11 research outputs found

    Feasibility Study of High-Level Synthesis : Implementation of a Real-Time HEVC Intra Encoder on FPGA

    Get PDF
    High-Level Synthesis (HLS) on automatisoitu suunnitteluprosessi, joka pyrkii parantamaan tuottavuutta perinteisiin suunnittelumenetelmiin verrattuna, nostamalla suunnittelun abstraktiota rekisterisiirtotasolta (RTL) käyttäytymistasolle. Erilaisia kaupallisia HLS-työkaluja on ollut markkinoilla aina 1990-luvulta lähtien, mutta vasta äskettäin ne ovat alkaneet saada hyväksyntää teollisuudessa sekä akateemisessa maailmassa. Hidas käyttöönottoaste on johtunut pääasiassa huonommasta tulosten laadusta (QoR) kuin mitä on ollut mahdollista tavanomaisilla laitteistokuvauskielillä (HDL). Uusimmat HLS-työkalusukupolvet ovat kuitenkin kaventaneet QoR-aukkoa huomattavasti. Tämä väitöskirja tutkii HLS:n soveltuvuutta videokoodekkien kehittämiseen. Se esittelee useita HLS-toteutuksia High Efficiency Video Coding (HEVC) -koodaukselle, joka on keskeinen mahdollistava tekniikka lukuisille nykyaikaisille mediasovelluksille. HEVC kaksinkertaistaa koodaustehokkuuden edeltäjäänsä Advanced Video Coding (AVC) -standardiin verrattuna, saavuttaen silti saman subjektiivisen visuaalisen laadun. Tämä tyypillisesti saavutetaan huomattavalla laskennallisella lisäkustannuksella. Siksi reaaliaikainen HEVC vaatii automatisoituja suunnittelumenetelmiä, joita voidaan käyttää rautatoteutus- (HW ) ja varmennustyön minimoimiseen. Tässä väitöskirjassa ehdotetaan HLS:n käyttöä koko enkooderin suunnitteluprosessissa. Dataintensiivisistä koodaustyökaluista, kuten intra-ennustus ja diskreetit muunnokset, myös enemmän kontrollia vaativiin kokonaisuuksiin, kuten entropiakoodaukseen. Avoimen lähdekoodin Kvazaar HEVC -enkooderin C-lähdekoodia hyödynnetään tässä työssä referenssinä HLS-suunnittelulle sekä toteutuksen varmentamisessa. Suorituskykytulokset saadaan ja raportoidaan ohjelmoitavalla porttimatriisilla (FPGA). Tämän väitöskirjan tärkein tuotos on HEVC intra enkooderin prototyyppi. Prototyyppi koostuu Nokia AirFrame Cloud Server palvelimesta, varustettuna kahdella 2.4 GHz:n 14-ytiminen Intel Xeon prosessorilla, sekä kahdesta Intel Arria 10 GX FPGA kiihdytinkortista, jotka voidaan kytkeä serveriin käyttäen joko peripheral component interconnect express (PCIe) liitäntää tai 40 gigabitin Ethernettiä. Prototyyppijärjestelmä saavuttaa reaaliaikaisen 4K enkoodausnopeuden, jopa 120 kuvaa sekunnissa. Lisäksi järjestelmän suorituskykyä on helppo skaalata paremmaksi lisäämällä järjestelmään käytännössä minkä tahansa määrän verkkoon kytkettäviä FPGA-kortteja. Monimutkaisen HEVC:n tehokas mallinnus ja sen monipuolisten ominaisuuksien mukauttaminen reaaliaikaiselle HW HEVC enkooderille ei ole triviaali tehtävä, koska HW-toteutukset ovat perinteisesti erittäin aikaa vieviä. Tämä väitöskirja osoittaa, että HLS:n avulla pystytään nopeuttamaan kehitysaikaa, tarjoamaan ennen näkemätöntä suunnittelun skaalautuvuutta, ja silti osoittamaan kilpailukykyisiä QoR-arvoja ja absoluuttista suorituskykyä verrattuna olemassa oleviin toteutuksiin.High-Level Synthesis (HLS) is an automated design process that seeks to improve productivity over traditional design methods by increasing design abstraction from register transfer level (RTL) to behavioural level. Various commercial HLS tools have been available on the market since the 1990s, but only recently they have started to gain adoption across industry and academia. The slow adoption rate has mainly stemmed from lower quality of results (QoR) than obtained with conventional hardware description languages (HDLs). However, the latest HLS tool generations have substantially narrowed the QoR gap. This thesis studies the feasibility of HLS in video codec development. It introduces several HLS implementations for High Efficiency Video Coding (HEVC) , that is the key enabling technology for numerous modern media applications. HEVC doubles the coding efficiency over its predecessor Advanced Video Coding (AVC) standard for the same subjective visual quality, but typically at the cost of considerably higher computational complexity. Therefore, real-time HEVC calls for automated design methodologies that can be used to minimize the HW implementation and verification effort. This thesis proposes to use HLS throughout the whole encoder design process. From data-intensive coding tools, like intra prediction and discrete transforms, to more control-oriented tools, such as entropy coding. The C source code of the open-source Kvazaar HEVC encoder serves as a design entry point for the HLS flow, and it is also utilized in design verification. The performance results are gathered with and reported for field programmable gate array (FPGA) . The main contribution of this thesis is an HEVC intra encoder prototype that is built on a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core Intel Xeon processors and two Intel Arria 10 GX FPGA Development Kits, that can be connected to the server via peripheral component interconnect express (PCIe) generation 3 or 40 Gigabit Ethernet. The proof-of-concept system achieves real-time. 4K coding speed up to 120 fps, which can be further scaled up by adding practically any number of network-connected FPGA cards. Overcoming the complexity of HEVC and customizing its rich features for a real-time HEVC encoder implementation on hardware is not a trivial task, as hardware development has traditionally turned out to be very time-consuming. This thesis shows that HLS is able to boost the development time, provide previously unseen design scalability, and still result in competitive performance and QoR over state-of-the-art hardware implementations

    IMPLEMENTASI HEVC CODEC PADA PLATFORM BERBASIS FPGA

    Get PDF
    High Efficiency Video Coding (HEVC) telah di desain sebagai standar baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec pada Zynq 7000 AP SoC. Kami mencoba mengimplementasikan HEVC menggunakan tiga desain sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder HEVC di implementasikan dengan hardware/software co-design. Ketiga, mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan codec. Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya, kami tidak dapat menyelesaikan desain dengan hardware/software co-design karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain, sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di outer-loop dapat meningkatkan performa dilihat dari nilai latency

    Parametrien etsintä HEVC:n tehokkaalle moodivalinnalle

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. It halves the achieved bit rate compared with the previous standard, Advanced Video Coding (AVC). However, the bit rate decrease comes with 40% increase in encoding complexity. This is mainly due to larger number of block coding modes, including Symmetric motion partitions (SMPs), Asymmetric motion partitions (AMPs), and larger coding units of up to 64x64 pixels. These new features are mainly used for Inter prediction that accounts for 60-70% of the whole encoding time. For this reason, optimization of Inter prediction is the main topic in this Thesis. To tackle the Inter prediction complexity, a parametric exploration was chosen as the approach. The exploration was done by gradually shifting the focus from the most coarse optimization to the parameter fine tuning. The selected approach in this study required thousands of individual tests so an automated solution was needed. This led to the creation of a new software solution, TUT Task Manager. It is capable of automatically distributing the tasks of parametric exploration to any number of nodes available in the local network. In total, TUT Task Manager was used to run 4000 tests with a combined CPU time of 14 months. The results were used to create a set of recommended schemes for Inter mode selection. Overall, these new schemes are shown to provide 31-50% complexity saving against the default configuration of HM 11.0, with a minor bit rate increase of 0.2-1.3%. They also provide better RDC performance than the existing solutions. The tools and methods used in this work are so generic that they can be used to further optimize other parts of the video codec

    Kvazaar HEVC videokooderin pakkaustehokkuuden ja suorituskyvyn optimointi

    Get PDF
    Growing video resolutions have led to an increasing volume of Internet video traffic, which has created a need for more efficient video compression. New video coding standards, such as High Efficiency Video Coding (HEVC), enable a higher level of compression, but the complexity of the corresponding encoder implementations is also higher. Therefore, encoders that are efficient in terms of both compression and complexity are required. In this work, we implement four optimizations to Kvazaar HEVC encoder: 1) uniform inter and intra cost comparison; 2) concurrency-oriented SAO implementation; 3) resolution-adaptive thread allocation; and 4) fast cost estimation of coding coefficients. Optimization 1 changes the selection criterion of the prediction mode in fast configurations, which greatly improves the coding efficiency. Optimization 2 replaces the implementation of one of the in-loop filters with one that better supports concurrent processing. This allows removing some dependencies between encoding tasks, which provides more opportunities for parallel processing to increase coding speed. Optimization 3 reduces the overhead of thread management by spawning fewer threads when there is not enough work for all available threads. Optimization 4 speeds up the computation of residual coefficient coding costs by switching to a faster but less accurate estimation. The impact of the optimizations is measured with two coding configurations of Kvazaar: the ultrafast preset, which aims for the fastest coding speed, and the veryslow preset, which aims for the best coding efficiency. Together, the introduced optimizations give a 2.8× speedup in the ultrafast configuration and a 3.4× speedup in the veryslow configuration. The trade-off for the speedup with the veryslow preset is a 0.15 % bit rate increase. However, with the ultrafast preset, the optimizations also improve coding efficiency by 14.39 %

    HEVC-videokoodekin intra-ennustuksen toteutus FPGA-piireille C-kielestä syntesoimalla

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard in video compression. With HEVC, it is possible to compress the video with half the bitrate compared to the previous video coding standard, Advanced Video Coding (AVC), with the same video quality. Now even, the complexity of the encoder is significantly larger. As designs become more and more complex, traditional hardware (HW) description languages (HDLs), such as Very High Speed Integrated Circuit Hardware Description Language (VHDL) or Verilog, can not be used to present the designs without increasing effort. The solution for this is a higher abstraction language for describing HW. High-Level Synthesis (HLS) is a way of using a programming language like C or C++ to describe the HW and automatically generating the HDL from it. This makes the code easier to understand and decreases the time used for implementing the design. This Thesis uses Catapult-C to create an HLS-based implementation of HEVC intra prediction for a Field Programmable Gate Array (FPGA). The HEVC encoder used in this Thesis is open source Kvazaar which has been developed at Tampere University of Technology. The objective is to implement an intra prediction accelerator faster than implementing it with register-transfer level (RTL) using VHDL or Verilog and still get comparable area and performance. This Thesis presents six development versions of the intra prediction accelerator. The complexity of the accelerator grows gradually, as more features were added to it. The final version is able to perform the intra prediction, mode cost computation and mode decision for Full HD video at 24.5 fps using 11 662 adaptive logic modules (ALMs) on an Altera Cyclone V FPGA. This Thesis presents the benefits of Catapult-C and HLS. The implementation results were comparable to hand coded RTL but achieved with a fraction of the estimated time for a VHDL implementation. As a rough estimate, if something takes a month to implement in VHDL, it takes a week with HLS. The biggest gain with HLS is the fast process of changes. Only the C implementation needs to change. The testbench and the RTL-code are generated automatically

    Online Efficient Bio-Medical Video Transcoding on MPSoCs Through Content-Aware Workload Allocation

    Get PDF
    Bio-medical image processing in the field of telemedicine, and in particular the definition of systems that allow medical diagnostics in a collaborative and distributed way is experiencing an undeniable growth. Due to the high quality of bio-medical videos and the subsequent large volumes of data generated, to enable medical diagnosis on-the-go it is imperative to efficiently transcode and stream the stored videos on real time, without quality loss. However, online video transcoding is a high-demanding computationally-intensive task and its efficient management in Multiprocessor Systems-on-Chip (MPSoCs) poses an important challenge. In this work, we propose an efficient motion- and texture-aware frame-level parallelization approach to enable online medical imaging transcoding on MPSoCs for next generation video encoders. By exploiting the unique characteristics of bio-medical videos and the medical procedure that enable diagnosis, we split frames into tiles based on their motion and texture, deciding the most adequate level of parallelization. Then, we employ the available encoding parameters to satisfy the required video quality and compression. Moreover, we propose a new fast motion search algorithm for bio-medical videos that allows to drastically reduce the computational complexity of the encoder, thus achieving the frame rates required for online transcoding. Finally, we heuristically allocate the threads to the most appropriate available resources and set the operating frequency of each one. We evaluate our work on an enterprise multicore server achieving online medical imaging with 1.6x higher throughput and 44% less power consumption when compared to the state-of-the-art techniques

    Gestión de recursos energéticamente eficiente para aplicaciones paralelas basadas en tareas en entornos multi-aplicación

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 28/01/2021The end of Dennard scaling, as well as the arrival of the post-Moore era, has meant a big change in the way performance and energy efficiency are achieved by modern processors. From a constant increase of the clock frequency as the main method to increase performance at the beginning of the 2000s, the increase in the number of cores inside processors running at relatively conservative frequencies has stabilised as the current trend to increase both performance and energy efficiency. The increase of the heterogeneity in the systems, both inside the processors comprising different types of cores (e.g., big LITTLE architectures) or adding specific compute units (like multimedia extensions), as well as in the platform by the addition of other specific compute units (like GPUs), offering different performance and energy-efficiency trade-offs. Together with the increase in the number of cores, the processor evolution has been accompanied by the addition of different techologies that allow processors to adapt dynamically to the changes in the environment and running aplications. Among others, techiniques like dynamic voltage and frequiency scaling, power capping or cache partitioning are widely used nowadays to increase the performance and/or energy-efficiency...El fin del escalado de Dennard, así como la llegada de la era post-Moore ha supuesto una gran revolución en la forma de obtener el rendimiento y eficiencia energética en los procesadores modernos. Desde un incremento constante en la frecuencia relativamente moderadas se ha impuesto como la tendencia actual para incrementar tanto el rendimiento como la eficiencia energética. El aumento del número de núcleos dentro del procesado ha venido acompañado en los últimos años por el aumento de la heterogeneidad en la plataforma, tanto dentro del procesador incorporando distintos tipos de núcleos en el mismo procesador (e.g., la arquitectura big.LITTLE) como añadiendo unidades de cómputo específicas (e.g., extensiones multimedia), como la incorporación de otros elementos de computo específicos, ofreciendo diferentes grados de rendimiento y eficiencia energética. La evolución de los procesadores no solo ha venido dictada por el aumento del número de núcleos, sino que ha venido acompañada por la incorporación de diferentes técnicas permitiendo la adaptación de las arquitecturas de forma dinámica al entorno así como a las aplicaciones en ejecución. Entre otras, técnicas como el escalado de frecuencia, la limitación de consumo o el particionado de la memoria caché son ampliamente utilizadas en la actualidad como métodos para incrementar el consumo y/o la eficiencia energética...Fac. de InformáticaTRUEunpu

    Design and Implementation of IDCT/IDST-Specific Accelerators for HEVC Standard on Heterogeneous Accelerator-Rich Platform

    Get PDF
    Having High Efficiency Video Coding (HEVC) is important for image processing, reducing bandwidth, and increasing video quality. There are different methods that can be used to implement HEVC. This thesis focuses on design and implementation of application-specific accelerators for IDCT/IDST algorithms dedicated for HEVC standard. Those algorithms are parallel-in-nature tasks which makes them suitable to be executed by heterogeneous multicore platforms. This is done using accelerators which are required for power efficient processing. In this study, Coarse-Grained Reconfigurable Arrays (CGRAs) are used for making a template for an accelerator. CGRA has one of the major roles in a Heterogeneous Accelerator-Rich Platforms (HARP) as it is capable of accelerating non-parallel loops with lower loop counts. This thesis includes various algorithms for the use of IDCT and IDST with different designs and templates, reaching a unique final architecture. The final output intended is to reach 4 points IDST together with a 4/8 points IDCT. Another feature added to the hypothesis is the use of different dimensions for the CGRA template in order to have a different type of accelerator. The many CGRAs are combined together in successive arrangement with Reduced Instructions Set Computers (RISC) over the Network-on-Chip (NoC). The aim is to study the performance of the accelerator used for the IDCT and the IDST. This can be evaluated as the data movement through NoC network along with comparison of performance of accelerator with clock cycles in order to calculate the efficiency of the system. The results show that a four point IDST and IDCT can be computed in 56 clock cycles. In addition, the 8 point IDCT can be implemented in 64 cycles. One important factor to consider during the study is the power and energy consumption which is important in this century. The dynamic power dissipation usage for the routing of data has reached a value of 4.03 mW. Whereas, the energy consumption was 1.76 μ\muJ for the 4 points system (IDCT and IDST) and 3.06 μ\muJ for the 8 points (IDCT). Processing Elements (PEs) are used for implementing the transform algorithm and units were operated at 200 MHz. Finally, these results show that 1080P image at 30 frames per second can be attained by using FPGA

    Power and Energy Aware Heterogeneous Computing Platform

    Get PDF
    During the last decade, wireless technologies have experienced significant development, most notably in the form of mobile cellular radio evolution from GSM to UMTS/HSPA and thereon to Long-Term Evolution (LTE) for increasing the capacity and speed of wireless data networks. Considering the real-time constraints of the new wireless standards and their demands for parallel processing, reconfigurable architectures and in particular, multicore platforms are part of the most successful platforms due to providing high computational parallelism and throughput. In addition to that, by moving toward Internet-of-Things (IoT), the number of wireless sensors and IP-based high throughput network routers is growing at a rapid pace. Despite all the progression in IoT, due to power and energy consumption, a single chip platform for providing multiple communication standards and a large processing bandwidth is still missing.The strong demand for performing different sets of operations by the embedded systems and increasing the computational performance has led to the use of heterogeneous multicore architectures with the help of accelerators for computationally-intensive data-parallel tasks acting as coprocessors. Currently, highly heterogeneous systems are the most power-area efficient solution for performing complex signal processing systems. Additionally, the importance of IoT has increased significantly the need for heterogeneous and reconfigurable platforms.On the other hand, subsequent to the breakdown of the Dennardian scaling and due to the enormous heat dissipation, the performance of a single chip was obstructed by the utilization wall since all cores cannot be clocked at their maximum operating frequency. Therefore, a thermal melt-down might be happened as a result of high instantaneous power dissipation. In this context, a large fraction of the chip, which is switched-off (Dark) or operated at a very low frequency (Dim) is called Dark Silicon. The Dark Silicon issue is a constraint for the performance of computers, especially when the up-coming IoT scenario will demand a very high performance level with high energy efficiency. Among the suggested solution to combat the problem of Dark-Silicon, the use of application-specific accelerators and in particular Coarse-Grained Reconfigurable Arrays (CGRAs) are the main motivation of this thesis work.This thesis deals with design and implementation of Software Defined Radio (SDR) as well as High Efficiency Video Coding (HEVC) application-specific accelerators for computationally intensive kernels and data-parallel tasks. One of the most important data transmission schemes in SDR due to its ability of providing high data rates is Orthogonal Frequency Division Multiplexing (OFDM). This research work focuses on the evaluation of Heterogeneous Accelerator-Rich Platform (HARP) by implementing OFDM receiver blocks as designs for proof-of-concept. The HARP template allows the designer to instantiate a heterogeneous reconfigurable platform with a very large amount of custom-tailored computational resources while delivering a high performance in terms of many high-level metrics. The availability of this platform lays an excellent foundation to investigate techniques and methods to replace the Dark or Dim part of chip with high-performance silicon dissipating very low power and energy. Furthermore, this research work is also addressing the power and energy issues of the embedded computing systems by tailoring the HARP for self-aware and energy-aware computing models. In this context, the instantaneous power dissipation and therefore the heat dissipation of HARP are mitigated on FPGA/ASIC by using Dynamic Voltage and Frequency Scaling (DVFS) to minimize the dark/dim part of the chip. Upgraded HARP for self-aware and energy-aware computing can be utilized as an energy-efficient general-purpose transceiver platform that is cognitive to many radio standards and can provide high throughput while consuming as little energy as possible. The evaluation of HARP has shown promising results, which makes it a suitable platform for avoiding Dark Silicon in embedded computing platforms and also for diverse needs of IoT communications.In this thesis, the author designed the blocks of OFDM receiver by crafting templatebased CGRA devices and then attached them to HARP’s Network-on-Chip (NoC) nodes. The performance of application-specific accelerators generated from templatebased CGRAs, the performance of the entire platform subsequent to integrating the CGRA nodes on HARP and the NoC traffic are recorded in terms of several highlevel performance metrics. In evaluating HARP on FPGA prototype, it delivers a performance of 0.012 GOPS/mW. Because of the scalability and regularity in HARP, the author considered its value as architectural constant. In addition to showing the gain and the benefits of maximizing the number of reconfigurable processing resources on a platform in comparison to the scaled performance of several state-of-the-art platforms, HARP’s architectural constant ensures application-independent figure of merit. HARP is further evaluated by implementing various sizes of Discrete Cosine transform (DCT) and Discrete Sine Transform (DST) dedicated for HEVC standard, which showed its ability to sustain Full HD 1080p format at 30 fps on FPGA. The author also integrated self-aware computing model in HARP to mitigate the power dissipation of an OFDM receiver. In the case of FPGA implementation, the total power dissipation of the platform showed 16.8% reduction due to employing the Feedback Control System (FCS) technique with Dynamic Frequency Scaling (DFS). Furthermore, by moving to ASIC technology and scaling both frequency and voltage simultaneously, significant dynamic power reduction (up to 82.98%) was achieved, which proved the DFS/DVFS techniques as one step forward to mitigate the Dark Silicon issue
    corecore