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Abstract 

Driven by a confluence of multiple environmental, social, technical, and economic factors, 

traditional electric power systems are undergoing a momentous transition toward sustainable 

electric power systems. One of the important facets of this transformation is the inclusion of high 

penetration of variable renewable energy sources, the chief among them being wind power. The 

new source of uncertainty that stems from imperfect wind power forecasts, coupled with the 

traditional uncertainties in electric power systems, such as unplanned component outages, 

introduces new challenges for power system operators. In particular, the short-term or operational 

reliability of sustainable electric power systems could be at increased risk as limited remedial 

resources are available to the operators to handle uncertainties and outages during system 

operation. Furthermore, as sustainable electric power systems and natural gas networks become 

increasingly coupled, the impacts of outages in one network can quickly propagate into the other, 

thereby reducing the operational reliability of integrated electric power-gas networks (IEPGNs). 

In light of the above discussion, a successful transition to sustainable electric power systems 

necessitates a new set of tools to assist the power system operators to make risk-informed decisions 

amid multiple sources of uncertainties. Such tools should be able to realistically evaluate the hour- 

and day-ahead operational reliability and risk indices of sustainable electric power systems in a 

computationally efficient manner while giving full attention to the uncertainties of wind power 

and IEGPNs. To this end, the research is conducted on five related topics.   

First, a simulation-based framework is proposed to evaluate the operational reliability indices of 

generating systems using the fixed-effort generalized splitting approach. Simulations show 

improvement in computational performance when compared to the traditional Monte-Carlo 

simulation (MCS). Second, a hybrid analytical-simulation framework is proposed for the short-

term risk assessment of wind-integrated power systems. The area risk method – an analytical 

technique, is combined with the importance sampling (IS)-based MCS to integrate the proposed 

reliability models of wind speed and calculate the risk indices with a low computational burden. 

Case studies validate the efficacy of the proposed framework. Third, the importance sampling-

based MCS framework is extended to include the proposed data-driven probabilistic models of 
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wind power to avoid the drawbacks of wind speed models. Fourth, a comprehensive framework 

for the operational reliability evaluation of IEPGNs is developed. This framework includes new 

reliability models for natural gas pipelines and natural gas-fired generators with dual fuel 

capabilities. Simulations show the importance of considering the coupling between the two 

networks while evaluating operational reliability indices. Finally, a new chance-constrained 

optimization model to consider the operational reliability constraints while determining the 

optimal operational schedule for microgrids is proposed. Case studies show the tradeoff between 

the reliability and the operating costs when scheduling the microgrids. 
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Chapter 1  
Introduction 

1.1 Motivation 

The increased concerns about the need to combat anthropogenic climate change and rising 

positive public perceptions about environmentally sustainable practices have become the primary 

drivers for a global paradigm shift in electric power systems. This paradigm shift is characterized 

by several changes in the structure and operation of existing electric power systems. On the 

generation side, renewable energy sources (RES), such as wind and solar energy, are being 

incorporated in large proportions [1]. Additionally, electric generators with a large carbon 

footprint, e.g., coal-fired power plants, are being eliminated from the generation mix and replaced 

by natural gas-fired generators (NGFGs) [2]. Consumption end of the electric power systems is 

also affected by these changes. For example, the adoption of distributed energy resources (DERs) 

by electricity consumers has increased significantly [1]. Additionally, microgrids, which are small-

scale versions of electric power systems, are being deployed progressively to integrate the DERs 

more efficiently [3]. The amalgamation of these transitions has led to the transformation of 

traditional electric power systems into modern sustainable electric power systems (Figure 1.1) [4].  

 
Figure 1.1 Transition from traditional electric power system to modern sustainable electric power 

system 
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The system operators (SOs) of sustainable electric power systems are faced with severe technical 

challenges to maintain the reliable and economic operation of these systems [5]. During system 

operation, the uncertainties of large-scale RES render it challenging to maintain the balance 

between the generation and load, thus increasing the risk of load shedding [6]. Further, additional 

sources of uncertainties emanating from transmission systems and distribution networks also add 

to the problem. Apart from the sources of uncertainties present within electric power systems, SOs 

also need to be aware of uncertainties originating from natural gas networks. On the one hand, the 

natural gas-fired generators (NGFGs) are added to electric power systems to provide flexibility 

and mitigate the adverse impacts of the variability of RES. On the other hand, these NGFGs rely 

heavily on the availability of “just-in-time” single fuel, i.e., natural gas (Figure 1.2) [7]. The 

impacts of component outages in natural gas networks could quickly propagate into electric power 

systems due to the increased interdependency between the two networks. Thus, the operational 

reliability of integrated electric power-gas networks (IEPGNs) could be at increased risk.  

In the presence of these multiple sources of uncertainties, the existing deterministic, heuristic 

techniques employed by SOs for system operation become ineffective in ensuring the operational 

reliability of sustainable electric power systems [6]. These techniques neither respond to the 

probabilistic nature of sustainable electric power systems nor address the full range of risks 

associated with sustainable electric power systems and IEPGNs. Ergo, the existing techniques 

cannot assist SOs in making risk-informed decisions during system operation.  

 

Figure 1.2 Interdependency between sustainable electric power systems and natural gas networks 
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The successful transition to sustainable electric power systems, therefore, necessitates the 

development of new probabilistic tools to evaluate the operational reliability and risk indices that 

can 1) model the different sources of uncertainties in the systems, 2) consider the 

interdependencies between electric power systems and natural gas networks, and 3) are 

computationally efficient for their application during system operation. Nonetheless, such 

comprehensive methodologies are not readily available in the existing literature. Consequently, 

this research aims to propose and develop computationally efficient simulation frameworks to 

realistically quantify the operational reliability1 and risk of sustainable electric power systems and 

IEPGNs while fully addressing the aforementioned challenges. Furthermore, this research aims to 

develop a methodology for the operational reliability-constrained scheduling of microgrids, thus 

enabling the SOs to make risk-informed decisions while operating those microgrids. The 

frameworks and methodologies developed in this research would find their applications in the unit 

commitment (UC), economic dispatch (ED), day-ahead and hour-ahead scheduling, and operating 

reserve sizing processes. The inclusion of these frameworks in system operation practices would 

facilitate the SOs to ensure a reliable, continuous, and uninterrupted supply of electricity to 

consumers in sustainable electric power systems amid multiple sources of uncertainties. 

1.2 Key Challenges 

1.2.1 Multiple Sources of Uncertainties During System Operation 

Sustainable electric power systems are inherently uncertain and stochastic. The uncertainties in 

sustainable electric power systems span multiple timescales and stem from different sources. 

Figure 1.3 depicts a list of selected sources of uncertainties originating from the generation, 

transmission, and load sides of an electric power system at different timescales. The uncertainties 

associated with random (unexpected) failures of conventional generators and transmission lines 

had become prominent after several large-scale blackouts, which led to the development of 

probabilistic tools for system planning [8]. Apart from these random outages, new sources of 

uncertainties originate from the imperfect forecasts of RES, DERs, and load. It is critical to 

consider these multiple uncertainties during systems operation (real-time, intra-day, and day-ahead 

 
1 In this thesis, the terms “operational reliability,” “operational risk,” “short-term reliability,” and “short-term risk” 

are used interchangeably, and the differences between them are indicated where deemed required.  
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timescales in Figure 1.3) due to two reasons. First, during system operation, the set of available 

remedial actions to SOs is limited compared to that in system planning. Second, the time available 

for SOs to deal with the adverse impacts of these uncertainties is also shorter compared to that in 

system planning. Consequently, the focus of this research in this thesis is on operational timescales.  

 

Figure 1.3 Sources of uncertainties in power systems  

1.2.2 Computational Efficiency of Reliability and Risk Assessment Methods 

The need for probabilistic tools for power systems planning and operation pre-dates the 

transition to sustainable power systems and the consequent inclusion of new sources of 

uncertainties [9]. Among several other reasons, one of the main reasons for the non-adoption of 

probabilistic tools has been the high requirement of computational power and intractable 

simulation times to evaluate operational reliability indices efficiently [10]. For planning problems, 

the problem of a large computational burden has been mitigated to a great extent. However, during 

system operation, where SOs must make decisions in a constrained time, the use of probabilistic 

tools is still computationally prohibitive. Consequently, simple heuristics techniques, as discussed 

in the next section, are employed by SOs to guarantee reliable system operation. The adoption of 
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probabilistic tools and methodologies during system operation warrants new techniques to reduce 

the computational burden. 

1.2.3 Integration of Probabilistic Approaches in System Operation Practices 

To consider the uncertainties of sustainable electric power systems during system operation, SOs 

have traditionally employed deterministic and heuristic techniques to ensure operational 

reliability. For example, one of the most common heuristic criteria during system operation is the 

% − 9 criterion. The % − 9 criterion specifies that the power system should be able to withstand 

the loss of any or largest 9 out of % components. The values of 9 = 1 and 9 = 2 are typical [11]. 

To ensure the operational reliability, SOs run periodic contingency analyses during normal 

operation of power systems to screen for contingencies that could violate the % − 9 criterion. Due 

to a large number of possible contingencies in a real-size power system2, SOs often limit the 

number of contingencies that could be examined. For instance, at the Saskatchewan Power 

Company (SaskPower), SOs perform contingency analysis for 60 different contingencies every 10 

minutes to find violations of % − 1 criterion [12]. SOs at the Electric Reliability Council of Texas 

(ERCOT) run real-time contingency analysis (RTCA) for nearly 4,500 scenarios (contingencies) 

every five minutes [13]. California Independent System Operator (ISO) simulates over 2,000 first-

order contingences (% − 1 criterion) every two minutes in the California ISO network and its 

neighboring areas [14]. Similarly, the Pennsylvania-New Jersey-Maryland (PJM) SO assesses 

6,000 contingencies every minute [15]. Apart from running RTCA to identify security violations 

in the future lead time, SOs also schedule operating reserves to manage unforeseen events, such 

as a sudden increase in load or loss of a generator. The deterministic % − 9 criteria is also adopted 

by several SOs for this purpose [16], i.e., the amount of operating reserve is set equal to the loss 

of the largest online generating unit.  

These deterministic and heuristic tools have worked for SOs in the past due to their simplicity 

and intuitiveness. However, with the new sources of uncertainties being added in sustainable 

power systems, such tools are ineffective [6]. For instance, consider the case of wind farms. The 

wind power varies continuously from the maximum rated power to the minimum rated power 

during a short period of time. A wind farm could lose either all its output power or a certain 

 
2 The total number of contingencies in a power system with ! components is 2!. 
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percentage of its output power in the coming minutes and hours. In this scenario, the precise 

definition of a contingency for the wind farm is not straightforward. Moreover, different 

probabilities are associated with the output of wind farms that are often neglected in RTCA. Apart 

from the drawbacks of contingency analyses, the use of deterministic tools for the operating 

reserve sizing could lead to either overscheduling, which is more reliable but uneconomical, or 

under-scheduling, which is economical but unreliable [17].  

In light of the above discussion, SOs must be equipped with probabilistic tools that can 

realistically capture the risks of inadequacy and outages during system operation. Such tools 

should also allow SOs to set acceptable levels of risk and adjust the operational decisions to satisfy 

the risk criteria. The focus of this research, therefore, is on the development of these 

comprehensive probabilistic tools for power systems operation.  

1.3 Literature Review  

Although comprehensive research has been carried out for long-term reliability studies of power 

systems with RES [18], [19], the literature on operational, short-term reliability and risk 

assessment is not well developed. Recently, there has been increasing attention in developing 

probabilistic tools for power systems operation [6]. In the following sections, the current literature 

is broadly reviewed from two perspectives, i.e., uncertainty modeling of wind generation and 

reliability and risk evaluation techniques. In the individual chapters of this thesis, the literature on 

the specific topics of those chapters is reviewed in depth.  

1.3.1 Uncertainty Modeling of Wind Generation for Operational Reliability Evaluation 

The first step in a reliability evaluation process is to develop reliability models of different 

components of an electric power system [20]. Although the reliability models for generating units 

and transmission lines have been well-developed, there is a dearth of suitable reliability models 

for RES and IEPGNs. In the following sub-sections, the uncertainty modeling of wind generation 

in the context of operational reliability evaluation is reviewed.   

1.3.1.1 Modeling Wind Speed Uncertainty 

The most common approach to model the uncertainty of wind generation in the literature of 

power systems reliability is to model the uncertainty of wind speed. In [21], an autoregressive 
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moving average (ARMA) time series for wind speed is developed using several years of historical 

data. The ARMA series models have been shown to perform better than other approaches, such as 

Markov models, for reliability and risk assessment [22]. While the ARMA series in [21] was 

initially proposed for long-term reliability assessment, it has been adapted to represent the 

uncertainty of wind speed on an operational time scale by setting up conditional probability 

distribution functions (PDFs) [23]. Researchers have also employed different forms of PDFs to 

represent wind speed uncertainty. Reference [24] adopted Burr distribution to model maximum 

wind speed. A two-parameter Weibull distribution is used in [25]. In [26], historical wind speed 

data is directly used to construct discrete PDFs for each hour.  The fuzzy c-means clustering 

method is used in [27] to arrive at a discrete PDF model for wind speed. Researchers have also 

modeled wind speed as a Markov process. For example, in [28], the continuous-time Markov chain 

is employed to model the wind speed. However, the assumption that the wind speed follows a 

Markov process might not capture all of the complicated statistical features of wind speed for 

shorter time-steps [29].   

Although the presence of a large amount of historical wind speed data increases the accuracy of 

these models, the models based on wind speed suffer from two main drawbacks. First, the 

conversion of wind speed to wind power involves the inaccuracies of the wind turbine curve [30]. 

Second, by concentrating on wind speed alone, the impact of other meteorological variables, such 

as wind direction and temperature, on the wind generation is ignored. As these factors have been 

shown to affect long-term reliability indices [31], it is prudent not to ignore them for short-term 

reliability evaluation.  

1.3.1.2 Modeling Wind Power Uncertainty 

Instead of using wind speed, another approach is to directly model the uncertainty of wind power 

using historical wind power data. For instance, in [32], the Gaussian mixture model (GMM) is 

employed to model the PDF of wind generation. Similarly, in [33], a modified form of the Gaussian 

mixture model (GMM) is proposed, which takes into account the boundary characteristics of wind 

power PDF. The GMM models are developed using the complete historical data of wind 

generation. The proposed GMM models in [32] and [33] are then employed in probabilistic optimal 

power flow (OPF). The main advantage of directly modeling wind power uncertainty is that such 

models are agnostic of forecasting techniques employed by SOs. In addition, the impacts of other 
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meteorological variables on wind power are indirectly considered in such models. The major 

drawback of this approach is that these models are unable to consider the temporal correlation of 

wind power. In other words, the knowledge about the current wind generation (initial state) is not 

employed in modeling the uncertainty of wind power in the coming hours. This temporal 

correlation is particularly crucial for operational reliability evaluation as the reliability indices 

depend on the initial state of the system. Moreover, due to the limited amount of wind generation 

data, these models are susceptible to the problem of overfitting [34].  

1.3.1.3 Modeling Wind Power Forecast Error Uncertainty 

The prediction of wind power is an essential process during power system operation. As wind 

power prediction cannot achieve perfect accuracy, there is an error associated with the prediction. 

This wind power forecast error is routinely modeled to follow a Gaussian distribution [35], [36]. 

It has been shown that a simple Gaussian distribution is unable to capture the skewness and heavy-

tail characteristics of the wind power forecast error [37]. Consequently, mixture models (MMs) 

have also been employed. In [38], a more flexible, versatile mixture distribution is proposed, which 

has been shown to outperform Gaussian, Beta, and GMM distributions. In [39], Lévy ;-stable 

distribution is adopted for wind power forecast error. Apart from parametric models, non-

parametric techniques, such as quantile regression [40] and kernel density estimation (KDE) [41], 

are also proposed for modeling the wind power forecast error. These non-parametric models, due 

to their higher flexibility, are better able to capture the statistical features of the PDF of wind power 

forecast error.  

In the existing literature, the complicated uncertainty models of wind power forecast errors have 

not been employed in reliability evaluation techniques. This is because the use of semi-parametric 

and non-parametric PDF estimation techniques poses challenges to the existing analytical and 

simulation techniques for operational reliability evaluation. Therefore, there is a need to develop 

advanced analytical and simulation techniques that can incorporate such complex PDF 

representations of wind power forecast error. 

1.3.2 Reliability and Risk Evaluation Techniques 

The existing methods for the operational reliability and risk evaluation of electric power systems 

can be categorized into two main groups: 1) analytical methods and 2) simulation techniques. 
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1.3.2.1 Analytical Methods 

This group of methods involves developing closed-form analytical equations for reliability and 

risk indices. State-enumeration techniques, convolution methods, and Markov models are the most 

popular approaches in this group [17]. The analytical methods allow for the calculation of exact 

reliability indices. Moreover, their computational time is independent of the probabilities to be 

evaluated [42]. One of the earliest analytical methods for the operational reliability assessment is 

the PJM method, which was first proposed in the mid-1960s [43]. The PJM method, which is based 

on a state-enumeration technique, estimates the probability of a generating system just meeting or 

failing to meet the expected load during the lead time in which no additional generation is 

available. This probability is referred to as the unit commitment risk (UCR). The basic PJM 

method has been extended to consider de-rating of generating units [44], rapid-start generating 

units [45], and uncertainties of load in the lead time [17]. This extended PJM method is also 

referred to as the area-risk method. In [23] and [46], the area risk method is applied for wind-

integrated power systems to understand the impact of wind generation on UCR. Moreover, in [10], 

the area risk method is also used to evaluate the well-being indices of wind-integrated power 

systems during system operation [47]. Researchers have also employed the area-risk method to 

consider energy storage [27], [48], and electric vehicles [49], [50]. State-enumeration techniques 

are also widely adopted in the literature. Reference [51] employs state-enumeration techniques to 

evaluate the operational reliability indices while considering the dynamic response and frequency 

control processes of power systems. Reference [52] also uses a state-enumeration technique; 

however, the failure rates of components under overloading conditions are also incorporated. The 

authors in [53] proposed the application of universal generating function (UGF) to determine short- 

and medium-term reliability indices.  

The analytical methods suffer from several drawbacks. First, as analytical methods typically 

involve combinatorial computations, these methods become computationally prohibitive for large 

electric power systems. In fact, the computational burden increases exponentially with the increase 

in the number of components in electric power systems [20]. As a result, the transmission system 

is often neglected in such methods. This implies that the constraints and contingencies of 

transmission systems cannot be incorporated. Second, to ensure computational tractability, 

analytical methods often involve simplifications. Consequently, complex operating conditions 
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could not be included in the evaluation process. Third, only expected values of reliability indices 

could be evaluated using analytical methods. Thus, the PDFs of reliability indices, which could be 

useful in specific applications (such as for the evaluation of reliability costs) cannot be estimated. 

1.3.2.2 Simulation Techniques 

The simulation techniques offer an attractive alternative to analytical methods. The simulation 

methods estimate the reliability and risk indices via stochastic simulation of the actual process of 

the system. One such simulation method that has been extensively used in the literature is the 

Monte-Carlo simulation (MCS) technique [10]. MCS techniques are easy-to-implement and 

possess the attractive properties of ergodicity and robustness to the dimension of the problem [54]. 

The two main variants of MCS techniques are non-sequential MCS (NSMCS) and sequential (or 

chronological) MCS (SMCS). Reference [55] applies an NSMCS technique for spinning reserve 

assessment of composite power systems. The computational performance of NSMCS is 

significantly improved by adopting an importance sampling (IS) technique. In [56], the authors 

extend their previous work in [55] to include renewable generation. Instead of NSMCS, a quasi-

sequential MCS approach is adopted, which can also consider the chronologies of load and 

renewable generation.  In [57], a state-transition sampling-based MCS is used for the operational 

reliability of composite power systems. A cross entropy (CE)-based three-stage sequential IS 

method is proposed to improve the computational performance of MCS for short-term reliability 

evaluation. In [24], a combination of Latin hypercube sampling and Gibbs sampling is employed 

to improve computational performance. The proposed nested sampling framework is able to 

consider the impact of meteorological variables on the risk indices. Reference [58] adopts an 

importance splitting technique to estimate the reliability indices for a three-node power system; 

only the uncertainty of wind generation, modeled as an Ornstein-Uhlenbeck process, is considered.  

Although simulation techniques are robust to the size of power systems, such techniques involve 

a very high computational burden for highly reliable systems. This is the case during power 

systems operation as the risk indices have very small values. The high computational burden either 

restricts the direct application of simulation techniques in power system operation or leads to 

compromises in modeling details.  
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1.3.2.3 Miscellaneous Approaches 

Although analytical and simulation methods form the bulk of operational reliability evaluation 

methods, other techniques have also been proposed. In [59], the authors have developed a bi-level 

optimization model for the short-term risk assessment of transmission systems. The upper-level 

problem performs a binary optimization to find the worst % − 9 contingencies, while the lower-

level problem minimizes the total load shedding for transmission contingencies. The proposed 

approach ignores generation outages, which are far more likely to occur than the transmission 

system outages during the lead time.  In [60], a fast sorting technique is proposed to identify the 

system states based on their probabilities of occurrence. The fast sorting technique is, in essence, 

an extension of the state-enumeration approach.  

1.4 Research Questions  

This research aims to extend the existing literature on the operational reliability and risk 

assessment of sustainable electric power systems and IEPGNs to address the new challenges 

indicated previously. To this end, this research aims to explore the following important research 

questions: 

• Can a computationally efficient simulation technique be developed to estimate the 

operational reliability indices of generating systems? Can the proposed simulation 

technique be able to consider both parametric and non-parametric PDF representations 

of wind generation? 

• How can the existing analytical or simulation techniques be extended to incorporate the 

uncertainties of wind speed for the short-term risk assessment? How the contingencies 

and constraints of transmission systems be incorporated while evaluating the risk 

indices? What are the impacts of transmission systems on the system- and bus-level 

operational risk indices? 

• What are the impacts of contingencies and constraints of natural gas networks on the 

operational reliability and risk of electric power systems? How can the different 

operational strategies of natural gas networks increase or decrease the short-term 

reliability of power systems?  
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• With the increasing penetration of distributed energy resources (DERs), what are the 

impacts of these DERs on the operational reliability of microgrids? In the presence of 

these DERs, how can the system operators ensure the operational reliability of 

microgrids? How are the operational schedules of microgrids affected by the operational 

reliability constraints? 

To address the aforementioned research questions, Figure 1.4 depicts the key subject areas that 

are employed in this research. Probability theory is required to propose reliability models of 

components in electric power systems and IEPGNs. Reliability engineering is needed to set up 

equations for evaluating the reliability and risk indices. The simulation frameworks, to be used to 

estimate the reliability and risk indices, are based on the simulation theory. Finally, the proposed 

tools and frameworks are developed while giving full attention to power system operation 

problems.  

 

Figure 1.4 Key subject areas for the thesis 
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1.5 Contributions of the Thesis 

Based on the research questions presented in the previous section, the thesis contributes to the 

existing literature in the following ways:  

1.5.1 Development of an importance-splitting based simulation framework for the 

operational reliability evaluation of generating systems 

As a first contribution, a fixed-effort (FE) based generalized splitting (GS) technique is adopted 

for the operational reliability assessment of generating systems. FEGS is a variant of a 

computationally efficient MCS technique called importance splitting. FEGS is suitable for static, 

Non-Markovian problems that are encountered in the operational reliability assessment. To 

implement the FEGS technique, the Metropolis-Hastings (MH) algorithm for Markov Chain 

Monte Carlo (MCMC) is modified to consider the discrete random variables of electric power 

systems. The framework is also extended to consider the uncertainties of load demand and wind 

generation. Case studies on the 24-bus IEEE Reliability Test System (RTS) are performed to show 

the computational superiority of the proposed approach over crude MCS (CMCS), and the impacts 

of wind and load uncertainties on the short-term reliability of generating systems are assessed. 

1.5.2 Development of a hybrid analytical-simulation framework for operational risk 

assessment 

A new framework for the short-term risk assessment of wind-integrated composite power 

systems via a combination of an analytical approach and a simulation technique is proposed. The 

proposed hybrid framework first employs the area risk method – an analytical approach, to include 

the detailed reliability models of different components of a power system. In this regard, a novel 

reliability modeling approach for wind generation for the short-term risk assessment is also 

proposed. Thereafter, an NSMCS technique is adopted to calculate the partial risks of the area risk 

method. As a result, the proposed framework is also capable of including the contingencies and 

constraints of the transmission system that are customarily neglected in the area risk method. The 

computational performance of the proposed framework is greatly enhanced by adopting the IS 

technique whose parameters are obtained using the CE optimization. Case studies performed on a 

modified 24-bus IEEE RTS validate that the detailed reliability modeling of wind generation and 

consideration of the transmission system are necessary to obtain more accurate short-term risk 
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indices. Furthermore, the computational performance of the proposed framework is shown to be 

higher than that of CMCS. 

1.5.3 Development of a data-driven framework for the operational risk assessment of wind-

integrated power systems 

A novel data-driven method for the operational risk assessment of wind-integrated composite 

power systems is proposed. First, a new approach is presented to model the uncertainties of wind 

power in the lead time. The proposed approach employs k-means clustering and MM to construct 

time-dependent PDFs of wind power. The proposed approach can capture the statistical features 

of wind power, such as multimodality. Later, an NSMCS technique is adopted to evaluate the 

operational risk indices. To improve the computational performance of NSMCS, an IS technique 

is applied. The IS technique is modified to include the proposed model of wind power. The method 

is validated on a modified 24-bus IEEE RTS and a modified 3-area IEEE RTS while employing 

the historical wind generation data. Simulation results verify the importance of accurate modeling 

of short-term uncertainty of wind power for the operational risk assessment. Further case studies 

have been performed to understand the impacts of transmission systems on the operational risk 

indices. The computational performance of the framework is also examined. 

1.5.4 Development of a simulation framework for the operational reliability evaluation of 

IEGPNs  

A novel framework for the operational reliability evaluation of IEPGNS is proposed. The 

framework has three notable features. First, it includes a detailed reliability model of natural gas 

pipelines to realistically evaluate the reliability indices. Second, it models the dual-fuel capabilities 

of dual-fuel NGFGs (DF-NGFGs) that have been shown to improve the operational reliability of 

IEPGNs. Third, the linear formulation of the proposed optimization model and the adoption of 

CE-based IS ensures high computational efficiency of the proposed framework. The results 

indicate that the operational reliability indices of IPEGNs are improved when all failure modes of 

pipelines are considered. In addition, the impacts of dual-fuel capabilities of DF-NGFGs and the 

different operational strategies of system operators on operational reliability indices are also 

demonstrated.  
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1.5.5 Development of the operational reliability-constrained optimal scheduling model for 

microgrids 

A new optimization model for the operational reliability-constrained scheduling of microgrids 

is proposed. To this end, chance-constrained optimization is adopted to embed hourly operational 

reliability indices in the scheduling problem of microgrids. The explicit chance constraints in the 

model are reformulated using the sample average approximation (SAA). IS is then adopted to 

reduce the number of chance constraints and render the model tractable. The parameters of IS are 

obtained after making practical assumptions and using CE optimization. Case studies performed 

on a synthetic microgrid shows that the schedule obtained from the proposed model satisfies the 

operational reliability constraints set by the microgrid operator. The intra-day and day-ahead 

scheduling problems are solved to explain the results in detail. The impacts of target operational 

reliability indices set by the microgrid operator on the operating costs are also examined.  

1.6 Organization of the Thesis 

The thesis is organized into six chapters. Sufficient details have been included in all chapters so 

that each chapter can be read on its own if desired. However, all of the chapters are closely linked 

with each other.  

Chapter 1 provides the motivation behind the research work. The key challenges introduced by 

the transition to sustainable electric power systems are identified. Later, the literature review on 

the research direction is conducted. The chapter also describes the research questions that are 

addressed by this thesis. Further, the contributions of the thesis are summarized. 

Chapter 2 focuses on the mathematical foundation of the operational reliability and risk 

assessment of electric power systems. This chapter also explores the fundamental drawback of 

using simulation techniques for operational reliability and risk assessment. The widely adopted 

variance reduction techniques for simulation methods are discussed. Later, a new simulation 

technique called the FEGS is presented for the operational reliability evaluation of generating 

systems. This chapter is a part of a paper titled “Short-term reliability evaluation of generating 

systems using fixed-effort generalized splitting,” which is published in 2020 IEEE PES General 

Meeting, Montreal, 2020. As the lead author, Osama Aslam Ansari proposed, developed, and 

implemented the technique and carried out the simulations. He also wrote the paper. The co-
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authors provided their valuable comments and suggestions for paper presentation and editing. The 

contents of this chapter and the aforementioned paper are related to the first contribution of the 

thesis. 

Chapter 3 presents a novel hybrid framework to evaluate the short-term risk indices of wind-

integrated composite power systems. A new approach to model uncertainty of wind speed for the 

short-term risk evaluation is presented. The results of case studies are examined to show the 

efficacy of the proposed framework. This chapter is part of a paper titled “A hybrid framework for 

short-term risk assessment of wind-integrated composite power systems”, which is published in 

IEEE Transactions on Power Systems. As the lead author, Osama Aslam Ansari proposed, 

developed, and implemented the framework and carried out the simulations. He also wrote the 

paper. The co-author provided his valuable comments and suggestions for problem formulation, 

paper presentation and editing. The contents of this chapter and the aforementioned paper are 

related to the second contribution of the thesis. 

In Chapter 4, a novel data-driven framework for the operational risk assessment of wind-

integrated power systems is presented. A data-driven approach to model the uncertainty of wind 

power is also proposed. Simulation results are presented to exhibit the performance of the proposed 

approach. This chapter is part of a paper titled “Data-driven operation risk assessment of wind-

integrated power systems via mixture models and importance sampling”, which is published in 

Journal of Modern Power System and Clean Energy. As the lead author, Osama Aslam Ansari 

proposed, developed, and implemented the framework and carried out the simulations. He also 

wrote the paper. The co-authors provided their valuable comments and suggestions for paper 

presentation and editing. The contents of this chapter and the aforementioned paper are related to 

the third contribution of the thesis. 

Chapter 5 presents the proposed framework for the operational reliability evaluation of IEPGNs. 

The proposed reliability modeling of IEPGNs is first delineated. Then, the proposed framework 

for the operational reliability evaluation of IEPGNs is explained. The results obtained from 

selected case studies are demonstrated. The importance of the proposed framework is also justified. 

This chapter is part of a paper titled “A novel framework for the operational reliability evaluation 

of integrated electric power-gas networks (IEPGNs)”, which is published in IEEE Transactions 

on Smart Grid. As the lead author, Osama Aslam Ansari proposed, developed, and implemented 
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the framework and carried out the simulations. He also wrote the paper. The co-authors provided 

their valuable comments and suggestions for paper presentation and editing. The contents of this 

chapter and the aforementioned paper are related to the fourth contribution of the thesis. 

Chapter 6 presents the proposed optimization model for the optimal scheduling of microgrids. 

First, a deterministic formulation of the optimal scheduling problem for microgrids is proposed. 

Then, to consider hourly operational reliability constraints, a chance-constrained optimization-

based model is presented. Afterward, the CE-IS-SAA technique is presented to reformulate the 

model and render it tractable. Case studies are then performed to show the effectiveness of the 

proposed model. This chapter is part of a paper titled “Operational reliability-constrained 

scheduling of microgrids via cross-entropy importance sampling-based sample average 

approximation”, which is going to be submitted to IEEE Transactions on Smart Grid. As the lead 

author, Osama Aslam Ansari proposed, developed, and implemented the framework and carried 

out the simulations. He also wrote the paper. The co-author provided his valuable comments and 

suggestions for paper presentation and editing. The contents of this chapter and the aforementioned 

paper are related to the fifth contribution of the thesis. 

Finally, the conclusion is provided in Chapter 7. Chapter 7 also discusses the future work related 

to this study, which could be performed to improve the proposed tools and frameworks further.



18 
 

Chapter 2  
Mathematical Foundations of the Operational Reliability 

and Risk Assessment of Power Systems 

2.1 Introduction 

Power systems reliability is concerned with the presence of sufficient generation, transmission, 

and distribution facilities to ensure a continuous supply of electricity to consumers in the presence 

of unexpected failures of the power systems components, de-rating of conventional generating 

units, variability in the output of RES, and planned or scheduled maintenance outages [20], [17]. 

Power system reliability makes use of probabilistic techniques1 to assess the reliability indices of 

a power system. Based on the period of analysis, power systems reliability can be categorized into 

long-term reliability assessment and short-term reliability assessment. The long-term reliability 

assessment techniques find their applications in power systems planning problems, e.g., generation 

and transmission expansion planning [17]. The widely used criteria of loss of load expectation 

(2<27) = 0.1	days/yr is a long-term reliability index that is employed by electric utilities to plan 

for their generating systems [61]. On the contrary, the short-term reliability measures the ability 

of a power system to withstand disturbances during power systems operation. The applications of 

short-term reliability methods are found in operational planning (e.g., UC), and real-time operation 

(e.g., RTCA). Table 2.1 highlights the key differences between the long-term and short-term 

reliability assessment methods.  

Table 2.1 Key differences between the long-term and short-term reliability methods 

Long-Term Reliability Short-Term Reliability 

Failure probabilities are independent of time 
(steady-state probabilities) 

Failure probabilities are time-dependent 
(transient-state probabilities) 

Independent of initial state of the system Dependent on initial state of the system 
Repair processes of components are 

modeled Repair processes of components are ignored 

 
1 It should be noted that, in general, power system reliability includes both deterministic and probabilistic 

techniques. However, in this report, power system reliability implies the use of probabilistic approaches. 
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Long-term failure and repair rates are used Short-term failure rates and outage 
replacement rate (ORR) are employed 

In case of contingencies, generation re-
dispatch is allowed 

In case of contingencies, generation re-
dispatch can be restricted 

Commitment statuses of generating stations 
are ignored 

Commitment statuses of generating stations 
are considered 

Installed capacities of generation and 
transmission systems are considered 

Real-time generation and transmission 
system capacities are included 

Mostly used for off-line studies Also useful for online studies 
The methods are suitable for power systems 

planning 
The methods are suitable for power systems 

operation 
 

The reliability evaluation process, whether for the long-term or short-term reliability, involves 

three distinct stages:  

1. reliability modeling of power systems, 

2. reliability and risk assessment technique, and 

3. reliability or risk indices. 

As there are several differences between long-term and short-term reliability assessment 

techniques, the modeling approaches for the two techniques also differ. Similarly, different 

reliability and risk assessment techniques are adopted to consider those reliability models. In this 

chapter, a mathematical foundation is set for the short-term reliability evaluation methods. First, 

the reliability modeling of power systems for the short-term reliability and risk assessment is 

presented. Then, different simulation techniques are explored. Finally, a new simulation technique 

called the FEGS is adopted to assess the short-term reliability of generating systems2.  

2.2 Probabilistic Modeling of Power Systems 

Consider a probability space (Ω, ℱ, Ρ) where Ω is the sample space, ℱ is the field, and P is the 

probability function. The sample space Ω, which is a collection of all possible outcomes (K), is 

defined as   

 
2 © 2020 IEEE. Reprinted without modifications and with permission from: O. A. Ansari, S. Mahdi Mazhari, 

Yuzhong Gong, and C. Y. Chung, “Short-term reliability evaluation of generating systems using fixed-effort 
generalized splitting,” 2020 IEEE PES General Meeting, Montreal, 2020.  
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In (2.1), it is assumed that there are %" generating stations and a generating station S has %$ 

identical generating units. K'(" represents the binary status of 4th generating unit at 3th generating 

station. It is also assumed that there are %% transmission lines. K'% represents the binary status of 

3th transmission line. The binary status of 1 corresponds to a generating unit or a transmission line 

being available, while 0 implies that a generating unit or a transmission line is on outage. It should 

be noted that the different outcomes in (2.1) are defined for a given lead time (ΔU), which is 

typically one hour to one day for the short-term reliability evaluation.  

2.2.1 Discrete RVs for Generators 

Let V$"(K): Ω → ℝ be a discrete RV denoting the number of generating units available during 

the lead time at generating station S. This definition implies that 

 V$"(K) =ZK$'
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 (2.2) 

The PDF for V$",	[$"(\), is given by the following binomial distribution: 
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where, c$ is the probability of a generating unit at Sth generation station being failed during the 

lead time and \ ∈ {0,1, … , %$}. c$ typically follows an exponential distribution [17], therefore 

 c$ = 1 − d,-#./, (2.4) 

where, e$ is the failure rate of a generating unit at Sth generating station.  

A discrete random vector (f") denoting the number of available generating units at all 

generating stations in a power system is defined as 

 f" = gV!", V0
", … , V#$

" h. (2.5) 
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Assuming that the outages of generating units at different generating stations are independent of 

each other, the PDF for f", ["(f"), can be obtained using (2.3) and is given as: 

 ["(f") =i[$"(\)
#$

$*!

 (2.6) 

2.2.2 Discrete RVs for Transmission Lines 

Let V&
%(K): Ω → ℝ be a discrete RV denoting the availability of transmission line j during the lead 

time. Therefore, 

 V&
%(K) = K&%. (2.7) 

The PDF	[&%(\) for V&
% is given by the following Bernoulli distribution 

 [&%(\) = P]^K:V&
"(K) = \_` = (1 − c&)+c&

!,+, (2.8) 

where, c& is the probability of  jth transmission line being failed during the lead time and \ ∈ {0,1}. 

Similar to the modeling of generators, c& also follows an exponential distribution [17], therefore 

 c& = 1 − d,-'./, (2.9) 

where, e& is the failure rate of jth transmission line.  

A discrete random vector (f%) denoting the availability of all transmission lines in a power 

system is defined as 

 f% = gV!%, V0
%, … , V#&

% h. (2.10) 

Assuming that the outages of transmission lines are independent of each other3, the PDF for f% , 

[%(f%), can be obtained using (2.8) and is given below 

 [%(f%) =i[&%(\)
#$

$*!

. (2.11) 

 

 
3 Note that common-mode outages are not considered in this work.  
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2.3 Operational Reliability Evaluation Technique 

Let k be a set of all events that lead to load curtailment in the lead time ΔU. That is, k =

^K:l]f(K)` > 0_, where l(∙) is a reliability measure and f = [f", f%]. The definition of l(∙) 

depends on the reliability index being evaluated and also on the scope of analysis (e.g., generating 

systems or composite power systems). In the operational reliability evaluation, we are interested 

in evaluating P(k). If l(∙) represents an indicator function4, then the probability or risk q can be 

evaluated as, 

 q = r1[l(f)] = s l(t)[(t)ut,
2

 (2.12) 

where, [(∙) = ["(∙)[%(∙). Note that if l(∙) is a function other than the indicator function, then 

(2.12) is not a pure probability and it represents a risk index.  

The analytical methods, as discussed in Chapter 1, evaluates (2.12) directly, e.g. through state-

enumeration techniques or convolution. The integral in (2.12) is difficult to evaluate analytically 

for the following reasons: 

1. Although l(t) is explicitly defined for generating systems, it is often calculated implicitly 

(pointwise) for composite power systems.  

2. The dimension of the integral in (2.12) can become very large for large power systems.  

3. [(t) is often a mixed discrete-continuous distribution. Therefore, closed-form solutions 

for (2.12) are difficult to obtain. 

2.3.1 Simulation Approach  

In the light of above discussion, simulation techniques are better suited to evaluate the integral 

in (2.12). In its simplest form, a large number of samples are drawn from [(t) and the risk index 

in (2.12) is estimated as qv , where 

 qv =
1

%345
Z l(t')

#()*

'*!

. (2.13) 

 
4 An indicator function is defined as #{%(') ≤ *} = 1, when %(') ≤ *, and #{%(') ≤ *} = 0, when %(') > *. 
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In (2.13), the samples ^\': 3 ∈ {1, . . , %345}_ are independent and identically distributed (IID) from 

[(t). This approach is also known as crude MCS (CMCS). 

Equation (2.13) can be employed to estimate any reliability index depending on the definition 

of l(∙). However, to explain the properties of (2.14), the discussion henceforward is limited to the 

pure probability index. For a pure probability index,  

 l(t) = L1,						w
(t) ≤ 2

0,						w(t) > 2, (2.14) 

 qv =
1

%345
Z y{w(t6) ≤ 2},

#()*

'*!

 (2.15) 

where, 2 is the load and w(∙) is a performance function, e.g. sum of available generation for 

generating system reliability, and the available generation capacity obtained through DC-optimal 

power flow (OPF) or AC-OPF for composite power systems reliability. Now, in (2.15), since 

	y{w(t6) ≤ 2} is a Bernoulli RV, the properties of (2.15) can be analyzed analytically. In particular, 

noticing that	y{w(t6) ≤ 2}, ∀3 are also IID from [(t), the variance of the estimator is given by 

[62]  

 vargqvh =
1

%345
0 Z var[y{w(t6) ≤ 2}]

#()*

'*!

=
1

%345
0 (%345var[y{w(t7) ≤ 2}]), (2.16) 

 vargqvh =
1

%345
q(1 − q). (2.17) 

The relative error (RE), which measures the convergence of MCS methods, is given by 

 RE =
stdgqvh
r1gqvh

= ~
(1 − q)
q%345

. (2.18) 

Equation (2.18) is often used in MCS as a stopping criterion. The typical values of RE for 

generating systems and composite power systems are 1% and 5%, respectively. Equation (2.18) 

can also be used to obtain the number of samples required to estimate the reliability index q with 

a certain RE, as shown in (2.19). 
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 %345 =
1 − q
RE0(q)

. (2.19) 

Equation (2.19) clearly indicates the number of samples required for CMCS is indirectly 

proportional to the reliability index being estimated. Figure 2.1 and Figure 2.2 pictorially depicts 

the number of CMCS samples and the computational time for CMCS, respectively, when ; = 5%. 

It is assumed that each sample takes 0.001 seconds to compute. It is clear from Figure 2.1 and 

Figure 2.2 that CMCS requires a large computational burden to estimate operational reliability 

indices of power systems. 

 

Figure 2.1 Number of samples required for CMCS vs. the reliability index. 

 

Figure 2.2 Computational time for CMCS vs. the reliability index  
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2.4 Variance Reduction Techniques 

Equation (2.18) indicates that in order to reduce the number of samples required for CMCS, the 

variance of the estimator should be reduced. Consequently, various variance reduction techniques 

have been proposed [63]. The popular variance reduction techniques that have been applied to 

power systems reliability include control variates, antithetic variates [64], IS, stratified sampling 

and dagger sampling. Among these techniques, IS has been shown to achieve the highest 

improvement in the computational efficiency of CMCS.  

2.4.1 Importance Sampling (IS) 

IS is one of the most popular variance reduction techniques. Literature indicates that IS can 

achieve a considerable order of magnitude reduction in the variance of the MCS estimator [54]. 

Consider (2.12) again,  

 q = r1[l(f)] = s l(t)[(t)ut.
2

 (2.20) 

The IS is based on the following reformulation: 

 q = r1[l(f)] = s l(t) Å
[(t)
[∗(t)

Ç [∗(t)ut
2

= r1∗[l(f)É(f)], (2.21) 

where,  

 É(f) =
[(f)
[∗(f)

. (2.22) 

In essence, the IS modifies the original PDF [(∙) to [∗(∙), which is biased to generate samples 

that belong to the failure event k. The new PDF [∗(∙) is also known as the IS density and É(∙) is 

called the likelihood ratio. The only constrain on the IS density is that [∗(∙) = 0 when l(∙)[(∙) =

0, that is, l(∙)[(∙) is dominated by [∗(∙)	[63]. 

Theoretically, it is possible to obtain an IS density that reduces the variance of the estimator to 

zero.  This ideal IS density is obtained by minimizing the variance of (2.21) and is given as [63] 
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 [∗(∙) =
l(∙)[(∙)

q
 (2.23) 

As q is not known a-priori, (2.23) cannot be employed in practice. Therefore, the main challenge 

of IS is to obtain a suitable IS density, which is a good approximation to the ideal IS density. In 

Chapters 3, 4, and 5, IS technique is adopted as a variance reduction technique, and an iterative 

approach is employed to obtain the IS density, which is a close approximate of (2.23).  

2.4.2 Importance Splitting 

IS suffers from several drawbacks. The selection of optimal IS density in importance sampling 

is a key challenge. Sub-optimal importance sampling densities could result in erroneous estimates 

of reliability indices [54]. Furthermore, for high dimensional cases, IS suffers from degeneracy 

and may lead to variance explosion [63]. In addition, the variants of importance sampling 

technique typically employed in power systems literature [56] are generally suitable for PDFs 

belonging to exponential family, such as Beta or normal distributions. The random variables in 

power systems do not always follow these standard distributions.  

Importance splitting offers an attractive alternative for IS. Importance splitting is a highly 

versatile and flexible rare-event simulation technique [65]. The basic idea behind it is to employ 

sequential sampling to probe regions of sample space which are of interest for rare-event 

simulation [66]. In short-term reliability evaluation, these regions correspond to failure regions, 

i.e. regions of system states which lead to load curtailment during the lead time. 

The key advantages of importance splitting over IS are two-fold. First, importance splitting does 

not involve any change of PDFs of the underlying phenomenon, thereby avoiding the drawback of 

finding importance sampling density. Second, there is no restriction on the definition of [(∙) in 

(2.12).  

Considering the context of the short-term reliability evaluation of generating systems, in 

importance splitting, the sample space is divided by a number of non-identical levels 

{29, 2!, … , 2:} with 29 > 2! > ⋯ > 2:. Let w(f) be the total available generation capacity during 

the lead time, where f = f". Each level corresponds to a hypothetically higher load demand. The 

final level 2: is set to the actual load demand 2. Starting from 29, which is equal to the maximum 

capacity of the generating system, the stochastic process is simulated until the process returns to 
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the starting point. During this process, the samples that have values of w(f)	below 2! are recorded. 

From each of these samples, multiple new stochastic processes are simulated again until these new 

processes return to 29. Similarly, further simulations are carried out starting from samples with 

w(f) values that are below 20. The whole process continues until the region below 2: is not 

sufficiently explored. Fig. 2.3 pictorially depicts this importance splitting process. 

 

Figure 2.3 Importance splitting process 

Let %/ be the number of samples that enter into the region w(f) ≤ 2/ during U − 1 simulation 

stage, and let Ö/ be the splitting factor, i.e., the number of new simulation processes, for the next 

stage. The conditional probability P(w(f) ≤ 2/|w(f) ≤ 2/,!) can be estimated as 

 P(w(f) ≤ 2/|w(f) ≤ 2/,!) =
%/

%/,!Ö/
 (2.24) 

Through evaluation of these conditional probabilities at different stages or levels, the final 

probability 6(w(f) ≤ 2) can be evaluated by multiplying conditional probabilities. 

Depending on how new processes (or trajectories) are generated, importance splitting has 

different variants. 
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2.4.2.1 Fixed-Splitting (FS) 

In FS splitting, at each stage, the number of new trajectories created from the samples that down-

crosses 2/ is fixed. This number is also known as the splitting factor [54]. As the number of new 

trajectories created is not dependent on the number of samples that down-crosses 2/, there is a risk 

of population explosion [67]. Population explosion implies that the total number of samples at 

each successive stage grows intractably, which leads to increased computational burden. 

2.4.2.2 Fixed-Effort (FE) 

In FE splitting, the total simulation burden at each stage is fixed. This implies that the number 

of new trajectories (splitting factor) at each stage depends on the number of samples that down-

crosses 2/. If there are a higher number of such samples, the splitting factor would be lower to 

keep the total simulated samples fixed, and vice versa. Therefore, the advantage of FE over FS is 

that the occurrence of population explosion can be avoided. 

2.4.2.3 Fixed Number of Successes (FNS)  

In this variant of splitting technique, the simulation at each stage is repeated until a fixed number 

of samples down-crosses 2/. In other words, %/ is fixed for each stage, while Ö/ can be varied; this 

approach also avoids the population explosion problem. 

2.5 Proposed FEGS Approach 

The importance splitting techniques discussed previously are typically employed for dynamic, 

Markovian models [65] and thus cannot be directly adapted to evaluate (2.12). This is because 

(2.1) represents a static, non-Markovian problem. Botev and Kroese [67] extended the importance 

splitting approach to propose GS which could be directly applied to estimate (2.13). In this chapter, 

it is proposed to evaluate (2.12) by adapting GS. 

2.5.1 Selection of Intermediate Levels 

The efficiency of importance splitting is strongly influenced by the choice of intermediate levels 

{2!, … , 2:} [65], [66]. These intermediate levels could be selected through an initial run of an 

importance splitting technique. As proposed in [67], in this chapter, the ADAptive Multilevel 

splitting algorithm (ADAM) is employed to estimate the levels. In essence, the ADAM algorithm 
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employs fixed values of P(w(f) ≤ 2/|w(f) ≤ 2/,!) to estimate {2!, … , 2:} using random 

populations of samples.   Interested readers are referred to [67] for a detailed explanation of the 

ADAM algorithm. 

2.5.2 FEGS Simulation Framework 

FEGS is based on the concept of GS. GS extends the traditional splitting method for it to be 

applicable to static, non-Markovian models, such as (2.12). In essence, the key approach behind 

GS is to construct a Markov chain at each stage of importance splitting. Therefore, instead of 

simulating a dynamic process, a Markov chain is created, which has a stationary distribution given 

by: 

 [/(f) =
[(f)I{w(t) ≤ 2/}
P(w(f) ≤ 2/)

 (2.25) 

where, [/(f) is the distribution for Uth state of importance splitting. For reliability evaluation of 

generating systems, [(∙) = ["(∙). In essence, instead of creating multiple new trajectories from 

each sample that down-crosses 2/, multiple Markov chains with the number of samples equal to 

the splitting factor are generated. The Markov chain can be generated by employing the MCMC 

techniques having a Markov transition density proportional to [(f)I{w(t) ≤ 2/}. The seeds of 

these different MCMC are set to the different samples that down-crosses 2/. Notice, the similarity 

between (2.25) and (2.23) of IS; at the final stage ), the Markov chain has a stationary distribution 

of (2.23) with l(∙) given by I{w(t) ≤ 2}. 
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Figure 2.4 Pictorial representation of GS 

Figure 2.4 depicts GS for a hypothetical case study. In this figure, three levels are indicated. The 

initial level 29 represents the total capacity of the generating system, while the final level 2 = 2; 

is the load demand. The time axis in Figure 2.4 corresponds to the length of Markov chain. In 

Figure 2.4, %! represents the number of black dots below 2! (2 in this case) and %0 represents the 

number of grey dots below 20 (4 in this case). 

The GS approach can be employed in both FS and FE approaches. Due to the advantages of FE 

mentioned previously, in this work, GS is used in conjunction with FE [54], [67]. Algorithm 2.1 

details the FEGS algorithm. The implementation of FE is in step 4 of Algorithm 2.1, where 

different splitting factors (Markov chain’s lengths) for different entrance samples are generated 

such that the total expected simulation burden remains % at each stage. 

Algorithm 2.1 FEGS Algorithm 

Input: Levels {2!, 20, … , 2:}, fixed sample size % 

Output: Short-term reliability index in (2.12) 

1: Set U = 1. Sample IID {f!, … , f#} from [(∙). Set à9 = {f!, … , f#} 

2: Select à/ = ^f!, … , f#,_ from à/,! such that for all samples in à/, w(f) ≤ 2/.  

3: For U = 1 to U = ) do 
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4: Generate ^w/!, … , w/
#,_, where w/' = ⌊%/%/⌋ + ã' and ã' is a Bernoulli random variable 

with success probability of 0.5, such that ∑ ã'' = %	mod	%/ 

5: From each sample f' in à/, sample w/' IID samples from (2.25) using MCMC with f' 

as the seed 

6: Collect all samples from step 5 to update à/, which results in % samples in à/ 

7: If %/ = 0, set %/<! = %/<0 = ⋯ = %: = 0 

8: End the for loop 

9: Calculate the estimated risk qv = %,:∏ %/:
/*!  

2.5.3 MCMC for Discrete PDFs of Generating System 

A key step in Algorithm 2.1 is to generate samples from (2.25) in step 4. This step could be 

realized by constructing a Markov chain whose stationary distribution is given by (2.25). This 

Markov chain can be generated using MCMC algorithms. In this work, the MH algorithm is 

adopted for MCMC. The MH-MCMC is inefficient for high dimensional problems [68]. In this 

chapter, a modified version of MH-MCMC is adapted for discrete PDFs of power systems. In this 

modified version, a new sample is accepted or rejected for each component (generating station) 

separately. Algorithm 2 details this component-wise discrete MH-MCMC. 

Algorithm 2.2 Component-Wise Discrete MH-MCMC 

Input: Initial sample f9 = êV!,9" , … , V#$,9
" ë following the target distribution [/(∙), and the 

original distribution [(∙) 

Output: A population of %34 samples ^f!, … , f#()_following the target distribution [/(∙) 

1: For 3 = 1 to %34 do 

2: For S = 1 to %" do 

3: Draw a candidate sample í$ from a uniform distribution on {0,1, … , %$} 

4: Calculate the acceptance ratio ; = [$]í$`/[$]V$,9" ` 

5: Accept í$ as V$,'<!"  with probability of min{;, 1}, and V$,9"  as V$,'<!"  otherwise 

6: End the for loop 

7: Set the proposal sample f> = êV!,'<!
" , … , V#$,!<!

" ë 

8: If f> = f', set f'<! = f> and go to step 10 
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9: Evaluate I{w(f) ≤ 2/} using (2.14) and save the result 

10: if I{w(f) ≤ 2/} = 1 set f'<! = f>, else set f'<! = f9 

11: Set f9 = f'<! 

12: End the for loop 

2.5.4 Inclusion of Uncertainties of Load and Wind Generation 

The FEGS framework presented in the previous section is developed by only considering the 

random outages of conventional generating stations. The uncertainties of load demand and wind 

generation during the lead time also impacts the short-term reliability of power systems. The 

previously proposed framework can be extended to include the load uncertainty and wind 

generation uncertainty. In particular, the definition of [(∙) is modified to include the PDF for load 

demand [%(∙) and wind generation [?(∙) during the lead time 

 [(f) = ["(f")[%(ï%)[?(ï?) (2.26) 

where, ï% and ï? are the continuous random variable for load demand and wind generation, 

respectively, during the lead time, and f = [f", ï%, ï?]. The definition of w(f) is also modified 

as 

 w(f) = f"(!")@ − ï% + ïA (2.27) 

where !" = g6!, 60, … , 6#$h represents the vector of capacities of a single generating unit at 

different generating stations. For simplicity, in this work, [%(∙) and [A(∙) are modeled using 

Gaussian distributions centered at the load demand forecast and wind generation forecast, 

respectively. However, it should be noted that, unlike certain IS techniques, there is no restriction 

on the choice of [%(∙) and [?(∙). 

Figure 2.5 pictorially represents the FEGS approach when only the load uncertainty is 

considered. Notice that the final level is always set to zero in this case. 
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Figure 2.5 Pictorial representation of FEGS with load uncertainty 

2.6 Results 

The efficacy of the proposed FEGS approach for short-term reliability evaluation of wind-

integrated power systems is numerically demonstrated. The 24-bus IEEE RTS is employed, which 

has a total generation capacity of 3,405 MW. The fixed sample size % in Algorithm 2.1 is set 

between 10,000 to 150,000. Higher values of % are used when the estimated short-term reliability 

indices are expected to have lower values. The lead time is set to 2 hours. All simulations are 

performed on a personal computer with a 3.40 GHz Intel® Core i7-4770 CPU and a 16 GB RAM. 

MATLAB is used to implement the proposed framework. 

2.6.1 Demonstrative Case 

In this section, the computational efficiency of the proposed FEGS approach over CMCS is 

demonstrated. The other variants of importance splitting are not employed for comparison as they 

are not applicable for the non-Markovian setting of our problem. The stopping criteria for CMCS 

is based on RE and is set to 10%. Table 2.2 compares the computational performance of the two 

approaches. %5 represents the number of times w(f) is evaluated. Higher %5 corresponds to higher 

computational time. As it is evident from Table 2.2, the proposed FEGS approach achieves 

superior computational performance compared to the CMCS. Moreover, the computational 
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superiority of FEGS over CMCS increases significantly with the decrease in the short-term 

reliability index. In Table 2.2, the slight deviation between the reliability indices estimated by the 

two approaches is due to the fact that an RE of 10% is used in CMCS estimations. 

Table 2.2 Computational performance of FEGS-MCS vs. CMCS 

Load (2) (MW) 
CMCS FEGS-MCS 

Risk  (10,B) %5 Risk (10,B) %5 

3100 540.31 21,500 561.24 23,000 

3000 2.4964 431,400 2.3724 33,020 

2900 7.1920 1,220,700 7.4240 35,568 

2850 3.4896 3,250,800 3.2005 34,238 

2700 1.7853 5,000,000* 1.7018 39,903 

* Maximum number of evaluations for MCS was reached and RE was 13%. 

2.6.2 Impact of Load Uncertainty 

In this section, the uncertainty of load during the lead time is also considered. The load demand 

forecast value is set to 2,850 MW. Table 2.3 shows the short-term reliability indices for different 

standard deviations of the Gaussian distribution for load demand. As expected, the results indicate 

that the increase in uncertainty corresponds to lower short-term reliability and higher short-term 

risk. A comparison of Table 2.2 with Table 2.3 indicates an increase in computational burden when 

load uncertainty is included. 

Table 2.3 Short-term reliability indices considering load uncertainties 

Standard Deviation (% of 

load) 

FEGS-MCS 

Risk (10,B) %5 

0.1 3.5344 97,736 

0.5 3.9089 95,374 

1  5.5137 92,131 

2 6.6393 81,337 

3 17.7350 88,510 

5  82.407 77,961 
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2.6.3 Impact of Wind Generation Uncertainty 

In this section, the impact of both load and wind generation uncertainty is studied. The standard 

deviation for load uncertainty is fixed to 0.1% of the forecast load demand. The standard deviation 

for wind generation PDF is set to 10% of the forecast value. Two cases are considered. 

Case A: A wind farm is committed and a 155 MW generating station at bus 15 is de-committed. 

Case B: Only conventional generators are committed and wind generation is not used. 

Table 2.4 reports the results for this case study. The results indicate that, when wind generation 

with a forecast value of 155 MW is committed, the short-term reliability of the generation system 

drops. Although the maximum generation capacities of the system for both cases are identical, the 

uncertainty associated with wind generation increases the risk of load curtailment, thereby 

reducing the short-term reliability. However, at higher wind generation forecast values, the short-

term reliability improves due to additional available generation capacity. These observations 

highlight the importance of considering wind generation uncertainties in short-term reliability 

evaluation. 

Table 2.4 Short-term reliability indices considering wind generation 

Case 
Wind Generation Forecast 

155 MW 200 MW 300 MW 

Case A 4.8159 × 10,B 2.0071 × 10,B 1.0817 × 10,B 

Case B 3.5344× 10,B 

2.7 Conclusion 

In this chapter, the mathematical foundations of operational reliability and risk assessment of 

power systems are presented. The drawbacks of existing analytical and simulation techniques are 

then analyzed. Afterward, a new approach for short-term reliability evaluation of generating 

systems based on importance splitting is proposed. The proposed approach employs FEGS, which 

is a computationally efficient MCS technique. A discrete version of component-wise MH-MCMC 

is presented to implement the FEGS approach. The results have shown the computational 

superiority of the proposed approach over CMCS. Further simulation results have indicated the 
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impact of uncertainties of load and wind on short-term reliability indices. The method developed 

in this work could be utilized by power system operators for risk-informed decision-making during 

system operation, such as during UC and ED. 
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Chapter 3  
A Hybrid Framework for Short-Term Risk Assessment 

of Wind-Integrated Composite Power Systems1 

3.1 Abstract 

In this chapter, a new framework for the short-term risk assessment of wind-integrated 

composite power systems via a combination of an analytical approach and a simulation technique 

is proposed. The proposed hybrid framework first employs the area risk method – an analytical 

approach, to include the detailed reliability models of different components of a power system. In 

this regard, a novel reliability modeling approach for wind generation for short-term risk 

assessment is also proposed. Thereafter, a NSMCS technique is adopted to calculate the partial 

risks of the area risk method. As a result, the proposed framework is also capable of including the 

contingencies and constraints of the transmission system that are customarily neglected in the area 

risk method. The computational performance of the proposed framework is greatly enhanced by 

adopting the IS technique whose parameters are obtained using the CE optimization. Case studies 

performed on a modified 24-bus IEEE RTS validate that the detailed reliability modeling of wind 

generation and consideration of the transmission system are necessary to obtain more accurate 

short-term risk indices. Furthermore, the computational performance of the proposed framework 

is many orders higher than any other comparable methods.  

 
1 © 2019 IEEE. Reprinted without modifications and with permission from: O. A. Ansari, and C. Y. Chung, “A 

hybrid framework for short-term risk assessment of wind-integrated composite power systems,” IEEE Trans. Power 
Syst., vol. 34, no. 3, pp. 2334-2344, May 2019 [85]. 
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3.2 Introduction 

The successful transition from the deterministic reliability criterion developed for traditional 

power systems to the probabilistic methods for modern, renewable-integrated smart grids 

necessitates the development of both long- and short-term risk assessment methods. Long-term 

risk assessment methods have been the subject of research for many decades and have been 

successfully developed and applied in the electric power industry for power systems planning 

problems [20], [17]. However, these methods are not applicable to short-term risk assessment 

during power systems operation owing to two main reasons. First, the long-term risk assessment 

methods assume the failure probabilities of power systems’ components to be independent of time 

and operating conditions. Second, these techniques do not take into account the decisions taken 

during the power systems operation, e.g., in UC and ED, while evaluating the risk. Yet, the power 

systems operators require short-term risk indices to schedule sufficient operating or spinning 

reserve to account for unplanned contingencies and unexpected variability in generation and load 

in the coming hours [43].  

The PJM method, first proposed in the mid-1960s, is one of the earliest and simplest methods to 

assess short-term risk for a generating system [43]. The basic PJM method aims to evaluate the 

probability of a generating system to just meet or fail to meet the expected load during the time in 

which no additional generation is available. This time is also known as the lead time, and the 

probability is called the unit commitment risk. Several authors have extended the basic PJM 

method to consider rapid-start generating units [17], load uncertainty [20], [17], wind generation 

[23], [46], [69], energy storage [27], [48], and electric vehicles [49] in the evaluation process. 

Nonetheless, as an essentially analytical approach, the basic PJM method and its variants suffer 

from two major drawbacks. First, these methods involve state-enumeration techniques whose 

complexity increases exponentially with the number of power system’s component that are 

included in the evaluation process [20]. Second, analytical methods often incorporate certain 

simplifications to make the evaluation process tractable. For instance, higher-order contingencies 

[70] or lower probability events, such as failures of multiple transmission lines in a short time 

period, are neglected.  Because of these reasons, the transmission system’s contingencies and 

constraints might not be incorporated in a straightforward manner. Consequently, the effect of the 
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transmission system on short-term risk might not be conveniently assessed. Ergo, the bus- or load-

point short-term risk indices might not be evaluated. 

To address the abovementioned limitations, some authors recently proposed simulation-based 

approaches. In [55], the short-term risk of a composite power system is evaluated using NSMCS. 

The extremely poor computational performance of MCS for very low failure probabilities is 

mitigated by employing an IS technique. Reference [56] extends the work in [55] to consider 

renewable generation using quasi-sequential MCS. The variability in the output of renewable 

generation is modeled using some fixed scenarios, each having same occurrence probabilities. In 

[57], a state-transition sampling based MCS is employed to compute the short-term risk indices of 

a composite power system. IS is also utilized to improve the computational speed of the MCS. In 

[71], IS is applied to sequential MCS to consider the chronology of failure events in the short-term 

risk assessment. A bi-level optimization model is proposed in [59] to assess the short-term risk of 

a transmission system, while neglecting the outages of the generators. In [72], the credibility theory 

is applied to model the failure probabilities of power systems’ components under different weather 

and operational conditions. Then, the short-term risk is evaluated considering the proposed fuzzy 

model of failure probabilities. In [68], the computational performance of NSMCS for risk 

assessment is improved using the subset simulation. Despite the worthy contributions of these 

works, renewable sources, particularly wind generation, are either not considered at all [55], [57], 

[71], [59], [72] or insufficiently modeled [56], [68]. However, the uncertainty introduced by highly 

variable renewable sources coupled with the limitations of the transmission system can have a 

measurable impact on the short-term risk of composite power systems. 

Analytical approaches can allow for detailed reliability modeling of wind generation in short-

term risk assessment [23], [46], whereas simulation techniques are robust and can consider the 

transmission system as well as different operational characteristics of a power system [55], [71]. 

The purpose of this work is therefore to propose a hybrid framework that makes use of the 

aforesaid advantages of analytical and simulation techniques to duly evaluate the short-term risk 

of a wind-integrated composite power system.  

To suitably assess the impact of wind generation on short-term risk, a novel reliability modeling 

approach for wind generation is first proposed. The proposed modeling approach employs 

conditional probability distributions of wind speed, conditional probabilities, and the law of total 
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probability to effectively model the probable variations in the output of wind generation during 

the lead time. The area risk method, which is an extension of the basic PJM method, is then 

modified and extended to include the proposed reliability modeling approach. 

 Thereafter, the modified area risk method is innovatively amalgamated with the NSMCS to 

calculate the partial risks of the area risk method. NSMCS is selected because the requirements for 

computational memory and reliability data for the NSMCS are lower than other MCS techniques. 

To improve the computational performance of the proposed framework, the IS technique is applied 

to the NSMCS. In addition to the generators and transmission lines, the IS technique is directly 

applied to the wind speed distributions for wind generation. The parameters of the IS technique 

are obtained using iterative CE optimization, which is one of the most widely adopted methods to 

obtain the near-optimal IS parameters [63], [73].  

The proposed framework is applied to a modified IEEE RTS to indicate its effectiveness in 

efficiently computing the short-term risk indices of a wind-integrated composite power system. 

The short-term risk indices are also evaluated for the commitment schedules obtained from the 

DAUC program to show its application in power systems operation.  

The main contributions of this work are as follows:  

1. A novel hybrid framework for short-term risk assessment is proposed. The framework 

exploits the advantages of the area risk method and NSMCS to suitably assess the short-term risk 

of wind-integrated composite power systems. The proposed framework can also evaluate the bus- 

or load-point indices. 

2. To obtain accurate short-term risk indices, a new reliability modeling approach for wind 

generation is also proposed. This approach effectively models the uncertainty of wind generation 

in the operational domain through conditional distributions. Additionally, the area risk method is 

modified to include the proposed reliability modeling approach. 

3. The computational speed of the proposed hybrid framework is greatly enhanced by 

adopting the CE-based IS technique for NSMCS. The IS technique is also applied to the 

conditional distributions of wind speed. 
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3.3 Preliminaries of the Area Risk Method 

The area risk method, which is an extension of the basic PJM method, was first proposed to 

consider rapid start generating units in the evaluation of short-term risk [17]. The area risk method 

divides the given lead time into several sub-periods, and the partial risk in each sub-period is 

obtained using the basic PJM method. The summation of these partial risks gives the overall short-

term risk for a given lead time. Consequently, the area risk method can consider the varying 

operational states of a power system within a lead time. As an example, Figure 3.1 pictorially 

depicts the area risk method for a given lead time that is divided into three sub-periods. Note that 

this representation only portrays the area risk method and does not necessarily represent the actual 

short-term risk indices.  

 

Figure 3.1 Pictorial representation of the area risk method. )9 represents the initial hour. )C, )0C, 

and );C	represent one, two, and three hour(s), respectively, after the initial hour. 

After dividing the lead time into appropriate sub-periods, the next step is to obtain suitable 

reliability models of different components of a power system for each sub-period of the area risk 

method. 

3.3.1 Conventional Generators Modeling 

Reliability modeling of conventional generators for short-term risk assessment is based on the 

assumption that the lead time is sufficiently short to ignore any repair processes [17]. Therefore, 

the probability of a generating unit on outage, also known as the ORR, is given by the following 

exponential distribution: 
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 <qq$ = 1 − d,-#/ ≈ e$U,						∀S ∈ {1,… ,%"}, (3.1) 

where each generating station S consists of %E identical generating units with <qqF, eF is the 

failure rate in failures per hour of a generating unit in generating station S, U is the lead time, and 

%"	is the total number of generating stations in the power system. Note that because of its 

memoryless property, the exponential distribution inherently models the dependence of a random 

variable (in this case, time to fail U) between the sub-periods [42]. In other words, the failure time 

of a generating unit in a certain sub-period is dependent on the generating unit’s outage history in 

the previous sub-periods. 

3.3.2 Transmission Lines Modeling 

In the original area risk method and its variants [23], [46], [48], [49], [69], the transmission 

system is generally ignored. However, transmission line outages coupled with line flow limits 

might also result in load curtailment, which contributes to the short-term risk. Therefore, in this 

work, the transmission system is taken into account for accurate short-term risk evaluation. The 

inclusion of transmission system also allows for the calculation of bus-point indices. Similar to the 

modeling of conventional generators, the repair process is ignored and the exponential distribution 

is assumed. Consequently, the transmission lines are also modeled using ORR. For a line	j: 

 <qq& = 1 − d,-'/ ≈ e&U,						∀j ∈ {1, … , %%}, (3.2) 

where e& is the failure rate in failures per hour of transmission line j and %% is the total number of 

transmission lines. 

3.4 Proposed Reliability Modeling of Wind Generation 

Aptly modeling the variability of wind generation during the lead time is vital to precisely assess 

the short-term risk of a wind-integrated power system. The wind generation fluctuates with the 

wind speed that is highly irregular and variable. Hence, a single ORR, as used for conventional 

generators, cannot represent the wind generation’s capacity outages in short-term risk assessment 

methods.  

One approach to modeling the wind generation is through the probabilistic modeling of wind 

speed during the lead time. The wind speed in a short future time period strongly depends on the 
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initial wind speed at the start of that time period. This observation has been adopted in [23] and 

[46]. In particular, [46] obtains the conditional PDFs of wind speed for different sub-periods in the 

lead time for a given initial wind speed at the start of the lead time ()9	in Fig. 1). The initial wind 

speed at )9 is deterministically known, along with other operational statuses during power systems 

operation. The conditional PDFs are then converted to wind power PDFs using the wind turbine’s 

power curve. Figure 3.2 represents these conditional PDFs of wind speed for a given initial wind 

speed at )9	in different sub-periods for an actual wind farm site. In this approach, the initial wind 

speeds at the start of subsequent sub-periods (i.e., at )Cand )0C) are ignored. 

 

Figure 3.2 Conditional PDFs of wind speed in different sub-periods for a single initial wind 

speed at	)9. 

 

Figure 3.3 Conditional PDFs of wind speed in different sub-periods for different initial wind 

speeds at the start of those sub-periods. 

Due to the highly volatile nature of wind speed, considering only a single wind speed PDF during 

each sub-period might not truly capture its spasmodic variations. Also, the wind speed PDFs 
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during different sub-periods can be poles apart depending on the initial wind speeds at the start of 

the respective sub-periods. In other words, the wind speed PDFs during different sub-periods 

should be conditional on the initial wind speed at the start of the respective sub-periods, and not at 

the start of the lead time. Figure 3.3 illustrates the abovementioned statements. For the second sub-

period B (!C- !0C), the conditional PDFs of wind speed for three arbitrarily chosen initial wind 

speeds (low, 10 km/h; medium, 20 km/h; high, 30 km/h) at the start of the second sub-period (!C) 

are shown. A comparison with Figure 3.2 shows that the conditional PDFs of wind speed in the 

second sub-period are markedly different from the one obtained by assuming a single initial wind 

speed at the start of the entire lead time. Similar conclusions can be drawn about the conditional 

PDFs of wind speed in the third sub-period C (!0C- !;C). Hence, the conditional PDFs of wind 

speed in a sub-period must consider the probable initial wind speeds at the start of that sub-period. 

These probable initial wind speeds at the start of a sub-period, in turn, depend on the conditional 

PDF in the preceding sub-period. 

To understand the impact of different modeling approaches of PDFs on the risk assessment, first, 

the risk is generally defined as follows [63]: 

 q3Ö9 = sl(t)ò(t)ut, (3.3) 

where, l(∙) is a test function and will be explained later. ò(∙) is the joint PDF of a random vector 

f. For composite power systems, 

 ò(f) = ["(fG)[%(fH)[IJK(fL), (3.4) 

where, ["(fG) is the PDF for random vector fG, which represents the number of available 

generating units in each generating station, [%(fH) is the PDF for random vector fH representing 

the availability of transmission lines, and [IJK(fL) is the PDF for random vector of wind speed 

fL in a period P. Note that f = [fG, fH, fL]. ["(fG) and [%(fH)  can be calculated using (3.1) 

and (3.2), respectively. From (3.3) and (3.4), it is clear that the choice of PDFs directly affects the 

risk indices. Hence, a more precise determination of [IJK(fL) will expectedly result in more 

accurate risk indices. 

Now using the above notation, according to [46], 
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 [M
JK(ôM) = [M|O

JK(ôM|ôO),		[4JK(ôM) = [4|M
JK(ôM|ô4), (3.5) 

where,		[M|OJK(ôM|ôO) is the conditional PDF for sub-period B given a PDF for sub-period A, and 

[4|M
JK(ôM|ô4) is the conditional PDF for sub-period C given a PDF for sub-period B. In other words, 

(3.5) implies that the PDFs for sub-periods B and C are assumed to be independent of the PDFs 

for sub-periods A and B, respectively. This independence assumption indicates the lack of 

information about the model. 

As shown in Figure 3.3 and its corresponding discussion, a more reasonable approach is to model 

the PDFs for sub-periods B and C, considering their dependence on the PDFs for sub-periods A, 

and B, respectively. By the law of total probability, these PDFs can be obtained as 

 [M
JK(ôM) = s [M|O

JK(ôM|ôO)[PJK(ôO)uôO
Q

,Q

, (3.6) 

 [4
JK(ô4) = s [4|M

JK(ô4|ôM)[RJK(ôM)uôM
Q

,Q

, (3.7) 

In this work, a systematic approach based on probabilistic techniques, is proposed to consider 

(3.6) and (3.7) for the short-term risk assessment. In what ensues, the proposed approach is 

explained by considering a lead time of 3 hours as an example. For a specific power system, the 

actual determination of a suitable lead time depends on the start-up times of rapid-start generating 

units [43]. Also, as an example, the lead time is divided into three hourly sub-periods. Note that 

the choice of hourly sub-periods is motivated by the typical one-hour intervals considered in the 

UC programs. However, the systematic approach presented here is generally applicable to any 

length of lead time and for any number of sub-periods. 

Referring to Figure 3.1, as a first step, using the known initial wind speed (ôSTS,O) at the start of 

the lead time, i.e. at the start of sub-period A, the conditional PDF of wind speed for sub-period 

A, [OJK(ôO), is obtained using Algorithm 1. In Algorithm 3.1, for	[OJK(ôO), the given hour is )9 

and the ℎth hour is	)C. 

Algorithm 3.1 Algorithm for Wind Speed Conditional PDFs 
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Input: Mean and standard deviation of historical hourly wind speeds, ARMA series of wind 

speed, and initial wind speed of a given hour  

Output:  Conditional Weibull PDF of wind speed for the next ℎth hour 

1: Simulate the ARMA series of wind speed using historical hourly wind speed data for a 

large number of simulation years Ν (~5000 – 10,000 years) [23], let Λ be the set of 

simulated wind speed values, then Λ = ^ôU
/,V_, U ∈ {1, … , 8760}, ü ∈ {1, … , Ν}, where 

ôs
X,Y is the simulated wind speed in hour U and year ü. 

2: Define an interval Δô (e.g., 1	km/h)	around the initial wind speed of the given hour 

3: Group all those simulated wind speed values of the next ℎth hour, provided that the 

simulated wind speed values of the given hour lie in the interval around the initial wind 

speed, i.e., Ψ = êôU
:-<C,V: ô9

:- − .Z
0
≤ ôU

:-,V ≤ ô9
:- + .Z

0
ë , ü ∈ {1, … , Ν}, where Ψ	 ⊂ Λ is 

the set of grouped simulated wind speed values ôU
:-<C of ℎth hour, ôU

:- is the simulated 

wind speed values of given hour, ô0
\0 is the initial wind speed at given hour )9 

4: Fit a Weibull PDF to the set Ψ, i.e.,	[CJK(∙	) = Weib(ß, ®), where ß is the scale parameter 

and ® is the shape parameter. 

 

Next, the PDF for the first sub-period A is divided into %]	partitions. The midpoints of these 

partitions are assumed to be estimates of initial wind speeds for the start of sub-period B i.e., at 

)C. These midpoints are obtained using (3.8)–(3.10): 

 c'
O = ôO + 3 aôO − ôOb /%],						∀3 ∈ {1, … , %] − 1}, (3.8) 

 ô(
STS,M =

c(,!
O + c(

O

2
,						∀4 ∈ {2, … , %] − 1}, (3.9) 

 ô!
STS,M =

ôO + c!O

2
,					ô#/

STS,M =
c#/,!
O + ôO

2
, (3.10) 

where c'O and ô(
STS,M are the partitioning points of [PJK(ôP) and the estimated initial wind speeds, 

respectively. ôO and  ôO are the maximum and minimum observed wind speed values of ôO in 

sub-period A, respectively. 
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Each of these estimated initial wind speeds have associated occurrence probabilities that can be 

calculated using (3.11)–(3.13): 

 Ρ]ô(
STS,M` = s [O

JK(ôO)uôO

>0
1

>02"
1

	, (3.11) 

 Ρ]ô!
STS,M` = s [PJK(ôO)uôO,

>"1

9

 (3.12) 

 Ρ]ô#/
STS,M` = s [O

JK(ôO)uôO,

Q

>%/2"
1

 (3.13) 

where Ρ]ô(
STS,M` is the probability of initial wind speed ô(

STS,R. Note that	∑ Ρ]ô(
STS,M`#/

(*! = 1. 

Figure 3.4 depicts these estimated initial wind speeds using the conditional PDF of wind speed 

for sub-period A with	%] = 3. For this case, these three initial wind speeds might correspond to 

low, medium and high initial wind speed scenarios, having corresponding occurrence probabilities 

as illustrated by the shaded region in the figure.  

 

Figure 3.4 Partitioning of the conditional PDF of wind speed 
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Now, for each of these estimated initial wind speeds, conditional PDFs of wind speed for sub-

period B are obtained using Algorithm 3.1. In this case, the initial hour is set to the start of sub-

period B (!C) and the ℎth hour is set to the end of sub-period B	(!0C). As a result, a total of %] 

conditional PDFs ({[M,!JK, … , [M,#/
JK }) are obtained that represent the variability of wind speed for 

this sub-period. This statement can be interpreted as follows. As the uncertainty of wind speed 

increases with future time, multiple PDFs are employed to represent this increased uncertainty. 

Moreover, each of these conditional PDFs also have occurrence probabilities given by (3.11)–

(3.13). 

By following a similar approach, the estimates of initial wind speed at the start of sub-period C 

(ô(
STS,4) can be obtained by further dividing each of the 	%] conditional PDFs of sub-period B into 

%] partitions. However, this division would result in 	%] × 	%] estimates of initial wind speed 

and conditional PDFs for sub-period C, thereby requiring 	%] × 	%] computations of partial risks. 

To circumvent the problem of high computational burden and intractability, first a surrogate 

conditional PDF of wind speed for sub-period B is estimated using the initial wind speed at the 

start of sub-period A via Algorithm 3.1. Afterward, this surrogate conditional PDF is divided 

into	%] partitions resulting in	%] estimated initial wind speeds for the start of sub-period C. Then, 

the conditional PDFs of wind speed for sub-period C ({[4,!JK, … , [4,#/
JK }) are obtained using these 

estimated initial wind speed values via Algorithm 3.1. As a result, the conditional PDFs for sub-

period C are still dependent on the initial wind speeds at the start of sub-period C, while the number 

of conditional PDFs remains 	%]. The whole process can be repeated for any number of sub-

periods of the area risk method and for any	%] > 1. 

3.5 Proposed Risk Assessment Framework 

In this section, the proposed framework for the short-term risk assessment of wind-integrated 

composite power systems is explained. The key ingredients of the proposed framework are the 

modified area risk method considering the proposed reliability modeling of wind generation and 

the IS-based NSMCS. The short-term risk index considered in this chapter is the probability index, 

i.e., the probability of load curtailment. Nonetheless, the framework can be easily extended to 

evaluate other risk indices, such as expected power not supplied and expected number of load 

curtailments. 
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3.5.1 Modified Area Risk Method 

The area risk method needs to be adapted to consider the proposed reliability modeling of wind 

generation. Note that, for each sub-period B and C, %] partial risks, corresponding to %] 

conditional PDFs of wind speeds, must be evaluated. Also, because each of these	%]	partial risks 

represent disjoint events, the law of total probability can be applied to obtain the net partial risks. 

For sub-periods B and C, the net partial risks are given by (3.14)–(3.15), and the total risk is then 

evaluated by (3.16): 

 qM =Z Ρ]ô(
STS,M`

#/

(*!
∙ 6q(

M − qO, (3.14) 

 q4 =Z Ρ]ô(
STS,4`

#/

(*!
∙ 6q(

4 − qM, (3.15) 

 q = qO + qM + q4, (3.16) 

where 6q(M is the partial risk in sub-period B considering the 4th conditional PDF of wind speed 

ôM. Similarly, 6q(4 represents the partial risk in sub-period C considering the 4th conditional PDF 

of wind speed	ô4. qO, qM, and q4 are the net partial risks for sub-periods A, B, and C, respectively. 

q is the total risk for the entire lead time. Equations (3.14) and (3.15) can be viewed as discrete 

approximations to (3.6) and (3.7), respectively. Fig. 5 pictorially represents the modification to the 

area risk method for %] = 3. 

 

Figure 3.5 Integrating the proposed reliability modeling of wind generation in the area risk 

method 
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3.5.2 Evaluation of Partial Risks via CE-MCS 

The routinely employed approach to evaluate the partial risks in the area risk method is to use a 

capacity outage probability table (COPT), which is, in essence, an analytical method. As 

mentioned in the Section 3.2, analytical methods are not appropriate for composite power system 

risk assessment. Therefore, a more prudent approach is to employ a simulation technique such as 

NSMCS. Simulation techniques are robust to system size and can also consider a wide range of 

operational characteristics. Therefore, this work proposes a fusion of the area risk method with 

NSMCS to adequately assess the short-term risk of a composite power system. 

Using crude NSMCS, the 4th partial risk for any sub-period P can be evaluated as 

 6q(
^ =

1
%US_Z l(f`; 2)

#345

`*!
, (3.17) 

where f` = gf`
", f`% , f`

?h, f`" = ™´`! , … , ´`
$	, … , ´`#

$
¨, f`% = ™K`!, … , K`

& , … , K`#
&
¨, and f`? =

[ô`!, … , ô`
J , … , ô`#

6
]. f`" and f`%, are the 9th samples following B(f;Æa, Ø∞∞G) and 

B(f; ±, Ø∞∞b), respectively, where B(∙	;	∙	,∙) stands for the binomial distribution [18]. Ø∞∞G and 

Ø∞∞b are vectors of ORRs for the generating stations and transmission lines, respectively. 

´`
$	represents the number of available generating units in generating station S having a total of %$ 

generating units.	Æa is a vector of the number of generating units %$. K`&  is 1 if line j is available 

and 0 if it is on outage. ô`J 	is the 9th wind speed sample following the 4th conditional PDF of the 

wind speed of wind farm ≤, [̂ ,(
JK,J(f`

?). %? is the number of wind farms.	%US_ is the number of 

samples. Note that qO in (3.16) can also be calculated using (3.17). 

In (3.17), l(f`; 2) is a test function that evaluates whether or not the sample f` leads to load 

curtailment. For the short-term risk assessment of a generating system, 

 l(f`; 2) = L
0 w(f`) ≥ 2
1 w(f`) < 2, (3.18) 

where w(f`)	represents the summation of available generation capacity associated with state f`, 

and 2 is the load. For composite power systems, the definition of w(f`) is modified, as the 

transmission system should also be considered to determine the load curtailment. In this regard, 

the DC representation of transmission system is adopted in this work. The DC-OPF is employed 

to evaluate the load curtailment at each bus for each state f`. If no load curtailment occurs at any 
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bus, w(f`) is the same as that obtained for the generating system. However, if the load curtailment 

is non-zero, w(f`) is given by: 

 w(f`) 	=Z jc
#7

c*!
, (3.19) 

where jc is the load served at bus ® and %M is the total number of buses in the system. jc	is obtained 

using the DC-OPF.  

A fundamental downside of the crude NSMCS is the large computational burden when the 

events to be assessed are rare i.e. for rare event simulation [63]. This is the case in the short-term 

risk assessment as the probability of load curtailment in a short lead time is often very small 

(around ~10-4). Also, because %]	partial risks are required to be evaluated for each of sub-periods 

B and C, the direct application of the crude NSMCS is computationally prohibitive. Hence, in this 

work, the IS technique is applied to improve the computational performance of the crude NSMCS. 

The IS is a variance reduction technique in which the original probability distributions are distorted 

to increase the occurrences of failure events, thereby accelerating the convergence rate of 

simulation. In this case, IS modifies B(∙	; Æa, Ø∞∞G) and B(∙	; ±, Ø∞∞b) to B(∙	; Æa, Ø∞∞G
∗ ) and 

B(∙	; ±, Ø∞∞b∗), respectively. In addition, in this work, the original conditional PDF of the wind 

speed is distorted from [̂ ,(
JK,J(∙)	to	[̂ ,(

JK,J,∗(∙). [̂ ,(
JK,J(∙)	is a Weibull distribution with two 

parameters (ßJ , ®J); however, only the scale parameter (ßJ) is modified. These distorted PDFs, 

also known as the IS densities, are then used to obtain the new samples	fd. The partial risk is then 

evaluated by the following unbiased estimator: 

 6q(
^ =

1
%US_Z l(f`; 2)

#345

`*!
É(f`), (3.20) 

where É(f`) is the likelihood ratio and given by: 

 É(f`) = É"(f`)É%(f`)É?(f`), (3.21) 

 É"(f`) = B(f`
"; Æa, Ø∞∞G)	 B]f`

"; Æa, Ø∞∞G
∗ `µ , (3.22) 

 É%(f`) = B(f`%; ±, Ø∞∞b)	 B(f`%; ±, Ø∞∞b∗)⁄ , (3.23) 

 É?(f`) =i ][̂ ,(
JK,J(f`

?)		 [̂ ,(
JK,J,∗(f`

?)µ `
#6

J*!
. (3.24) 
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Different methods can be employed to obtain the IS densities [63], [73]. The most widely used 

approach is the CE optimization, which minimizes the Kullback-Leibler divergence between the 

optimal IS densities and the approximated IS densities. In this work, the CE optimization is 

adopted to find the IS densities for generators, transmission lines, and wind speed. Interested 

readers are referred to [73] for a detailed discussion on the CE optimization and to [74], [75], [76] 

for its initial application to the long-term risk assessment of power systems. For the sake of 

simplicity, the CE optimization is presented here as Algorithm 3.2, without detailing each step.  

The combination of the CE optimization with NSMCS will be referred to, henceforward, as the 

CE-MCS. 

Algorithm 3.2 CE Optimization 

Input:  Original ORRs of generating units and transmission lines, Weibull PDF of wind speed and 

load 2 

Output: Distorted ORR of generating units and transmission lines, and distorted Weibull PDF of 

wind speed 

1: Set the number of samples for CE optimization (%4e), and other CE parameters ((,	;,	∑_fg) 

2: Obtain the original vectors of ORRs and [̂ ,(
JK,J(∙) 

3: Set iteration counter ∑ = 1, Ø∞∞Gh = Ø∞∞G,	Ø∞∞bh = Ø∞∞b, and [̂ ,(
JK,J,i(∙) = [̂ ,(

JK,J(∙)	 

4: for ∑ = 1 to ∑ = ∑_fg do 

5: Obtain samples f> = gf>", f>% , f>?h, where c = {1,… ,%4e}, following B(∙	; Æa, Ø∞∞G
h), 

B(∙	; Æa, Ø∞∞b
h), and [̂ ,(

JK,J,i(∙) 

6: Evaluate the performance function w(f>) and arrange w(f>) in ascending order, i.e., 

w[1] ≤ 	w[2] ≤ ⋯ ≤ w[%4e] 

7: if (wg∏(%4eπh ≥ 2), set  2i∫ = wg∏(%4eπh else set 2i∫ = 2 

8: Evaluate the test function l(f>; 2i∫) for all c 

9: Calculate	É"]f>`,	É%]f>`, and ÉA]f>` using (5f)–(5h), also calculate É]f>` using 

(5e), for all c 

10: Calculate the distorted ORRs and scale parameter: 

<qq$i<! = ; ª1 −
1
%$

∑ l(f>; 2i∫)#)8
>*! É]f>`´>

$

∑ l(f>; 2i∫)#)8
>*! É]f>`

º + (1 − ;)<qqEi 
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<qq&
i<! = ; ª1 −

∑ l(f>; 2i∫)#)8
>*! É]f>`K>&

∑ l(f>; 2i∫)#)8
>*! É]f>`

º + (1 − ;)<qq&
i 

ßJi<! = ª
∑ l(f>; 2i∫)#)8
>*! É]f>`]ô>J`

c9

∑ l(f>; 2i∫)#)8
>*! É]f>`

º

!/c9

 

 

11: if 2i∫ = 2, break the for loop 

12: Set Ø∞∞G∗ = Ø∞∞G
h,	Ø∞∞b∗ = Ø∞∞b

h, and [̂ ,(
JK,J,∗(∙) = [̂ ,(

JK,J,i(∙) 

 

3.5.3 Overall Framework 

The complete hybrid framework for the short-term risk assessment of wind-integrated composite 

power systems is given in Figure 3.6. The first step of the framework involves determining the 

committed generating units through a UC program. Then, the modified area risk method is utilized 

and the partial risk for the first sub-period is obtained using the CE-MCS presented in Section 

3.5.2. Thereafter, %] partial risks are evaluated using (3.20) for each subsequent sub-period. 

Finally, the total risk is evaluated using (3.16). Note that the parallel computational techniques can 

be applied to calculate the partial risks for all sub-periods at the same time. To this end, the 

framework in Fig. 6 can be slightly modified. The step for calculating the net partial risks ((3.14) 

and (3.15)) after evaluating partial risks for all conditional PDFs for a sub-period can be deferred, 

and the partial risks for all sub-periods can be calculated first. This allows steps in the larger grey 

rectangles in Figure 3.6 to be run on separate cores of a PC at the same time. 

With regard to the evaluation of bus-point indices, the only modification required to the proposed 

framework is a change in the definition of test function	l(f`; 2). In this case, l(f`; 2) must be 

defined for each bus in the power system as follows: 

 6q(
^ =

1
%US_Z l(f`; 2)

#345

`*!
É(f`), (3.24) 

 lc(f`; 2c) = L
0 jc ≥ 2c
1 jc < 2c

, (3.25) 

where lc(f`; 2c) is the test function for bus ®, 2c is the load demand at bus ®. After defining the 

test function, the rest of procedure is similar, and the partial risk is calculated using: 
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 6q(,c
^ =

1
%US_Z lc(f`; 2c)

#345

`*!
É(f`), (3.26) 

where  6q(,c^  is the partial risk for bus ® in sub-period P considering the	4th conditional PDF of 

wind speed. 

 

Figure 3.6 Proposed hybrid framework for the short-term risk assessment 
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3.6 Case Studies 

In this section, the effectiveness of the proposed framework is demonstrated through some key 

simulations performed on the modified 24-bus IEEE RTS [77]. The original RTS comprises 14 

generating stations with 32 generating units in total, 24 buses, 17 load points, and 33 transmission 

lines. The original RTS is modified by including a 1,000 MW wind farm at bus 14. Also, a 155 

MW conventional generator at bus 16 is removed. For CE optimization, %4e is set between 20,000 

and 50,000, (	is set between 0.01 and 0.05, ; is set to 0.95, and ∑_fg is set to 10. These parameters 

are obtained from [73] and [74]. For the convergence of MCS, the minimum coefficient of 

variation (COV) is set to 2% for the generating system and 5% for the composite power system. 

In all simulations, the lead time is equal to 3 hours and %^ is set to 3. The ARMA series for 

Algorithm 1, along with the wind turbine curve, is obtained from [21]. All studies are performed 

for January 31 from hours 00:00 to 04:00, unless otherwise stated. Note that these specific hours 

are only selected for case studies. As it will be shown later, the proposed framework is generally 

applicable for any time of the day. All simulations are performed on a PC with a 3.40 GHz Intel® 

Core i7-4770 CPU and 16 GB RAM. The proposed framework is implemented in MATLAB 

R2015a, with GUROBI 7.0.2 used as a solver for DC-OPF. 

3.6.1 Demonstrative Case 

To confirm the efficacy of the proposed reliability modeling approach of wind generation, the 

proposed framework is compared with the approaches presented in [23] and [46]. Because [23] 

and [46] do not consider the transmission system, it is ignored in this subsection for the sake of 

comparison. The load is set to the peak value of 2,850 MW, and all 31 generating units are 

committed to supply the load.  

Table 3.1 presents the short-term risk indices for different initial wind speeds at the start of the 

lead time. The short-term risk indices obtained from the proposed framework lie between the ones 

estimated by [23] and [46]. In other words, [46] ( [23]) may overestimate (underestimate) the short-

term risk indices. The aforementioned observation holds for all initial wind speed values. One 

reason for this behavior can be elucidated with the help of Table 3.2, which depicts the mean wind 

speeds and corresponding occurrence probabilities for each sub-period in all three approaches 

when the initial wind speed is 20 km/h. For example, for sub-period B, [46] assumes a mean wind 
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speed of 19.94 km/h with a probability of 100%. However, there is actually a 26.39% chance that 

the mean wind speed during sub-period B is 25.63 km/h. Higher mean wind speeds correspond to 

higher wind generation and, therefore, lower risk indices. On the other hand, [23] assumes a mean 

wind speed of 19.71 km/h for the entire lead time and thus neglects any possible low wind speed 

values that might occur within different sub-periods of the lead time. Hence, the risk obtained by 

[23] is lower. By considering the multiple conditional PDFs during sub-periods B and C, the 

proposed approach accounts for the probable variations in the wind speed and, consequently, in 

wind generation during these sub-periods, thereby resulting in more realistic risk evaluation.  

Table 3.1 Short-term risk for different wind generation modeling methods 

Initial Wind 
Speed Case qO (× 10,k) qM (× 10,k) q4 (× 10,k) q (× 10,k) 

10 km/h 
Proposed 0.5011 1.3768 2.7686 4.6465 

[46] 0.5011 1.9990 4.2676 6.7677 
[23] - 4.2690 

20 km/h 
Proposed 0.2630 0.9939 1.7637 3.0206 

[46] 0.2630 1.2337 2.8485 4.3452 
[23] - 2.7855 

30 km/h 
Proposed 0.0384 0.2735 1.1404 1.4523 

[46] 0.0384 0.2782 1.2073 1.5239 
[23] - 1.2634 

 

Table 3.2 Mean wind speed during different sub-periods 

Case Period A (km/h) Period B (km/h) Period C (km/h) 

Proposed 21.15 (1) † 
12.05 (0.1290) 12.43 (0.2434) 
18.72 (0.6071) 20.55 (0.6058) 
25.63 (0.2639) 27.93 (0.1508) 

[46] 21.15 (1) 19.94 (1) 19.71 (1) 
[23] 19.71 (1) 

 

To further investigate the accuracy of the proposed reliability modeling approach, the regression 

analyses between wind generation values of different sub-periods are exhibited in Figure 3.7. A 

close scrutiny of Figure 3.7 reveals two important insights. Firstly, the linear regression models in 

sub-periods B and C are evidently different when the initial wind power (or initial wind speed) at 

the start of the respective sub-periods (i.e., at )C, and	)0C, respectively) are considered. This 

observation reinforces the point made in Section 3.3 that the wind speed PDFs of sub-periods 
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should be conditional on the initial wind speeds at the start of respective sub-periods. Secondly, 

compared to Figure 3.7(a) and Figure 3.7(b), the linear regression models in Figure 3.7(c) and 

Figure 3.7(d), respectively, indicate higher wind generation in those sub-periods. The higher wind 

generation will expectedly result in lower probabilities of load curtailment. As a result, the short-

term risk indices obtained using the proposed approach are lower than those calculated from [46] 

in Table 3.1 

 

 
Figure 3.7 Regression analyses, (a), (b): using the approach of [46], and (c), (d): using the 

proposed approach 

 

3.6.2 Computational Performance 

 
From the power system operators’ perspective, the computational speed of short-term risk 

assessment framework is of great importance in order to make timely risk-informed decisions. 

Ergo, in this subsection, the computational speed of the proposed framework is examined. For a 

COV of 2%, crude NSMCS would require nearly ~108 samples to evaluate the risk which is on the 
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order of ~10-4 [54]. This means one complete risk evaluation for the entire lead time would require 

approximately ~7×108 samples. This, in turn, would result in extremely large computational times. 

Therefore, to compare the computational performances of the CE-MCS with the crude NSMCS 

within a suitable simulation time, the system is made less reliable by removing a 155 MW 

conventional generator at bus 15 and assessing the short-term risk indices of the resulting 

generating system. For this modified system, Table 3.3 compares the computational performances 

of the crude NSMCS against the CE-MCS, while considering the initial wind speed of 20 km/h. 

The computational performance of the CE-MCS is several orders higher than that of the crude 

NSMCS. The poor performance of the crude NSMCS is due to very low failure probabilities of 

the power system components during a short lead time. 

Table 3.3 Computational performance of CE-MCS vs. Crude NSMCS 

Case Metric Period A Period B Period C Total 
CE-

MCS 
Risk (× 10,;) 2.0373 2.2227 3.8679 8.1279 

Time (s) 0.52 3.28 48.03 51.83 
Crude 
NSMC 

Risk (× 10,;) 2.0467 2.1426 4.1050 8.2943 
Time (s) 5804.26 7872.21 7040.96 20717 

 

3.6.3 Composite Power System Risk Indices 

The results presented in Sections 3.6.1 and 3.6.2 clearly establish the superiority of the proposed 

framework, both, in terms of the proper modeling of wind generation and very high computational 

performance, over existing methods. In this subsection, we turn our attention to the short-term risk 

assessment of a wind-integrated composite power system. The contingencies in the transmission 

system and the line flow limits are now considered. The conditions of RTS are the same as for 

Table 3.1. The initial wind speed is set to 20 km/h. Table 3.4 summarizes the short-term risk 

indices for different capacities of the transmission system. A comparison of Table 3.1 with Table 

3.4 indicates that the short-term risk indices are expectedly higher when the transmission system 

is included in the assessment. Interestingly, the transmission system’s capacities significantly 

affect the short-term risk indices. With lower transmission capacities, the short-term risk indices 

are measurably higher. The varying capacities of the transmission system may correspond to the 

situation of weather-dependent transmission line ratings. Hence, through the proposed framework, 

power system operators can also recognize the indirect impacts of weather on short-term risk 
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indices. On comparing Table 3.3 with Table 3.4, it can be observed that the computational time 

increases when the transmission system is considered. This is due to the DC-OPF analysis which 

is performed for each contingency state for composite systems. 

Table 3.4 Short-term risk of composite power system 

Capacity  Metric Period A Period B Period C Total 

100 % Risk (10,k) 0.2536 0.9387 2.0397 3.2320 
Time (s) 91.56 378.49 324.75 794.80 

90 % Risk (10,;) 0.2832 0.9798 1.1557 2.4187 
Time (s) 70.60 354.36 450.81 875.77 

80 % Risk (10,;) 0.4510 1.1156 1.3384 2.9050 
Time (s) 72.66 314.00 246.90 633.56 

 

Figure 3.8 is a heat map for the short-term risk at different bus-points when the transmission 

capacity is 100%. Some buses do not experience any load curtailment and the short-term risk 

indices at those buses are zero. Also, one can conclude that, from the point of view of short-term 

risk, bus 18 has the highest risk of load curtailment for these particular hours. Power system 

operators can utilize such information to provision bus-specific preventive actions. One such 

action involves re-dispatching the nearby generating units or committing additional units to 

minimize the risk. Note that these bus-point short-term risk indices can only be obtained by 

including the transmission system in the assessment framework 
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Figure 3.8 Heat map for the bus-pint short-term risk indices. This figure is generated using [78]. 

3.6.4 Daily Short-Term Risk Indices 

This section evaluates short-term risk indices for an entire day. The studies are performed for 

April 2 and the historical mean hourly wind speeds of that day are assumed to be the initial wind 

speeds. Fig. 3.9 depicts the total risk for each hour of the day. Interestingly, the total risk is higher 

during off-peak hours as compared to on-peak hours; this is because few generating stations are 

committed to supply the load during off-peak hours. Furthermore, most of these committed 

generating stations comprise only a single unit. Hence, a single generating unit outage might result 

in load curtailment. On the other hand, many generating stations comprising several generating 

units are committed during on-peak hours. Wind generation also peaks during these hours. This 

observation is in stark contrast to the long-term risk assessment, in which the on-peak hours (i.e., 

the peak load) contribute the most to the long-term risk indices. This highlights the importance of 

considering the commitment decisions as well as daily variation in load and generation for short-

term risk assessment. 
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Figure 3.9 Daily short-term risk. Load, wind generation and total committed capacity is scaled 

down by 2000 and shown in MW. Short-term risk is scaled up by 100. Grey dots indicate the 

committed generating units. 

3.6.5 Spinning Reserve Assessment 

In this section, the proposed framework is applied to compare and contrast two deterministic 

criteria for setting the spinning reserve in power system operation. In criterion 1, the spinning 

reserve is equal to the capacity of the largest online generating unit, i.e. the N-1 criterion, and in 

criterion 2, the spinning reserve is set to a certain percentage of load (in this study, 10%)  [79]. 

Figure 3.10 illustrates the short-term risk indices and the spinning reserve for the two criteria. As 

can be seen, for criterion 1, i.e. the N-1, the short-term risk indices are lower compared to criterion 

2. However, the total operational costs are the opposite. For criterion 1, the DAUC costs are $ 

2.4864 M, whereas for criterion 2, the costs are $ 2.0595 M. This shows that the reliability and 

costs compete with each other and that higher reliability comes at increased costs. An interesting 

observation is that, for criterion 1, the spinning reserve remains the same for all hours, however, 

the short-term risk varies noticeably. This observation demonstrates the shortfall of using 

inconsistent deterministic criteria for ensuring the reliability during power system operation. On 

contrary, the power system operators can utilize short-term risk indices to adjust the spinning 

reserve requirements while ensuring the reliability. 
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Figure 3.10 Short-term risk indices for different spinning reserve criteria. 

3.6.6 Sensitivity to the Wind Generation Penetration 

This subsection examines the effects of the penetration of wind generation on the short-term risk 

indices. Figure 3.11 shows that the total risk monotonically decreases with increasing capacity of 

the wind farm. For the first and second sub-periods, which are Period A and Period B, the decrease 

in risk is only marginal. A very slight increase in risk for Period B is observed when the wind farm 

capacity is 1,250 MW. This is due to the fact that the simulated risk indices are obtained within a 

certain range of true, actual values (in this case 5%). For the last sub-period, i.e., Period C, a sharp 

reduction in risk is observed. This observation supports the rationale of utilizing the area risk 

method to evaluate the partial risks and identify the sub-period(s) that contributes to the short-term 

risk. 

 

Figure 3.11 Short-term risk indices for varying capacities of wind generation. The condition of 

RTS are same as that for Table 3.4 (capacity 100%). 
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3.6.7 Sensitivity to the CE Parameters 

This section examines the effect of parameters of CE optimization on the performance of the 

proposed framework. The two most important CE parameters are the number of samples for CE 

optimization %4e , and the multi-level or rarity parameter	( [73]. Table 3.5 shows the short-term 

risk indices and corresponding computational times for different values of %4e and (, for the case 

study of Section 3.6.1. As can be observed, the choice of ( can impact the computational time to 

a certain degree, however, the short-term risk indices remain the same. 

Table 3.5 Effects of %4e and ( 

%4e  Metric ( = 0.01  ( = 0.03 ( = 0.05 

20,000 Risk (10,k) 3.0080 3.0601 3.0402 
Time (s) 21.233 46.80 33.86 

30,000 Risk (10,k) 3.0274 3.0239 3.0565 
Time (s) 16.37 22.88 14.36 

50,000 Risk (10,k) 3.0773 3.0911 3.0481 
Time (s) 13.67 32.18 9.88 

 

3.6.8 Practical Considerations  

As mentioned in Section 3.2 and shown in Section 3.6.4 and Section 3.6.5, power system 

operators can utilize the short-term risk indices to evaluate the reliability of the power system in 

the operational domain. The short-term risk indices calculated using the proposed framework can 

then be used as input to the conventional power system operation methods. One such scheme for 

using the short-term risk indices in power system operation has been discussed in [80]. This 

scheme involves calculating the short-term risk indices after performing the DAUC. Then, the 

spinning reserve constraints are adjusted for those hours which have higher risk indices and the 

DAUC is performed again. This ensures that the short-term risk indices remain below a certain 

pre-defined level for all hours. The proposed framework developed in this framework can easily 

be appended to such schemes. 

3.7 Conclusion 

In this chapter, a hybrid framework for the assessment of short-term risk indices of a wind-

integrated composite power system is proposed. An analytical technique, i.e., the area risk method, 
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is extended to appropriately consider the impact of wind generation on short-term risk indices 

through a new reliability modeling approach of wind generation. The modified area risk method 

is then combined with the CE-MCS, which is an efficient and robust simulation technique, to arrive 

at a novel framework for the short-term risk assessment of composite power systems.  

The case studies performed on the 24-bus IEEE RTS validates the effectiveness of the proposed 

reliability modeling approach as well as the computational superiority of the proposed framework 

compared to existing methods. Further, the impacts of the transmission system and daily unit 

commitment on the short-term risk indices are also explored. Short-term risk indices are 

significantly affected by the transmission capacities and commitment decisions. Finally, the impact 

of wind penetration and CE parameters on the short-term risk indices are examined.
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Chapter 4  
Data-Driven Operational Risk Assessment of Wind-

Integrated Power Systems via Mixture Models and 

Importance Sampling8 

4.1 Abstract 

The increasing penetration of highly intermittent wind generation could seriously jeopardize the 

operational reliability of power systems and increase the risk of outages. Thus, it becomes 

important to realistically evaluate the operational risk indices. To this end, this chapter proposes a 

novel data-driven method for operational risk assessment of wind-integrated composite power 

systems. First, a new approach is presented to model the uncertainty of wind power in the lead 

time. The proposed approach employs k-means clustering and MM to construct time-dependent 

probability distributions of wind power. The proposed approach can also capture the complex 

statistical features of wind power, such as multimodality. Later, an NSMCS technique is adopted 

to evaluate the operational risk indices. To improve the computational performance of NSMCS, 

CE-based IS technique is applied. The CE-IS technique is modified to include the proposed model 

of wind power. The method is validated on a modified 24-bus IEEE RTS and a modified 3-area 

IEEE RTS while employing the historical wind generation data. The simulation results verify the 

importance of accurate modeling of short-term uncertainty of wind power for operational risk 

assessment. Further case studies have been performed to understand the impact of the transmission 

system on operational risk indices. The computational performance of the framework is also 

examined. 

 
8 Reprinted without modifications and with permission from: O. A. Ansari, Y. Z. Gong, W. Liu, and C. Y. Chung, 

“Data-driven operation risk assessment of wind-integrated power systems via mixture models and importance 
sampling,” J. Modern Power Syst. Clean Energy, vol. 8, no. 3, pp. 437-445, May 2020. [34]. 
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4.2 Introduction 

The penetration of wind generation in modern power systems is on the rise. According to a recent 

forecast by Global Wind Energy Council, by 2022, the total global installed capacity of wind 

generation will reach 840 GW – a 42% increase from the current level [81]. This ever-growing 

utilization of wind generation inevitably brings several challenges to power systems. One of the 

critical challenges is to improve and maintain the reliability of power systems and reduce the risk 

of electricity outages. In particular, during power systems operation, the short-term reliability 

would be significantly impacted due to either complete lack of or constrained availability of 

remedial resources amid unexpected variability of wind generation [23], [17], [20]. There is, thus, 

a pressing need to develop frameworks that can accurately assess the short-term or operational risk 

of wind-integrated power systems. These frameworks could then enable power system operators 

to take risk-informed decisions well-ahead of time to mitigate the adverse impacts of wind 

generation on power system reliability.  

The consideration of wind generation in long-term risk assessment of power systems is well-

studied [82], [83], [84]. For instance, in [82] and [83] ARMA series for wind speed are developed 

for reliability studies. Reference [84] formulates capacity outage probability tables while 

considering both the variability of wind speed and the outages of wind turbines. Nonetheless, these 

techniques do not apply to operational risk assessment. The main reason is that the long-term 

reliability models of wind speed and wind power are not appropriate to represent the time-

dependent short-term uncertainty of wind power during power system operation. 

For operational risk assessment of wind-integrated power systems, the existing methods can be 

broadly classified into two main categories: analytical methods and simulation techniques. 

Reference [27] formulates a discrete PDF of wind power using wind speed time series, which is 

then employed in an analytical technique known as the PJM method [17]. In [23] and [46], the 

ARMA series of wind speed is adapted to construct discrete PDFs which are conditioned on initial 

wind speed. These wind speed PDFs are then utilized in the area-risk method which is an extension 

of the PJM method. In [70], the wind speed ARMA series is directly adopted in a contingency-list 

based analytical method for operational risk assessment.  
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Analytical methods have limited applications and are not suitable for operational risk assessment 

of composite generation-transmission systems [20]. In this case, simulation techniques, such as 

MCS, provide an attractive alternative approach for operational risk assessment. In [28] the 

continuous time Markov chain is employed to model the wind speed. Later, the Markov chain is 

used in conjunction with sequential MCS for operational risk evaluation. Reference [56] employs 

quasi-sequential MCS where wind power is modeled using a fixed number of scenarios. The 

computational efficiency of MCS is enhanced by adopting the CE based IS technique. Different 

from pure analytical and simulation methods, in [85] a hybrid framework is proposed. The wind 

speed uncertainty is modeled using multiple conditional Weibull PDFs. Then the area-risk method 

is combined with CE-IS based NSMCS to evaluate the short-term risk indices.  

A common determinant of the existing techniques in [27], [46], [70], [28], and [85] is that either 

discrete or parametric continuous PDFs are employed to model the short-term uncertainty of wind 

speed. There are two key issues with this approach. First, the process of modeling the wind speed 

and later converting it to wind power unavoidably includes the inaccuracy of wind power curve 

[86]. Second, the unimodal PDFs (e.g., Weibull and Gaussian) employed in these studies, are not 

well-suited to model the complicated statistical features of wind speed and wind power [41]. These 

features, which include the multimodality of PDF and temporal correlation, might lead to 

inaccurate short-term risk indices. These two issues will be discussed in depth later.  

To address the problems envisaged previously, in this chapter a new approach is proposed to 

model the short-term uncertainty of wind power for operational risk assessment. First, k-means 

clustering is used to obtain sufficient historical data of wind power for fitting time-dependent 

PDFs. Then for each cluster, MMs are utilized to develop multivariate PDFs, which can capture 

the complicated statistical features of wind power. MMs are semi-parametric probabilistic models 

that can represent arbitrarily complex PDFs with great flexibility. Previously, GMMs have been 

used to model spatial correlation of wind speed in long-term reliability evaluation [87], [88]. 

Researchers have also employed GMMs to model the forecast error of wind power [89] and in 

probabilistic OPF to represent the uncertainty of wind power [33]. In contrast to [87] and [88], in 

this work, GMMs are adopted to construct time-dependent PDFs of wind power for specific hours 

in order to render them suitable for short-term reliability evaluation. The drawback of using wind 

speed data as discussed previously is thus also avoided. Compared to [89] and [33], as the data 
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available for fitting GMMs for specific hours are scarce, this work adopts maximum a posteriori 

(MAP) estimation for GMMs as opposed to maximum likelihood estimation (MLE). This is 

because MLE is susceptible to overfitting and in the case of GMMs, is also prone to singularities 

[90].  

Afterward, using the law of total expectation, an analytical expression for integrating the 

proposed wind power modeling in operational risk assessment is obtained. An NSCMS technique 

is then adopted to evaluate the analytical expression for operational risk assessment. The 

computational speed of the NSCMS is greatly enhanced by employing the CE-IS technique [63], 

[73]. The CE-IS technique is also modified to include the proposed short-term uncertainty model 

of wind power. In particular, a proxy distribution is used to obtain the distorted parameters of 

GMMs. This ensures that the operational indices are evaluated with an acceptable computational 

burden. The proposed data-driven framework is tested on a modified 24-bus IEEE RTS and a 

modified 73-bus 3-area IEEE RTS. The actual wind power data from a wind farm in Spain is 

adopted for probabilistic modeling of wind power.  

In summary, the main contributions of this chapter are: 

1. This chapter presents a novel approach based on k-means clustering and GMMs to 

represent the uncertainty of wind power for operational risk assessment. The proposed approach 

also adopts MAP estimation to obtain GMM parameters, instead of the widely-used MLE 

technique to avoid overfitting and singularities. 

2. Building upon the proposed probabilistic modeling of wind power, this work presents a 

new framework for operational risk assessment. The clustering-based GMM modeling of wind 

power is integrated in the operational risk assessment using the law of total expectation. 

3. A NSMCS technique is adopted to estimate the risk indices. To improve the computational 

performance, CE-based IS is adapted. The CE-based IS is also applied to GMMs of wind power. 

Simulation studies are also performed on two test systems to depict the efficacy of the proposed 

modeling approach and the operational risk assessment framework. 
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4.3 The Preamble of Operational Risk Assessment 

Consider a power system with %" conventional generating stations, %% transmission lines, %?  

wind generating units, and %M buses. To represent the uncertainties arising from the unplanned 

outages of conventional generating units, transmission lines, and wind power at time U, a random 

vector f/ = gf/", f/%, f/?h is defined.  f/" = ™´/!, … , ´/K, … , ´/#
$
¨ where ´/K is the number of 

available generating units in generating station Ö . f/% = gK/!, … , K/& , … , K/#
&
h where K/& represents the 

status of transmission line j ; it is 1 if the transmission line is available and 0 if it is on outage.  

f/? = gS/!, … , S/J , … , S/#
6
h, where S/J is the wind power of wind farm ≤. Using the above 

notation, the risk can be mathematically expressed as the following integral 

 q/ = r[l(f)] = s l(t)[/(t)ut,
2

 (4.1) 

where q/ is the risk index, and	l(∙) is the limit-state function or test function. It will be defined 

later in Section 4.5. [/(∙) is the joint multi-variate PDF of random vector f, Ω is the state space, 

and r[∙] is the expectation operator. t is a particular realization of f. As can be deduced from 

(4.1), the choice of	[/(∙) significantly impacts the risk indices. A more accurate estimation of [/(∙) 

would invariably lead to a more accurate evaluation of the risk indices [85]. 

Assuming that the outages of conventional generating units and transmission lines, and 

variability of wind power are mutually independent of each other, [/(∙)  can be expressed as 

 [/(t) = [/"(t")[/%(t%)[/?(t?). (4.2) 

For the conventional generating units, it is assumed that each generating station Ö further 

comprises identical %U generating units. The failure events of these generating units are also 

assumed to be independent of each other [17]. Therefore, [/"(∙) can be modeled as a product of 

binomial distributions. 

 [/"(t") =iBin]%K, cK(ΔU)`
#$

K*!

, (4.3) 
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where 

 Bin]%K, cK(ΔU)` = Ω%
K

´/K
æ ]1 − cK(ΔU)`

l,:]cK(ΔU)`
#:,l,: , (4.4) 

and  

 cK(ΔU) = 1 − d,-:./ ≈ eKΔU. (4.5) 

In (4.5), eK is the failure rate of a generating unit in generating station Ö and	ΔU is the lead time 

(typically 1 hour).	cK(ΔU) is also referred to as ORR [17]. 

Similar to the conventional generating units, it is assumed that the line outages are independent 

of each other. Ergo [/%(∙)  is represented by a product of Bernoulli distributions: 

 [/%(t%) =iBer]c&(ΔU)`
#&

K*!

, (4.6) 

where 

 Ber]c&(ΔU)` = ]1 − c&(ΔU)`
m,']c&(ΔU)`

!,m,' , (4.7) 

and 

 c&(ΔU) = 1 − d,-'./ ≈ e&ΔU. (4.8) 

Similar to the conventional generating units, e& is the failure rate of transmission line . 

Lastly, for wind power, it assumed that the spatial correlation among the wind farms is 

negligible. This implies that [/?(∙) can be expressed as: 

 [/?(t?) =i[/n(S/n)
#6

J*!

, (4.9) 

where [/n(S/n) is the PDF for wind farm ≤ at time U. In the next section, a new approach is 

presented to estimate this PDF using historical wind power data. 

l
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4.4 Proposed Probabilistic Modeling of Wind Power 

In this section, a novel approach founded on k-means clustering and GMMs is presented to 

model the PDF of wind power for operational risk assessment. Before delving any further, first, 

the motivation behind the proposed approach is presented. As mentioned in the Section 4.2, the 

existing approaches in operational risk assessment are based primarily on modeling wind speed 

PDF. Wind power PDF is then obtained through a wind power curve [27], [85].  Figure 4.1 portrays 

a typical wind power curve along with box plots representing measured wind power and wind 

speed data for a wind farm near Swift Current, Canada. Two observations can be made from 

investigating this figure. First, there is a high degree of discrepancy between the wind power 

estimated by the wind power curve and the actual wind power. On the one hand, underestimation 

of wind power would correspond to higher than actual risk indices. On the other hand, 

overestimation of wind power would result in lower than actual risk indices. This observation 

implies that operational risk indices would be inaccurate if only wind speed data is used. Second, 

the uncertainty of wind power is substantial in the region between the cut-in and rated wind speeds. 

Accurate modeling of this uncertainty is essential in order to calculate precise risk indices.  

The wind power also possess certain sophisticated statistical features that cannot be captured by 

simple parametric PDFs (e.g., Weibull, Beta, and Gaussian) often used in the existing literature on 

power systems reliability. One such feature is the multimodality. Figure 4.2 plots the histogram of 

actual wind power measured for a complete month for the same wind farm of Figure 1. From 

Figure 4.2, at least two modes can be easily identified. Apart from multimodality, the temporal 

correlation between wind power of different hours is also essential for operational risk analysis 

[23]. Consequently, univariate PDFs could not be adopted to capture this correlation. These 

complex statistical features necessitate the use of non-parametric or semi-parametric multivariate 

PDF estimation techniques for wind power. 
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Figure 4.1 Wind power curve with box plots of actual wind power data 

 

Figure 4.2 Histogram of historical wind power data for a month 

In the light of the above discussion, in this work, GMMs are used to model the short-term 

uncertainty of wind power for specific hours of a specific day. To employ GMMs, first, additional 

random variables are defined. The random vector f/? = gS/!, … , S/J , … , S/#
6
h delineated in the 

previous section represents the wind power of wind farms during the time t. To consider the 

temporal dependence, consider another random vector f/,!? = ™S/,!! , … , S/,!J , … , S/,!#6¨, where 

S/,!J  denotes the wind power of wind farm ≤ in the current hour. It should be noted that both U 

and U − 1 are defined for specific instances of time at a specific day. As highlighted previously, 

there is a strong correlation between S/J and S/,!J . Hence, the uncertainty of S/J is best represented 

by the conditional PDF [/n(S/J|S/,!J 	). Using the concept of conditional probabilities, 



73 
 

[/n(S/J|S/,!J 	) can be obtained from [/n(S/,!J , S/J 	), which represents the joint density over S/,!J  

and S/J. If S/,!J   is deterministically known, which is generally the case in power systems 

operation, [/n(S/J|S/,!J 	) could be directly used to evaluate risk indices. Otherwise, [/n(S/J 	) can 

be obtained by marginalizing S/,!J  as 

 [/n(S/J) = s[/n(S/,!J , S/J 	)uS/,!J , (4.10) 

As [/n(S/,!J , S/J 	) is defined for two specific hours, this PDF should be constructed using the 

appropriate wind power data of those specific hours. For instance, if U − 1 and  U are hours 14:00 

and 15:00, respectively, of January 3rd, all the historical data for these two hours at this day would 

be employed to estimate the PDF. 

 

Figure 4.3 Clustering of historical data. )C is the current time instant. )C − )C<! is the time 

interval for risk assessment. 
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In order to estimate [/n(S/,!J , S/J 	) for specific time periods, a substantial amount of historical 

data for those time periods are required. However, as only limited amount of historical data is 

available, in this work, a clustering approach is adopted. In particular, using k-means clustering, 

the historical data for a specific month under study (in the previous example, January) is grouped 

into clusters. Then, for each cluster, the historical data for the two particular hours (in the previous 

example, 14:00 and 15:00) are used to estimate the required joint PDF. The joint PDF for each 

cluster is associated with a probability eo which is obtained through k-means clustering. This 

approach ensures that sufficient data are available for fitting PDFs. The approach is pictorially 

depicted in Figure 4.3. 

After obtaining sufficient data for specific hours of each cluster, different approaches can be 

utilized to estimate [/
n,p(S/,!J , S/J 	) for each cluster. One such approach is the KDE which is a 

non-parametric technique [91]. In this work GMMs are adopted to model the PDF for the following 

reasons. Compared to KDE, GMMs require less data [92]. As only limited wind power data is 

available in practice, MMs is a clear choice. Also, as GMMs involve parametric PDFs, they are 

more easy to interpret and can easily be included in the existing risk assessment frameworks. A 

minor drawback of GMMs is the assumption about distribution which is absent in KDE. 

Using MMs, the PDF for wind power in two particular hours is estimated as 

 [ø/
n,p(S/,!J , S/J 	) = Z¿`Ψ`(S/,!J , S/J|¡`)

q

`*!

, (4.11) 

where Ψ`(∙) is a parametric bivariate PDF with parameters ¡`, ¬ is the number of mixtures, and 

¿` is the kth mixing proportion satisfying the following conditions. 

 Z¿`

q

`*!

= 1, (4.12) 

 0 ≤ ¿` ≤ 1. (4.13) 

 
There are three evident advantages of using the MM approach of (4.11). First, by employing a 

mixture of parametric distributions, the multi-modality of wind power PDF could be captured. 

Secondly, through the inclusion of S/,!J , the temporal correlation could be included in the model. 
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Third, as it will be explained later, by employing a mixture of bivariate PDFs essentially, the 

existing risk assessment frameworks could be easily modified to include (4.11) in the risk 

assessment framework. 

In this work, the Gaussian PDF is used to model Ψ`(∙). Consequently, (4.11) can also be 

expressed as 

 [ø/
n,p(S/,!J , S/J 	) = Z¿`√(S/,!J , S/J|ƒ` , Σ`)

q

`*!

, (4.14) 

where √(S/,!J , S/J|ƒ` , Σ`) denotes the Gaussian PDF with mean ƒ` and covariance Σ`. For 

brevity, the GMM parameters are grouped as ∆ = [¿!, … , ¿q]@, ƒ = [«!@, … , «q@]@ and », which is 

a three-dimensional matrix of covariance matrices Σ`. 

The main task now is to determine, using the historical wind power data, the GMM parameters. 

In addition, ¬ needs to be set. Popular techniques for determining ¬ include the split-and-merge 

method [87], cross-validation, and Akaike information criterion (AIC) [88]. For a given	¬, the 

remaining GMM parameters can then be estimated by maximizing the log-likelihood of (4.14) 

[93]. For a given set of N bi-variate wind power data ^S/,!,'J , S/,'
J _ where 3 = {1, … , %}, GMM 

parameters can be estimated using the MLE approach as 

 ∆, ƒ, » = argmax logi[ø/
n,p]S/,!,'

J , S/,'
J 	`

#

'*!

, (4.15) 

The MLE approach for estimating GMM parameters suffers from two major shortcomings. First, 

given the limited amount of data, it is prone to overfitting. Second, due to the collapsing variance 

problem, singularities could occur [94]. Therefore, to avoid these drawbacks, in this work, the 

MAP approach is employed. Using, the MAP approach, (4.15) is modified to 

 ∆, ƒ, » = argmax logi[ø/
n,p]S/,!,'

J , S/,'
J 	`

#

'*!

+ log [(∆) + log [(ƒ, »), (4.16) 

In (4.16), [(∆) and	[(ƒ, ») are prior distributions on GMM parameters. In particular,	[(∆) is 

Dirichlet distribution and [(ƒ, ») is the Normal-Inverse-Wishart distribution. These prior 
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distributions act to regularize the parameters fitting and thus avoid overfitting and singularities. 

Using the expectation maximization method, the MAP estimates in (4.16) are obtained as [94]: 

 Ã',` =
¿`√]S/,!,'

J , S/,'
J |ƒ` , Σ``

∑ ¿&√]S/,!,'
J , S/,'

J |ƒ& , Σ&`&
, (4.17) 

 ¿` =
Ã̀ + ;` − 1

% + ∑ ;`` − ¬
, (4.18) 

 ƒ` =
∑ Ã',`Õ' + ô9Œ9'

Ã̀ + ô9
, (4.19) 

 Σ` =
œ9 + œ` + a

ô9Ã̀
ô9 + Ã̀

b (ƒr −∑9)(ƒ` −∑9)@,

Ã̀ + ô9 + – + 2
 (4.20) 

 œ` =ZÃ',`(Õ' − ƒ`)(Õ' − ƒ`)@

'

, (4.21) 

where, Ã̀ = ∑ Ã',`'  and Õ' = gS/,!,'
J , S/,'

J h
@.	;`’s are the parameters of Dirichlet distribution.	Œ9, 

ô9, and œ9 are the parameters of Normal-Inverse-Wishart distribution. Also, – is the number of 

dimensions in the data. Equation (4.17) represents the E-step and (4.18)–(4.21) correspond to the 

M-step of the expectation-maximization method. These two steps are conducted iteratively.  

After obtaining the joint PDF, the conditional PDF for each cluster [/
n,p(S/J|	S/,!J 	) can be 

obtained. By the property of Gaussian PDFs, this conditional PDF is also a univariate GMM. 

Subsequently, this conditional PDF is employed in risk assessment. 

4.5 Proposed short-term risk assessment method 

In this section, the proposed operational risk assessment method is presented. The proposed 

method integrates the previously developed GMM model of wind power. As an example, the 

method is explained using the LOLP index. However, the method could easily be extended to 

estimate other reliability indices. 
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The risk in (4.1) is defined for a specific PDF [/(∙). As there are multiple PDFs for multiple 

clusters, (4.1) needs to be modified. The law of total expectation can be used to obtain the total 

risk considering different PDFs for different clusters. Using the law of total expectation 

 q =Zeo —s l(t)[/,o(t)ut
2

“ ,
o

 (4.22) 

where [/,o(∙) is similar to [/(∙) in (4.2) with the exception that [/?(∙) is replaced by each cluster’s 

PDF [/
?,o(∙). 

 Due to a large number of states in the state space Ω and high dimensionality of the integral, it is 

difficult to evaluate (4.22) analytically [63]. Crude NSMCS could be used to estimate (4.22) as 

 qv =Zeo —
1
%K
Zl(tlo )

#:

l*!

“ ,
o

 (4.23) 

where ^t!o , … , t#:
o _ are IID samples drawn from [/,o(∙), and %K is the total number of samples. The 

test function l(∙) is defined as follows 

 l(t) = L0								, w
(t) ≥ 2

1								, w(\) < 2, (4.24) 

 
where,  

 w(t) = ”
	∑ 6c#7

c*! 								 , ∑ 6c#7
c*! ≥ 2

∑ jc#7
c*! 								 , ∑ 6c#7

c*! < 2
. (4.25) 

In (4.24) and (4.25), 2 is the load demand during lead time, 6c is the cumulative available 

generation at bus ®, and jc is the load supplied to bus ®. The DC OPF is used to evaluate 6c and 

jc.    

Because of low failure probabilities during power system operation, most of the samples 

correspond to	l(∙) being zero. Thus, a larger number of samples is required to correctly estimate 

the risk indices. This would significantly increase the computational burden. To circumvent this 

issue, in the chapter, the IS technique is adopted. The IS technique proposes another joint PDF 
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[/,o∗ (∙) that is biased to obtain samples for which	l(∙) is non-zero. The risk index is then calculated 

using 

 qv =Zeo ‘
1
%K
Zl(tlo )

#:

l*!

É/,o(tlo )’ ,
o

 (4.26) 

where,  

 É/,o(t) =
[/,o(t)
[/,o∗ (t)

 (4.27) 

In (4.26) the IID samples are now drawn from [/,o∗ (∙). Similar to (4.2), [/,o∗ (∙) can be written as 

 [/,o∗ (t) = [/
",∗(t")[/

%,∗(t%)[/
?,o,∗(t?). (4.28) 

The PDF [/,o∗ (∙), which is also known as the importance sampling density, can be obtained using 

the widely-used CE optimization [56]. For CE optimization, closed-form analytical updating rules 

are available for the PDFs of [/
",∗(∙) and [/

%,∗(∙) as these PDFs belong to the exponential family of 

distributions. However, for the GMMs of wind power, such closed-form analytical solution is not 

present. To mitigate this problem, in this work, a transformation strategy is adopted. 

Consider the GMM PDF of wind farm ≤ for cluster ÷, [/
J,o(∙), the following transformation is 

used to obtain a new random variable àJ as 

 àJ = Φ,!]ò/
J,o(S/J|S/,!J )`. (4.29) 

In (4.23),	Φ is the CDF of √(àJ|«J , (ÿJ)0) and ò/
J,o(∙) is the CDF of [/

J,o(∙),. After 

transformation, the PDF for àJ is distorted using the CE optimization. As àJ belongs to 

exponential family of distributions, analytical rules can be applied to obtain the CE parameters. In 

the calculation of (4.24) and (4.25), the random variable àJ is transformed back to actual wind 

power random variable using the distorted  √∗(∙) via the inverse of (4.29). Thus àJ acts as a proxy 

random variable to distort the GMM. The complete CE algorithm is depicted as Algorithm 4.1. 

After obtaining [/,o∗ (∙) through Algorithm 4.1, NSMCS is employed to estimate (4.26). 

Algorithm 4.1: CE Optimization for GMM-Integrated NSCMS 
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Input: cK, ∀Ö;	c&, ∀j; [/
J,o(∙); √(∙ |«J , (ÿJ)0), ∀≤ 

Output: cK∗, ∀Ö;	c&∗, ∀j; √∗(∙ |«J∗ , (ÿJ∗ )0), ∀≤ 

1: Set CE parameters %4e, ( , ; and ÷_fg 

2: Set, ∀Ö,  cKi = cK; ∀j, c&i = c&;	∀≤, √i(∙ |«Ji, (ÿJi)0) = √(∙ |«J , (ÿJ)0) 

3: For ∑ = 1 to ∑ = ∑_fg 

4: Sample ^t!, … , t#)8_ from (4.2) using cKi in (4.3), c&i in (4.6), and «Ji and ÿJi in 

inverse of (4.29) 

5: For each sample, evaluate w(t) using (4.25) and sort	w(t') samples in ascending 

order to obtain order statistics, w[1] ≤ w[2] ≤ ⋯ ≤ w[%4e].  

6: If w[(%4e] ≥ 2, set 2o = w[(%4e], otherwise set 2o = 2 

7: For each sample, evaluate l(t) using (4.24) with 2oinstead of 2, also evaluate 

É(t) using (4.27)  

8: Calculate the updated parameters of PDFs as follows ∀Ö, ∀j, ∀≤: 

cKi<! = ; ª1 −
∑ l(t')É(t')´'

$#)8
'*!

%K ∑ l(t')É(t')
#)8
'*!

º + (1 − ;)cKi 

c&
i<! = ; ª1 −

∑ l(t')É(t')K'
&#)8

'*!

∑ l(t')É(t')
#)8
'*!

º + (1 − ;)c&
i 

«Ji<! =
∑ l(t')É(t')à'

J#)8
'*!

∑ l(t')É(t')
#)8
'*!

 

(ÿJi<!)0 =
∑ l(t')É(t')(à'

J − «Ji<!)0
#)8
'*!

∑ l(t')É(t')
#)8
'*!

 

9: If 2o = 2, break the for loop. 

10: The final parameters of PDFs are, 

∀Ö,  cK∗ = cKi<!; ∀j, c&∗ = c&
i<!;	∀≤, «J∗ = «Ji<!, ÿJ∗ = ÿJi<! 
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4.6 Simulation Results 

In this section, case studies are performed to depict the effectiveness of the proposed 

probabilistic modeling of wind power and the proposed operational risk assessment method. The 

simulations are performed on a modified 24-bus IEEE RTS (Appendix A) [77] and a modified 73-

bus 3-area IEEE RTS. In the original 24-bus IEEE RTS, a wind farm with a total capacity of 1,000 

MW is integrated at bus 19. A 155-MW conventional generating station at bus 16 is removed. The 

total wind power penetration is therefore equal to 23.5%. Ten years of real wind power data from 

the Sotavento wind farm in Spain is used [95]. All simulations are performed for the month of 

January. The operational risk is evaluated for a lead time of one hour. The particular time interval 

for the lead time is set to 03:00 – 04:00. The load is set to the peak values. For CE-optimization, 

the parameters are set according to [85], and the stopping criteria for NSCMS is set to 5%. For k-

means clustering, the number of clusters is set to 3. This value of k was obtained by trial-and-error 

method to ensure that each cluster contains sufficient number of data points.  

4.6.1 GMM Model 

The efficacy of the GMM model is explained in this subsection. Figure 4.4 portrays the bivariate 

histogram of the dataset for a specific cluster. Figure 4.5 depicts GMM obtained for this cluster 

when parameters are obtained using MAP approach. By comparing Figure 4.4 with Figure 4.5, 

one can conclude that the GMM accurately captures the variability of wind power in the lead time. 

From close observation of Figure 4.5, two conclusions can be made. First, the PDF for wind power 

during the lead time are markedly different for different initial wind power. Second, the 

multimodality of PDF is evident. For instance, when the initial wind power lies in the interval 

[0.2,0.4), the wind power PDF in the lead time has three distinct modes. The effect of 

multimodality on operational risk indices will be discussed in the next subsection. Figure 4.6 

represents the GMM model for the same dataset; however, the MLE approach is used to obtain the 

parameters. Some of the Gaussian components in Figure 4.7 have very low variance. This indicates 

overfitting. Finally, in Figure 4.7, a bivariate Gaussian PDF is estimated. It is clear from this figure 

that such a PDF cannot truly represent the distribution of wind power in the lead time. 
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Figure 4.4 Bivariate histogram for the given dataset for one of the three clusters 

 

Figure 4.5 GMM for given dataset when MAP estimation is employed. 
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Figure 4.6 GMM for given dataset when MLE estimation is employed. 

 

Figure 4.7 Bivariate Gaussian approximation to the given dataset. 

4.6.2 Operational risk indices for IEEE RTS 

In this subsection, the operational risk indices are evaluated. The proposed method is compared 

with another method (Method B) in which the PDF of wind power is modeled using a bivariate 

Gaussian distribution as shown in Figure 4.7. The results are depicted in Table 4.1.  
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Table 4.1 Operational risk indices for 24-bus IEEE RTS 

Initial wind power  (p.u.) Proposed Method Method B 
0.1 5.1417 E-6 2.0783 E-6 
0.3 5.2571 E-6 2.2170 E-6 
0.5 2.7805 E-6 2.0449 E-7 
0.8 1.6245 E-6 7.5509 E-7 
1.0 9.1727 E-7 4.3659 E-7 

 

The results indicate there is a stark difference between the risks obtained from the two methods. 

For all values of initial wind power, the risk indices obtained by the proposed approach are higher 

than those obtained by Method B. A reason behind this observation can be deduced by 

investigating Figure 4.5 and Figure 4.7. As noted earlier, Method B is unable to capture the 

multiple modes of PDF of wind power. Some of these modes occur at lower values of wind power. 

For instance, as visible from Figure 4.5, there is a mode when next hour wind generation is around 

0.2 p.u. By missing these modes, Method B assumes higher than actual wind generation and 

therefore overestimates the reliability of the power system. In the proposed approach, as these 

modes are captured, higher number of samples from low power states are also drawn during 

NSMCS, which contributes to higher risk indices. 

4.6.3 Computational Performance 

This subsection examines the computational performance of the proposed method. Figure 4.8 

pictorially describes the computational burden of the proposed method. From Figure 4.8, it can be 

observed that in this case, the operational risk indices are evaluated within 5,000 samples in 

NSMCS. On the contrary, for crude NSMCS, to evaluate the risk index which is in the order of 

10-6, the total number of samples required are 4	 × 10s [63]. This high gain in computational 

performance has been achieved through adopting the CE-IS technique and modifying it for GMM-

based modeling of wind power. 
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Figure 4.8 The convergence behavior of the proposed method for three clusters when the initial 

wind generation is 0.5 p.u. The confidence interval is also plotted. 

4.6.4 Impact of Wind Farm Location 

In this subsection, the effect of the location of the wind farm on the operational risk indices is 

investigated to understand the impact of transmission system constraints. As can be observed from 

Table 4.2, the operational risk indices are markedly different for different buses. This variation 

stems from the difference in the total capacities of transmission lines connected to these buses. 

The operational risk indices for bus 4 are the highest as it has the lowest total capacity of 

transmission lines connected to it (i.e., 350 MW). Therefore, the output of the wind farm is highly 

constrained in this case. For bus 10, the total capacity of transmission lines is 1,545 MW. Ergo, 

the operational risk indices for this bus are lower than that of bus 4. Finally, for bus 19, the 

transmission capacity available to wind farm is 1,000 MW. Hence, the operational risk indices for 

this bus lie between those of bus 4 and bus 10. This effect is more pronounced for cases when the 
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wind power PDF for the lead time is skewed more toward the maximum capacity, e.g., when the 

initial wind power is 1.0. These results highlight the effects of transmission system on operational 

risk indices. These effects could only be considered through the risk assessment of composite 

power systems. 

Table 4.2 Operational risk indices for different location of wind farm 

Initial Wind power 
(p.u.) Bus 4 Bus 10 Bus 19 

0.1 5.2098 E-6 5.1127 E-6 5.1417 E-6 
0.3 5.0623 E-5 5.3847 E-11 5.2571 E-6 
0.5 1.8012 E-5 1.5909 E-9 2.7805 E-6 
0.8 2.3407 E-6 1.5908 E-6 1.6245 E-6 
1.0 1.4133 E-6 8.9567 E-7 9.1727 E-7 

 

4.6.5 Operational risk indices for 3-area IEEE RTS 

This subsection performs studies on the 3-area RTS. Similar to previous case studies, a 155 MW 

conventional generator at bust 16 of each area is removed. A 500 MW wind farm is installed at 

bus 19 of each area. The load is set to the peak value of 8550 MW. The probabilistic model for 

wind power is similar to that in the previous studies. Table 4.3 display the risk indices obtained 

for this test system. Compared to the 24-bus IEEE RTS, the risk indices are expectedly lower. This 

is because the interconnection of three areas improves the overall reliability of the system. Figure 

4.9 depicts the computational performance of the method for this test system. The maximum 

number of samples for NSMCS in this case is 10,000. Thus, the computational burden is 

expectedly higher than that for 24-bus IEEE RTS. However, it is still not as high as crude NSMCS. 

Table 4.3 Operational risk indices for 3-area IEEE RTS 

Initial wind power (p.u.) Proposed Method 
0.1 8.7893 E-11 
0.3 3.7503 E-11 
0.5 2.1835 E-11 
0.8 1.2957 E-11 
1.0 7.3894 E-12 
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Figure 4.9 The convergence behavior of the proposed method for three clusters when 3-area 

IEEE RTS is employed. Initial wind generation is set to 0.5 p.u. 

4.7 Conclusion 

In this chapter, a new data-driven method for operational risk assessment of composite power 

systems considering wind power is proposed. The short-term uncertainty of wind power is directly 

modeled using GMMs. k-means clustering and MAP estimation are adopted to address the issue 

of limited data availability. The proposed GMM is then incorporated in the operational risk 

assessment framework using the total law of expectation. NSMCS is then applied to obtain the risk 

indices. The computational performance of NSMCS is improved by adapting the CE-IS.  

Case studies have shown that the complex statistical features of wind power, which are modeled 

by GMM, are necessary to obtain accurate operational risk indices. In particular, the multimodality 

of wind power PDF affects the calculated operational risk indices. The computational performance 
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of the proposed data-driven method is also shown to be suitable for application in real power 

systems operation. It is also shown that the transmission system constraints significantly affect the 

operational risk indices. Therefore, it is crucial to include the transmission system in any 

operational risk studies. Compared to existing approaches, the proposed approach avoids the 

pitfalls of using wind speed data. Moreover, the extensive modeling of uncertainty of wind 

generation leads to more accurate estimation of risk indices.  
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Chapter 5  
A Novel Framework for the Operational Reliability 

Evaluation of Integrated Electric Power-Gas Networks9 

5.1 Abstract 

This chapter proposes a new framework for the operational reliability evaluation of IEPGNs. 

First, a novel approach for modeling the failure modes of natural gas pipelines is presented. This 

approach utilizes the concept of virtual nodes and employs a gas release rate model to calculate 

the natural gas leaked from the pipelines. Thereafter, a four-state Markov model for NGFGs with 

dual-fuel capabilities is proposed. The area risk method is then extended to include the proposed 

reliability models, and the partial reliability indices of the area risk method are evaluated using a 

NSMCS. A nonlinear optimization model is also proposed to calculate electric and gas load 

curtailments for each system state. This optimization model is linearized to obtain a mixed-integer 

linear programming (MILP) model for reducing the computational burden. The computational 

performance of NSMCS is further improved by adopting CE-based IS. Finally, two test systems 

are employed to demonstrate the efficacy of the proposed framework. Case studies validate the 

importance of considering the proposed reliability models of IEPGNs for operational reliability 

evaluation. The impacts of operational strategies on the operational reliability indices are also 

demonstrated 

 

 

 

 

 
9  Reprinted without modification with permission from: O. A. Ansari, C. Y. Chung, and E. Zio, “A novel framework 

for the operational reliability evaluation of integrated electric power-gas networks (IEPGNs),” IEEE Trans. Smart 
Grid, (Early Access). Copyrights for future publication of this paper: © 2021 IEEE. 
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5.2 Introduction 

The penetration of NGFGs in modern power systems has increased tremendously over the last 

decade owing to historically lower prices and the comparatively lower carbon intensity of natural 

gas [2]. Consequently, electric power systems and natural gas networks are becoming increasingly 

interdependent. This increased coupling poses considerable challenges to the reliable operation of 

IEPGNs. The impacts of component outages in one network can quickly propagate into the other, 

thereby jeopardizing the reliability of both networks [96]. Therefore, there is a heightened need to 

develop novel reliability evaluation tools to assist system operators in minimizing adequacy risks 

during the planning and operation of IEPGNs [7]. 

The existing literature on the reliability evaluation of IEPGNs can be broadly classified into two 

categories: long-term reliability evaluation and short-term, or operational reliability evaluation. In 

[97], the long-term reliability indices of IEPGNs are evaluated using a SMCS while considering 

power-to-gas and natural gas storage facilities. Reference [98] adopts reliability network 

equivalents to represent multi-state reliability models of IEPGN components and employs 

sequential MCS for reliability evaluation. The universal generating function technique is utilized 

in [99], where the multi-state models of gas injections to NGFGs are first calculated, followed by 

the reliability evaluation of power systems. In [100] and [101], the cascading effects of failures in 

IEPGNs are shown to decrease their long-term reliability. Although long-term reliability 

evaluation techniques are suitable for system planning purposes, operational reliability evaluation 

methods are required by system operators to schedule sufficient operating reserves to minimize 

adequacy risks in operational timescales [7], [20].  

A very limited number of frameworks have been proposed in the literature to assess the 

operational reliability of IEPGNs. In [102], the worst N-1 contingencies in distribution-level 

IEPGNs are considered, and a heuristic tree search algorithm is proposed to solve the load 

restoration optimization problem for calculating operational reliability indices. In a multi-energy 

system setting, [103] models the dynamic behavior of thermal loads and adopts SMCS for 

operational reliability assessment. In [104], the customers’ ability to substitute energy sources to 

meet their energy demands is included in the operational reliability assessment of multi-energy 

systems.  
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Despite their worthy contributions, the existing frameworks for operational reliability evaluation 

of IEPGNs suffer three key drawbacks. First, the reliability models of natural gas networks are 

simplified. In particular, the existing studies incorporate only one mode of failures for natural gas 

pipelines, i.e., ruptures, while neglecting the two more dominant failure modes, which are pinholes 

and holes in the pipelines [105], [106]. Second, modern NGFGs are equipped with dual-fuel 

capabilities that allow them to switch between natural gas supply and an alternate fuel supply to 

generate power in the event of supply shortages [107], [108]. Such a process entails a switching 

time, and probabilities are associated with the success and failure of this switching process. These 

characteristics of DF-NFGFs are not considered in existing frameworks. Third, following outages 

in IEPGNs, different operational strategies are not considered when determining the minimum 

load curtailment. For instance, NGFGs are treated as low-priority, non-human need gas loads, and 

thus are curtailed first by natural gas system operators in the case of outages [109]. The first two 

drawbacks could result in underestimation, whereas the third drawback could lead to 

overestimation, of operational reliability indices of IEPGNs. 

The purpose of this work is therefore to extend the literature on operational reliability evaluation 

of IEPGNs by proposing a new framework that addresses the aforementioned limitations. A novel 

approach for reliability modeling of IEPGNs is first proposed that models all three failure modes 

of pipelines. To this end, a virtual node method is presented, and the natural gas released from the 

pipelines due to these failures is modeled. Additional PDFs are defined to complete the reliability 

modeling of pipelines and consider the uncertainties of failure locations and diameters of leaks. 

Furthermore, a four-state Markov model for DF-NGFGs is proposed that considers the 

probabilities of successful and failed switching of fuel supply.  

Thereafter, the area risk method [17] is extended to include the proposed reliability models of 

IEPGNs. The partial reliability indices of the area risk method are evaluated using a NSMCS. A 

new optimization model for evaluating the amounts of electric and gas load curtailments is, then, 

presented. This optimization model embeds the gas release rate model and allows the incorporation 

of different operational strategies by system operators. The original non-linear optimization model 

is linearized into a MILP model to reduce the computational burden of the proposed framework. 

Finally, to mitigate the low computational performance of NSMCS for evaluating operational 

reliability indices, IS is adopted, whose parameters are obtained using CE optimization [73], [85].  
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The effectiveness of the proposed framework is demonstrated by its application to two test 

systems. The results clearly indicate the importance of including both the proposed reliability 

models of IEPGNs and the operational strategies of system operators. The good computational 

performance of the proposed framework is also shown in the case studies.    

In summary, the main contributions of this work are as follows:  

1. A novel approach for comprehensive reliability modeling of IEPGNs is proposed. The 

approach allows for the thorough investigation of the impacts of multiple failure modes of 

pipelines and dual-fuel capabilities of DF-NGFGs on the operational reliability of IEPGNs.  

2. A novel framework, based on the area risk method and NSMCS, is proposed to integrate 

the proposed reliability models for the evaluation of the operational reliability of IEPGNs. To 

analyze the system state, a new optimization model is also formulated, which is linearized to 

reduce computational burden. 

3. The CE-based IS technique is adopted to improve the computational efficiency of NSMCS 

in evaluating operational reliability indices.  

5.3 Reliability Model of IEPGNs 

Consider a power system with %" generators, %@ transmission lines, %M buses, and %t electric 

loads. Also, among %" generators, let %u"v" be the number of NGFGs. Also, consider a gas 

network with %? gas wells or sources, %^ pipelines, %u nodes, %% gas loads, and %5 natural gas 

storage facilities. Various reliability models of power systems for the operational reliability 

evaluation exist in the literature, e.g., [17], [34]. Specifically, the generators and transmission lines 

of power systems are modelled using the following ORRs, which represent the probabilities of 

failure during the future lead time ): 

 <qq$" = 1 − d,-#
$	: ≈ e$"	), ∀S ∈ {1,… ,%"}, (5.1) 

 <qq&% = 1 − d,-'
&	: ≈ e&%	), ∀j ∈ {1, … ,%@}, (5.2) 

where <qq$" and e$" represent the ORR and failure rate of the Sth generator, respectively. 

Likewise, <qq&% and e&% represent the ORR and failure rate of the jth transmission line, 



92 
 

respectively. Similar to power systems, also the gas sources and pipelines of gas networks can be 

modeled using ORRs. 

 <qqJ? = 1 − d,-96	: ≈ eJ?	), ∀≤ ∈ {1,… ,%?}, (5.3) 

 <qq>^ = 1 − d,-;
<: ≈ e>^ 	), ∀c ∈ {1,… ,%^}. (5.4) 

In (5.3), <qqJ? and eJ? describe the ORR and failure rate of the ≤th gas source, respectively. In 

(5.4), <qq>^ and e>^ describe the ORR and failure rate of the cth pipeline, respectively. 

5.3.1 Reliability Model of Natural Gas Pipelines 

In the event of unplanned failures, power systems and natural gas networks are operated in 

different manners. Whereas an outage of a transmission line in a power system results in the line 

being completely out of service, a pipeline in a natural gas network can still operate with reduced 

service after it suffers from a failure [105], [110]. Moreover, due to the slower dynamics of natural 

gas networks, the impacts of pipeline failures are more localized in gas networks than that of 

transmission lines’ failures in power systems. Thus, it becomes important to extend the ORR 

model of pipelines in (4) to consider these characteristics of natural gas networks. 

To realistically model the reduced service of pipelines, multiple failure modes of pipelines need 

to be considered. Typically, pipeline failures can be classified into three categories: 1) pinhole or 

crack, 2) hole and 3) rupture [105], [106]. These categories are differentiated based on the size of 

the leak in the pipeline. For a pinhole, the effective diameter of the leak is less than or equal to 

0.02 m. If the effective diameter of the leak is greater than 0.02 m but less than the diameter of the 

pipeline, the leak is classified as a hole. Finally, for a rupture, the effective diameter of the leak is 

greater than the pipeline diameter. Although a rupture causes a pipeline to be completely removed 

from service, a pipeline with a pinhole or a hole can operate with reduced service [111]. Note that 

the existing literature on reliability evaluation of IEPGNs only considers ruptures, while 

completely neglecting the other failure modes. Moreover, the data from actual pipeline incidents 

indicate that ruptures only represent less than 16% of all pipeline failures, with pinhole and hole 

failures contributing 63.97% and 20.58%, respectively [105]. Thus, it seems relevant to consider 

also pinhole and hole failures, which are the dominant failures modes of pipelines, to realistically 
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evaluate the operational reliability indices of IEPGNs. In what follows, a systematic approach is 

presented to incorporate all failure modes of pipelines for operational reliability evaluation. 

 

 

5.3.1.1 Virtual Node Approach 

The rupture of a pipeline can be modeled by eliminating that specific pipeline from the gas 

network model. To model pinhole and hole failures, instead a virtual node approach is here 

proposed. Consider Fig. 5.1, which represents the cUℎ pipeline between nodes 3 and 4 of a gas 

network. In this figure, ¿' and ¿( represent the gas pressures at nodes 3 and 4, respectively. [> 

denotes the mass flow rate in the pipeline from node 3 to node 4. Suppose a failure occurs at a 

distance ℓ from node 3, which results in a leak. To model the natural gas released from this leak, a 

virtual node 9 is introduced at a distance ℓ from node 3. As Fig. 5.2 shows, the gas released from 

this leak is modeled as an auxiliary gas load at this virtual node, which is represented by u>wxfy. 

This leak also modifies the original mass flow rate in the pipeline. Thus, [> is replaced by two 

 
Figure 5.1 A natural gas pipeline of length 2 between nodes 3 and 4 of a natural gas network 

under normal operating conditions. 

 
 

 
Figure 5.2 The natural gas pipeline of Fig. 5.1 in which a pinhole or hole failure occurs 

at a distance ℓ from node 3. 

 



94 
 

mass flow rates [>" and [>=. Although, this virtual node physically represents a pinhole or hole, it 

is treated as an additional node in the gas network model with its nodal pressure ¿`. The nodal 

balance equation at this virtual node is given by: 

 [>" = [>= + u>
wxfy, (5.5) 

where 

 [>"⁄[>"⁄ = €>"
0 (¿'

0 − ¿`0), (5.6) 

 [>=⁄[>=⁄ = €>=
0 ]¿`0 − ¿(

0` (5.7) 

In (5.6) and (5.7), €>"and €>= are constants for the Weymouth equation, and are calculated using 

the pipeline lengths ℓ and 2 − ℓ, respectively. 

 

To calculate the auxiliary load u>wxfy representing the gas released from leak in the pipeline, the 

following gas release rate model is adopted [111]. 

 u>wxfy =	;>]1 + ‹>ℓ`
,!/0

›¿', (5.8) 

where ;> and ‹> are constants given in Appendix D that depend on the diameter of the leak and 

pipeline parameters. Fig. 5.3 portrays the auxiliary load for varying distance and diameter of the 

leak on a 60-km pipeline with a 1 m diameter. This figure demonstrates that the gas released from 

 
Figure 5.3 Gas release rate from a leak of varying diameter and distance from the starting node 

on a 60-km gas pipeline. 
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the leak decreases as the distance from the starting node increases, and increases, as the diameter 

of the leak increases. 

5.3.1.2 PDFs for Pipeline Failures 

Apart from the ORR for pipelines given by (5.4), additional PDFs are required to complete the 

reliability model of the pipelines, considering multiple failure modes. The following categorical 

PDF fi>(fl), which is obtained from historical data, models the type of pipeline failure for the 

generic cth pipeline: 

 fi>(fl) = ‡
0.6397
0.2058
0.1545

				
fl = 1
fl = 2
fl = 3

, (5.9) 

where, fl = 1, 2, and 3 denote pinhole, hole, and rupture failures, respectively. If the type of failure 

is a pinhole or hole, additional random variables need to be defined. For these types of failures, 

equation (5.8) and Fig. 5.3 show that the gas released from the leak depends on three factors: 1) 

the pressure at the starting node, 2) the distance of the leak from the starting node of the pipeline, 

and 3) the diameter of the leak. The pressure at the starting node is determined by solving the 

natural gas flow problem for gas networks or the combined power-gas flow problem for IEPGNs, 

as will be described later. The distance from the starting node and diameter of the leak after failure 

occurrence need to be probabilistically modeled. In this work, a continuous PDF fi>&zo(ℓ) is defined 

for the distance of the leak from the starting node. For the diameter, two continuous PDFs are 

defined - fi>^{(‚&) for pinhole and fi>{(‚&) for hole, where ‚& represents the diameter of the leak. 

Based on the definitions of pinhole and hole given above, the domains of fi>^{(‚&) and fi>{(‚&) are 

(0,0.02] and (0.02, „>), respectively, where „> is the diameter of the cth pipeline. The actual 

forms of these distributions are fitted on the available data. In this chapter, for the sake of 

simplicity, uniform distributions are assumed for fi&zo(ℓ), fi>^{(‚&) and fi>{(‚&) over their 

respective domains. 

5.3.2 Reliability Modeling of DF-NGFGs 

As mentioned in the Introduction, modern NGFGs are equipped with dual-fuel capabilities that 

allow them to switch from natural gas supply to an alternative fuel supply. This switching action 

is taken in the event of natural gas supply shortages. For instance, during the “Bomb Cyclone” 
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event in the U.S. that led to curtailments of natural gas supply, a 1,218 MW NGFG was able to 

switch to oil to continue producing electric power [107]. This switching process requires a fixed 

number of hours to complete, and it entails the risk of unsuccessful switching leading to the outage 

of the NGFG [109]. This behavior is similar to the operation of rapid-start natural gas generating 

units [17].  

To model DF-NGFGs, a four-state Markov model is proposed in this work, as depicted in Fig. 

5.4. State 1 represents the normal operation mode of the DF-NGFG, where natural gas is used to 

generate electric power. State 2 represents the DF-NGFG outage. State 3 represents the operation 

of the DF-NGFG on alternate fuel. State 4 represents a temporary state when the switching action 

fails. After the failure of switching action, the DF-NGFG enters State 2 of outage. In Fig. 5.4, «'( 

indicates the transition rate from state 3 to state 4. 

 

5.4 Framework Proposed for Operational Reliability Evaluation of 

IEPGNs 

This section presents the proposed framework for operational reliability evaluation of IEPGNs. 

The proposed framework, which is founded on the area risk method and NSMCS, evaluates the 

operational reliability indices for a given lead time considering the previously proposed reliability 

models of natural gas pipelines and DF-NGFGs. The proposed optimization model for evaluating 

electric and gas load curtailments considering the gas release rate model is also presented. In what 

 
Figure 5.4 Four-state Markov model for NGFGs with dual fuel capabilities 
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follows, the proposed framework for evaluating the probabilities of electric load curtailment 

(6728) and gas load curtailment (6‰28) for a given lead time ) is explained. 

5.4.1 Area Risk Method 

The area risk method has been employed for operational reliability evaluation of power systems 

to consider rapid start generating units [17], wind generation [85], and energy storage. The area 

risk method splits the given lead time into several sub-periods, and the reliability indices in each 

sub-period are calculated. These reliability indices are then accumulated to obtain the operational 

reliability index for the given lead time. In this work, the area risk method is adopted to consider 

the switching time associated with the dual-fuel capabilities of DF-NGFGs. 

 

The area risk method is pictorially sketched in Fig. 5.5 for a lead time ). For subperiod A, i.e., 

from 0 to )!, the 6728 and 6‰28 are given by: 

 6728P =	s lewxp|(t)
:"2

9
fi(t)ut,	 (5.10) 

 6‰28P =	s l"fU(t)
:"2

9
fi(t)ut, (5.11) 

where lewxp|(∙) and l"fU(∙) are test functions, which will be defined later. fi(∙) is the combined 

PDF of the random variables in IEPGNs. Assuming that the outages of different components are 

independent of each other, fi(∙) can be expressed as: 

 
Figure 5.5 The area risk method with NGFGs with dual-fuel capabilities 
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 fi(∙) = fi"(∙)	fi%(∙)fi?(∙)fi^(∙), (5.12) 

where fi"(∙) and fi%(∙) represent the product of binomial distributions of generators, and the product 

of Bernoulli distributions for the transmission lines, respectively. fi?(∙) denotes the product of 

binomial distributions for natural gas sources. fi^(∙) represents the product of multiple PDFs for 

the natural gas pipelines as defined in Section 5.3.1. In subperiod A, the DF-NGFGs in IEPGNs 

are dependent on gas supply from the natural gas network to generate power. Therefore, the ORRs 

defined in (1) are used in fi"(∙) for DF-NGFGs. 

 Assuming that the system operator makes a decision at )9 to switch the fuel supply for DG-

NGFGs, the DG-NGFGs would complete the switching process at )!, where )! − )9 is the 

switching time for DG-NGFGs. After )!, the DG-NGFGs that have been successfully switched, 

are no longer reliant on the natural gas network to generate power. Thus, they can still contribute 

to the power system if they are not in outage. Due to this switching action of DG-NGFGs, the 

evaluation of 6728 and 6‰28 entail the calculation of two integrals: 

 6728R =	s lewxp|(t)
:

9
fi(t)ut −s lewxp|(t)

:">

9
fi(t)ut, (5.13) 

 6‰28R =	s l)}K(t)
:

9
fi(t)ut − s l)}K(t)

:">

9
fi(t)ut.	 (5.14) 

In above equations, the first integral evaluates the indices at the end of subperiod B, whereas the 

second integral does it indices at the start of subperiod B. For this subperiod, the proposed four-

state model for DF-NGFGs is employed instead of using ORRs. Specifically, given a vector of 

initial state probabilities !9 for the Markov model, the state probabilities of a DF-NGFG at a future 

lead time )̀  can be evaluated by: 

 !()̀ ) = !9!5
:?/.: , (5.15) 

where !5 is the discretized stochastic transition probability matrix and Δ) is the discretization 

time interval. The off-diagonal elements of !5 are «'(Δ), whereas the diagonal elements of !~ are 

1 − ∑ «'(Δ)(,'�( . !()) and !9 are then utilized to evaluate the first and second integrals, 

respectively. The total operational reliability indices for the given lead time are then given by: 
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 6728 = 6728P + 6728R, (5.16) 

 6728 = 6728P + 6728R ,	 (5.17) 

For simple cases, the integrals in (5.10), (5.11), (5.13), and (5.14) are evaluated using analytical 

techniques, such as capacity outage probability tables [17]. In this work, these integrals are 

estimated using NSMCS. In particular, by using NSMCS, any integral of the form 

∫ l`(t)
:?
9 fi(t)ut can be estimated as: 

 s l`(t)
:?

9
fi(t)ut =

1
%5
Zl`(t')

#*

'*!

, (5.18) 

where %5 is the number of NSMCS samples drawn from fi(∙). 

5.4.2 Proposed Optimization Model for Minimum Load Curtailments 

The two test functions in Section 5.4.1 are defined as follows: 

 lewxp|(t') =

⎩
⎪
⎨

⎪
⎧0 wewxp|(t') −Z u(

#@

(*!
≥ 0

1 wewxp|(t') −Z u(
#@

(*!
< 0

, (5.19) 

 l"fU(t') =

⎩
⎪
⎨

⎪
⎧0 w"fU(t') −Z j(

#&

(*!
≥ 0

1 w"fU(t') −Z j(
#&

(*!
< 0

. (5.20) 

In (5.19), u( denotes the 4th electric load demand and wewxp|(∙) is the sum of electric loads supplied 

in system state t'. Similarly, in (5.20), j( denotes the 4th gas load demand and w"fU(∙) is the sum 

of gas loads supplied in system state t'. 

To find wewxp|(∙) and w"fU(∙), an optimization model is set up to determine the minimum values 

of the electric and gas loads curtailments. For this optimization model, the objective function is 

defined as: 

 minÍ@Î + Ï@Ì, (5.21) 
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where Î = [Ã!, … , Ã#@]
@ and Ì = [÷!, … , ÷#&]

@are vectors of the electric load and gas load 

curtailments, respectively. Í, and Ï denote the vectors for the electric load and gas load curtailment 

costs, respectively.  

The constraints for power systems are as follows:  

 ÓeÕ − Ôe + ÔeÎ = $eÒ, (5.22) 

 c' = ]Ú1Äzi(') − Ú/z(')`/\' 	, ∀3 ∈ {1, … ,%@}, (5.23) 

 0 ≤ Õ ≤ Õ, (5.24) 

 0 ≤ Î ≤ , (5.25) 

Equation (5.22) represents the nodal power balance constraints, where Õ = gS!, … , S#$h
@ and 

 = [u!, … , u#@]
@ represent the vectors of generators and electric load demands, respectively. Ò =

[c!, … , c#A]
@ denotes the vector of power flows on the transmission lines. Óe, Ôe, and $e are 

incidence matrices that model the connections of generators, electric loads, and transmission lines, 

respectively, to buses in the power system. The DC power flow model, which is formulated in 

terms of bus angles Ú, is given by (5.23). Equations (5.24) and (5.25) set the limits on generator 

and electric load curtailments. 

The constraints for the gas network are described as follows: 

 Ó"Û−Ô"Ù + Ô"Ì + ı"ˆÉpÑ −ı"ˆpÑ − ""˜ = $"¯	, (5.26) 

 [>⁄[>⁄ = €>0]Π1Äzi(>) − Π/z(>)`	, ∀c ∈ {1,… ,%^}, (5.27) 

 ŒU − ˆÉpÑΔ) + ˆpÑΔ) = ˙, (5.28) 

 u>wxfy =	;>]1 + ‹>j`
,"=›¿' 	, ∀c ∈ Ω&Ö}`, (5.29) 

 ˚ ≤ ˚ ≤ ˚, (5.30) 

 ¯ ≤ ¯ ≤ ¯, (5.31) 

 ˙ ≤ Ì ≤ Ù, (5.32) 
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 ˙ ≤ ˆÉpÑ ≤ ˆÉpÑ, ˙ ≤ ˆpÑ ≤ ˆpÑ. (5.33) 

Equation (5.26) represents the nodal balance equation for the gas network, where Û =

[≤!, … , ≤#6]
@ and Ù = [j!, … , j#&]

@, represent the vectors of gas sources and gas load demands, 

respectively. ˆÉpÑ = gÖ!ÉpÑ, … , Ö#*
ÉpÑh

@
 and ˆpÑ = gÖ!pÑ, … , Ö#*

pÑ h
@

are vectors of discharge and charge 

mass flow rates, respectively, for gas storage facilities. ˜ = g´!, … , ´#B$C$h
@ is a vector of NGFG 

gas consumptions. ¯ is a vector of gas flows in the pipelines. Similar to power systems, Ó", Ô", 

$", ı", and "" are incidence matrices, which denote the connections of gas sources, gas loads, 

pipelines, gas storages, and NGFGs, respectively, to nodes in the gas network. The Weymouth 

equations of the pipeline, which are formulated in terms of squared nodal pressure Π, are given by 

(5.27). The state-of-charge of gas storage facilities is modeled by (5.28). Equation (5.29) models 

the auxiliary load by using the gas release rate model, as described in Section 5.3.1 for the set of 

pipelines with failures Ω&Ö}`. Equations (5.30) – (5.33) represent the limits on gas network 

variables. Note that the matrices Ó", Ô", $", ı", and "" are modified when the cardinality of 

Ω&Ö}` is greater than zero to include virtual nodes. 

The constraints coupling the power system and gas network are given by 

 ´' = ¸'S', ∀3 ∈ Ωu"v", (5.34) 

where ¸' is a constant representing the power conversion factor of the 3th NGGF, and Ωu"v" is the 

set of NGFGs. This set contains both conventional NGFGs and DF-NGFGs. It is modified 

depending on whether DF-NGFGs are operating on natural gas supply or alternate fuel.  

The optimization model given by (5.21) – (5.34) is nonlinear due to the inclusion of the gas 

release rate model and Weymouth equations. Nonlinear optimization models incur a large 

computational burden and therefore cannot be directly employed for operational reliability 

assessment. In this chapter, the nonlinear gas release rate model is linearized using a piecewise 

linearization method as given in Appendix B. After linearization, the optimization model is 

reduced to a MILP model. 

5.4.3 CE-IS based NSCMS 

The traditional NSMCS incurs a large computational burden when the values of 6728 and 6‰28 

being estimated are small. This is the case for operational reliability evaluation of IEPGNS. 
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Therefore, in this chapter, the widely used IS technique [112] is adopted to reduce the 

computational time. Using IS, the integral in (5.18) is evaluated using the following estimator: 

 s l`(t)
:?

9
fi(t)ut =

1
%5
Z

l`(t')fi(t')
fi∗(t')

,

#*

'*!

 (5.25) 

where the samples are now drawn from fi∗(∙), which is called the IS density. In this chapter, the 

parameters of the IS density are obtained using the CE optimization. Interested readers are referred 

to [34], [73], [85]for a detailed explanation of CE-IS based NSCMS. 

5.5 Simulation Results 

This section presents the key results indicating obtained with the proposed framework. The 

simulations are performed on two test systems: 1) Test System A, which comprises the 6-bus power 

system integrated with the 7-node gas network [113] (Fig. 5.6), and 2) Test System B, which 

comprises the 24-bus IEEE reliability test system (RTS) [77] integrated with the 20-node Belgian 

gas network [114] (Fig. 5.7). The additional data, including failure rates, and the parameters of the 

CE-IS-based NSMCS, are provided in Appendix B. For NSMCS, the coefficient of variation of 

6‰28 is selected, and the stopping criterion is set to 5%. All simulations are run on a PC with a 

3.40 GHz Intel® Core i7-6700 CPU and 16 GB of RAM. The proposed framework is implemented 

in MATLAB 2019 and the GUROBI 9.0.1 solver is used to solve the optimization problem. 

 
Figure 5.6 Test System A comprising a 6-bus power system and a 7-node gas network 
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Figure 5.7 Test System B comprising the 24-bus IEEE RTS and the 20-node Belgian Gas Network 
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5.5.1 Demonstrative Cases 

To demonstrate the importance of performing operational reliability assessment for IEPGNs, 

two cases are considered. In Case A, Test System A is decoupled. In Case B, the electric and gas 

networks of Test System A are coupled via NGFGs. For both cases, the total electric and gas load 

demands are set to 270 MW and 32.09 kg/s, respectively. The lead time is set to 2 hours. 

Table 5.1 compares the !"#$ and !%#$ indices for the two cases. The results show that the 

operational reliabilities of individual networks are lower for Case B than for Case A. The lower 

!"#$ for Case A is attributed to the supply of natural gas to NGFGs being significantly 

constrained in the event of pipeline outages. In particular, two pipelines connecting gas sources to 

other nodes in the gas network are crucial to maintain the supply of natural gas to NGFGs. 

Similarly, the !%#$ in Case B is ~10% higher than in Case A. This is because the gas demands of 

NGFGs are not included in Case A and thus the probability of natural gas loads being supplied due 

to the absence of NGFG gas demands is higher. Also, for both cases, the !%#$ is lower than the 

!"#$ due to higher reliabilities of individual gas sources and pipelines. To sum up, the results 

show that the need to consider the interactions between electric and gas networks to accurately 

evaluate the operational reliability indices of these networks.    

The computational performance of the operational reliability evaluation framework is critical to 

facilitate its application during real system operation. Table 5.1 shows that the computational 

performance of the proposed method is clearly several orders of magnitude higher than that of 

traditional NSMCS. 

 

 
Table 5.1 PELC and PGLC of IEPGNs for two demonstrative cases 

Method Indices Case A Case B % Difference 

Proposed 

!"#$ ( × 10!") 6.570 9.039 37.57 

!%#$ ( × 10!#) 8.785 9.733 10.79 

Time (s) 562.92 404.87 - 

Traditional 

NSMC 

!"#$ ( × 10!") 6.488 9.124 40.62 

!%#$ ( × 10!#) 8.726 9.757 11.81 

Time (s) 215,892 151,333 - 
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5.5.2 Impact of Failures of Natural Gas Pipelines 

In this subsection, we demonstrate the efficacy of the proposed reliability model of natural gas 

pipelines. Two case studies are performed. In Case C, only gas pipeline ruptures are taken into 

account; whereas in Case D, the proposed reliability model is adopted to consider all three failure 

modes of gas pipelines. 

Table 5.2 shows the !"#$ and !%#$ indices for varying values of total natural gas load demands 

and lead times. From the Table, it can be deduced that the !"#$ and !%#$ indices are 

overestimated in Case C. When all three failure modes of pipelines are treated in Case D, the 

!"#$ and !%#$ indices are lower. With pinhole and hole failure modes, which are the two 

dominant failure modes of pipelines, the pipelines can be operated with reduced service which still 

allow the gas network to supply gas load demands to both the gas network and NGFGs in the 

power system. This leads to improved operational reliability of the gas network and power system. 

Table 5.2 also indicates that, as expected, this difference is higher for the gas network, i.e., the 

operational reliability of the gas network is more significantly improved than that of the power 

system. Furthermore, this improvement in the operational reliability of the gas network is greater 

at higher gas loads. 

 
Table 5.2 Operational reliability indices for varying gas loads and lead times 

Increase in Gas 

Load 
-10% 0% 10% 20% 30% 

Case 
Lead 

Time (h) 

PELC 

( ×
10!") 

PGLC 

( ×
10!") 

PELC 

( ×
10!") 

PGLC 

( ×
10!") 

PELC 

( ×
10!") 

PGLC 

( ×
10!") 

PELC 

( ×
10!") 

PGLC 

( ×
10!") 

PELC 

( ×
10!") 

PGLC 

( ×
10!") 

Case 

C 

1 4.814 2.508 5.067 2.598 5.270 2.531 6.731 2.531 6.731 3.465 

2 9.183 4.801 9.666 4.975 10.053 5.270 12.085 5.269 12.085 7.484 

3 14.394 6.864 14.941 7.109 15.511 7.671 19.397 7.666 19.397 10.985 

4 20.047 9.276 21.751 9.624 22.044 10.345 25.992 10.335 25.992 14.339 

Case 

D 

1 4.353 0.268 4.291 0.262 4.595 0.283 5.416 0.303 5.199 1.709 

2 8.954 0.864 9.039 0.973 9.001 0.981 10.928 1.021 11.771 3.482 

3 12.569 1.155 14.174 1.157 1.264 1.351 15.966 1.478 17.041 5.216 

4 17.772 1.732 19.424 1.881 19.192 2.015 23.323 2.430 22.741 6.514 
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5.5.3 Impacts of DF-NGFGs 

This subsection, the impacts of DF-NGFGs on the operational reliability of IEPGNs. Two case 

studies are performed. In Case E, the DF-NGFGs are not modeled and are treated as conventional 

NGFGs. In Case F, the proposed reliability model of DF-NGFGs is considered. For both cases, 

the total lead time is set to 3 hours. For Case F, the switching time of DF-NGFGs is set to 2 hours, 

and )$ in Fig. 5.5 is set to 10 minutes.  

Table 5.3 provides the results for the two case studies. The dual-fuel switching capabilities of 

DF-NGFGs clearly improve the operational reliability of IEPGNs. As the switching process for 

DF-NGFGs completes in Subperiod B, these NGFGs are no longer constrained by the supply of 

gas from the gas network, thus shielding the power system from the impacts of gas network 

outages. The switching action of DF-NGFGs also slightly improves the reliability of the gas 

network as the total amount of gas load being served is reduced. 

 

5.5.4 Practical Considerations 

In the optimization model of Section 5.4.2, the values of * and + significantly impact the 

amounts of electric and gas load curtailments and thus affect the operational reliability indices. In 

this work, three practical strategies are considered. In Strategy 1, the electric and gas loads are 

assumed to have equal priority, i.e., the per-unit electric and gas load curtailment costs are equal. 

In Strategy 2, the gas loads of gas networks have higher priority than the gas loads of NGFGs. In 

Strategy 3, the gas storage facilities in gas networks are only used to supply gas network loads. 

The lead time is set to 3 hours.   

 
Table 5.3 Operational reliability indices with DF-NGFGs 

Case Indices 
Subperiod 

A 

Subperiod 

B 
Total 

Case E 
!"#$ ( × 10!") 9.039 5.135 14.174 

!%#$ ( × 10!#) 9.733 1.840 11.573 

Case F 
!"#$ ( × 10!") 9.039 4.128 13.168 

!%#$ ( × 10!#) 9.733 1.688 11.421 
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Table 5.4 compares the results for the three operational strategies. As expected, the operational 

reliability of the electric power system is highest for Strategy 1 and lowest for Strategy 3. On the 

contrary, the operational reliability of the gas network is highest for Strategy 3 and lowest for 

Strategy 1. In Strategy 2, the gas loads of NGFGs are considered as low priority loads and therefore 

are curtailed first, leading to reduced reliability of the power system. Strategy 3 indicates that 

electric power system operators need to acquire access to gas storage facilities to improve the 

operational reliability of their networks. This is because these storage facilities are primarily 

developed to serve the non-electric gas load demands of the gas network. 

 

5.5.5 Case Studies for Test System B 

In this subsection, we perform case studies on Test System B to indicate the scalability of the 

proposed framework. The results are shown in Table 5.5. For Cases A and B, the lead time is two 

hours; for the rest, the lead time is 3 hours. Generally, the operational reliability of Test System B 

is higher than that of Test System A due to the presence of multiple generating units in each 

generation station and redundant components in the gas network. The computational burden for 

this test system is expectedly higher than that of Test System A. The difference between the indices 

of Cases C and D reiterate the importance of considering all failure modes of the pipelines. The 

results presented in Table 5.5 also reinforce the importance of considering the dual-fuel 

capabilities of DF-NFGFs for operational reliability evaluation of IEPGNs and the impacts of the 

operational strategies on the reliability indices. 

 

 
Table 5.4 Operational reliability indices considering different operational strategies 

Strategy Indices 

Strategy 1 
!"#$ ( × 10!") 14.174 

!%#$ ( × 10!") 1.157 

Strategy 2 
!"#$ ( × 10!") 15.307 

!%#$ ( × 10!") 1.133 

Strategy 3 
!"#$ ( × 10!") 16.301 

!%#$ ( × 10!") 1.041 
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5.6 Conclusion 

This chapter proposes a novel framework for operational reliability evaluation of IEPGNs. Such 

framework includes a detailed reliability model of natural gas pipelines for realistically calculating 

reliability indices. It also accounts for the dual-fuel capabilities of DF-NGFGs, that are shown to 

improve the operational reliability of IEPGNs. The linear formulation of the proposed optimization 

model and the adoption of CE-based IS ensure high computational efficiency and make it feasible 

to adopt the proposed framework in practice. The results on the test cases analyzed indicate that 

the operational reliability indices of IPEGNs are improved when all three failure modes of 

pipelines are considered. In addition, the impacts of dual-fuel capabilities of DF-NGFGs and 

different operational strategies of system operators on operational reliability indices are 

demonstrated.  

 
Table 5.5 Operational reliability indices for Test System B 

Indices Case A Case B Case C Case D 

!"#$ ( × 10!%) 3.328 3.860 10.207 9.696 

!%#$ ( × 10!&) 2.943 3.178 8.531 4.225 

Time (s) 3,549.1 2,851.6 2,054.1 2,687.5 

Indices Case E Case F Strategy 2 Strategy 3 

!"#$ ( × 10!%) 9.696 9.221 10.471 10.859 

!%#$ ( × 10!&) 4.225 4.203 3.975 3.802 

Time (s) 2,687.5 2,889 2,456.8 2,994.7 
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Chapter 6  
Operational Reliability-Constrained Scheduling of 

Microgrids via Cross-Entropy Importance Sampling-
based Sample Average Approximation10 

6.1 Abstract 

Microgrids are regarded as integral components of modern smart grids to facilitate higher 

utilization of distributed renewable energy resources (DRERs) and increase the reliability of 

supply to the customers. The presence of uncertainties originating from the unplanned outages of 

dispatchable generators and forecast errors of DRERs and loads complicates the optimal 

scheduling problem for microgrids. To this end, this chapter proposes a new optimization model 

for operational reliability-constrained optimal scheduling of microgrids. The proposed model first 

includes the hourly operational reliability indices as chance constraints in the model. Later, SAA 

technique is adopted to reformulate chance constraints as implicit linear constraints. Due to lower 

values of operational reliability indices, the direct application of SAA renders the model 

intractable. To circumvent this problem, an IS technique is adopted for SAA. The parameters of 

IS density are obtained using the CE optimization. Case studies are performed on a 15-bus 

microgrid to demonstrate the effectiveness of the proposed model. Sensitivity studies are then 

performed to examine the relationship of target operational reliability indices on the total operating 

costs of the microgrid. 

 
10 Reprinted without modifications and with from permission: O. A. Ansari, and C. Y. Chung, “Operational 

reliability-constrained scheduling of microgrids via cross-entropy importance sampling-based sample average 
approximation,” to be submitted IEEE Trans. Smart Grid. Copyrights for future publication of this paper: © 2021 
IEEE. 
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6.2 Nomenclature 

Indices and Sets 

,, Ω' Index for buses, set of buses 

., Ω( ., set of load demands 

/, Ω) Index for generators, set of generators 

0, Ω* Index for lines, set of lines  

1, Ω+ Index for distributed renewable energy sources (DRES), set of DRES 

2, Ω, Index for energy storage, set of energy storage 

3, Ω- Index for time, set of scheduling intervals Ω. = {1,2,3, … , )} 

Constants 

;/,1 Element of bus-line connection matrix 

./,2 Load demand at ,th bus (MW) 

<3,<4=  Minimum/maximum power of /th generator (MW) 

>5
67/967 Maximum charging/discharging power of 2th energy storage (MW) 

>5
67/967 Minimum charging/discharging power of 2th storage (MW) 

?:,2 Predicted output power for 1th DRES (MW) 

?.3 Ramp down rate of /th generator (MW/h) 

?@3 Ramp up rate of /th generator (MW/h) 

2@3 Startup cost of /th generator ($) 

2.3 Shutdown cost of /th generator ($) 

"5,$ Initial state-of-charge (SOC) of 2th energy storage (MWh) 

M Big M 

B3 Number of generating units for /th generator 

B,;; Number of samples for sample average approximation (SAA) 

B2
∗ Number of samples for CE-IS-based SAA 

)3
=>/9? Minimum up/down time of /th generator (h) 

Δ3 Time interval (1 h) 

D1 Susceptance of 0th line (Siemens) 
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E@,2 Failure rate of <th generator (outages/hour) 

F3 Running cost of /th generator ($) 

G3 Generation cost of /th generator ($/MW) 

H2 Target probability of electric load curtailment !"#$ for 3th hour 

I2 Approximate target probability of electric load curtailment !"#$ for 3th hour 

J3,2 Outage replacement rate (ORR) for /th generator 

K2 Hourly cost of electricity from the upstream network ($/MW) 

Variables 

L2 Power imported from the upstream network (MW)  

<3,2 Output of /th generator (MW) 

01,2 Power flow on the 0th line (MW) 

>5,2
67/967 Charging/discharging power of 2th energy storage (MW) 

?:,2 Output of 1th DRES (MW) 

"5,2 SOC of 2th energy storage (MWh) 

M3,2 Startup indicator for /th generator  

N3,2 Shutdown indicator for /th generator  

O3,2 Unit commitment status for /th generator  

P5,2
67/967 Charging/discharging indicator for 2th energy storage 

Q1,2
AB/2C Bus angle at starting/ending bus of 0th line 

RD Binary variable for SAA and CE-IS-based SAA 

S(), ℎ(), W()  
Generic functions for objective function, linear constraints, and inequality 

constraints, respectively 

X2() Generic function for chance constraints 

Random Variables and Probability Distribution Functions (PDFS) 

Y(,2 PDF for load demand at time 3 

Y),2 PDF for outages of generators at time 3 

Y+,2 PDF for DRES output at time 3 

Y3,2 PDF for outages of /th generator 

Y2 Combined PDF for the microgrid at time 3 
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ZE,2
(  Random variable for .th load 

Z3,2
)  Random variable for /th generator 

Z:,2
+  Random variable for 1th DRES 

Z5,2
967 Random variable for discharging power of 2th energy storage 

6.3 Introduction 

Microgrids, which are integral components of smart grids, are touted as the most promising 

enablers to efficiently and reliably integrate a large penetration of DERs, including DRES, energy 

storage, and demand response, in existing power systems [115]. The reliability and economic 

benefits of microgrids are well established through theoretical research and practical 

demonstrations [3].   

To maximize the reliability and economic benefits of microgrids, effective scheduling 

algorithms for optimal operation of such systems are required. However, the uncertainties 

associated with a high penetration of DRES in microgrids introduce considerable challenges to 

microgrid operators. To this end, in the existing literature, several models for optimal scheduling 

of microgrids have been proposed [116]. In [117], a two-stage model for optimal dispatch strategy 

is developed, where the second stage employs robust optimization to consider ramp events of solar 

photovoltaic (PV) generation. Reference [118] presents a two-stage robust optimization model to 

consider the uncertainties of DRES while considering the dispatch strategies for energy storage 

and direct load control. Apart from robust optimization, scenario-based stochastic programming 

has also been adopted, where a selected set of scenarios for DRES are included in the model [119], 

[120], [121]. Additionally, researchers have employed chance-constrained optimization to include 

uncertainties of DRES in the microgrid scheduling problem. For instance, reference [122] proposes 

a distributionally-robust chance-constrained model for islanded microgrids, where the proposed 

model is robust with respect to PDFs of DRES. In [123], unscented transformation is used to model 

DRES’ uncertainties while also considering the reconfiguration capabilities of microgrids.  

Although the uncertainties originating from DRES have been modeled in the previous work, the 

random unplanned outages of microgrid components, particularly dispatchable generators, have 

not been considered in [99], [117], [118], [119]. Due to a limited number of dispatchable 
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generators in microgrids, the outages of these generators can have devastating impacts leading to 

loss of supply to customers within those microgrids [124]. By ignoring such unplanned outages, 

the operational reliability of microgrids cannot be guaranteed through optimization models that 

only aim to maximize the economic benefits. In this regard, in [125], a tri-level two-stage robust 

optimization model for AC/DC hybrid microgrids is proposed. This model considers the N-1 

contingencies while minimizing the energy not served and DRES curtailment in a microgrid. In 

[126], a multi-objective optimization model is proposed that includes minimizing customers’ 

outage costs as one of the objectives. In [127] the expected energy not supplied (EENS) index is 

considered, and a scenario-based stochastic programming model is presented. Reference [128] 

adopts chance constraints to model spinning reserve requirements, where PDFs for DRES and load 

demand are discretized to assist in the reformulation of chance constraints. Although the models 

of [126], [127], [128] have attempted to include reliability metrics in the form of outage costs and 

spinning reserve requirements based on DRES output and load, the outages of dispatchable 

generators are not modeled. In [129], generator outages are considered using long-term reliability 

parameters. However, the generators are assumed to be either available or unavailable for the entire 

optimization horizon, depending on their initial states in the first hour. 

Within each hour of the optimization horizon, there is a finite risk of component outages that 

can lead to loss of load events. This risk is dependent on the time-conditional PDFs for generator 

outages, DRES, and loads. The existing models tend to ignore these operational reliability 

constraints in the scheduling problem. The microgrid operator should be able to set an acceptable 

level of risk for each hour of the optimization horizon while determining the optimal schedule to 

balance the tradeoff between reliability and cost.  

To address the aforementioned issue, this chapter proposes a novel optimal scheduling model 

for microgrids that explicitly models the hourly operational reliability constraints. For this purpose, 

chance-constrained optimization is adopted to include the hourly probability of electric load 

curtailment !"#$ indices – an operational reliability metric. For determining the !"#$ at each 

hour, the uncertainties associated with generator outages, DRES output, and load demand are 

included. The resulting combined PDFs for the chance constraints are complicated mixed discrete-

continuous PDFs that convolute the process of reformulating these explicit constraints into implicit 

constraints. To circumvent this issue, first, the chance constraints are represented as expectations. 
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Then, SAA is adopted to approximate the expectations by sample means. These sample means are 

included in the model using binary variables and additional constraints.  

Due to the lower values of hourly !"#$, the direct application of SAA renders the model 

computationally intractable [130]. Consequently, importance sampling (IS) is adopted to obtain an 

unbiased estimator of expectation that requires fewer samples to evaluate. To obtain the IS density, 

first, the decision variables are decoupled by using the microgrid conditions that lead to the lowest 

!"#$, and hence, maximum number of samples, for each hour in the scheduling horizon. Then, 

IS density parameters are obtained using an iterative CE optimization. Finally, the CE-IS based 

sample means are reformulated using a reduced number of binary variables.  

To indicate the effectiveness of the proposed model, case studies are performed on a synthetic 

15-bus microgrid. Both intra-day and day-ahead scheduling problems are studied. The results 

indicate the importance of considering operational reliability constraints while determining the 

optimal schedule for microgrids. The tradeoff between the operational reliability and the total 

operating costs are also shown. The impacts of target !"#$ on the operating costs are also 

examined. 

Chance-constrained optimization has been adopted previously for operational scheduling of 

power systems to consider various uncertainties [131], [132], [133]. Compared to these worthy 

research works, the proposed model differs in three key aspects: 1) the outages of dispatchable 

generators are included in the chance constraints, 2) the operational reliability index, i.e. the !"#$, 

is considered for each hour of the scheduling horizon, 3) no restrictions on the definitions of PDFs 

for chance constraints are assumed, and 4) CE-IS-based SAA is adopted to render the model 

tractable. 

6.4 Deterministic Model Formulation 

This section presents the deterministic version of the optimal scheduling problem for microgrids. 

The objective of this problem is to minimize the total operation cost of the microgrid. This 

operation cost consists of three components, (i) the generation costs of dispatchable generators in 

the microgrid, (ii) the startup and shutdown costs of dispatchable generators in the microgrid, and 

(iii) the cost of electricity purchased from the upstream network. 
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(6.1) 

The optimal scheduling problem is constrained by following equations: 

 

^ ;/,1
1∈G"($)

01,2 +^ <3,2
3∈G!($)

+^ ?:,2
:∈G&($)

+^ _>5,2
967 − >5,2

67a
5∈G'($)

− ./,2 = 0,					∀, ∈ Ω'\1, ∀3, 
(6.2) 

 01,2 = D1_Q1,2
AB
− Q1,2

2Ca,						∀0 ∈ Ω*, ∀3, (6.3) 

 O3,2<3 ≤ <3,2 ≤ O3,2<4= ,					∀/ ∈ Ω), ∀3, (6.4) 

 M3,2 − N3,2 = O3,2 − O3,2!I,						∀/ ∈ Ω), ∀3, (6.5) 

 ^ M3,2 ≤ O3,2

2

DH2!.(
)*KI

,						∀/ ∈ Ω), ∀3, (6.6) 

 ^ N3,2 ≤ 1 − O3,2

2

DH2!.(
+,KI

,						∀/ ∈ Ω), ∀3, (6.7) 

 <3,2 − <3,2!I ≤ ?@3 ,						∀/ ∈ Ω), ∀3, (6.8) 

 <3,2!I − <3,2 ≤ ?.3 ,						∀/ ∈ Ω), ∀3, (6.9) 

 "5,2 = "5,2!I − >5,2
967Δ3 + >5,2

67Δ3	,						∀2 ∈ Ω,, ∀3, (6.10) 

 h5,2
967>5

967 ≤ >5,2
967 ≤ h5,2

967>5
967,						∀2 ∈ Ω,, ∀3 (6.11) 

 h5,2
67>5

67 ≤ >5,2
67 ≤ h5,2

67>5
67,						∀2 ∈ Ω,, ∀3 (6.12) 

 "5,. = "L,$,						∀2 ∈ Ω, (6.13) 

 h5,2
967 + h5,2

67 ≤ 1,						∀2 ∈ Ω,, ∀3 (6.14) 

 ?:,2 ≤ ?:,2 , ∀1 ∈ Ω+, ∀3, (6.15) 
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Equation (6.2) represents the power balance constraints for all buses except the bus connected 

to point of common coupling, which is labelled as Bus 1. For the point of common coupling bus, 

L2 is added to the power balance equation. The power flow equations are given by (6.). Equation 

(6.4) constraints the power generated by generating stations. Equation (6.5) models the 

relationships between the three unit commitment status variables for generators. Equation (6.6) 

and (6.7) model the minimum up time, and minimum down time, respectively, for generators. 

Equation (6.8) and (6.9) limit the ramping capabilities of generators. The state-of-charge (SOC) 

equation for storage is provided by (6.10). In (6.11) and (6.12), the constraints on the maximum 

charging and discharging power of storage are set. Equation (6.13) sets the cycling constraint for 

energy storage, which ensures that energy storage maintains the initial SOC at the end of 

scheduling horizon. Equation (6.14) ensures energy storage is not charged and discharged 

simultaneously. Finally, the constraints on DRES output are provided by (6.15). 

6.5 Proposed Chance-Constrained Optimization Formulation 

The deterministic formulation presented in the previous section ignores the uncertainties 

associated with the unplanned outages of dispatchable generators, the output of DRERs and the 

load forecast errors. The outages of dispatchable generators coupled with uncertainties of DRES, 

in particular, can lead to loss of load events, thus threatening the operational reliability of the 

microgrid. Ignoring these uncertainties may lead to an operation schedule, which, although, 

maximizes the economic benefit of the microgrid but could increase the risk of loss of load events.  

Therefore, it is important to consider the operational reliability constraints to minimize this risk. 

Moreover, the microgrid operator should be able to set a preferable level of risk for each hour 

while scheduling the microgrid. Consequently, in this chapter, chance-constrained optimization is 

adopted to model the operational reliability constraints in the scheduling problem.  

To represent these uncertainties, random variables are introduced. Specifically, let Z3,2)  be a 

random variable representing the available number of generating units of the /th generator, which 

comprises total B3 identical units. Let Z:,2+  and ZE,2(  represent the random variables for the 1th 

DRER and the .th load, respectively. Similarly, let Z5,2967 denote the random variable for available 

discharging power for the 2th storage. Employing these random variables, the power balance 

equation in (6.2) is then replaced by the following constraint: 
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(6.16) 

where iA denotes the expectation taken with respect to the PDF Y. In order to quantify the risk of 

loss of load events, the operational reliability indices can be employed. In this work, the !"#$ 

index is considered [85]. In particular, the !"#$ index is given by: 

 
ℙA0 k^ O3,2<3Z3,2

)

3∈G!
+^ Z:,2

+

:∈G&
−^ ZE,2

(

E∈G/
+^ Z5,2

967

5∈G'
≤ 0l

≤ H2 , ∀3, 
(6.17) 

where Y2 represents the combined PDF for the system. Also, in (6.17), it is assumed that the energy 

storage is always discharged in the event of outages to improve the operational reliability of the 

microgrid. Such practical operation strategy of energy storage is commonly assumed in the 

operational reliability literature [27].  

 In (6.17), the PDF Y2 should be defined for each hour of the scheduling horizon. Assuming 

that the random variables are independent, this PDF can be decomposed as follows: 

 Y2(m) = Y),2Y+,2Y(,2 . (6.18) 

 The PDF for generator outages at each hour can be formulated in terms of  outage replacement 

rates (ORRs) [85] as follows. Specifically, Z3,2)  follows a binomial distribution 

 Y3,2_Z3,2
) a = o

B3

Z3,2
) p _1 − J3,2a

M(,0
!
_J3,2a

J(!M(,0
!
, (6.19) 

Where the ORR is given by  

 J3,2 = E3,2q3. (6.20) 

Then,  
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 Y),2 = r Y3,2
3∈G!

. (6.21) 

The PDFs for DRES Y+,2 and load demand Y(,2 are fitted on historical forecast errors data. For 

simplicity, in this chapter, these PDFs are modeled as Gaussian distributions centered on 

forecasted values. However, it should be noted that the proposed approach of this chapter does not 

restrict the definition of these PDFs. In fact, any forms of PDFs can be employed as long as samples 

can be generated from those PDFs and appropriate IS density can be obtained. Interested readers 

are referred to [34] for an example of using GMM models for renewable energy sources in the 

operational reliability evaluation.  

The constraints given by (6.16) and (6.17) along with the associated definitions of PDFs are 

included in the optimization model presented in the previous subsection. The proposed chance-

constrained formulation is then given by:  

 min(6.1)		2. 3.		{(6.3) − (6.15), (6.16) − (6.21)}. (6.22) 

The inclusion of the explicit constraints requires reformulation strategies to convert them into 

implicit constraints. The reformulation strategy employed in this chapter is explained in the next 

section. 

6.6 Model Reformulation via CE-IS Based SAA 

6.6.1 IS-Based SAA 

The chance-constrained formulation of (6.22) can be rewritten in the following concise format: 

 minS(u). (6.23) 

s.t. ℎ(u) = 0, (6.24) 

 W(u) ≤ 0, (6.25) 

 ℙA0{X2(u, v) ≤ 0} ≤ H2 ,				∀3 ∈ Ω-, (6.26) 

where v is a random vector with PDF given by Y(∙), and u is the vector of decision variables. H2 

represent the target !"#$ index for each hour set by the microgrid operator. Note that, in the above 
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formulation, the chance constraints are applied to each hour of the scheduling period. These chance 

constraints can also be written in the form of expectation of an indicator function as follows: 

 iAxy{X2(u, v) ≤ 0}z ≤ H2 ,				∀3 ∈ Ω-. (6.27) 

The model given by (6.23)–(6.27) cannot be directly solved due to the implicit chance 

constraints. Thus, it is necessary to reformulate the implicit chance constraints into explicit 

constraints. Typically, existing studies reformulate these chance constraints into linear constraints 

by assuming a standard PDF for Y2, e.g., Gaussian distribution. Such assumptions cannot be applied 

as Y2 in (6.18) represents a mixed discrete-continuous PDF. Also, depending on the definitions of 

Y+ and Y(, the form of Y2 can be very complicated.  

An approach to reformulate the above chance constraints is to employ approximation techniques. 

SAA falls under the category of these approximation techniques. Using SAA, the expectation in 

(6.27) is replaced by the sample means as follows: 

 
1

B,;;^ yxX2_u, vDa ≤ 0z
N'11

DHI
≤ I2 ,				∀3 ∈ Ω-. (6.28) 

where vD is the {th sample drawn from Y2(∙), and B,;; is the total number of independent and 

identically distributed (IID) samples from Y2(∙). Note that due to the approximation, H2	is modified 

to I2, where I2 > H2. Using binary variables, the constraints of (6.28) can be reformulated as 

follows: 

 
1

B,;;^ RD

J'11

DHI
≤ I2 ,				∀3 ∈ Ω-, RD ∈ [0,1], (6.29) 

 X2_u, vDa + MRD ≥ 0,			∀{ ∈ {1, … , B,;;}, ∀3 ∈ Ω-, (6.30) 

where big-M method is used to allow constraint violations for samples when RD is 1. 

A major drawback of SAA lies in the inclusion of a large number of additional constraints of 

the form (6.30). In particular, when (6.27) represents a rare event, the number of samples B,;; 

required for (6.28) would be very large. This is the situation for the operational reliability 

constraints as the operational reliability indices are very small. For instance, for the hourly !"#$ 

equal to 10!#, B,;; should be set to at least 10# to have one sample on average that causes the 
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violation of (6.27). Otherwise, all other samples will always satisfy (6.27). Consequently, to 

reformulate these chance constraints, for each hour 10# binary variables and 10# additional 

constraints need to be added to the model. The model quickly becomes intractable and difficult to 

solve as the number of hours in the scheduling horizon increase from one. To address this issue, 

in this chapter, IS is adopted [130]. The idea of IS is to distort the original PDF Y2(∙) to obtain a 

different PDF Y2∗(∙) that is biased to generate more samples that are of interest [73]. That is, more 

samples are generated that violate the operational reliability constraints. Using IS, (6.28) is 

replaced by the following unbiased estimator: 

 
1

B2
∗^ yxX2_u, vDa ≤ 0zÄ2(u, vD)

J0∗

DHI
≤ H2 ,				∀3 ∈ Ω-. (6.31) 

where B2∗ IID samples are drawn from Y2∗(∙) and ÄD is the likelihood ratio, which is given by: 

 Ä2(u, vD) =
Y2_u, vDa

Y2
∗_u, ÅDa

,				∀3 ∈ Ω-. (6.32) 

After adopting IS, (6.29)–(6.30) are reformulated using the following binary variables as follows 

[Ref]:  

 ^ Ä2(u, vD)RD

J0∗

DHI
≤ I2 ,				∀3 ∈ Ω-, RD ∈ [0,1], (6.33) 

 X2_u, vDa + MRD ≥ 0,			∀{ ∈ {1, … , B2
∗}, ∀3 ∈ Ω-. (6.34) 

 

6.6.2 CE-IS-based SAA 

The challenge now becomes finding the IS density Y2∗ for each hour. To do so, first, we fix the 

decision variables u for selecting an appropriate IS density. Specially, we select u such that the 

!"#$ is lowest for each hour. This corresponds to all generators being committed in each hour 

and the energy storage discharged at the maximum power. Second, we assume a parametric form 

of Y2 and Y2∗. In particular, Y2(∙ |É) and Y2∗(∙) = Y2(∙ |Ñ) belong to the same parametric PDF family 

with parameters É and Ñ, respectively. To obtain Ñ, CE optimization is used in this work. CE 

optimization is an iterative technique that minimizes the Kullback-Leibler divergence between the 

ideal IS density Y2(∙ |Ñ∗) and approximate IS density Y(∙ |Ñ) [73]. The advantage of using CE 
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optimization in this work lies in the fact that closed-form analytical expressions are readily 

available to obtain Ñ for many PDFs that are typically used in the operational reliability studies 

[34], [85]. Interested readers are referred to [34], [85] for these expressions and the CE 

optimization process. 

After adopting the CE-IS-based SAA, the model is reformulated into a tractable MILP model 

that can be solved by multiple off-the-shelf solvers. The reformulated model is given by: 

 min(6.23)		2. 3.		{(6.24), (6.25), (6.33), (6.34)}. (6.35) 

The complete framework for solving the model is given by Fig. 6.1. 

 

 
Figure 6.1 Framework for the proposed microgrid scheduling problem 
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6.7 Case Studies 

This section performs case studies to depict the effectiveness of the proposed model. The case 

studies are performed on a synthetic 15-bus microgrid as shown in Fig. 6.2. The microgrid 

comprises 2 dispatchable generators. The maximum capacities of the 2 dispatchable generators are 

0.5 MW and 1.4 MW, respectively. The first generator comprises a single unit, whereas the second 

generator includes two identical units of 0.7 MW. The microgrid also includes a 1.1 MW wind 

turbine, 1 MW solar PV and a 0.4 MW/2.4MWh energy storage. The peak load for this system is 

2.53 MW. The CE-IS based SAA method is implemented in MATLAB 2019 and the GUROBI 

9.0.1 solver is used to solve the optimization problem. 

 

6.7.1 Demonstrative Case 

This subsection preforms case studies by using the following two optimization models. In Model 

A, the operational reliability constraints are ignored and the microgrid is scheduled solely based 

on the operation costs. In Model B, the proposed model is used to include the operational reliability 

constraints in the form of hourly !"#$ indices, which are set to 1 × 10!% for each hour. For 

 
Figure 6.2 A 15-bus synthetic microgrid for case studies 
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demonstration purposes, the scheduling horizon is limited to 6 hours for the intra-day scheduling 

of the microgrid. In a later section, this scheduling horizon is extended to 24 hours for the day-

ahead scheduling problem.  

Table 6.1 depicts the commitment statuses of the dispatchable generators obtained by Model A 

and Model B. In the results, G1 represents the power received from the upstream network. The 

results indicate that the optimal schedule is evidently different for the two models. To explain why 

this is the case, consider Fig. 6.3 and Fig. 6.4. Fig. 6.3 portrays the total committed generation 

capacities, expected load demands, expected renewable generation, and energy storage operation 

for each hour in the scheduling horizon for the two models. Fig. 6.4 shows the log of hourly !"#$ 

indices for the two models. During hours 1–3, both models satisfy the target !"#$ indices. In fact, 

the risk for Model B is higher than that of Model A due to the lower total committed capacity in 

Model B, as shown in Fig. 6.3. In Model A, the committed capacity is higher due to the scheduling 

of a larger but cheaper generator G4 instead of a smaller but more expensive generator G2. During 

hours 4-6, the !"#$ for Model A increases after the decommitment of G4, which happens due to 

increased output from the renewable generation as shown in Fig. 6.3. Consequently, during these 

hours, the target !"#$ indices are violated. On the contrary, for Model B, no units are decommitted 

during these hours, thus, ensuring that the target !"#$ indices are satisfied for all hours. This is 

also shown in Fig. 6.4. The !"#$ indices decrease significantly during hours 4-6. The increase in 

operational reliability for Model B comes at an increase in the operating costs. In fact, the value of 

objective function for Model A and Model B are $527.1 and $657.36, respectively. 

 

 
Table 6.1 Scheduling of dispatchable generators for demonstrative cases 

Model Generator Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 

Model A 

G1 1 1 1 1 1 1 
G2 0 0 0 0 0 0 
G3 1 1 1 1 1 1 
G4 1 1 1 0 0 0 

Model B 

G1 1 1 1 1 1 1 
G2 1 1 1 1 1 1 
G3 1 1 1 1 1 1 
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Figure 6.3 Load, renewable power, committed generation, and storage power for Model A and 

Model B 

 
 
 

 
Figure 6.4 !"#$ indices for Model A and Model B 

 
 
 



125 
 

6.7.2 24-hour Day-Ahead Scheduling 

The results for the 24-hour day-ahead scheduling of microgrids are presented here. For Model 

B, the target hourly !"#$ indices are set to 5 × 10!" for each hour. Table 6.2 on the next page 

shows the commitment statues of the generators for the two models. As observed previously, the 

introduction of operational reliability constraints modifies the commitment schedules. In 

particular, during hours 17-24, Model B commits G2 to reduce the !"#$ indices. The !"#$ 

indices are shown in Fig. 6.5. Note that the target !"#$ indices are satisfied for all hours until 

hour 16 for Model A. For hours 17-24, the !"#$ indices increase due to the reduction in the output 

of solar power. This is shown in Fig. 6.6, which portrays the hourly load demand and DRES output 

for the 24 hours. On the other hand, for Model B, the !"#$ indices are satisfied for hours 17-24 

as well due to the commitment of G2. The total operation costs for Model A and Model B are 

$16,686 and $17,188, again indicating an increase in the operating cost as the operational 

reliability constraints are included in the model. 

 
Figure 6.5 !"#$ indices for Model A and Model B for day-ahead scheduling 
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Table 6.2 Scheduling of dispatchable generators for 24-hour day-ahead scheduling 

Model Gene
rator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Model 
A 

G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Model 
B 

G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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6.7.3 Impacts of Target !"#$ on the Operating Costs 

In this subsection, the impacts of changing the target %&'(, which is set by the microgrid 

operator on the operating costs of the microgrid, are analyzed. For these studies, the 24-hour day 

ahead scheduling is considered. A single %&'( is set for all hours of the scheduling horizon. Fig. 

6.7 shows the variation in the operating costs as the target %&'( is changed. As expected, as the 

target %&'( is reduced, which means stricter operational reliability constraints are enforced, the 

operating costs for the microgrid increase. This increase continues until a certain %&'( is reached. 

After that, the model becomes infeasible as the microgrid commits all available generation 

capacity. This is shown by a zero operating cost in Fig. 6.7. Also, from Fig. 6.7, note that the 

microgrid satisfies the criterion of 1 × 10!" when the reliability constraints are not included. In 

particular, the operating costs remain the same from 1 × 10!" to 1.  

 
Figure 6.6 Hourly load demand and DRES output for day-ahead scheduling 
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6.8 Conclusion 

This chapter proposes a new optimization model for the operational reliability-constrained 

scheduling of microgrids. To this end, chance-constrained optimization is adopted to include 

hourly %&'( indices in the scheduling problem of microgrids. The explicit chance constraints in 

the model are reformulated using SAA. To render the model tractable, IS is adopted to distort the 

PDFs, and CE was used to obtain IS parameters. Case studies performed on a synthetic microgrid 

showed that the schedule obtained from the proposed model satisfies the operational reliability 

constraints set by the microgrid operator. Intra-day and day-ahead scheduling problems are solved 

to explain the results. The impacts of target %&'( on the operation costs are also examined

 
Figure 6.7 Variation in the total operating costs of microgrids with varying target %&'( 
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Chapter 7  
Conclusion  

7.1 Conclusion 

In this thesis, a new set of comprehensive tools for the operational reliability and risk evaluation 

of sustainable electric power systems and IEPGNs are proposed and developed. In the first step, a 

new computationally efficient simulation technique called FEGS is adapted for the operational 

reliability of generating systems. The proposed simulation technique has two advantages: 1) it is 

able to integrate complicated PDFs of different components of power systems, e.g., wind power, 

and 2) it requires a significantly lower computational burden compared to CMCS. The simulation 

results have verified the advantages of the proposed approach. Additional case studies have 

indicated the impact of uncertainties of load and wind generation on the short-term reliability of 

generating systems.  

Regarding the second step of the project, a novel hybrid analytical-simulation framework is 

proposed for the short-term risk assessment of wind-integrated composite power systems. The 

proposed framework has three key merits: first, it comprehensively models the uncertainty of wind 

speed during power systems operation; second, it includes the contingencies and constraints of 

transmission systems and therefore estimates more accurate risk indices; and third, it estimates 

short-term risk indices with a very low computational burden. The simulation results show that the 

proposed framework outperforms existing state-of-the-art approaches in capturing the impact of 

uncertainty of wind speed on the short-term risk indices. The results also indicate the excellent 

computational performance of the framework. Furthermore, for the first time, the short-term risk 

indices at individual buses are also calculated. The results also show the drawbacks of utilizing 

deterministic techniques to ensure the operational reliability of power systems.  

The third step of the research builds upon the work performed in the second step. In particular, 

the third step aims to improve the uncertainty modeling of wind generation for operational 

reliability studies. To this end, a new data-driven approach to model the wind generation 
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uncertainty for the operational reliability studies is presented. The proposed modeling approach 

avoids the drawbacks of overfitting to limited wind generation data and includes the temporal 

correlation and multimodality of wind generation PDF. An IS technique is also modified to 

integrate the proposed modeling of wind generation. Case studies on two test systems indicate the 

impact of considering complex statistical features of wind generation on the operational risk 

indices of composite power systems.  

In the fourth step, a novel framework for the operational reliability evaluation of IEPGNS is 

proposed. The framework has three notable features. First, it includes a detailed reliability model 

of natural gas pipelines to realistically evaluate the reliability indices. Second, it models the dual-

fuel capabilities of DF-NGFGs that have been shown to improve the operational reliability of 

IEPGNs. Third, the linear formulation of the proposed optimization model and the adoption of 

CE-based IS ensures high computational efficiency of the proposed framework. The results 

indicate that the operational reliability indices of IPEGNs are improved when all three failure 

modes of pipelines are considered. In addition, the impacts of dual-fuel capabilities of DF-NGFGs 

and the different operational strategies of system operators on operational reliability indices are 

also demonstrated. 

Finally, in the last step, a new optimization model for the operational reliability-constrained 

scheduling of microgrids is proposed. To this end, chance-constrained optimization is adopted to 

embed the hourly operational reliability indices in the scheduling problem of microgrids. The 

explicit chance constraints in the model are reformulated using SAA. IS is adopted to render the 

model tractable. The parameters of IS are obtained after making realistic assumptions and using 

CE optimization. Case studies performed on a synthetic microgrid showed that the schedule 

obtained from the proposed model satisfies the operational reliability constraints set by the 

microgrid operator. Intra-day and day-ahead scheduling problems are solved to explain the results 

in detail. The impacts of target %&'( on the operating costs are also examined. 

7.2 Suggestions for Future Work 

For the future extension of this study, the following research works are recommended:  
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• The FEGS approach can be extended for calculating other reliability indices of 

sustainable electric power systems, such as EENS. In addition, this approach can also be 

applied to generate lists of cascading contingencies that lead to a specific event of 

interest. Multiple cascading paths can be generated, and their probabilities can be 

assessed.  

• The conditional PDF models for wind speed in the operational reliability framework can 

be extended. In particular, dependence structure modeling can be employed to model the 

dependencies between multiple wind farms in power systems. For this purpose, copulas, 

such as C-Vine copulas, can be employed. This will lead to a more realistic evaluation 

of the operational reliability indices.  

• To further improve the data-driven modeling of wind power uncertainty, advanced 

machine learning models can be implemented. In particular, generative adversarial 

networks can be used to provide a completely model-free method for generating wind 

power samples in the operational reliability evaluation process. Moreover, the 

application of Bayesian belief networks to incorporate the dependencies of wind power 

on wind speed, temperature, and other meteorological factors can be examined.  

• The framework of the operational reliability evaluation of IEPGNs can be extended by 

including more detailed reliability models of gas sources. Also, the relationship of the 

output gas sources with important factors, such as temperature, can also be modeled and 

included in the reliability evaluation process.  

• The operational reliability-constrained optimal scheduling model for microgrids can also 

incorporate advanced uncertainty models of DRES. Furthermore, multistate models for 

dispatchable generators and time-dependent failure rates can be included to extend the 

model. Theoretical work can also be performed to study the global optimality of the 

obtained solutions.
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Appendix C 

IEEE Reliability Test System (RTS)  

 

Figure C.1 Modified IEEE RTS with wind generation  
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Appendix D 

Supplementary Data for IEPGNs  

Table D.1 General parameters for natural gas networks 

Parameter Value 

Specific gas constant , 5.1828 × 10!# 1#234/678 

Gas temperature 9 281.85	8 

Gas compressibility ; 0.8 

Speed of sound < 380	1/> 

Natural gas density ?$ 0.68	67/1# 

Specific heat ratio A 1.32 

Effective leak area factor B 0.9 

 

Table D.2 CE optimization parameters 

Parameter Value 

Multi-level parameter for cross entropy optimization 0.01 

Number of samples for cross entropy optimization 10,000 

Maximum number of cross entropy optimization iterations 10 

 

Table D.3 Optimization parameters 

Parameter Value 

Number of linearization points for Weymouth Equation (7-node gas 

network) per pipeline 
20 

Number of linearization points for Weymouth Equation (20-node Belgian 

gas network) per pipeline 
60 

Number of linearization points for Gas Release Rate Model 5 
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Data for the 7-node gas network: 

Table D.4 Node data 

Bus Type 
Gas load 

(factor) 

Minimum 

pressure (bar) 

Maximum 

pressure (bar) 

1 Load 0.5 7.23 10.34 

2 Load 0.15 9.65 11.72 

3 Load 0.35 10.34 13.44 

4 Node 0 4.82 6.89 

5 Node 0 10.34 13.78 

6 Source 0 11.03 16.54 

7 Source 0 6.89 9.65 

 

Table D.5 Pipeline data 

From To ! Active 
Pipeli

ne 

Compres
sion 

Factor 

Diameter 
(m) 

Length (m) Friction MTTF 
(hour/outag

e) 

2 1 0.03925 0 0 0.8 82733 0.01098 1176 

2 5 0.02909 0 0 0.8 150633 0.01098 1176 

6 5 0.03514 0 0 0.8 103225 0.01098 1176 

5 3 0.03374 0 0 0.8 111945 0.01098 1176 

7 4 0.03886 0 0 0.8 84393 0.01098 1176 

4 2 0.03886 1 2.5 0.8 84393 0.01098 1764 

 

Table D.6 Gas generation data 

Node 
Maximum 

Generation (kg/s) 

Minimum 

Generation (kg/s) 

MTTF 

(hour/outage) 

6 32.0924 0 1100 

7 28.3483 0 950 
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Table D.7 Gas storage data 

Node Maximum 

Discharge 

(kg/s) 

Maximum 

Charge 

(kg/s) 

Current 

SOC (kg) 

Minimum 

SOC (kg) 

Maximum 

SOC (kg) 

1 10.6975 10.6975 96277.12 38510.848 192554.24 

 

Table D.8 NGFGs data 

Electrical Bus Gas Node 
Maximum 

Power 

Conversion 

Factor 

MTTF 

(hour/outage) 

1 5 220 0.04033 1100 

6 2 20 0.05011 950 

 

Table D.9 Parameters for the 4-state model of DF-NGFGs 

Parameter Value 

E%& 0.033	F43G>HFHIG>/ℎIK4 

E%' 0.008	F43G>HFHIG>/ℎIK4 

E%( L	F43G>HFHIG>/ℎIK4 

E&% 0 

E&' 0 

E&( 2L 

E'% 0 

E'& 0 

E'( 0.025	F43G>H>FHIG>/ℎIK4 

E(%,	E(&,	E(' 0 

Where L is the failure rate of the NGFG. 

Data for the 20-node Belgian gas network: 
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The complete data for this network is available in: D. De Wolf, and Y. Smeers, “The gas 

transmission problem solved by an extension of the simplex algorithm,” Management Science, 

vol. 46, no. 11, pp. 1454-1465, Nov. 2000.  

For the 20-node Belgian Gas Network, the MTTFs of all pipelines are assumed to be 1176 

hours/outage. For compressors, the MTTFs are assumed to 1764 hours/outage.  

Table D.10 NGFGs data 

Electrical Bus Gas Node 
Maximum 

Power 

Conversion 

Factor 

MTTF 

(hour/outage) 

18 5 400 0.04033 1100 

23 13 350 0.05011 1150 

21 14 400 0.05011 1100 

 

No changes are made to the test systems’ data for the 6-bus power system and the 24-bus IEEE 

RTS. 

For efficiency purposes, natural gas flows on pipelines are scaled down by a factor of 100. 

Corresponding equations are modified to include this scale factor. 

Gas Release Rate Model: 

The coefficients of the gas release rate model in (8) are given as follows [23]: 

 M) =
πP)"Q)
4

STU* V
2

T + 1
X
(,-.)(,!.)

, (D.1) 

 Y) = Z4Q)"[) \)] ^(2 (T + 1)⁄ )"/(,!.) . (D.2) 

In (A.B.1) and (A.B.2), P) and [) represent the diameter and friction factor of the bth pipeline, 

respectively. T and U* are the specific heat ratio and density of natural gas at operating conditions. 

Q) models the ratio of the effective hole area to the cross-sectional area of the pipeline, or 

 Q) = c\1
" P)"] , (D.3) 
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where	\1 is the diameter of the leak and c is a constant modeling the irregular shape of the leak. 

Linearization Method: 

Let d(e) be a non-linear function of e, then using the incremental model, d(e) is linearized as 

 d(e) = d(e.) +fZd(e2-.) − d(e2)^h2 ,

3

24.
 (D.4) 

 e = e. +f(e2-. − e2)h2,

3

24.
 (D.5) 

 h2-. ≤ M2, M2 ≤ h2 ∀H ∈ {1, . . , % − 1}, (D.6) 

 0 ≤ h2 ≤ 1, ∀H ∈ {1, … , %}, (D.7) 

where % is the number of points for linearization and M is a binary variable. 
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