0.244310 1.503531 0.249992 1.499429

(0.001917) (0.001459) (0.001914) (0.001451) (0.000913) (0.000829)
1000 0.248715 1.500420 0.248470 1.500628 0.251744 1.498222

(0.000984) (0.000745) (0.000983) (0.000745) (0.000477) (0.000422)

(α, θ) = (0.5, 1.5)
100 0.472192 1.522593 0.467254 1.528069 0.497401 1.497773

(0.008714) (0.011950) (0.008913) (0.011884) (0.002653) (0.004999)
250 0.489125 1.509054 0.487244 1.511225 0.499745 1.498361

(0.003127) (0.004609) (0.003148) (0.004598) (0.000991) (0.001856)
500 0.496116 1.502407 0.495032 1.503670 0.501865 1.496562

(0.001650) (0.002493) (0.001660) (0.002487) (0.000584) (0.001078)
1000 0.497904 1.501246 0.497432 1.501800 0.500976 1.498100

(0.000826) (0.001314) (0.000827) (0.001314) (0.000274) (0.000502)

(α, θ) = (0.75, 1.5)
100 0.721350 1.547389 0.713291 1.565523 0.749555 1.495159

(0.005627) (0.025790) (0.006188) (0.026764) (0.000827) (0.005581)
250 0.736975 1.522062 0.733930 1.529286 0.749880 1.497782

(0.002181) (0.011299) (0.002278) (0.011488) (0.000343) (0.002363)
500 0.742692 1.512717 0.741144 1.516338 0.749888 1.498329

(0.000919) (0.005007) (0.000947) (0.005076) (0.000158) (0.001101)
1000 0.747785 1.503485 0.747046 1.505296 0.750224 1.499187

(0.000476) (0.002670) (0.000479) (0.002670) (0.000083) (0.000541)

Figure 1. The Q–Q plots of the CLS, YW, and CML estimates for the BL-INAR(1) model with sample
size T = 1000.

5. Real Data Examples

In this section, we present two applications of the BL-INAR(1) model to real datasets,
and compare it with the P-INAR(1), G-INAR(1), PL-INAR(1), NB-INAR(1), ZIP-INAR(1),

200



Entropy 2021, 23, 713

DP-INAR(1), and GP-INAR(1) models. Results of the comparison are discussed here
as well.

5.1. Disconduct Data

The first dataset is a monthly count of disconduct in the first census tract in Rochester,
which can be obtained from Available online: http://www.forecastingprinciples.com
(accessed on 8 May 2012). The data comprise 132 observations (T = 132) starting from
January 1991 and ending in December 2001.

The time plot, histogram, autocorrelation function (ACF), and partial autocorrelation
function (PACF) are provided in Figure 2. We applied the Ljung–Box test (Ljung and Box
(1978) [31]) to check whether this time series dataset has any autocorrelation. The p-value
of the Ljung–Box test is 1.317 × 10−5, which is less than 0.05. This means that the time
series data have some autocorrelation, and according to the PACF diagram, the data are
first-order autocorrelated, which shows that the AR(1)-type process is appropriate for
modeling this dataset.

The sample mean and variance of the data are X̄ = 1.6288 and S2
X = 2.4455, re-

spectively. Thus, we got the dispersion index Îx = S2
X/X̄ = 1.5014. According to the

overdispersion test of Schweer and Weiß (2014) [11], the critical value of the data is 1.1994.
The dispersion index Îx exceeds the critical value, which means that the equidispersed
P-INAR(1) model is not a good choice for the data.

Figure 2. The time plot, histogram, ACF, and PACF of disconduct data.

For comparison, we calculated the CML estimates of parameters, and the AIC, BIC,
CAIC, HQIC, fitted mean, and fitted variance of the BL-INAR(1) model, the P-INAR(1)
model, the G-INAR (1) model, the PL-INAR(1) model, the ZIP-INAR(1) model, the NB-
INAR(1) model, the DP-INAR(1) model, and the GP-INAR(1) model. Among the eight
models, the first four are two-parameter models and the last four are three-parameter
models. The results are presented in Table 3. We found that the AIC, BIC, CAIC, and HQIC
of the BL-INAR(1) model were smaller than those of others. We also found that the fitted
means of all eight models were near to the sample mean, and the fitted mean of the PL-
INAR(1) model was the closest to the sample mean. In terms of fitted variance, Table 3
shows that the fitted variance of the BL-INAR(1) model performed better than those of the
other seven models.
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Table 3. CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, fitted variance, and RMSE for eight INAR(1) models of
disconduct data.

Model Parameters AIC BIC CAIC HQIC Mean Variance RMSE

BL-INAR α̂ = 0.1882 441.7380 1 447.5036 1 449.5036 1 444.0809 1 1.6201 2.5361 2 3.2205
θ̂ = 0.6718

P-INAR α̂ = 0.1496 456.4653 462.2309 464.2309 458.8082 1.6197 2.1512 3.2497
λ̂ = 1.3773

G-INAR α̂ = 0.2405 446.1416 451.9072 453.9072 448.4845 1.6207 3.2290 3.1803 1

π̂ = 0.4482
PL-INAR α̂ = 0.2197 444.3542 450.1198 452.1198 446.6971 1.6254 2 0.2928 3.1929

θ̂ = 1.1545
NB-INAR α̂ = 0.1845 445.4351 454.0835 457.0835 448.9494 1.6201 2.5542 3.2233

n̂ = 1.9345
π̂ = 0.5942

ZIP-INAR α̂ = 0.1992 442.7224 451.3708 454.3708 446.2367 1.6202 2.3903 3.2121
λ̂ = 1.8674
ρ̂ = 0.3052

DP-INAR α̂ = 0.1865 443.7622 452.4106 455.4106 447.2765 1.4900 2.6859 3.3155
μ̂ = 1.2121
φ̂ = 0.5122

GP-INAR α̂ = 0.1820 445.8156 454.4640 457.4640 449.3300 1.6200 2.5386 3.2252
μ̂ = 1.0254
φ̂ = 0.2262

1 Bold text means the smallest value in the column. 2 Bold text means that this value is the closest in the column to the sample value
described in the text.

For the prediction, we used the first 126 observations to estimate the parameters,
and then predicted the last six observations. The predicted values of the disconduct

data could be given by E(Xt+k | Xt) = αkXt + με
1 − αk

1 − α
. For a further comparison of

models, we calculated the root mean square values of the prediction errors (RMSEs) for the

last 6 months of the data, and the RMSE is defined as RMSE =

√
1
6 ∑6

k=1(Xt+k − X̂t+k)2.

We present the RMSE results of eight models in the last column of Table 3. From the
table, we can see that the RMSE of the G-INAR(1) model was best. The RMSE of the
BL-INAR(1) model is smaller than those of the P-INAR(1) model, the NB-INAR(1) model,
the DP-INAR(1) model, and the GP-INAR(1) model; and a little larger than those of the
G-INAR(1) model, the PL-INAR(1) model, and the ZIP-INAR(1) model. Although the
fitted mean and RMSE of the BL-INAR(1) model are not the best, it is the best choice under
the other five criteria. Further, we analyze the Pearson residuals, and Figure 3 plots the
ACF, PACF, and Q–Q plots of residuals. The ACF and PACF graphs show no correlation
between residuals, which is supported by the result of the Ljung–Box test with a p-value of
0.05251 > 0.05. The Q–Q plots appear to be roughly normally distributed, as we expected.
Hence, we can conclude that the BL-INAR(1) model is the most suitable among those
available for this dataset.
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Figure 3. The ACF, PACF, and Q–Q plots of the Pearson residual for disconduct data using the
BL-INAR(1) model.

5.2. Strikes Data

The second dataset, which was analyzed by Weiß (2010) [32], is the monthly number
of work stoppages (strikes and lock-outs) of 1000 or more workers for the period 1994–2002.
It was published by the US Bureau of Labor Statistics and can be obtained by online at the
address Available online: http://www.bls.gov/wsp/ (accessed on 8 May 2012). The data
contain 108 observations, and the time plot, histogram, ACF, and PACF are provided in
Figure 4. As with the previous example, the Ljung–Box test was used to check whether the
strike data have any autocorrelation. The p-value of the Ljung–Box test was 2.372 × 10−8,
which shows that the time series data have some autocorrelation, and according to the
PACF diagram, it is also first-order autocorrelated, so an AR(1)-type process is appropriate
for modeling this dataset.

The sample mean, variance, and dispersion index were calculated to be 4.9444, 7.8488,
and 1.5874, respectively. According to the overdispersion test, the critical value of the data
is 1.2808, and we observe that it was inappropriate to use the P-INAR(1) model to fit the
data. The CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, and fitted variance for the
BL-INAR(1), P-INAR(1), G-INAR(1), PL-INAR(1), NB-INAR(1), ZIP-INAR(1), DP-INAR(1),
and GP-INAR(1) models were obtained and are shown in Table 4. We see that the AIC,
BIC, CAIC, and HQIC of the BL-INAR(1) model are smaller than those of others, and the
fitted mean of the BL-INAR(1) model is not much different from those of the other seven
models. Further, we can see that the BL-INAR(1) model performed better than others when
calculating the fitted variance. Similarly to the previous example, the first 102 observations
were used to estimate the parameters and predict the last six observations. The RMSE of
the predictions is also presented in Table 4. We can observe that the RMSE of the G-INAR(1)
model is the smallest; however, it is only 0.05 less than the RMSE of the BL-INAR(1) model.
As in the previous example, although the BL-INAR(1) model was not the best under the
fitted mean and RMSE criteria, it performed best under the other five criteria. Additionally,
we show the Pearson residuals analysis. Figure 5 gives the ACF, PACF, and Q–Q plots of
the residuals. We found that there is no evidence of any significant correlation within the
residuals, a finding also supported by the Ljung–Box test with a p-value of 0.9522, which
is greater than 0.05. The Q–Q plot also appears to be roughly normally distributed. Thus,
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according to above discussions and its simplicity, we can conclude that the BL-INAR(1)
model was the most appropriate.

Figure 4. The time plot, histogram, ACF, and PACF of data on strikes.

Table 4. CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, fitted variance, and RMSE from eight INAR(1) models of
strike data.

Model Parameters AIC BIC CAIC HQIC Mean Variance RMSE

BL-INAR α̂ = 0.5789 468.1557 1 473.5199 1 475.5199 1 470.3307 1 4.9813 7.7408 2 2.2659
θ̂ = 0.8747

P-INAR α̂ = 0.5061 473.0936 478.4578 480.4578 475.2686 4.9813 9.8110 2.3331
λ̂ = 2.4603

G-INAR α̂ = 0.6235 475.3209 480.6852 482.6852 477.4960 4.9813 10.7361 2.2121 1

π̂ = 0.3478
PL-INAR α̂ = 0.6062 471.9345 477.2987 479.2987 474.1095 5.0016 1.8876 2.2489

θ̂ = 0.7911
NB-INAR α̂ = 0.5483 469.6850 477.7314 480.7314 472.9476 4.9813 6.8573 2.2969

n̂ = 3.8582
π̂ = 0.6317

ZIP-INAR α̂ = 0.5785 470.9985 479.0449 482.0449 474.2610 4.9813 6.6692 2.2663
λ̂ = 2.6343
ρ̂ = 0.2030

DP-INAR α̂ = 0.5617 469.5585 477.6048 480.6048 472.8210 4.9576 2 7.1420 2.2659
μ̂ = 2.1727
φ̂ = 0.5924

GP-INAR α̂ = 0.5464 469.7467 477.7930 480.7930 473.0092 4.9813 6.8335 2.2986
μ̂ = 1.8003
φ̂ = 0.2032

1 Bold means the smallest value in the column. 2 Bold means that this value is the closest in the column to the sample value described in
the text.

Combined with the above two examples and the advantages of the Bell distribution
with one parameter and a simple form, the BL-INAR(1) model is competitive with the
other seven models.
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Figure 5. The ACF, PACF, and Q–Q plots of the Pearson residual for strike data using the BL-
INAR(1) model.

6. Conclusions

A new INAR(1) model with Bell innovations based on the binomial thinning operator
was introduced in this paper. Based on the overdispersed property of the Bell distribution,
we found that the BL-INAR(1) model is suitable for overdispersed data. Some basic
properties of the model were obtained, such as transition probabilities, conditional mean,
conditional variance, mean, variance, covariance, autocorrelation function, and k-step
ahead conditional mean and variance. For unknown parameters, CLS, YW, and CML
methods are used to estimate them. The Q–Q plots showed that the estimates of the
parameters are normally distributed. The simulated results revealed that the CML estimates
of parameters of the BL-INAR(1) model were better than the CLS and YW estimates. Finally,
by comparing the AIC values, BIC values, CAIC values, HQIC values, fitted means, fitted
variances, and RMSE values of the predictions among eight INAR(1) models, two real
datasets both showed that the BL-INAR(1) model fits better than other INAR(1) models.
The analysis of residuals also shows that the BL-INAR(1) model provided adequate fits to
those datasets.

Although there are many overdispersed INAR(1) models, some interesting proper-
ties of the Bell distribution, such as having one parameter, infinitely divisibility, having
a simple probability mass function, belonging to the one-parameter exponential family
of distributions, and for a parameter with a small value, having the Bell distribution ap-
proach the Poisson distribution, make the BL-INAR(1) model competitive. Some extended
distributions of the Bell distribution, such as the zero-inflated Bell distribution and the
Bell–Touchard distribution, provide ideas for us to study related INAR models in the future.
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Appendix A

Appendix A.1. Proof of Theorem 2

To prove this theorem, we need to show that the conditions given in Theorems 3.1 and
3.2 of Tjøstheim (1986) [28] are satisfied.

Define φ = (α, μ), and the true value of the unknown parameter φ0 = (α0, μ0).
According to Lemma 1, we know that E[X2

t ] < ∞ and that E[Xt|Xt−1] is almost surely three
times differentiable in an open set Φ containing φ0.

Condition 1:

E

{∣∣∣∣∂E(Xt | Xt−1)

∂φi
(φ0)

∣∣∣∣2
}

< ∞ and E

⎧⎨⎩
∣∣∣∣∣∂2E(Xt | Xt−1)

∂φi∂φj
(φ0)

∣∣∣∣∣
2
⎫⎬⎭ < ∞, for i, j = 1, 2.

According to E(Xt | Xt−1) = αXt−1 + (1 − α)μ, we have

E

{∣∣∣∣∂E(Xt | Xt−1)

∂α
(φ0)

∣∣∣∣2
}

= E
{
|Xt−1 − μ0|2

}
= Var(Xt−1) < ∞ and

E

{∣∣∣∣∂E(Xt | Xt−1)

∂μ
(φ0)

∣∣∣∣2
}

= E
{
|1 − α0|2

}
= (1 − α0)

2 < ∞.

For the second derivative of E(Xt | Xt−1), we have

E

{∣∣∣∣∂2E(Xt | Xt−1)

∂α2 (φ0)

∣∣∣∣2
}

=E

{∣∣∣∣∂2E(Xt | Xt−1)

∂μ2 (φ0)

∣∣∣∣2
}

= 0 < ∞ and

E

{∣∣∣∣∂2E(Xt | Xt−1)

∂α∂μ
(φ0)

∣∣∣∣2
}

= 1 < ∞.

Condition 2:
The vectors ∂E(Xt | Xt−1)(θ0)/∂φi, i, j = 1, 2 are linearly independent in the sense

that if a1 and a2 are arbitrary real numbers such that

E

⎧⎨⎩
∣∣∣∣∣ 2

∑
i=1

ai
∂E(Xt | Xt−1)

∂φi
(φ0)

∣∣∣∣∣
2
⎫⎬⎭ = 0,

then a1 = a2 = 0. Note that

E

{∣∣∣∣a1
∂E(Xt | Xt−1)

∂α
(φ0) + a2

∂E(Xt | Xt−1)

∂μ
(φ0)

∣∣∣∣2
}

= 0 ⇒

E
{
|a1(Xt−1 − μ0) + a2(1 − α0)|2

}
= 0 ⇒

a2
1 Var(Xt−1)︸ ︷︷ ︸

≥0

+ a2
2(1 − α0)

2︸ ︷︷ ︸
≥0

= 0 ⇒

a2
1 Var(Xt−1)︸ ︷︷ ︸

>0

= 0 and a2
2 (1 − α0)

2︸ ︷︷ ︸
>0

= 0 ⇒

a2
1 = 0 and a2

2 = 0.
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Then a1 = a2 = 0.
Condition 3:
For φ ∈ Φ, there exist functions Gijk

t−1(X1, . . . , Xt−1) and Hijk
t (X1, . . . , Xt) for i, j = 1, 2

such that

Mijk
t−1(φ) =

∣∣∣∣∣∂E(Xt | Xt−1)

∂φi
(φ)

∂2E(Xt | Xt−1)

∂φj∂φk
(φ)

∣∣∣∣∣ ≤ Gijk
t−1, E

(
Gijk

t−1

)
< ∞,

Nijk
t (φ) =

∣∣∣∣∣{Xt − E(Xt | Xt−1)(φ)}∂3E(Xt | Xt−1)

∂φi∂φj∂φk
(φ)

∣∣∣∣∣ ≤ Hijk
t , E

(
Hijk

t

)
< ∞.

Note that M111
t−1(φ) = M122

t−1(φ) = M211
t−1(φ) = M222

t−1(φ) = 0 and

M112
t−1(φ) = M121

t−1(φ) = |Xt−1 − μ|,
M212

t−1(φ) = M221
t−1(φ) = |α − 1| < 1;

then we can choose Gijk
t−1(φ) = (Xt−1 − μ)2 + 1, ∀i, j, k = 1, 2, which guarantees that

Mijk
t−1(φ) < Gijk

t−1(φ) and E(Gijk
t−1) = Var(Xt−1 + 1) < ∞.

For Nijk
t (φ), it is easy to know that Nijk

t (φ) = 0, ∀i, j, k = 1, 2. So we choose Hijk
t (φ) = 0,

∀i, j, k = 1, 2 to satisfy Nijk
t (φ) < Hijk

t (φ) and E(Hijk
t ) = 0 < ∞.

The above three conditions ensure that (α̂CLS, μ̂CLS) is a strongly consistent estimator
for (α, μ). According to Theorem 3.2 in Tjøstheim (1986) [28], the asymptotic distribution
of (α̂CLS, μ̂CLS) is √

T(α̂CLS − α, μ̂CLS − μ)′ d−→ N(0, Σ),

where Σ = U−1RU−1,

U = E

{
∂E(Xt | Xt−1)

T

∂φ
(φ) · ∂E(Xt | Xt−1)

∂φ
(φ)

}
,

R = E

{
∂E(Xt | Xt−1)

T

∂φ
(φ) ft|t−1(φ)

∂E(Xt | Xt−1)

∂φ
(φ)

}
,

and
ft|t−1(φ) = E

{
(Xt − E(Xt | Xt−1))(Xt − E(Xt | Xt−1))

T | Xt−1

}
.

We can then find that

Σ =

⎡⎢⎢⎣
α(1 + α)μ + σ2

ε

(1 − α)2
ασ2

μ(1 + μ)
ασ2

μ(1 + μ)

α(1 − α)(μ3 − 2μσ2 − μ3) + σ2
ε σ2

μ2(1 + μ)2

⎤⎥⎥⎦,

where μ3 = E(X3
t ) =

(1 − α3)μ3 + (1 + 2α2 − 3α3)μσ2 + α2(1 − α)σ2

1 − α3 , which follows from

the following derivation:

μ3 =E[X3
t ] = E[X2

t (α ◦ Xt−1 + εt)] = E[E[X2
t (α ◦ Xt−1 + εt)|Xt−1]]

=E[αXt−1E[X2
t |Xt−1] + μεE[X2

t |Xt−1]]

=E[αXt−1E[X2
t |Xt−1]] + μεE[X2

t ],
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according to Lemma 1,

E[X2
t |Xt−1] =Var[Xt|Xt−1] + (E[Xt|Xt−1])

2

=α2X2
t + (α(1 − α) + 2αμε)Xt + μ2

ε + σ2
ε ;

then, we have

μ3 =E[αXt−1E[X2
t |Xt−1]] + μεE[X2

t ]

=α3E[X3
t−1] + α2(1 − α)E[X2

t−1] + 2α2μεE[X2
t−1] + αμ(μ2

ε + σ2
ε ) + μεE[X2

t ]

(where με = (1 − α)μ and σ2
ε = (1 − α2)σ2 − α(1 − α)μ)

=α3μ3 + (1 − α3)μ3 + (1 + 2α2 − 3α3)μσ2 + α2(1 − α)σ2.

Thus, we obtain that

μ3 =
(1 − α3)μ3 + (1 + 2α2 − 3α3)μσ2 + α2(1 − α)σ2

1 − α3 .

Appendix A.2. Proof of Theorem 3

The proof is similar to that of Theorem 4.2 in Cunha et al. (2021) [15]. For estimator α̂,
we have

√
T(α̂YW − α̂CLS) =

(DCLS − DYW)

DCLSDYW
· ∑T

t=2 XtXt−1√
T

−

(
DCLS ∑T

t=2
Xt
T − DYW ∑T

t=2
Xt

T−1

)
DCLSDYW

· ∑T
t=1 Xt√

T

− DYW

DCLSDYW
·

T

∑
t=2

Xt

T − 1
XT√

T
+

DCLS

DCLSDYW
· X̄

(XT − X̄)√
T

=op(1)Op(1)− op(1)Op(1)− Op(1)Op(1)op(1) + Op(1)Op(1)op(1)

=op(1),

where DCLS =
1
T

[
∑T

t=2 X2
t−1 − 1

T − 1

(
∑T

t=2 Xt−1

)2
]

and DYW =
1
T ∑T

t=1(Xt − X̄)
2 =

1
T ∑T

t=1 X2
t − X̄2. For estimator θ̂, we only need to prove

√
T − 1(μ̂ε,CLS − μ̂ε,YW) is op(1).

√
T − 1(μ̂ε, CLS − μ̂ε,YW)

=
√

T − 1

(
∑T

t=2 Xt − α̂CLS ∑T
t=2 Xt−1

T − 1
− X̄(1 − α̂YW)

)

=
1√

T − 1

(
T

∑
t=2

Xt − α̂CLS

T

∑
t=2

Xt−1 − TX̄(1 − α̂YW) + X̄(1 − α̂YW)

)

=
α̂CLSXT − X1√

T − 1
−
√

T
T − 1

·
√

T(α̂CLS − α̂YW) X̄ +
X̄√

T − 1
(1 − α̂YW)

=op(1)− op(1) + op(1) = op(1).
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Abstract: The thinning operators play an important role in the analysis of integer-valued autore-
gressive models, and the most widely used is the binomial thinning. Inspired by the theory about
extended Pascal triangles, a new thinning operator named extended binomial is introduced, which is
a general case of the binomial thinning. Compared to the binomial thinning operator, the extended
binomial thinning operator has two parameters and is more flexible in modeling. Based on the
proposed operator, a new integer-valued autoregressive model is introduced, which can accurately
and flexibly capture the dispersed features of counting time series. Two-step conditional least squares
(CLS) estimation is investigated for the innovation-free case and the conditional maximum likelihood
estimation is also discussed. We have also obtained the asymptotic property of the two-step CLS
estimator. Finally, three overdispersed or underdispersed real data sets are considered to illustrate a
superior performance of the proposed model.

Keywords: extended binomial distribution; INAR; thinning operator; time series of counts

1. Introduction

Counting time series naturally occur in many contexts, including actuarial science,
epidemiology, finance, economics, etc. The last few years have witnessed the rapid develop-
ment of modeling time series of counts. One of the most common approaches for modeling
integer-valued autoregressive (INAR) time series is based on thinning operators. In order
to fit different kinds of situations, many corresponding operators have been developed;
see [1] for a detailed discussion on thinning-based INAR models.

The most popular thinning operator is the binomial thinning operator introduced
by [2]. Let X be a non-negative integer-valued random variable and α ∈ (0, 1), the binomial
thinning operator is defined as

α ◦ X =
X

∑
i=1

Bi, X > 0, (1)

and 0 otherwise, where {Bi} is a sequence of independent identically distributed (i.i.d.)
Bernoulli random variables with fixed success probability α, and Bi is independent of X.
Based on the binomial thinning operator, [3,4] independently proposed an INAR(1) model
as follows

Xt = α ◦ Xt−1 + εt, t ∈ Z, (2)

where {εt} is a sequence of i.i.d. integer-valued random variables with finite mean and
variance. Since this seminal work, the INAR-type models have received considerable
attention. For recent literature on this topic, see [5,6], among others.

Note that Bi in (1) follows a Bernoulli distribution, so α ◦ X is always less than or
equal to X; in other words, the first part of the right side in (2) cannot be greater than Xt−1,
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which limits the flexibility of the model. Although it has such a shortcoming, the simple
form makes it easy to estimate the parameter, and it also has many similar properties to the
multiplication operator in the continuous case. For this reason, there have still been many
extensions of the binomial thinning operator since its emergence. Zhu and Joe [7] proposed
the expectation thinning operator, which is the generalization of binomial thinning from
the perspective of a probability generating function (pgf). Although this extension is very
successful, the estimation procedure is a little complicated. Compared with this extension,
the thinning operator we proposed is simpler and more intuitive. For recent developments,
Yang et al. [8] proposed the generalized Poisson (GP) thinning operator, which is defined
by replacing Bi with a GP counting series. Although the GP thinning operator is flexible
and adaptable, we argue that it has a potential drawback: the GP distribution is not a
strict probability distribution in the conventional sense. Recently, Aly and Bouzar [9]
introduced a two-parameter expectation thinning operator based on a linear fractional
probability generating function, which can be regarded as a general case of at least nine
thinning operators. Kang et al [10] proposed a new flexible thinning operator, which is
named GSC because of three initiators of the counting series: Gómez-Déniza, Sarabia
and Calderín-Ojeda.

Although the binomial thinning operator is very popular, it may not perform very well
in large numerical value counting time series. This is because under such circumstances,
the predicted data are often volatile, and the data are more likely to be non-stationary
when the numerical value is large. We intend to establish a new thinning operator which
meets the following requirements: (i) it is an extension of the binomial thinning operator;
(ii) it contains two parameters to achieve flexibility, (iii) it has a simple structure and is easy
to implement.

Based on the above considerations, we propose a new thinning operator based on
the extended binomial (EB) distribution. The operator has two parameters: real-valued α
and integer-valued m (0 ≤ α ≤ 1, m ≥ 2), which is more flexible compared to some single
parameter thinning, and the binomial thinning operator (1) can be regarded as a special
case of m = 2 in the EB thinning. The case of m > 2 in the EB thinning usually performs
better than m = 2 in some large value data sets. In other words, the EB thinning alleviates
the main defect of the binomial thinning to some extent. Since the EB thinning is not a
special case of the expectation thinning in [9], we have further extended the framework of
thinning-based INAR models to provide a new way in practical application. Therefore, an
INAR(1) model is proposed based on the EB thinning operator, which is an extension of the
model (2) and can more accurately and flexibly capture the dispersed features in real data.

This paper is organized as follows. In Section 2, we review the properties of the EB dis-
tribution and then introduce the EB thinning operator. Based on the new thinning operator,
we propose a new INAR(1) model. In Section 3, two-step conditional least squares estima-
tion is investigated for the innovation-free case of the model and the asymptotic property
of the estimator is obtained. The conditional maximum likelihood estimation is discussed
and the numerical simulations. In Section 4, we focus on forecasting and introduce two
criteria to compare the prediction results for three overdispersed or underdispersed real
data sets, which are considered to illustrate a better performance of the proposed model.
In Section 5, we give some conclusions and related discussions.

2. A New INAR(1) Model

The EB distribution comes from the theory about Pascal’s triangles, which can be
regarded as a multivariate case of the binomial distribution; see [11] for more details. Based
on this distribution, we introduce the EB thinning operator and propose a corresponding
INAR(1) model.
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2.1. EB Distribution

The EB random variable Xn(m, α), denoted as EB(m, n, α), which is defined as follows:

P(Xn(m, α) = r) = Cm(n, r)αrβ(m−1)n−r, 0 ≤ r ≤ (m − 1)n, (3)

where m and n are both integers satisfying m ≥ 2 and n ≥ 1; Cm(n, r) can be calculated as

Cm(n, r) =
s1

∑
s=0

(−1)s
(

n
s

)(
r + n − sm − 1

n − 1

)
,

where s1 = min{n, integer part in r/m}; and α and β in (3) satisfy the following restriction:

βm−1 + αβm−2 + α2βm−3 + . . . + αm−1 = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. (4)

The above restriction is equivalent to βm − αm = β − α. The mean and variance of EB
random variables Xn(m, α) are

E(Xn(m, α)) = nα
1 − mαm−1

β − α
, Var(Xn(m, α)) = nαβ

1 − m2(αβ)m−1

(β − α)2 ,

respectively. The pgf of Xn(m, α) can be written as G(t) = E(tXn(m,α)) =
( βm − αmtm

β − αt

)n
.

As Xn(m, α) can be expressed as a convolution, the EB distribution has the reproduc-
tive property. Specifically, if Y1, Y2, . . . , Yk are independent random variables with Yi ∼
EB(m, ni, α) in (3), then ∑k

i=1 Yi ∼ EB(m, ∑k
i=1 ni, α). Notice that random variable Yi ∼

EB(2, 1, α) is equivalent to a Bernoulli random variable satisfying P(Yi = 1) = 1 − P(Yi =
0) = 1 − α.

2.2. EB Thinning Operator

According to discussions in 2.1, we construct the EB thinning operator based on the
configuration of n = 1. Let {Ui(m, α)} be a sequence of i.i.d. random variables with
common distribution EB(m, 1, α), i.e., P(Ui(m, α) = z) = αzβ(m−1)−z, z = 0, . . . , m − 1,
where α and β satisfy (4). Note that the mean and variance of Ui are

μ = E(Ui) := α
1 − mαm−1

β − α
, σ2 = Var(Ui) := αβ

1 − m2(αβ)m−1

(β − α)2 . (5)

One can easily see that μ < σ2 if and only if

mαm−2(mβm − β + α) < 1. (6)

For any 3 ≤ m < ∞, the left-hand side of (6) approaches 0 as α → 0 and m as α → 1,
respectively. Hence, μ < σ2 or μ ≥ σ2 is possible. When m = 2, which corresponds to
the binomial distribution, and (5) gives μ = α and σ2 = αβ with α + β = 1, then we have
μ > σ2 for all 0 < α < 1. When α ≥ β and m → ∞, one can easily show that μ = θ/(1 − θ),
σ2 = θ/(1 − θ)2, where θ = α/β. Therefore, μ ≤ σ2 for all 0 < θ < 1 in this case.

Based on the reproductive property of the EB distribution, we define the EB thinning
operator "�" as follows: for a non-negative integer-valued random variable X,

(m, α)� X =
X

∑
i=1

Ui(m, α), X > 0,

where (m, α)� X = 0 if X = 0. Note that the EB thinning operator reduces to the binomial
operator (1) when m = 2. It is easy to know that (m, α)� X ≤ X or > X, so the EB thinning
operator is quite flexible when dealing with the overdispersed or underdispersed data sets.

213



Entropy 2021, 23, 62

Remark 1. The computation of (α, m) for given (μ, σ2) is based on (4) and (5). The solution can be
obtained by solving these nonlinear equations. When m = 3, β = (−α +

√
4 − 3α2)/2 and when

m = 4,

β =
3

√√√√−
(

10α3

27
− 1

2

)
+

√(
10α3

27
− 1

2

)2

+

(
2α2

9

)3

+
3

√√√√−
(

10α3

27
− 1

2

)
−
√(

10α3

27
− 1

2

)2

+

(
2α2

9

)3

− α

3
.

For more complex cases (m ≥ 5), we can derive the solution (α, β, m) by solving these
large-scale nonlinear systems, and a more detailed calculation procedure is given in Section 3.3.

2.3. EB-INAR(1) Model

Based on the EB thinning operator, we define the EB-INAR(1) model as follows:

Xt = (m, α)� Xt−1 + εt, t = 1, 2, . . . (7)

where α ∈ (0, 1), {Xt} is a sequence of non-negative integer-valued random variables; the
innovation process {εt} is a sequence of i.i.d. integer-valued random variables with finite
mean and variance; and εt is independent of {Xs, s < t}.

In order to obtain the estimation equations, we give some conditional or unconditional
moments of the EB-INAR(1) model in the following proposition.

Proposition 1. Suppose {Xt} is a stationary process defined by (7) and let μ < 1; then for t ≥ 1,

1. E(Xt|Xt−1) = μXt−1 + με;
2. E(Xt) =

με
1−μ ;

3. Var(Xt|Xt−1) = σ2Xt−1 + σ2
ε ;

4. Var(Xt) =
σ2με+σ2

ε (1−μ)
(1−μ)2(1+σ2)

;

5. Cov(Xt, Xt−h) = μhVar(Xt−h) and Corr(Xt, Xt−h) = μh, for h = 0, 1, 2, . . .

where με and σ2
ε are the expectation and variance of the innovation εt, respectively.

The proof of some of these properties mentioned above is given in Appendix A.

Remark 2. Inspired by the INAR(p) model in [12], we can further extend this model to INAR(p);
the EB-INAR(p) model is defined as follows:

Xt = (m, α1)� Xt−1 + . . . + (m, αp)� Xt−p + εt, t = 2, 3, . . .

where α1, . . . , αp ∈ (0, 1), m is an integer satisfying m ≥ 2, {Xt} is a sequence of non-negative
integer-valued random variables, the innovation process {εt} is a sequence of i.i.d. integer-valued
random variables with finite mean and variance, and εt is independent with {Xs, s < t}.

We will show that the new model can accurately and flexibly capture the dispersion
features of real data in Section 4.

3. Estimation

We use the two-step conditional least squares estimation proposed by [13] to investi-
gate the innovation-free case and the asymptotic properties of the estimators are obtained.
Conditional maximum likelihood estimation for the parametric cases are also discussed.
Finally, we demonstrate the finite sample performance via simulation studies.
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3.1. Two-Step Conditional Least Squares Estimation

Denote θ1 = (μ, με)�, θ2 = (σ2, σ2
ε )

� and θ = (θ�1 , θ�2 )�. The two-step CLS estimation
will be conducted by the following two steps.
Step 1.1. The estimator for θ1.

Let g1(θ1, Xt−1) = E(Xt|Xt−1) = μXt−1 + με, q1t(θ1) = (Xt − g1(θ1, Xt−1))
2. Let

Q1(θ1) =
n

∑
t=1

q1t(θ1)

be the CLS criterion function. Then the CLS estimator θ̂1,CLS := (μ̂CLS, μ̂ε,CLS)
� of θ1 can be

obtained by solving the score equation ∂Q1(θ1)
∂θ1

= 0, which implies a closed-form solution:

θ̂1,CLS =

(
∑n

t=1 X2
t−1 ∑n

t=1 Xt−1

∑n
t=1 Xt−1 n

)−1(
∑n

t=1 XtXt−1
∑n

t=1 Xt

)
.

Step 1.2. The estimator for θ2.
Let Yt = Xt − E(Xt|Xt−1), g2(θ2, Xt−1) = Var(Xt|Xt−1) =σ2Xt−1 + σ2

ε . Then

E(Y2
t |Xt−1) = E((Xt − E(Xt|Xt−1)

2)|Xt−1)

= Var(Xt|Xt−1) = g2(θ2, Xt−1).

Let q2t(θ2) = (Y2
t − g2(θ2, Xt−1))

2; then the CLS criterion function for θ2 can be
written as

Q2(θ2) =
n

∑
t=1

q2t(θ2).

By solving the score equation ∂Q2(θ2)
∂θ2

= 0, we can obtain the CLS estimator θ̂2,CLS :=
(σ̂2

CLS, σ̂2
ε,CLS)

� of θ2, which also is a closed-form solution:

θ̂2,CLS =

(
∑n

t=1 X2
t−1 ∑n

t=1 Xt−1

∑n
t=1 Xt−1 n

)−1(
∑n

t=1 Y2
t Xt−1

∑n
t=1 Y2

t

)
.

Step 2. Estimating parameters (m, α) via the method of moments.
The estimator (m̂, α̂) of (m, α), which is called a two-step CLS estimator, can be

obtained by solving the following estimation equations:⎧⎨⎩μ̂CLS = α 1−mαm−1

β−α ,

σ̂2
CLS = αβ

1−m2(αβ)m−1

(β−α)2 ,
(8)

where α and β satisfy (4).
Therefore, the resulting CLS estimator is Θ̂CLS = (m̂CLS, α̂CLS, μ̂ε,CLS, σ̂2

ε,CLS)
�. To

study the asymptotic behaviour of the estimator, we make the following assumptions:

Assumption 1. {Xt} is a stationary and ergodic process;

Assumption 2. EX4
t < ∞.

Proposition 2. Under assumptions 1 and 2, the CLS estimator θ̂1,CLS is strongly consistent and
asymptotically normal:

√
n(θ̂1,CLS − θ1,0)

L−→ N(0, V−1
1 W1V−1

1 ),
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where V1 := E
(

∂
∂θ1

g1(θ1,0, X0)
∂

∂θ�1
g1(θ1,0, X0)

)
, W1 := E

(
q11(θ1,0)

∂
∂θ1

g1(θ1,0, X0)
∂

∂θ�1

g1(θ1,0, X0)
)

, and θ1,0 = (μ0, με0) denotes the true value of θ1.

To obtain the asymptotic normality of θ̂2,CLS, we make a further assumption:

Assumption 3. EX6
t < ∞.

Then we have the following proposition.

Proposition 3. Under assumptions 1 and 3, the CLS estimator θ̂2,CLS is strongly consistent and
asymptotically normal:

√
n(θ̂2,CLS − θ2,0)

L−→ N(0, V−1
2 W2V−1

2 ),

where V2 := E
(

∂
∂θ2

g2(θ2,0, X0)
∂

∂θ�2
g2(θ2,0, X0)

)
, W2 := E

(
q21(θ2,0)

∂
∂θ2

g2(θ2,0, X0)
∂

∂θ�2

g2(θ2,0, X0)
)

, and θ2,0 = (σ2
0 , σ2

ε0
) denotes the true value of θ2.

Based on Propositions 2 and 3 and Theorem 3.2 in [14], we have the following proposition.

Proposition 4. Under assumptions 1 and 3, the CLS estimator θ̂CLS = (θ̂1,CLS, θ̂2,CLS)
� is

strongly consistent and asymptotically normal:

√
n(θ̂CLS − θ0)

L−→ N(0, Ω),

where

Ω =

(
V−1

1 W1V−1
1 V−1

1 MV−1
2

V−1
2 M�V−1

1 V−1
2 W2V−1

2

)
,

M = E
(√

q11(θ1,0)q21(θ2,0)
∂

∂θ1
g1(θ1,0, X0)

∂
∂θ�2

g2(θ2,0, X0)
)

, and θ0 = (θ1,0, θ2,0)
� denotes the

true value of θ.

We do the following preparation to establish Proposition 5. Based on (5), solve the
equation about (m, α), and denote the solution as (h1(μ, σ2), h2(μ, σ2)). Let

D = D(μ, σ2) =

(
∂h1/∂μ ∂h1/∂σ2

∂h2/∂μ ∂h2/∂σ2

)
. (9)

Based on Proposition 4, we state the strong consistency and asymptotic normality of
(m̂, α̂)� in the following proposition.

Proposition 5. Under assumptions 1 and 3, the CLS estimator (m̂CLS, α̂CLS)
� is strongly consis-

tent and asymptotically normal:

√
n
(

m̂CLS − m0
α̂CLS − α0

)
L−→ N(0, DΣD�),

where D is given in (9); Σ = diag(IV−1
1 W1V−1

1 I�, IV−1
2 W2V−1

2 I�) with I = (1, 0); m0 and α0
denote the true values of m and α, respectively.

The brief proofs of Propositions 2–5 are given in Appendix A.
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3.2. Conditional Maximum Likelihood Estimation

We maximize the likelihood function with respect to the model parameters θ =
(m, α, δ) to get the conditional maximum likelihood (CML) estimate of the parametric case

L(X1 = x1, . . . , XN = xN |θ) = Pθ(X1 = x1)
N

∏
i=1

Pθ(Xi = xi|Xi−1 = xi−1, . . . , X1 = x1)

= Pθ(X1 = x1)
N

∏
i=1

Pθ(Xi = xi|Xi−1 = xi−1),

where δ is the parameter of εi, PX1 is the pmf for X1 and Pθ(Xi+1|Xi) is the conditional
pmf. Since the marginal distribution is difficult to obtain in general, a simple approach
is conditional on the observed X1. By essentially ignoring the dependency on the initial
value and considering the CML estimate given X1 as an estimate for θ by maximizing the
conditional log-likelihood

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log Pθ(Xi|Xi−1)

over Θ, we denote the CML estimate by θ̂ = (m̂, α̂, δ̂). The log-likelihood function is
as follows:

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log
{min{(m−1)xi−1,xi}

∑
w=0

Cm(xi−1, w)αwβ(m−1)xi−1−w · P(εi = xi − w)
}

,

where α and β satisfy (4); εi follows a non-negative discrete distribution with a parameter
δ. In what follows, we consider two cases: m = 3, 4.

Case 1: For m=3 with Poisson innovation, i.e., εt ∼ P(δ).

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log

{
min{2xi−1,xi}

∑
w=0

xi−1− w
2

∑
t1=max{0,xi−1−w}

(
xi−1

t1

)(
xi−1 − t1

2xi−1 − 2t1 − w

)

· (β2)t1(αβ)2xi−1−2t1−w(α2)t1−xi−1+w δ(xi−w)

(xi − w)!
e−δ

}
,

where β is given in Remark 1.
Case 2: For m=4 with geometric innovation, i.e. εt ∼ Ge(δ) = (1 − δ)kδ for k =

0, 1, 2, . . .

l(X1 = x1, . . . , XN = xN |θ) =
N

∑
i=2

log

{
min{3xi−1,xi}

∑
w=0

xi−1− w
3

∑
t1=xi−1−w

3xi−1−3t1−w
2

∑
t2=max{0,2xi−1−2t1−w}

(
xi−1

t1

)(
xi−1 − t1

t2

)

·
(

xi−1 − t1 − t2

3xi−1 − 3t1 − 2t2 − w

)
(β3)t1(αβ2)t2(α2β)3xi−1−3t1−2t2−w

· (α3)2t1+t2−2xi−1+w(1 − δ)(xi−w)δ

}
,

where β is given in Remark 1. For higher order m, the formula is a little tedious, which is
omitted here. For the estimate of EB-INAR(p), the CML estimation is too complicated, but
the two-step CLS estimation is quite feasible, the procedure is similar to the case of p = 1.
For this reason, we only consider the case of EB-INAR(1) in simulation studies.
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3.3. Simulation

A Monte Carlo simulation study was conducted to evaluate the finite sample per-
formance of the estimator. For CLS estimation, we used the package BB in R for solving
and optimizing large-scale nonlinear systems to solve Equations (4) and (8). For CML
estimation, we used the package maxLik in R to maximize the log-likelihood function.

We considered the following configurations of the parameters:

• Poisson INAR(1) models with θ = (m, α, δ)� :
(A1) = (3, 0.2, 1)�; (A2) = (3, 0.1, 0.5)�; (A3) = (4, 0.2, 1)�; (A4) = (4, 0.1, 0.5)�;

• Geometric INAR(1) models with θ = (m, α, δ)� :
(B1) = (3, 0.3, 0.5)�; (B2) = (3, 0.4, 2/3)�; (B3) = (4, 0.3, 0.5)�; (B4) =
(4, 0.4, 2/3)�.

In simulations, we chose sample sizes n = 100, 200 and 400 with M = 500 replications
for each choice of parameters. The root mean squared error (RMSE) was calculated to
evaluate the performance of the estimator according to the following formula: RMSE =√√√√ 1

M − 1

M

∑
j=1

(ξ̂ j − ξ0)2, where ξ̂ j is the estimator of ξ0 in the jth replication.

For the CLS estimate, the solutions of (4) and (8) are sensitive to μ̂ and σ̂2, so we
adopted the following estimation procedure. First, calculate 500 groups of μ̂ and σ̂2

estimates, then use the mean values of μ̂ and σ̂2 to solve the Equations (4) and (8). The sim-
ulation results of CLS are summarized in Table 1. We found that the estimation values
are closer to the true value and the values of RMSE gradually decrease as the sample
size increases.

Table 1. Means of estimates, RMSEs (within parentheses) by CLS.

Case n m̂ α̂ δ̂

A1 100 2.9100 0.1758 1.0220(0.1595)
200 2.9219 0.1931 1.0142(0.1148)
400 2.9995 0.1984 1.0090(0.0771)

A2 100 2.7628 0.0886 0.5014(0.0893)
200 2.8169 0.0873 0.5049(0.0668)
400 2.9132 0.0942 0.5004(0.0449)

A3 100 3.7885 0.1713 1.0265(0.1594)
200 3.8450 0.1902 1.0165(0.1127)
400 3.8957 0.1952 1.0113(0.0789)

A4 100 3.8421 0.0912 0.5059(0.0912)
200 3.8483 0.0912 0.5031(0.0603)
400 3.9590 0.0981 0.5012(0.0439)

B1 100 2.9074 0.3122 0.4981(0.0511)
200 2.9588 0.3115 0.5008(0.0365)
400 2.9858 0.3087 0.4984(0.0270)

B2 100 3.0719 0.3841 0.6578(0.0553)
200 3.0523 0.3877 0.6569(0.0400)
400 3.0986 0.3924 0.6600(0.0307)

B3 100 3.6127 0.2703 0.4962(0.0536)
200 3.7937 0.2961 0.4980(0.0404)
400 3.9217 0.2984 0.4970(0.0269)

B4 100 3.9575 0.3935 0.6417(0.0653)
200 4.0388 0.3929 0.6556(0.0478)
400 4.0027 0.3953 0.6606(0.0353)

Note: RMSE, root mean squared error.
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As it is a little difficult to estimate the parameter m in CML estimation, we considered
m as known. The simulation results of CML estimators are given in Table 2. For all cases,
all estimates generally show small values of RMSE, and the values of RMSE gradually
decrease as the sample size increases.

Table 2. Means of estimates, RMSEs (within parentheses) by CML.

Case n 100 200 400

A1 α̂ 0.1858(0.0656) 0.1927(0.0476) 0.1970(0.0347)
δ̂ 1.0070(0.1420) 1.0043(0.1057) 1.0057(0.0806)

A2 α̂ 0.1041(0.0575) 0.1027(0.0453) 0.0973(0.0357)
δ̂ 0.4939(0.0804) 0.4964(0.0593) 0.4973(0.0422)

A3 α̂ 0.1827(0.0592) 0.1923(0.0406) 0.1966(0.0306)
δ̂ 1.0186(0.1358) 1.0030(0.1059) 1.0002(0.0789)

A4 α̂ 0.0938(0.0500) 0.0940(0.0414) 0.0987(0.0342)
δ̂ 0.4993(0.0790) 0.5052(0.0583) 0.4967(0.0420)

B1 α̂ 0.2982(0.0456) 0.2980(0.0329) 0.2992(0.0237)
δ̂ 0.5086(0.0469) 0.5013(0.0323) 0.5016(0.0224)

B2 α̂ 0.3888(0.0455) 0.3949(0.0331) 0.3980(0.0222)
δ̂ 0.6685(0.0501) 0.6681(0.0374) 0.6664(0.0256)

B3 α̂ 0.2904(0.0441) 0.2958(0.0276) 0.2990(0.0219)
δ̂ 0.5039(0.0480) 0.5003(0.0338) 0.5006(0.0264)

B4 α̂ 0.3867(0.0348) 0.3940(0.0240) 0.3965(0.0163)
δ̂ 0.6650(0.0539) 0.6674(0.0382) 0.6662(0.0271)

Note: RMSE, root mean squared error.

4. Real Data Examples

In this section, three real data sets, including overdispersed and underdispersed
settings, are considered to illustrate the better performance of the proposed model. The first
example is overdispersed crime data in Pittsburgh; the second is overdispersed stock data in
New York Stock Exchange (NYSE); and the third is underdispersed crime data in Pittsburgh,
which was also analyzed by [15]. As is well known, in time series analysis, forecasting is
very important in model evaluation. We first introduce two criteria on forecasting, and
other preparations.

4.1. Forecasting

Before introducing the evaluation criterion, we briefly introduce the basic procedure
as follows: First, we divide the n1 + n2 data into two parts, the training set with the first n1
data and the prediction set with the last n2 data. The training set is used to estimate the
parameters and evaluate the fitness of the model. Then we can evaluate the efficiency of
each model by comparing the following criteria between prediction data and the real data
in the prediction set.

Similar to the procedure in [16], which performs an out-of-sample experiment to
compare forecasting performances of two model-based bootstrap approaches, we introduce
the forecasting procedure as follows: For each t = (n1 + 1), . . . , (n1 + n2 − 5) we estimate
an INAR(1) model for the data x1, . . . , xt, then we use the fitted result based on x1, . . . , xt
to generate the next five forecasts, which is called the 5-step ahead forecast xF

t+1, . . . , xF
t+5

for each t in {(n1 + 1), . . . , (n1 + n2 − 5)}, where xF
t is the forecast at time t. In this way we

obtain many sequences of 1, 2, . . . , 5 step-ahead forecasts, finally we replicate the whole
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procedure P times. Then we can evaluate the point forecast accuracy by the forecast mean
square error (FMSE) defined as

FMSE =
1
P

n2

∑
i=(n1+1)

(xi − xF
i )

2,

and forecast mean absolute error (FMAE) defined as

FMAE =
1
P

n2

∑
i=(n1+1)

|xi − xF
i |,

where xi is the true value of the data, xF
i is the mean of all the forecasts at i and P is the

number of replicates.

4.2. Overdispersed Cases

We consider two overdispersed data sets, the first one contains 144 observations
and represents monthly tallies of crime data from the Forecasting Principles website
http://www.forecastingprinciples.com, and these crimes are reported in the police car
beats in Pittsburgh from January 1990 to December 2001; the second one is Empire District
Electric Company (EDE) data set from the Trades and Quotes (TAQ) set in NYSE, which
contains 300 observations, and it was also analyzed by [17].

4.2.1. P1V Data

The 45th P1V (Part 1 Violent Crimes) data set contains crimes of murder, rape, robbery
and other kinds; see more details in the data dictionary on the Forecasting Principles web-
site. Figure 1 plots the time series plot, the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of 45th data of P1V series, respectively. The maximum
value of the data is 15 and the minimum is 0; the mean is 4.3333; the variance is 7.4685.
From the ACF plot, we found that the data are dependent. From the PACF plots, we can
see that only the first sample is significant, which strongly suggests an INAR(1) model.

First, we divided the data set into two parts–the training set with the first n1 = 134
counting data and the prediction set with the last n2 = 10 data. We fit the training set
by the following models: expectation thinning INAR(1) (ETINAR(1)) model in [9], GSC
thinning INAR(1) (GSCINAR(1)) model in [10], the binomial thinning INAR(1) model and
EB thinning EB-INAR(1) models with m = 3, 4. According to the mean and variance of P1V
data, we used one of the most common settings–geometric distribution–as the distribution
of the innovation in above models.

In order to compare the effectiveness of the models, we consider the following evalua-
tion criteria: (1) AIC. (2) The mean and standard error of Pearson residual rt and its related
Ljung–Box statistics, where the Pearson residuals are defined as

rt =
Xt − μ̂Xt−1 − μ̂ε

[σ̂2Xt−1 + σ̂2
ε ]

1
2

, t = 1, 2, . . . ,

where μ̂ and σ̂2 are the estimated expectation and variance for related thinning operators,
respectively. (3) Three goodness-of-fit statistics: RMS (root mean square error), MAE
(mean absolute error) and MdAE (median absolute error), where the error is defined by
Xt − E(Xt|Xt−1), t = 1, . . . , n1. (4) The mean of the data x̂ on the training set calculated by
the estimated results.

Next, focusing on forecasting, we generated P = 100 replicates based on the training
set for each model. Then we calculated the FMSE and FMAE for each model.

All results of the fitted models are given in Table 3. There is no evidence of any
correlation within the residuals of all five models, which is also supported by the Ljung–
Box statistic based on 15 lags (because χ2

0.05(14) = 23.6847). There were no significant
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differences for the RMS, MAE, MdAE and x̂ values (the true mean of the 134 training set
was 4.3880) of the models. In other words, no model performed the best in terms of these
four criteria, so we also considered AIC. Since the CML estimator cannot be adopted in
GSCINAR(1), one can only compare other criteria.

Considering the fitness on the training set, the EB-INAR(1) with m = 3 has the
smallest AIC, EB-INAR(1) with m = 4 has almost the same AIC as m = 3. For the results on
forecasting, EB-INAR(1) with m = 4 has the smallest FMSE and the second smallest FMAE
among all models. EB-INAR(1) with m = 3 has the second smallest FMSE and the smallest
FMAE. Based on these results, we conclude that EB-INAR(1) with m = 3, 4 performs better
than INAR(1), ETINAR(1) and GSCINAR(1).
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Figure 1. The data, autocorrelation function (ACF) and partial autocorrelation function (PACF) of
45th P1V series.

4.2.2. Stock Data

We analyzed another overdispersed data set of Empire District Electric Company
(EDE) from the Trades and Quotes (TAQ) data set in NYSE. The data are about the number
of trades in 5 min intervals between 9:45 a.m. and 4:00 p.m. in the first quarter of 2005
(3 January–31 March 2005, 61 trading days). Here we analyze a portion of the data between
first to fourth trading days. As there are 75 5 min intervals per day, the sample size was
T = 300.

Figure 2 plots the time series plot, the ACF and the PACF of the EDE series. The maxi-
mum value of the data is 25 and the minimum is 0; the mean is 4.6933; and the variance
is 14.1665. It seems that the series is not completely stationary with several outliers or
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influential observations based on the time series plot. Zhu et al. [18] analyzed the Poisson
autoregression for the stock transaction data with extreme values, which can be considered
in the current setting. From the ACF plot, we found that the data are dependent. From the
PACF plots, we can see that only the first sample is significant, which strongly suggests
an INAR(1) model. We used the same procedures and criteria as before. We used the
geometric distribution as the distribution of the innovation in above models.

First divide the data set into two parts–the training set with the first n1 = 270 data
and the prediction set with the last n2 = 30 data. All results of the fitted models are given
in Table 4. Among all models, EB-INAR(1) with m = 4 has the smallest AIC, and there
is no evidence of any correlation within the residuals of all five models, which is also
supported by the Ljung–Box statistic based on 15 lags. There are no significant differences
for the RMS, MAE, MdAE and x̂ values (the true mean of the 270 training set was 4.3407)
of all considered models. For the results of prediction, EB-INAR(1) with m = 4 has the
smallest FMSE and FMAE among all models. Based on the above results, we conclude that
EB-INAR(1) with m = 4 performs best for this data set.
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Figure 2. The data, ACF and PACF of first to fourth trading days of EDE series.
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4.3. Underdispersed Case

The 11th FAMVIOL data set contains the crimes of family violence, which can also
be obtained from the Forecasting Principles website. Figure 3 plots the time series plot,
the ACF and the PACF of the 11th data set of FAMVIOL series. The maximum value of
the data is 3 and the minimum is 0; the mean is 0.4027; and the variance is 0.3820. We use
the procedures and criteria in Section 4.2.1 to compare different models. According to the
mean and the variance of FAMVIOL data, we use one of the most common settings-Poisson
distribution as the distribution of the innovation in above models.

All results of the fitted models are given in Table 5. There is no evidence of any
correlation within the residuals of all five models, which is also supported by the Ljung–
Box statistic based on 15 lags. There are no significant differences about the criteria on
the fitness and forecasting of all models. ETINAR(1) with the biggest AIC, performed the
worst in these models.

Now let us have a brief summary. For the P1V data and stock data, which are
overdispersed with slightly high-count data, the EB-INAR(1) of m > 2 is obviously better
than m = 2. For the FAMVIOL data, which is underdispersed with small-count data,
the EB-INAR(1) with m > 2 is also competitive.
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Figure 3. The data, ACF and PACF of the 11th data set of the FAMVIOL series.
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5. Conclusions

This paper proposes an EB-INAR(1) model based on the newly constructed EB thin-
ning operator, which is an extension of the thinning-based INAR models. We gave the
estimation method for parameters and established the asymptotic properties of the es-
timators for the innovation-free case. Based on the simulations and real data analysis,
the EB-INAR(1) model can accurately and flexibly capture the dispersion features of the
data, which shows its effectiveness and practicality. Compared with other models, such as
ETINAR(1) and GSCINAR(1), our model is competitive.

We point out that many existing integer-valued models can be generalized by replacing
the binomial thinning operator with the EB thinning operator, such as those models
in [19–23]. In addition, we can extend the considered first-order INAR model to the higher-
order one. More research will be studied in the future.
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Appendix A

Proof of Proposition 1. Since 1–4 are easy to verify, we only prove 5. By the law of total
covariance, we have

Cov(Xt, Xt−h) = Cov
(
E(Xt|Xt−1, . . . ), E(Xt−h|Xt−1, . . . )

)
+ E
(
Cov(Xt, Xt−h|Xt−1, . . . )

)
= Cov(μXt−1 + με, Xt−h)

+ E
(
E(Xt − E(Xt|Xt−1, . . . ))(Xt−h − E(Xt−h|Xt−1, . . . ))|Xt−1, . . .

)
= μ · Cov(Xt−1, Xt−h) + 0

= · · ·
= μh · Var(Xt−h).

Thus, the autocorrelation function Corr(Xt, Xt−h) = μh.

Proof of Propositions 2 and 3. Propositions 2 and 3 are similar to Theorems 1 and 2 in [8],
which can be proved by verifying the regularity conditions of Theorems 3.1 and 3.2 in [24].
For instance, in the proof of Proposition 2, the partial derivatives ∂g(α, Fm−1)/∂αi have
finite fourth moments in [24], which correspond to Assumption 2 in Section 3.1, u2

m(α)
in [24] is corresponds to q1t(θ1) in Step 1.1. Hence, Proposition 2 can be regarded as a direct
conclusion of Theorem 3.2.

Besides, the proof of Proposition 3 is similar to Proposition 2; the procedure is almost
the same as Theorem 3.2 in [24].

Proof of Proposition 4. Similarly to the Theorem in [25], based on Theorem 3.2 in [14],
we have

√
n(θ̂CLS − θ0)

L−→ N(0, Ω),

where

Ω =

(
V−1

1 W1V−1
1 V−1

1 MV−1
2

V−1
2 M�V−1

1 V−1
2 W2V−1

2

)
.
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Based on the proof of the Theorem in [25],
√

q1t(θ1) corresponds to ut and
√

q2t(θ2)
corresponds to Ut in [25]. Based on the result of V1, W1 in Proposition 2 and V2, W2 in

Proposition 3, we can obtain M = E
(√

q11(θ1,0)q21(θ2,0)
∂

∂θ1
g1(θ1,0, X0)

∂
∂θ�2

g2(θ2,0, X0)
)

.

Proof of Proposition 5. Since the solutions (h1(μ, σ2), h2(μ, σ2)) about (m, α) in (3.1) are
real-valued and have a nonzero differential, Proposition 5 is an application of the δ-method,
for example, which can be found in Theorem A on p.122 of [26].
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Abstract: A new integer-valued moving average model is introduced. The assumption of indepen-
dent counting series in the model is relaxed to allow dependence between them, leading to the
overdispersion in the model. Statistical properties were established for this new integer-valued
moving average model with dependent counting series. The Yule–Walker method was applied to
estimate the model parameters. The estimator’s performance was evaluated using simulations, and
the overdispersion test of the INMA(1) process was applied to examine the dependence between
counting series.

Keywords: integer-valued moving average model; counting series; dispersion test

1. Introduction

Integer-valued time series can be encountered in numerous fields, such as epidemi-
ology, insurance, and intraday stock transitions. The most widely used model is the
integer-valued autoregressive (INAR) model, a recursive model first introduced by Alzaid
and Al-Osh [1] and is similar to the traditional autoregressive (AR) model. Du and Li [2]
generalized the model to the p-th order (which was called INAR(p) model) and proved the
ergodic and Markov properties of the model. Similar to the continuous-valued moving av-
erage model, the q-th order integer-valued moving average model INMA(q) was introduced
by Al-Osh and Alzaid [3], which is a slightly different form proposed by McKenzie [4].

Many researchers generalize the INAR model to deal with different real-life situations.
Weiß [5] presented a new INAR(p) model showing possible marginal distributions of the
DSD family. This model overcomes the difficulty of choosing the appropriate marginal
distribution. Monteiro and Scotto [6] defined the periodic integer-valued autoregressive
model, driven by a periodic sequence of independent Poisson-distributed random vari-
ables. Weiß [7] proposed the extended Poisson INAR(1) model, where the innovations
are assumed to be serially dependent. Zhu [8] introduced a negative binomial INGARCH
model to handle integer-valued time series with overdispersion and potential extreme
observations. The study by Weiß [9] discussed threshold models for integer-valued time
series with infinite range and briefly discussed new models for counting data time series
with a finite range. Kang and Wang [10] generalized the mixture INAR(1) model based on
mixing Pegram and binomial thinning operator. Li and Wang [11] proposed the first-order
mixed integer-valued autoregressive process with zero-inflated generalized power series
innovations, which contains the commonly used zero-inflated Poisson and geometric dis-
tributions. To handle the non-stationary integer-valued time series with a large dispersion,
Kim and Park [12] introduced an integer-valued autoregressive process with a signed
binomial thinning operator (INARS(p)).

Various modified thinning operators have been proposed to capture the specificity
of real data, and many new INAR-type models have been defined. For example, Zheng
and Basawa [13] introduced the random coefficient thinning operator while Ristić and
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Bakouch [14] proposed the negative binomial thinning operator. The pth-order integer-
valued autoregressive process with signed generalized power series thinning operator was
proposed by Zhang et al. [15].

The most significant generalization of the thinning operator was made by Ristić
et al. [16] which they called the dependent Bernoulli thinning operator. They constructed
the new sequence of the Bernoulli random variable allowing correlation between counting
series. Based on this, Miletić Ilić et al. [17] proposed the new model, based on the mix of
regular binomial thinning and dependent thinning operator. For more details of thinning
operators, refer to Weiß [18].

MA-type models are very important in time series analysis. The method of moving av-
erage is generally popular in statistical and mathematical analyses. Some researchers study
forecasting using the moving average method. Winters [19] analyzed the exponentially
weighted moving average method for forecasting sales. Cox [20] proposed the weighted
moving average method to predict the Markov series. Landauskas et al. [21] introduced an
algebraic approach to select the appropriate weight coefficients for weight moving averages
performing better than classical moving average predictors. Wind speed prediction using
combined time series model and neural network prediction was studied by Nan et al. [22].
Other applied weight moving average methods in control charts. Alevizakos et al. [23]
proposed the triple exponentially weighted moving average control chart (TEWMA), which
improves the detection ability of the classical control chart. Capizzi and Masarotto [24]
proposed the adaptive exponentially weighted moving average control chart (AEWMA),
which weights past observations of the monitored process using a suitable function of
the current error. Adegoke et al. [25] studied the multivariate homogeneously weighted
moving average (MHWMA) control chart for monitoring a process mean vector.

Some researchers constructed MA-type models from the perspective of count time
series. Brännäs and Quoreshi [26] used the INMA process to model the number of transac-
tions for intraday stocks and extended the model to include explanatory variables. Brännäs
and Hall [27] mainly focused on the estimation in the INMA model. The construction of
the thinning operation from these studies is based on independent counting series, which
is a strong assumption. Thus, to make the model more flexible in capturing the specificity
of different data types, this assumption should be relaxed.

For small counts of intraday transactions in stocks per minute, the decision of buyer
or seller could be affected by the public news, which means decisions from different
individuals may not be uncorrelated. The change in inventories can sometimes be described
as an INMA process. However, during a certain period, the change can be influenced by
the same external factor. For the INMA model applying a discrete risk model, the number
of claims for certain insurance will be affected by the same factor, such as natural disasters.
Thus, these claims are no longer independent. The independence between counting
series should be relaxed. Allowing the correlation between counting series is natural,
and therefore the INMA model based on dependent counting series can be derived to
handle different real data situations.

The rest paper is organized as follows. Section 2 presents the model construction and
discussions on some relevant statistical properties, and Section 3 discussed the estimation of
unknown parameters. Section 4 shows the numerical simulation results and give dispersion
test for dependence between counting series, while the conclusions are given in Section 5.

2. The Model and Basic Properties

2.1. The Model Construction

The counting series {U}i∈N of the integer-valued model is defined as:

Ui = (1 − Vi)Wi + ViZ

{W}i∈N is a sequence of i.i.d random variable with Wi ∼ B(1, β), β ∈ [0, 1]. {V}i∈N
is a sequence of i.i.d random variable with Vi ∼ B(1, θ), θ ∈ [0, 1]. Z is a random
variable with Z ∼ B(1, β). The operator ◦θ is defined by β ◦θ εt = ∑εt

i=1 Ui, it is the depen-
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dent Bernoulli thinning operator, where εt is a non-negative integer-valued random vari-
able. Based on this construction, we can easily verify that E(Ui) = β, Var(Ui) = β(1 − β),
corr(Ui, Uj) = θ2, which has promising dependence between the counting series. Now we
generalize the dependent count series to the INMA(q) process, For convenience, we use ◦
instead of ◦θ to simplify the notation.

Definition 1 (Dependent Counting series Integer-valued Moving Average Model (DCINMA)).
The DCINMA(q) model is defined as:

Xt = εt + β1 ◦ εt−1 + . . . + βq ◦ εt−q

β j ◦ εt−j, j = 1, 2, . . . , q is the dependent Bernoulli thinning operator, and the following conditions
should be satisfied.

A1. {εt}t∈N is a sequence of i. i. d non-negative random variables.
A2. The counting variable {Ui}i∈N is independent of εt for any i, t.
A3. β j ◦ εt−j, for any j = 1, 2, . . . , q are mutually independent.

2.2. The Numerical Properties for DCINMA(q) Model

We denote με and σ2
ε as the mean and variance of term εt.

Theorem 1. The numerical characteristics of {Xt} in Definition 1 are as follows:

(i) E(Xt) = με(1 +
q
∑

i=1
βi)

(ii) Var(Xt) = σ2
ε +

q
∑

i=1
[μεβi + μ2

ε θ2βi(1 − βi)− με(θ2βi − θ2β2
i + β2

i ) + β2
i σ2

ε ]

(iii)

cov(Xt, Xt−k) =

{
σ2

ε ∑
q−k
i=0 βiβi+k k = 1, . . . , q

0 k ≥ q + 1

Proof. See Appendix A.

Theorem 2. {Xt} is the process defined in Definition 1, then {Xt} is a covariance stationary
process.

Proof. It can be seen from the Theorem 1 that the unconditional mean and unconditional
variance of Xt is a finite constant given the distribution of εt. Thus, Xt is a stationary
process.

Theorem 3. {Xt} is the process defined in Definition 1, then {Xt} is ergodic in mean and
autocovariance function.

Proof. See Appendix A.

2.3. The Probability Generating Functions for DCINMA Model

Ristić et al. [16] derived the probability generating function of the
n
∑

i=1
Ui as follows:

ΦU = E[s(U1+U2+...+Un)]

= (1 − β)(1 − β(1 − θ)(1 − s))n + β(1 − (β + θ − βθ)(1 − s))n

The above equation implies that the term
n
∑

i=1
Ui has a distribution of:

U1 + U2 + . . . + Un =

{
Bin(n, β(1 − θ)) w.p 1 − β

Bin(n, β + θ − βθ) w.p β
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Then the probability generating function (PGF) of {Xt} is:

φXn(s) = [(1 − β) · φε(1 − β(1 − θ)(1 − s)) + β · φε(1 − (β + θ − βθ)(1 − s))] · φε(s)

φε(s) is the probability generating function of the εt. Given the distribution of εt, the ex-
plicit expression of the probability generating function can be derived. Suppose Poisson
distribution of εt, then

φXn(s) = [(1 − β) · e−λβ(1−θ)(1−s) + βe−λ(β+θ−βθ)(1−s)] · e(λ(s−1))

The probability generating function is defined by the probabilities. The uniqueness
of a power series expansion implies that the probability generating function in turn de-
fines probabilities.

Therefore, we can derive the probability of {Xt}. For Xt = j, the probability mass
function of Xt is:

P(Xt = j) = [
1
j!

djφ(s)
dsj ]s=0

The bivariate probability generating function of {Xt} is ΦXt ,Xt−1(s1, s2). Thus, deriving
the explicit expression of bivariate probability generating function with Poisson innovation
is easy for DCINMA(1) process.

E(sXt
1 sXt−1

2 ) = E(sβ◦εt−1+εt
1 · sβ◦εt−2+εt−1

2 )

= E(sβ◦εt−1
1 · sεt

1 · sβ◦εt−2
2 · sεt−1

2 )

= E(sεt
1 ) · E(sβ◦εt−2

1 ) · E(sβ◦εt−2
1 · sεt−1

2 )

Given the Poisson distribution of the innovation term, we can obtain:

E(sεt
1 ) = eλ(s1−1), E(sβ◦εt−1

2 ) = (1 − β) · e−λβ(1−θ)(1−s2) + β · e−λ(β+θ−βθ)(1−s2)

E(sβ◦εt−1
1 · sεt−1

2 ) = (1 − β) · eλs2[1−β(1−θ)(1−s2)] + β · eλs2[(1−β−θ−βθ)(1−s1)].

2.4. Compare with the INMA(q) Model

The mean and the covariance of the q-th order integer-valued moving average model
has the same expression, and the variance of the INMA(q) process is:

Vinma = σ2
ε +

q

∑
i=1

[σ2
ε βi + μεβi(1 − βi)]

From Theorem 1, the variance of the DCINMA process presents a more complicated
expression than the INMA(q) process due to the correlation between the counting series
of parameter θ. For the Poisson innovation, the overdispersion index of the INMA and
DCINMA model is as follows:

Iinma = 1, Idinma =
1 + β + βλθ2(1 − β)

1 + β

Since the value of λ, β and θ are all non-negative, the term 1+ βλθ2(1 − β) > 1. When
two models (INMA(1) and DCINMA(1)) share the same λ and β, the θ will determine
whether there is dependence between counting series (θ �= 0). Thus, if we want to test
θ = 0, it is equivalent to evaluating whether the model is overdispersed. If the value of θ is
0, the model degenerates to INMA model.
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2.5. Compare the Entropy with INMA(1) Model

Entropy is an important concept in physics, but it can also be applied to other dis-
ciplines, including cosmology and economics. Entropy is a measure of the randomness
or disorder of a system. In our case, entropy can be seen as a dispersion measure for the
model. Thus, we evaluate the model from the perspective of entropy. The definition of
Shannon entropy as follows:

H(Y) = −
n

∑
i=1

p(yi) · lnp(yi)

where Y is a discrete random variable with probability mass function taking values on
y1, . . . , yn. We denote the φdinma(s) and φinma(s) as probability generating functions of the
DCINMA(1) and INMA(1) process, respectively. Suppose the same innovation term for the
two models follows the Poisson distribution. We can rewrite the probability generating
function of them as:

φdinma(s) = (1 − β) · e(s−1)·[λβ(1−θ)+λ] + β · e(s−1)·[λ(β+θ−βθ+λ)]

φinma(s) = e(s−1)·(λβ+λ)

Thus, we can conclude the distribution of DCINMA(1) and INMA(1) process based
on the definition of the probability generating function. Xinma(1)

t and Xdinma(1)
t denote the

sample from INMA(1) model and DCINMA(1) model.

Xinma(1)
t ∼ Poi(λβ + λ)

Xdinma(1)
t ∼

{
Poi(λβ(1 − θ) + λ) w.p 1 − β

Poi(λ(β + θ − βθ) + λ) w.p β

The Shannon entropy for both models can be derived as follows:

H(Xinma(1)
t ) = (λβ + λ)[1 − log((λβ + λ))] + e(λβ+λ) ·

∞

∑
k=0

(λβ + λ)klog(k!)
k!

H(Xdinma(1)
t ) = (1 − β) · {(λβ(1 − θ) + λ)[1 − log((λβ(1 − θ) + λ))]

+ e(λβ(1−θ)+λ) ·
∞

∑
k=0

(λβ(1 − θ) + λ)klog(k!)
k!

}

+ β · {(λ(β + θ − βθ) + λ)[1 − log((λ(β + θ − βθ) + λ))]

+ e(λ(β+θ−βθ)+λ) ·
∞

∑
k=0

(λ(β + θ − βθ) + λ)klog(k!)
k!

}

The expression of entropy for the DCINMA(1) model is more complicated than the
INMA(1) model due to the additional parameter θ.

3. Parameter Estimation

The estimation of the INMA model is complicated. Brännäs and Hall [27] discussed
the Yule–Walker estimator, generalized moment method (GMM) based on the probability
generating function (PGF) function, and the conditional least square method. Here, we did
not attempt to use maximum likelihood estimation, which requires density functions that
are generally not easily obtained in the INMA model, especially for this dependent situation.
The results of generalized moments method-based probability generating function (PGF)
function estimator are highly correlated with the values of z1 and z2 in Φk(z1, z2), which
are not stable. On the other hand, for the conditional least square method, the number of
estimation equations are less than the number of parameters. This means that there is an
additional parameter θ to be estimated.
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Therefore, we derive the Yule–Walker estimator to obtain the unknown parameters
for the Poisson DCINMA(q) model. We denote the following symbols: μX is the sample
mean of {Xt}, με is the mean of innovation term εt. γ0 is the sample variance of {Xt},
γ1, γ2, . . . , γq are the sample covariance of 1-th, 2-th,. . . , q-th order. The β0 for the equations
below is 1.

Then, the unknown parameters in the DCINMA(q) model can be solved by equations
through the sample moments function, which is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μX = με(1 + β1 + β2 + . . . + βq)

γ0 = σ2
ε +

q
∑

i=1
[μεβi + μ2

ε θ2βi(1 − βi)− με(θ2βi − θ2β2
i + β2

i ) + β2
i σ2

ε ]

γ1 = λ(β0β1 + β1β2 + . . . + βq−1βq)

γ2 = λ(β0β2 + β1β3 + . . . + βq−2βq)
...

γq−1 = λ(β0βq−1 + β1βq)

γq = λ(β0βq)

4. Simulation Study

4.1. Estimation of the Model Parameters

In this section, we present some simulation results to show the performance of
the estimator using different sample sizes. (n = 100, 300, 700, 1000). We focused on
the Poisson DCINMA(1) model. The three group parameter values considered in this
model are as follows:

Model A: (λ = 1, θ = 0.6, β = 0.2)
Model B: (λ = 4, θ = 0.7, β = 0.1)
Model C: (λ = 5, θ = 0.5, β = 0.1)

We used the above parameter groups to generate the data and applied Yule–Walker
method, then computed the bias and standard error based on 10,000 replications for each
parameter group. The estimation results and their performance are reported in Table 1.

As shown in Table 1, we obtained nearly convergent estimators in all cases. In all
cases, as the sample size increased, the bias decreased.

Table 1. Some numerical results of the estimates for true values of the parameters λ, θ and β.

Sample Size λ̂ θ̂ β̂

(a) True values: λ = 1, θ = 0.6, β = 0.2

100 0.9875 0.5999 0.2641
Bias 0.0124 0.0001 −0.0641

Standard Error 0.1755 0.2065 0.1705

300 0.9858 0.6192 0.2627
Bias 0.0141 −0.0192 −0.0627

Standard Error 0.1082 0.2049 0.1085

700 0.9831 0.6489 0.2663
Bias 0.0168 −0.0489 −0.0663

Standard Error 0.0699 0.1922 0.0717

1000 0.9817 0.6718 0.2684
Bias 0.0182 −0.0718 −0.0684

Standard Error 0.0597 0.1829 0.0600
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Table 1. Cont.

Sample Size λ̂ θ̂ β̂

(b) True values: λ = 4, θ = 0.7, β = 0.1

100 3.7816 0.6173 0.1690
Bias 0.2183 0.0826 −0.0690

Standard Error 0.5296 0.2031 0.1353

300 3.8872 0.6611 0.1394
Bias 0.1127 0.0388 −0.0394

Standard Error 0.3364 0.1767 0.0855

700 3.9123 0.7208 0.1324
Bias 0.0876 −0.0208 −0.0324

Standard Error 0.2337 0.1353 0.0599

1000 3.9144 0.7430 0.1322
Bias 0.0855 −0.0430 −0.0322

Standard Error 0.2012 0.1142 0.0514

(c) True values: λ = 5, θ = 0.5, β = 0.1

100 4.7799 0.5709 0.1556
Bias 0.2200 −0.0709 −0.0556

Standard Error 0.5777 0.2059 0.1142

300 4.9129 0.5703 0.1279
Bias 0.0870 −0.0703 −0.0279

Standard Error 0.3715 0.1852 0.0730

700 4.9343 0.5688 0.1243
Bias 0.0656 −0.0688 −0.0243

Standard Error 0.2615 0.1529 0.0520

1000 4.9340 0.5738 0.1245
Bias 0.0659 −0.0738 −0.0245

Standard Error 0.2211 0.1330 0.0442

4.2. Testing for Dependence between Counting Series

From Section 2.5, when the two processes have the same λ and β, the DCINMA
model always presents overdispersion due to θ. We tested whether the value of θ is 0,
which is equivalent to assessing whether the DCINMA process presents overdispersion.
Aleksandrov and Weiß [28] proposed the diagnostic test for the INMA process. In this
section, only the overdispersion test was applied. Under the null hypothesis H0 : θ = 0
(the process does not present overdispersion), the distribution of index dispersion has the
following form:

Îdisp
d−→ N(1 − 1

T
1 + 3β

1 + β
,

1
T
(2 + 4(

β

1 + β
)2))

We then analyzed the simulation results to assess the performance of the overdisper-
sion test. The nominal level α = 0.05 was employed, for sample sizes, n = 100, 150, 250. We
did 1000 replications to calculate the size and power of the test. The following parameter
groups were considered:

Model D: (λ = 3, θ=0.4, β = 0.5)
Model E: (λ = 5, θ=0.4, β = 0.3)
Model F: (λ = 6, θ=0.3, β = 0.4)
Model G: (λ = 7, θ=0.7, β = 0.8)

From Table 2, given the same values for λ and β, under the null hypothesis, θ = 0,
the size of Îdisp are close to nominal level. Under the alternative situation, θ �= 0, for all
cases, as n increase the power quickly increases to 1.
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Table 2. Size and power of DCINMA(1) and INMA(1) model.

λ β θ
n

100 250 500

3 0.4 0 0.054 0.057 0.058
0.5 0.431 0.877 0.937

5 0.4 0 0.053 0.057 0.047
0.3 0.447 0.824 0.901

6 0.3 0 0.052 0.055 0.047
0.4 0.63 0.8 0.99

7 0.7 0 0.052 0.046 0.053
0.8 0.998 1 1

5. Real Data Example

We then applied the proposed model to a real dataset. Unlike the integer-valued
autoregressive model, since the density function of this DCINMA process is hard to obtain,
the Akaike information criterion (AIC) is difficult to use in measuring the fitness of such an
INMA-type model. To assess the performance of the model, we adapted the parametric
resampling method by Jung et al. [29].

We used crime data available from the Forecasting Principles site. The data consist of
144 observations of monthly larceny counts for the City of Pittsburgh from January of 1990
to December of 2001. It would be highly improbable for criminals to remain in the same
place for a long time. They probably would flee in various directions to commit offenses,
so that the INMA-type model is appropriate in this case.

The calculated of sample mean (4.73) and variance (6.40) suggest that the dataset is
overdispersed. In addition, the sample autocorrelation function (ACF) in Figure 1 shows
that the order of the model should be set to one. We fitted the data set into the DCINMA(1)
model and INMA(1) model to evaluate the model performance for overdispersed data. The
estimation results for the two models are presented in Table 3.

Table 3. Estimation results of DCINMA(1) and INMA(1) model.

λ β θ

DCINMA(1) 3.21 0.47 0.80
INMA(1) 3.82 0.24 0

The parametric resampling method can be performed in several steps:
Step 1: Generate samples with length equal to the original dataset from the fitted

model for R times.
Step 2: Compute the autocorrelation function (ACF) for each sample series. Then

derive the empirical sample autocorrelation function (ACF) for the different lag orders.
Step 3: Using the results from Step 2, compute the 100(1 − α/2) and

100(α/2) quantiles.
For the given example, R was set to 5000, and α was set to 0.05. We plotted the

acceptance envelope for DCINMA(1) model and INMA(1) model, and the results are
shown in Figures 2 and 3. The sample autocorrelations for the real dataset lie within
the acceptance envelopes of the DCINMA(1) model except for only one point, while the
important second order of the autocorrelation function (ACF) exceed the upper bound of
the acceptance envelopes of the INMA(1) model. It is clear that the acceptance envelopes
of the DCINMA(1) model performs better than the acceptance envelopes of the INMA(1)
model. Thus, the proposed model is suitable for this dataset, adequately representing the
autocorrelation for real dataset.
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Figure 1. Time series plot (top figure) and autocorrelation function (below figure panel) for actual
Larceny dataset.

Figure 2. Acceptance envelope of the DCINMA(1) model for the autocorrelation function for the
larceny dataset.
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Figure 3. Acceptance envelope of the INMA(1) model for the autocorrelation function for the
larceny dataset.

6. Conclusions

In this paper, we constructed a new integer-valued moving average model with depen-
dent counting series. The statistical properties of the proposed model were discussed and
evaluated. The parameter estimation of the proposed model is based on the Yule–Walker
method. The new model presents overdispersion due to the dependence parameter θ,
which means the dependence between counting series can be verified by an overdispersion
test. Numerical simulation results were used to evaluate the performance of the estimation
and overdispersion test.

Future extensions for this study are as follows. First, we only focused on the stationary
DCINMA(1) model in this paper. However, cases with non-stationary series are more com-
mon. The switched system is an important model in studying hybrid systems, particularly
from the perspective of control science and engineering. Refer to ([30–32]) for more detailed
discussion. The mechanism conducts the transformation between different subsystems,
providing an approach to generalize the DCINMA process into a non-stationary case.
A function can be introduced to control the change for different parameter values of the
stationary case, which characterize non-stationary in series. Second, the parameter θ in our
model provides a probability for overdispersion. In a switched system, the switching signal
is a piecewise constant function, depending on time, external signal, output, and its own
past value. Thus, the weighted switching signal function with weights θ and (1 − θ) can be
considered, where the weight θ gives the probability for switching to different subsystems.
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Appendix A

Proof of Theorem 1. we give the detailed derivation process for 1-th order, the q-th order
can be derived in the same manner. term (i) and (ii) of the Theorem 1 are easy to verify, so
we focus on the term (iii).

Var(Xt) = Var(β ◦ εt−1) + Var(εt)

= V[E[β ◦ εt−1|εt−1]] + E[V[β ◦ εt−1|εt−1]] + Var(εt)

Then, we focus on the term V[β ◦ εt−1|εt−1].

V[β ◦ εt−1|εt−1] = E[(
εt−1

∑
i=1

Ui)
2|εt−1]− [E[

εt−1

∑
i=1

Ui|εt−1]]
2

= εt−1 · E[U2
1 ] + (εt−1 − 1) · εt−1 · E[U1 · U2]− [εt−1 · β]2

= εt−1 · (β · (1 − β) + β2) + εt−1 · (εt−1 − 1) · (θ2 · β · (1 − β) + β2)

− β2 · ε2
t−1

E[V[β ◦ εt−1|εt−1]] = (β · (1 − β) + β2) · E[εt−1]− E[β2 · ε2
t−1]

+ E[εt−1 · (εt−1 − 1)] · (θ2 · β · (1 − β) + β2)

= λ · (β · (1 − β)− β2)− β2 · (λ + λ2)

+ (λ + λ2 − λ) · (θ2 · β · (1 − β) + β2)

= λ2 · β · (1 − β) · θ2 + β · λ − β2 · λ

Var(Xt) = V[β · εt−1]λ
2 · β · (1 − β) · θ2 + β · λ − β2 · λ + λ

= β · λ + λ2 · β · (1 − β) · θ2 + λ

Proof of Theorem 3. let Yt = Xt − μX, {Xt} is the process defined in Section 2. To prove
the Yt is ergodic in autocovariance function, it is sufficient to show that:

limT→∞
1
T

T

∑
l=0

{E(YtYt+vYt+lYt+v+l)− R2(v)} = 0

It is obvious E(Yi
t ) < ∞. For i = 1, 2, 3, 4, let E(Y2

t ) = c2, E(Y4
t ) = c4.

The case v = 0:

E(YtYt+vYt+lYt+v+l) = E(Y2
t Y2

t+l)

If l = 1,

E(YtYt+vYt+lYt+v+l) = E(Y2
t Y2

t+l) ≤ (E(|Y2
t |2|Y2

t+l |2))1/2 = c4
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If l > 1, Yt and Yt+l are irrelevant, then

E(YtYt+vYt+lYt+v+l) = E(Y2
t Y2

t+l) = c2
2 = γ2

Y(0)

1
T

T

∑
l=0

{E(YtYt+vYt+lYt+v+l)− R2(v)} ≤ 1
T
{c4 − γ2

Y(0)} → 0

The case v ≥ 1:

If l ≤ v + 1:

E(YtYt+vYt+lYt+v+l) ≤ [E(|YtYt+v|2|Yt+lYt+l+v|2]
1
2 ≤ [E(|Yt|4|Yt+v|4|Yt+l |4|Yt+l+v|4]

1
4 = c4

If l > v + 1, YtYt+l and Yt+lYt+l+v are irrelevant, then

E(YtYt+vYt+lYt+v+l) = E(YtYt+v)E(Yt+lYt+l+v) = R2(v)

1
T

T

∑
l=0

{E(YtYt+vYt+lYt+v+l)− R2
v} ≤ 1

T
{(c4 − R2(v))(v + 1)} → 0

We can obtain:

limT→∞E[(R̂2
n(v)− R2(v))2] = 0

Which implies:

R̂2(v)
p→ R2(v)

The above equation is holding for variable Yt:

Yt = Xt − μX , R̂2
Y(v)

p→ R2
Y(v)

We need to prove that

P(|R̂2
X(v)− R2

X(v)| ≥ ε) → 0

Because of R2
X(v) = R2

Y(v), rewriting the above equation as

P(|R̂2
X(v)− R2

X(v)| ≥ ε) = P(|R̂2
X(v)− R̂2

Y(v) + R̂2
Y(v)− R2

X(v)| ≥ ε)

≤ P(|R̂2
X(v)− R̂2

Y(v)| ≥ ε/2) + P(|R̂2
Y(v)− R2

Y(v)| ≥ ε/2)

R̂2
Y(v) and R̂2

X(v) expressing as

R̂2
X(v) =

1
T

T−k

∑
t=1

(Xt+k − X̄)(Xt − X̄), R̂2
Y(v) =

1
T

T−k

∑
t=1

Yt+kYt =
1
T

T−k

∑
t=1

(Xt+k − μX)(Xt − μX)

Then the following expression can be derived

P(|R̂2
X(v)− R̂2

Y(v)| ≥ ε/2) = P((X̄2 − μ2
X) + (μX − X̄)(X̄t+k + X̄T) ≥ ε/2)

≤ P(X̄2 − μ2
X ≥ ε/4) + P((μX − X̄)(X̄t+k + X̄T)

≥ ε/4)

Since X̄
p→ μX , by Slutsky’s theorem

X̄2 − μ2
X

p→ 0, (μX − X̄)(X̄t+k + X̄T)
p→ 0
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Consequently,

P(|R̂2
X(v)− R2

X(v)| ≥ ε) → 0, T → ∞
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16. Ristić, M.M.; Nastić, A.S.; Miletić Ilić, A.V. A geometric time series model with dependent Bernoulli counting series. J. Time Ser.

Anal. 2013, 34, 466–476. [CrossRef]
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Abstract: This paper considers the periodic self-exciting threshold integer-valued autoregressive
processes under a weaker condition in which the second moment is finite instead of the innovation
distribution being given. The basic statistical properties of the model are discussed, the quasi-
likelihood inference of the parameters is investigated, and the asymptotic behaviors of the estimators
are obtained. Threshold estimates based on quasi-likelihood and least squares methods are given.
Simulation studies evidence that the quasi-likelihood methods perform well with realistic sample
sizes and may be superior to least squares and maximum likelihood methods. The practical applica-
tion of the processes is illustrated by a time series dataset concerning the monthly counts of claimants
collecting short-term disability benefits from the Workers’ Compensation Board (WCB). In addition,
the forecasting problem of this dataset is addressed.

Keywords: periodic autoregression; integer-valued threshold models; parameter estimation

1. Introduction

There has been considerable interest in integer-valued time series because of their wide
range of applications, including epidemiology, finance, and disease modeling. Examples
of such data are as follows: the number of major global earthquakes per year, monthly
crimes in a particular country or region, and patient numbers in a hospital per month over
a period of time, etc. Following the first-order integer-valued autoregressive (INAR(1))
models introduced by Al-Osh and Alzaid [1], INAR models have been widely used, see Du
and Li [2], Jung et al. [3], Weiß [4], Ristić et al. [5], Zhang et al. [6], Li et al. [7], Kang et al. [8]
and Yu et al. [9], among others. However, for so-called piecewise phenomenon such as
high thresholds, sudden bursts of large values, and time volatility, the INAR model will
not work well. The threshold models (Tong [10]; Tong and Lim [11]) have attracted much
attention and have been widely used to model nonlinear phenomena. To capture the
piecewise phenomenon of integer-valued time series, Monteiro et al. [12] introduced a
class of self-exciting threshold integer-valued autoregressive (SETINAR) models driven
by independent Poisson-distributed random variables. Wang et al. [13] proposed a self-
excited threshold Poisson autoregressive (SETPAR) model. Yang et al. [14] considered
a class of SETINAR processes that properly capture flexible asymmetric and nonlinear
responses without assuming the distributions for the errors. Yang et al. [15] introduced
an integer-valued threshold autoregressive process based on a negative binomial thinning
operator (NBTINAR(1)).

In addition, there are many sources of business, economic and meteorology time
series data showing a periodically varying phenomenon that repeats itself after a reg-
ular period of time. It may be affected by seasonal factors and human activities. For
dealing with the processes exhibiting periodic patterns, Bennett [16] and Gladyshev [17]
proposed periodically correlated random processes. Then, Bentarzi and Hallin [18], Lund
and Basawa [19], Basawa and Lund [20], and Shao [21], among other authors, studied
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the periodic autoregressive moving-average (PARMA) models in some detail. To capture
the periodic phenomenon of integer-valued time series, Monteiro et al. [22] proposed the
periodic integer-valued autoregressive models of order one (PINAR(1)) with period T,
driven by a periodic sequence of independent Poisson-distributed random variables. Hall
et al. [23] considered the extremal behavior of periodic integer-valued moving-average
sequences. Santos et al. [24] introduced a multivariate PINAR model with time-varying
parameters. The analysis of periodic self-exciting threshold integer-valued autoregressive
(PSETINAR(2; 1, 1)T) processes was introduced by Pereira et al. [25]. Manaa and Ben-
tarzi [26] established the existence of high moment and the strict periodic stationarity for
the PSETINAR(2; 1, 1)T processes. The CLS and CML methods are applied to estimate
the parameters while using the nested sub-sample search (NeSS) algorithm proposed
by Li and Tong [27] to estimate the periodic threshold parameters. A drawback of this
PSETINAR(2; 1, 1)T model is that the mean and variance of Poisson distribution are equal,
which is not always true in the real data. Therefore, in this paper, we remove the assump-
tion of Poisson distribution, only specify the relationship between mean and variance of
observations, develop quasi-likelihood inference for the PSETINAR(2; 1, 1)T processes, and
consider the estimation of thresholds.

Quasi-likelihood is a non-parametric inference method proposed by Wedderburn [28].
It is very useful in cases where the exact distributional information is not available, while
only the relation between mean and variance of the observation is given, and it enjoys
a certain robustness of validity. Quasi-likelihood has been widely applied. For exam-
ple, Azrak and Mélard [29] proposed a simple and efficient algorithm to evaluate the
exact quasi-likelihood of ARMA models with time-dependent coefficients; Christou and
Fokianos [30] studied probabilistic properties and quasi-likelihood estimation for nega-
tive binomial time series models; Li et al. [31] studied the quasi-likelihood inference for
the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) processes under
a weaker condition; Yang et al. [32] modeled overdispersed or underdispersed count
data with generalized Poisson integer-valued autoregressive (GPINAR(1)) processes and
investigated the maximum quasi- likelihood estimators.

The remainder of this paper is organized as follows. In Section 2, we redefine the
PSETINAR(2; 1, 1)T processes under weak conditions and discuss their basic properties.
In Section 3, we consider the quasi-likelihood inference for the unknown parameters.
Thresholds estimation is also discussed. Section 4 presents some simulation results for the
estimates. In Section 5, we give an application of the proposed processes to a real dataset.
The forecasting problem of this dataset is addressed. Concluding remarks are given in
Section 6. All proofs are postponed to the Appendix A.

2. The Model and Its Properties

The periodic self-exciting threshold integer-valued autoregressive model of order one
with two regimes (PSETINAR(2; 1, 1)T) (originally proposed by Pereira et al. [25], and
further studied by Manaa and Bentarzi [26]) is defined by the recursive equation:

Xt =

⎧⎨⎩α
(1)
t ◦ Xt−1 + Zt, Xt−1 ≤ rt,

α
(2)
t ◦ Xt−1 + Zt, Xt−1 > rt,

t ∈ Z (1)

with threshold parameters rt = rj, autoregressive coefficients α
(k)
t = α

(k)
j ∈ (0, 1), for

k = 1, 2, t = j + sT, j = 1, 2, . . . , T, s ∈ Z, and T ∈ N0. Note that Equation (1) admits the
representation

Xj+sT =
(

α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1 +

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1 + Zj+sT , (2)

where

244



Entropy 2021, 23, 765

(i) I(1)j+sT−1 := I{Xj+sT−1 ≤ rj}, I(2)j+sT−1 := 1 − I(1)j+sT−1 = I{Xj+sT−1 > rj}, in which
{rj, j = 1, 2, . . . , T} is a set of thresholds value;

(ii) The thinning operator “◦” is defined as

α
(k)
j ◦ Xj+sT−1 =

Xj+sT−1

∑
i=1

Ui,j+sT

(
α
(k)
j

)
, (3)

in which {Ui,j+sT

(
α
(k)
j

)
, j = 1, 2, . . . , T, s ∈ Z} is a sequence of independent periodic

Bernoulli random variables with P
(

Ui,j+sT

(
α
(k)
j

)
= 1
)
= 1 − P

(
Ui,j+sT

(
α
(k)
j

)
= 0
)

= α
(k)
j , k = 1, 2;

(iii) {Zj+sT , j = 1, 2, . . . , T, s ∈ Z} constitutes a sequence of independent periodic random
variables with E

(
Zj+sT

)
= λj, Var

(
Zj+sT

)
= σ2

z,j, which is assumed to be independent

of {Xj+sT−1} and {α
(k)
j ◦ Xj+sT−1}.

Remark 1. The innovation of PSETINAR(2; 1, 1)T process defined by Pereira et al. [25] and
Manaa and Bentarzi [26] is a sequence of independent periodic Poisson-distributed random variables
with mean λj, that is {Zt} ∼ P

(
λj
)
, where t = j + sT, j = 1, 2, . . . , T, s ∈ Z. In this paper, we

use E
(
Zj+sT

)
= λj, Var

(
Zj+sT

)
= σ2

z,j instead of the assumption of periodic Poisson distribution
for {Zj+sT}, so that the model is more flexible.

The following proposition establishes the conditional mean and the conditional vari-
ance of the PSETINAR(2; 1, 1)T process, which plays an important role in the study of the
process properties and parameter estimations.

Proposition 1. For any fixed j = 1, 2, . . . , T, with T ∈ N0, the conditional mean and the
conditional variance of the process {Xt} for t = j + sT and s ∈ Z defined in (2) are given by

(i) E
(
Xj+sT |Xj+sT−1

)
= α

(1)
j Xj+sT−1 I(1)j+sT−1 + α

(2)
j Xj+sT−1 I(2)j+sT−1 + λj,

(ii) Var
(
Xj+sT |Xj+sT−1

)
=

2
∑

k=1
α
(k)
j

(
1 − α

(k)
j

)
Xj+sT−1 I(k)j+sT−1 + σ2

z,j.

The following theorem states the ergodicity of the PSETINAR(2; 1, 1)T process (2).
This property is useful in deriving the asymptotic properties of the parameter estimators.

Theorem 1. For any fixed j = 1, 2, . . . , T, with T ∈ N0, the process {Xt} for t = j + sT and
s ∈ Z defined in (2) is an ergodic Markov chain.

3. Parameters Estimation

Suppose we have a series of observations {Xj+sT , j = 1, 2, . . . , T, s ∈ N0} generated
from the PSETINAR(2; 1, 1)T process. The goal of this section is to estimate the unknown

parameters vector β = (β1, . . . , β3T)
′ � (α

(1)
1 , α

(2)
1 , λ1, α

(1)
2 , α

(2)
2 , λ2, . . . , α

(1)
T , α

(2)
T , λT)

′ and
threshold parameters vector r = (r1, r2, . . . , rT)

′. This section is divided into two sub-
sections. In Section 3.1, we estimate the parameters vector β by using the maximum
quasi-likelihood (MQL) method when the thresholds value is known. We consider the max-
imum quasi-likelihood (MQL) and conditional least square (CLS) estimators of thresholds
r in Section 3.2.

3.1. Estimation of Parameters β

As described in Proposition 1 (ii), we have the variance of Xt conditional on Xt−1,
let θj �

(
θ
(1)
j , θ

(2)
j , σ2

z,j

)
′ with θ

(k)
j = α

(k)
j

(
1 − α

(k)
j

)
, k = 1, 2, j = 1, 2, . . . , T, then the

Var
(
Xj+sT |Xj+sT−1

)
admits the representation
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Vθj

(
Xj+sT|Xj+sT−1

) �
= Var

(
Xj+sT|Xj+sT−1

)
= θ

(1)
j Xj+sT−1I(1)j+sT−1 + θ

(2)
j Xj+sT−1I(2)j+sT−1 + σ2

z,j,

for ∀j = 1, 2, . . . , T, s ∈ N0.
As discussed in Wedderburn [28], we have the set of standard quasi-likelihood esti-

mating equations:

L(β) =
N−1

∑
s=0

T

∑
j=1

Xj+sT − E
(
Xj+sT |Xj+sT−1

)
Vθj

(
Xj+sT |Xj+sT−1

) ∂E
(
Xj+sT |Xj+sT−1

)
∂βi

= 0, (4)

for i = 1, . . . , 3T, where N is the total number of cycles. By solving (4), the quasi-likelihood
estimator can be obtained.

This method is essentially a two-step estimation, if θj is unknown, we propose substi-
tuting a suitable consistent estimator of θj obtained by other means, getting modified quasi-
likelihood estimating equations and then solving them for the primary parameters of inter-
est. In the modified quasi- likelihood estimating equations, we replace θj with a suitable

consistent estimator θ̂j. For simplicity in notation, we define V−1
θ̂j

�
= V−1

θ̂j

(
Xj+sT |Xj+sT−1

)
.

This approach leads to the modified quasi-likelihood estimator β̂MQL of β (see Zheng,
Basawa and Datta [33]):

β̂MQL = Q−1
N qN , (5)

where

QN =

⎡⎢⎢⎢⎣
Q1,N 0 · · · 0

0 Q2,N · · · 0
...

...
. . .

...
0 0 · · · QT,N

⎤⎥⎥⎥⎦,

and

qN =
(

q1,N , q2,N , . . . , qT,N

)
′,

moreover, the 0’s are (3 × 3)-null matrices, Qj,N and qj,N (j = 1, 2, . . . , T) given by

Qj,N =

⎡⎢⎢⎢⎢⎢⎢⎣

N−1
∑

s=0
V−1

θ̂j
X2

j+sT−1 I(1)j+sT−1 0
N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(1)j+sT−1

0
N−1
∑

s=0
V−1

θ̂j
X2

j+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(1)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j

⎤⎥⎥⎥⎥⎥⎥⎦,

qj,N =

(
N−1
∑

s=0
V−1

θ̂j
Xj+sTXj+sT−1 I(1)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sTXj+sT−1 I(2)j+sT−1

N−1
∑

s=0
V−1

θ̂j
Xj+sT

)
′.

Note that we use consistent estimator θ̂j =
(

α̂
(1)
j

(
1 − α̂

(1)
j

)
, α̂

(2)
j

(
1 − α̂

(2)
j

)
, σ̂2

z,j

)
′ in-

stead of θj.
Next, the proposition gives consistent estimators σ̂2

z,j of σ2
z,j, which depends on some

consistent estimators α̂
(k)
j and λ̂j with k = 1, 2, j = 1, 2, . . . , T.
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Proposition 2. The following variance estimators for {Zj+sT} with j = 1, 2, . . . , T, s ∈ N0 are
consistent:

(i) σ̂2
1,z,j =

1
N

N−1

∑
s=0

(
Xj+sT −

2

∑
k=1

α̂
(k)
j Xj+sT−1 I(k)j+sT−1 − λ̂j

)2

− 1
N

2

∑
k=1

N−1

∑
s=0

α̂
(k)
j

(
1 − α̂

(k)
j

)
Xj+sT−1 I(k)j+sT−1, (6)

(ii) σ̂2
2,z,j = σ̂2

x,j − p̂j

[
α̂
(1)2

j σ̂2(1)
j + α̂

(1)
j

(
1 − α̂

(1)
j

)
μ̂
(1)
j

]
−
(
1 − p̂j

)[
α̂
(2)2

j σ̂2(2)
j + α̂

(2)
j

(
1 − α̂

(2)
j

)
μ̂
(2)
j

]
− p̂j
(
1 − p̂j

)(
α̂
(1)
j μ̂

(1)
j − α̂

(2)
j μ̂

(2)
j

)2
, (7)

for k = 1, 2, j = 1, 2, . . . , T, s ∈ N0, in which α̂
(k)
j and λ̂j are consistent estimators of α

(k)
j and λj

(for example, we can use the CLS estimators given in Theorem 3.1 of Pereira et al. [25]), furthermore

X̄j =
1
N

N−1

∑
s=0

Xj+sT , σ̂2
x,j =

1
N

N−1

∑
s=0

(
Xj+sT − X̄j

)2,

N(k)
j =

N−1

∑
s=0

I(k)j+sT−1, μ̂
(k)
j =

1

N(k)
j

∑
s∈{I(k)j+sT−1=1}

Xj+sT ,

p̂j =
1
N

N−1

∑
s=0

I(1)j+sT−1, σ̂2(k)
j =

1

N(k)
j

∑
s∈{I(k)j+sT−1=1}

(
Xj+sT − μ̂

(k)
j

)2
.

The two estimations are based on conditional variance Var
(
Xj+sT |Xj+sT−1

)
and variance Var

(
Xj+sT

)
,

respectively. The details can be found in the Appendix A.

To study the asymptotic behavior of the estimator β̂MQL, we make the following
assumptions about the process of {Xt}:

(C1) By Proposition 1 in Pereira et al. [25], we assume the {Xt} is a strictly ciclostationary process;
(C2) E|Xt|4 < ∞.

Now for the asymptotic properties of the quasi-likelihood estimator β̂MQL given by
(5), we have the following asymptotic distribution.

Theorem 2. Let {Xt} be a PSETINAR(2; 1, 1)T process defined in (2), then under the assumptions
(C1)-(C2), the estimator β̂MQL given by (5) is asymptotically normal,

√
N
(

β̂MQL − β
)
→ N

(
0, H−1(θ)

)
,

where

H(θ) =

⎡⎢⎢⎢⎣
H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)

⎤⎥⎥⎥⎦,

with matrices H j (j = 1, 2, . . . , T) given by
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H j(θ) =

⎡⎢⎢⎢⎣
E
(

V−1
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1

)
0 E

(
V−1

θj

(
Xj|Xj−1

)
Xj−1 I(1)j−1

)
0 E

(
V−1

θj

(
Xj|Xj−1

)
X2

j−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(1)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

)
Xj−1 I(2)j−1

)
E
(

V−1
θj

(
Xj|Xj−1

))
⎤⎥⎥⎥⎦.

It is worth mentioning that this theorem reflects the consistency of the estimator β̂MQL.

3.2. Estimation of Thresholds Vector r

Note that in the real data application, the threshold values are also unknown. In this
subsection, we estimate the thresholds vector r = (r1, r2, . . . , rT)

′. Here, we further promote
the nested sub-sample search (NeSS) algorithm (see, e.g., Yang et al. [15], Li and Tong [27],
and Li et al. [31]) and use conditional least squares (CLS) and modified quasi-likelihood
(MQL) principles to estimate r.

For some fixed λ = (λ1, λ2, . . . , λT)
′, the application of the conditional least squares

principle yields the sum of squared errors:

SN(r, λ)

=
N−1

∑
s=0

T

∑
j=1

⎛⎜⎜⎜⎝Xj+sT −
2

∑
k=1

N−1
∑

s=0

(
Xj+sT Xj+sT−1 I(k)j+sT−1 − λjXj+sT−1 I(k)j+sT−1

)
N−1
∑

s=0
X2

j+sT−1 I(k)j+sT−1

Xj+sT−1 I(k)j+sT−1 − λj

⎞⎟⎟⎟⎠
2

,

and then the thresholds vector r can be estimated by minimizing SN(r, λ),

r̂ = arg min
r∈[r,r]

SN(r, λ), (8)

where r and r are some known lower and upper bounds of r. In practice, they can be
selected as the minimum and maximum values in each cycle of the sample. For convenience,
we consider an alternative objective function

JN(r, λ) = SN − SN(r, λ),

where

SN =
N−1

∑
s=0

T

∑
j=1

⎛⎜⎜⎜⎝Xj+sT −

N−1
∑

s=0

(
Xj+sT Xj+sT−1 − λjXj+sT−1

)
N−1
∑

s=0
X2

j+sT−1

Xj+sT−1 − λj

⎞⎟⎟⎟⎠
2

.

Now, the optimization in (8) is equivalent to

r̂CLS = arg max
r∈[r,r]

JN(r, λ), (9)

where r̂CLS is the conditional least squares estimator of the thresholds vector r.
Inspired by the method of conditional least squares, we investigate the performances

of r by using the quasi-likelihood principle. The modified quasi-likelihood estimator r̂MQL
of r is obtained by maximizing the expression

J̃N(r, λ) = S̃N − S̃N(r, λ),

which yields
r̂MQL = arg max

r∈[r,r]
J̃N(r, λ), (10)

where
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S̃N(r, λ)

=
N−1

∑
s=0

T

∑
j=1

V−1
θ̂j

⎛⎜⎜⎜⎝Xj+sT−
2

∑
k=1

N−1
∑

s=0
V−1

θ̂j
·
(

Xj+sT Xj+sT−1 I(k)j+sT−1−λjXj+sT−1 I(k)j+sT−1

)
N−1
∑

s=0
V−1

θ̂j
· X2

j+sT−1 I(k)j+sT−1

Xj+sT−1 I(k)j+sT−1−λj

⎞⎟⎟⎟⎠
2

,

and

S̃N =
N−1

∑
s=0

T

∑
j=1

V−1
θ̂j

⎛⎜⎜⎜⎝Xj+sT −

N−1
∑

s=0
V−1

θ̂j
·
(

Xj+sT Xj+sT−1 − λjXj+sT−1

)
N−1
∑

s=0
V−1

θ̂j
· X2

j+sT−1

Xj+sT−1 − λj

⎞⎟⎟⎟⎠
2

.

It is worth mentioning that there are unknown parameters λj with j = 1, . . . , T
when we use (9) and (10) to estimate thresholds vector r. As argued in Li and Tong [27],
Yang et al. [14], and Yang et al. [15], when λ and r are one-dimensional parameters,
we can choose any positive number as the value of λ without worrying about getting a
wrong result of r̂. Fortunately, we also find out by simulations that the estimations of r
by maximizing J̃N(r, λ) and JN(r, λ) do not depend on the value of λ. In order to give
an intuitive impression of J̃N(r, λ)/N, we generate a set of data with Model I (given in
Section 4, i.e., T = 2, N = 50, β = (0.2, 0.1, 3, 0.8, 0.1, 7)′, r = (8, 4)′), and plot the shapes
of J̃N(r, λ)/N. From Figure 1, we can see that for different values of λ, the shape of
J̃N(r, λ)/N changes, but the maximum value in each subfigure is obtained at the true
thresholds vector r = (8, 4)′. In practice, we can choose the mean in each cycle of the
samples for λj, j = 1, 2, . . . , T.

Actually, using the quasi-likelihood method to estimate the thresholds is a three-step
estimation procedure, and we now present the algorithm to implement our estimation
procedure as follows:

Step 1: Choose the upper bound r and lower bound r of r, solve (9) to get the r̂CLS with λj = X̄j =
1
N ∑N−1

s=0 Xj+sT , j = 1, 2, . . . , T;

Step 2: Fix r̂CLS at the current value, solve (6) or (7) to get the σ̂2
z,j, j = 1, 2, . . . , T, where α

(k)
j and

λj with k = 1, 2 can be estimated by other methods, then solve (5) to get β̂MQL.

Step 3: Fix θ̂j =
(

α̂
(1)
j,MQL

(
1 − α̂

(1)
j,MQL

)
, α̂

(2)
j,MQL

(
1 − α̂

(2)
j,MQL

)
, σ̂2

z,j

)
′, j = 1, 2, . . . , T at its esti-

mated value from Step 2, choose the same upper bound r and lower bound r as in Step 1,
solve (10) to get r̂MQL.
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(a) Shape of J̃N(r, λ)/N with λ = (3, 7) (b) Shape of J̃N(r, λ)/N with λ = (3, 8)

(c) Shape of J̃N(r, λ)/N with λ = (2, 7) (d) Shape of J̃N(r, λ)/N with λ = (2, 8)

Figure 1. The shapes of J̃N(r, λ)/N.

4. Simulation Study

In this section, we conduct simulation studies to illustrate the finite sample perfor-
mances of the estimates. The initial value X0 is fixed at 0. In order to capture the character-
istics of the data from the PSETINAR(2; 1, 1)T process, we first generate a set of data with
the distribution of innovations {Zt} given by Model I (mentioned below in this section)
and parameters β = (0.2, 0.45, 1, 0.2, 0.45, 2, 0.65, 0.45, 1, 0.65, 0.45, 2, 0.2, 0.45, 3, 0.2, 0.45,
7, 0.8, 0.45, 7, 0.2, 0.1, 3, 0.8, 0.1, 7, 0.2, 0.1, 7, 0.8, 0.45, 2)′, r = (3, 3, 3, 1, 3, 3, 5, 9, 3, 6, 7)′, T = 11,
N = 50. The parameter vectors we choose here are randomly selected, and there are slight
differences between the parameters of each cycle, the thresholds vector of r was chosen
such that there are enough data in each regime. We give the sample path in the first six
cycles in Figure 2, of which N = 6. We can see that even if there are slight differences
between the parameters of each cycle, the dataset still exhibits periodic characteristics.

To report the performances of the estimates, we conduct simulation studies under the
following three models:

Model I. Assume that {Zt} is a sequence of i.i.d periodic Poisson distributed random
variables with mean E(Zt) = Var(Zt) = λj for t = j + sT, j = 1, 2, . . . , T, s ∈ N0.

Model II. Assume that {Zt} is a sequence of i.i.d. periodic Geometric distributed
random variables with p.m.f. given by

p
(
Zj+sT = z

)
=

λz
j(

1 + λj
)1+z , z = 0, 1, 2, . . .

with E(Zt) = λj, Var(Zt) = λj
(
1 + λj

)
for t = j + sT, j = 1, 2, . . . , T, s ∈ N0.

Model III. Assume that {Zt} is a sequence of i.i.d mixed distributed random variables,
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Zt = ΔtZ1t + (1 − Δt)Z2t,

where {Δt} is a sequence of i.i.d periodic Bernoulli distributed random variables with
P(Δt = 1) = 1 − P(Δt = 0) = ρj, ρ = (ρ1, ρ2, . . . , ρT) for t = j + sT, j = 1, 2, . . . , T, s ∈ N0,
which is independent of {Zit}, i = 1, 2.

For {Z1t} given in Model I and {Z2t} given in Model II, we can easily see that
E(Zt) = λj, Var(Zt) = λ2

j
(
1 − ρj

)
+ λj.

For each model, we generate the data with X0 = 0, set T = 3 and the sample sizes
n = NT = 150, 300, 900. All the calculations are performed under the R3.6.2 software with
1000 replications. We use the command constrOptim to optimize the objective function of
the maximum likelihood estimation. The threshold vector is calculated by the algorithms
discussed in Section 3.2. Other algorithms are based on the explicit expressions.

Figure 2. Sample path of the first six cycles.

4.1. Performances of the β̂CLS , β̂MQL and β̂CML

Pereira et al. [25] provided a theoretical basis for the conditional least squares (CLS)
and conditional maximum likelihood (CML) estimators of the parameters vector β in
the PSETINAR(2; 1, 1)T process but did not conduct simulation research. Manaa and
Bentarzi [26] provided the asymptotic properties of the estimators and compared their per-
formance through a simulation study. To compare the performance of the three estimators
β̂CLS, β̂CML and β̂MQL (given in Section 3), we conduct simulation studies for these three
estimators under Models I to III. The parameters are selected as follows:

Series A. β = (0.2, 0.45, 1, 0.2, 0.45, 2, 0.8, 0.45, 2)′, r = (3, 2, 2)′.
Series B. β = (0.65, 0.45, 1, 0.65, 0.45, 2, 0.35, 0.45, 2)′, r = (2, 2, 3)′.
Series C. β = (0.2, 0.45, 3, 0.2, 0.45, 7, 0.8, 0.45, 7)′, r = (12, 7, 9)′.
To eliminate the influence of the change of parameters on estimates, we choose the

series randomly and change the parameters with fixed α(k), k = 1, 2 or λ separately. The
selection of these thresholds ensures there are enough data in each regime.

Spectral analysis starts from finding hidden periodicity, and it is an important subject
of time series frequency domain analysis. The approach for studying hidden periods based
on frequency domain analysis is the periodogram method, proposed by Schuster [34];
the rigorous examination is shown in Fisher [35]. For a series of observations {Xt},
t = 1, 2, . . . , n, the periodogram is defined as
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In( fk) =
1
n
|

n

∑
t=1

Xte−i2π fkt|2 = a2
k + b2

k , (11)

where

ak =

⎧⎨⎩
1√
n (∑

n
t=1 Xt cos(2π fkt))2, k = 1, 2, . . . ,

[
n−1

2

]
,

1√
n ∑n

t=1(−1)tXt, k = n
2 ,

bk =

{
1√
n (∑

n
t=1 Xt sin(2π fkt))2, k = 1, 2, . . . ,

[
n−1

2

]
,

0, k = n
2 ,

and the period T = [1/argmax f In( fk)], where [·] denotes the integer part of a number.
The sample path and periodogram of the Series A, B and C under Model I are plotted

in Figure 3 to show the periodic characteristics. Because the period is three and short, it is
difficult to see the period from the sample path, but the periodogram can show the period
very well. In addition, the simulation results are summarized in Tables 1–9.

As expected, biases and MSE of the estimators decrease as the sample size N increases,
which is in agreement with the asymptotic properties of the estimators: asymptotic unbi-
asedness and consistency. Most of the biases and MSE in Model II are larger than those in
Model I. Maybe this is because the variance of {Zt} in Model II is larger than that in Model
I, which leads to the fluctuation of data.

Tables 1–6 summarize the simulation results for different series under Model I and
Model II. From these tables, we can see that most of the biases and MSE of β̂MQL are smaller
than β̂CLS. Perhaps it is because that the MQL method uses more information about the
data than the CLS method. Therefore, the MQL method can obtain the optimal value
more accurately. In addition, most of the biases of β̂MQL are smaller than β̂CML, while
the MSE is larger, which is because the CML uses the distribution. If the distribution is
correct, it is indeed better than the MQL. It is worth mentioning that the CML method is
more complicated and time-consuming than the MQL method in the simulation procedure.
We can conclude that the MQL estimators are better than CLS estimators, and the CML
estimators are not unanimously better than MQL estimators.

Table 1. Bias and MSE for Series A of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.001 −0.001 0.001 −0.018 −0.004 0.006 0.008 0.005 −0.025
(0.052) (0.014) (0.253) (0.131) (0.024) (0.230) (0.160) (0.024) (0.326)

MQL 0.000 −0.002 0.006 −0.015 −0.004 0.002 0.011 0.006 −0.030
(0.054) (0.014) (0.266) (0.126) (0.023) (0.220) (0.156) (0.024) (0.316)

CML 0.024 0.010 −0.047 0.054 0.019 −0.079 0.003 0.007 −0.027
(0.024) (0.008) (0.117) (0.062) (0.016) (0.126) (0.047) (0.013) (0.134)

100 CLS 0.004 0.000 −0.006 0.013 −0.001 −0.005 0.002 −0.003 0.008
(0.026) (0.007) (0.132) (0.058) (0.011) (0.108) (0.085) (0.012) (0.168)

MQL 0.004 0.000 −0.006 0.013 −0.001 −0.006 −0.001 −0.004 0.012
(0.024) (0.007) (0.120) (0.057) (0.011) (0.105) (0.082) (0.011) (0.162)

CML 0.012 0.004 −0.023 0.036 0.007 −0.034 0.003 0.000 −0.001
(0.014) (0.004) (0.067) (0.036) (0.008) (0.073) (0.024) (0.006) (0.066)

300 CLS −0.003 −0.002 0.009 0.002 0.000 −0.005 −0.002 0.000 −0.001
(0.010) (0.003) (0.051) (0.020) (0.004) (0.034) (0.028) (0.004) (0.055)

MQL −0.002 −0.001 0.007 0.001 0.000 −0.004 −0.003 0.000 0.000
(0.009) (0.002) (0.045) (0.019) (0.004) (0.033) (0.027) (0.003) (0.053)

CML 0.000 0.000 0.000 0.003 0.001 −0.007 0.001 0.002 −0.006
(0.005) (0.001) (0.025) (0.014) (0.003) (0.024) (0.007) (0.002) (0.020)
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Table 2. Bias and MSE for Series B of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.001 0.003 0.014 0.003 −0.015 −0.013 −0.009 0.032
(0.119) (0.015) (0.238) (0.166) (0.031) (0.365) (0.105) (0.026) (0.525)

MQL 0.010 0.001 0.003 0.013 0.003 −0.014 −0.012 −0.009 0.031
(0.129) (0.015) (0.241) (0.161) (0.030) (0.354) (0.104) (0.026) (0.516)

CML 0.006 0.003 0.001 0.014 0.006 −0.020 0.008 0.003 −0.019
(0.043) (0.007) (0.090) (0.062) (0.016) (0.150) (0.045) (0.014) (0.229)

100 CLS 0.007 0.000 −0.001 −0.022 −0.009 0.042 −0.004 −0.002 0.003
(0.061) (0.008) (0.133) (0.076) (0.014) (0.173) (0.046) (0.012) (0.222)

MQL 0.008 0.000 −0.003 −0.023 −0.010 0.044 −0.004 −0.002 0.003
(0.055) (0.007) (0.116) (0.076) (0.014) (0.172) (0.045) (0.012) (0.216)

CML 0.002 0.000 −0.001 −0.004 −0.001 0.013 0.000 0.001 −0.008
(0.018) (0.003) (0.040) (0.031) (0.008) (0.078) (0.027) (0.007) (0.127)

300 CLS 0.003 0.000 −0.003 0.002 0.000 0.002 −0.003 −0.001 −0.001
(0.020) (0.003) (0.043) (0.026) (0.005) (0.060) (0.017) (0.004) (0.081)

MQL 0.003 −0.001 −0.002 0.001 0.000 0.004 −0.002 0.000 −0.004
(0.019) (0.002) (0.039) (0.025) (0.005) (0.058) (0.016) (0.004) (0.077)

CML −0.002 −0.002 0.003 0.003 0.001 −0.001 −0.003 0.000 −0.002
(0.006) (0.001) (0.014) (0.009) (0.002) (0.025) (0.009) (0.003) (0.043)

Table 3. Bias and MSE for Series C of Model I (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.013 −0.010 0.146 −0.010 −0.003 0.053 −0.010 −0.007 0.054
(0.022) (0.011) (2.088) (0.082) (0.022) (1.915) (0.078) (0.026) (3.823)

MQL −0.010 −0.008 0.117 −0.010 −0.003 0.052 −0.014 −0.009 0.079
(0.022) (0.010) (2.000) (0.082) (0.021) (1.913) (0.075) (0.025) (3.709)

CML 0.003 0.001 −0.015 0.044 0.021 −0.201 0.003 0.000 −0.033
(0.012) (0.006) (1.119) (0.044) (0.013) (1.054) (0.025) (0.010) (1.286)

100 CLS 0.001 −0.002 0.015 −0.003 0.001 0.013 0.002 −0.003 0.022
(0.014) (0.006) (1.323) (0.043) (0.011) (1.046) (0.038) (0.012) (1.772)

MQL 0.000 −0.003 0.034 −0.002 0.001 0.008 0.001 −0.003 0.027
(0.012) (0.006) (1.203) (0.042) (0.011) (1.027) (0.037) (0.012) (1.726)

CML 0.006 0.001 −0.029 0.018 0.010 −0.085 0.011 0.003 −0.043
(0.007) (0.003) (0.672) (0.026) (0.007) (0.657) (0.012) (0.005) (0.620)

300 CLS 0.000 0.000 0.006 0.002 0.002 −0.014 0.006 0.003 −0.040
(0.006) (0.003) (0.586) (0.014) (0.004) (0.350) (0.013) (0.004) (0.606)

MQL 0.001 0.000 0.002 0.001 0.001 −0.010 0.005 0.002 −0.032
(0.005) (0.002) (0.527) (0.014) (0.004) (0.341) (0.012) (0.004) (0.589)

CML 0.002 0.001 −0.013 0.005 0.003 −0.030 0.003 0.002 −0.026
(0.003) (0.001) (0.262) (0.011) (0.003) (0.267) (0.004) (0.002) (0.201)

Table 4. Bias and MSE for Series A of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.013 −0.005 0.021 −0.016 −0.014 0.024 −0.025 −0.011 0.044
(0.073) (0.011) (0.247) (0.291) (0.032) (0.408) (0.330) (0.024) (0.449)

MQL −0.011 −0.005 0.019 −0.012 −0.013 0.019 −0.020 −0.010 0.040
(0.067) (0.011) (0.228) (0.287) (0.032) (0.402) (0.330) (0.024) (0.439)

CML 0.014 0.005 −0.026 0.041 0.011 −0.050 0.004 0.008 −0.016
(0.016) (0.005) (0.076) (0.040) (0.010) (0.158) (0.020) (0.007) (0.153)

100 CLS 0.003 0.003 −0.011 −0.013 −0.011 0.027 −0.002 0.001 −0.005
(0.032) (0.005) (0.116) (0.145) (0.016) (0.195) (0.170) (0.012) (0.219)

MQL 0.001 0.002 −0.006 −0.011 −0.010 0.024 −0.001 0.001 −0.006
(0.030) (0.005) (0.104) (0.143) (0.016) (0.194) (0.169) (0.011) (0.215)

CML 0.006 0.004 −0.014 0.020 0.006 −0.021 0.005 0.004 −0.019
(0.007) (0.002) (0.039) (0.022) (0.005) (0.080) (0.011) (0.003) (0.072)

253



Entropy 2021, 23, 765

Table 4. Cont.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

300 CLS 0.001 0.000 −0.005 −0.003 0.000 0.009 −0.001 0.000 −0.001
(0.011) (0.002) (0.039) (0.050) (0.006) (0.067) (0.052) (0.004) (0.077)

MQL 0.000 0.000 −0.005 −0.003 −0.001 0.010 0.000 0.000 −0.002
(0.010) (0.001) (0.034) (0.049) (0.006) (0.067) (0.052) (0.004) (0.076)

CML 0.005 0.001 −0.011 0.000 0.004 0.000 0.002 0.002 −0.007
(0.003) (0.001) (0.013) (0.008) (0.002) (0.026) (0.004) (0.001) (0.026)

Table 5. Bias and MSE for Series B of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.003 −0.019 0.005 −0.012 0.016 0.006 −0.003 −0.002
(0.038) (0.007) (2.068) (0.382) (0.043) (5.495) (0.217) (0.026) (5.702)

MQL 0.008 0.003 −0.017 −0.055 −0.022 0.070 0.009 −0.002 −0.008
(0.037) (0.006) (1.995) (0.378) (0.043) (5.461) (0.220) (0.026) (5.718)

CML 0.007 0.004 −0.017 0.015 0.004 −0.025 0.014 0.007 −0.031
(0.005) (0.002) (0.590) (0.025) (0.006) (1.380) (0.008) (0.004) (1.326)

100 CLS −0.001 −0.002 0.007 −0.006 −0.004 0.007 −0.006 −0.002 0.011
(0.019) (0.003) (1.143) (0.190) (0.023) (3.017) (0.114) (0.011) (2.871)

MQL 0.000 −0.002 0.004 −0.005 −0.004 0.007 −0.006 −0.003 0.012
(0.018) (0.003) (1.091) (0.189) (0.023) (3.001) (0.115) (0.012) (2.882)

CML 0.006 0.002 −0.012 0.008 0.004 −0.017 0.001 0.007 −0.017
(0.002) (0.001) (0.238) (0.012) (0.003) (0.691) (0.004) (0.002) (0.660)

300 CLS −0.003 −0.001 0.004 −0.004 −0.001 −0.006 0.003 −0.002 −0.006
(0.006) (0.001) (0.361) (0.062) (0.007) (0.889) (0.033) (0.004) (0.848)

MQL −0.003 0.000 0.003 −0.002 0.000 −0.008 0.004 −0.002 −0.007
(0.006) (0.001) (0.345) (0.062) (0.007) (0.887) (0.033) (0.004) (0.849)

CML 0.000 0.001 −0.001 0.001 0.001 −0.011 0.004 0.002 −0.015
(0.001) (0.000) (0.069) (0.004) (0.001) (0.205) (0.001) (0.001) (0.222)

Table 6. Bias and MSE for Series C of Model II (MSE in parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.004 −0.002 0.069 −0.019 −0.008 0.061 −0.011 −0.008 0.131
(0.038) (0.007) (2.068) (0.382) (0.043) (5.495) (0.217) (0.026) (5.702)

MQL −0.004 −0.002 0.067 −0.016 −0.007 0.051 −0.009 −0.007 0.122
(0.037) (0.006) (1.995) (0.378) (0.043) (5.461) (0.220) (0.026) (5.718)

CML 0.010 0.005 −0.019 0.037 0.014 −0.152 0.013 0.009 −0.038
(0.005) (0.002) (0.590) (0.025) (0.006) (1.380) (0.008) (0.004) (1.326)

100 CLS 0.000 0.000 −0.005 −0.020 −0.004 0.054 0.001 −0.008 0.046
(0.019) (0.003) (1.143) (0.190) (0.023) (3.017) (0.114) (0.011) (2.871)

MQL −0.002 −0.001 0.006 −0.020 −0.004 0.054 0.002 −0.008 0.045
(0.018) (0.003) (1.091) (0.189) (0.023) (3.001) (0.115) (0.012) (2.882)

CML 0.008 0.003 −0.059 0.016 0.005 −0.068 0.009 0.003 −0.047
(0.002) (0.001) (0.238) (0.012) (0.003) (0.691) (0.004) (0.002) (0.660)

300 CLS 0.000 −0.001 −0.007 −0.005 −0.001 0.010 −0.014 −0.004 0.071
(0.006) (0.001) (0.361) (0.062) (0.007) (0.889) (0.033) (0.004) (0.848)

MQL 0.000 −0.001 −0.008 −0.005 −0.001 0.011 −0.014 −0.004 0.072
(0.006) (0.001) (0.345) (0.062) (0.007) (0.887) (0.033) (0.004) (0.849)

CML 0.000 0.000 −0.012 0.005 0.001 −0.020 0.004 0.002 −0.021
(0.001) (0.000) (0.069) (0.004) (0.001) (0.205) (0.001) (0.001) (0.222)

To demonstrate the robustness of the MQL method, we consider the simulations about
Model III with different series by using CLS, MQL and CML methods, and set N = 300,
ρ = (0.9, 0.9, 0.9), (0.8, 0.8, 0.8), respectively. From Tables 7–9, we can see that when ρ
varies from (0.9, 0.9, 0.9) down to (0.8, 0.8, 0.8), the effect on CLS and MQL estimators is
slight. Most of the biases and MSE of MQL estimators are smaller than CLS. But due to
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incorrect distribution used, the biases and MSE of CML estimators increase. This indicates
that the MQL method is more robust than CLS and CML methods.

Table 7. Bias and MSE for Series A of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.002 0.002 −0.004 0.009 0.004 −0.014 −0.007 0.000 0.002
(0.010) (0.002) (0.049) (0.022) (0.004) (0.041) (0.026) (0.004) (0.055)

MQL 0.002 0.002 −0.004 0.009 0.004 −0.014 −0.007 −0.001 0.003
(0.009) (0.002) (0.042) (0.021) (0.004) (0.040) (0.026) (0.004) (0.053)

CML −0.021 −0.009 0.046 −0.043 −0.018 0.057 −0.055 −0.022 0.081
(0.006) (0.001) (0.027) (0.013) (0.003) (0.030) (0.012) (0.003) (0.034)

(0.8, 0.8, 0.8) CLS −0.001 −0.001 0.000 0.005 −0.004 0.005 −0.005 −0.004 0.012
(0.010) (0.002) (0.048) (0.026) (0.004) (0.044) (0.030) (0.004) (0.056)

MQL −0.001 −0.001 0.000 0.005 −0.004 0.006 −0.008 −0.005 0.016
(0.009) (0.002) (0.042) (0.026) (0.004) (0.043) (0.030) (0.004) (0.054)

CML −0.042 −0.018 0.088 −0.080 −0.040 0.122 −0.121 −0.049 0.183
(0.007) (0.002) (0.033) (0.015) (0.004) (0.041) (0.028) (0.004) (0.067)

Table 8. Bias and MSE for Series B of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.003 0.001 −0.001 0.001 0.000 0.000 0.004 0.000 −0.006
(0.020) (0.003) (0.041) (0.031) (0.005) (0.068) (0.018) (0.004) (0.083)

MQL 0.002 0.001 0.001 0.001 −0.001 0.001 0.003 −0.001 −0.003
(0.018) (0.002) (0.036) (0.030) (0.005) (0.065) (0.017) (0.004) (0.080)

CML −0.023 −0.009 0.041 −0.080 −0.033 0.122 −0.065 −0.030 0.140
(0.007) (0.001) (0.018) (0.019) (0.004) (0.050) (0.014) (0.003) (0.069)

(0.8, 0.8, 0.8) CLS 0.001 0.001 −0.006 −0.005 −0.005 0.017 −0.002 −0.002 0.009
(0.023) (0.003) (0.045) (0.033) (0.006) (0.070) (0.018) (0.004) (0.083)

MQL 0.002 0.002 −0.008 −0.004 −0.005 0.016 −0.002 −0.002 0.010
(0.021) (0.002) (0.039) (0.032) (0.005) (0.067) (0.017) (0.004) (0.078)

CML −0.043 −0.015 0.064 −0.156 −0.065 0.240 −0.122 −0.054 0.263
(0.009) (0.001) (0.021) (0.040) (0.008) (0.104) (0.023) (0.005) (0.119)

Table 9. Bias and MSE for Series C of Model III with N = 300 (MSE in parentheses).

ρ Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

(0.9, 0.9, 0.9) CLS 0.003 0.001 −0.024 −0.014 −0.007 0.078 −0.002 −0.002 0.021
(0.006) (0.002) (0.534) (0.020) (0.005) (0.485) (0.014) (0.004) (0.643)

MQL 0.003 0.001 −0.020 −0.013 −0.007 0.077 −0.001 −0.002 0.018
(0.005) (0.002) (0.472) (0.020) (0.005) (0.484) (0.014) (0.004) (0.630)

CML −0.044 −0.028 0.432 −0.122 −0.064 0.631 −0.186 −0.097 1.250
(0.005) (0.002) (0.470) (0.020) (0.006) (0.595) (0.044) (0.013) (2.143)

(0.8, 0.8, 0.8) CLS 0.001 −0.001 −0.003 −0.008 −0.003 0.036 0.000 −0.001 0.005
(0.005) (0.002) (0.448) (0.023) (0.005) (0.494) (0.016) (0.004) (0.668)

MQL 0.000 −0.001 0.002 −0.008 −0.002 0.034 −0.001 −0.002 0.007
(0.005) (0.002) (0.407) (0.023) (0.005) (0.490) (0.015) (0.004) (0.661)

CML −0.074 −0.045 0.706 −0.158 −0.085 0.811 −0.296 −0.144 1.907
(0.008) (0.003) (0.754) (0.027) (0.009) (0.800) (0.098) (0.024) (4.230)
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Figure 3. The sample path and periodogram of Series A(top), B(middle) and C(bottom) in Model I.
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4.2. Performances of r̂MQL and r̂CLS

As discussed in Section 3.2, we estimate the thresholds vector by using conditional
least squares and modified quasi-likelihood methods. The performances of r̂MQL and r̂CLS
are compared in this subsection through simulation studies. From the simulation results in
Section 4.1, we find that the contaminated data generated from Model III has little influence
on least squares and quasi-likelihood estimators, so we only simulate thresholds estimation
for different series under Model I and Model II. We assess the performance of r by the bias,
MSE and bias median, where the bias median is defined by:

Bias median = median
i∈{1,2,...,K}

(r̂ij − r0j), j = 1, 2, . . . , T,

where r̂ij is the estimator of r0j, r0j is the true value with j = 1, 2, . . . , T, and K is the number
of replications. The simulation results are summarized in Tables 10–15.

Table 10. Bias, bias median and MSE for Series A of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.167 0 0.447 0.042 0 0.550
r2 0.422 0 1.986 0.723 0 2.841
r3 0.457 0 1.975 0.947 0 3.779

100 r1 −0.107 0 0.151 −0.003 0 0.137
r2 0.224 0 1.378 0.570 0 2.428
r3 0.245 0 0.861 0.505 0 1.903

300 r1 −0.007 0 0.007 0.000 0 0.002
r2 0.027 0 0.283 0.117 0 0.477
r3 0.021 0 0.035 0.066 0 0.200

Table 11. Bias, bias median and MSE for Series B of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 0.499 0 2.129 1.294 1 4.176
r2 0.538 0 2.320 0.868 0 3.142
r3 0.139 0 2.687 0.634 0 3.610

100 r1 0.555 1 1.933 1.301 1 3.597
r2 0.283 0 1.437 0.643 0 2.473
r3 0.107 0 2.537 0.599 0 3.431

300 r1 0.480 1 1.518 1.215 1 2.485
r2 0.021 0 0.213 0.141 0 0.489
r3 −0.095 0 1.191 0.261 0 1.825
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Table 12. Bias, bias median and MSE for Series C of Model I.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.012 0 0.588 0.023 0 0.661
r2 0.268 0 5.378 0.541 0 5.909
r3 0.155 0 1.433 0.216 0 1.750

100 r1 0.015 0 0.079 0.023 0 0.081
r2 0.072 0 2.332 0.254 0 2.972
r3 0.041 0 0.325 0.050 0 0.330

300 r1 0.000 0 0.000 0.000 0 0.000
r2 −0.015 0 0.317 0.027 0 0.457
r3 0.002 0 0.004 0.002 0 0.004

Table 13. Bias, bias median and MSE for Series A of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 0.027 0 1.231 0.407 0 2.227
r2 1.025 0 4.897 1.293 1 6.051
r3 1.582 1 7.600 2.003 1 9.905

100 r1 −0.013 0 0.489 0.185 0 0.723
r2 0.944 0 4.808 1.271 0 6.215
r3 1.539 0 8.391 2.005 1 11.269

300 r1 −0.042 0 0.066 0.022 0 0.070
r2 0.652 0 3.560 0.940 0 5.088
r3 0.605 0 3.243 1.062 0 6.540

Table 14. Bias, bias median and MSE for Series B of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 1.231 1 5.527 2.134 2 9.638
r2 1.307 1 6.063 1.633 1 7.439
r3 0.840 0 6.658 1.237 1 8.211

100 r1 1.070 1 3.954 1.972 2 8.050
r2 1.208 0 5.772 1.561 1 7.375
r3 0.998 0 7.652 1.488 1 9.644

300 r1 1.059 1 3.143 1.829 2 5.611
r2 0.717 0 3.465 1.031 0 4.961
r3 0.617 0 5.925 1.153 0 8.549
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Table 15. Bias, bias median and MSE for Series C of Model II.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −1.066 0 11.494 −0.859 0 12.671
r2 0.006 0 18.430 0.149 0 19.137
r3 −0.337 −1 27.211 −0.206 −1 27.764

100 r1 −0.130 0 4.220 0.078 0 5.250
r2 0.538 0 22.610 0.696 0 23.536
r3 0.241 0 26.911 0.386 0 28.340

300 r1 −0.040 0 0.236 −0.016 0 0.262
r2 1.213 0 26.909 1.389 0 28.515
r3 0.794 0 19.586 0.961 0 21.521

From Tables 10–15, we can see that all the simulation results perform better as sam-
ple size N increases, which implies that the estimators are consistent. The results in
Tables 10–12 have smaller biases, bias medians and MSE than in Tables 13–15. This might
be because the variance of Model II is larger than Model I for each series. Moreover, almost
all the biases, bias medians and MSE of MQL estimators are smaller than CLS estimators,
and the MSE of some MQL estimators are even half of the CLS. Because the thresholds are
integer values, when we assess the accuracy of the estimators, the bias medians estimated
can be more reasonable. It is concluded that it is much better to estimate the thresholds
with the MQL method than CLS.

In the process of simulation, we generate the data with X0 = 0; however, 0 is not the
mean of the process, so we generate a set of data, discard some data generated first, and
use the remaining data for inference, namely, “burn in” samples. Here, we generate a set
of data with a length of 1800. We do the simulations for Series A of Model I, Model II
and Model III (ρ = (0.8, 0.8, 0.8)). Other simulation settings are the same as before. The
simulation results are listed in Tables 16–20. From these tables, we can see that under the
“burn in” samples, the estimated results are similar to that when the initial value is 0, which
indicates that the initial value will not affect our estimated results.

Table 16. Bias and MSE for Series A of Model I with “burn in” samples (MSE in parentheses): CLS,
MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.002 −0.008 0.012 −0.018 −0.012 0.029 0.001 0.004 −0.008
(0.067) (0.017) (0.338) (0.132) (0.024) (0.241) (0.168) (0.025) (0.351)

MQL 0.001 −0.006 0.006 −0.016 −0.012 0.027 0.002 0.004 −0.007
(0.066) (0.017) (0.331) (0.134) (0.024) (0.240) (0.174) (0.024) (0.347)

CML 0.032 0.008 −0.061 0.043 0.007 −0.044 0.000 0.004 −0.005
(0.027) (0.008) (0.124) (0.056) (0.015) (0.125) (0.046) (0.012) (0.125)

100 CLS −0.005 −0.006 0.014 −0.011 −0.005 0.012 −0.001 −0.002 0.011
(0.030) (0.009) (0.153) (0.063) (0.011) (0.106) (0.081) (0.012) (0.166)

MQL −0.006 −0.006 0.017 −0.012 −0.006 0.013 0.000 −0.002 0.008
(0.028) (0.008) (0.138) (0.061) (0.010) (0.103) (0.078) (0.012) (0.158)

CML 0.006 −0.001 −0.010 0.025 0.006 −0.031 0.000 0.001 0.003
(0.015) (0.004) (0.069) (0.035) (0.007) (0.069) (0.021) (0.006) (0.061)

300 CLS −0.001 −0.002 0.002 −0.003 −0.001 0.009 0.002 0.001 0.000
(0.010) (0.003) (0.052) (0.019) (0.004) (0.034) (0.024) (0.004) (0.050)

MQL 0.000 −0.001 0.000 −0.003 −0.001 0.008 0.001 0.001 0.002
(0.009) (0.002) (0.047) (0.019) (0.003) (0.033) (0.024) (0.003) (0.049)

CML 0.001 −0.001 −0.003 0.003 0.001 0.001 0.001 0.001 0.000
(0.006) (0.002) (0.027) (0.015) (0.003) (0.025) (0.007) (0.002) (0.021)

259



Entropy 2021, 23, 765

Table 17. Bias and MSE for Series A of Model II with “burn in” samples (MSE in parentheses): CLS,
MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS 0.009 0.000 −0.017 0.023 −0.011 0.005 −0.011 −0.004 0.005
(0.067) (0.011) (0.242) (0.306) (0.035) (0.424) (0.303) (0.026) (0.479)

MQL 0.010 0.000 −0.017 0.028 −0.010 0.000 −0.018 −0.005 0.012
(0.065) (0.010) (0.227) (0.302) (0.035) (0.420) (0.355) (0.026) (0.505)

CML 0.022 0.006 −0.042 0.053 0.013 −0.048 0.007 0.007 −0.032
(0.015) (0.004) (0.075) (0.045) (0.010) (0.151) (0.022) (0.007) (0.148)

100 CLS −0.011 −0.001 0.026 −0.013 0.000 0.015 −0.024 −0.007 0.022
(0.034) (0.005) (0.123) (0.151) (0.016) (0.210) (0.157) (0.012) (0.223)

MQL −0.011 −0.001 0.026 −0.013 −0.001 0.016 −0.022 −0.006 0.019
(0.033) (0.005) (0.117) (0.148) (0.016) (0.208) (0.156) (0.012) (0.219)

CML 0.006 0.005 −0.004 0.018 0.007 −0.013 0.009 0.003 −0.015
(0.008) (0.002) (0.039) (0.025) (0.005) (0.075) (0.010) (0.003) (0.076)

300 CLS −0.004 −0.001 0.005 −0.001 −0.002 0.008 0.000 −0.005 0.006
(0.010) (0.002) (0.037) (0.050) (0.005) (0.069) (0.052) (0.003) (0.074)

MQL −0.003 −0.001 0.004 −0.001 −0.002 0.009 0.001 −0.005 0.004
(0.010) (0.001) (0.034) (0.049) (0.005) (0.068) (0.051) (0.003) (0.073)

CML 0.001 0.001 −0.005 0.007 0.001 −0.001 0.000 −0.001 −0.002
(0.003) (0.001) (0.013) (0.008) (0.002) (0.028) (0.003) (0.001) (0.028)

Table 18. Bias and MSE for Series A of Model III (ρ = (0.8, 0.8, 0.8)) with “burn in” samples (MSE in
parentheses): CLS, MQL and CML.

N Method α
(1)
1 α

(2)
1 λ1 α

(1)
2 α

(2)
2 λ2 α

(1)
3 α

(2)
3 λ3

50 CLS −0.087 −0.040 0.214 0.018 −0.004 −0.007 0.019 0.002 −0.030
(0.068) (0.016) (0.339) (0.153) (0.025) (0.248) (0.203) (0.026) (0.381)

MQL −0.011 −0.007 0.026 0.019 −0.003 −0.008 0.019 0.002 −0.031
(0.065) (0.014) (0.292) (0.155) (0.024) (0.244) (0.203) (0.026) (0.376)

CML −0.016 −0.009 0.039 −0.012 −0.024 0.047 −0.109 −0.045 0.153
(0.022) (0.007) (0.118) (0.042) (0.015) (0.140) (0.091) (0.017) (0.245)

100 CLS −0.044 −0.017 0.103 −0.015 −0.006 0.020 −0.005 −0.003 0.008
(0.033) (0.008) (0.162) (0.075) (0.012) (0.132) (0.100) (0.013) (0.199)

MQL −0.008 −0.002 0.013 −0.015 −0.006 0.020 −0.004 −0.003 0.008
(0.030) (0.007) (0.137) (0.074) (0.012) (0.129) (0.099) (0.012) (0.197)

CML −0.043 −0.017 0.088 −0.057 −0.033 0.093 −0.129 −0.048 0.186
(0.014) (0.004) (0.073) (0.027) (0.008) (0.083) (0.062) (0.010) (0.156)

300 CLS −0.016 −0.006 0.036 0.000 −0.002 0.000 0.004 −0.001 −0.003
(0.010) (0.002) (0.048) (0.026) (0.004) (0.043) (0.030) (0.004) (0.057)

MQL −0.003 −0.001 0.003 −0.001 −0.002 0.003 0.004 −0.001 −0.003
(0.009) (0.002) (0.043) (0.025) (0.004) (0.042) (0.029) (0.004) (0.054)

CML −0.047 −0.020 0.097 −0.081 −0.037 0.113 −0.112 −0.046 0.169
(0.007) (0.002) (0.035) (0.016) (0.004) (0.038) (0.025) (0.004) (0.061)
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Table 19. Bias, bias median and MSE for Series A of Model I with “burn in“ samples.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.180 0 0.400 0.053 0 0.393
r2 0.390 0 1.960 0.720 0 2.894
r3 0.580 0 2.322 0.963 0 3.583

100 r1 −0.099 0 0.143 −0.007 0 0.081
r2 0.198 0 1.142 0.491 0 1.975
r3 0.218 0 0.800 0.455 0 1.585

300 r1 −0.015 0 0.015 −0.004 0 0.004
r2 0.018 0 0.268 0.098 0 0.416
r3 0.018 0 0.036 0.058 0 0.170

Table 20. Bias, bias median and MSE for Series A of Model II with “burn in" samples.

N Para.
MQL CLS

Bias Median MSE Bias Median MSE

50 r1 −0.071 0 0.835 0.252 0 1.394
r2 1.156 0 5.640 1.436 1 6.878
r3 1.616 1 7.974 2.046 1 10.284

100 r1 −0.110 0 0.320 0.099 0 0.473
r2 1.172 0 5.662 1.477 1 7.063
r3 1.518 1 7.508 1.947 1 10.059

300 r1 −0.041 0 0.055 0.027 0 0.055
r2 0.648 0 3.364 0.940 0 4.884
r3 0.574 0 3.532 0.854 0 5.338

5. Real Data Example

In this section, we use the PSETINAR(2; 1, 1)T process to fit the series of monthly
counts of claimants collecting short-term disability benefits. In the dataset, all the claimants
are male, have cuts, lacerations or punctures, and are between the ages of 35 and 54. In
addition, they all work in the logging industry and collect benefits from the Workers’
Compensation Board (WCB) of British Columbia. The dataset consists of 120 observations,
from 1985 to 1994 (Freeland [36]). The simulations were performed on the R3.6.2 software.
The threshold vector was calculated by the algorithms (the three-step algorithm of NeSS
combined with quasi-likelihood principle and the algorithm of NeSS combined with least
squares principle) described in Section 3.2. We uses the command constrOptim to optimize
the objective function of the maximum likelihood estimation. Figure 4 shows the sample
path, ACF and PACF plots of the observations. It can be seen from Figure 4 that this dataset
is a dependent counting time series with periodic characteristic.
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Figure 4. The sample path plot (a), ACF and PACF plots (b,c) for the counts of claimants.

We use the periodogram method to determine the period about this dataset and draw
Figure 5, from which it can be seen that In( fk) reach maximum at fk = 1/12, and concluded
that T = 12. This displays the periodic characteristic of the data and exhibits a form of
periodic change per year.
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Figure 5. The periodogram plot for the monthly counts of claimants.
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Table 21 displays the descriptive statistics for the monthly counts of claimants collect-
ing short-term disability benefits from WCB. From Table 21, we can see that the mean and
variance are approximately equal in some months. We can assume that the distribution of
the innovations is a periodic Poisson. However, some months and the total data indicate
overdispersion. We find that the dataset has no zero and the minimum value is one. This
leads us to consider the periodic Poisson, periodic Geometric, zero-truncated periodic
Poisson and zero-truncated periodic Geometric distributions for the innovations to fit the
model, respectively. Before the model fitting, we first estimate the threshold vector. The
r̂CLS is calculated by (9) and the r̂MQL is calculated through (10) by using the three-step
algorithm. Table 22 summarizes the fitting results of r̂CLS and r̂MQL. Due to the lesser data,
to fit the model better, when the number of data in each regime is relatively smaller than
two or the threshold is the maximum or minimum value of the boundary, we think that
these monthly data do not have a piecewise phenomenon, that is, March, July, and August
do not have piecewise phenomena.

Table 21. Summary statistics for the monthly counts of claimants.

Whole Dataset Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Mean 6.1 4.2 3.8 4.6 4.9 7.0 7.1 8.5 7.5 7.2 7.2 7.2 4.4
Variance 11.8 2.2 3.3 1.8 9.0 14.7 5.9 28.9 12.5 12.0 12.2 14.8 6.9

Maximum 21 6 7 8 10 14 12 21 12 12 12 14 19
Minimum 1 2 1 3 1 2 3 3 2 2 2 2 1

Table 22. Threshold estimators for the monthly counts of claimants.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

r̂CLS 3 4 7 5 5 6 10 4 9 6 7 6
r̂MQL 3 4 7 5 5 6 10 4 9 6 7 5

To capture the piecewise phenomenon of this time series dataset, we use PINAR(1)T
and PSETINAR(2; 1, 1)T models with period T = 12 to fit the dataset, respectively. The
PINAR(1) process proposed by Monteiro et al. [22] with the following recursive equation

Xt = αt ◦ Xt−1 + Zt, (12)

with αt = αj ∈ (0, 1) for t = j + sT(j = 1, . . . , T, s ∈ N0), the definition of thinning operator
“◦" and innovation process {Zt} is the same as the PSETINAR(2; 1, 1)T process.

It is worth mentioning that for this dataset, the conditional least squares and quasi-
likelihood methods produce non-admissible estimators for some months, so we use the
conditional maximum likelihood approach to estimate the parameters. Next, we use
PSETINAR(2; 1, 1)12 and PINAR(1)12 models to fit the dataset in combination with the four
innovation distributions mentioned before. Here, the threshold vectors are based on r̂MQL.
The AIC and BIC are listed in Table 23. When we fit the dataset, we hope to get smaller AIC
and BIC values. From the results in Table 23, we can conclude that the PSETINAR(2; 1, 1)12
model with zero-truncated periodic Poisson distribution is more suitable. Then, we do
the conditional maximum likelihood estimation, and the results are listed in Table 24.
Some estimators of the parameters in Table 24, for example, the α(2) of January, May, June,
September, October and November, are not statistically significant, suggesting that on
those months, the number of claims is mainly modeled through the innovation process.
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Table 23. The AIC and BIC of the claims data.

PSETINAR(2; 1, 1)12 AIC BIC PINAR(1)12 AIC BIC
Pois. 586.63 596.61 Pois. 592.12 599.38

Zero-truncated Pois. 581.65 591.64 Zero-truncated Pois. 594.44 601.71
Geom. 610.45 620.43 Geom. 605.56 612.82

Zero-truncated Geom. 586.36 596.34 Zero-truncated Geom. 595.15 602.42

Table 24. CML estimators in the dataset.

Month α(1) α(2) λ

Jan. 0.112 8.907 × 10−08 3.819
Feb. 0.227 0.032 3.060
Mar. 0.692 - 1.969
Apr. 0.999 0.240 2.048
May 0.586 8.521 × 10−09 4.889
Jun. 0.265 4.316 × 10−08 5.507
Jul. 0.360 - 5.942

Aug. 0.390 - 4.186
Sep. 0.380 3.366 × 10−07 5.218
Oct. 0.502 1.027 × 10−07 4.044
Nov. 0.433 2.776 × 10−08 4.990
Dec. 0.508 0.222 1.000

Remark: “-” stand for not available.

To check the predictability of the PSETINAR(2; 1, 1)T model, we carry out the h-
step-ahead forecasting for varying h of the PSETINAR(2; 1, 1)T model. The h-step-ahead
conditional expectation point predictor of the PSETINAR(2; 1, 1)T model is given by

X̂j+sT+h = E
[

Xj+sT+h|Xj+sT

]
, h = 1, 2, . . . .

Specifically, the one-step-ahead conditional expectation point predictor is given by

X̂j+sT+1 = E
[
Xj+sT+1|Xj+sT

]
= α

(1)
j+1Xj+sT I(1)j+sT + α

(2)
j+1Xj+sT I(2)j+sT + λj+1.

However, the conditional expectation will seldom produce integer-valued forecasts.
Recently, coherent forecasting techniques have been recommended, which only produce
forecasts in N0. This is achieved by computing the h-step-ahead forecasting conditional
distribution. As pointed out by Möller et al. [37], this approach leads to forecasts themselves
being easily obtained from the median or the mode of the forecasting distribution. In
addition, Li et al. [38] and Kang et al. [8] have applied this method to forecast the
integer-valued processes. Homburg et al. [39] discussed the prediction methods based
on conditional distributions and Gaussian approximations and applied them to some
integer-valued processes and compared them. For the PSETINAR(2; 1, 1)T process, the
one-step-ahead conditional distribution of Xj+sT+1 given Xj+sT is given by

P
(
Xj+sT+1 = xj+sT+1|Xj+sT = xj+sT

)
=

min{xj+sT ,xj+sT+1}
∑
i=1

2

∑
k=1

(
xj+sT

i

)
α
(k)i

j+1

(
1 − α

(k)
j+1

)xj+sT−i
I(k)j+sT P

(
Zj+sT+1 = xj+sT+1 − i

)
.

Due to the existence of the threshold, while we use the conditional expectation method
to predict Xj+sT+h, h > 1, we have to predict the previous moment of Xj+sT+h−1 first and
compare it with the corresponding threshold before we do the next prediction. We do the
same for the conditional distribution method. (To prevent confusion, we call this method a
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point-wise conditional distribution forecast. The predictors completely based on h-step-
ahead conditional distribution without intermediate step prediction will be discussed later.)
The mode of h-step-ahead point-wise conditional distribution can be viewed as the point
prediction. Here we compare the two forecasting methods, a standard descriptive measure
of forecasting accuracy, namely, h-step-ahead predicted root mean squared error (PRMSE)
is adopted. This measure can be given by

PRMSE =

√√√√ 1
K − K0

K

∑
t=K0+1

(
Xt+h − X̂t+h

)2, h = 1, 2, . . . ,

where K is the full sample size, we split the data into two parts, and the last K − K0
observations as a forecasting evaluation sample. We forecast the value of the last year
when h = 1, 2, 3, 12.

The PRMSEs of the h-step-ahead point predictors are list in Table 25. For conditional
expectation point predictors, the PRMSEs of PSETINAR(2; 1, 1)12 with zero-truncated
periodic Poisson distribution are smaller than the PINAR(1)12 with periodic Poisson and
zero-truncated periodic Poisson distributions. This further shows the superiority of our
model. The PRMSEs of the one-step-ahead point predictors are smaller than others. This is
very natural because we use the value of the previous moment as the explanatory variable.
For PSETINAR(2; 1, 1)12 with zero-truncated periodic Poisson distribution, the PRMSEs
of twelve-step-ahead predictors are smaller than other h-step-ahead predictors except for
one-step-ahead. This may be because our period is 12. The PRMSE of one-step-ahead
conditional expectation point predictors is smaller than point-wise conditional distribution
point predictors. Thus, the former method is better for this dataset.

The PRMSEs of the one-step-ahead fitted series calculated by conditional expectation
and conditional distribution are 2.434 and 3.565, respectively. This further illustrates
that for our dataset, one-step-ahead forecasting conditional expectation is better than
conditional distribution. The original data and the fitted series (calculated by the one-step-
ahead conditional expectation based on the observations of the previous moments) by the
PSETINAR(2; 1, 1)12 model with zero-truncated periodic Poisson distribution are plotted
in Figure 6. It is observed that the trend is similar to the original data. Except for the points
with large value (the unexpected prediction may be due to the wrong judgement of regime),
this model fits the data well.
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Figure 6. Plot of fitted curves of the claims data.
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Table 25. PRMSE of the h-step-ahead point predictors.

h 1 2 3 12

Conditional expectation PSETINAR(2; 1, 1)12 (Zero-truncated Pois.) 2.641 3.019 3.433 2.929
PINAR(1)12 (Zero-truncated Pois.) 2.753 3.377 3.567 3.788

PINAR(1)12 (Pois.) 2.724 3.407 3.704 4.008
Conditional distribution PSETINAR(2; 1, 1)12 (Zero-truncated Pois.) 2.814 3.000 3.109 2.930

Actually, we can get the h-step-ahead conditional distribution; here, we list the two-
step-ahead and three-step-ahead conditional distributions as an example,

P
(
Xj+sT+2 = xj+sT+2|Xj+sT = xj+sT

)
=

n

∑
m=0

P
(
Xj+sT+1 = m|Xj+sT = xj+sT

)
P
(
Xj+sT+2 = xj+sT+2|Xj+sT+1 = m

)
,

and

P
(
Xj+sT+3 = xj+sT+3|Xj+sT = xj+sT

)
=

n

∑
m=0

P
(
Xj+sT+2 = m|Xj+sT = xj+sT

)
P
(
Xj+sT+3 = xj+sT+3|Xj+sT+2 = m

)
,

where m ∈ {0, 1, . . . , n} is the possible domain of Xj+sT , j = 1, . . . , T, and s ∈ N0. When
h = 1, 2, 3, we show the plots of the h-step-ahead conditional distribution in Figure 7, where
xj+sT represents the count of claimants in December 1993 and February 1994, respectively.
The mode of h-step-ahead conditional distribution can be viewed as the point prediction.
The PRMSEs of the two-step-ahead and three-step-ahead point predictors for the last year
are 3.227 and 3.215, respectively, which is larger than the point-wise conditional distribution
method described before. Maybe for other datasets or models, the h-step-ahead forecasting
conditional distribution will show some advantages. We will not go into details here.
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Figure 7. The h-step-ahead forecasting conditional distribution for the counts of claimants: (a–c) conditional on the count of
claimants in December 1993; (d–f) conditional on the count of claimants in February 1994.
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6. Conclusions

This paper extended the PSETINAR(2; 1, 1)T process proposed by Pereira et al. [25],
by removing the assumption of Poisson distribution of {Zt} and considered the PSETINAR
(2; 1, 1)T process under weak conditions that the second moment of {Zt} is finite. The
ergodicity of the process is established. MQL-estimators of the model parameters vector
β, MQL-estimators and CLS-estimators of the thresholds vector r are obtained. Moreover,
through simulation, we can see the advantages of the quasi-likelihood method by com-
paring with the conditional maximum likelihood and conditional least square methods.
An application to a real dataset is presented. In addition, the forecasting problem of this
dataset is addressed.

In this paper, we only discuss the PSETINAR(2; 1, 1)T process for univariate time series.
Hence, an extension for the multivariate PSETINAR(2; 1, 1)T process with a diagonal or
cross-correlation autoregressive matrix is a topic for future investigation. Furthermore, it
is also important to stress that beyond this extension, there are a number of interesting
problems for future research in this area. For example, even a simple periodic model can
have an inordinately large number of parameters. This is also true for PSETINAR(2; 1, 1)T
models and even multi-period models. Therefore, the development of procedures of
dimensionality reduction to overcome the computational difficulties is an impending
problem. This remains a topic of future research.
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Appendix A

Proof of Theorem 1. According to Theorem 2 of Tweedie [40] (see also, Zheng and Ba-
sawa [41]), for the process defined by (2), and ∀j = 1, 2, . . . , T, s ∈ Z, we have

E
(
Xj+sT |Xj+sT−1 = x

)
= α

(1)
j xI(1)j+sT−1 + α

(2)
j xI(2)j+sT−1 + λj ≤ αj,maxx + λj,

where αj,max = max{α
(1)
j , α

(2)
j } < 1.

Let K =
[

1+λj
1−αj,max

]
+ 1, where [·] denotes the integer part of a number. Then for x ≥ K, we

have
E
(
Xj+sT |Xj+sT−1 = x

)
≤ x − 1,

and for x < K,

E
(
Xj+sT |Xj+sT−1 = x

)
≤ αj,maxx + λj ≤ K + λj < ∞.

Therefore, the process {Xt} for t = j + sT defined in (2) is an ergodic Markov chain.
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Proof of Proposition 2. (i) From Proposition 1, we have

Var
(
Xj+sT |Xj+sT−1

)
= E

{
Xj+sT − E

(
Xj+sT |Xj+sT−1

)}2

= E
(

Xj+sT − α
(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)2
,

and

Var
(
Xj+sT |Xj+sT−1

)
=

2

∑
k=1

α
(k)
j

(
1 − α

(k)
j

)
Xj+sT−1 I(k)j+sT−1 + σ2

z,j,

with k = 1, 2, j = 1, . . . , T, s ∈ N0, so by substituting suitable consistent estimators of α
(k)
j

and λj, we can get the consistent estimation of σ2
z,j,

σ̂2
1,z,j =

1
N

N−1

∑
s=0

(
Xj+sT −

2

∑
k=1

α̂
(k)
j Xj+sT−1 I(k)j+sT−1 − λ̂j

)2

− 1
N

2

∑
k=1

N−1

∑
s=0

α̂
(k)
j

(
1 − α̂

(k)
j

)
Xj+sT−1 I(k)j+sT−1.

(ii) Moreover, from model (2), we have

Var
(
Xj+sT

)
=

2

∑
k=1

Var
{(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1

}
+ Var

(
Zj+sT

)
+ 2Cov

{(
α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1,

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
,

where

Var
{(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1

}
=Var

{
E
[(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1|Xj+sT−1

]}
+ E
{

Var
[(

α
(k)
j ◦ Xj+sT−1

)
I(k)j+sT−1|Xj+sT−1

]}
=α

(k)
j

2
Var
(

Xj+sT−1 I(k)j+sT−1

)
+ α

(k)
j

(
1 − α

(k)
j

)
E
(

Xj+sT−1 I(k)j+sT−1

)
,

and

2Cov
{(

α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1,

(
α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
=−2E

{(
α
(1)
j ◦ Xj+sT−1

)
I(1)j+sT−1

}
E
{(

α
(2)
j ◦ Xj+sT−1

)
I(2)j+sT−1

}
=− 2α

(1)
j α

(2)
j E
{

Xj+sT−1 I(1)j+sT−1

}
E
{

Xj+sT−1 I(2)j+sT−1

}
.

Note that

E
{

Xj+sT−1 I(1)j+sT−1

}
=E
{

E
[

Xj+sT−1 I(1)j+sT−1|I
(1)
j+sT−1 = 1

]}
=E
{

Xj+sT−1 I(1)j+sT−1|I
(1)
j+sT−1 = 1

}
P
(

I(1)j+sT−1 = 1
)

=E
{

Xj+sT−1|Xj+sT−1 ≤ rj
}

P
(

I(1)j+sT−1 = 1
)

.
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Let pj = P
(

I(1)j+sT−1 = 1
)

with j = 1, . . . , T, s ∈ N0, we can estimate it with p̂j =
1
N

N−1
∑

s=0
I(1)j+sT−1.

Therefore, by substituting a suitable consistent estimator of α
(k)
j , based on moment estima-

tion, we can get the estimator σ̂2
2,z,j in Proposition 2.

Proof of Theorem 2. Let Fj+sT = σ
(
X0, X1, . . . , Xj+sT

)
with j = 1, . . . , T, s ∈ N0. First, we

suppose θ is known, for the following estimation equations:

S(1)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(1)j+sT−1,

we have

E
[
V−1

θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(1)j+sT−1|Fj+sT−1

]
= V−1

θj
Xj+sT−1 I(1)j+sT−1E

[(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))
|Fj+sT−1

]
= V−1

θj
Xj+sT−1 I(1)j+sT−1E

[(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))
|Xj+sT−1

]
= 0,

and

E
[
S(1)

s,j
(
θj, β j

)
|Fj+sT−1

]
= E

[
V−1

θj

(
Xj+sT−α

(1)
j Xj+sT−1 I(1)j+sT−1−α

(2)
j Xj+sT−1 I(2)j+sT−1−λj

)
Xj+sT−1 I(1)j+sT−1 + S(1)

s−1,j
(
θj, β j

)
|Fj+sT−1

]
= E

[
S(1)

s−1,j
(
θj, β j

)
|Fj+sT−1

]
= S(1)

s−1,j
(
θj, β j

)
,

so {S(1)
s,j
(
θj, β j

)
,Fj+sT , j = 1, 2, . . . , T, s ∈ N0} is a martingale. By Theorem 1.1 of Billings-

ley [42], we have

1
N

N−1

∑
s=0

V−2
θj

(
Xj+sT |Xj+sT−1

)(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)2
X2

j+sT−1 I(1)j+sT−1

a.s.−→ E
[

V−2
θj

(
Xj|Xj−1

)(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1

]
= E{E

[
V−2

θj

(
Xj|Xj−1

)(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1|Xj−1

]
}

= E{V−2
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1E
[(

Xj − α
(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
|Xj−1

]
}

= E{V−1
θj

(
Xj|Xj−1

)
X2

j−1 I(1)j−1}

� Hj,11
(
θj
)
.

Thus, by the central limit theorem of martingale, we get

1√
N

S(1)
N,j
(
θj, β j

) L−→ N
(
0, Hj,11

(
θj
))

.

Similarly,

1√
N

S(2)
N,j
(
θj, β j

) L−→ N
(
0, Hj,22

(
θj
))

,
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1√
N

S(3)
N,j
(
θj, β j

) L−→ N
(
0, Hj,33

(
θj
))

,

where

S(2)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
Xj+sT−1 I(2)j+sT−1,

and

S(3)
N,j
(
θj, β j

)
=

N−1

∑
s=0

V−1
θj

(
Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj

)
.

For any c = (c1, c2, . . . , cT)
′ ∈ R3T \ (0, 0, . . . , 0), cj =

(
c(1)j , c(2)j , c(3)j

)′
with j = 1, 2, . . . , T,

to simplify, let

j + sT �= i + kT, i, j = 1, 2, . . . , T, s, k ∈ N0,

uj,s = c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j ,

wj,s = Xj+sT − E
(
Xj+sT |Xj+sT−1

)
= Xj+sT − α

(1)
j Xj+sT−1 I(1)j+sT−1 − α

(2)
j Xj+sT−1 I(2)j+sT−1 − λj,

and n(T, N) is a constant associated with N and T, then

E

[
T

∑
j=1

N−1

∑
s=0

V−1
θj

(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))(
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)]2

=
T

∑
j=1

N−1

∑
s=0

E
[
V−2

θj
w2

j,su2
j,s

]
+ n(T, N)E

[
V−1

θj
V−1

θi
wj,swi,kuj,sui,k

]
, (A1)

for the first item in the right side of Equation (A1), we have

E
[
V−2

θj
w2

j,su2
j,s

]
=E{E

[
V−2

θj
w2

j,su2
j,s|Xj+sT−1

]
}

=E{V−2
θj

u2
j,sE
[
w2

j,s|Xj+sT−1

]
}

=E
[

V−1
θj

(
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)2
]

,

for the second item in the right side of Equation (A1), we have

E
[
V−1

θj
V−1

θi
wj,swi,kuj,sui,k

]
=E{V−1

θj
V−1

θi
uj,sui,kE

[
wj,swi,k|Xj+sT−1, Xi+kT−1

]
}

=0,

which imply that Cov
(
SN,j, SN,i

)
= 0, where SN,j =

(
S(1)N,j
(
θj, βj

)
, S(2)N,j

(
θj, βj

)
, S(3)N,j

(
θj, βj

))′
,

∀i, j = 1, 2, . . . , T, i �= j, then we have
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cT
j√
N

(
S(1)

N,j
(
θj, β j

)
, S(2)

N,j
(
θj, β j

)
, S(3)

N,j
(
θj, β j

))′
=

1√
N

3

∑
i=1

c(i)j S(i)
N,j
(
θj, β j

)
=

1√
N

N−1

∑
s=0

V−1
θj

[
Xj+sT − E

(
Xj+sT |Xj+sT−1

)](
c(1)j Xj+sT−1 I(1)j+sT−1 + c(2)j Xj+sT−1 I(2)j+sT−1 + c(3)j

)
L−→ N

(
0, E
[

V−1
θj

(
Xj|Xj−1

)(
c(1)j Xj−1 I(1)j−1 + c(2)j Xj−1 I(2)j−1 + c(3)j

)2
])

, as N → ∞,

therefore, the
cT

j√
N

(
S(1)

N,j
(
θj, β j

)
, S(2)

N,j
(
θj, β j

)
, S(3)

N,j
(
θj, β j

))′
converges to a normal distribu-

tion with mean zero and variance E
[

V−1
θj

(
Xj|Xj−1

)(
c(1)j Xj−1 I(1)j−1 + c(2)j Xj−1 I(2)j−1 + c(3)j

)2
]

.

Thus, by Cramer-wold device, it follows that

1√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(1)
N,1(θ1, β1)

S(2)
N,1(θ1, β1)

S(3)
N,1(θ1, β1)

...
S(1)

N,T(θT , βT)

S(2)
N,T(θT , βT)

S(3)
N,T(θT , βT)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L−→ N

⎛⎜⎜⎜⎝0,

⎡⎢⎢⎢⎣
H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠,

the 0’s are (3 × 3)-null matrices. Now, we replace Vθj

(
Xj+sT|Xj+sT−1

)
by Vθ̂j

(
Xj+sT|Xj+sT−1

)
,

where θ̂j is a consistent estimator of θj. We aim to get the result

1√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(1)
N,1
(
θ̂1, β1

)
S(2)

N,1
(
θ̂1, β1

)
S(3)

N,1
(
θ̂1, β1

)
...

S(1)
N,T
(
θ̂T , βT

)
S(2)

N,T
(
θ̂T , βT

)
S(3)

N,T
(
θ̂T , βT

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L−→ N

⎛⎜⎜⎜⎝0,

⎡⎢⎢⎢⎣
H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 0 · · · HT(θ)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠. (A2)

To prove (A2), we need to check the following conclusion

1√
N

S(i)
N,j
(
θ̂j, β j

)
− 1√

N
S(i)

N,j
(
θj, β j

) P−→ 0, j = 1, 2, . . . , T, i = 1, 2, 3, N → ∞. (A3)

For ∀ε > 0, ∃δ > 0, we have

P
(
| 1√

N
S(1)

N
(
θ̂j, β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
≤

2

∑
k=1

P
(
|θ(k)j1

− θ
(k)
j | > δ

)
+ P
(
|σ2

z,j1 − σ2
z,j| > δ

)
+ P
(

sup
D

| 1√
N

S(1)
N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
,
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where θj1 =
(

θ
(1)
j1

, θ
(2)
j1

, σ2
z,j1

)′
, D = {θj1 : |θ(1)j1

− θ
(1)
j | < δ, |θ(2)j1

− θ
(2)
j | < δ, σ2

z,j1
− σ2

z,j| < δ}.

If θ̂j is a consistent estimator of θj, then we just need to prove that

P
(

sup
D

| 1√
N

S(1)
N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)
P−→ 0, N → ∞.

By the Markov inequality,

P
(

sup
D

| 1√
N

S(1)
N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β j

)
| > ε

)

≤ 1
ε2 E

(
sup

D

(
1√
N

S(1)
N
(
θj1 , β j

)
− 1√

N
S(1)

N
(
θj, β

))2
)

≤ 1
ε2 E{sup

D

1
N

[
N−1

∑
s=0

(
V−1

θj1
− V−1

θj

)2(
Xj+sT − E

(
Xj+sT |Xj+sT−1

))2X2
j+sT−1 I(1)j+sT−1

]
}

=
1
ε2 E
[

sup
D

(
V−1

θj1

(
Xj|Xj−1

)
− V−1

θj

(
Xj|Xj−1

))2(
Xj − α

(1)
j Xj−1 I(1)j−1 − α

(2)
j Xj−1 I(2)j−1 − λj

)2
X2

j−1 I(1)j−1

]

=
1
ε2 E{sup

D

[(
θ
(1)
j − θ

(1)
j1

)
Xj−1 I(1)j−1 +

(
θ
(1)
j − θ

(2)
j1

)
Xj−1 I(2)j−1 +

(
σ2

z,j − σ2
z,j1

)]2

V2
θj1

(
Xj|Xj−1

)
Vθj

(
Xj|Xj−1

) X2
j−1 I(1)j−1}

≤ 1
ε2 sup

D
{[
(

θ
(1)
j − θ

(1)
j1

)2
m1 +

(
θ
(2)
j − θ

(2)
j1

)2
m2 +

(
σ2

z,j − σ2
z,j1

)2
m3 + 2m4|θ(1)j − θ

(1)
j1

||θ(2)j − θ
(2)
j1

|

+ 2m5|θ(1)j − θ
(1)
j1

||σ2
z,j − σ2

z,j1 |+ 2m6|θ(2)j − θ
(2)
j1

||σ2
z,j − σ2

z,j1 |]X
2
j−1 I(1)j−1}

≤ cδ2

ε2 ,

where m1, m2, . . . , m6 are some finite moments of process {Xt} under assumption (C2),
and c is a positive constant. A similar argument can be used for 1√

N
S(2)

N,j
(
θj, β j

)
and

1√
N

S(3)
N,j
(
θj, β j

)
, j = 1, . . . , T. Let δ → 0, we can get (A3).

By the ergodic theorem, we have

1
N

QN
P−→ H(θ).

After some calculation, we have

QN

(
β̂MQL − β

)
=
(

S(1)
N,1
(
θ̂1, β1

)
, S(2)

N,1
(
θ̂1, β1

)
, S(3)

N,1
(
θ̂1, β1

)
, . . . , S(1)

N,T
(
θ̂T , βT

)
, S(2)

N,T
(
θ̂T , βT

)
, S(3)

N,T
(
θ̂T , βT

))′
,

Therefore,

√
N
(

β̂MQL − β
)

L−→ N
(

0, H−1(θ)
)

.

This completes the proof. �
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Abstract: In this research, we consider monitoring mean and correlation changes from zero-inflated
autocorrelated count data based on the integer-valued time series model with random survival rate.
A cumulative sum control chart is constructed due to its efficiency, the corresponding calculation
methods of average run length and the standard deviation of the run length are given. Practical
guidelines concerning the chart design are investigated. Extensive computations based on designs
of experiments are conducted to illustrate the validity of the proposed method. Comparisons with
the conventional control charting procedure are also provided. The analysis of the monthly number
of drug crimes in the city of Pittsburgh is displayed to illustrate our current method of process
monitoring.

Keywords: CUSUM control chart; INAR-type time series; statistical process monitoring; random
survival rate; zero-inflation

1. Introduction

This work is motivated by an empirical analysis and process control of a monthly drug
crime series, which contains excess zeros (over 40%) and shows clear serial dependence
(see Section 5 for more details). To solve this problem, an appropriate integer-valued
model is selected, further, control charts based on this model are developed. Among
kinds of integer-valued models, a specific kind featured with first-order integer-valued
autoregressive (INAR(1)) models plays an very important role and has been widely studied
in the literature. In reality, serial dependence among the count data have been demonstrated
to arise extensively in practice, typical examples are infectious disease counts, defect counts
and unemployment counts, etc. These data are important indicators of the epidemic study,
quality control and economics analysis, and the process monitoring is essential to detect
the shifts in them.

The first INAR(1) model proposed by Al-Osh and Alzaid [1] is in the following form

Xt = α ◦ Xt−1 + εt, t = 1, 2, · · · ,

where the binomial thinning operator “◦′′ is defined by Steutel and Van Harn [2], α ◦ Xt−1 =

∑
Xt−1
i=1 Yi, α ∈ (0, 1), {Yi}N is a sequence of independent and identically distributed (i.i.d.)

random variables with Bernoulli(α) distribution; and {εt}N is a sequence of i.i.d. random
variables, independent of all {Yi}. The INAR(1) model is currently applied in various
kinds of real-world problems because of its good interpretability. As one example, we let
Xt represent the number of patients of an infectious disease in a community at time t, εt the
number of new patients entering the community at time t, and suppose each patient at time
t − 1 survives at time t with survival probability α. As for the crime data, α ◦ Xt−1 can be
considered as the number of re-offendings provoked by Xt−1 with probability α. Depending
on the nature of this kind of observed data, the INAR(1) models have been modified and
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generalized with respect to their orders (Ristić and Nastić [3], Nastić, Laketa and Ristić [4]),
dimensions (Pedeli and Karlis [5], Khan, Cekim and Ozel [6]), marginal distributions
(Alzaid and Al-Osh [7], Alzaid and Al-Osh [8], Jazi, Jones and Lai [9], Ristić, Nastić and
Bakouch [10], Barreto-Souza [11]), thinning operators (Ristić, Bakouch and Nastić[12], Liu
and Zhu [13]), and mixed models (Ristić and Nastić [3], Li, Wang and Zhang [14], Orozco,
Sales, Fernández and Pinho [15]). For more literature, we refer to review papers (Weiß [16],
Scotto, Weiß and Gouveia [17]). Differing with the models that based on a fixed survival
rate α, Zheng, Basawa and Datta [18] proposed the random coefficient INAR(1) model,
supposing that the parameter α may be affected by various environmental factors, and
could vary randomly over time. Some of the generalizations of random coefficient INAR
models can also be found in Kang and Lee [19] and Zhang, Wang and Zhu [20]. In particular,
considering both random survival probability and zero-inflation phenomenon, Bakouch,
Mohammadpour and Shirozhan [21] purposed a zero-inflated geometric INAR(1) time
series with random coefficient (short for the ZIGINARRC(1) process). The ZIGINARRC(1)
model has simple structure and good properties, which turns out to be the best fit for the
real data studied by us.

As the serial dependence shows big influence on the performance of the control chart,
the traditional control charts under the assumption of independent observations are not
appropriate in many cases. Therefore, the monitoring of INAR(1) models has received
much attention. The related research includes but not limited to the control charts for
the generally developed Poisson INAR(1) models (Weiß [22], Weiß and Testik [23], Weiß
and Testik [24], Yontay, Weiß, Testik and Bayindir [25]), for zero-inflated or zero-deflated
INAR(1) models (Rakitzis, Weiß and Castagliola [26], Li, Wang and Sun [27], Fernandes,
Bourguignon and Ho [28]), for the mixed INAR(1) model (Sales, Pinho, Vivacqua and
Ho [29]), etc. While, to the best of our knowledge, methods for monitoring the zero-inflated
INAR(1) model with random coefficient have not been studied in the literature so far,
which is exactly what we are going to explore. As cumulative sum (CUSUM) control
charts are known to be sensitive in detecting small shifts, we study the performance of
the CUSUM chart for monitoring ZIGINARRC(1) process. We investigate the practical
guidelines for the statistical design and the methods for evaluating the chart performance.
Besides monitoring mean shifts of the ZIGINARRC(1) model, our scope is also to monitor
correlation shifts in the model. Meanwhile, we compare the performance of the CUSUM
chart with the conventional Shewhart chart.

The rest of the article is outlined as follows. The ZIGINARRC(1) process and some
properties of this process are introduced in Section 2. In Section 3, we present the mon-
itoring procedure to detect the mean and correlation shifts of the process. Extensive
computation results are discussed in Section 4. In Section 5, the applicability of the process
monitoring is investigated using the monthly number of drug crimes in Pittsburgh. Finally
conclusions and possible future lines of research are shown in Section 6.

2. The ZIGINARRC(1) Process

A randomized binomial thinning operation in Bakouch, Mohammadpour and Shi-
rozhan [21] is defined by

αt ◦ X =

⎧⎨⎩ α ◦ X, with probability 1 − β,

0, with probability β,

where α, β ∈ (0, 1), αt is a binary random variable independent of discrete random variable
X, P(αt = 0) = β = 1 − P(αt = α).

Based on the definition of the randomized binomial thinning operation, the ZIGINARRC(1)
model {Xt} presented by Bakouch, Mohammadpour and Shirozhan [21], is given by

Xt = αt ◦ Xt−1 + εt, t = 1, 2, · · · ,
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where the marginal distribution is a zero-inflated Geometric distribution (denoted as
ZIG(p, θ)), P(Xt = 0) = p + (1 − p)/(1 + θ), P(Xt = j) = (1 − p)θ j/(1 + θ)j+1, j =
1, 2, · · · , and p ∈ (0, 1), θ > 0. {εt}N is independent of the past of the solution {Xs; s < t}
and the binary sequence {αt}, parameters are also constrained by the condition p/(β +
p(1 − β)) < α < 1.

The ZIGINARRC(1) process is quite suitable for modelling some real-life phenomena
in which counted events may survive or vanish with the random survival probability αt.
Such series are studied in Section 5 with an example of the counts of the drug crimes, where
the re-offending rate may be affected by public security situation and financial situation.
The mean, variance, and first-order autocorrelation function of the process are, respectively,

μX � E(Xt) = (1 − p)θ, σ2
X � Var(Xt) = (1 − p)θ[(1 + p)θ + 1],

ρX � Corr(Xt, Xt+1) = α(1 − β).

Obviously the process is characterized by the property of overdispersion, i.e., the vari-
ance greater than the expectation. Figure 1 shows some sample paths of simulated
ZIGINARRC(1) processes for θ = 1, 3, 5; p = 0.2, 0.5; α = 0.5, 0.8 and β = 0.3, 0.8. As
we can see, the model has larger process mean with larger θ, and larger percentage of zeros
with larger p.

Figure 1. Sample path of ZIGINARRC(1) processes for θ = 1, 3, 5, p = 0.2, 0.5, α = 0.5, 0.8 and
β = 0.3, 0.8.

Following Theorem 2.1 in Bakouch, Mohammadpour and Shirozhan [21], the ZIGINARRC(1)
model has a unique, strictly stationary solution given by

∞

∑
i=1

( i−1

∏
l=0

αt−l

)
◦ εt−i + εt.

Furthermore, the probability mass function of {εt}N is

P(εt = j) =
p

β + p(1 − β)
I(j) +

(1 − p)(1 − α)

1 − α[β + p(1 − β)]

θ j

(1 + θ)j+1

+
(1 − p)(1 − β)[α(β + p(1 − β))− p]
(1 − α[β + p(1 − β)])(β + p(1 − β))

× [αθ(β + p(1 − β))]j

[1 + αθ(β + p(1 − β))]j+1 , j = 0, 1, 2, · · · .
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where I(j) = 1 for j = 0 and 0 else. It can be deduced that the innovation series {εt}N is a
mixture of three random variables, a degenerate distribution at 0, Geometric(θ/(1 + θ))
and Geometric(αθ(β + p(1 − β))/(1 + αθ(β + p(1 − β)))) distributions with three different
mixing portions. The following form is the transition probability of the process {Xt}N0

P(Xt = j|Xt−1 = i) =βP(εt = j) + (1 − β)
min(i,j)

∑
l=0

(
i
l

)
αl(1 − α)i−l P(εt = j − l),

i, j = 0, 1, · · · .

Some other important probabilistic properties of the process, like spectral density, multi-
step conditional mean and variance, extreme order statistics, distributional properties
of length of run of zeros, have also been discussed in Bakouch, Mohammadpour and
Shirozhan [21]. Furthermore, the unknown parameters of the model could be estimated by
conditional least squares or maximum likelihood methods.

3. Monitoring Procedure

In this section, we present a CUSUM chart for monitoring the ZIGINARRC(1) process.
As this process is used to fit the number of crimes, an increase in the process mean
usually means a deteriorating public security environment, and an increase in the process
correlation usually means more re-offendings. Thus, our purpose is to detect the increasing
of both mean shifts and correlation shifts in the ZIGINARRC(1) process. According to the
model properties, the process mean is affected by the parameters θ and p, the correlation
is affected by the parameters α and β. Let θ0, p0, α0 and β0 (θ1, p1, α1 and β1) denote
the in-control (out-of-control) parameters of the processes, and μ0, σ0, ρ0 (μ1, σ1, ρ1)
be the corresponding in-control (out-of-control) process mean, standard deviation and
first-order correlation.

The CUSUM charts are commonly used charts in statistical process control, which were
first proposed by Page [30]. The essential assumption underlying the design of CUSUM
charts is that the process observations are independent (Montgomery [31], Alencar, Ho
and Albarracin [32], Bourguignon, Medeiros, Fernandes and Ho [33]). While the violation
of this major assumption seriously affects the monitoring performance of the charts (Harris
and Ross [34], Triantafyllopoulos and Bersimis [35], Albarracin, Alencar and Ho [36]).
Some authors have studied the performance of CUSUM charts for some integer-valued
models (Weiß and Testik [23], Weiß and Testik [24], Yontay, Weiß, Testik and Bayindir [25],
Rakitzis, Weiß and Castagliola [26], Li, Wang and Sun [27], Lee and Kim [37], Lee, Kim and
Kim [38]).

Scheme (The ZIGINARRC(1) CUSUM chart). Let {Xt}N0 be a stationary ZIGINARRC(1)
process, the CUSUM statistics Ct is defined as:

Ct = max(0, Xt − k + Ct−1), t = 1, 2, · · · ,

where k is a positive integer constant representing the reference (k � μ0). This chart is said to be
out-of-control when Ct falls outside the control limit h (h ∈ N), that is, Ct > h.

The initial value of the CUSUM statistics is set equal to the integer constant c0, i.e.,
C0 = c0 with c0 < h. The performance evaluation of this chart is accomplished based on
the average run length (ARL) measures, which is defined as the average number of points
to be plotted on the chart until the first out-of-control signal triggers. As {Xt, Ct}t∈N0 of the
ZIGINARRC(1) process is a bivariate Markov chain, the Markov chain approach proposed
by Brook and Evans [39] is adapted to evaluate the exact ARLs. Though this method
has been described in detail in the relevant literature by Weiß [22], Weiß and Testik [23]
and Weiß and Testik [24], we briefly introduce this method here for completeness. The
reachable control region (CR) of {Xt, Ct}N0 is given by
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CR � {(n, i) ∈ N0 × {0, · · · , h}| max(0, n − k + i) ∈ {0, · · · , h}}
= {(n, i)|i ∈ {0, · · · , h}, n ∈ {max(0, i + k − h), · · · , i + k}}.

Obviously CR has a finite number of elements and could be ordered in a certain manner.
The transition probability matrix of {Xt, Ct}N0 is Q� � (p(n, j|m, i))(n,j),(m,i)∈CR,

p(n, j|m, i) � P(Xt = n, Ct = j|Xt−1 = m, Ct−1 = i) = I(j−max(0,n−k+i))P(Xt = n|Xt−1 = m).

The initial probabilities are

p(n, j|c0) � P(X1 = n, C1 = j|C0 = c0) = I(j−max(0,n−k+c0))
P(X1 = n).

The conditional probability that the run length of {Xt, Ct}N0 equals r is defined by

pm,i(r) � P((Xr+1, Cr+1) �∈ CR, (Xr, Cr), · · · , (X2, C2) ∈ CR|(X1, C1) = (m, i)),

where (m, i) ∈ CR. Let the vector μ(k) denote the k-th factorial moments that (u(k))m,i �
∑∞

r=1 r(k)pm,i(r) where k � 1 and r(k) � r × (r − 1)× · · · × (r − k + 1). Then

pm,i(r) = ∑
(n,j)∈CR

pn,j(r − 1)× p(n, j|m, i),

(u(1))m,i = 1 + ∑
(n,j)∈CR

p(n, j|m, i)× (u(1))n,j, i.e., (I − Q)u(1) = 1.

The ARL is obtained as

ARL = ∑
(m,i)∈CR

(u(1))m,i × p(m, i|c0).

For simplicity we do not repeat the proof methods, see Weiß [22], Weiß and Testik [23] and
Weiß and Testik [24] for more details. It is expected that an efficient chart possesses a large
in-control ARL (denoted as ARL0) and a small out-of-control ARL. Along with the ARL,
we also assess the performance of the charts through the standard deviation of run length
(SDRL) suggested by Weiß [22]. The SDRL of the ZIGINARRC(1) CUSUM chart could again
be computed efficiently by applying the Markov chain method. The second order factorial
moments u(2) can be determined recursively from the relation (I − Q)u(2) = 2Qu(1).
Then the SDRL is

SDRL =
√

∑
(m,i)∈CR

((u(2))m,i + (u(1))m,i)× p(m, i|c0)− ARL2 .

To implement the proposed monitoring scheme, the chart design pairs (h, k) need to be
designed in advance. Generally, a fixed ARL0 value is set to be the target value, and (h, k)
is set accordingly. Some guidelines for the choices of them will be given in the next section.

4. Computation Results

In this section, we evaluate the ZIGINARRC(1) CUSUM chart performance basing
on extensive numerical experiments and presume that the parameters in this model have
already been known. In practice, the in-control parameters need to be estimated from the
data, as shown in the next section. We search for possible chart designs (integer (h, k) pairs)
in order to adjust the ARL0 close to the target value. Here the target ARL0 value is set to be
370, which is commonly used in the statistical process monitoring domain. Meanwhile,
the values of ARL and SDRL are calculated accurately by the Markov chain method, and
we only show the results with two decimal places for simplicity. We first compute ARL0
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and SDRL0 of the CUSUM chart for different in-control process parameters and initial
values in Table 1. The process parameters are: θ0 = {1, 5}; p0 = {0.1, 0.3}; α0 = {0.5, 0.8};
β0 = {0.5, 0.8}. Furthermore, initial values are c0 = {0, 3, 6}. These chosen parameters
could cover a broad range of different scenarios. Based on the results in Table 1, three
important conclusions can be derived. First, it can be observed that when c0 takes smaller
value, the deviation of ARL0 and SDRL0 is small. When c0 takes larger value, there might
be a situation where the value of SDRL0 is significantly greater than the value of ARL0
(for example, ARL0 = 409.42, SDRL0 = 442.13 under (θ0, p0, α0, β0, c0) = (1, 0.3, 0.5, 0.8, 6)).
Thus, we assume that c0 = 0 in the following studies to get better robust. Second, as the
differences of the values between ARL and SDRL are small when c0 = 0, we only use ARL
as the measure in the following computations to save space. Last, the parameter θ0 shows
a great influence on the selection of control designs (h, k), with a larger θ0 comes a larger
pair of (h, k).

Table 1. ARL0 and SDRL0 of the CUSUM chart for various θ0, p0, α0, β0 and c0.

(θ0, p0, α0, β0) (h, k) (c0, ARL0, SDRL0) (c0, ARL0, SDRL0) (c0, ARL0, SDRL0)

(1, 0.1, 0.5, 0.5) (9, 2) (0, 340.55, 339) (3, 336.84, 338.98) (6, 322.88, 338.52)

(1, 0.1, 0.5, 0.8) (8, 2) (0, 428.55, 427.38) (3, 423.5, 427.34) (6, 398.83, 426.33)

(1, 0.1, 0.8, 0.5) (12, 2) (0, 368.36, 366.45) (3, 365.76, 366.43) (6, 358.76, 366.3)

(1, 0.1, 0.8, 0.8) (9, 2) (0, 428.69, 427.42) (3, 424.79, 427.4) (6, 408.35, 426.91)

(1, 0.3, 0.5, 0.5) (8, 2) (0, 385.69, 384.65) (3, 381.9, 384.62) (6, 365.66, 384.11)

(1, 0.3, 0.5, 0.8) (7, 2) (0, 444.16, 443.51) (3, 438.89, 443.47) (6, 409.42, 442.13)

(1, 0.3, 0.8, 0.5) (10, 2) (0, 359.91, 358.61) (3, 357.26, 358.6) (6, 349.32, 358.44)

(1, 0.3, 0.8, 0.8) (8, 2) (0, 469.37, 468.53) (3, 465.3, 468.51) (6, 446.23, 467.94)

(5, 0.1, 0.5, 0.5) (60, 6) (0, 379.61, 371.51) (3, 379.07, 371.51) (6, 378.25, 371.51)

(5, 0.1, 0.5, 0.8) (49, 6) (0, 376.02, 369.17) (3, 375.4, 369.17) (6, 374.38, 369.16)

(5, 0.1, 0.8, 0.5) (75, 6) (0, 371.37, 363.76) (3, 370.91, 363.76) (6, 370.28, 363.75)

(5, 0.1, 0.8, 0.8) (54, 6) (0, 378.57, 372.12) (3, 378.01, 372.12) (6, 377.14, 372.11)

(5, 0.3, 0.5, 0.5) (46, 6) (0, 383.15, 379.48) (3, 382.64, 379.47) (6, 381.86, 379.47)

(5, 0.3, 0.5, 0.8) (38, 6) (0, 386.29, 383.42) (3, 385.68, 383.42) (6, 384.7 , 383.42)

(5, 0.3, 0.8, 0.5) (59, 6) (0, 378.46, 374.67) (3, 378.04, 374.67) (6, 377.45, 374.67)

(5, 0.3, 0.8, 0.8) (42, 6) (0, 379.79, 377.04) (3, 379.26, 377.04) (6, 378.45, 377.03)

Due to its simplicity, the conventional Shewhart chart is very popular in monitor-
ing the process shifts. The upper limit for the Shewhart chart is denoted as UCL. For
observations, when the value of the process {Xt}N0 exceeds the threshold value UCL
(Xt > UCL), a fault is declared. Figures 2 and 3 investigate the CUSUM method prelim-
inarily by comparing it with the Shewhart method. In both of these figures, we assume
that the in-control parameters are θ0 = 2, p0 = 0.2, α0 = 0.5 and β0 = 0.5, which are
selected based on the real drug crime data in Section 5. According to these parameters,
the CUSUM chart designs can be determined, respectively, as h = 31, k = 2 (correspond-
ing ARL0 = 383.74); h = 19, k = 3 (ARL0 = 396.12); h = 14, k = 4 (ARL0 = 373.27);
h = 11, k = 5 (ARL0 = 370.77); h = 9, k = 6 (ARL0 = 394.03). Furthermore, the Shewhart
chart limit UCL = 13 (ARL0=381.31) can be used. It should be noted that two types of
changes are considered in Figure 2, which both lead to the upward mean shifts. The first
type of changes occurs only in the parameter θ, with other parameters invariant, the results
are listed in Figure 2a. Similarly, the second type of changes occurs only in the parameter
p, with other parameters invariant, the results are in Figure 2b. From Figure 2, we can
conclude that the CUSUM chart with the design h = 31, k = 2 outperforms the other
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CUSUM charts under most shifts, while the Shewhart chart performs worst among them.
For the upward correlation shift scenarios, ARL values under two types of the parameter
changes are displayed in Figure 3. The first one considers changes only in the parameter
α, and the second one considers changes only in the parameter β. For each scenario, the
Shewhart chart performs increase ratio of ARL with the increase of first-order correlation
ρX, and the CUSUM chart has the better behaviour in the figure. In a comprehensive
view, the conventional Shewhart chart is insensitive for upward mean shifts caused by
changes in parameter p, and fails to detect shifts in the correlation. While the proposed
CUSUM chart could overcome these limitations and has superiorities in various coefficient
shifts compared with the Shewhart chart. From the figures, we can also conclude that the
smaller the value of k, the more sensitive the CUSUM chart is. As the constraint k � μ0 is
required to make the chart reasonable, it is natural to recommend k = �μ0 (the smallest
integer no less than μ0), then we aim to select the value of h such that ARL0 is close to 370.
Now the computations of the CUSUM chart are extended to general cases with designs of
experiments as follow.

Figure 2. The performance of the Shewhart chart and the CUSUM chart to detect an increase in
process mean, (a) changes only in θ, (b) changes only in p.

Figure 3. The performance of the Shewhart chart and the CUSUM chart to detect an increase in
process first-order correlation, (a) changes only in α, (b) changes only in β.

In Tables 2–4, we focus on situations that there are increasing shifts in process
mean, and the correlation remains the same. Each in-control parameter has three lev-
els: θ0 = {1, 3, 5}; p0 = {0.1, 0.2, 0.3}; α0 = {0.5, 0.6, 0.7}; β0 = {0.5, 0.6, 0.7}. We consider
the case when the changes only occur in θ, this is the most common case. The out-of-
control process mean is μ1 = μ0 + δσ0, the shift size δ considers potential values in set
{0.5, 1, 1.5, 6}. The usual relative deviation (in %) in ARL is defined as dev(%) = 100%×
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(ARL-ARL0)/ARL0 (Weiß and Testik [24]). From Tables 2–4, we can conclude that the
ZIGINARRC(1) CUSUM chart performs quite well in detecting upward mean shifts for
all scenarios. For the small shift size of δ = 0.5, the CUSUM chart is efficient with the
minimum 86.38% drop of ARL and the maximum 91.23% drop of ARL. Take larger δ
for another illustration (δ = 1), the drop of ARL is at least 92.81%, and up to 96.03% at
most. It can also be obtained that δ has to be at least 6 to get an immediate signal with
the out-of-control ARL closer to 1. In addition, extensive computation results show that
the in-control parameters (θ0, p0, α0, β0) have little effect on the better performance of the
CUSUM chart to detect the mean shifts.

Table 2. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 1.

Process Parameters ARL (dev(%))

p0 α0 β0 μ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 0.9 22 1 348.22 38.62 19.31 12.94 3.44
(−88.91%) (−94.45%) (−96.28%) (−99.01%)

0.1 0.5 0.6 0.9 21 1 357.74 36.77 18.28 12.21 3.21
(−89.72%) (−94.89%) (−96.59%) (−99.1%)

0.1 0.5 0.7 0.9 20 1 365.71 34.91 17.27 11.51 3
(−90.45%) (−95.28%) (−96.85%) (−99.18%)

0.1 0.6 0.5 0.9 24 1 370.79 42.46 21.23 14.23 3.78
(−88.55%) (−94.27%) (−96.16%) (−98.98%)

0.1 0.6 0.6 0.9 22 1 358.58 38.82 19.32 12.91 3.39
(−89.17%) (−94.61%) (−96.4%) (−99.05%)

0.1 0.6 0.7 0.9 21 1 378.05 36.86 18.23 12.15 3.16
(−90.25%) (−95.18%) (−96.79%) (−99.16%)

0.1 0.7 0.5 0.9 25 1 358.79 44.75 22.43 15.04 3.99
(−87.53%) (−93.75%) (−95.81%) (−98.89%)

0.1 0.7 0.6 0.9 23 1 359.01 40.95 20.39 13.63 3.57
(−88.59%) (−94.32%) (−96.2%) (−99.01%)

0.1 0.7 0.7 0.9 21 1 351.73 37.15 18.41 12.28 3.19
(−89.44%) (−94.77%) (−96.51%) (−99.09%)

0.2 0.5 0.5 0.8 18 1 371.21 37.8 18.14 12.01 3.26
(−89.82%) (−95.11%) (−96.76%) (−99.12%)

0.2 0.5 0.6 0.8 17 1 378.49 35.72 17 11.22 3.01
(−90.56%) (−95.51%) (−97.04%) (−99.2%)

0.2 0.5 0.7 0.8 16 1 382.96 33.57 15.88 10.45 2.77
(−91.23%) (−95.85%) (−97.27%) (−99.28%)

0.2 0.6 0.5 0.8 19 1 360.14 40.29 19.42 12.87 3.49
(−88.81%) (−94.61%) (−96.43%) (−99.03%)

0.2 0.6 0.6 0.8 18 1 382.06 38.15 18.17 11.99 3.2
(−90.01%) (−95.24%) (−96.86%) (−99.16%)

0.2 0.6 0.7 0.8 16 1 346.1 33.8 16.06 10.58 2.81
(−90.23%) (−95.36%) (−96.94%) (−99.19%)

0.2 0.7 0.5 0.8 20 1 349.23 42.95 20.77 13.77 3.71
(−87.7%) (−94.05%) (−96.06%) (−98.94%)

0.2 0.7 0.6 0.8 18 1 338.16 38.56 18.49 12.21 3.25
(−88.6%) (−94.53%) (−96.39%) (−99.04%)

0.2 0.7 0.7 0.8 17 1 365.85 36.24 17.17 11.29 2.98
(−90.09%) (−95.31%) (−96.91%) (−99.19%)

0.3 0.5 0.5 0.7 15 1 376.37 37.77 17.57 11.54 3.25
(−89.96%) (−95.33%) (−96.93%) (−99.14%)

0.3 0.5 0.6 0.7 14 1 374.56 35.37 16.31 10.67 2.97
(−90.56%) (−95.65%) (−97.15%) (−99.21%)

0.3 0.5 0.7 0.7 13 1 368.03 32.86 15.04 9.81 2.71
(−91.07%) (−95.91%) (−97.33%) (−99.26%)

0.3 0.6 0.5 0.7 16 1 369.03 40.69 19.04 12.51 3.5
(−88.97%) (−94.84%) (−96.61%) (−99.05%)

0.3 0.6 0.6 0.7 14 1 323.29 35.58 16.61 10.89 3.03
(−88.99%) (−94.86%) (−96.63%) (−99.06%)

0.3 0.6 0.7 0.7 13 1 328.19 33.03 15.25 9.96 2.75
(−89.94%) (−95.35%) (−96.97%) (−99.16%)

0.3 0.7 0.5 0.7 17 1 360.19 43.81 20.59 13.53 3.75
(−87.84%) (−94.28%) (−96.24%) (−98.96%)

0.3 0.7 0.6 0.7 15 1 335.26 38.66 18 11.79 3.24
(−88.47%) (−94.63%) (−96.48%) (−99.03%)

0.3 0.7 0.7 0.7 14 1 357.18 36.06 16.52 10.76 2.93
(−89.9%) (−95.37%) (−96.99%) (−99.18%)
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Table 3. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 3.

Process Parameters ARL (dev(%))

p0 α0 β0 μ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 2.7 54 3 364.48 38.52 19.06 12.72 3.37
(−89.43%) (−94.77%) (−96.51%) (−99.08%)

0.1 0.5 0.6 2.7 51 3 366.54 36.32 17.87 11.9 3.11
(−90.09%) (−95.12%) (−96.75%) (−99.15%)

0.1 0.5 0.7 2.7 48 3 365.43 34.07 16.69 11.09 2.87
(−90.68%) (−95.43%) (−96.97%) (−99.21%)

0.1 0.6 0.5 2.7 58 3 373.32 41.8 20.71 13.83 3.66
(−88.8%) (−94.45%) (−96.3%) (−99.02%)

0.1 0.6 0.6 2.7 54 3 374.45 38.8 19.09 12.71 3.32
(−89.64%) (−94.9%) (−96.61%) (−99.11%)

0.1 0.6 0.7 2.7 50 3 369.98 35.75 17.51 11.63 3.01
(−90.34%) (−95.27%) (−96.86%) (−99.19%)

0.1 0.7 0.5 2.7 61 3 365.9 44.55 22.1 14.76 3.89
(−87.82%) (−93.96%) (−95.97%) (−98.94%)

0.1 0.7 0.6 2.7 56 3 366.07 40.68 20.03 13.33 3.47
(−88.89%) (−94.53%) (−96.36%) (−99.05%)

0.1 0.7 0.7 2.7 52 3 374.26 37.49 18.34 12.17 3.14
(−89.98%) (−95.1%) (−96.75%) (−99.16%)

0.2 0.5 0.5 2.4 43 3 371.94 36.87 17.43 11.48 3.1
(−90.09%) (−95.31%) (−96.91%) (−99.17%)

0.2 0.5 0.6 2.4 40 3 363.7 34.31 16.11 10.58 2.82
(−90.57%) (−95.57%) (−97.09%) (−99.22%)

0.2 0.5 0.7 2.4 38 3 377.02 32.59 15.16 9.92 2.62
(−91.36%) (−95.98%) (−97.37%) (−99.31%)

0.2 0.6 0.5 2.4 46 3 368.96 39.91 18.93 12.47 3.35
(−89.18%) (−94.87%) (−96.62%) (−99.09%)

0.2 0.6 0.6 2.4 43 3 379.62 37.34 17.5 11.48 3.04
(−90.16%) (−95.39%) (−96.98%) (−99.2%)

0.2 0.6 0.7 2.4 39 3 360.73 33.72 15.72 10.29 2.7
(−90.65%) (−95.64%) (−97.15%) (−99.25%)

0.2 0.7 0.5 2.4 49 3 363.38 43.17 20.52 13.51 3.6
(−88.12%) (−94.35%) (−96.28%) (−99.01%)

0.2 0.7 0.6 2.4 45 3 370.51 39.59 18.57 12.17 3.2
(−89.31%) (−94.99%) (−96.72%) (−99.14%)

0.2 0.7 0.7 2.4 41 3 369.61 35.87 16.68 10.89 2.84
(−90.3%) (−95.49%) (−97.05%) (−99.23%)

0.3 0.5 0.5 2.1 36 3 380.79 36.83 16.87 11.01 3.08
(−90.33%) (−95.57%) (−97.11%) (−99.19%)

0.3 0.5 0.6 2.1 33 3 357.51 33.81 15.39 10.01 2.78
(−90.54%) (−95.7%) (−97.2%) (−99.22%)

0.3 0.5 0.7 2.1 31 3 360.6 31.82 14.33 9.28 2.55
(−91.18%) (−96.03%) (−97.43%) (−99.29%)

0.3 0.6 0.5 2.1 38 3 358.5 39.26 18.15 11.86 3.3
(−89.05%) (−94.94%) (−96.69%) (−99.08%)

0.3 0.6 0.6 2.1 35 3 355.89 36.32 16.56 10.76 2.96
(−89.79%) (−95.35%) (−96.98%) (−99.17%)

0.3 0.6 0.7 2.1 33 3 378.11 34.37 15.41 9.96 2.71
(−90.91%) (−95.92%) (−97.37%) (−99.28%)

0.3 0.7 0.5 2.1 41 3 359.33 43.13 19.97 13.03 3.58
(−88%) (−94.44%) (−96.37%) (−99%)

0.3 0.7 0.6 2.1 38 3 377.93 40.22 18.23 11.81 3.2
(−89.36%) (−95.18%) (−96.88%) (−99.15%)

0.3 0.7 0.7 2.1 34 3 362.28 35.83 16.08 10.38 2.8
(−90.11%) (−95.56%) (−97.13%) (−99.23%)
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Table 4. ARL profiles of the CUSUM chart versus mean shifts under θ0 = 5.

Process Parameters ARL (dev(%))

p0 α0 β0 μ0 h k δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 6

0.1 0.5 0.5 4.5 85 5 365.12 38.31 18.91 12.61 3.33
(−89.51%) (−94.82%) (−96.55%) (−99.09%)

0.1 0.5 0.6 4.5 80 5 364.27 36 17.67 11.76 3.07
(−90.12%) (−95.15%) (−96.77%) (−99.16%)

0.1 0.5 0.7 4.5 76 5 371.67 34.09 16.64 11.04 2.86
(−90.83%) (−95.52%) (−97.03%) (−99.23%)

0.1 0.6 0.5 4.5 91 5 370.55 41.46 20.5 13.68 3.61
(−88.81%) (−94.47%) (−96.31%) (−99.03%)

0.1 0.6 0.6 4.5 85 5 374.72 38.61 18.95 12.6 3.29
(−89.7%) (−94.94%) (−96.64%) (−99.12%)

0.1 0.6 0.7 4.5 79 5 373.87 35.71 17.43 11.56 2.99
(−90.45%) (−95.34%) (−96.91%) (−99.2%)

0.1 0.7 0.5 4.5 97 5 373.34 44.81 22.15 14.77 3.89
(−88%) (−94.07%) (−96.04%) (−98.96%)

0.1 0.7 0.6 4.5 89 5 373.74 40.89 20.06 13.34 3.47
(−89.06%) (−94.63%) (−96.43%) (−99.07%)

0.1 0.7 0.7 4.5 81 5 365.37 36.94 18.03 11.96 3.08
(−89.89%) (−95.07%) (−96.73%) (−99.16%)

0.2 0.5 0.5 4 118 4 373.44 45.69 24.01 16.42 4.62
(−87.77%) (−93.57%) (−95.6%) (−98.76%)

0.2 0.5 0.6 4 112 4 369.47 43.25 22.65 15.45 4.3
(−88.29%) (−93.87%) (−95.82%) (−98.84%)

0.2 0.5 0.7 4 107 4 369.02 41.18 21.48 14.63 4.03
(−88.84%) (−94.18%) (−96.04%) (−98.91%)

0.2 0.6 0.5 4 122 4 366.95 47.66 25.12 17.21 4.86
(−87.01%) (−93.15%) (−95.31%) (−98.68%)

0.2 0.6 0.6 4 115 4 365.11 44.74 23.47 16.03 4.47
(−87.75%) (−93.57%) (−95.61%) (−98.78%)

0.2 0.6 0.7 4 110 4 371.48 42.56 22.22 15.14 4.17
(−88.54%) (−94.02%) (−95.92%) (−98.88%)

0.2 0.7 0.5 4 128 4 371.06 50.55 26.69 18.29 5.17
(−86.38%) (−92.81%) (−95.07%) (−98.61%)

0.2 0.7 0.6 4 120 4 372.35 47.07 24.71 16.88 4.71
(−87.36%) (−93.36%) (−95.47%) (−98.74%)

0.2 0.7 0.7 4 112 4 368.48 43.62 22.79 15.53 4.28
(−88.16%) (−93.82%) (−95.79%) (−98.84%)

0.3 0.5 0.5 3.5 80 4 367.77 38.09 19.11 12.93 3.77
(−89.64%) (−94.8%) (−96.48%) (−98.97%)

0.3 0.5 0.6 3.5 75 4 363.52 35.68 17.79 12 3.45
(−90.18%) (−95.11%) (−96.7%) (−99.05%)

0.3 0.5 0.7 3.5 71 4 367.7 33.69 16.7 11.23 3.2
(−90.84%) (−95.46%) (−96.95%) (−99.13%)

0.3 0.6 0.5 3.5 85 4 366.71 40.93 20.6 13.95 4.06
(−88.84%) (−94.38%) (−96.2%) (−98.89%)

0.3 0.6 0.6 3.5 79 4 366.41 37.96 18.95 12.78 3.67
(−89.64%) (−94.83%) (−96.51%) (−99%)

0.3 0.6 0.7 3.5 74 4 372.31 35.4 17.55 11.8 3.35
(−90.49%) (−95.29%) (−96.83%) (−99.1%)

0.3 0.7 0.5 3.5 90 4 364.09 43.96 22.17 15.02 4.35
(−87.93%) (−93.91%) (−95.87%) (−98.81%)

0.3 0.7 0.6 3.5 83 4 368.41 40.36 20.16 13.59 3.88
(−89.04%) (−94.53%) (−96.31%) (−98.95%)

0.3 0.7 0.7 3.5 76 4 365.16 36.7 18.2 12.23 3.46
(−89.95%) (−95.02%) (−96.65%) (−99.05%)
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The computation study in Tables 5 and 6 concerns the upward shifts in the process
correlation. Two levels are accepted for each in-control parameter: θ0 = {1, 5}; p0 =
{0.1, 0.2}; α0 = {0.5, 0.6}; β0 = {0.7, 0.8}. Two types of out-of-control pattern are considered
here for comprehensive investigation, the first type is that the upward changes only exist
in α (shown in Table 5), and the second type is that the downward changes only exist in
β (shown Table 6). In Table 5, the shifts in the magnitude δα = α1 − α0 are from the set
{0.1, 0.2, 0.3}. The results imply that the performance of CUSUM chart fluctuates greatly
in detecting correlation shifts caused only by α. To be specific, when δα is 0.3, dev(%) ranges
from −6.81% to −23.68%. Another finding based on the design of experiments in Table 5 is that
both a smaller θ0 and a smaller β0 could slightly improve detection efficiency, while p0 and α0
could not. In Table 6, the shifts magnitude δβ = β1 − β0 are from the set {−0.1, −0.2, −0.3}.
From Table 6, we can see the CUSUM chart is more efficient in detecting the correlation
shifts caused by β. As the absolute value of δβ gets bigger, the decreasing proportion
of ARL gradually increased. When δβ = −0.3, dev(%) ranges from −21.3% to −40.39%.
Meanwhile, we can further conclude that a smaller θ0 and a larger α0 often lead to better
chart performance, and p0, β0 have little influence. Based on all the analysis above in this
paragraph, we can further conclude that a smaller θ0 and a larger value of initial correlation
ρ0 are helpful to detect the correlation shifts. Furthermore, that we cannot get an immediate
signal when only correlation shifts occur.

Table 5. ARL profiles of the CUSUM chart versus correlation shifts caused by α.

Process Parameters ARL (dev(%))

θ0 p0 α0 β0 ρ0 h k δα = 0 δα = 0.1 δα = 0.2 δα = 0.3

1 0.1 0.5 0.7 0.15 20 1 365.71 339.16 316.72 298.07
(−7.26%) (−13.4%) (−18.5%)

1 0.1 0.5 0.8 0.1 19 1 371.95 353.06 336.45 322.04
(−5.08%) (−9.54%) (−13.42%)

1 0.1 0.6 0.7 0.18 21 1 378.05 351.73 329.83 311.98
(−6.96%) (−12.75%) (−17.48%)

1 0.1 0.6 0.8 0.12 19 1 353.06 336.45 322.04 309.72
(−4.7%) (−8.79%) (−12.28%)

1 0.2 0.5 0.7 0.15 16 1 382.96 346.1 316.19 292.28
(−9.63%) (−17.44%) (−23.68%)

1 0.2 0.5 0.8 0.1 15 1 384.25 357.92 335.41 316.44
(−6.85%) (−12.71%) (−17.65%)

1 0.2 0.6 0.7 0.18 16 1 346.1 316.19 292.28 273.5
(−8.64%) (−15.55%) (−20.98%)

1 0.2 0.6 0.8 0.12 15 1 357.92 335.41 316.44 300.62
(−6.29%) (−11.59%) (−16.01%)

5 0.1 0.5 0.7 0.15 76 5 371.67 340.88 315.5 295.25
(−8.28%) (−15.11%) (−20.56%)

5 0.1 0.5 0.8 0.1 72 5 377.08 355.15 336.23 320.32
(−5.82%) (−10.83%) (−15.05%)

5 0.1 0.6 0.7 0.18 79 5 373.87 344.75 321.44 303.45
(−7.79%) (−14.02%) (−18.84%)

5 0.1 0.6 0.8 0.12 73 5 367.42 347.51 330.75 316.97
(−5.42%) (−9.98%) (−13.73%)

5 0.2 0.5 0.7 0.15 107 4 369.02 353.52 339.82 328.1
(−4.2%) (−7.91%) (−11.09%)

5 0.2 0.5 0.8 0.1 103 4 372.99 362.65 353.34 345.14
(−2.77%) (−5.27%) (−7.47%)

5 0.2 0.6 0.7 0.18 110 4 371.48 356.88 344.32 333.97
(−3.93%) (−7.31%) (−10.1%)

5 0.2 0.6 0.8 0.12 104 4 369.05 359.52 351.13 343.92
(−2.58%) (−4.86%) (−6.81%)
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Table 6. ARL profiles of the CUSUM chart versus correlation shifts caused by β.

Process Parameters ARL (dev(%))

θ0 p0 α0 β0 ρ0 h k δα = 0 δα = 0.1 δα = 0.2 δα = 0.3

1 0.1 0.5 0.7 0.15 20 1 365.71 321.34 284.33 252.99
(−12.13%) (−22.25%) (−30.82%)

1 0.1 0.5 0.8 0.1 19 1 371.95 325.82 287.74 255.77
(−12.4%) (−22.64%) (−31.24%)

1 0.1 0.6 0.7 0.18 21 1 378.05 324.46 281.01 245.09
(−14.18%) (−25.67%) (−35.17%)

1 0.1 0.6 0.8 0.12 19 1 353.06 303.31 263.34 230.49
(−14.09%) (−25.41%) (−34.72%)

1 0.2 0.5 0.7 0.15 16 1 382.96 325.3 280.11 243.87
(−15.06%) (−26.86%) (−36.32%)

1 0.2 0.5 0.8 0.1 15 1 384.25 324.54 278.48 241.96
(−15.54%) (−27.53%) (−37.03%)

1 0.2 0.6 0.7 0.18 16 1 346.1 288.47 244.5 209.96
(−16.65%) (−29.36%) (−39.34%)

1 0.2 0.6 0.8 0.12 15 1 357.92 295.66 249.23 213.36
(−17.39%) (−30.37%) (−40.39%)

5 0.1 0.5 0.7 0.15 76 5 371.67 322.61 282.59 249.42
(−13.2%) (−23.97%) (−32.89%)

5 0.1 0.5 0.8 0.1 72 5 377.08 325.96 284.72 250.82
(−13.56%) (−24.49%) (−33.48%)

5 0.1 0.6 0.7 0.18 79 5 373.87 316.52 271.1 234.34
(−15.34%) (−27.49%) (−37.32%)

5 0.1 0.6 0.8 0.12 73 5 367.42 310.19 265.46 229.57
(−15.58%) (−27.75%) (−37.52%)

5 0.2 0.5 0.7 0.15 107 4 369.02 340.45 313.89 289.18
(−7.74%) (−14.94%) (−21.64%)

5 0.2 0.5 0.8 0.1 103 4 372.99 344.5 318.09 293.53
(−7.64%) (−14.72%) (−21.3%)

5 0.2 0.6 0.7 0.18 110 4 371.48 337.45 306.12 277.2
(−9.16%) (−17.59%) (−25.38%)

5 0.2 0.6 0.8 0.12 104 4 369.05 336.01 305.7 277.78
(−8.95%) (−17.17%) (−24.73%)

5. Analyses of Drug Crime Count Time Series

In this section, we present a case study of crime count data in Pittsburgh. The data set
contains multiple crime types, such as arson, drink-driving, robbery and so on. Monitoring
of crime data is needed not only for early warnings of the organised crime, but also
for assessments of the social security environment. For the crime data, the readers can
download it from the Forecasting Principles site (http://www.forecastingprinciples.com,
accessed on 20 March 2021), or email to the corresponding author to access. The subset we
analyse is a monthly drug use count data collected from the 56th police car beat, which
contains 144 observations from January 1990 to December 2001. There are 67 zeros in this
drug use data (the proportion up to 46.53%), which have the greatest proportion among the
other values for the data series. The sample mean, variance and first-order autocorrelation
of the data are 1.7153, 6.4289 and 0.3886, respectively, which show strong overdispersion
and autocorrelation. The sample path and the histogram of the series are in Figure 4. The
histograms of estimated ZIG distribution, estimated Geometric distribution and estimated
Poisson distribution are also given in Figure 4b, which indicate that the ZIG marginal is
the most appropriate to describe the data. The sample autocorrelation function (ACF) and
the sample partial autocorrelation function (PACF) in Figure 5 reveal that the series most
likely comes from an AR-type process of order 3. While our intention is to illustrate the
implementation of the proposed control chart, we will employ the first-order INAR models
that are widely studied and applied in the literature. The consideration of more complex
models will be left for future study.
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Figure 4. The plots about the zero-inflated drug crime series, (a) the sample path, (b) the histogram
with ZIG fit, Geometric fit and Poisson fit.

Figure 5. The plots about the zero-inflated drug crime series, (a) the ACF plot, (b) the PACF plot.

Except for the ZIGINARRC(1) model, some competitive models are also applied to the
time series, such as Poisson INAR(1) (Al-Osh and Alzaid [1]), GINAR(1) (Alzaid and Al-
Osh [7]), ZINAR(1) (Jazi, Jones and Lai [9]), ZMGINAR(1) (Barreto-Souza [11]), NGINAR(1)
(Ristić, Bakouch and Nastić [12]), ZIMINAR(1) (Li, Wang and Zhang [14]). The Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are suggested to
evaluate these models. Numerical results in Table 7 show that the ZIGINARRC(1) process
has the best overall performance, compared with its competitors. Therefore, we assume
that the drug crime data is from the ZIGINARRC(1) model and the estimated parameters in
Table 7 are used in the process control procedures. Based on the computation results in
Section 4, the CUSUM chart with designs h = 34, k = 2 (corresponding ARL0 = 364.44)
is the best choice, which is shown in Figure 6a. For comparison, we also present CUSUM
control charts with designs h=15, k = 4 (ARL0 = 358.40) in Figure 6b, designs h = 12, k = 5
(ARL0 = 372.28) in Figure 6c, and the Shewhart chart with control limit UCL = 13
(ARL0 = 340.25) in Figure 6d. We observe that all the CUSUM charts give out-of-control
signals, while there is no outliers in the Shewhart chart. Because the Shewhart chart has
been proved to be less effective than the CUSUM chart, the drug crime data set seems to
be out-of-control with increasing mean shifts or increasing correlation shifts, and some
investigation should be done for further explanation. The CUSUM control charts with
three designs also display different detection efficiencies. The CUSUM chart with k = 2
first signals at t = 131 following with continuous alarms as t increases. The signals of
the CUSUM chart with k = 4 are first given at t = 133, then go back below the control
limit over a period of time, and come again at t = 141. While the outlier of the CUSUM
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chart with k = 5 occurs at t = 144. The analysis above proves again that the CUSUM chart
design k = �μ0 is the most effective in practice.

Table 7. The estimated parameters, AIC and BIC of candidate models.

Model Estimated Parameters AIC BIC

Poisson INAR(1) λ̂ = 1.2806 α̂ = 0.2614 625.787 631.7266

GINAR(1) p̂ = 0.3581 α̂ = 0.2005 507.0551 512.9947

NGINAR(1) μ̂ = 1.7925 α̂ = 0.3028 502.6322 508.5718

ZINAR(1) α̂ = 0.2157 λ̂ = 2.9131 527.1981 536.1075
p̂ = 0.5351

ZMGINAR(1) μ̂ = 1.9712 α̂ = 0.29 501.7477 510.6571
π̂ = 0.1197

ZIMINAR(1) α̂ = 0.001 β̂ = 0.6731 503.457 518.3061
p̂ = 0.4101 λ̂ = 2.2564
ρ̂ = 0.548

ZIGINARRC(1) α̂ = 0.547 θ̂ = 2.0495 494.906 506.7852
p̂ = 0.185 β̂ = 0.5188

Figure 6. The control charts for the zero-inflated drug crime series, the CUSUM charts with designs
(a) h = 34, k = 2, (b) h = 15, k = 4, (c) h = 12, k = 5, and (d) the Shewhart chart with UCL = 13.

6. Conclusions

In this paper, we have made contributions on monitoring the zero-inflated autocorre-
lated count data which can be described by an INAR(1) process with random coefficient.
ARL and SDRL are adopted to be the measures and calculated by the Markov chain ap-
proach. The design parameter k in the CUSUM chart is proved to have great influence
on monitoring efficiency, and the smallest integer no less than μ0 is the recommended
value of k. The proposed ZIGINARRC(1)CUSUM chart is proved to have superiorities in
various coefficient shifts compared with the conventional Shewhart chart. Computation
results also show that the CUSUM chart performs quite well in detecting upward mean
shifts, and shows fluctuation in detecting upward correlation shifts. Based on the design of
experiment, we also find that a larger value of initial correlation ρ0 is helpful to detect the
correlation shifts. An immediate signal occurs after large upward mean shifts, while does
not occur when only correlation shifts exist.

There are some possible topics for our future research. First, we can consider a
different monitoring scheme for the ZIGINARRC(1) process and conduct a comparison
study. Second, we can explore the monitoring of p-th random coefficient INAR model,
which is suitable for the count data with high order dependence. Third, we can study a
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multivariate INAR(1) process with random coefficient to continuously monitor the serial
correlated counts that we are interested in.
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Abstract: In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH)
models, parameter estimation is conventionally based on the conditional maximum likelihood esti-
mator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation
method for bivariate Poisson INGARCH models while using the minimum density power divergence
estimator. We demonstrate the proposed estimator is consistent and asymptotically normal under
certain regularity conditions. Monte Carlo simulations are conducted to evaluate the performance of
the estimator in the presence of outliers. Finally, a real data analysis using monthly count series of
crimes in New South Wales and an artificial data example are provided as an illustration.

Keywords: integer-valued time series; bivariate Poisson INGARCH model; outliers; robust estimation;
minimum density power divergence estimator

1. Introduction

Integer-valued time series models have received widespread attention from researchers
and practitioners, due to their versatile applications in many scientific areas, including
finance, insurance, marketing, and quality control. Numerous studies focus on integer-
valued autoregressive (INAR) models to analyze the time series of counts, see Weiß [1]
and Scotto et al. [2] for general reviews. Taking a different approach, Ferland et al. [3] pro-
posed using Poisson integer-valued generalized autoregressive conditional heteroscedastic
(INGARCH) models and Fokianos et al. [4] developed Poisson AR models to generalize
the linear assumption on INGARCH models. The Poisson assumption on INGARCH
models has been extended to negative binomial INGARCH models (Davis and Wu [5] and
Christou and Fokianos [6]), zero-inflated generalized Poisson INGARCH models (Zhu [7,8]
and Lee et al. [9]), and one-parameter exponential family AR models (Davis and Liu [10]).
We refer to the review papers by Fokianos [11,12] and Tjøstheim [13,14] for more details.

Researchers invested considerable efforts to extend the univariate integer-valued time
series models to bivariate (multivariate) models. For INAR type models, Quoreshi [15]
proposed bivariate integer-valued moving average models and Pedeli and Karlis [16] intro-
duced bivariate INAR models with Poisson and negative binomial innovations. Liu [17]
proposed bivariate Poisson INGARCH models with a bivariate Poisson distribution that
was constructed via the trivariate reduction method and established the stationarity and
ergodicity of the model. Andreassen [18] later verified the consistency of the conditional
maximum likelihood estimator (CMLE) and Lee et al. [19] studied the asymptotic normality
of the CMLE and developed the CMLE- and residual-based change point tests. However,
this model has the drawback that it can only accommodate positive correlation between
two time series of counts. To cope with this issue, Cui and Zhu [20] recently introduced a
new bivariate Poisson INGARCH model based on Lakshminarayana et al.’s [21] bivariate
Poisson distribution. Their model can deal with positive or negative correlation, depending
on the multiplicative factor parameter. They employed the CMLE for parameter estimation.
However, because the CMLE is unduly influenced by outliers, the robust estimation in
bivariate Poisson INGARCH models is crucial and deserves thorough investigation.
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As such, here we develop a robust estimator for Cui and Zhu’s [20] bivariate Poisson
INGARCH models. Among the robust estimation methods, we employ the minimum
density power divergence estimator (MDPDE) approach that was originally proposed
by Basu et al. [22], because it is well known to consistently provide robust estimators in
various situations. For previous works in the context of time series of counts, see Kang
and Lee [23], Kim and Lee [24,25], Diop and Kengne [26], Kim and Lee [27], and Lee
and Kim [28], who studied the MDPDE for Poisson AR models, zero-inflated Poisson AR
models, one-parameter exponential family AR models, and change point tests. For another
robust estimation approach in INGARCH models, see Xiong and Zhu [29] and Li et al. [30],
who studied Mallows’ quasi-likelihood method. To the best of our knowledge, the robust
estimation method for bivariate Poisson INGARCH models has not been previously stud-
ied. In earlier studies, the MDPDE was proven to possess strong robust properties against
outliers with little loss in asymptotic efficiency relative to the CMLE. This study confirms
the same conclusion for bivariate Poisson INGARCH models.

The rest of this paper is organized, as follows. Section 2 constructs the MDPDE for
bivariate Poisson INGARCH models. Section 3 shows the asymptotic properties of the
MDPDE. Section 4 conducts empirical studies to evaluate the performance of the MDPDE.
Section 5 provides concluding remarks. Appendix A provides the proof.

2. MDPDE for Bivariate Poisson Ingarch Models

Basu et al. [22] defined the density power divergence dα between two densities f and
g, with a tuning parameter α, as

dα(g, f ) =
{ ∫

{ f 1+α(y)− (1 + 1
α )g(y) f α(y) + 1

α g1+α(y)}dy, α > 0,∫
g(y)(log g(y)− log f (y))dy, α = 0.

For a parametric family {Fθ ; θ ∈ Θ} having densities { fθ} and a distribution G with
density g, they defined the minimum density power divergence functional Tα(G) by
dα(g, fTα(G)) = minθ∈Θ dα(g, fθ). If G belongs to {Fθ}, which is, G = Fθ0 for some θ0 ∈ Θ,
then Tα(Fθ0) = θ0. Let g be the density function of a random sample Y1, . . . , Yn. Using the
empirical distribution Gn to approximate G, Basu et al. [22] defined the MDPDE by

θ̂α,n = argmin
θ∈Θ

Hα,n(θ),

where Hα,n(θ) =
1
n ∑n

t=1 hα,t(θ) and

hα,t(θ) =

{ ∫
f 1+α
θ (y)dy −

(
1 + 1

α

)
f α
θ (Yt), α > 0,

− log fθ(Yt), α = 0.

The tuning parameter α controls the trade-off between the robustness and asymptotic
efficiency of the MDPDE. Namely, relatively large α values improve the robustness but
the estimator’s efficiency decreases. The MDPDE with α = 0 and 1 leads to the MLE and
L2-distance estimator, respectively. Basu et al. [22] showed the consistency and asymptotic
normality of the MDPDE and demonstrated that the estimator is robust against outliers,
but it still retains high efficiency when the true distribution belongs to a parametric family
{Fθ} and α is close to zero.

We need to define the conditional version of the MDPDE in order to apply the above
procedure to bivariate Poisson INGARCH models. Let { fθ(·|Ft−1)} denote the parametric
family of autoregressive models, being indexed by the parameter θ, and let fθ0(·|Ft−1)
be the true conditional density of the time series Yt given Ft−1, where Ft−1 is a σ-field
generated by Yt−1, Yt−2, . . .. Subsequently, the MDPDE of θ0 is given by

θ̂α,n = argmin
θ∈Θ

Hα,n(θ),
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where Hα,n(θ) =
1
n ∑n

t=1 hα,t(θ) and

hα,t(θ) =

{ ∫
f 1+α
θ (y|Ft−1)dy −

(
1 + 1

α

)
f α
θ (Yt|Ft−1), α > 0,

− log fθ(Yt|Ft−1), α = 0
(1)

(cf. Section 2 of Kang and Lee [23]).
Let Y t = (Yt,1, Yt,2)

T be a two-dimensional vector of counts at time t, namely, {Yt,1, t ≥ 1}
and {Yt,2, t ≥ 1} are the two time series of counts under consideration. Liu [17] proposed the
bivariate Poisson INGARCH model, as follows

Y t|Ft−1 ∼ BP∗(λt,1, λt,2, φ), λt = (λt,1, λt,2)
T = ω + Aλt−1 + BY t−1,

where Ft is the σ-field generated by Y t, Y t−1, . . ., φ ≥ 0, ω = (ω1, ω2)
T ∈ R2

+, A =
{aij}i,j=1,2 and B = {bij}i,j=1,2 are 2 × 2 matrices with non-negative entries. BP∗(λt,1, λt,2, φ)
denotes the bivariate Poisson distribution constructed via the trivariate reduction method,
whose probability mass function (PMF) is

P(Yt,1 = y1, Yt,2 = y2|Ft−1)

= e−(λt,1+λt,2−φ) (λt,1 − φ)y1

y1!
(λt,2 − φ)y2

y2!

min(y1,y2)

∑
s=0

(
y1

s

)(
y2

s

)
s!
{

φ

(λt,1 − φ)(λt,2 − φ)

}s
.

In this model, Cov(Yt,1, Yt,2|Ft−1) = φ ∈ [0, min(λt,1, λt,2)), so that the model has a draw-
back that it can only deal with positive correlation between two components.

To overcome this defect, Cui and Zhu [20] proposed a new bivariate Poisson IN-
GARCH model using the distribution that was proposed by Lakshminarayana et al. [21].
They considered the model:

Y t|Ft−1 ∼ BP(λt,1, λt,2, δ), λt = (λt,1, λt,2)
T = ω + Aλt−1 + BY t−1 (2)

and BP(λt,1, λt,2, δ) is the bivariate Poisson distribution constructed as a product of Poisson
marginals with a multiplicative factor, whose PMF is given by

P(Yt,1 = y1, Yt,2 = y2|Ft−1)

=
λ

y1
t,1λ

y2
t,2

y1!y2!
e−(λt,1+λt,2)

{
1 + δ(e−y1 − e−cλt,1)(e−y2 − e−cλt,2)

}
, (3)

where c = 1 − e−1. The marginal conditional distribution of Yt,1 and Yt,2 are Poisson with
parameters λt,1 and λt,2, respectively, and Cov(Yt,1, Yt,2|Ft−1) = δc2λt,1λt,2e−c(λt,1+λt,2).
Hence, this model supports positive or negative correlation, depending on the multiplica-
tive factor parameter δ. Cui and Zhu [20] established the stationarity and ergodicity of the
model under certain conditions and showed the consistency and asymptotic normality of
the CMLE.

In this study, we apply the MDPDE to the model (2). We focus on the case that A is a
diagonal matrix, because this simplification can reduce the number of model parameters
and makes it easy to use in practice, as Heinen and Rengifo [31] suggested. Further,
the diagonal setup of A eases the verification of the asymptotic properties of the MDPDE.
Similar approaches can be found in Liu [17], Lee et al. [19], and Cui et al. [32]. Let
A = diag(a1, a2). Subsequently, we set θ = (θT

1 , θT
2 , δ)T , where θ1 = (ω1, a1, b11, b12)

T

and θ2 = (ω2, a2, b21, b22)
T , and write the true parameter as θ0 = (θ0

1
T , θ0

2
T , δ0)T , where

θ0
1 = (ω0

1, a0
1, b0

11, b0
12)

T and θ0
2 = (ω0

2, a0
2, b0

21, b0
22)

T .
Given Y1, . . . , Yn that is generated from (2), from (1), we obtain the MDPDE of θ0 by

θ̂α,n = argmin
θ∈Θ

H̃α,n(θ) = argmin
θ∈Θ

1
n

n

∑
t=1

h̃α,t(θ),
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where

h̃α,t(θ) =

{
∑∞

y1=0 ∑∞
y2=0 f 1+α

θ (y|λ̃t)−
(

1 + 1
α

)
f α
θ (Y t|λ̃t), α > 0,

− log fθ(Y t|λ̃t), α = 0,
(4)

fθ(y|λt) for y = (y1, y2)
T is the conditional PMF in (3), and λ̃t is recursively defined by

λ̃t = (λ̃t,1, λ̃t,2)
T = ω + Aλ̃t−1 + BY t−1, t ≥ 2

with an arbitrarily chosen initial value λ̃1. We also use notations λt(θ) and λ̃t(θ) to denote
λt and λ̃t, respectively, in order to emphasize the role of θ.

3. Asymptotic Properties of the MDPDE

In this section, we establish the consistency and asymptotic normality of the MDPDE.
Throughout this study, ‖A‖p denotes the p-induced norm of matrix A for 1 ≤ p ≤ ∞
and ‖x‖p is the p-norm of vector x. When p = 1 and ∞, ‖A‖1 = max1≤j≤n ∑m

i=1 |aij| and
‖A‖∞ = max1≤i≤m ∑n

j=1 |aij| for A = {aij}1≤i≤m,1≤j≤n, respectively. E(·) is taken under θ0.
We assume that the following conditions hold in order to verify the asymptotic properties
of the MDPDE.

(A1) θ0
1, θ0

2, and δ0 are interior points in the compact parameter spaces Θ1, Θ2, and Θ3,
respectively, and Θ = Θ1 × Θ2 × Θ3. In addition, there exist positive constants ωL,
ωU , aL, aU , bL, bU , and δU , such that for i, j = 1, 2,

0 < ωL ≤ ωi ≤ ωU , 0 < aL ≤ ai ≤ aU , 0 < bL ≤ bij ≤ bU , and |δ| ≤ δU .

(A2) There exist positive constants ϕL and ϕU such that for y = (y1, y2)
T ∈ N2

0, λ =
(λ1, λ2)

T ∈ (0, ∞)2, and δ ∈ Θ3,

0 < ϕL ≤ ϕ(y, λ, δ) ≤ ϕU , where ϕ(y, λ, δ) = 1 + δ(e−y1 − e−cλ1)(e−y2 − e−cλ2).

(A3) There exists a p ∈ [1, ∞] such that ‖A‖p + 2(1−1/p)‖B‖p < 1.

Remark 1. These conditions can be found in Cui and Zhu [20]. According to Theorem 1 in their
study, {(Y t, λt)} is stationary and ergodic under (A1) and (A3).

Subsequently, we obtain the following results; the proofs are provided in the Appendix A.

Theorem 1. Under the conditions (A1)–(A3),

θ̂α,n
a.s.−→ θ0 as n → ∞.

Theorem 2. Under the conditions (A1)–(A3),

√
n(θ̂α,n − θ0)

d−→ N(0, J−1
α Kα J−1

α ) as n → ∞,

where

Jα = −E
(

∂2hα,t(θ0)

∂θ∂θT

)
, Kα = E

(
∂hα,t(θ0)

∂θ

∂hα,t(θ0)

∂θT

)
,

and hα,t(θ) is defined by replacing λ̃t(θ) with λt(θ) in (4).

Remark 2. Because the tuning parameter α controls the trade-off between the robustness and
asymptotic efficiency, choosing the optimal α is an important issue in practice. Several researchers
investigated the selection criterion of optimal α; see Fujisawa and Eguchi [33], Durio and Isaia [34],
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and Toma and Broniatowski [35]. Among them, we adopt the method of Warwick [36] to choose α

that minimizes the trace of the estimated asymptotic mean squared error (ÂMSE) defined by

ÂMSE = (θ̂α,n − θ̂1,n)(θ̂α,n − θ̂1,n)
T + Âs.var(θ̂α,n),

where θ̂1,n is the MDPDE with α = 1 and Âs.var(θ̂α,n) is an estimate of the asymptotic variance of
θ̂α,n, which is computed as

Âs.var(θ̂α,n) =

(
n

∑
t=1

∂2h̃α,t(θ̂α,n)

∂θ∂θT

)−1( n

∑
t=1

∂h̃α,t(θ̂α,n)

∂θ

∂h̃α,t(θ̂α,n)

∂θT

)(
n

∑
t=1

∂2h̃α,t(θ̂α,n)

∂θ∂θT

)−1

.

This criterion is applied to our empirical study in Section 4.2.

4. Empirical Studies

4.1. Simulation

In this section, we report the simulation results to evaluate the performance of the
MDPDE. The simulation settings are described, as follows. Using the inverse transformation
sampling method (cf. Section 2.3 of Verges [37]), we generate Y1, . . . , Yn from (2) with the ini-
tial value λ1 = (0, 0)T. For the estimation, λ̃1 is set to be the sample mean of the data. We first
consider θ = (ω1, a1, b11, b12, ω2, a2, b21, b22, δ)T = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T, which
satisfies (A3) with p = 1. In this simulation, we compare the performance of the MDPDE
with α > 0 with that of the CMLE (α = 0). We examine the sample mean, variance, and mean
squared error (MSE) of the estimators. The sample size under consideration is n = 1000 and
the number of repetitions for each simulation is 1000. In Tables 1–16, the symbol * represents
the minimal MSEs for each parameter.

Table 1 indicates that, when the data are not contaminated by outliers, the CMLE
exhibits minimal MSEs for all parameters, and the MSEs of the MDPDE with small α are
close to those of the CMLE. The MSE of the MDPDE shows an increasing tendency as α
increases. Hence, we can conclude that the CMLE outperforms the MDPDE in the absence
of outliers.

Table 1. Sample mean, variance, and mean squared error (MSE) of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 1000,
and no outliers exist.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.010 0.198 0.099 0.199 0.510 0.298 0.401 0.198 0.583
Var × 102 3.421 1.062 0.105 0.083 1.344 0.366 0.119 0.100 15.54

MSE × 102 3.429 * 1.061 * 0.105 * 0.083 * 1.352 * 0.366 * 0.119 * 0.100 * 16.22 *
0.1 Mean 1.012 0.198 0.099 0.199 0.510 0.297 0.401 0.199 0.577

Var × 102 3.527 1.091 0.108 0.083 1.379 0.372 0.121 0.103 15.83
MSE × 102 3.537 1.091 0.108 0.084 1.387 0.372 0.121 0.103 16.41

0.2 Mean 1.013 0.197 0.099 0.199 0.510 0.297 0.401 0.199 0.572
Var × 102 3.671 1.134 0.113 0.086 1.453 0.387 0.126 0.108 16.42

MSE × 102 3.684 1.134 0.113 0.086 1.463 0.388 0.126 0.108 16.92
0.3 Mean 1.013 0.197 0.099 0.199 0.511 0.296 0.401 0.199 0.568

Var × 102 3.870 1.195 0.120 0.090 1.555 0.410 0.133 0.114 17.22
MSE × 102 3.883 1.195 0.120 0.090 1.565 0.411 0.133 0.114 17.66

0.5 Mean 1.012 0.197 0.100 0.199 0.511 0.294 0.402 0.200 0.559
Var × 102 4.336 1.340 0.137 0.101 1.817 0.469 0.151 0.130 19.51

MSE × 102 4.347 1.340 0.137 0.101 1.828 0.472 0.152 0.130 19.84
1 Mean 1.007 0.198 0.101 0.200 0.513 0.289 0.405 0.203 0.544

Var × 102 6.094 1.864 0.198 0.148 2.805 0.690 0.222 0.189 29.18
MSE × 102 6.094 1.863 0.198 0.148 2.818 0.701 0.224 0.190 29.35

Now, we consider the situation that the data are contaminated by outliers. To this end,
we generate contaminated data Y c,t = (Yc,t,1, Yc,t,2)

T when considering

Yc,t,i = Yt,i + Pt,iYo,t,i, i = 1, 2,

where Yt,i are generated from (2), Pt,i are i.i.d. Bernoulli random variables with success
probability p, and Yo,t,i are i.i.d. Poisson random variables with mean γ. We consider three
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cases: (p, γ) = (0.03, 5), (0.03, 10), and (0.05, 10). Tables 2–4 report the results. In the
tables, the MDPDE appears to have smaller MSEs than the CMLE for all cases, except for
the case of α = 1 when (p, γ) = (0.03, 5). As p or γ increases, the MSEs of the CMLE
increase faster than those of the MDPDE, which indicates that the MDPDE outperforms
the CMLE, as the data are more contaminated by outliers. Moreover, as p or γ increases,
the symbol ∗ tends to move downward. This indicates that, when the data are severely
contaminated by outliers, the MDPDE with large α performs better.

Table 2. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 1000, and (p, γ) = (0.03, 5).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.073 0.266 0.077 0.167 0.650 0.339 0.325 0.176 0.728
Var × 102 6.363 1.707 0.109 0.105 2.333 0.553 0.168 0.115 17.16

MSE × 102 6.897 2.140 0.160 0.213 4.577 0.704 0.736 0.170 22.36
0.1 Mean 1.028 0.264 0.080 0.170 0.607 0.335 0.331 0.179 0.697

Var × 102 5.299 1.510 0.098 0.097 2.040 0.512 0.160 0.108 17.23
MSE × 102 5.375 1.915 0.139 0.188 3.185 0.635 0.636 0.151 21.09

0.2 Mean 1.008 0.261 0.081 0.171 0.587 0.331 0.335 0.181 0.679
Var × 102 5.114 1.491 0.098 0.097 2.031 0.526 0.165 0.110 17.70

MSE × 102 5.116 * 1.855 0.133 0.179 2.789 0.621 * 0.583 0.147 * 20.87 *
0.3 Mean 1.000 0.257 0.083 0.172 0.578 0.327 0.339 0.182 0.662

Var × 102 5.182 1.526 0.101 0.100 2.099 0.558 0.177 0.115 18.34
MSE × 102 5.177 1.846 * 0.131 * 0.177 * 2.701 * 0.628 0.548 0.148 20.95

0.5 Mean 0.997 0.248 0.086 0.174 0.572 0.317 0.346 0.184 0.633
Var × 102 5.729 1.682 0.114 0.116 2.381 0.658 0.220 0.136 20.02

MSE × 102 5.724 1.910 0.134 0.183 2.899 0.686 0.516 0.162 21.77
1 Mean 1.007 0.230 0.094 0.179 0.578 0.296 0.363 0.191 0.587

Var × 102 7.297 2.213 0.166 0.168 3.435 0.965 0.315 0.205 29.90
MSE × 102 7.294 2.301 0.170 0.210 4.039 0.966 0.449 * 0.214 30.62

Table 3. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 1000, and (p, γ) = (0.03, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.141 0.349 0.052 0.123 0.846 0.398 0.230 0.141 1.113
Var × 102 16.43 3.478 0.101 0.140 5.886 1.087 0.265 0.138 21.91

MSE × 102 18.39 5.702 0.335 0.736 17.88 2.051 3.138 0.487 59.51
0.1 Mean 1.015 0.329 0.057 0.131 0.706 0.382 0.248 0.150 0.865

Var × 102 7.844 2.031 0.069 0.095 3.087 0.672 0.224 0.100 19.42
MSE × 102 7.860 3.703 0.250 0.566 7.329 1.348 2.523 0.355 32.72

0.2 Mean 0.995 0.314 0.060 0.134 0.680 0.365 0.259 0.153 0.802
Var × 102 7.073 1.948 0.068 0.095 2.912 0.677 0.244 0.104 19.42

MSE × 102 7.068 3.252 0.225 0.529 6.156 * 1.105 2.245 0.321 28.54
0.3 Mean 1.002 0.298 0.064 0.137 0.681 0.349 0.269 0.157 0.765

Var × 102 6.995 1.972 0.075 0.102 3.030 0.742 0.280 0.114 19.94
MSE × 102 6.989 * 2.936 0.207 0.499 6.287 0.977 2.005 0.301 26.92

0.5 Mean 1.034 0.264 0.072 0.145 0.695 0.314 0.293 0.165 0.706
Var × 102 7.365 2.137 0.097 0.125 3.415 0.913 0.382 0.146 21.81

MSE × 102 7.475 2.545 0.176 0.430 7.223 0.932 * 1.536 0.266 * 26.01 *
1 Mean 1.088 0.198 0.095 0.167 0.719 0.242 0.353 0.191 0.604

Var × 102 7.825 2.377 0.171 0.203 4.553 1.273 0.601 0.258 30.55
MSE × 102 8.592 2.375 * 0.173 * 0.309 * 9.328 1.611 0.818∗ 0.267 31.61

Table 4. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 1000, and (p, γ) = (0.05, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.223 0.404 0.040 0.093 0.990 0.449 0.167 0.114 1.635
Var × 102 28.47 4.763 0.086 0.128 11.74 1.691 0.229 0.131 29.21

MSE × 102 33.40 8.909 0.442 1.281 35.70 3.897 5.645 0.867 158.1
0.1 Mean 1.012 0.390 0.046 0.103 0.772 0.437 0.185 0.125 1.057

Var × 102 11.78 2.695 0.056 0.083 4.883 0.952 0.188 0.095 21.44
MSE × 102 11.78 6.291 0.349 1.031 12.27 2.820 4.823 0.661 52.48

0.2 Mean 0.967 0.377 0.048 0.105 0.724 0.421 0.192 0.128 0.935
Var × 102 9.531 2.414 0.052 0.080 4.163 0.896 0.203 0.093 20.74

MSE × 102 9.633 5.529 0.324 0.986 9.168 2.359 4.525 0.608 39.63
0.3 Mean 0.971 0.361 0.050 0.107 0.720 0.405 0.199 0.131 0.879

Var × 102 9.450 2.465 0.055 0.086 4.189 0.962 0.236 0.101 20.90
MSE × 102 9.526 * 5.040 0.308 0.953 9.029 * 2.068 4.296 0.578 35.21

0.5 Mean 1.004 0.327 0.056 0.113 0.741 0.369 0.217 0.138 0.801
Var × 102 9.878 2.724 0.071 0.112 4.689 1.209 0.363 0.132 22.32

MSE × 102 9.870 4.336 0.269 0.861 10.51 1.687 * 3.700 0.511 31.33 *
1 Mean 1.102 0.229 0.084 0.142 0.807 0.257 0.300 0.170 0.651

Var × 102 10.28 3.134 0.183 0.238 5.959 1.804 0.946 0.304 30.79
MSE × 102 11.32 3.214 * 0.208 * 0.574 * 15.35 1.990 1.936 * 0.392 * 33.03
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We also consider smaller sample size n = 200. The results are presented in Tables 5–8
and they show results similar to those in Tables 1–4. The variances and MSEs of both the
CMLE and MDPDE are larger than those in Tables 1–4.

Table 5. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 200, and no outliers exist.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.005 0.208 0.089 0.199 0.541 0.281 0.411 0.195 0.893
Var × 102 12.41 3.866 0.426 0.394 7.816 2.078 0.651 0.553 71.23
MSE × 102 12.40 * 3.869 * 0.437 * 0.394 * 7.973 * 2.112 * 0.663 * 0.555 * 86.57

0.1 Mean 0.975 0.203 0.087 0.193 0.529 0.271 0.400 0.191 0.786
Var × 102 14.98 3.919 0.439 0.498 8.317 2.212 1.097 0.649 59.99

MSE × 102 15.03 3.916 0.455 0.502 8.392 2.296 1.096 0.658 68.12
0.2 Mean 0.970 0.203 0.087 0.192 0.527 0.267 0.400 0.191 0.756

Var × 102 15.48 3.965 0.458 0.520 8.672 2.292 1.176 0.687 60.78
MSE × 102 15.55 3.962 0.473 0.526 8.734 2.396 1.174 0.695 67.27 *

0.3 Mean 0.962 0.204 0.088 0.191 0.525 0.263 0.400 0.191 0.730
Var × 102 16.41 4.166 0.477 0.555 9.040 2.366 1.274 0.734 63.50

MSE × 102 16.54 4.163 0.492 0.563 9.096 2.497 1.273 0.741 68.71
0.5 Mean 0.945 0.202 0.088 0.188 0.521 0.254 0.398 0.192 0.685

Var × 102 18.64 4.513 0.527 0.653 10.34 2.653 1.561 0.873 70.39
MSE × 102 18.93 4.509 0.540 0.666 10.38 2.863 1.560 0.879 73.75

1 Mean 0.968 0.209 0.102 0.204 0.537 0.249 0.433 0.213 0.684
Var × 102 18.37 5.307 0.757 0.817 11.99 3.117 1.327 1.159 135.3

MSE × 102 18.45 5.310 0.757 0.817 12.12 3.374 1.437 1.175 138.5

Table 6. Sample mean, variance and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 200, and (p, γ) = (0.03, 5).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.056 0.276 0.077 0.164 0.662 0.324 0.339 0.173 1.054
Var × 102 20.83 5.501 0.419 0.489 12.34 2.785 0.918 0.619 80.49

MSE × 102 21.13 6.078 0.471 0.616 * 14.94 2.839 1.292 * 0.690 * 111.2
0.1 Mean 0.992 0.262 0.077 0.163 0.605 0.311 0.334 0.171 0.925

Var × 102 20.38 5.118 0.411 0.510 11.65 2.801 1.153 0.641 67.19
MSE × 102 20.37 5.496 0.463 * 0.648 12.75 2.810 * 1.581 0.724 85.15

0.2 Mean 0.973 0.253 0.079 0.165 0.585 0.305 0.338 0.172 0.882
Var × 102 19.71 4.993 0.422 0.525 11.55 2.817 1.207 0.652 68.88

MSE × 102 19.76 5.265 0.465 0.645 12.26 * 2.816 1.594 0.730 83.37
0.3 Mean 0.958 0.247 0.081 0.165 0.577 0.296 0.340 0.172 0.840

Var × 102 19.93 5.028 0.445 0.563 12.33 2.962 1.321 0.690 70.67
MSE × 102 20.09 5.244 0.483 0.682 12.90 2.961 1.681 0.766 82.17 *

0.5 Mean 0.944 0.234 0.084 0.167 0.572 0.281 0.344 0.174 0.774
Var × 102 20.94 5.080 0.503 0.647 13.53 3.241 1.574 0.806 78.15

MSE × 102 21.23 5.193 * 0.528 0.756 14.04 3.273 1.885 0.873 85.55
1 Mean 0.960 0.236 0.101 0.187 0.592 0.266 0.388 0.198 0.770

Var × 102 19.00 5.571 0.755 0.859 15.57 3.851 1.689 1.119 147.0
MSE × 102 19.14 * 5.696 0.754 0.876 16.40 3.962 1.702 1.119 154.2

Table 7. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 200, and (p, γ) = (0.03, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.128 0.349 0.052 0.126 0.860 0.388 0.241 0.135 1.365
Var × 102 38.79 8.126 0.345 0.618 26.05 4.690 1.145 0.746 96.45

MSE × 102 40.38 10.33 0.574 1.161 38.95 5.467 3.659 1.174 171.2
0.1 Mean 1.003 0.314 0.054 0.128 0.715 0.355 0.250 0.141 1.050

Var × 102 28.42 6.643 0.269 0.507 16.99 3.644 1.158 0.616 69.06
MSE × 102 28.39 7.925 0.480 1.021 21.59 3.938 3.403 0.961 99.19

0.2 Mean 0.980 0.296 0.057 0.130 0.679 0.337 0.258 0.146 0.953
Var × 102 26.04 6.348 0.270 0.505 15.82 3.612 1.262 0.628 67.71

MSE × 102 26.05 7.268 0.455 * 0.991 19.02 3.749 3.268 0.914 88.19
0.3 Mean 0.972 0.289 0.060 0.133 0.678 0.320 0.270 0.151 0.893

Var × 102 25.20 6.357 0.299 0.535 15.69 3.649 1.407 0.660 69.05
MSE × 102 25.26 7.142 0.457 0.987 * 18.84 * 3.683 * 3.096 0.894 * 84.43

0.5 Mean 0.974 0.264 0.070 0.139 0.673 0.287 0.294 0.160 0.783
Var × 102 24.72 6.143 0.399 0.643 16.00 3.836 1.847 0.794 75.64

MSE × 102 24.76 6.548 0.490 1.019 18.96 3.848 2.963 0.953 83.56 *
1 Mean 1.007 0.232 0.100 0.171 0.677 0.235 0.374 0.200 0.657

Var × 102 21.91 6.221 0.778 1.007 16.89 3.717 2.460 1.238 130.0
MSE × 102 21.89 * 6.319 * 0.777 1.088 20.01 4.133 2.526 * 1.237 132.3
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Table 8. Sample mean, variance, and MSE of estimators when θ = (1, 0.2, 0.1, 0.2, 0.5, 0.3, 0.4, 0.2, 0.5)T , n = 200, and (p, γ) = (0.05, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 1.171 0.406 0.046 0.097 1.041 0.420 0.183 0.108 1.814
Var × 102 53.26 9.255 0.326 0.521 45.18 6.131 1.054 0.654 133.0

MSE × 102 56.14 13.48 0.619 1.572 74.38 7.569 5.761 1.504 305.4
0.1 Mean 1.037 0.347 0.047 0.102 0.821 0.389 0.192 0.117 1.203

Var × 102 36.17 7.578 0.227 0.430 26.89 4.810 1.034 0.549 80.49
MSE × 102 36.28 9.719 0.509 1.388 37.17 5.600 5.372 1.244 129.8

0.2 Mean 0.989 0.334 0.049 0.104 0.772 0.370 0.199 0.122 1.064
Var × 102 31.43 7.373 0.218 0.421 23.29 4.607 1.106 0.554 77.26

MSE × 102 31.41 9.171 0.477 1.344 30.69 5.097 5.144 1.156 108.9
0.3 Mean 0.989 0.320 0.051 0.106 0.762 0.355 0.207 0.126 0.984

Var × 102 30.35 7.338 0.234 0.443 22.64 4.685 1.247 0.602 76.99
MSE × 102 30.33 8.773 0.472 * 1.327 29.47 4.985 4.985 1.149 * 100.4

0.5 Mean 0.984 0.293 0.058 0.112 0.764 0.314 0.229 0.135 0.855
Var × 102 30.12 7.263 0.332 0.558 22.81 4.884 1.791 0.781 80.40

MSE × 102 30.12 8.122 0.505 1.331 29.73 4.897 4.726 1.206 92.95 *
1 Mean 1.046 0.239 0.097 0.151 0.774 0.243 0.333 0.178 0.696

Var × 102 23.99 6.497 0.805 1.059 21.95 4.517 3.261 1.366 136.2
MSE × 102 24.17 * 6.645 * 0.805 1.302 * 29.46 * 4.839 * 3.708 * 1.413 139.9

In order to evaluate the performance of the MDPDE for negatively cross-correlated data,
we consider θ = (ω1, a1, b11, b12, ω2, a2, b21, b22, δ)T = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1,−0.4)T

with the same p and γ, as above. The results are reported in Tables 9–16 for n = 1000 and
200, respectively. These tables exhibit results that are similar to those in Tables 1–8. Overall,
our findings strongly support the assertion that the MDPDE is a functional tool for yielding a
robust estimator for bivariate Poisson INGARCH models in the presence of outliers.

Table 9. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 1000, and no outliers exist.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.501 0.103 0.199 0.397 0.306 0.296 0.200 0.098 −0.385
Var × 102 0.570 0.508 0.105 0.159 0.518 1.029 0.080 0.108 6.231

MSE × 102 0.569 * 0.508 * 0.105 * 0.160 * 0.522 * 1.030 * 0.080 * 0.109 * 6.247 *
0.1 Mean 0.501 0.103 0.199 0.397 0.306 0.295 0.200 0.098 −0.384

Var × 102 0.578 0.515 0.107 0.160 0.530 1.040 0.082 0.111 6.347
MSE × 102 0.578 0.515 0.108 0.161 0.534 1.041 0.082 0.112 6.367

0.2 Mean 0.501 0.103 0.199 0.397 0.307 0.295 0.200 0.098 −0.383
Var × 102 0.600 0.532 0.113 0.166 0.556 1.082 0.086 0.117 6.564

MSE × 102 0.600 0.533 0.113 0.167 0.560 1.083 0.086 0.117 6.588
0.3 Mean 0.501 0.104 0.199 0.397 0.307 0.294 0.200 0.098 −0.381

Var × 102 0.627 0.554 0.119 0.175 0.591 1.145 0.092 0.124 6.848
MSE × 102 0.627 0.555 0.119 0.176 0.595 1.147 0.092 0.125 6.876

0.5 Mean 0.500 0.105 0.198 0.398 0.308 0.292 0.201 0.099 −0.380
Var × 102 0.702 0.615 0.137 0.199 0.685 1.320 0.106 0.142 7.577

MSE × 102 0.701 0.617 0.137 0.200 0.690 1.325 0.106 0.142 7.610
1 Mean 0.495 0.110 0.198 0.399 0.310 0.287 0.203 0.100 −0.382

Var × 102 0.972 0.839 0.201 0.290 0.942 1.864 0.155 0.195 10.09
MSE × 102 0.974 0.848 0.201 0.290 0.951 1.878 0.156 0.194 10.12

Table 10. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 1000, and (p, γ) = (0.03, 5).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.633 0.194 0.143 0.269 0.399 0.368 0.147 0.064 −0.097
Var × 102 1.794 1.343 0.152 0.263 1.741 2.315 0.125 0.123 5.603

MSE × 102 3.560 2.219 0.474 1.974 2.728 2.769 0.409 0.255 14.79
0.1 Mean 0.572 0.186 0.149 0.280 0.350 0.360 0.153 0.067 −0.143

Var × 102 1.191 1.013 0.126 0.235 1.047 1.659 0.100 0.094 5.787
MSE × 102 1.711 1.743 0.390 1.676 1.297 2.016 0.325 0.205 12.38

0.2 Mean 0.550 0.177 0.151 0.286 0.335 0.350 0.155 0.068 −0.169
Var × 102 1.082 0.958 0.124 0.240 0.950 1.608 0.100 0.090 6.076

MSE × 102 1.335 1.543 0.361 1.536 1.074 * 1.861 * 0.305 0.191 11.43
0.3 Mean 0.543 0.167 0.154 0.292 0.333 0.340 0.156 0.070 −0.187

Var × 102 1.055 0.950 0.129 0.254 0.976 1.706 0.107 0.095 6.375
MSE × 102 1.241 1.401 0.344 1.427 1.083 1.868 0.297 0.184 10.89

0.5 Mean 0.542 0.148 0.159 0.304 0.339 0.318 0.161 0.075 −0.214
Var × 102 1.050 0.951 0.147 0.290 1.118 2.017 0.125 0.113 7.038

MSE × 102 1.229 * 1.185 0.315 1.203 1.270 2.049 0.279 0.175 * 10.49 *
1 Mean 0.548 0.112 0.176 0.340 0.360 0.268 0.176 0.090 −0.247

Var × 102 1.136 0.953 0.214 0.399 1.425 2.636 0.188 0.184 9.324
MSE × 102 1.363 0.966 * 0.271 * 0.756 * 1.783 2.733 0.244 * 0.194 11.64
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Table 11. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1,−0.4)T , n = 1000, and (p, γ) =

(0.03, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.774 0.295 0.087 0.149 0.525 0.415 0.094 0.037 0.336
Var × 102 7.976 4.279 0.176 0.346 7.305 6.070 0.187 0.103 7.338

MSE × 102 15.50 8.069 1.442 6.644 12.37 7.392 1.303 0.501 61.46
0.1 Mean 0.612 0.254 0.100 0.173 0.373 0.399 0.106 0.040 0.019

Var × 102 2.368 2.008 0.104 0.287 1.694 2.548 0.105 0.049 6.426
MSE × 102 3.628 4.369 1.109 5.441 2.231 3.521 0.982 0.406 23.94

0.2 Mean 0.596 0.227 0.103 0.182 0.364 0.378 0.108 0.042 −0.035
Var × 102 2.029 1.866 0.106 0.336 1.567 2.548 0.107 0.050 6.677

MSE × 102 2.944 3.490 1.048 5.081 1.971 * 3.160 0.949 0.384 20.01
0.3 Mean 0.600 0.203 0.108 0.195 0.372 0.355 0.112 0.046 −0.069

Var × 102 1.894 1.823 0.122 0.425 1.601 2.697 0.123 0.060 6.909
MSE × 102 2.884 2.873 0.973 4.637 2.111 2.997 0.889 0.353 17.86

0.5 Mean 0.611 0.145 0.125 0.240 0.401 0.287 0.130 0.061 −0.135
Var × 102 1.518 1.521 0.177 0.691 1.608 2.883 0.181 0.107 7.489

MSE × 102 2.744 1.725 0.742 3.259 2.619 2.898 * 0.674 0.259 14.50
1 Mean 0.594 0.059 0.178 0.360 0.440 0.155 0.185 0.107 −0.249

Var × 102 0.941 0.570 0.268 0.634 1.291 2.214 0.278 0.216 9.962
MSE × 102 1.828 * 0.737 * 0.316 * 0.794 * 3.262 4.327 0.301 * 0.220 * 12.22 *

Table 12. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1,−0.4)T , n = 1000, and (p, γ) =

(0.05, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.870 0.382 0.059 0.086 0.645 0.451 0.062 0.027 0.829
Var × 102 17.32 6.408 0.129 0.206 14.69 8.150 0.135 0.073 8.777

MSE × 102 30.96 14.37 2.130 10.09 26.58 10.41 2.026 0.604 159.9
0.1 Mean 0.621 0.346 0.070 0.103 0.396 0.446 0.074 0.029 0.170

Var × 102 4.575 3.255 0.073 0.158 2.948 3.708 0.076 0.036 6.635
MSE × 102 6.034 9.327 1.762 8.971 3.862 5.837 1.659 0.545 39.12

0.2 Mean 0.585 0.327 0.070 0.104 0.370 0.431 0.073 0.029 0.089
Var × 102 3.641 2.988 0.065 0.164 2.294 3.311 0.068 0.031 6.911

MSE × 102 4.360 8.156 1.749 8.898 2.788 * 5.022 1.670 0.540 30.79
0.3 Mean 0.586 0.311 0.071 0.107 0.374 0.417 0.074 0.029 0.058

Var × 102 3.517 3.054 0.072 0.193 2.353 3.531 0.074 0.033 7.089
MSE × 102 4.249 7.500 1.727 8.805 2.893 4.895 1.661 0.532 28.06

0.5 Mean 0.608 0.265 0.080 0.124 0.399 0.371 0.083 0.035 0.016
Var × 102 3.465 3.335 0.114 0.398 2.559 4.119 0.120 0.055 7.515

MSE × 102 4.628 6.044 1.555 8.030 3.537 4.613 * 1.492 0.482 24.83
1 Mean 0.637 0.087 0.148 0.296 0.481 0.161 0.153 0.096 −0.144

Var × 102 1.536 1.591 0.410 1.613 1.732 3.105 0.408 0.306 9.724
MSE × 102 3.424 * 1.606 * 0.682 * 2.695 * 4.999 5.042 0.626 * 0.308 * 16.28 *

Table 13. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 200, and no outliers exist.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.487 0.131 0.182 0.394 0.316 0.287 0.203 0.092 −0.313
Var × 102 2.173 2.095 0.526 0.806 2.213 4.245 0.411 0.475 33.35

MSE × 102 2.187 * 2.186 * 0.558 * 0.809 * 2.237 * 4.257 * 0.412 * 0.481 * 34.07
0.1 Mean 0.483 0.129 0.181 0.390 0.314 0.284 0.202 0.091 −0.294

Var × 102 2.391 2.104 0.571 0.958 2.337 4.358 0.452 0.487 31.43
MSE × 102 2.416 2.188 0.609 0.967 2.353 4.379 0.452 0.495 32.53 *

0.2 Mean 0.481 0.131 0.180 0.388 0.312 0.283 0.202 0.090 −0.285
Var × 102 2.542 2.158 0.608 1.040 2.427 4.490 0.484 0.512 31.25

MSE × 102 2.577 2.250 0.649 1.054 2.439 4.513 0.483 0.520 32.55
0.3 Mean 0.479 0.134 0.180 0.388 0.311 0.284 0.202 0.091 −0.284

Var × 102 2.612 2.225 0.636 1.069 2.531 4.657 0.503 0.537 32.24
MSE × 102 2.653 2.337 0.677 1.082 2.541 4.679 0.503 0.545 33.55

0.5 Mean 0.477 0.137 0.180 0.389 0.313 0.280 0.204 0.092 −0.285
Var × 102 2.860 2.423 0.726 1.183 2.681 4.733 0.554 0.601 35.16

MSE × 102 2.909 2.555 0.766 1.194 2.695 4.769 0.555 0.606 36.43
1 Mean 0.473 0.145 0.185 0.399 0.314 0.276 0.212 0.100 −0.324

Var × 102 3.364 3.057 1.016 1.549 3.003 5.321 0.746 0.858 48.77
MSE × 102 3.434 3.252 1.038 1.548 3.021 5.375 0.760 0.857 49.31
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Table 14. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 200, and (p, γ) = (0.03, 5).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.611 0.215 0.138 0.270 0.396 0.349 0.157 0.068 −0.056
Var × 102 6.324 4.595 0.661 1.242 5.415 6.896 0.600 0.472 28.97

MSE × 102 7.555 5.916 1.050 2.927 6.330 7.124 0.786 0.574 40.76
0.1 Mean 0.561 0.202 0.141 0.278 0.348 0.345 0.160 0.068 −0.086

Var × 102 4.635 3.815 0.593 1.110 3.799 5.860 0.497 0.380 28.62
MSE × 102 5.004 4.853 0.942 2.597 4.023 6.053 0.653 0.483 38.44

0.2 Mean 0.537 0.192 0.142 0.282 0.329 0.338 0.161 0.068 −0.099
Var × 102 4.374 3.640 0.598 1.175 3.512 5.797 0.497 0.367 28.89

MSE × 102 4.504 4.487 0.930 * 2.562 3.592 5.933 * 0.649 * 0.468 * 37.90 *
0.3 Mean 0.526 0.187 0.144 0.287 0.325 0.330 0.162 0.070 −0.115

Var × 102 4.313 3.636 0.619 1.264 3.494 5.913 0.517 0.383 29.94
MSE × 102 4.377 4.383 0.932 2.529 * 3.553 * 5.998 0.660 0.472 38.02

0.5 Mean 0.516 0.177 0.149 0.300 0.329 0.312 0.166 0.075 −0.141
Var × 102 4.305 3.602 0.689 1.529 3.657 6.121 0.572 0.454 33.05

MSE × 102 4.327 * 4.188 0.950 2.532 3.739 6.128 0.689 0.514 39.75
1 Mean 0.503 0.162 0.167 0.340 0.346 0.272 0.183 0.092 −0.194

Var × 102 4.432 3.750 0.989 2.266 3.911 6.436 0.772 0.726 47.97
MSE × 102 4.428 4.130 * 1.100 2.619 4.119 6.507 0.799 0.731 52.14

Table 15. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 200, and (p, γ) = (0.03, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.736 0.312 0.084 0.165 0.497 0.416 0.103 0.047 0.291
Var × 102 16.70 8.406 0.635 1.549 12.16 10.20 0.674 0.401 33.37

MSE × 102 22.23 12.91 1.971 7.078 16.04 11.54 1.610 0.680 81.11
0.1 Mean 0.600 0.264 0.092 0.181 0.381 0.368 0.110 0.047 0.032

Var × 102 8.133 5.973 0.445 1.314 5.185 7.196 0.442 0.233 27.95
MSE × 102 9.120 8.669 1.613 6.104 5.843 7.657 1.255 0.515 46.63

0.2 Mean 0.570 0.252 0.095 0.188 0.367 0.353 0.110 0.050 −0.012
Var × 102 7.112 5.817 0.451 1.441 4.576 6.859 0.446 0.244 28.91

MSE × 102 7.592 8.112 1.544 5.920 5.016 7.136 1.250 0.495 * 43.96
0.3 Mean 0.563 0.235 0.100 0.200 0.366 0.338 0.113 0.054 −0.046

Var × 102 6.572 5.489 0.513 1.736 4.477 6.853 0.502 0.294 29.07
MSE × 102 6.965 7.299 1.513 5.748 4.910 6.988 1.263 0.503 41.58

0.5 Mean 0.553 0.193 0.113 0.235 0.369 0.294 0.124 0.066 −0.101
Var × 102 6.273 4.985 0.736 2.594 4.586 7.030 0.689 0.441 29.86

MSE × 102 6.548 5.840 1.484 5.318 5.061 7.027 1.263 0.555 38.79 *
1 Mean 0.552 0.126 0.166 0.340 0.383 0.227 0.176 0.104 −0.262

Var × 102 4.097 3.239 1.193 3.141 3.787 6.138 1.084 0.816 46.47
MSE × 102 4.360 * 3.304 * 1.307 * 3.502 * 4.479 * 6.658 * 1.141 * 0.817 48.32

Table 16. Sample mean, variance, and MSE of estimators when θ = (0.5, 0.1, 0.2, 0.4, 0.3, 0.3, 0.2, 0.1, −0.4)T , n = 200, and (p, γ) = (0.05, 10).

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂

0(CMLE) Mean 0.829 0.378 0.064 0.102 0.613 0.435 0.081 0.037 0.749
Var × 102 27.18 10.13 0.521 0.889 18.60 10.72 0.611 0.307 39.05

MSE × 102 37.97 17.82 2.375 9.795 28.35 12.52 2.018 0.702 171.0
0.1 Mean 0.652 0.313 0.070 0.114 0.441 0.374 0.082 0.034 0.172

Var × 102 12.51 7.707 0.348 0.815 7.550 8.532 0.365 0.162 29.09
MSE × 102 14.81 12.21 2.040 9.010 9.521 9.078 1.748 0.592 61.80

0.2 Mean 0.612 0.294 0.071 0.117 0.417 0.354 0.080 0.035 0.097
Var × 102 9.876 7.005 0.317 0.871 6.395 8.221 0.332 0.147 30.13

MSE × 102 11.13 10.74 1.979 8.885 7.751 8.510 1.768 0.571 54.75
0.3 Mean 0.604 0.283 0.073 0.121 0.414 0.343 0.081 0.037 0.063

Var × 102 9.469 7.048 0.348 1.031 6.125 8.167 0.358 0.167 30.74
MSE × 102 10.54 10.38 1.970 8.819 7.414 8.347 1.771 0.567 * 52.11

0.5 Mean 0.607 0.241 0.085 0.151 0.420 0.310 0.091 0.048 −0.006
Var × 102 8.559 6.604 0.565 1.957 5.915 8.036 0.536 0.337 32.13

MSE × 102 9.688 8.590 1.881 8.142 7.350 8.038 1.713 0.608 47.63 *
1 Mean 0.600 0.135 0.146 0.292 0.425 0.220 0.152 0.097 −0.195

Var × 102 5.457 4.147 1.395 4.172 4.697 6.676 1.279 0.911 46.82
MSE × 102 6.453 * 4.268 * 1.690 * 5.343 * 6.263 * 7.302 * 1.508 * 0.910 50.98

4.2. Illustrative Examples

First, we illustrate the proposed method by examining the monthly count series
of crimes provided by the New South Wales Police Force in Australia. The data set is
classified by local government area and offence type. This data set has been studied
in many literatures, including Lee et al. [9], Chen and Lee [38,39], Kim and Lee [24],
and Lee et al. [40]. To investigate the behavior of the MDPDE in the presence of outliers,
we consider the data series of liquor offences (LO) and transport regulatory offences (TRO)
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in Botany Bay from January 1995 to December 2012, which has 216 observations in each
series. Figure 1 plots the monthly count series of LO and TRO and it shows the presence of
some deviant observations in each series. The sample mean and variance are 1.912 and
13.14 for LO, and 2.463 and 20.41 for TRO. A large value of the variance of each series
is expected to be influenced by outliers. The autocorrelation function (ACF) and partial
autocorrelation function (PACF) of LO and TRO, as well as cross-correlation function (CCF)
between two series, are given in Figure 2, indicating that the data are both serially and
crossly correlated. The cross-correlation coefficient between two series is 0.141.
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Figure 1. Monthly count series of liquor offences (LO) (left) and transport regulatory offences (TRO) (right) in
Botany Bay.
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Figure 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of LO (top) and
TRO (middle), and cross-correlation function (CCF) (bottom) between two series.

We fit the model (2) to the data using both the CMLE and the MDPDE. λ̃1 is set to
be the sample mean of the data. Table 17 reports the estimated parameters with various
α. The standard errors are given in parentheses and the symbol • represents the minimal
ÂMSE provided in Remark 2. In the table, we can observe that the MDPDE has smaller
ÂMSE than the CMLE and the optimal α is chosen to be 0.1. The MDPDE with optimal
α is quite different from the CMLE, in particular, δ̂ is about half of the CMLE. This result
indicates that outliers can seriously affect the parameter estimation and, thus, the robust
estimation method is required when the data are contaminated by outliers.
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Table 17. Parameter estimates for bivariate Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH)
model for crime data; the symbol • represents the minimal ÂMSE.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂ ÂMSE

0(CMLE) 0.019 0.779 0.125 0.073 0.032 0.865 0.090 0.057 1.312 1.578
(0.054) (0.290) (0.166) (0.075) (0.028) (0.090) (0.032) (0.086) (1.096)

0.1 0.034 0.609 0.172 0.094 0.097 0.654 0.095 0.156 0.685 0.699 •

(0.034) (0.149) (0.104) (0.026) (0.047) (0.091) (0.043) (0.069) (0.678)
0.2 0.026 0.643 0.134 0.087 0.117 0.575 0.124 0.159 0.509 0.858

(0.032) (0.163) (0.109) (0.026) (0.060) (0.121) (0.052) (0.069) (0.692)
0.3 0.021 0.666 0.113 0.085 0.129 0.523 0.154 0.155 0.401 0.991

(0.029) (0.149) (0.096) (0.027) (0.067) (0.133) (0.053) (0.068) (0.710)
0.4 0.019 0.673 0.107 0.085 0.130 0.508 0.176 0.145 0.356 1.081

(0.029) (0.143) (0.093) (0.029) (0.067) (0.135) (0.055) (0.069) (0.736)
0.5 0.018 0.675 0.105 0.086 0.125 0.514 0.196 0.131 0.365 1.108

(0.029) (0.138) (0.093) (0.032) (0.065) (0.136) (0.059) (0.071) (0.768)
0.6 0.017 0.676 0.104 0.088 0.119 0.527 0.216 0.115 0.418 1.094

(0.029) (0.133) (0.091) (0.036) (0.062) (0.135) (0.065) (0.073) (0.807)
0.7 0.017 0.675 0.104 0.089 0.114 0.540 0.238 0.100 0.509 1.073

(0.029) (0.130) (0.092) (0.041) (0.059) (0.133) (0.075) (0.075) (0.859)
0.8 0.018 0.674 0.104 0.090 0.111 0.551 0.261 0.087 0.638 1.079

(0.031) (0.130) (0.094) (0.045) (0.057) (0.133) (0.089) (0.076) (0.929)
0.9 0.018 0.672 0.104 0.091 0.109 0.560 0.285 0.076 0.808 1.158

(0.033) (0.133) (0.098) (0.050) (0.056) (0.134) (0.105) (0.077) (1.021)
1 0.019 0.668 0.104 0.092 0.108 0.568 0.312 0.066 1.025 1.383

(0.035) (0.138) (0.103) (0.054) (0.057) (0.136) (0.122) (0.079) (1.143)

We clean the data by using the approach that was introduced by Fokianos and
Fried [41] and apply the CMLE and the MDPDE to this data in order to illustrate the
behavior of the estimators in the absence of outliers. Table 18 reports the results. The stan-
dard errors and ÂMSE tend to decrease compared to Table 17. The CMLE has minimal
ÂMSE and the MDPDE with small α appears to be similar to the CMLE.

Table 18. Parameter estimates for bivariate Poisson INGARCH model for cleaned data; the symbol • represents the minimal ÂMSE.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂ ÂMSE

0(CMLE) 0.0018 0.943 0.025 0.021 0.092 0.682 0.067 0.184 0.118 0.430 •

(0.007) (0.118) (0.084) (0.017) (0.050) (0.115) (0.069) (0.069) (0.609)
0.1 0.0002 0.942 0.026 0.022 0.074 0.680 0.066 0.183 0.159 0.445

(0.006) (0.097) (0.076) (0.013) (0.035) (0.084) (0.063) (0.053) (0.626)
0.2 0.0001 0.940 0.025 0.023 0.066 0.679 0.066 0.182 0.199 0.497

(0.009) (0.100) (0.079) (0.011) (0.032) (0.075) (0.063) (0.049) (0.657)
0.3 0.0001 0.939 0.024 0.023 0.060 0.678 0.066 0.182 0.220 0.549

(0.010) (0.102) (0.082) (0.011) (0.032) (0.073) (0.064) (0.049) (0.688)
0.4 0.0001 0.939 0.024 0.023 0.057 0.678 0.066 0.182 0.228 0.591

(0.010) (0.104) (0.086) (0.011) (0.032) (0.074) (0.066) (0.049) (0.715)
0.5 0.0001 0.938 0.025 0.023 0.056 0.676 0.066 0.182 0.293 0.665

(0.010) (0.104) (0.087) (0.011) (0.034) (0.076) (0.068) (0.051) (0.742)
0.6 0.0001 0.938 0.024 0.023 0.054 0.677 0.066 0.182 0.263 0.688

(0.009) (0.102) (0.088) (0.011) (0.035) (0.077) (0.071) (0.053) (0.769)
0.7 0.0002 0.939 0.024 0.023 0.051 0.678 0.066 0.182 0.237 0.719

(0.008) (0.106) (0.093) (0.012) (0.035) (0.078) (0.074) (0.055) (0.795)
0.8 0.0002 0.940 0.015 0.027 0.053 0.678 0.067 0.179 0.100 0.812

(0.011) (0.126) (0.093) (0.013) (0.038) (0.081) (0.076) (0.057) (0.873)
0.9 0.0001 0.944 0.011 0.028 0.050 0.679 0.068 0.176 −0.029 0.924

(0.012) (0.150) (0.108) (0.015) (0.039) (0.083) (0.080) (0.058) (0.933)
1 0.0002 0.944 0.010 0.028 0.054 0.677 0.070 0.173 0.010 1.079

(0.012) (0.151) (0.107) (0.015) (0.044) (0.087) (0.084) (0.061) (1.012)

Now, we consider an artificial example that has negative cross-correlation coefficient.
Following Cui and Zhu [20], we generate 1000 samples from univariate Poisson INGARCH
model, i.e.,

Xt|Ft−1 ∼ P(λt), λt = 1 + 0.35λt−1 + 0.45Xt−1,

where P(λt) denotes the Poisson distribution with mean λt. Further, we observe the
contaminated data Xc,t as follows

Xc,t = Xt + PtXo,t,
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where Pt are i.i.d. Bernoulli random variables with a success probability of 0.03 and Xo,t
are i.i.d. Poisson random variables with mean 5. Let Y t = (Yt,1, Yt,2)

T , where Yt,1 = Xc,t
and Yt,2 = Xc,t+500 for t = 1, . . . , 500. The sample mean and variance are 5.196 and 7.380
for Yt,1, and 4.538 and 8.129 for Yt,2. The cross-correlation coefficient between Yt,1 and Yt,2
is −0.161. We fit the model (2) to Y t and the results are presented in Table 19. Similar to
Table 17, the MDPDE has smaller ÂMSE than the CMLE. The optimal α is chosen to be 0.3
and the corresponding δ̂ is −0.329, whereas the CMLE is 0.772.

Table 19. Parameter estimates for bivariate Poisson INGARCH model for artificial data; the symbol • represents the minimal ÂMSE.

α ω̂1 â1 b̂11 b̂12 ω̂2 â2 b̂21 b̂22 δ̂ ÂMSE

0(CMLE) 1.507 0.274 0.438 0.000 0.976 0.410 0.000 0.375 0.772 9.468
(0.442) (0.102) (0.053) (0.031) (0.241) (0.069) (0.029) (0.048) (2.939)

0.1 1.442 0.274 0.449 0.000 0.952 0.412 0.000 0.372 0.308 7.647
(0.432) (0.100) (0.053) (0.031) (0.236) (0.066) (0.030) (0.048) (2.688)

0.2 1.402 0.273 0.457 0.000 0.918 0.417 0.000 0.371 −0.064 6.611
(0.443) (0.102) (0.054) (0.033) (0.237) (0.065) (0.031) (0.049) (2.487)

0.3 1.373 0.271 0.464 0.000 0.883 0.422 0.000 0.372 −0.329 6.216 •

(0.465) (0.105) (0.056) (0.034) (0.242) (0.065) (0.033) (0.050) (2.367)
0.4 1.349 0.269 0.471 0.000 0.849 0.425 0.000 0.375 −0.485 6.276

(0.494) (0.111) (0.058) (0.036) (0.250) (0.064) (0.034) (0.052) (2.339)
0.5 1.326 0.268 0.476 0.000 0.817 0.427 0.000 0.380 −0.540 6.607

(0.528) (0.118) (0.060) (0.039) (0.259) (0.064) (0.037) (0.054) (2.388)
0.6 1.302 0.267 0.482 0.000 0.786 0.428 0.000 0.386 −0.509 7.031

(0.567) (0.126) (0.063) (0.041) (0.271) (0.064) (0.039) (0.056) (2.476)
0.7 1.277 0.267 0.487 0.000 0.758 0.428 0.000 0.394 −0.407 7.412

(0.610) (0.135) (0.066) (0.044) (0.285) (0.064) (0.042) (0.058) (2.566)
0.8 1.250 0.267 0.491 0.000 0.732 0.427 0.000 0.401 −0.250 7.698

(0.657) (0.145) (0.069) (0.047) (0.299) (0.064) (0.045) (0.060) (2.639)
0.9 1.223 0.267 0.496 0.000 0.708 0.425 0.000 0.410 −0.055 7.916

(0.707) (0.156) (0.072) (0.050) (0.314) (0.065) (0.048) (0.062) (2.688)
1 1.196 0.268 0.500 0.000 0.686 0.423 0.000 0.418 0.165 8.131

(0.761) (0.168) (0.076) (0.053) (0.330) (0.065) (0.051) (0.064) (2.719)

5. Concluding Remarks

In this study, we developed the robust estimator for bivariate Poisson INGARCH
models based on the MDPDE. In practice, this is important, because outliers can strongly
affect the CMLE, which is commonly employed for parameter estimation in INGARCH
models. We proved that the MDPDE is consistent and asymptotically normal under
regularity conditions. Our simulation study compared the performances of the MDPDE
and the CMLE, and confirmed the superiority of the proposed estimator in the presence
of outliers. The real data analysis also confirmed the validity of our method as a robust
estimator in practice. Although we focused on Cui and Zhu’s [20] bivariate Poisson
INGARCH models here, the MDPDE method can be extended to other bivariate INGARCH
models. For example, one can consider the copula-based bivariate INGARCH models
that were studied by Heinen and Rengifo [42], Andreassen [18], and Fokianos et al. [43].
We leave this issue of extension as our future research.
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Appendix A

In this Appendix, we provide the proofs for Theorems 1 and 2 in Section 3 when
α > 0. We refer to Cui and Zhu [20] for the case of α = 0. In what follows, we denote
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V and ρ ∈ (0, 1) as a generic positive integrable random variable and a generic constant,
respectively, and Hα,n(θ) = n−1 ∑n

t=1 hα,t(θ). Furthermore, we employ the notation λt =
λt(θ), λ̃t = λ̃t(θ), λ0

t = λt(θ0), λt,i = λt,i(θi), λ̃t,i = λ̃t,i(θi), λ0
t,i = λt,i(θ

0
i ) for i = 1, 2,

and u(y, λ) = e−y − e−cλ for brevity.

Lemma A1. Under (A1)–(A3), we have for i = 1, 2,

(i) E(supθi∈Θi
λt,i) < ∞.

(ii) λt,i = λ0
t,i a.s. implies θi = θ0

i .

(iii) λt,i is twice continuously differentiable with respect to θi and satisfies

E

(
sup
θi∈Θi

∥∥∥∥∂λt,i

∂θi

∥∥∥∥
1

)4

< ∞ and E

(
sup
θi∈Θi

∥∥∥∥∥ ∂2λt,i

∂θi∂θT
i

∥∥∥∥∥
1

)2

< ∞.

(iv) supθi∈Θi

∥∥∥ ∂λt,i
∂θi

− ∂λ̃t,i
∂θi

∥∥∥
1
≤ Vρt a.s.

(v) νT ∂λ0
t,i

∂θi
= 0 a.s. implies ν = 0.

(vi) supθi∈Θi
|λt,i − λ̃t,i| ≤ Vρt a.s.

Proof. By recursion of (2), we have

λt = (I2 − A)−1ω +
∞

∑
k=0

AkBY t−k−1,

λ̃t = (I2 + A + · · ·+ At−2)ω + At−1λ̃1 +
t−2

∑
k=0

AkBY t−k−1

and thus, for i = 1, 2,

λt,i =
ωi

1 − ai
+

∞

∑
k=0

ak
i (bi1Yt−k−1,1 + bi2Yt−k−1,2),

λ̃t,i =
ωi

1 − ai
+

t−2

∑
k=0

ak
i (bi1Yt−k−1,1 + bi2Yt−k−1,2),

where I2 denotes 2 × 2 identity matrix and the initial value λ̃1,i is taken as ωi/(1 − ai) for
simplicity. Subsequently, (i)− (v) can be shown following the arguments in the proof of
Theorem 3 in Kang and Lee [44]. For (vi), let ρ = supθi∈Θi

ai < 1. Afterwards, from (2),
it holds that

sup
θi∈Θi

|λt,i − λ̃t,i| = sup
θi∈Θi

|ai(λt−1,i − λ̃t−1,i)| = · · · = sup
θi∈Θi

|at−1
i (λ1,i − λ̃1,i)| ≤ Vρt

with V = supθi∈Θi
|λ1,i − λ̃1,i|/ρ. Therefore, the lemma is established.

Lemma A2. Under (A1)–(A3), we have

sup
θ∈Θ

|Hα,n(θ)− H̃α,n(θ)| a.s.−→ 0 as n → ∞.

Proof. It is sufficient to show that

sup
θ∈Θ

|hα,t(θ)− h̃α,t(θ)| a.s.−→ 0 as t → ∞.
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We write

|hα,t(θ)− h̃α,t(θ)|

≤
∣∣∣∣∣ ∞

∑
y1=0

∞

∑
y2=0

{
f 1+α
θ (y|λt)− f 1+α

θ (y|λ̃t)
}∣∣∣∣∣+

(
1 +

1
α

)∣∣ f α
θ (Y t|λt)− f α

θ (Y t|λ̃t)
∣∣

:= It(θ) + I It(θ).

From (A1), (A2), and the mean value theorem (MVT), we have

It(θ) = (1 + α)

∣∣∣∣∣ ∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λ∗

t )

{
y1

λ∗
t,1

− 1 +
cδe−cλ∗

t,1 u(y2, λ∗
t,2)

ϕ(y, λ∗
t , δ)

}
(λt,1 − λ̃t,1)

+
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λ∗

t )

{
y2

λ∗
t,2

− 1 +
cδe−cλ∗

t,2 u(y1, λ∗
t,1)

ϕ(y, λ∗
t , δ)

}
(λt,2 − λ̃t,2)

∣∣∣∣∣
≤ (1 + α)

[
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λ∗
t )

{
y1

λ∗
t,1

+ 1 +
c|δ|e−cλ∗

t,1 |u(y2, λ∗
t,2)|

ϕ(y, λ∗
t , δ)

}
|λt,1 − λ̃t,1|

+
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λ∗
t )

{
y2

λ∗
t,2

+ 1 +
c|δ|e−cλ∗

t,2 |u(y1, λ∗
t,1)|

ϕ(y, λ∗
t , δ)

}
|λt,2 − λ̃t,2|

]

≤ (1 + α)

{(
1 + 1 +

2cδU
ϕL

)
|λt,1 − λ̃t,1|+

(
1 + 1 +

2cδU
ϕL

)
|λt,2 − λ̃t,2|

}
= 2(1 + α)

(
1 +

cδU
ϕL

)
(|λt,1 − λ̃t,1|+ |λt,2 − λ̃t,2|),

where λ∗
t = (λ∗

t,1, λ∗
t,2)

T and λ∗
t,i is an intermediate point between λt,i and λ̃t,i for i = 1, 2.

Hence, supθ∈Θ It(θ) converges to 0 a.s. as t → ∞ by (vi) of Lemma A1.
Because λ∗

t,i = mλt,i + (1 − m)λ̃t,i for some m ∈ (0, 1), it holds that (λ∗
t,i)

−1 ≤
(mλt,i)

−1 ≤ (mωL)
−1. Thus, we obtain

I It(θ) = (1 + α)

∣∣∣∣∣ f α
θ (Y t|λ∗

t )

{
Yt,1

λ∗
t,1

− 1 +
cδe−cλ∗

t,1 u(Yt,2, λ∗
t,2)

ϕ(Y t, λ∗
t , δ)

}
(λt,1 − λ̃t,1)

+ f α
θ (Y t|λ∗

t )

{
Yt,2

λ∗
t,2

− 1 +
cδe−cλ∗

t,2 u(Yt,1, λ∗
t,1)

ϕ(Y t, λ∗
t , δ)

}
(λt,2 − λ̃t,2)

∣∣∣∣∣
≤ (1 + α)

{(
Yt,1

mωL
+ 1 +

2cδU
ϕL

)
|λt,1 − λ̃t,1|+

(
Yt,2

mωL
+ 1 +

2cδU
ϕL

)
|λt,2 − λ̃t,2|

}
.

According to Lemma 2.1 in Straumann and Mikosch [45], together with (vi) of Lemma A1,
supθ∈Θ I It(θ) converges to 0 a.s. as t → ∞. Therefore, the lemma is verified.

Lemma A3. Under (A1)–(A3), we have

E

(
sup
θ∈Θ

|hα,t(θ)|
)

< ∞ and if θ �= θ0, then E(hα,t(θ)) > E(hα,t(θ
0)).

Proof. Because

|hα,t(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt) +

(
1 +

1
α

)
f α
θ (Y t|λt) ≤ 2 +

1
α

,

the first part of the lemma is validated. Note that
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E(hα,t(θ))− E(hα,t(θ
0))

= E
[

E
{

hα,t(θ)− hα,t(θ
0)|Ft−1

}]
= E

[
∞

∑
y1=0

∞

∑
y2=0

{
f 1+α
θ (y|λt)−

(
1 +

1
α

)
f α
θ (y|λt) fθ0(y|λt) +

1
α

f 1+α
θ0 (y|λt)

}]
≥ 0,

where the equality holds if and only if δ = δ0 and λt = λ0
t a.s. Therefore, the second part

of the lemma is established by (ii) of Lemma A1.

Proof of Theorem 1. We can write

sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
t=1

h̃α,t(θ)− E(hα,t(θ))

∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1n n

∑
t=1

h̃α,t(θ)−
1
n

n

∑
t=1

hα,t(θ)

∣∣∣∣∣+ sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
t=1

hα,t(θ)− E(hα,t(θ))

∣∣∣∣∣.
The first term on the RHS of the inequality converges to 0 a.s. from Lemma A2. Moreover,
because hα,t(θ) is stationary and ergodic with E(supθ∈Θ |hα,t(θ)|) < ∞ by Lemma A3,
the second term also converges to 0 a.s. Finally, as E(hα,t(θ)) has a unique minimum at θ0

from Lemma A3, the theorem is established.

Now, we derive the first and second derivatives of hα,t(θ). The first derivatives are
obtained as

∂hα,t(θ)

∂θ
= (1 + α)

(
Dt,1(θ)st,1(θ1)

T , Dt,2(θ)st,2(θ2)
T , Dt,3(θ)

)T

= (1 + α)

⎛⎝Dt,1(θ)I4 04 × 4 04 × 1
04 × 4 Dt,2(θ)I4 04 × 1
01 × 4 01 × 4 Dt,3(θ)

⎞⎠⎛⎝st,1(θ1)
st,2(θ2)

1

⎞⎠
:= (1 + α)Dt(θ)Λt(θ),

where I4 denotes the 4 × 4 identity matrix, 0m × n means the m × n matrix with zero
elements, and

st,i(θi) =
∂λt,i
∂θi

for i = 1, 2,

Dt,i(θ) =
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

{
yi

λt,i
− 1 +

cδe−cλt,i u(yj, λt,j)

ϕ(y, λt, δ)

}

− f α
θ (Y t|λt)

{
Yt,i
λt,i

− 1 +
cδe−cλt,i u(Yt,j, λt,j)

ϕ(Y t, λt, δ)

}
for (i, j) = (1, 2), (2, 1),

Dt,3(θ) =
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

u(y1, λt,1)u(y2, λt,2)

ϕ(y, λt, δ)
− f α

θ (Y t|λt)
u(Yt,1, λt,1)u(Yt,2, λt,2)

ϕ(Y t, λt, δ)
.

The second derivatives are expressed as

∂2hα,t(θ)

∂θ∂θT = (1 + α)

⎛⎜⎝Ft,11(θ)st,1(θ1)st,1(θ1)
T Ft,12(θ)st,1(θ1)st,2(θ2)

T Ft,13(θ)st,1(θ1)

Ft,21(θ)st,2(θ2)st,1(θ1)
T Ft,22(θ)st,2(θ2)st,2(θ2)

T Ft,23(θ)st,2(θ2)

Ft,31(θ)st,1(θ1)
T Ft,32(θ)st,2(θ2)

T Ft,33(θ)

⎞⎟⎠
+(1 + α)

⎛⎜⎝Dt,1(θ)st,11(θ1) 04 × 4 04 × 1

04 × 4 Dt,2(θ)st,22(θ2) 04 × 1

01 × 4 01 × 4 0

⎞⎟⎠
:= (1 + α)

{
Ft(θ) + Dt(θ)

∂Λt(θ)

∂θT

}
,
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where

st,ii(θi) =
∂2λt,i

∂θi∂θT
i

for i = 1, 2,

Ft,ii(θ) =
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

⎡⎣(1 + α)

{
yi

λt,i
− 1 +

cδe−cλt,i u(yj, λt,j)

ϕ(y, λt, δ)

}2

− yi

λ2
t,i

−
c2δe−cλt,i u(yj, λt,j)

{
1 + δe−yi u(yj, λt,j)

}
ϕ(y, λt, δ)2

⎤⎦
− f α

θ (Y t|λt)

⎡⎣α

{
Yt,i
λt,i

− 1 +
cδe−cλt,i u(Yt,j, λt,j)

ϕ(Y t, λt, δ)

}2

−Yt,i

λ2
t,i

−
c2δe−cλt,i u(Yt,j, λt,j)

{
1 + δe−Yt,i u(Yt,j, λt,j)

}
ϕ(Y t, λt, δ)2

⎤⎦
for (i, j) = (1, 2), (2, 1),

Ft,33(θ) = α
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

{
u(y1, λt,1)u(y2, λt,2)

ϕ(y, λt, δ)

}2

−(α − 1) f α
θ (Y t|λt)

{
u(Yt,1, λt,1)u(Yt,2, λt,2)

ϕ(Y t, λt, δ)

}2
,

Ft,12(θ) =
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

[
(1 + α)

{
y1

λt,1
− 1 +

cδe−cλt,1 u(y2, λt,2)

ϕ(y, λt, δ)

}

×
{

y2
λt,2

− 1 +
cδe−cλt,2 u(y1, λt,1)

ϕ(y, λt, δ)

}
+

c2δe−c(λt,1+λt,2)

ϕ(y, λt, δ)2

]

− f α
θ (Y t|λt)

[
α

{
Yt,1
λt,1

− 1 +
cδe−cλt,1 u(Yt,2, λt,2)

ϕ(Y t, λt, δ)

}

×
{

Yt,2
λt,2

− 1 +
cδe−cλt,2 u(Yt,1, λt,1)

ϕ(Y t, λt, δ)

}
+

c2δe−c(λt,1+λt,2)

ϕ(Y t, λt, δ)2

]
,

Ft,i3(θ) =
∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ (y|λt)

[
(1 + α)

{
yi

λt,i
− 1 +

cδe−cλt,i u(yj, λt,j)

ϕ(y, λt, δ)

}

× u(y1, λt,1)u(y2, λt,2)

ϕ(y, λt, δ)
+

ce−cλt,i u(yj, λt,j)

ϕ(y, λt, δ)2

]

− f α
θ (Y t|λt)

[
α

{
Yt,i
λt,i

− 1 +
cδe−cλt,i u(Yt,j, λt,j)

ϕ(Y t, λt, δ)

}
u(Yt,1, λt,1)u(Yt,2, λt,2)

ϕ(Y t, λt, δ)

+
ce−cλt,i u(Yt,j, λt,j)

ϕ(Y t, λt, δ)2

]
for (i, j) = (1, 2), (2, 1).

The following four lemmas are helpful for proving Theorem 2.

Lemma A4. Let D̃t,i(θ) denote the counterpart of Dt,i(θ) by substituting λt with λ̃t for i = 1, 2, 3.
Subsequently, under (A1)–(A3), we have that for i = 1, 2,

|Dt,i(θ)| ≤ C(Yt,i + 1), |D̃t,i(θ)| ≤ C(Yt,i + 1), |Dt,3(θ)| ≤ C, |D̃t,3(θ)| ≤ C,

|Ft,ii(θ)| ≤ C(Y2
t,i + Yt,i + 1), |Ft,33(θ)| ≤ C, |Ft,12(θ)| ≤ C(Yt,1Yt,2 + Yt,1 + Yt,2 + 1),

|Ft,i3(θ)| ≤ C(Yt,i + 1),
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and for (i, j) = (1, 2), (2, 1),

|Dt,i(θ)− D̃t,i(θ)| ≤ C(Y2
t,i + Yt,i + 1)|λt,i − λ̃t,i|

+ C(Yt,1Yt,2 + Yt,1 + Yt,2 + 1)|λt,j − λ̃t,j|,
|Dt,3(θ)− D̃t,3(θ)| ≤ C(Yt,1 + 1)|λt,1 − λ̃t,1|+ C(Yt,2 + 1)|λt,2 − λ̃t,2|,

where C is some positive constant.

Proof. From (A1)–(A3) and the fact that λ−1
t,i ≤ ω−1

L , we obtain

|Dt,i(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)

{
yi

λt,i
+ 1 +

c|δ|e−cλt,i |u(yj, λt,j)|
ϕ(y, λt, δ)

}

+

{
Yt,i

λt,i
+ 1 +

c|δ|e−cλt,i |u(Yt,j, λt,j)|
ϕ(Y t, λt, δ)

}

≤ 1 + 1 +
2cδU
ϕL

+
Yt,i

ωL
+ 1 +

2cδU
ϕL

=
Yt,i

ωL
+ 3 +

4cδU
ϕL

for (i, j) = (1, 2), (2, 1) and

|Dt,3(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)
|u(y1, λt,1)||u(y2, λt,2)|

ϕ(y, λt, δ)
+

|u(Yt,1, λt,1)||u(Yt,2, λt,2)|
ϕ(Y t, λt, δ)

=
8

ϕL
.

The second and fourth parts of the lemma also hold in the same manner. Furthermore,
we can show that

|Ft,ii(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)

⎡⎣2(1 + α)

⎧⎨⎩
(

yi − λt,i
λt,i

)2
+

(
cδe−cλt,i u(yj, λt,j)

ϕ(y, λt, δ)

)2
⎫⎬⎭

+
yi

λ2
t,i

+
c2|δ|e−cλt,i |u(yj, λt,j)|

{
1 + |δ|e−yi |u(yj, λt,j)|

}
ϕ(y, λt, δ)2

⎤⎦
+2α

⎧⎨⎩
(

Yt,i
λt,i

− 1
)2

+

(
cδe−cλt,i u(Yt,j, λt,j)

ϕ(Y t, λt, δ)

)2
⎫⎬⎭

− Yt,i

λ2
t,i

−
c2|δ|e−cλt,i |u(Yt,j, λt,j)|

{
1 + |δ|e−Yt,i |u(Yt,j, λt,j)|

}
ϕ(Y t, λt, δ)2

≤ 2(1 + α)
1

ωL
+ 2(1 + α)

4c2δ2
U

ϕ2
L

+
1

ωL
+

2c2δU(1 + 2δU)

ϕ2
L

+4α
Y2

t,i

ω2
L
+ 4α + 2α

4c2δ2
U

ϕ2
L

+
Yt,i

ω2
L
+

2c2δU(1 + 2δU)

ϕ2
L

=
4α

ω2
L

Y2
t,i +

1
ω2

L
Yt,i +

3 + 2α

ωL
+

4c2δU{4(1 + α)δU + 1}
ϕ2

L
+ 4α
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for (i, j) = (1, 2), (2, 1),

|Ft,33(θ)| ≤ α
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)

{
u(y1, λt,1)u(y2, λt,2)

ϕ(y, λt, δ)

}2

+(1 + α)

{
u(Yt,1, λt,1)u(Yt,2, λt,2)

ϕ(Y t, λt, δ)

}2

≤ 16α

ϕ2
L
+

16(1 + α)

ϕ2
L

=
16(1 + 2α)

ϕ2
L

,

|Ft,12(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)

[
(1 + α)

{
y1

λt,1
+ 1 +

c|δ|e−cλt,1 |u(y2, λt,2)|
ϕ(y, λt, δ)

}

×
{

y2

λt,2
+ 1 +

c|δ|e−cλt,2 |u(y1, λt,1)|
ϕ(y, λt, δ)

}
+

c2|δ|e−c(λt,1+λt,2)

ϕ(y, λt, δ)2

]

+α

{
Yt,1

λt,1
+ 1 +

c|δ|e−cλt,1 |u(Yt,2, λt,2)|
ϕ(Y t, λt, δ)

}

×
{

Yt,2

λt,2
+ 1 +

c|δ|e−cλt,2 |u(Yt,1, λt,1)|
ϕ(Y t, λt, δ)

}
+

c2|δ|e−c(λt,1+λt,2)

ϕ(Y t, λt, δ)2

≤ (1 + α)

{
c2δU + 1 +

(
1 +

2cδU
ϕL

)
+

(
1 +

2cδU
ϕL

)
+

4c2δ2
U

ϕ2
L

+
4cδU
ϕL

+ 1

}

+
c2δU

ϕ2
L

+ α

{
Yt,1Yt,2

ω2
L

+
1

ωL

(
1 +

2cδU
ϕL

)
(Yt,1 + Yt,2) +

4c2δ2
U

ϕ2
L

+
4cδU
ϕL

+ 1

}

+
c2δU

ϕ2
L

=
α

ω2
L

Yt,1Yt,2 +
α

ωL

(
1 +

2cδU
ϕL

)
(Yt,1 + Yt,2) + 4(1 + 2α)

c2δ2
U

ϕ2
L

+
2c2δU

ϕ2
L

+4(2 + 3α)
cδU
ϕL

+ (1 + α)c2δU + 4 + 5α,

and

|Ft,i3(θ)| ≤
∞

∑
y1=0

∞

∑
y2=0

fθ(y|λt)

[
(1 + α)

{
yi

λt,i
+ 1 +

c|δ|e−cλt,i |u(yj, λt,j)|
ϕ(y, λt, δ)

}

× |u(y1, λt,1)||u(y2, λt,2)|
ϕ(y, λt, δ)

+
ce−cλt,i |u(yj, λt,j)|

ϕ(y, λt, δ)2

]

+α

{
Yt,i

λt,i
+ 1 +

c|δ|e−cλt,i |u(Yt,j, λt,j)|
ϕ(Y t, λt, δ)

}
|u(Yt,1, λt,1)||u(Yt,2, λt,2)|

ϕ(Y t, λt, δ)

+
ce−cλt,i |u(Yt,j, λt,j)|

ϕ(Y t, λt, δ)2

≤ 4(1 + α)

ϕL

(
1 + 1 +

2cδU
ϕL

)
+

2c
ϕ2

L
+

4α

ϕL

(
Yt,i

ωL
+ 1 +

2cδU
ϕL

)
+

2c
ϕ2

L

=
4α

ϕLωL
Yt,i +

4c{1 + 2(1 + 2α)δU}
ϕ2

L
+

4(2 + 3α)

ϕL
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for (i, j) = (1, 2), (2, 1).
Now, we prove the last two parts of the lemma. Because Ft,ij(θ) = ∂Dt,i(θ)/∂λt,j for

i = 1, 2, 3, j = 1, 2, owing to MVT, it holds that for i = 1, 2, 3,

|Dt,i(θ)− D̃t,i(θ)| ≤
∣∣∣∣∣∂Dt,i(θ)

∂λt,1

∣∣∣∣
λt=λ∗

t

∣∣∣∣∣|λt,1 − λ̃t,1|+
∣∣∣∣∣∂Dt,i(θ)

∂λt,2

∣∣∣∣
λt=λ∗

t

∣∣∣∣∣|λt,2 − λ̃t,2|

=
∣∣∣Ft,i1(θ)

∣∣
λt=λ∗

t

∣∣∣|λt,1 − λ̃t,1|+
∣∣∣Ft,i2(θ)

∣∣
λt=λ∗

t

∣∣∣|λt,2 − λ̃t,2|,

where Ft,ij(θ)
∣∣
λt=λ∗

t
is the same as Ft,ij(θ) with λt replaced by λ∗

t for j = 1, 2.

Because (λ∗
t,i)

−1 ≤ ω−1
L , it can be easily shown that

∣∣∣Ft,ij(θ)
∣∣
λt=λ∗

t

∣∣∣ has the same upper

bound as
∣∣Ft,ij(θ)

∣∣ by following the aforementioned arguments. Therefore, the lemma is
established.

Lemma A5. Under (A1)–(A3), we have

E

(
sup
θ∈Θ

∥∥∥∥∂2hα,t(θ)

∂θ∂θT

∥∥∥∥
1

)
< ∞ and E

(
sup
θ∈Θ

∥∥∥∥∂hα,t(θ)

∂θ

∂hα,t(θ)

∂θT

∥∥∥∥
1

)
< ∞.

Proof. We can write

E

(
sup
θ∈Θ

∥∥∥∥∂2hα,t(θ)

∂θ∂θT

∥∥∥∥
1

)
≤ (1 + α)

{
E

(
sup
θ∈Θ

‖Ft(θ)‖1

)
+ E

(
sup
θ∈Θ

∥∥∥∥Dt(θ)
∂Λt(θ)

∂θT

∥∥∥∥
1

)}
.

Hence, to show the first part of the lemma, it is sufficient to show that, for i, j = 1, 2,

E

(
sup
θ∈Θ

∥∥∥∥∥Ft,ij(θ)
∂λt,i

∂θi

∂λt,j

∂θT
j

∥∥∥∥∥
1

)
< ∞, E

(
sup
θ∈Θ

∥∥∥∥Ft,i3(θ)
∂λt,i

∂θi

∥∥∥∥
1

)
< ∞,

E

(
sup
θ∈Θ

|Ft,33(θ)|
)

< ∞, and E

(
sup
θ∈Θ

∥∥∥∥∥Dt,i(θ)
∂2λt,i

∂θi∂θT
i

∥∥∥∥∥
1

)
< ∞,

which can be directly obtained from (iii) of Lemma A1, Lemma A4, and Cauchy–Schwarz
inequality. For example,

E

(
sup
θ∈Θ

∥∥∥∥∥Ft,12(θ)
∂λt,1

∂θ1

∂λt,2

∂θT
2

∥∥∥∥∥
1

)

≤

⎧⎨⎩E

(
sup
θ∈Θ

|Ft,12(θ)|
)2
⎫⎬⎭

1/2⎧⎨⎩E

(
sup
θ∈Θ

∥∥∥∥∥∂λt,1

∂θ1

∂λt,2

∂θT
2

∥∥∥∥∥
1

)2
⎫⎬⎭

1/2

≤
[

E{C(Yt,1Yt,2 + Yt,1 + Yt,2 + 1)}2
]1/2

×

⎧⎨⎩E

(
sup

θ1∈Θ1

∥∥∥∥∂λt,1

∂θ1

∥∥∥∥
1

)4
⎫⎬⎭

1/4⎧⎨⎩E

(
sup

θ2∈Θ2

∥∥∥∥∂λt,2

∂θ2

∥∥∥∥
1

)4
⎫⎬⎭

1/4

< ∞
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and

E

(
sup
θ∈Θ

∥∥∥∥∥Dt,1(θ)
∂2λt,1

∂θ1∂θT
1

∥∥∥∥∥
1

)

≤

⎧⎨⎩E

(
sup
θ∈Θ

|Dt,1(θ)|
)2
⎫⎬⎭

1/2⎧⎨⎩E

(
sup

θ1∈Θ1

∥∥∥∥∥ ∂2λt,1

∂θ1∂θT
1

∥∥∥∥∥
1

)2
⎫⎬⎭

1/2

≤
[

E{C(Yt,1 + 1)}2
]1/2

⎧⎨⎩E

(
sup

θ1∈Θ1

∥∥∥∥∥ ∂2λt,1

∂θ1∂θT
1

∥∥∥∥∥
1

)2
⎫⎬⎭

1/2

< ∞.

The second part of the lemma can be shown in the same manner.

Lemma A6. Under (A1)–(A3), we have

1√
n

n

∑
t=1

sup
θ∈Θ

∥∥∥∥∂hα,t(θ)

∂θ
− ∂h̃α,t(θ)

∂θ

∥∥∥∥
1

a.s.−→ 0 as n → ∞.

Proof. Owing to (iv) and (vi) of Lemma A1 and Lemma A4, we obtain a.s.,

1
1 + α

sup
θ∈Θ

∥∥∥∥∂hα,t(θ)

∂θ
− ∂h̃α,t(θ)

∂θ

∥∥∥∥
1

≤ sup
θ∈Θ

∥∥∥D̃t(θ)
∥∥∥

1
sup
θ∈Θ

∥∥∥Λt(θ)− Λ̃t(θ)
∥∥∥

1
+ sup

θ∈Θ
‖Λt(θ)‖1 sup

θ∈Θ

∥∥∥Dt(θ)− D̃t(θ)
∥∥∥

1

≤
(

3

∑
i=1

sup
θ∈Θ

|D̃t,i(θ)|
)(

2

∑
i=1

sup
θi∈Θi

∥∥∥∥∥∂λt,i

∂θi
− ∂λ̃t,i

∂θi

∥∥∥∥∥
1

)

+

(
2

∑
i=1

sup
θi∈Θi

∥∥∥∥∂λt,i

∂θi

∥∥∥∥
1
+ 1

)(
3

∑
i=1

sup
θ∈Θ

|Dt,i(θ)− D̃t,i(θ)|
)

≤ 2C(Yt,1 + Yt,2 + 3)Vρt

+

(
2

∑
i=1

sup
θi∈Θi

∥∥∥∥∂λt,i

∂θi

∥∥∥∥
1
+ 1

)
× C

{
Y2

t,1 + Y2
t,2 + 2Yt,1Yt,2 + 4(Yt,1 + Yt,2) + 6

}
Vρt,

where D̃t(θ) and Λ̃t(θ) are the same as Dt(θ) and Λt(θ) with λt replaced by λ̃t. Therefore,
from Lemma 2.1 in Straumann and Mikosch [45], together with (iii) of Lemma A1, the RHS
of the last inequality converges to 0 exponentially fast a.s. and, thus, the lemma is validated.
We refer the reader to Straumann and Mikosch [45] and Cui and Zheng [46] for more details
on exponentially fast a.s. convergence.

Lemma A7. Let θ̂H
α,n = argminθ∈Θ Hα,n(θ). Subsequently, under (A1)–(A3), we have

θ̂H
α,n

a.s.−→ θ0 and
√

n(θ̂H
α,n − θ0)

d−→ N(0, J−1
α Kα J−1

α ) as n → ∞.

Proof. As seen in the proof of Theorem 1, supθ∈Θ

∣∣n−1 ∑n
t=1 hα,t(θ)− E(hα,t(θ))

∣∣ converges
to 0 a.s. and E(hα,t(θ)) has a unique minimum at θ0. Hence, the first part of the lemma
is verified.

Next, we handle the second part. Let θ(i), i = 1, . . . , 9 be the i-th element of θ. Using
MVT, we have

0 =
1√
n

n

∑
t=1

∂hα,t(θ0)

∂θ(i)
+

√
n(θ̂H

α,n − θ0)T

(
1
n

n

∑
t=1

∂2hα,t(θ∗α,n,i)

∂θ∂θ(i)

)
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for some vector θ∗α,n,i between θ0 and θ̂H
α,n, so that, eventually, we can write

0 =
1√
n

n

∑
t=1

∂hα,t(θ0)

∂θ
+

√
n(θ̂H

α,n − θ0)T

(
1
n

n

∑
t=1

∂2hα,t(θ∗α,n)

∂θ∂θT

)
,

where the term ∂2hα,t(θ∗α,n)/∂θ∂θT actually represents a 9 × 9 matrix whose (i, j)-th entry
is ∂2hα,t(θ∗α,n,ij)/∂θ(i)∂θ(j) for some vector θ∗α,n,ij between θ0 and θ̂H

α,n. We first show that

1√
n

n
∑

t=1

∂hα,t(θ
0)

∂θ
d−→ N(0, Kα). (A1)

For ν = (νT
1 , νT

2 , ν3)
T ∈ R4 × R4 × R, we obtain

E
(

νT ∂hα,t(θ0)

∂θ

∣∣∣Ft−1

)
= (1 + α)

{
νT

1
∂λ0

t,1

∂θ1
E
(

Dt,1(θ
0)|Ft−1

)
+ νT

2
∂λ0

t,2

∂θ2
E
(

Dt,2(θ
0)|Ft−1

)
+ ν3E

(
Dt,3(θ

0)|Ft−1

)}
= 0

and

E
(

νT ∂hα,t(θ0)

∂θ

)2

= νTE
(

∂hα,t(θ0)

∂θ

∂hα,t(θ0)

∂θT

)
ν < ∞

by Lemma A5. Hence, it follows from the central limit theorem in Billingsley [47] that

1√
n

n

∑
t=1

νT ∂hα,t(θ0)

∂θ

d−→ N(0, νTKαν),

which implies (A1).
Now, we claim that

− 1
n

n
∑

t=1

∂2hα,t(θ
∗
α,n,ij)

∂θ(i)∂θ(j)
a.s.−→ Jij

α , (A2)

where Jij
α denotes the (i, j)-th entry of Jα. From Lemma A5, Jα is finite. Further,

after some algebras, we have

νT(−Jα)ν

= (1 + α)E

⎡⎣ ∞

∑
y1=0

∞

∑
y2=0

f 1+α
θ0 (y|λt)

⎧⎨⎩
(

νT
1

∂λ0
t,1

∂θ1

)⎛⎝ y1

λ0
t,1

− 1 +
cδ0e−cλ0

t,1 u(y2, λ0
t,2)

ϕ(y, λ0
t , δ0)

⎞⎠
+

(
νT

2
∂λ0

t,2

∂θ2

)⎛⎝ y2

λ0
t,2

− 1 +
cδ0e−cλ0

t,2 u(y1, λ0
t,1)

ϕ(y, λ0
t , δ0)

⎞⎠
+ ν3

u(y1, λ0
t,1)u(y2, λ0

t,2)

ϕ(y, λ0
t , δ0)

}2
⎤⎦ > 0
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by (v) of Lemma A1, which implies that Jα is non-singular. Note that we can write∣∣∣∣∣ 1n n

∑
t=1

∂2hα,t(θ∗α,n,ij)

∂θ(i)∂θ(j)
− E
(

∂2hα,t(θ0)

∂θ(i)∂θ(j)

)∣∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣ 1n n

∑
t=1

∂2hα,t(θ)

∂θ(i)∂θ(j)
− E
(

∂2hα,t(θ)

∂θ(i)∂θ(j)

)∣∣∣∣∣+
∣∣∣∣∣E
(

∂2hα,t(θ∗α,n,ij)

∂θ(i)∂θ(j)

)
− E
(

∂2hα,t(θ0)

∂θ(i)∂θ(j)

)∣∣∣∣∣.
Because ∂2hα,t(θ)/∂θ(i)∂θ(j) is stationary and ergodic, from Lemma A5, the first term on
the RHS of the inequality converges to 0 a.s. Moreover, the second term converges to 0 by
the dominated convergence theorem. Hence, (A2) is asserted. Therefore, from (A1) and
(A2), the second part of the lemma is established.

Proof of Theorem 2. From MVT, we get

1
n

n

∑
t=1

∂hα,t(θ̂H
α,n)

∂θ(i)
− 1

n

n

∑
t=1

∂hα,t(θ̂α,n)

∂θ(i)
= (θ̂H

α,n − θ̂α,n)
T

(
1
n

n

∑
t=1

∂2hα,t(ζα,n,i)

∂θ∂θ(i)

)

for some vector ζα,n,i between θ̂H
α,n and θ̂α,n. Thus, we can write

1
n

n

∑
t=1

∂hα,t(θ̂H
α,n)

∂θ
− 1

n

n

∑
t=1

∂hα,t(θ̂α,n)

∂θ
= (θ̂H

α,n − θ̂α,n)
T

(
1
n

n

∑
t=1

∂2hα,t(ζα,n)

∂θ∂θT

)
,

where the (i, j)-th entry of ∂2hα,t(ζα,n)/∂θ∂θT is ∂2hα,t(ζα,n,ij)/∂θ(i)∂θ(j) for some vector
ζα,n,ij between θ̂H

α,n and θ̂α,n. Since n−1 ∑n
t=1 ∂hα,t(θ̂H

α,n)/∂θ = 0 and n−1 ∑n
t=1 ∂h̃α,t(θ̂α,n)/∂θ =

0, we have

1√
n

n

∑
t=1

∂h̃α,t(θ̂α,n)

∂θ
− 1√

n

n

∑
t=1

∂hα,t(θ̂α,n)

∂θ
=

√
n(θ̂H

α,n − θ̂α,n)
T

(
1
n

n

∑
t=1

∂2hα,t(ζα,n)

∂θ∂θT

)
.

The LHS of the above equation converges to 0 a.s. by Lemma A6, and n−1 ∑n
t=1 ∂2hα,t(ζα,n)/

∂θ∂θT converges to −Jα a.s. in a similar way as in the proof of Lemma A7. Therefore,
the theorem is established due to Lemma A7.
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Abstract: Count data appears in many research fields and exhibits certain features that make mod-
eling difficult. Most popular approaches to modeling count data can be classified into observation
and parameter-driven models. In this paper, we review two models from these classes: the log-
linear multivariate conditional intensity model (also referred to as an integer-valued generalized
autoregressive conditional heteroskedastic model) and the non-linear state-space model for count
data. We compare these models in terms of forecasting performance on simulated data and two
real datasets. In simulations, we consider the case of model misspecification. We find that both
models have advantages in different situations, and we discuss the pros and cons of inference for
both models in detail.

Keywords: multivariate count data; INGACRCH; state-space model; bank failures; transactions

1. Introduction

Modeling time series of counts is relevant in a range of application areas, including the
dynamics of the number of infectious diseases, number of road accidents or number of bank
failures. In many applications, such count data dynamics are correlated across several data
series. Examples include from correlated number of bank failures [1], number of crimes [2]
to COVID-19 contagion dynamics [3]. The analysis of such correlations provides detailed
information about the overall connectedness of the series, as well as the dynamics of an
individual series conditional on the others. Several multivariate count data models have
been proposed to capture the overall connectedness of multivariate count data. Each one
of these models has different underlying assumptions as well as computational challenges.
We present a comparative study of two families of multivariate count data models, namely
State Space Models (SSM) and log-linear multivariate autoregressive conditional intensity
(MACI) models, based on simulation studies and two empirical applications.

We provide some examples of the count data and discuss particular properties that
one desires to model when dealing with such data. In this paper, we assume that the
counts are unbounded and we assume both models to be stationary. For discussion on
the difference between bounded and unbounded count data and the difference of the
modeling approaches for these data we refer to [4]. The top panels in Figure 1 present two
conventional data sets that have been used for univariate illustrations, namely the monthly
number of cases of poliomyelitis in the U.S. between 1970 and 1983, and asthma presen-
tations at a Sydney hospital. The middle panel in Figure 1 presents the number of bank
failures in the U.S. over time, a dataset that we also analyze in this paper, and the number
of transactions for BMW in a 30 second interval. The bottom panel in Figure 1 presents a
number of car crashes and a number of earthquakes. The former, number of car crashes
over time is analyzed in Park and Lord [5] with a multivariate Poisson log-normal model
with correlations for modeling the crash frequency by severity. The authors demonstrate
that, accounting for the correlations in the multivariate model can improve the accuracy of
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the estimation. A common feature in all presented datasets is the autocorrelation present
in count data over time that is visible in the time series plots. In multivariate count time
series data, this correlation generalizes to a correlation between past and current values of
a specific series as well as between different series.
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Figure 1. Typical examples of count data coming from applications in different scientific fields.
(a) Monthly number of cases of poliomyelitis in the U.S. (1970–1983). (b) Asthma presentations at
a Sydney hospital (c) Number of bank failures in US (d) Number of transactions for BMW on 30 s
interval (e) Number of car crashes (f) Number of earthquakes.

Models for multivariate count time series typically rely on multivariate Poisson dis-
tributions, where time-variation is defined through one or more rate parameters [6]. In
some cases, Gaussian approximations are used but, as has been shown in [7], this can
lead to reduced performance in the risk forecasting assessment. In general, the quality
of such approximations depends on a particular problem [8]. Estimation of these models
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is computationally demanding for high numbers of counts as the estimation relies on
the sum over all counts. In addition, these models typically have positivity restrictions
on the conditional intensity function that governs the Poisson process over time and the
correlation between different time series. A few exceptions to the positive correlation
assumption exist, see for example, [9,10].

An alternative model for the joint distribution of count data is the copula model.
A number of papers proposed different copula models for multivariate count time series,
see, for example, [11–14]. Copulas are generally used for modeling dependency in multiple
series, which makes them attractive methods also for multiple count time series. However,
several issues arise in their applications to count data such as unidentifiability and not
accounting for potential overdispersion—a property that is common for count data. Genest
and Nešlehová [15] provides a detailed overview of copula models for count data, and
proposes and compares Bayesian and classical inferential approaches for multivariate
Poisson regression. They show that computationally Bayesian and classical approaches are
of a similar order.

Both approaches of modeling joint distribution of count data—multivariate Poisson
distribution and copulas—can be incorporated in the autoregressive conditional intensity
(ACI) framework, often also referred to as an integer-valued generalized autoregressive
conditional heteroskedasticity model (INGARCH). This model belongs to the class of
observation driven models as opposed to parameter driven models, a classification pro-
posed by Cox et al. [16]. ACI models have been dominating the literature for quite a long
time despite their restrictiveness: these models only allow only for positive coefficients
in the equation for conditional intensity. These bounded coefficients lead to several prob-
lems besides potentially unrealistic dependence structure for some data. In particular,
the problem of calculating confidence sets for the parameters that are close to or on the
boundary rises and has not been yet solved in the literature. Another observation driven
model that has been proposed as an alternative to ACI framework is log-linear model,
see Fokianos and Tjøstheim [17], a multivariate extension of which has been considered
in Doukhan et al. [10]. Even though the problem of modeling joint distribution remains,
the advantage of this approach is that no restrictions on the parameter space are required
due to the log-transform of the data.

Another class of models that can be considered for modeling count data, but is rarely
used in the literature, is parameter driven models and, in particular, non-linear state-space
models. In this framework, the observations are driven by an independent unobserved
stochastic process which, for instance, can be a (vector) autoregressive process (VAR(p)).
These models have been discussed extensively in the univariate case, see, for example
Davis et al. [18]. However, these models are rarely used in multivariate applications
due to the computationally demanding estimation methods that have to be used. To our
knowledge, only one very recent study has considered them in a multivariate application
Zhang et al. [19]. Non-linear state-space models are capable of modeling and inferring
complex dependence structures in the data. They allow for both negative and positive
contemporaneous correlation, as well as for both negative and positive Granger-causal
feedback. Thereby, these models avoid the problem of modeling the joint distribution of
time series of counts and provide a coherent inferential tool in the Bayesian framework.
This is what distinguishes our approach from the approach discussed in Zhang et al. [19]
who consider frequentist estimation of these models. We also compare SSM to log-linear
models instead of MACI models since they allow for negative dependence between the
intensities and hence appear to be more natural competitors of SSM models.

In this paper, we compare two classes of models, observation driven and parameter
driven models, in terms of their forecasting performances. We estimate the observation
driven models the quasi-maximum likelihood method. Parameter driven models, however,
fit very well into the Bayesian paradigm and that is what we use for estimation. Certain
advantages come together with this framework, such as those naturally obtained from
the posterior distribution uncertainty about the parameters of the model and forecast of
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the multivariate time series [20]. We in particular use particle Markov chain Monte Carlo
(pMCMC) [21] for the estimation of the parameter driven model. As is discussed in [22],
pMCMC outperforms other methods (variational Bayes [23], integrated nested Laplace
approximation [24] and Riemann manifold Hamiltonian Monte Carlo [25]) in terms of
parameter estimation. There are other recent methods for the estimation of the state-space
models such as auxiliary likelihood-based approximate Bayesian computation [26] and
variational Sequential Monte Carlo [27], but their performance has to be investigated
further, which is outside of the scope of this paper.

We present a set of simulation studies to show how these models perform when they
are correctly specified and misspecified. The simulation results show that, as expected,
the correctly specified models perform generally well, but there are exceptions. Particularly,
parameter driven models have better forecast performances in some simulations even if
they are misspecified. In addition to these simulation studies, we compare the performances
of these models in two real data applications. The two data sets we analyze exhibit different
sample sizes, standard deviation, dispersion and maximum counts. We show that the
overall forecast performances of the models can be very different, depending on the
applications. Furthermore, for the second data set we analyze, we find that observation
driven models capture extreme data values better than parameter driven models.

The remainder of this paper is as follows: Sections 2 and 3 summarize observation
and parameter driven models, respectively. Section 4 presents the model and forecast
comparison tools we use for multivariate count data models. Section 5 presents sim-
ulation results. Section 6 presents results from applications to two data sets. Finally,
Section 7 concludes the paper.

2. Observation Driven Models

In this section, we summarize two observation driven models: multivariate autore-
gressive conditional intensity model and log-linear analog of it. Both of these models are
characterized by the dynamics that depend on the past of the process itself and some noise.
Both models have been considered in Doukhan et al. [10], where the authors discussed
some theoretical properties and proposed to use copula approach for modeling joint count
distribution. Copulas are flexible tools for modeling dependence structure but their use
in count time series models brings challenges. We first summarize the use of Poisson
distribution for count data, analyze both models under an independence assumption in
the Poisson random variables, and at the end of this section, we discuss the extension of
modeling multiple count time series with multivariate Poisson distribution.

2.1. Poisson Distribution

Many of the count time series models take their origins in the idea of Poisson regression
model, an extensive overview of these models is given in Fokianos [28]. Specifically, both
models considered in this section as well as the parameter driven models in Section 3
rely on Poisson distributions. We therefore first provide some background on the Poisson
distribution. Poisson distribution has played an important role in modeling count time
series data as its interpretation is the number of independent events that occur in a time
period. The Poisson distribution is defined for a random variable x takes integer values in
{0, 1, . . . }. The mean of the distribution, λ, describes the average occurrences per interval,
the distribution has the equi-dispersion property since the variance its variance is also λ,
and the probability mass function (pmf) of the distribution is

p(x) =
λxe−λ

x!
, x = 0, 1, 2, 3 . . . , (1)

with E(x) = Var(x) = λ.
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For the simple multivariate case, two Poisson random variables, say x1 and x2, the joint
pmf reads

p(x1, x2) =
2

∏
i=1

e−λi λ
xi
i

xi!
. (2)

The multivariate extension in (2) is rather naive due to the underlying independence
assumption between x1 and x2. Such a model would ignore potential dependency of the
real world data, thus is potentially not suitable for the majority of applications. One way to
use the Poisson distribution for modeling count data in multivariate case and incorporate
correlation structure is through the so-called trivariate reduction [13,29]. The idea is that
correlation can be modeled through the third Poisson variable. Assume we have three
independent random variables xi ∼ Poisson(λt,i − ϕ), where 0 ≤ ϕ ≤ min{λt,1, λt,2}.
Define Yt,1 = X1 + X2 and Yt,2 = X2 + X3. In this way, the random variable X2 is exploited
to model the dependence between Y1 and Y2. The restriction of this approach is that the
correlation is the same between all the series (in case one wants to model the systems
beyond bivariate case) and the dependence can only be positive. We further discuss the
trivariate reduction technique in the context of ACI/INGARCH models. In particular,
the difficulties of extending this to higher dimensions is of interest and presents one with a
challenging task.

2.2. MACI (INGARCH)

The Poisson integer-valued generalized autoregressive conditional heteroscedastic
process (INGARCH) models [30]—also called multivariate autoregressive conditional
intensity models (MACI) in the literature—are built upon GARCH framework and are
capable of capturing time series properties of count data. As for GARCH-type models, it
is assumed that the conditional mean of the process at time t depends on the value of the
process at period t − 1 and its conditional mean at time t − 1. The time series of counts
follow Poisson process with the conditional mean λt, that is,

Xi,t | Ft−1 ∼ Poisson(λi,t), i = 1, . . . , n. (3)

The corresponding joint pmf reads

P(X1t = x1t, . . . , Xnt = xnt | Ft−1) =
n

∏
i=1

e−λit λ
xit
it

xit!
. (4)

The dynamics of the conditional intensity λt = E[Xt | Ft−1] follows

λt = ω +
n

∑
i=1

Aiλt−i +
q

∑
j=1

BjXt−j. (5)

Note that the elements of ω, ai, bj are assumed to be positive to ensure the positivity
of the intensity process λ. (Doukhan et al. [10] argue that the condition || A + B ||2< 1
guarantees stationarity.) In addition, we assume no contemporaneous correlation in the
counts. Consider the bivariate case for the conditional intensity process[

λ1t
λ2t

]
=

[
ω1
ω2

]
+

[
a11 a12
a21 a22

][
λ1t−i
λ2t−i

]
+

[
b11 b12
b21 b22

][
X1t−j
X2t−j

]
, t = 0, ±1, ±2, . . . . (6)

From Equation (6) it is clear that when A and B are diagonal, there is no dependence
structure between the intensities. Further, when a12 = 0 and b12 = 0 then the intensity of
the first process, λ1,t, depends only on its own past while the second process can depend
on the dynamics of the first one. Finally, if we restrict A to be diagonal and B to be non-
diagonal, every intensity process would depend on its past and possibly on the past of
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all of the observations. This constraint is relevant when one wants to apply graphical
modeling to this problem.

2.3. Quasi-Maximum Likelihood for MACI Models

In this section, we discuss how the inference for MACI/INGARCH models can be exe-
cuted. The details for the multivariate case have also been discussed in Doukhan et al. [10].
For these models, we make use of the classical estimation framework and in particular use
quasi-maximum likelihood estimation. The conditional quasi-likelihood for this model and
θ reads

L(θ) =
T

∏
t=1

n

∏
i=1

(
exp(−λi,t(θ))λ

xi,t
i,t (θ)

xi,t!

)
, (7)

where θ are the parameters of interest. It follows the the quasi log-likelihood function is

l(θ) =
T

∑
t=1

n

∑
i=1

(xi,t log λi,t(θ)− λi,t(θ)), (8)

and the corresponding score function reads

ST(θ) =
T

∑
t=1

n

∑
i=1

(
xi,t

λi,t
− 1
)

∂λi,t(θ)

∂θ

=
T

∑
t=1

∂λT
t (θ)

∂θ
D−1

t (θ)(X t − λt(θ)) ≡
T

∑
t=1

st(θ),

(9)

where ∂λt/∂θT is n × d matrix with d ≡ n(1 + 2n) being the dimension of the parameter
vector θ, Dt is an n × n diagonal matrix and its diagonal elements are λi,t(θ), i = 1, 2, . . . , n,
and Xt consists of elements xi,t, i = 1, 2, . . . , n, t = 1, 2, . . . , T. Thus the recursions for the
quasi-maximum likelihood estimation follow

∂λt

∂ωT = In + A
∂λt−1

∂ωT , (10)

∂λt

∂vecT(A)
= (λt−1 ⊗ In)

T + A
∂λt−1

∂vecT(A)
, (11)

∂λt

∂vecT(B)
= (X t−1 ⊗ In)

T + A
∂λt−1

∂vecT(B)
. (12)

Finally, the Hessian matrix and the conditional information matrix are correspondingly

HT(θ) =
T

∑
t=1

n

∑
i=1

xi,t

λ2
i,t(θ)

∂λi,t(θ)

∂θ

∂λi,t(θ)

∂θT −
T

∑
t=1

n

∑
i=1

(
xi,t

λi,t(θ)
− 1)

∂2λi,t(θ)

∂θ∂θT , (13)

GT =
T

∑
t=1

∂λT
t (θ)

∂θ
D−1

t (θ)ΣtD−1
t (θ)

λt(θ)

∂θT . (14)

Further, one can show that Sn(θ) = 0 has a unique solution, θ̂, which is strongly
consistent and asymptotically normal. For further details of these properties, we refer
the reader to Doukhan et al. [10]. However, that theoretical properties of θ̂ are proven
under assumption that the true value θ0 belongs to the interior of the parameter space Θ.
The problems certainly arise when the true parameter is close or on the boundary of the
parameter space. Dealing with the theoretical problems of the constrained optimization
and parameters near or on the boundary of parameter space is out of the scope of this
paper and generally establishing the theory for this case is a complicated task. One of the
possible solutions is to exploit bootstrap methods for this task, see Hilmer et al. [31] for a
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comparison of some bootstrap methods related to this sort of problem and review of other
possible approaches.

2.4. Log-Linear Autoregressive Model

Log-linear models have appeared in the count data literature in the recent years [10]
and have good potential since they allow for both positive/negative correlation and avoid
parameter boundary problems which MACI models suffer from.

Xi,t | F X,λ
t−1 ∼ Poisson(λi,t), (15)

νt = ω + Aνt−1 + B log(X t−1 + 1n), t ≥ 1, (16)

where F Y ,λ
t−1 is the σ−field generated by {X0, . . . , X t, λ0}, 1n is the n-dimensional vector of

ones, νt ≡ log λt. Parameters of this model, ω, A, and B, do not have to be positive which
makes this model more attractive than MACI.

2.5. Quasi-Maximum Likelihood for Log-Linear Models

The inference in log-linear models is very similar to the quasi-maximum likelihood
approach derived for MACI models in Section 2.3. Only minor adjustments have to be
made in corresponding recursions [10]. In particular, the score function for the log-linear
model reads

ST(θ) =
T

∑
t=1

n

∑
i=1

(xi,t − exp(νi,t(θ)))
∂νi,t(θ)

∂θ
=

T

∑
t=1

∂νT
t (θ)

∂θ
(Xt − exp(νt(θ))), (17)

the Hessian matrix is

HT(θ) =
T

∑
t=1

n

∑
i=1

exp(νi,t(θ))
∂νi,t(θ)

∂θ

∂νi,t(θ)

∂θT −
T

∑
t=1

n

∑
i=1

(xi,t − exp(νi,t(θ)))
∂2νi,t(θ)

∂θ∂θT , (18)

and the conditional information matrix for the log-linear model reads

GT(θ) =
T

∑
t=1

n

∑
i=1

exp(νi,t(θ))
∂νi,t(θ)

∂θ

∂νi,t(θ)

∂θT . (19)

Doukhan et al. [10] prove theoretical properties of this model. In particular, they show
that there exists a unique solution θ̂ which is strongly consistent and asymptotically normal.
The authors also show that the condition ∑∞

j=0 || AjB ||2< 1 guarantees both stationarity
and weak dependence.

2.6. Multivariate Poisson Distribution

To allow for contemporaneous correlation, we need to use trivariate reduction tech-
nique discussed before. We consider the bivariate case to give an example, assume that
there are three independent random variables Y1, Y2, Y3 with positive means λ1, λ2, λ3
respectively. Define random variables X1 = Y1 + Y3 and X2 = Y2 + Y3. The new random
variables will have means λ1 + λ3 and λ2 + λ3, where λ3 would also correspond to the
covariance between X1 and X2. The covariance is clearly restricted to be positive, while
correlation will lie between 0 and min{

√
λ1+λ3√
λ2+λ3

,
√

λ2+λ3√
λ1+λ3

}. Thereby the joint pmf of interest,
alternative to what we have in Equation (3), becomes

P(X1t = x1t, X2t = x2t | Ft−1) =e−(λ1+λ2+λ3)
λ

x1
1 λx2

2
x1!x2!

×
min(x1,x2)

∑
i=0

(
x1
i

)(
x2
i

)
i!
(

λ3

λ1λ2

)i
.

(20)
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Extending this approach to contemporaneous correlation in higher dimensions is
not trivial. Suppose that we would like to model n Poisson random variables, thus
Xi ∼ Poisson(λi), i = 1, . . . , n. By defining a random variable X0 ∼ Poisson(λ0) and ex-
tending the argument of the trivariate reduction we can define random variables
X1 = Y1 + Y0, X2 = Y2 + Y0, . . . , Xn = Yn + Y0. The joint pmf is

P(X1 = x1, X2 = x2, . . . , Xn = xn) = exp(−
n

∑
i=1

λi)
n

∏
i=1

λ
xi
i

xi!

×
m

∑
i=0

n

∑
j=1

(
xj
i

)
i!
(

λ0

∏n
i=1 λi

)i
,

(21)

where m = min(x1, x2, . . . , xn). This approach assumes that the covariance is the same
for all the pairs of Poisson random variables which is very restrictive. Karlis and
Meligkotsidou [9] consider the case with richer covariance structure which we discuss
further. For simplicity, assume we want to model trivariate time series of counts
Y1, Y2, Y3. As before, let us specify through Xi and Xij univariate Poisson random
variables, i.e., Xi ∼ Poisson(λi) and Xij ∼ Poisson(λij) with i, j ∈ {1, 2, 3}, i < j. Then
the random variables Yi with i ∈ {1, 2, 3} are defined in the following way

Y1 = X1 + X12 + X13,

Y2 = X2 + X12 + X23,

Y3 = X3 + X13 + X23.

(22)

Thus, Yi ∼ Poisson(λi + λij + λik), where i, j, k ∈ {1, 2, 3}, i �= j �= k. Finally, these ran-
dom variables follow the Poisson distribution with λ = (λ1, λ2, λ3, λ12, λ13, λ23), and hence
with the mean vector Aλ = (λ1 + λ12 + λ13, λ2 + λ12 + λ23, λ3 + λ13 + λ23)

′. The variance-
covariance matrix for this distribution is given by

AΣA′ =

⎛⎝λ1 + λ12 + λ13 λ12 λ13
λ12 λ2 + λ12 + λ23 λ23
λ13 λ23 λ3 + λ13 + λ23

⎞⎠ (23)

It is clear from the above examples that the modeling of the time series of counts
with multivariate Poisson distribution in higher dimensions is restrictive and cumbersome.
It is restrictive, since it allows only for positive dependency in the data, which can be
unreasonable for real-world applications. It is cumbersome since the method is only
computationally tractable when one has low counts data, see Equation (21) in which the
number of terms in the sum depends on the number of observed counts. Methods such
as expectation maximization can be applied in this case but they are not trivial and stable
in case of high counts. Moreover, in this case, incorporation of the multivariate Poisson
distribution into MACI or log-linear models also affects computational speed substantially,
and these models lose their attractiveness over more complex models such as nonlinear
state-space models in the next section.

3. Parameter Driven Model: Nonlinear State-Space Model

The advantage of parameter driven models is the clear interpretability of the model
parameters and the high degree of flexibility. The model can easily incorporate different
distributions and extends easily to the multivariate framework. Moreover, in the Bayesian
framework, we have coherent inferential tools derived from the posterior distributions
of the parameters, such as highest posterior density intervals. These models also take
into account uncertainty about the parameters which is incorporated into predictions.
The disadvantage of this approach is challenging estimation procedures that are com-
putationally intensive. Hence, even though theoretically estimation methodologies are
possible to extend to any dimension, in practice that is not feasible due to the time con-
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straints. In this paper, we estimate the parameter-driven model for multivariate count data
using Sequential Monte Carlo and particle Markov Chain Monte Carlo. These methods
became popular with the availability of more computational power. They are restricted
in some ways, and we will discuss these restrictions in the next subsections after intro-
ducing the nonlinear state space model (SSM), which we will compare to the observation
driven models.

3.1. Multivariate SSM

A state-space model is usually presented by an observation equation and a state
equation. The state equation represents a latent process, say ht, which drives the dynamics
of observations yt. In the multivariate SSM for count data below, this dependence between
the observations and the state is nonlinear

Xit ∼ Poisson(λit), i = 1, 2, . . . , n (24)

λt = β exp(ht) (25)

ht =
n

∑
i=1

Φiht−i + ηt, Ση =

⎛⎜⎜⎜⎜⎝
σ2

η1
ρη12 . . . ρη1n

ρη21 σ2
η2

. . . ρη2n
...

...
. . .

...
ρηn1 . . . . . . σ2

ηn ,

⎞⎟⎟⎟⎟⎠ (26)

where ηt ∼ N(0, Ση). Equation (24) shows that the observations have Poisson distribution
with mean λt defined through the Equation (25), and λt nonlinearly depends on the
latent process ht which is defined through Equation (26). Note that the latent process is
defined through a VAR(p) process, and hence corresponding theory applies. In particular,
the stationarity condition is that the roots of the Equation (27) must lie outside the unit circle

| λp In − λp−1Φ1 − . . . Φp |= 0. (27)

The dependence structure between counts is modeled through the dependence in
the latent process. Conditioned on the latent process {ht}T

t=1 the observations {Xt}T
t=1

are independent. Furthermore, since the latent process of the model is a VAR(p), we
can account for various dependence structures: positive and negative contemporaneous
correlation, and positive and negative Granger-causal feedback.

These models are challenging to estimate, and an assumption of p = 1 can simplify the
inference. (For extending the model to p > 1 we advise the reader to consider using sparse
priors, such as Minnesota prior, spike and slab or horseshoe prior.) Bivariate specification
of the nonlinear state-space model with the lag p = 1 reads

Xit ∼ Poisson(λit), i = 1, 2 (28)

λit = βi exp(hit), i = 1, 2. (29)(
h1,t+1
h2,t+1

)
=

(
φ11 φ12
φ21 φ22

)(
h1,t
h2,t

)
+

(
η1t+1
η2t+1

)
, Ση =

(
σ2

η1
ρη12

ρη21 σ2
η2

.

)
(30)

The dependence structure between series is described by the Granger-causal relation-
ship in the latent processes hit and contemporaneous relations that are incorporated in Ση .
For example, we say that h2,t does not Granger-cause h1,t if φ12 = 0. Correlation coeffi-
cient ρ in this model allows us to model both positive and negative correlation between
the counts.

3.2. Bayesian Inference in Multivariate SSM

The estimation of nonlinear state-space models naturally fits into the Bayesian frame-
work. The presence of the unobservable process in the model and nonlinear dependence
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of the observations on this unobservable process leads to an intractable likelihood and
posterior. For this reason, and due to the nonlinear SSM structure, we use particle Markov
Chain Monte Carlo (PMCMC) for the estimation of the posterior distribution of the model
parameters Andrieu et al. [21]. The method consists of two parts. First, the likelihood is
estimated in a sequential manner through a particle filter. Second, this estimate is used
within an MCMC sampler, in our case Metropolis-Hastings algorithm. An extensive intro-
duction to nonlinear state-space models and particle filtering can be found, for example,
in Särkkä [32].

Recall the Bayes rule on which the inference is based

p(h1:T |x1:T) =
p(x1:T |h1:T)π(h1:T)

p(x1:T)
, (31)

where π(h1:T) is the prior distribution on the parameters of the volatility process defined
by the dynamic model, p(x1:T |h1:T) is the likelihood of the observations, p(x1:T) is the
normalization constant that is ignored during the inference. Thus, we use Bayes rule in
proportionality terms

p(h1:T |x1:T) ∝ p(x1:T |h1:T)π(h1:T). (32)

We use particle Metropolis-Hastings to estimate the posterior distribution of the
parameters of the model since neither the likelihood nor the posterior are available in
closed form. We use Metropolis-Hastings algorithm to sample from the posterior of
the parameters. Algorithm 1 presents an iteration of the Metropolis-Hastings algorithm.
At every iteration of the algorithm we make a new proposal θc

i for the parameter vector
using a proposal mechanism q(·|θ(i)). Then we accept the proposed candidate θc

i with
probability α. The acceptance probability in Algorithm 1 depends on p(θ, h1:T |x1:T)—
target distribution—and q(·)—proposal distribution. How well we manage to explore
the posterior distribution depends on the acceptance rate of the algorithm. When the
acceptance rate is too high it is often related to too small proposal steps, and the other
way around. Overall, either case slows down the convergence of the Markov Chain.
General advice for the optimal performance of the algorithm is an acceptance rate that is
around 0.234 [33].

Algorithm 1 Particle Metropolis-Hastings Algorithm

1: Given θ(i),
2: Generate θc

i ∼ q(·|θ(i)),
3: Take

θ(i+1) =

{
θc

i , with probability ρ(θ(i), θc
i )

θ(i) with probability 1 − ρ(θ(i), θc
i ),

where

ρ(θ(i), θc
t ) = min

(
pc

θi
(x1:T)

p(i)θ (x1:T)

π(θc
i )

π(θi)

q(θ(i)|θc
i )

q(θc
i |θ(i))

, 1

)

Using Algorithm 1 we obtain samples from otherwise intractable distribution
p(θ, h1:T |x1:T). Note, that pc

θi
(x1:T) and p(i)θ (x1:T) are also intractable. Thus, in practice

we substitute them with the estimates p̂θc
i
(x1:T) and p̂θ(i) (x1:T) obtained with Sequential

Monte Carlo.
We further discuss how pθ(x1:T) can be estimated.
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3.3. Estimation of the Likelihood with SMC

Sampling from the posterior distribution with algorithms such as Metropolis-Hastings
requires evaluationg the likelihood. In case of non-linear state-space models, this likelihood
evaluation is not straightforward since the likelihood is a high dimensional integral

L(x1:T) =
∫

p(x1:T , h1:T)dh1:T =
∫

p(x1:T |h1:T)p(h1:T)dh1:T

=
∫

p(x1|h1)p(h1)
T

∏
t=2

p(xt|ht)p(ht|ht−1)dh1 . . . hT ,
(33)

and this likelihood is not analytically tractable. Instead of relying on an analytical result,
the integral from Equation (33) can be approximated using Sequential Monte Carlo methods,
also known as particle filters. This estimate of the likelihood is then used in Algoperithm 1
as p̂θ(x1:T). Algorithm 2 represents a simple version of a particle filter which we use in this
paper. The algorithm consists of three main steps: prediction, updating and resampling.
In the prediction step we sample N particles according to the assumed dynamics of the
latent process p(ht|ht−1). Then we weight each particle according to the distribution of
the data given the latent state p(xt|ht). Finally, in the resampling step we resample the
particles according to these weights. Resampling step is meant to solve the known problem
of particle degeneracy: without resampling we end up only with a few particles with high
weights over time.

Algorithm 2 Bootstrap Particle Filter with resampling

1: Draw a new point h(i)t for each point in the sample set {h(i)k−1 : i = 1, . . . , N} from the
dynamic model:

h(i)t ∼ p(ht|h(i)t−1), i = 1, . . . , N.

2: Calculate the weights
ω
(i)
t ∼ p(xt|h(i)t ), , 1, . . . , N,

and normalize them to sum to unity.
3: Compute the estimate of p(xt|x1:t−1, θ) as

p(xt|x1:t−1, θ) = ∑
i

log ω
(i).
t

Perform resampling:
4: Interpret each weight ω

(i)
t as the probability of obtaining the sample index i in the set

{h(i)t : i = 1, . . . , N}.
5: Draw N samples from that discrete distribution defined by the weights and replace the

old samples set with this new one.

The particle filter provides us with the sequence of distributions p(ht|xt), however
due to particle degeneracy problem discussed previously, sampling from p(h1:T |x1:T) and
approximating p(hk|x1:T), k = 1, . . . , T, is inefficient. One of the possible solutions to this
problem is using so called forward filtering - backward smoothing recursions [34]. The algo-
rithms starts with sampling h∗

T ∼ p̂(hT |x1:T), and then backwards for k = T − 1, T − 2, . . . , 1,
we sample h∗

k ∼ p̂(hk|h∗
k+1, x1:n) . Then we can approximate the distribution p̂(hk|x1:T)

as follows

p̂(hk|x1:T) =
N

∑
i=1

Wi
k ×

⎡⎣ N

∑
j=1

Wj
k+1|T

f (h∗,j
k+1|h

∗,i
k )

[∑N
l=1 Wl

k f (h∗,j
k+1|h

∗,l
k )]

δh∗,i
k
(hk)

⎤⎦
=

N

∑
i=1

Wi
k|Tδh∗,i

k
(hk).

(34)
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The smoothing comes at cost of O(NT) operations to sample a path from p(h1:T |x1:T)
and O(N2T) operations to approximate p(hk|x1:T). This method works very well, in par-
ticular when dealing with large sample sizes. However, its performance comes at the
price of a high computational costs. Thereby, it is generally recommended to use it when
the sample size of the data is large and hence Sequential Monte Carlo is more likely to
suffer from particle degeneracy. There exist other methods that are computationally less
expensive [34]. However, in higher dimensions, they would be less reliable, and it would
be recommendable to use more expensive methods.

3.4. Forecasting with SSM

One of the interests of statistical inference is the ability to perform forecasting exercises
and thus handling the uncertainty about the future in the best possible way. In this section,
we will discuss how forecasting task fits into the Bayesian framework, and in particular
how it can be done for models of our interest.

Recall that we estimated multivariate SSM model for count data in the Bayesian
framework. Observing the data x = (x1, . . . , xT) we estimated the posterior distribution of
the parameters in our model using particle Markov Chain Monte Carlo methods p(θ|x).
Suppose that we are interested in predicting the next s observations, that is, xT+1, . . . , xT+s.
First, note that the prediction equation for the next step reads

p(xt+1|xt) =
∫

p(xt+1|ht+1)p(ht+1|xt)dht. (35)

In the framework of particle Markov Chain Monte Carlo, it is natural to adopt a
sequential nature of SMC and the fact that we obtain posterior draws in the MCMC part
of the algorithm. Thereby, for every vector θ of the parameters drawn in the MCMC, we
can propagate the particles obtained at time T and based on those make one-step ahead
forecast. The similar idea extends to s-steps ahead forecasts. In this case the uncertainty
about the parameters is included in the forecasts.

When forecasting, the most natural but cumbersome approach would be to update
the posterior distribution every time we get a new observation. It would mean that we
generate as many MCMC chains as we have steps for forecasting. This can be carried out
in a straightforward way by re-estimating the posterior distribution every time or more
efficiently by incorporating this into the SMC framework. However, for large enough
samples, adding an extra estimation into the PMCMC framework should not change the
results substantially. Ignoring this update also makes the forecasting performance of the
frequentist and Bayesian approaches more comparable. Both frameworks are estimated in
different paradigms. While SSM naturally fits into the Bayesian paradigm, the log-linear
model is usually estimated using frequentist methods (quasi-maximum likelihood in this
case). Since our goal is not to compare the two approaches to statistics, this design of
forecasting exercise is more fair.

Figure 2 illustrates the forecasting approach we undertake with the state-space model
in a graphical representation. In particular, one can see that we do not re-estimate the
posterior distribution every time we receive a data point.
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θi,T θi+1,T θi+2,T θM−1,T θM,T

θi,T+1 θi+1,T+1 θi+2,T+1 θM−1,T+1 θM,T+1

θi,T+2 θi+1,T+2 θi+2,T+2 θM−1,T+2 θM,T+2

θi,T+s θi+1,T+s θi+2,T+s θM−1,T+s θM,T+s

Figure 2. Visual representation of forecasting with the state-space model for count data.

4. Model Comparison and Prediction Assessment

We next summarize the measures using which we compare the models in Sections 2 and 3.
Observation driven models in this comparison are represented by the log-linear autoregressive
model. The log-linear autoregressive model is more flexible than the MACI model since
it can account for a negative correlation and thus it is a fairer competitor. The parameter
driven approach is the state-space model, where observations are generated from the Poisson
distribution and dependency is modeled through a latent process. Note that, for the latter
framework, we follow a fully Bayesian approach. Thereby, we compare these two classes of
models by model fit and forecasting performance criteria. The standard measures to access
the model fit and forecast accuracy would be Mean Squared Error (MSE) and Mean Absolute
Error (MAE) defined in Equation (36) respectively.

MSE =
1
s

s

∑
i=1

(xi − x̂i)
2, MAE =

1
s

s

∑
i=1

|xi − x̂i|2. (36)

In Czado et al. [35] the authors propose comparing forecast performance using some
scoring rules. To define scoring rules, let P be the predictive distribution and x be the
counts; then the penalty is defined through s(P, x). Table 1 presents some of the scoring
rules one can use for comparing the performance of count data models.

Table 1. Scoring rules for assessment of the forecasts. The table summarizes scoring rules that we use
to assess forecasting performance of the models under consideration, proposed in Czado et al. [35]
for count data.

Logarithmic score log(P, x) = − log px

Quadratic score qs(P, x) = −2px+ || p ||2

Spherical score sphs(P, x) = − pi
||p|| ,

where || p ||2= ∑∞
k=0 p2

k

Rank probability score rps(P, x) = ∑∞
k=0{Pk − 1(x ≥ k)}2

Squared error score ses(P, x) = (x − μp)2,
where μp is the mean of P

329



Entropy 2021, 23, 718

Note, that in practice, one calculates the mean score

S =
1
n

n

∑
i=1

s(P(i), x(i)). (37)

To compare our results with the conclusions in Zhang et al. [19] we also report Dawid-
Sebastiani (DS) score which is defined in Equation (38)

DSSt,i(X t,i) =
Xt,i − μt,i

σt,i
+ 2 log(σt,i). (38)

5. Simulation Examples

In this section, we demonstrate the performances of the models based on simulated
data. We generate data from various specifications of SSM and log-linear MACI models
and compare the models on forecasting performance. We assess forecasting performance
based on six different scoring measures discussed in the previous section. The design
of the simulation study allows us to assess forecasting performance in the cases of both
correct model specification and misspecified case. Table 2 summarizes three different
specifications of the state-space approach for data generation and Table 3 summarizes
specifications of the log-linear MACI for data generation. Figure 3 illustrates two examples
of bivariate time series generated from these models. For each simulation setting, we
generate ten datasets with different random seeds and report the average results from
these ten datasets. State-space model was estimated using particle Metropolis-Hastings
algorithm with N = 5000 particles and M = 20000 Metropolis-Hastings step with a warm-
up period of 5000 steps. The acceptance rate was targeted to be between 25% and 40%.

Table 2. True parameters for the data sets generated from the state-space model in the simulation
examples. All data generating processes include a one-directional Granger-causal feedback through
a non-zero coefficient φ21 and different correlation structures: SSM1 has a positive correlation
coefficient ρ, SSM2 has a negative correlation coefficient ρ and SSM3 has no correlation.

Data Set β1 β2 φ11 φ21 φ12 φ22 ση1 ση2 ρ

SSM1 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 0.3

SSM2 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 −0.3

SSM3 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 0.0

Table 3. True parameters for the data sets generated from the log-linear MACI model in the simu-
lated examples.

Data Set ω1 ω2 a11 a22 b11 b12 b21 b22

LL1 0.9 0.4 −0.5 0.2 0.5 0.2 0.0 0.4

LL2 0.2 0.3 0.2 0.4 0.5 0.2 0.0 0.4

We assess the forecasting performance of two models for multivariate count data: state-
space model and log-linear model. Tables 4 and 5 summarize the forecasting performances
of the models according to various scoring rules. The rows of the tables correspond to
a particular data generating process (see for details of specification Tables 2 and 3) and
columns for a particular scoring rule (see scoring rules specification in Table 1). In particular,
Table 4 shows performance of the state-space model and Table 5 the performance of the
log-linear model. The state-space model outperforms the log-linear MACI model when the
data are generated from SSM1 (SSM with positive correlation) and LL1 (log-linear model
with a negative a11 coefficient). It is particularly interesting that when the data is simulated
from LL1, SSM performs best according to all measures despite being a misspecified model.
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When the data are generated from SSM2 and SSM3, the state-space approach performs best
based on most measures. This result is expected as SSM is the correct model specification
for these simulated data. Finally, log-linear MACI model performs best in the case of
data set LL2—in the case when the model is correctly specified and all the coefficients are
positive—according to most measures.
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Figure 3. Examples of the data generated with the state-space and log-linear MACI models. (a) Di-
mension 1 of the bivariate time series generated from SSM2 in Table 2. (b) Dimension 2 of the
bivariate time series generated from SSM2 in Table 2. (c) Dimension 1 of the bivariate time series
generated from LL2 in Table 2. (d) Dimension 2 of the bivariate time series generated from LL2
in Table 2.

Table 4. Scores for the forecasting exercise with the state-space model, according to the definitions in
Table 1. The smaller score indicates a better result. DGP column corresponds to the data generating
processes in this simulation study, the true parameters are presented in Tables 2 and 3.

DGP log qs sph rps ds se

SSM1 1.484 −0.229 −0.440 0.770 2.352 2.634
SSM2 1.861 −0.235 −0.487 1.000 3.136 3.551
SSM3 1.967 −0.224 −0.475 0.948 3.599 4.075
LL1 1.959 −0.164 −0.405 0.974 2.176 3.214
LL2 1.351 −0.293 −0.543 0.545 1.103 1.087

Table 5. Scores for the forecasting exercise with the log-linear MACI model. The smaller score
indicates a better result. DGP column corresponds to the data generating processes in this simulation
study, the true parameters are presented in Tables 2 and 3.

DGP log qs sph rps ds se

SSM1 1.636 −0.321 −0.553 0.999 2.612 3.088
SSM2 2.089 −0.164 −0.391 1.333 2.614 5.180
SSM3 1.929 −0.220 −0.469 0.948 3.464 4.187
LL1 1.985 −0.159 −0.400 0.996 2.238 3.357
LL2 1.320 −0.309 −0.555 0.555 1.036 1.023
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6. Empirical Applications

In this section, we compare the models in two empirical applications—bank failures
and transactions data. These data sets exhibit different sample sizes, standard deviation,
dispersion and maximum counts. In particular, bank failure time series reach a maximum
of 10 and 24 counts while transaction data reach up to 67 and 60 counts with comparable
mean counts.

6.1. Bank Failures

Bank failures have been analyzed using a univariate Poisson process [36]. A num-
ber of researches have investigated bank failure data of different time periods, see e.g.,
Schoenmaker [1] for an analysis of contagion risk in banking. Overall, it is reasonable to
expect that bank failures in different countries are driven by similar economic phenomena,
and possible contagion/spillover effects exist between economies of different countries.

For this application, we analyze count data using a bivariate data set of bank failures
in the U.S. and Russia that has not been considered in the literature before. We use monthly
number of bank failures for the period between January 2008 and December 2012 for
both countries and apply the bi-variate specifications of the models in Sections 2 and 3.
Especially due to the global financial crisis included in this period, it is important to allow
for potential correlation between the number of bank failures in the U.S. and Russia using
the multivariate count data models. Figure 4 illustrates these time series and Table 6
presents descriptive statistics for this data set.
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Figure 4. Data for bank failures empirical application. (a) Monthly bank failures in Russia January
2008–December 2012. (b) Monthly bank failures in the U.S. January 2008–December 2012. (c) Scatter
plot of data bank failures in subplots (a,b).
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Table 6. Descriptive statistics for the bank failures data for the period January 2008 until December
2012 for Russia and U.S.

Russia U.S.

mean 3.51 7.93
median 3 7
st.d. 2.46 5.93
minimum 0 0
maximum 10 24

The estimation results from both models are presented in Tables 7 and 8. Based on
the state-space model, the correlation is estimated as being low negative and 0 is included
in highest posterior density interval for this parameter. Despite that log-linear MACI
model estimates correlation coefficient to be positive, it provides a large confidence interval
for this parameter which also includes 0. Thus, for this relatively small data set, we do
not find an indication of correlated bank failures using both models. We also note that
some confidence intervals in Table 8 include point 0. As discussed in Section 2, applying
observation driven models with positivity constraints would be problematic for these data
especially in terms of the calculation of confidence intervals.

Table 7. Posterior moments of the parameters of the state-space model for bank failures.

Mean Median Mode HPDl 95% HPDu 95%

β1 1.1450 0.8867 0.0503 0.0503 2.9481
β2 4.0414 3.7053 2.3414 1.8570 7.2843

φ11 0.9569 0.9648 0.9757 0.8968 0.9991
φ21 0.0101 0.0071 −0.0372 −0.0646 0.0856
φ12 0.1193 0.0935 −0.1856 −0.2367 0.5438
φ22 0.7387 0.7518 0.8862 0.4942 0.9733
ση1 0.3335 0.3340 0.0122 0.1722 0.5400
ση2 0.3302 0.3252 0.3189 0.1496 0.5176

ρ −0.0845 −0.0848 −0.0703 −0.1879 0.0209

Table 8. Parameter estimates of the log-linear MACI model for bank failures.

Estimate CIl 95% CIu 95%

w1 0.1259 −0.7545 1.0064
w2 −0.1307 −0.4348 0.1733
a11 0.0732 −0.5380 0.6844
a22 0.6923 0.5535 0.8312
b11 0.0403 −0.2816 0.3621
b21 0.1638 0.0190 0.3086
b12 0.3879 0.0212 0.7546
b22 0.2521 0.1069 0.3974

ρ 0.6513 −0.2131 1.5158

We next compare the models in terms of their forecast performances. For this compar-
ison, we take a sample size of T = 55, and we make five steps ahead predictions using the
log-linear model and the state-space approach. Table 9 presents scores for this forecasting
exercise. Based on all scores, except for the rank probability score (rps), the state-space
model outperforms the log-linear model in terms of forecasting. Based on the simulation
results in Section 5, we conjecture the following: The better performance of the state-space
model can be due to this model being close to the true data generating process, or due to
its property of capturing data properties well even if it is misspecified.
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Table 9. Scores for the forecasting exercise with bank failure data. This table shows scoring rules for
the forecasting exercise in the bivariate model for bank failure data.

Model log qs sph rps ds se

SSM 1.9026 −0.1738 −0.4189 0.9755 2.1619 3.0841
Log-Linear 2.0244 −0.1623 −0.3996 0.8862 2.2934 4.2031

6.2. Transactions

In this empirical application, we analyze the number of transactions on 30 s intervals
for Deutsche Bank AG and Bayer AG (the datawere obtained from FactSet, in the time
period of 3 August 2015 09:05:30 until 3 August 2015 12:25:00 for the training data). We
expect such transactions to be correlated due to their dependence on the time of the day and
the market conditions. The sample size in this application is T = 400, which is significantly
larger than the sample size in the bank failures application. The summary statistics for this
data set are provided in Table 10 and Figure 5 illustrates these time series. Both time series
have fat tails with a few very high values, concentrated around observation 100 and 1 for
Deutsche Bank and Bayer AG, respectively.
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Figure 5. Data for transactions empirical application. (a) Transactions in 30 s. interval for Deutsche
Bank AG. (b) Transactions in 30 sec. interval for Bayer AG. (c) Scatter plot of transactions in (a,b).

Table 10. Descriptive statistics for the transactions data.

Deutsche Bank AG Bayer AG

mean 6.95 7.716
median 5 5
st.d. 8.2462 8.227
minimum 0 0
maximum 67 60
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We apply the bi-variate counterparts of the count data models in Sections 2 and 3
to these data and compare the model performances based on 100 steps ahead forecasts.
In Tables 11 and 12 we present parameter estimates of both models. Both models estimate
positive correlation between these time series. However, in the case of the log-linear MACI
model the estimated correlation coefficient is much higher. In addition, the confidence
intervals of parameter estimates such as b12 and b22 in Table 12 include point 0. Thus, true
parameters being non-positive is a potential problem if other observation driven models,
with positivity constraints, in Section 2 were applied to these data.

Table 13 presents the scores of each model in the forecast sample. In this application,
the log-linear model performs best according to all scoring rules. Based on the simulation
results in Section 5, we conjecture that the log-linear model is potentially closer to the
true data generating process compared to the state space model. We further analyze the
forecasting performances of the models in Figure 6. Particularly in Figure 6b, we observe
that the log-linear MACI model captures better high spikes of the counts and then returns
to the original level of the data. The forecast with the state-space model appears to be too
smooth compared to the data points. Thus, the better forecast performance of the log-linear
MACI is potentially due to its ability to capture these extreme data values successfully.

The under-performance and over-smoothing of the state-space approach can be miti-
gated by implementing a different particle filter. For example, one could take the direction
of implementing look-ahead particle filters such as [37,38]. General idea of the look-ahead
approaches is that in the particle filtering algorithm we make a proposal not just according
to the dynamics of the model p(ht|ht−1), but taking the current observation into account
p(ht|ht−1, yt) or taking into account the complete time series p(ht|ht−1, y1:T) as in [38].
These methods, however, have not been developed for the distributional assumptions we
are considering in this paper and further research is needed in this direction.

Table 11. Posterior moments of the para maters for the state space model for transactions.

Mean Median Mode HPDl 95% HPDu 95%

β1 4.5049 4.4860 4.3782 3.9274 5.1238
β2 5.4475 5.4260 5.2161 4.7971 6.1541

φ11 0.3058 0.3048 0.3137 0.1778 0.4316
φ12 0.0180 0.0181 −0.0469 −0.1007 0.1342
φ21 0.0518 0.0533 0.1520 −0.1118 0.1890
φ22 0.3788 0.3795 0.5341 0.2414 0.5126
ση1 0.8864 0.8853 0.8759 0.8059 0.9675
ση2 0.7521 0.7519 0.7246 0.6835 0.8236

ρ 0.2400 0.2397 0.2499 0.1932 0.2875

Table 12. Parameter estimates of the log-linear MACI model for transactions.

Estimate CIl 95% CIh 95%

w1 0.1232 0.0304 0.2161
w2 −0.0741 −0.1666 0.0184
a11 0.7518 0.6826 0.8211
a22 0.5333 0.4586 0.6080
b11 0.1832 0.1471 0.2193
b21 0.0315 −0.0028 0.0659
b12 0.0024 −0.0256 0.0305
b22 0.4591 0.3847 0.5334

ρ 0.7967 0.6053 0.9881
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Table 13. Scores for transaction forecasts.

Model log qs sph rps ds se

SSM 5.0 −0.0171 −0.2059 3.4601 14.5471 49.97
Log-Linear 4.4549 −0.0232 −0.2152 3.1621 11.3674 44.429
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Figure 6. Forecasts and true data for the transactions empirical application. (a) Transactions in 30 s.
interval for Deutsche Bank AG (black circles), forecast with SSM (green), forecast with log-linear
MACI (red). (b) Transactions in 30 s. interval for Bayer AG (black circles), forecast with SSM (green),
forecast with log-linear MACI (red).

7. Discussion

In this paper, we have reviewed and compared two approaches for modeling mul-
tivariate count time series data. One of the challenges that appears in the literature and
have not been resolved is modeling the dependency between counts in a flexible way that
would also allow for feasible estimation. We have discussed multivariate autoregressive
conditional intensity models (MACI), their log-linear alternative which we refer to as
the multivariate log-linear model and nonlinear state-space model. Both models have
advantages and disadvantages. In particular, the nonlinear state-space framework allows
for various interpretable dependencies that one cannot easily incorporate into MACI or
log-linear approach. However, these models can be computationally expensive to estimate,
in particular in higher-dimensions. Challenges in estimation arise from different sources.
State-space models naturally fit into the Bayesian framework, however, since both the
likelihood and the posterior of the model are analytically intractable this leads to computa-
tionally expensive procedure. MACI models, on the other hand, are quite restrictive: they
restrict coefficients in the model to be positive as well as the correlation between time series.
Both assumptions can be unrealistic in many real-world applications. Log-linear model
avoids the problem of only positive coefficients in the model by logarithmic transformation
of the data. However, estimation can be unstable, and good starting points need to be
chosen for the estimation. When the dimension of the model grows, it becomes harder to
choose good starting points for the optimization problem. The computational advantage
of log-linear and MACI models decreases with the increase in either dimensionality of
the model or the number of counts. This reduction in the computational advantage is
due to the usage of the multivariate Poisson distribution as every pairwise correlation has
to be modeled as a separate Poisson random variable. Moreover, the summation in the
specification of the joint distribution runs through the number of counts. Generally, one
could say that estimation of log-linear models much faster than of the state-space models.
In low dimensions and with the small number of counts these models do not require much
of computational power, however, once the number of counts increases and once we deal
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with higher dimensions, the computations become much more extensive due to large sums
in the multivariate Poisson distribution. Moreover, while running the model on simulated
and empirical data, we found that the estimation can be numerically unstable and can
highly depend on the starting values in the estimation procedure. We follow the suggestion
of Doukhan et al. [10], and the first estimate the model for univariate time series. These
estimates we further use in multivariate estimation. However, the problem of numerical
instability especially remains in small samples according to our experience. Nevertheless,
in terms of flexibility, this model is the best competitor for the state-space approach.

We have compared log-linear models and state-space models for count data in terms
of forecasting performance on multiple simulated data sets and real data applications.
We found that on the simulated data state-space framework generally outperforms log-
linear model, sometimes even under model misspecification. On the real data sets, the
state-space model performs better in bank failures applications which consists of two
time series of bank failures in Russia and U.S. and the counts remain relatively low and
the data are relative smooth. The log-linear model performs better in the transactions
applications in which we consider two time series of transactions counts in 30 seconds
intervals. The challenge of transactions application is that there are spikes of counts which
deviate a lot from the mean. In this case, we notice that the log-linear model approximates
these spikes better. Thus, a possible direction for future research is adapting a multivariate
state-space model for count data to capture such spikes better. A possible way to improve
the model in this regard would be to adapt the particle filtering algorithm. We used
bootstrap particle filter which does not take into account observations when making a
proposal for particles, but taking current (or all) observation into account in the proposal
mechanism for the particles can help approximating the spikes in the data. There have
been proposed multiple look-ahead approaches for particle filters [37,38], but they have
not been adapted to count data.

Finally, both approaches have their drawbacks. In particular, the log-linear model
seems to have numerical stability issues and finding optimal starting values for optimiza-
tion can be a challenge. In the state-space approach, the challenging part is the estimation
of the likelihood, which is intractable and sampled from the posterior distribution. Ad-
ditionally, the state-space model in its current implementation is challenged by possible
spikes in the data to a larger degree than the log-linear model.
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Abstract: A new software package for the Julia language, CountTimeSeries.jl, is under review, which
provides likelihood based methods for integer-valued time series. The package’s functionalities are
showcased in a simulation study on finite sample properties of Maximum Likelihood (ML) estimation
and three real-life data applications. First, the number of newly infected COVID-19 patients is
predicted. Then, previous findings on the need for overdispersion and zero inflation are reviewed
in an application on animal submissions in New Zealand. Further, information criteria are used for
model selection to investigate patterns in corporate insolvencies in Rhineland-Palatinate. Theoretical
background and implementation details are described, and complete code for all applications is
provided online. The CountTimeSeries package is available at the general Julia package registry.

Keywords: count data; time series analysis; Julia programming language

1. Introduction

The collection of count data dates back to at least 4000 years ago when the first census
was documented. Nowadays, it still plays an important role in our everyday life as it
occurs in various fields. For instance, it arises in insurance with the number of claims,
in epidemiology where the number of infected patients is recorded, in urban planning
as traffic volume, or in marketing with the number of certain items sold, just to name
a few. During the past decades, researchers have developed methods to gain insight
into the structure of the data and derive conclusions from it. Important frameworks for
such analyses are integer counterparts of the well-known ARMA and GARCH models,
the INARMA model introduced by Alzaid and Al-Osh [1], and the INGARCH model
described, for example, by Ferland et al. [2]. Both models, the INARMA and the INGARCH
model, have been further extended thereafter and are well established. In the following
applications, a software package for the Julia Programming Language (Bezanzon et al. [3])
is used, which provides methods for these two models, CountTimeSeries.jl. After the
Julia language was first published in 2012, the number of users grew remarkably during
past years. On the one hand, it is as easy to learn as an interpreted language like R or
Python, and on the other hand, it is a compiled language which makes its computation time
comparable to C and Fortran. This combination makes Julia attractive for both researchers
and practitioners. The CountTimeSeries package follows the idea of the language itself by
providing a toolbox for count data time series that is simple to use and at the same time
fast enough to allow analyzing large time series or carry out simulation studies. Covering
some important generalization of INARMA and INGARCH models, the package allows to
simulate from them, estimate parameters and conduct inference, assess the model choice,
and compute forecasts.

There is no comparable package in R or Julia that covers the same functionalities. One
important package for count data time series is R’s tscount package, see Liboschik et al. [4].
In contrast to the CountTimeSeries package, it provides residual assessment, calibration
methods, and intervention analysis. However, it does not cover the INARMA framework
at all. Further, it also does not incorporate zero inflation, a model property frequently used
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in count data analysis. The thinning-based INARMA model can be formulated as Hidden
Markov model, as for example discussed by Weiß et al. [5], so that the R packages Hidden-
Markov (Harte [6]), and HMM (Himmelmann [7]) can be used to estimate its parameters.
Both packages have been developed for general HMMs, thus the CountTimeSeries package
offers the advantage of a more convenient usage and similar notation for both frameworks
making it easy to switch between frameworks or compare results between those. As the
name already suggests, count regression was not the goal of the CountTimeSeries package,
but can be used for both a Poisson and a Negative Binomial regression. In R this is provided,
for example, by the pscl package (Jackman [8]) with extensions by Zeileis et al. [9]. tscount
can only be used for (Quasi-)Poisson regression, as it was designed only for Poisson and
Quasi-Poisson INGARCH models.

In Julia, there is no package dealing with INGARCH and INARMA models, but like
in R, there are packages for Hidden Markov models, like HMMBase, see Mouchet [10].

In the remainder of this paper, the CountTimeSeries package is first motivated and
all its functionalities are explained. Then, four applications showcase how the package is
used it practice. The first application deals with the spread of COVID-19 and focuses on
the INGARCH framework and prediction. The second application analyzes the number
of animals which were submitted to a New Zealand health laboratory and suffered from
anorexia or skin lesions. Thinning-based INARMA models are used to shed more light
on a discussion about the need of incorporating conditional overdispersion and zero
inflation for this data set. During the analysis, inference is conducted on parameter
estimates and information criteria used. Application 3 uses data first analyzed by Weiß
and Feld [11] containing the number of corporate insolvencies in Rhineland-Palatinate.
Thereby, the focus lies on the model choice, 54 models with different time trends and
model specifications are fitted and information criteria used to select the best model. It
is discussed whether there are spatial clustering effects in the characteristics of selected
models and if there is a downwards trend in the number of insolvencies. Application 4
waives real data, a simulation study is carried out to assess the finite sample properties
of Maximum Likelihood estimation for a Poisson INGARCH(1, 1). Different methods to
initialize the conditional mean recursion, different parameter values, and different lengths
of time series are compared. The simulation study is conducted in both Julia and R to
compare the estimation time. Finally, Section 7 summarizes results, and gives an outlook
and concludes.

2. The CountTimeSeries Package

When a new software package is developed, its rationale for existence should be
addressed first. In other programming languages, there are many established packages
to model count data time series. Three reasons spoke for the development of a new Julia
package. Despite Julia’s strong growth in popularity during recent years, no package for
count data existed. Methods covered by other programming languages should be provided
for Julia users. The goal was not only to translate functions, but also to create a package
that can be easily extended for other models and alternative estimation methods. Julia’s
multiple dispatch feature allows adding model types and methods to existing functions for
a unified notation. The third reason for the new package is its aforementioned advantages
im terms of computing time. In the following, the general structure of the package is
described in detail.

2.1. INGARCH Framework

By now, the package covers the INGARCH and INARMA framework and some
important generalizations. The former was first described by Ferland et al. [2] as an integer
process {Yt}t∈Z with
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Yt|Ft−1 ∼ Pois(λt)

λt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiλt−i
(1)

where Ft denotes the information set available at time t. Alternatively, the conditional
distribution can be replaced by a Negative Binomial distribution with overdispersion
parameter φ > 0 such that the conditional variance becomes Var(Yt|Ft−1) = λt + λ2

t /φ.
Different extensions have proven useful in practice. Currently covered by the Count-

TimeSeries package are additional regressors, a log-linear link function, and zero inflation.
In line with Liboschik et al. [4], regressors can be included in two different ways—as
internal or as external regressors. By adding internal regressors X(I)

t in (1), the conditional
mean becomes

λt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiλt−i + η′X(I)
t (2)

To further include external regressors X(E)
t , the conditional mean is defined as

λt = νt + η′X(E)
t

νt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiνt−i + ζ ′X(I)
t

(3)

In contrast to external regressors, internal regressors enter the recursive definition of
conditional means. Often, it is not crucial how a regressor is declared by the user. The ap-
proach has been developed by Liboschik et al. [12] to model interventions that affect the
observable process Yt without affecting the underlying dynamics of the mean recursion,
see Liboschik et al. [12].

If one wants to replace the linear link function in above models with a log-linear link,
Equation (3) become

log(λt) = νt + η′X(E)
t

νt = β0 +
p

∑
i=1

αi log(Yt−i + 1) +
q

∑
i=1

βiνt−i + ζ ′X(I)
t

(4)

If zero inflation should be included, only the first line in (1) is changed. Then, given
Ft−1, Yt is assumed to follow a singular distribution at zero with probability ω and to
follow a Poisson (or Negative Binomial) distribution with probability 1 − ω. The con-
ditional probability to observe a zero then is P(Yt = 0|Ft−1) = ω + (1 − ω) exp{−λt}.
The CountTimeSeries package supports all combinations of these generalizations of the
INGARCH model.

2.2. INARMA Framework

Besides the INGARCH framework, the CountTimeSeries package also covers another
important model class widely used in count data analysis, INARMA models. Alzaid
and Al-Osh [1] introduced an integer counterpart of AR(p) processes based on binomial
thinning, which was then further developed and extended. The simple INAR(1) model is
defined as Yt = Rt + α ◦Yt−1, where Rt is a latent, non-negative, and integer-valued process
often called innovation or immigration process. The thinning operator “◦” is defined for a
constant α ∈ [0, 1] and a non-negative, integer random variable X as α ◦ X = ∑X

i=1 Zi for

X > 0, where Zi
iid∼ Bern(α) and zero if X = 0.

In line with the notation of Weiß et al. [5], a non-negative and integer-valued process
{Yt} follows INARMA(p, q) process if
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Yt = Rt +
q

∑
i=1

βi ◦ Rt−i +
p

∑
i=1

αi ◦ Yt−i

Rt ∼ Pois(β0)

(5)

The distribution of Rt can also be chosen as a Negative Binomial distribution with
mean β0 and an overdispersion parameter φ, such that its variance is β0 + β2

0/φ. One way
to include regressors in above model would be to add another additive component Zt to
the first line, whose mean depends on regressors X(E)

t . In the CountTimeSeries package,
the distribution of Zt can be chosen as Poisson or as Negative Binomial. The regressors
included that way are referred to as external regressors, as they do not affect the innovation
process Rt. Another possible inclusion of regressors is implemented as internal regressors
X(I)

t . The Poisson INARMA(p, q) with regressors then becomes

Yt = Rt +
q

∑
i=1

βi ◦ Rt−i +
p

∑
i=1

αi ◦ Yt−i + Zt

Rt ∼ Pois
(

β0 + η′X(I)
t

)
Zt ∼ Pois

(
ζ ′X(E)

t

) (6)

Note that the mean of Zt only depends on the regressors and no intercept parameter for
identification. To include zero inflation, the distribution of Rt is altered to be zero with
probability ω and to follow a Poisson with probability 1 − ω, see, for example, Aghababaei
Jazi et al. [13]. This approach inflates the probability of Yt to be zero indirectly, in contrast
to the approach for the INGARCH framework. The reason for it is found when taking a
closer look at how the likelihood is computed for an INARMA model. As Yt is composed
of multiple, non-observable parts, the distribution of Yt given past observations is the
result of a convolution. A convolution simplifies from a computational point of view if
possible values for each component are bounded. For the autoregressive part, each result
of a thinning operation is bounded from above by the corresponding past observation.
Including zero inflation as described above preserves the property Rt ≤ Yt, which would
not hold if zero inflation was included in the same way as for INGARCH models.

2.3. Package Structure

The general structure of the package can be divided into four parts: model specifica-
tion, generating data from a model, fitting a model to data, and prediction.

For the specification of a model, object types have been implemented. Starting from
the top, the type CountModel covers every possible model described in the previous section.
Models in the INGARCH or INARMA framework are collected in the types INGARCH and
INARMA, respectively. Subtypes of these two are finally INGARCHModel, INARCHModel and
IIDModel, as well as INARMAModel, INARModel, and INMAModel. This definition of a type
tree allows to implement methods for certain groups of models.

A wrapper function Model() is implemented to specify a model. The user provides
the model framework, INGARCH or INARMA, the distribution, the link function, model
orders p and q, regressors if wanted with an indicator whether they should be treated as
internal or external and whether or not zero inflation should be considered. Default setting
is a simple Poisson IID model. A Negative Binomial INARCH(1) with zero inflation is for
example specified by

Model(distr = "NegativeBinomial", pastObs = 1, zi = true).
To generate artificial data from a model, the specification is paired with parameter

values. This can generally be done in two ways: as a vector of values or as a newly defined
data type parameter, with entries for β0, α, β, η, φ, and ω. Note that in the implementation,
no notational distinction is made between parameters for internal and external regressors.
The two ways of providing parameter values are useful for example during the optimization
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of the likelihood, which uses the parameter vector, whereas estimation results are more
convenient to handle as the parameter type.

Once a model and parameter values are specified, data are generated with the
simulate() function by calling simulate(T, model, parameter) for a time series of
length T.

Before fitting a model to a time series, settings for the maximization of the likelihood
can be provided. The user can specify initial values and the method for the optimization
routine with the MLESettings() function. The optimization routine can be "NelderMead",
"BFGS", or "LBFGS". If inference in terms of confidence intervals shall be conducted,
the argument ci needs to be set to true. Standard errors are then computed from the
numerical Hessian matrix.

Estimation of parameters is carried out by the fit() function, which takes the time
series, the model, and, if chosen, the settings as input. The likelihood is maximized while
considering constraints on the parameters. Constraints include positivity of conditional
means at any time, proper thinning probabilities and constraints that ensure stability of
the process.

The function parametercheck checks whether parameters are valid whenever calling
the log-likelihood function. If invalid parameters are put in, the log-likelihood function
simply returns negative infinity. This approach is usually unproblematic if starting values
for the optimization are valid and not too close to being invalid.

The fit() function returns an object with estimates, standard errors, log-likelihood for
estimates, and many more. This result object can be forwarded to functions for information
criteria, AIC(), BIC(), and HQIC(), or to the function pit(). Then, the non-randomized
probability integral transform histogram (see Czado et al. [14]) is plotted.

A forecast can be carried out by the predict() function. For models of the INGARCH
framework, two options are available. Predictions can either be deterministic or simulation-
based. In the deterministic approach, conditional means are used as prediction, and if an
observation in the definition of the conditional mean is not observed, it is replaced by its
corresponding prediction. In the simulation-based approach, the time series is continued
many times with random realizations, or chains, following the process. This conveniently
provides prediction intervals as the quantiles of the chains.

Assembling all parts together, this section is closed with an example of a Poisson
INARCH(1). The code to specify the model, simulate a time series of length 500 with
parameters β0 = 3 and α1 = 0.95, fitting and predicting 100 steps into the future with
prediction intervals from 10,000 chains would be

model = Model(pastObs = 1)

y = simulate(500, model, [3, 0.95])[1]

result = fit(y, model)

pred = predict(result, 100, 10000)

3. Application: COVID-19

For the first application, we take a closer look at the spread of COVID-19 in Germany.
The global pandemic has moved disease spread into public focus. Being able to predict the
number of newly infected patients is a cornerstone for policy making and resource planning
in hospitals and medication supply. Many sophisticated models have been developed to
predict the progression of infection rates. In the following, the CountTimeSeries package
is utilized to conduct such predictions with a rather simple INGARCH model and daily
data from German administrative districts. As an example, the application focusses on the
number of new infections in Limburg-Weilburg, which is the district with a population
density closest to the nationwide population density.

Data on infections of contagious, notifiable diseases are collected from the districts
health authorities by the Robert–Koch Institut, see RKI [15]. The data set used in the course
of the following analysis was prepared and published by NPGEO [16]. Besides general
information on districts it contains the daily number of newly reported COVID-19 cases
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for all 401 German administrative districts on the NUTS 3 resolution. The observed time
ranges from 7 January 2020 to 15 March 2021, totaling 434 days.

A first look at the data for the district of Limburg-Weilburg reveals that ~35% of
observations are zero and 9% of observations exceed 50, which underlines the suitability
and importance of a count data model. The excess of zeros in the data is partly explained
by the beginning of the pandemic with only few cases and the rather low counts in general
are due to the fine resolution in both, the time and space domain.

While advanced approaches for disease modeling incorporate many driving factors,
this analysis relies purely on the number of infections in Limburg-Weilburg and its neigh-
boring districts. Demographic factors, holidays and school closings, contact limitations,
introduction of mandatory face masks, and occupancy of hospitals and care facilities are
left out.

3.1. Model

To predict the number of new COVID-19 infections in Limburg-Weilburg, the widely
used INGARCH(1, 1) model with log-linear link is chosen as a starting point. According to
the World Health Organization [17], the incubation time of COVID-19 is on average five to
six days. It is further stated that virus transmission occurred more often from patients with
symptoms in empirical studies. Therefore, and to capture the weekly seasonality pattern
visible in Figure 1, the lag order 7 is included in the model as well.

Figure 1. Autocorrelation function (ACF) of daily new infections in Limburg-Weilburg.

In the time series, the mean count is around 14 whereas the variance is 642. This
marginal overdispersion does not necessarily indicate that a Negative Binomial must
be considered as conditional distribution. The Poisson INGARCH processes with large
dependency, meaning a sum of αi and βi parameters close to one, can exhibit such an
overdispersion. In the following, three different approaches are considered and compared.
Besides a Poisson and a Negative Binomial model, a retrospective estimation of the overdis-
persion parameter after fitting a Poisson model, as, for example, described by Christou
and Fokianos [18], is also considered. Let the sequence λ̂t be the conditional means on the
basis of estimates from a Poisson fit, T the number of observations, and m the number of
parameters. The retrospective estimate of the overdispersion parameter φ is then given by
solving the moment equation
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T

∑
t=1

(Yt − λ̂t)2

λ̂t
(
1 + λ̂t/φ

) = T − m (7)

for φ. The data-generating process is assumed to be a Negative Binomial process, whereas
all parameters apart from φ are estimated by fitting a Poisson model. Therefore, this
approach falls into the class of Quasi-Maximum Likelihood estimation with additional
moment based estimation of φ. In the following, this approach is referred to as a Quasi-
Poisson approach.

Infection counts of neighboring districts from seven days prior are included to ac-
count for potential spillover effects between districts. For each of Limburg-Weilburgs five
neighbouring districts—Lahn-Dill-Kreis, Hochtaunuskreis, Rheingau-Taunus-Kries, Rhein-
Lahn-Kreis, and Westerwaldkreis—and one internal regressor is added. Figure 2 displays
the rolling means of infection counts for all districts under consideration with a window
size of one week. Let Ni,t denote the number of new infections in neighboring district i
at time t. In the same fashion as for the autoregressive part, regressors are included as
log(Ni,t + 1) and collected in Xt. Then, the model to be fitted can be summarized according
to Equation (8) for the Poisson case.

Yt ∼ Pois(λt)

log(λt) = β0 + α1 log(Yt−1 + 1) + α7 log(Yt−7 + 1) + β1 log(λt−1) + ζ ′Xt
(8)

Figure 2. Daily infections in Limburg-Weilburg and Neighbouring Districts—7 day rolling mean.

3.2. Implementation

First step in the Julia implementation from above is to specify the models. With the
regressors collected in matrix X, the Poisson model is created by running

modelPois = Model(model = "INGARCH",

pastObs = [1, 7],

pastMean = 1,

distr = "Poisson",

link = "Log",

external = fill(false, 5),

X = X)
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For the alternative model, the distribution is simply replaced by "NegativeBinomial".
To fit the models to the time series y, settings are chosen as the Nelder–Mead optimization
routine and no inference. Then, the Poisson model is fitted by running

settingPois = MLESetting(y, modelPois, inits, optimizer = "NelderMead",

ci = false)

resultsPois = fit(y, modelPois, settingPois)

and for the Negative Binomial model accordingly. The retrospective estimation of the
overdispersion parameter for the Quasi-Poisson approach is done by QPois(resultsPois).
The function returns an updated results object.

In the last step, simulation-based prediction is performed using the function predict.
For each of the three results, a matrix of new values for regressors is needed and saved as
xNew. Then, the Julia code for a prediction with 10,000 chains is

predict(resultsPois, 7, 10000, xNew)

The application starts with using the first 322 observations until 30 November 2020
for estimation of parameters and predicting the following week. Successively, one further
observation is used for estimation and another prediction performed until the first 420
observations are used for estimation.

3.3. Results

To assess the predictions, a first look reveals only minor visual differences between
Poisson fit and the Quasi-Poisson approach as seen in Figure A1 in the Appendix A. Table 1
summarizes two different accuracy measures and the percentage of observed values which
lie inside the prediction intervals. For every prediction horizon h = 1, 2, . . . , 7, the root
mean squared prediction error (RMSPE) is given. Further, the median absolute prediction
error (MedAPE) is given to account for few large deviations that may influence the RMSPE.
For both measures and all three approaches, one can see that a larger prediction horizon
does not affect the accuracy in a negative way. The predictions even tend to be closer to the
observed values for a larger horizon. The Quasi-Poisson approach is slightly more accurate
compared to the Poisson approach. The absolute difference of prediction and observed
counts is smaller than 10 in ~50% of cases for the two approaches regardless of the horizon.
The Negative Binomial model appears to be less accurate compared to the other two. One
reason for it might be the additional parameter during the maximization of the likelihood.
This might cause a higher uncertainty in the estimation of all parameters and thus a less
precise prediction. The difference between a Poisson model and the Quasi-Poisson can be
seen by the percentage of observations inside the corresponding 95% prediction intervals.
The Poisson case is far away from the desired 95%, prediction intervals are too narrow.
The model simply can not account for the conditional overdispersion present in the data.
The Quasi-Poisson and the Negative Binomial model are able to account for it.

To put these accuracy measures into context, the mean number of new infections
being predicted is around 40. None of the three approaches can be considered very precise.
However, this application showed that the Quasi-Poisson estimation can combine the
advantages of a Poisson model and the Negative Binomial model.

In addition to the prediction results, Table 2 displays estimates, standard errors,
and 95% confidence intervals when considering the complete data set in the estimation.
On the left hand side, standard errors are computed from the Poisson model. The esti-
mate of φ stems from the Quasi-Poisson approach. One can see that both autoregressive
parameters α1 and α7 are significant, whereas the parameter β1 is not. An INARCH model
might be an alternative to the model considered here. The spillover effects are negative
only for the first neighboring district, but not significant. The remaining four are significant
and positive. The same can be found in the Negative Binomial case. In contrast to the
Poisson model, neither the parameter β1 nor both autoregressive parameters α1 and α7
are significant.
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Table 1. Prediction Limburg–Weilburg: Root Mean Squared Prediction Error, Median Absolute
Prediction Error and Percentage of Observations Inside the 95% Prediction Interval.

Criterion Model
Prediction Horizon

1 2 3 4 5 6 7

R
M

SP
E Poisson 29.53 30.18 30.11 30.14 28.81 28.07 27.86

Quasi-Poisson 29.53 30.07 30.04 29.98 28.59 27.89 27.71
Negative Binomial 30.95 31.14 30.89 30.86 30.38 29.68 30.09

M
ed

A
PE Poisson 10.14 10.39 10.19 10.27 10.38 10.20 10.03

Quasi-Poisson 10.07 10.22 10.26 10.12 10.28 9.96 9.69
Negative Binomial 12.55 12.43 12.19 12.05 11.71 11.97 11.75

In
si

de
PI Poisson 46.5 46.5 46.5 48.5 50.5 49.5 49.5

Quasi-Poisson 97.0 97.0 97.0 97.0 97.0 97.0 97.0
Negative Binomial 98.0 98.0 99.0 99.0 99.0 99.0 99.0

These findings hint at the existence and importance of including spillover effects in an
epidemiological model. However, they do not prove any causal relationship, as the the
models lack important driving factors of disease transmission. For more reliable results,
a multivariate model or spatiotemporal model with all districts jointly enables to include
spillover effects in both directions and is better suited for such epidemiological applications.

Table 2. Estimation Results, standard errors, and 95% confidence intervals.

(Quasi-)Poisson NegativeBinomial

Estimate Std. Err. Conf. Interval Estimate Std. Err. Conf. Interval

β0 −0.159 0.049 (−0.254,−0.063) −0.540 0.107 (−0.749,−0.330)
α1 0.041 0.018 (0.006, 0.077) 0.115 0.063 (−0.010,0.239)
α7 0.122 0.022 (0.079, 0.165) 0.088 0.080 (−0.068, 0.245)
β1 0.053 0.030 (−0.006, 0.112) 0.005 0.100 (−0.190, 0.200)
ζ1 −0.032 0.015 (−0.061,−0.003) −0.034 0.057 (−0.146, 0.078)
ζ2 0.221 0.027 (0.168, 0.274) 0.252 0.076 (0.103, 0.401)
ζ3 0.314 0.029 (0.257, 0.370) 0.356 0.078 (0.203, 0.509)
ζ4 0.149 0.024 (0.102, 0.196) 0.194 0.084 (0.030, 0.359)
ζ5 0.265 0.024 (0.218, 0.312) 0.317 0.074 (0.172, 0.463)
φ 1.405 1.516 0.164 (1.195, 1.837)

4. Application: Animal Health in New Zealand

Aghababaei Jazi et al. [13] were the first to analyze submissions to animal health
laboratories in New Zealand. The data contain the monthly number of submissions with
anorexia and skin lesions from 2003 to 2009. The authors use a zero inflated Poisson
distribution for the innovations, where the probability of Rt = 0 is inflated by a parameter
ω. For the time series of animal submissions with skin lesions, this zero inflated INAR(1)
process yields a significantly better fit compared to a simple INAR(1).

Mohammadpour et al. [19] argue that the empirical overdispersion in the data cannot
be captured by the Poisson distribution. A test developed by Schweer and Weiß [20] was
applied and reveals that this overdispersion is significant at the 5% level. To incorporate
it, the authors suggest to use either a Negative Binomial distribution or the approach
developed by them.

4.1. Model and Implementation

Figure 3 shows both time series. One can see that counts are rather low, a trend is not
visible and especially for anorexia data, many observations are zero. The autocorrelation
function of both time series in Figure 4 does not speak against a low-order INAR model.
Eight different models are compared for the data, an INAR(1) and an INAR(2) model with
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both a Poisson and a Negative Binomial distribution, and for all of these four once with
and once without zero inflation. Other regressors are left out, making the choice of a link
function dispensable.

Figure 3. Monthly submissions with anorexia or skin lesions.

Figure 4. ACF of time series.

The first step in the analysis is to define the eight models, for example, a Poisson
INAR(1) as

Model(model = "INARMA",

pastObs = 1,

zi = true)

making use of default arguments in the function. If a Negative Binomial shall be chosen,
one simply needs to add distr = "NegativeBinomial". For a model order p = 2, pastObs
= 1 is changed to pastObs = 1:2.

With starting values for optimization saved as a vector inits of type parameter,
the function MLESettings is again used to specify estimation settings as

settings = MLESettings.(fill(dat.Anorexia, 8), models,

optimizer = "NelderMead", ci = true)

350



Entropy 2021, 23, 666

The dot behind a function name indicates that it shall be applied element-wise, in our case
on the vector inits. The output then is a vector of estimation settings. Following that
manner, the results for both time series can be computed all at once by

results = Array{INARMAResults, 2}(undef, (8, 2))

results[:, 1] = fit.(fill(dat.Anorexia, 8), models, settings)

results[:, 2] = fit.(fill(dat.Lesions, 8), models, settings)

If one is now interested in diagnostics, for example, an information criterion, functions can
be applied on this array of results as well. In case of the AIC, the user runs

AIC.(results, 2)

At this point, one needs to keep in mind that information criteria are based on the likelihood.
When computing the likelihood, the number of observations to condition on varies with
the autoregression order. Especially for rather short time series, this property needs to be
accounted for. In the above computation of the AIC, the second argument indicates that
for each model, the contribution of the first two observations to the likelihood are ignored
making information criteria comparable.

4.2. Results

Table 3 summarizes the results of the estimation including zero inflation. Besides esti-
mates, standard errors from the Hessian and the AIC are shown. For parameters β0, α1,
α2, and ω, colors indicate the significance, where dark green refers to significance at the
0.1% level, medium green at 1%, and light green at 5%. The p-value of the overdispersion
parameter φ is ignored, as it can not be zero. In addition, Table A1 in the Appendix A
shows results for all models without zero inflation.

Mohammadpour et al. [19] analyze the data on lesions and find that a Poisson distri-
bution does not capture the overdispersion. The results below confirm these findings in
terms of the AIC. For an INAR(1) and an INAR(2), the Negative Binomial dominates the
Poisson distribution. Moreover, including the lag order p = 2 lowers information criteria
for both distributions and the estimates of α1 are not significant at the 5% level in that case.

Aghababaei Jazi et al. [13] emphasize the benefit of incorporating zero inflation in
the innovation process for the analysis of animal submissions with skin lesions. Only
when considering the Poisson models, this is supported by the highly significant zero
inflation parameter estimates and a lower AIC. However, when a Negative Binomial is
used, the zero inflation parameters are not significant. In fact, dropping zero inflation
for the NB-INAR(2) yields an even lower AIC. The results are similar for Anorexia data,
although estimates of α2 are not significant at 5%, both INAR(2) models have a lower AIC
than the corresponding INAR(1).

In conclusion, this study has confirmed the findings of Mohammadpour et al. [19].
When only looking at first-order INAR models, there is a conditional overdispersion in
the number of animal submissions with skin lesions that cannot be captured by a Poisson
distribution. The findings of Aghababaei Jazi et al. [13] can also been confirmed. In case
of a conditional Poisson distribution, it is useful to include zero inflation. The need for a
zero inflation vanishes in the example when switching to the Negative Binomial. This is
comprehensible, as the probability of a Negative Binomial being zero is larger than the
probability of a Poisson with the same mean being zero. Therefore, switching to a Negative
Binomial also inflates the zero probability. Although this application is only one specific
example, we can draw general conclusions from it: The need to extend a given model
during an application highly depends on the model you start with. When choosing a
model, it can be useful to cover a broader range of potential models to uncover patterns.
Especially for higher-order INARMA type models, the computer intensive evaluation of the
likelihood makes such broad comparisons cumbersome. However, the CountTimeSeries
package provides an efficient implementation of the likelihood and makes such broad
comparisons feasible.
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Table 3. Estimation results with zero inflation: significance highlighting for 5% level (light green), 1%
level (medium green), 0.1% level (dark green), and not significant at the 5% level (grey).

Model β̂0 α̂1 α̂2 φ̂ ω̂ AIC

A
no

re
xi

a
Pois-INAR(1) 2.215 0.338 - - 0.669 183.00

(0.428) (0.074) - - (0.069)

Pois-INAR(2) 2.692 0.249 0.118 - 0.752 179.85
(0.536) (0.090) (0.070) - (0.061)

NB-INAR(1) 1.642 0.310 - 1.278 0.424 182.25
(0.831) (0.077) - (1.766) (0.283)

NB-INAR(2) 2.363 0.225 0.120 2.668 0.630 179.94
(0.794) (0.093) (0.073) (3.561) (0.178)

Le
si

on
s

Pois-INAR(1) 2.042 0.175 - - 0.372 276.26
(0.278) (0.071) - - (0.077)

Pois-INAR(2) 2.055 0.110 0.176 - 0.464 271.32
(0.333) (0.073) (0.073) - (0.089)

NB-INAR(1) 1.344 0.130 - 1.018 0.047 270.60
(0.599) (0.077) - (1.081) (0.242)

NB-INAR(2) 1.252 0.084 0.166 0.920 0.103 267.76
(0.754) (0.076) (0.075) (1.218) (0.313)

5. Application: Corporate Insolvencies in Rhineland-Palatinate

After both model frameworks are introduced, the focus is now put on model choice
and diagnostics. Weiß and Feld [11] were the first to analyze corporate insolvencies
in Rhineland-Palatinate, one of the 16 federal states in Germany. The data were made
available as supplementary material and are used in the scope of the following. Rhineland-
Palatinate consists of 36 administrative districts at the NUTS-3 level: 24 rural districts
and 12 district-free cities. For each of these districts, the monthly number of corporate
insolvencies between 2008 and 2016 is observed. The data are used to investigate whether
there is a downwards trend in insolvency numbers. Röhl and Vogt [21] state that this trend
is especially visible after the financial crisis.

5.1. Models and Implementation

The question whether there was a trend in insolvencies is going to be answered for
each district individually. This enables to descriptively check for regional differences in
insolvency counts. Although insolvencies are presumably influenced by macroeconomic
factors, the only external influence incorporated here is the potential trend. Besides that,
the process is assumed to be self-driven. Looking at the total counts in Figure 5, one can
see the downwards trend starting around 2010, as Röhl and Vogt [21] state. Further, there
seems to be no seasonality pattern in the time series.

Weiß and Feld [11] investigated the model choice considering IID data with and
without a linear trend and either a Poisson or Negative Binomial distribution. Here, we
include IID data and both frameworks, INGARCH and INARMA. Potential orders are
chosen to be (1, 0), (2, 0), (1, 1), and (2, 1) to capture serial correlation if present. Both
distributions, Poisson and Negative Binomial, are incorporated. A trend component may
be omitted, included for the complete range of time, or starting in January 2010. Thereby, all
link functions are chosen to be a log-linear link. That way, negative coefficients of the trend
component are no threat to the restriction of positive conditional means. This sums up to
54 potential models to be estimated for each of the 36 time series. To save computation time,
inference is only conducted for chosen models and not for all 1944 combinations of models
and time series. In the package, standard errors are computed via the numerical Hessian.

After the estimation, information criteria can be computed by running AIC(results),
BIC(results), or HQIC(results). An additional argument dropfirst can be passed to
these functions to suppress the likelihood contributions of first observations. This comes
handy when comparing for example an INARCH(1) and an INARCH(2). Likelihood based
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estimation of these conditions on the first one or two observations respectively. For rather
short time series, this difference might be crucial.

To check if a choice of model is suitable, the non-randomized probability integral
transform (PIT) histogram is used. It was developed by Czado et al. [14] for count data
time series and does not rely on random numbers. The packages function pit produces
a histogram running pit(results, nbins = 10, level = 0.95) that is uniformly dis-
tributed if the model choice is correct. The argument nbins specifies the number of bins and
the argument level can be used to test the uniform distribution at the (1 − level)-level.
If level is put in, lines are drawn in the histogram and if at least one bin exceeds the lines,
the null hypothesis of a uniform distribution is rejected.

In the analysis, potential models are defined and fitted to all 36 time series. Then,
the best model is chosen for each district and verified by the packages diagnostic tool.

Figure 5. Total number of monthly insolvencies in Rhineland-Palatinate.

5.2. Results

In the fitting of 54 models to each of the 36 districts, all optimization procedures
converged. For districts with a marginal underdispersion, all models with a Negative
Binomial distribution have not been fitted. Inference has not been conducted so that results
purely rely on the model selection criterion. Table A2 summarizes the model selection
for all 36 districts together with mean and variance of time series. Many of the models
selected exhibit no serial dependence. In these cases, and as is to be expected, the Negative
Binomial was selected when the variance is clearly larger than the mean.

All selected models have been checked with the non-randomized PIT histogram. None
of the selected models produce a PIT histogram for which the null hypothesis of a uniform
distribution was rejected. Figure 6 shows an example PIT histogram for Trier, where the
dashed lines represent critical values for the height on bins for which, if exceeded, the null
hypothesis would be rejected. The confidence bank is rather wide due to few observations.

The (conditional) distribution is an indicator of how much the insolvency count varies
compared to its mean. Figure A2 in the Appendix A displays the selected distributions
where a clustering of districts with the same distribution is only vaguely recognizable.

A non-zero model order p or q implies a serial dependence besides a potential trend.
In the case at hand, for districts with serial dependence, all estimates indicate that a
larger/smaller number of insolvencies in one month tends to go along with a larger/smaller
number in the month after. One reason for it can be an interconnected economy within
the district, but not necessarily. Macroeconomic factors can also cause such dependence.
Figure 7 displays the selected models orders. One can see that those districts with depen-
dence seem to cluster.
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The selected time trends and the sign of the corresponding coefficient are summarized
in Figure 8. A grey district has no trend component in the selected model, light colors
represent districts with a trend starting in 2010 being selected, and dark colors represent a
selected trend along the complete observed time. Thereby, districts are colored green for a
downwards trend in the insolvency counts and red for an upwards trend.

Only one district, the urban area of Trier, exhibits an upwards trend. Seven districts
do not have a trend in the selected model and the remaining 28 show a downward trend.
Districts in the center of Rhineland-Palatinate and the district far east tend to have a trend
component starting in 2010. A complete trend was chosen more often in the southern
region and the north.

This analysis did not incorporate any macroeconomic variables to explain the in-
solvencies and also no information about the companies being bankrupt, yet it showed
that characteristics in terms of dispersion, autocorrelation and time trend cluster spatially.
The results suggest that there could be an interconnection between districts and that it
would be interesting to conduct the study in a multivariate setting instead of looking at
districts individually.

Figure 6. PIT histogram for Trier.

Figure 7. Selected Model Order.
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Figure 8. Selected Trend: upwards (red) or downwards (green).

6. Simulation Study: Finite Sample ML—Estimation

In many applications, the length of count data time series is rather short. Consistency
and asymptotic normality are proven for Maximum Likelihood estimates of an INGARCH
processes parameters, but a potential finite sample bias is often not addressed.

This last application pursues two goals. On the one hand, finite sample properties of a
Maximum Likelihood estimation are investigated in a simulation study. On the other hand,
the analysis is performed with both the CountTimeSeries package in Julia and the tscount
package in R. Computation time for the estimation is compared between these two.

6.1. Study and Implementation

The general strategy for this study is to generate time series following an INGARCH
process and then estimate its parameters by Maximum Likelihood. The study focusses on
Poisson INGARCH(1, 1) processes with identity link, as it is commonly used in applications.
The general framework covered by the CountTimeSeries package as described in Section 2
thus simplifies to

Yt|Ft−1 ∼ Pois(λt)

λt = β0 + α1Yt−1 + β1λt−1

Every combination of parameters α1, β1 ∈ {0.1, 0.2, . . . , 0.8} with a sum smaller than 1 is
incorporated in this study, which ensures stationarity. The intercept is chosen in such a way
that the marginal mean β0/(1 − α1 − β1) equals 15 for every choice of α1 and β1. Then,
for each set of parameters, a total of 1000 time series of lengths T ∈ {50, 200, 1000} are gen-
erated and its parameters estimated with four slightly different methods. The conditional
mean recursion λt above can be initialized with either the marginal mean, the first observa-
tion or the intercept in the CountTimeSeries package. The fourth possibility, not covered
by both packages, is to treat the initial value of the recursion as additional parameter and
estimate it.

Time series can be generated with the CountTimeSeries package by running

simulate(T, model, truepar)

for a model specification model and parameters truepar. Then, with estimation settings
collected in the object setting, parameters are estimated by
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fit(y, model, setting, initiate = initiate, printResults = false)

The optional argument initiate specifies how the recursion λt is started and the argument
printResults can be set to false to omit that results are printed in the console.

6.2. Results

Figures 9 and 10 display the mean bias of estimates α1 and β1, respectively, and neg-
ative values thereby indicate an estimate smaller than the true value. Note that for a
true value of 0.1, there are eight different parameter combinations aggregated in the bias,
but only one combination for a true value of 0.8 on the x axis due to the stationarity restric-
tion. Initializing the recursion with the marginal mean and the first value appear to yield
similar biases. This is a plausible result, considering that the first observation should equal
the marginal mean on average. Treating the first conditional mean as parameter also gives
similar biases in case of moderate (T = 200) and long (T = 1000) time series. In case of
short time series T = 50, this approach exhibits the largest absolute bias for α1 while at the
same time being the least biased for β1. Initializing the recursion with the intercept seems
to perform poorly especially for the estimate of β1 for larger true values of β1. In general,
the absolute bias should be larger for larger sums of α1 and β1, as the deviation between
intercept and expectation of λ1 is larger.

As to be expected by the consistency of Maximum Likelihood estimates, longer time
series go along with smaller biases. In addition to Figures 9 and 10, Figures A3 and A4 in
the Appendix A show relative biases. Thereby, biases are scaled by the true value of the
parameter to be estimated. It reveals that the estimate α1 exhibits larger relative biases for
smaller true values.

Only considering the first three initialization methods, one single estimation took
around 0.003 s for T = 50, 0.007 s for T = 200 and 0.02 s for T = 1000 on average in
Julia. The initialization method does not affect the computation time while larger values
of α1 + β1 increased the computation time. Using the R package tscount, estimation took
on average 0.11, 0.18 and 0.55 s for the three lengths of time series and thus around
25 times longer.

Figure 9. Mean Bias of α̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).
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Figure 10. Mean Bias of β̂1 for for T = 50 (solid), T = 200 (dashed), and T=1000 (dotted).

Conclusively, this simulation study revealed the importance of a well chosen ini-
tialization method as well as systematic biases for Maximum Likelihood fitting of short
INGARCH(1, 1) time series. Starting the mean recursion with the intercept should be
avoided. Treating the first conditional mean as parameter might be the least restrictive
among the four methods, but as an additional parameter, it might add noise to the estima-
tion of the other parameters. It is recommended to initialize the mean recursion by the
processes marginal mean or the first observed value in case of an INGARCH(1, 1), since
the biases are comparable to the parameter initializer. However, for some processes in the
INGARCH framework, for example an INGARCH(1, 1) with log-linear link, computation
of the marginal mean is computer intensive or must be approximated. Therefore, starting
the recursion with the first observation appears to be a good choice. It is also the default
setting in the CountTimeSeries package.

7. Discussion and Outlook

Three real-life applications and the simulation study were chosen to give a broad
overview on the CountTimeSeries package. All functions of the package have been shown:
specifying a model, generating time series, estimating parameters, using information
criteria, as well as a diagnostic tool and forecasting. In the spirit of the Julia programming
language, the package is easy to learn, covers a broad range of models, and is fast compared
with interpreted languages. It is the first software package that covers both widely used
frameworks, INGARCH and INARMA processes.

Application 1 showed how the CountTimeSeries package can be used to investigate
complex non-stationary time series from epidemiology and compute forecasts. Comparing
prediction accuracy the prediction intervals, it revealed the advantage of the Quasi-Poisson
approach. Application 2 and 3 showed how to fit multiple models to data simultaneously
thanks to element-wise application of functions. In the second application, a contribution
was made to an existing discussion about the need to incorporate zero inflation and
overdispersion in a model for animals with skin lesions in New Zealand. Although the
results of the previous literature have been confirmed, increasing the model order has put
these findings in a different light.

Application 3 used corporate insolvency data to analyze if model choices based
on information criteria cluster spatially. In line with previous literature, a downwards
trend in the number of insolvencies was visible for most districts in Rhineland-Palatinate.
Districts where this trend started in 2010 after the financial crisis appeared to come in
clusters. Similar clustering effects were visible for dispersion characteristics and the order
of dependency.
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The simulation study in the end showed that there is a systematic bias when fitting
an INGARCH(1, 1) model to a rather short time series. Thereby, it was revealed that
one should not initialize the conditional mean recursion by the intercept. In comparison
with R, the Julia package was faster, making broad simulation studies computationally
more feasible.

Although the CountTimeSeries package already covers many important models, some
extensions would be useful supplements. A function to compute the mean, variance,
and ACF of a given model and parameters would first enable to compare empirical mo-
ments and theoretical moments from estimation results. In applications this might reveal
weaknesses in the model choice. Further, such a function could be used to estimate pa-
rameters in a GMM approach. Especially for higher-order INARMA models, likelihood
evaluation is computationally expensive. GMM might enable estimation in acceptable
runtime. For models with no closed form moments, a simulation-based approximation
of moments could be an alternative. If GMM estimation was integrated into the pack-
age, the computation of empirical moments could easily be replaced by robust moment
estimators, like trimmed means, to provide robust estimation techniques.

When dealing with real-life data, extreme observations, not following the usual model,
are commonly found. Other approaches to account for possible extreme observations in-
clude classical M-estimators or the recently published method by Li et al. [22] or approaches
based on the density power divergence, see for example Xiong and Zhu [23].

Another family of models that would enrich the Julia package are models with
bounded counts, see for example Weiß [24]. Examples for the usefulness of such mod-
els include time series or cross sectional data on product ratings or the number of rainy
days in a month. An approach to include zero inflation for such models is discussed by
Möller et al. [25]. As an alternative to zero inflation as presented here, would be hurdle
models to account for a surplus of zeros.

Above extensions match the notation and the current infrastructure of the package and
thus do not need a substantial reconstruction of the package. An inclusion of multivariate
models and spatiotemporal models brings along new challenges for the inclusion in the
Julia package, but would be rewarding for many applications. The COVID-19 application
discussed above is only one example where a multivariate model is useful. Modeling
multiple interacting count data processes jointly is also frequently used in finance, see,
for example, Quoreshi [26].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e23060666/s1, Julia and R code for all four applications.
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Appendix A

Figure A1. 7 days ahead prediction and observed counts.

Table A1. Estimation results without zero inflation—significance highlighting for 5% level (light
green), 1% level (medium green), 0.1% level (dark green), and not significant at the 5% level (gray).

Model β̂0 α̂1 α̂2 φ̂ AIC

A
no

re
xi

a

Pois-INAR(1) 0.511 0.385 - - 225.05
(0.087) (0.073) - -

Pois-INAR(2) 0.450 0.353 0.098 - 224.70
(0.088) (0.078) (0.072) -

NB-INAR(1) 0.579 0.304 - 0.194 181.64
(0.173) (0.078) - (0.011)

NB-INAR(2) 0.545 0.220 0.118 0.139 180.37
(0.188) (0.096) (0.078) (0.059)

Le
si

on
s

Pois-INAR(1) 1.172 0.173 - - 294.77
(0.146) (0.068) - -

Pois-INAR(2) 0.976 0.145 0.132 - 292.17
(0.153) (0.068) (0.067) -

NB-INAR(1) 1.236 0.128 - 0.839 268.59
(0.217) (0.076) - (0.006)

NB-INAR(2) 1.017 0.084 0.164 0.608 265.85
(0.214) (0.076) (0.075) (0.248)
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Figure A2. Selected distribution.

Figure A3. Mean relative bias of α̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).

Figure A4. Mean relative bias of β̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).
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Table A2. Model choice for each district.

District Mean Var Model Trend

Ahrweiler 3.11 3.39 Pois IID No
Altenkirchen 3.03 5.34 NB-INGARCH(1, 1) Yes
Alzey-Worms 2.76 4.61 NB-INGARCH(2, 1) Yes

Bad Dürckheim 1.88 2.57 NB INARCH(2) Yes
Bad Kreuznach 4.94 5.90 Pois IID Partly

Bernkastell-Wittlich 3.25 4.58 Pois IID Yes
Birkenfeld 2.29 3.22 NB-INARCH(1) Yes

Cochem-Zell 1.29 1.72 NB IID Partly
Donnersbergkreis 1.38 1.86 P-INGARCH(1, 1) Partly

Eifelkr. Bitburg-Prüm 2.03 3.28 NB-IID Partly
Frankenthal, kfr. S. 0.96 1.29 P-INGARCH(1, 1) Partly

Gemersheim 1.71 1.93 Pois IID No
Kaiserslautern, kfr. S. 2.95 4.59 P-INGARCH(2, 1) Yes

Kaiserslautern 2.73 6.03 NB-INGARCH(2, 1) Yes
Koblenz 3.49 4.79 P-INGARCH(1, 1) Partly

Kusel 1.27 1.53 P-INARCH(2) No
Landau i.d.P 0.83 0.91 Pois IID No

Ludwigshafen 3.06 4.73 NB IID Yes
Mainz 4.90 10.62 NB IID Yes

Mainz-Bingen 4.55 8.21 P-INGARCH(2, 1) Partly
Mayen-Koblenz 5.24 6.67 NB-INGARCH(1, 1) Partly
Neustadt a.d.W. 1.06 1.23 P-INGARCH(1, 1) Yes

Neuwied 6.73 11.84 P-INGARCH(2, 1) Yes
Pirmasens 0.94 0.91 Pois IID No

Rhein-Hunsrück-Kreis 2.56 3.07 Pois IID Partly
Rhein-Lahn-Kreis 2.88 3.83 Pois IID Partly
Rhein-Pfalz-Kreis 2.40 2.82 Pois IID Yes

Speyer 1.01 1.04 Pois IID Partly
Südliche Weinstraße 1.76 1.98 Pois IID Yes

Südwestpfalz 1.61 1.87 Pois IID Yes
Trier, kfr. S. 1.87 1.85 Pois IID Yes

Trier-Saarburg 1.46 1.90 NB IID No
Vulkaneifel 1.41 1.70 P-INGARCH(1, 1) Yes
Westerwald 5.30 8.66 NB-INGARCH(1, 1) Yes

Worms 2.94 8.88 NB-INGARCH(1, 1) Yes
Zweibrücken 0.88 1.13 P-INARCH(1) No
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