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ABSTRACT
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Growing video resolutions have led to an increasing volume of Internet video traffic,
which has created a need for more efficient video compression. New video coding
standards, such as High Efficiency Video Coding (HEVC), enable a higher level of
compression, but the complexity of the corresponding encoder implementations is
also higher. Therefore, encoders that are efficient in terms of both compression and
complexity are required.

In this work, we implement four optimizations to Kvazaar HEVC encoder: 1) uni-
form inter and intra cost comparison; 2) concurrency-oriented SAO implementation;
3) resolution-adaptive thread allocation; and 4) fast cost estimation of coding co-
efficients. Optimization 1 changes the selection criterion of the prediction mode in
fast configurations, which greatly improves the coding efficiency. Optimization 2 re-
places the implementation of one of the in-loop filters with one that better supports
concurrent processing. This allows removing some dependencies between encoding
tasks, which provides more opportunities for parallel processing to increase coding
speed. Optimization 3 reduces the overhead of thread management by spawning
fewer threads when there is not enough work for all available threads. Optimiza-
tion 4 speeds up the computation of residual coefficient coding costs by switching
to a faster but less accurate estimation.

The impact of the optimizations is measured with two coding configurations of
Kvazaar: the ultrafast preset, which aims for the fastest coding speed, and the
veryslow preset, which aims for the best coding efficiency. Together, the introduced
optimizations give a 2.8× speedup in the ultrafast configuration and a 3.4× speedup
in the veryslow configuration. The trade-off for the speedup with the veryslow preset
is a 0.15 % bit rate increase. However, with the ultrafast preset, the optimizations
also improve coding efficiency by 14.39 %.
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Digitaalisen videon resoluutioiden kasvaessa Internetin videodataliikenne on lisään-
tynyt, mikä puolestaan on luonut tarpeen tehokkaammalle videonpakkaukselle. Uu-
det videokoodausstandardit, kuten High Efficiency Video Coding (HEVC), mahdol-
listavat tehokkaamman videonpakkauksen mutta kasvattavat myös videokooderien
vaatimaa laskentatehoa. Tavoitteena onkin kehittää videokooderi, joka pystyy pak-
kaamaan videota sekä tehokkaasti että nopeasti.

Tässä työssä toteutetaan videonpakkausohjelmisto Kvazaariin neljä optimointia: 1)
kustannusten yhdenmukainen vertailu; 2) rinnakkaisuutta tukeva SAO-toteutus; 3)
videon resoluution mukaan säätyvä säikeiden määrä; ja 4) nopea jäännösvirheen kus-
tannuksen arviointi. Optimointi 1 muuttaa valintakriteeriä kuvan sisäisen ja kuvien
välisen ennustuksen valinnassa, mikä parantaa pakkaustehokkuutta merkittävästi.
Optimointi 2 muokkaa SAO-suotimen toteutusta tukemaan paremmin rinnakkaista
laskentaa. Tämän ansiosta joitakin riippuvuuksia koodaustyökalujen välillä voidaan
poistaa, mikä mahdollistaa rinnakkaisuuden lisäämisen nopeuttaen pakkausta. Op-
timointi 3 vähentää säikeiden hallintaan kuluvaa aikaa käynnistämällä vähemmän
säikeitä silloin, kun useammalle säikeelle ei ole tarpeeksi käyttöä. Optimointi 4 no-
peuttaa jäännösvirheen koodaamiseen vaadittavan bittimäärän laskemista hyödyn-
täen nopeampaa mutta vähemmän tarkkaa arviointimenetelmää.

Muutosten vaikusta mitataan seuraavilla Kvazaarin koodausasetuksilla: ultrafast,
joka pyrkii mahdollisimman korkeaan suoritusnopeuteen, ja veryslow, joka pyrkii
mahdollisimman hyvään pakkaustehokkuuteen. Optimoinneilla saavutetaan yhteen-
sä 2,8× nopeutus ultrafast-asetuksilla ja 3,4× nopeutus veryslow-asetuksilla. Nopeu-
tus kasvattaa veryslow-asetuksilla bittimäärää 0,15 %, mutta ultrafast-asetuksilla
muutokset parantavat myös pakkaustehokkuutta 14,39 %.
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1. INTRODUCTION

As video resolutions keep growing, the bit rate required for storing and transmitting
video continues to rise. The amount of Internet video traffic is forecast to quadruple
by 2021 [1], so there is a need for more efficient video compression methods. The
Joint Collaborative Team on Video Coding (JCT-VC) formed by ITU-T Video Cod-
ing Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG)
has developed the H.265/High Efficiency Video Coding (HEVC) [2], [3] standard
with the aim of doubling coding efficiency over the preceding H.264/Advanced Video
Coding (AVC) [4] standard. Compared with its predecessor, HEVC achieves on av-
erage 59 % lower bit rate for the perceived video quality [5]. However, the cost of
better compression is a 40 % increase in encoding complexity [6]. This calls for more
efficient encoder implementations.

The HEVC standard is accompanied by a reference codec implementation known
as HEVC test model (HM) [7]. The purpose of the HM encoder implementation
is to illustrate how an HEVC encoder might be implemented and to provide a
means for producing conforming bit streams that could be used for testing decoder
conformance [7]. As such, little consideration has been given to its complexity and,
therefore, it cannot be considered suitable for practical applications.

Open-source HEVC encoders aiming for a practical coding speed include Kvazaar [8],
Turing codec [9], and x265 [10]. Turing codec is being developed by the British
Broadcasting Corporation, Parabola Research and Queen Mary University of Lon-
don. It is designed for low memory consumption and fast parallel encoding [11].
MulticoreWare leads the development of x265 [10]. It reached the second place in
the Moscow State University HEVC/H.265 video codecs comparison in 2017 [12].

In this Thesis, we improve the coding efficiency and complexity of Kvazaar HEVC
encoder. Kvazaar is an academic encoder being developed by the Ultra Video Group
in the Laboratory of Pervasive Computing at Tampere University of Technology.
The source code is available at GitHub under version 2.1 of the GNU Lesser General
Public License (LGPL) [13].
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The remainder of this Thesis is organized as follows. Chapter 2 gives a short in-
troduction to video coding and describes the coding tools available for Kvazaar as
per the HEVC standard. Chapter 3 defines the methods used for comparing the
improved versions of Kvazaar with the original version. The implementations of the
proposed four modifications to Kvazaar are detailed in Chapter 4. An assessment
of the overall performance impact of the changes is given in Chapter 5. Finally,
Chapter 6 concludes the Thesis.
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2. KVAZAAR CODING TOOLS

This chapter introduces the Kvazaar encoding process and the coding tools of the
HEVC standard that are used by Kvazaar. The standard only defines the operation
of a decoder so there is considerable freedom in the encoder implementation and
it is not necessary to implement all available coding tools. Nevertheless, Kvazaar
supports all essential coding tools of HEVC Main profile, and therefore, the outline
of its encoding process matches that of a typical HEVC encoder [3].

The representation of the uncompressed input video is defined in Section 2.1. Next,
Section 2.2 describes the HEVC standard on a general level. Section 2.3 moves on to
the actual encoding process of Kvazaar and provides an overview of its main phases
on a high level. The phases of the encoding process are discussed in more detail in
Sections 2.4 through 2.9. Finally, Section 2.10 presents the most important options
for controlling video compression with Kvazaar.

2.1 Video representation

In digital systems, video is typically represented as a sequence of pictures, or frames.
Each frame is a sample of the video at a single point in time. The frames, again,
consist of samples known as pixels.

For the purposes of video coding, the video is processed in the YCbCr color space.
The brightness and color information are split into three components: one luma
component (Y) and two chroma components (Cb and Cr). The luma component
represents the brightness while chroma represents the color. Since the human eye is
more sensitive to changes in brightness than in color, the chroma components are
often given less bandwidth than luma. This is known as chroma subsampling. The
most common chroma subsampling format is 4:2:0 color sampling, which is also the
color format currently supported by Kvazaar. In this format, a single chroma sample
covers an area of 2 × 2 luma samples. The width and height of the video measured
in chroma pixels are therefore half of the dimensions in luma pixels.

The number of bits used to represent each luma and chroma sample is called the bit



2.2. High Efficiency Video Coding (HEVC) 4

depth of the video. A high bit depth results in a more fine-grained representation of
the sample intensities than a low bit depth would. For example, when the bit depth
is 8, each sample is restricted to one of the 28 = 256 intensity levels. If a bit depth
of 10 was used, there would be 210 = 1024 levels. By default, Kvazaar uses a bit
depth of 8 bits, but 10-bit support can be enabled at compile-time. In this work,
we restrict our analysis to 8-bit video.

2.2 High Efficiency Video Coding (HEVC)

HEVC is a relatively new video coding standard jointly produced by the ITU-T
VCEG and ISO/IEC MPEG teams, similarly to the H.262 and H.264/AVC stan-
dards. Like its predecessors, it is built on the same principles as all video coding
standards since H.261 [3]. HEVC is intended to have the flexibility to support
various applications, such as video streaming, conferencing, and storage [2]. The
development of HEVC was started in 2010 and its first edition was published in
2013.

HEVC achieves significantly higher coding efficiency than AVC. The average bit rate
savings with HEVC have been shown to reach up to 44 % for the same objective qual-
ity and 59 % for the same perceived quality [5]. These savings are accomplished by
employing a more flexible block partitioning structure, larger block sizes, improved
spatial and temporal prediction, a new in-loop filter, and improved entropy cod-
ing [3], [14]. The complexity impact of the new coding tools is a 20 % to 50 %
increase in encoding time between the AVC and HEVC reference encoders [6].

Profiles and levels are used to specify interoperability points in an HEVC bit stream.
The profile of a bit stream limits the coding tools that can be used and the level
places constraints on picture size, frame rate, and bit rate. In addition, each level
has a Main tier and a High tier, which have different bit rate limits. A decoder
conforming to a certain level must be able to decode any bit stream with a level less
than or equal to that level [3].

The first version of the HEVC standard defined three profiles and 13 levels. The
profiles are 1) Main for 8-bit video; 2) Main 10 for 10-bit video; and 3) Main Still
Picture for still pictures [3]. The levels range from Level 1 to Level 6.2, which
supports picture sizes of up to 8192×4320 luma pixels at a frame rate of 120 Hz [2].
The maximum supported bit rate at Level 6.2 is 240 Mb/s for Main tier and 800 Mb/s
for High tier [2].

Revisions to the HEVC standard have added support for additional screen content
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coding tools, higher bit depths of up to 16 bits, 4:2:2 and 4:4:4 color sampling, depth
maps for three-dimensional video, additional profiles, etc. [2].

2.3 Overview of the coding process

Figure 2.1 depicts the components of Kvazaar and the data flow between them. The
input pictures are first split into 64×64 pixel blocks called coding tree units (CTUs),
which are then processed separately. The phases of the coding process are roughly
the same for each CTU. First, the search module attempts to find a way to code the
CTU with the lowest coding cost. The inputs to the search are the input picture
and the previously coded reference pictures from the decoded picture buffer. The
search outputs the prediction information, which specifies how to split the CTU into
coding units (CUs) and what is the prediction mode used for each CU.

Next, the prediction module uses the prediction information to construct a prediction
for the CTU. The idea is to use previously coded pixels in the current picture and
previous pictures to produce a block of pixels that match the CTU as closely as
possible. The prediction information specifies which pixels are used to generate the
prediction. Using pixels from previously coded pictures is referred to as inter-picture
prediction or simply inter prediction, whereas prediction using only information from
the current picture is called intra-picture prediction or intra prediction.

The difference between the input picture and the prediction is called the residual.
The residual undergoes a transformation into the frequency domain resulting in a
matrix of coefficients. The coefficients are then quantized in order to reduce the
number of bits needed to represent them. The quantization and transform are
subsequently reversed in dequantization and inverse transform. The result of the
inverse transform is the residual that will be available on the decoder side. This
new residual is added to the original prediction, resulting in the reconstruction of
the CTU.

Finally, two in-loop filters, deblocking and sample adaptive offset (SAO), are applied
to the reconstruction. The filtered reconstruction is stored in the decoded picture
buffer for later use in the inter prediction of subsequent frames.

The pieces of information required for bit stream generation are the prediction infor-
mation from search, the quantized coefficients after transform and quantization, and
the SAO parameters. The first step is converting the information to syntax elements
that follow the HEVC standard. The syntax elements are then passed through bina-
rization and context-adaptive binary arithmetic coding (CABAC), which is the final,
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Figure 2.1 Overview of the data flow in Kvazaar encoding process.
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Figure 2.2 An example of a CTU split into CUs and the corresponding quadtree.

lossless compression step. The encoder then outputs the resulting bit stream.

2.4 Coding unit structure

The input video frame is first divided into CTUs according to the HEVC coding
structure. The size of a CTU is signaled in the bit stream headers. The HEVC
standard permits the sizes of 64×64, 32×32, and 16×16 luma pixels, thus providing
the flexibility needed to support various applications [14]. Kvazaar uses only the
largest CTU size of 64 × 64.

A CTU may be coded as a single CU or the encoder may decide to split it into
four quadrants. The quadrants may be further divided into smaller quadrants, until
the minimum CU size is reached. The minimum CU size is also signaled in the bit
stream headers and it must be between 8×8 luma pixels and the selected CTU size.
Kvazaar supports a complete HEVC coding tree down to the size of 8 × 8 pixels.
The structure of the CU tree is determined in the search phase. For a homogeneous
region, a large CU may be chosen since it requires fewer bits than using multiple
smaller CUs [14]. Conversely, an area with small details may be better represented
by using several small CUs. An example of a 64 × 64 CTU split into CUs is given
in Figure 2.2.

A CU contains one or more prediction units (PU). A single CU must use either intra
or inter prediction, but the prediction parameters may be different in each PU. The
partition into PUs is determined by the partition mode of the CU. The possible
partition modes are illustrated in Figure 2.3. The N×N partition mode can only be
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2N × 2N 2N × nD 2N × N 2N × nU

N × N nR × 2N N × 2N nL × 2N

Figure 2.3 Partition modes available in HEVC.

used in intra predicted CUs of the minimum size. The non-square partition modes
2N × N, N × 2N, 2N × nU, 2N × nD, nL × 2N, and nR × 2N are only available for
inter-predicted CUs. Kvazaar does not consider the non-square partition modes by
default, making the 2N × 2N mode the one most often used.

In addition to the partition into PUs, each CU is also divided into one or more
transform units (TUs) whose size is between 4 × 4 and 32 × 32 luma pixels. Each
TU is handled separately in the transform and quantization phases. The TUs form a
quadtree structure similar to that of the CU quadtree: any unit may be recursively
split into four quadrants all the way down to the minimum TU size. However,
splitting a CU into multiple TUs only leads to minute gains in coding efficiency [14].
Therefore, Kvazaar always sets the TU size equal to the CU size, except for CUs of
size 64 × 64, which must be split into four TUs of size 32 × 32 luma pixels.

2.5 Prediction modes

There are two possible prediction modes: intra prediction and inter prediction. Each
CU uses one of these two modes. As the names suggest, intra-predicted CUs refer
to the pixels within the same picture and inter CUs refer to the pixels in previously
coded pictures.
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left reference

top-left reference top reference

Figure 2.4 Reference pixels for intra prediction.

2.5.1 Intra prediction

Intra PUs are predicted based on the reference pixels obtained from the neighboring
blocks. Figure 2.4 shows the pixels used to form the left and top references. If the
reference pixels are not available, for example due to the PU being located at the
edge of the picture, they are generated by copying the nearest available pixels.

The intra mode of a PU determines how the reference pixels are used to predict the
pixels within the block. The intra mode can be the DC mode, the planar mode or
one of the 33 angular modes. When the DC mode is used, the same value is used
for all pixels within the PU. This value is computed as the arithmetic mean of the
references pixels.

The angular modes provide a good prediction for directional patterns, such as
edges [15]. Each pixel within the PU is predicted by using a linear interpolation
between the two nearest reference pixels from the direction specified by the angu-
lar mode. The 33 directions are distributed so that the available angles are denser
near the vertical and horizontal directions and get sparser towards the diagonal an-
gles. This improves the coding efficiency for real-life video, which contains more
horizontal and vertical patterns than diagonal patterns [15].

For smooth regions, the angular modes may cause contouring artifacts and the DC
mode may lead to blockiness [16]. The planar mode may provide a better prediction
in these cases. In the planar mode, the prediction of a pixel is based on the reference
pixels located directly above and directly to the left of the pixel, as well as the
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reference pixels diagonally adjacent to the bottom-left and top-right corners of the
block. The value of the pixel is the average of two linear interpolations. The planar
prediction is continuous at the edges of blocks and therefore avoids the artifacts that
may appear when using DC or angular modes [16].

2.5.2 Inter prediction

The prediction parameters for inter predictive PUs are the number of the picture
that is used as the reference and a motion vector (MV). The MV is added to the
coordinates of the PU and the resulting coordinates in the reference frame are used
as the origin of the prediction. An area matching the size of the PU is then copied
from the reference frame to the current frame.

The process where the encoder determines the best MV is known as motion estima-
tion (ME). Since the number of possible MVs is prohibitively large, typically only
a subset of them is evaluated. The algorithms for choosing which MVs are checked
are known as a block matching algorithms (BMA). Kvazaar has support for three
BMAs: 1) hexagon-based search (HEXBS) [17]; 2) test zone search, which is also
used by HM [7]; and 3) full search.

The MVs are given at a quarter-pixel precision, which means that it is possible to
point to fractional coordinates. This is referred to as fractional motion estimation
(FME). The pixel values at fractional coordinates are interpolated from the sur-
rounding pixels using a 4-tap, 7-tap or 8-tap filter [18]. The filtering process is slow
due to the large number of memory accesses and arithmetic operations required, but
the use of fractional MVs can greatly improve the coding efficiency [18].

The MV is transmitted to the decoder as a difference to a motion vector predictor
(MVP). The MVP candidates are generated for each inter PU in a process known as
advanced motion vector prediction (AMVP). Five spatial MVP candidate positions
and two temporal motion vector prediction (TMVP) candidate positions are used in
AMVP. The locations of the spatial and temporal candidate positions are illustrated
in Figure 2.5. The spatial MVP candidates are located on the left and top sides
of the current PU because the blocks to the right and below in the current picture
will be encoded later. The motion information from the right and bottom can be
harnessed by choosing the temporal C0 candidate [19].

Two MVP candidates are then chosen among the candidate positions according
to their availability. A candidate position is deemed unavailable if the PU at the
candidate position is outside the picture frame, uses intra prediction, or has not
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Figure 2.5 Locations of the spatial and temporal AMVP candidates.

been coded yet. The encoder writes the index of the candidate used as the MVP,
and the difference between the MVP and the actual MV to the bit stream.

The HEVC standard also supports bi-prediction, that is, prediction from two differ-
ent reference frames. In this case, a possibly weighted average of the two predictions
is computed. Bi-prediction is implemented in Kvazaar, but is disabled by default.

Generally, it is not possible to use a quadtree structure to cleanly divide the picture
into regions of similar motion [20]. For example, when only a single quadrant of
a block contains differing motion, it must be divided into four blocks even though
the other three quadrants will then have redundant motion. The redundancy is a
significant issue: blocks that share the motion information of their neighbors make
up approximately 40 % of all blocks [21]. The problem can be mitigated by merging
similar blocks after the quadtree division [20]. In HEVC, this is achieved by using
the merge mode. When a PU is marked as merged, its reference frame index and
MV are copied from one of its merge candidates, saving the bits that would have
been needed for coding the motion information. There are five merge candidates,
which are chosen among the same candidate positions as the AMVP predictors.

For inter CUs that use the merge mode and a partition size of 2N × 2N, the encoder
can use the skip mode. When using the skip mode, the residual coefficients are set
to zero and the partition size and prediction mode are implied. They need not be
signaled in the bit stream so a few bits can be saved.

2.6 Transform and quantization

After prediction, the residual is computed as the difference between pixel values
in the input picture and the prediction. The residual is transformed using either
discrete sine transform (DST) for the luma transform of 4×4 TUs, or discrete cosine
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transform (DCT) for all other TUs. The transforms compute the coefficients for the
frequency components present in the picture data.

Next, the coefficients are quantized. The quantization step has the greatest effect
on the trade-off between distortion and bit rate. The number of quantization levels
is derived from the quantization parameter (QP), which can be given as an input to
the encoder. A higher QP means that fewer quantization levels are used, reducing
the number of bits spent but increasing distortion. A lower QP corresponds to more
quantization levels. This reduces distortion but costs more bits.

During quantization, the encoder can make small changes to the coefficients in
order to control whether they are rounded up or down. These adjustments can
reduce the number of bits required for coding the coefficients. Optimizing coding
efficiency by changing the coefficients is referred to as rate–distortion optimized
quantization (RDOQ). It can give a significant improvement in coding efficiency,
but the additional computation required to evaluate the coefficient adjustments will
reduce coding speed [22].

Transform and quantization are then reversed, as in the decoding process. First,
the quantized coefficients are dequantized. Then the inverse transform is performed
on the dequantized coefficients. Finally, the predicted pixels are added, resulting in
the unfiltered reconstruction, which is then passed to the in-loop filters.

2.7 In-loop filters

Two filters may be applied to the reconstructed pixels before they are added to the
decoded picture buffer. The deblocking filter can counteract the artifacts caused by
partitioning the video to rectangular blocks [16]. It is applied only at the edges of
PUs and TUs. The SAO filter, on the other hand, is applied to all pixels. It can
be used to reduce ringing artifacts near edges or to correct a systematic error in
the pixel values of a CTU [16]. Since the filters aim to correct different types of
artifacts, it is useful to apply both of them [16].

2.7.1 Deblocking filter

The deblocking filter consists of two parts: horizontal filtering and vertical filtering.
Conceptually, horizontal filtering is applied first for all vertical edges in the picture
and then vertical filtering is applied for all horizontal edges. In practice, Kvazaar
applies both vertical and horizontal filtering to an area as large as possible imme-
diately after the reconstruction of a CTU. The rest of the CTU is deblocked as the
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required information becomes available, that is, when the neighboring CTUs have
been reconstructed.

The edges to be filtered are the PU and TU borders whose coordinates are divisible
by eight. The filtering affects the nearest 4 luma pixels and 2 chroma pixels in both
directions from the edge.

2.7.2 Sample adaptive offset (SAO)

SAO adjusts the samples by adding an offset to the intensities of some of the samples.
There are two SAO modes available in HEVC: band offset and edge offset. For each
CTU, the encoder decides to use a band offset, an edge offset, or no offset at all. In
addition, the encoder must choose the parameters for the SAO mode used. These
parameters along with the SAO mode are signaled to the decoder in the bit stream.

In the case of band offset, the range of possible pixel values is divided into eight bands
of equal size. For example, when the bit depth is eight, each band covers 28/8 = 32
values. The encoder must choose four consecutive bands and offsets for each of
them. The four offsets are then added to the values of all pixels whose intensities
are within the corresponding band. This can be used to correct a systematic error
in sample intensity.

When edge offset is chosen instead, each pixel is classified into one of the five cate-
gories. The classification depends on the intensities of the pixel and two neighboring
pixels. The neighboring pixels are taken from the opposite sides of the pixel accord-
ing to the edge direction chosen by the encoder. There are four possible directions:
horizontal, vertical and two diagonal directions.

The categorization for edge offset is defined as follows. Category 0 contains pixels
whose intensity is between the intensities of its neighbors. Category 1 contains pixels
whose intensity is less than that of its neighbors. Category 2 contains pixels whose
intensity is equal to one of its neighbors and less than the other. Category 3 contains
pixels whose intensity is equal to one of its neighbors and greater than the other.
Category 4 contains pixels whose intensity is greater than that of its neighbors.

The encoder then chooses an offset for each of the categories. The offset is added
to the values of all pixels in the category. The offset must be zero for category 0,
non-negative for categories 1 and 2, and non-positive for categories 3 and 4, thereby
smoothing the picture. This kind of smoothing can reduce ringing artifacts where
an echo appears near edges [16].
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2.8 Entropy coding

The final phase of the encoding process is the generation of the actual bit stream.
The bit stream is formed based on the prediction information, quantized coefficients,
and SAO parameters. In addition, the headers of each coded picture and the whole
sequence are filled with some general data, for example, the dimensions of a picture
and a list of enabled coding tools.

All information that is to be transmitted to the decoder is first mapped into HEVC
syntax elements. The syntax elements of the headers are output directly, but most
of the other elements are further compressed with CABAC. These syntax elements
are converted into a sequence of binary symbols (bins) in the binarization step. Each
bin is associated with a context, which is generally determined by the type of syntax
element it represents, but may also depend on side information, such as the size of
the related CU, PU or TU.

The CABAC module models the distribution of bins for each context. It can there-
fore accurately estimate the probability of each bin [23]. The probability models
are continuously updated as more bins are coded so they can adapt to variations
in the bin distribution [16]. The arithmetic coder can then take advantage of the
probabilities to encode the bins losslessly while using fewer bits than the number of
bins.

2.9 Parallelization

There are two main approaches to parallel HEVC encoding and decoding: tiles and
wavefront parallel processing (WPP). In both approaches, the picture to be coded
is divided into parts that can be encoded in parallel. Kvazaar supports both tiles
and WPP.

In addition to parallelism within a single picture, picture-level parallel processing
is also possible. When a frame either uses intra prediction only or has all of its
reference frames already encoded, its encoding can be started without waiting for
other frames to be completed.

2.9.1 Tiles

When tiles are used for parallelism, the video is divided horizontally and vertically
along CTU boundaries into a number of tile rows and tile columns. The result is a
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partition of the video into rectangular areas called tiles. The dependencies between
CTUs belonging to different tiles are removed by disabling MV merge and intra
prediction across tiles as well as resetting the CABAC states at the start of every
tile [24]. Each tile of a single picture can therefore be encoded independently, allow-
ing parallel encoding. However, due to removed dependencies, the coding efficiency
suffers greatly [24].

2.9.2 Wavefront parallel processing (WPP)

WPP allows processing CTU rows in parallel. However, the rows are not made
completely independent. After the second CTU of a row is completed, the CABAC
probabilities are copied to be used for coding the first CTU of the row below. There-
fore, the encoding of each CTU must wait until the row above has advanced two
CTUs further than the current row. The loss of coding efficiency remains small be-
cause intra prediction and MV merge need not be limited and CABAC probabilities
are propagated [24].

Instead of dedicating a specific thread for each CTU row, Kvazaar lets any thread
choose any available CTU as its next piece of work [25]. This helps in minimizing
thread idle time. For example, if a CTU row is stalled because a CTU in the row
above is taking longer than expected, the thread that was working on that row can
start working on a CTU in some other frame instead of waiting.

WPP can further improve picture-level parallelism by using overlapped wavefronts
(OWF), which allow an inter frame and its reference frames to be encoded in parallel.
The processing of the next frame is started after only a few CTU rows in the current
frame have been completed [24]. This requires that the maximum length of MVs is
restricted so that they cannot point to the parts of the previous frame that have not
been coded yet.

2.10 Kvazaar options

Kvazaar provides several options that can be used to turn coding tools on and off.
For ease of use, ten sets of preferred options, called presets, have been devised.
Each preset gives a different trade-off of coding efficiency for speed. The presets
are ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow, and
placebo, in the order of increasing complexity and coding efficiency. The placebo
preset turns on all options for maximum coding efficiency without any regard for
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Table 2.1 Kvazaar coding tools with the analyzed presets.

ultrafast veryslow
HEVC profile Main Main
Color format YCbCr 4:2:0 YCbCr 4:2:0
Internal bit depth 8 8

Inter CU size 8 × 8 – 16 × 16 8 × 8 – 64 × 64
Intra CU size 8 × 8 – 16 × 16 8 × 8 – 32 × 32
Partition modes 2N × 2N 2N × 2N, N × N

Transform DCT DCT, DST
TU size 8 × 8 – 16 × 16 4 × 4 – 32 × 32
RDOQ disabled enabled
Coefficient sign bit hiding disabled enabled
Transform skip disabled disabled
Transquant bypass disabled disabled

Number of reference frames 1 4
BMA HEXBS HEXBS
TMVP enabled enabled
FME disabled enabled
Bi-prediction disabled disabled
Intra skip enabled disabled
Inter early termination sensitive enabled

Deblocking filter enabled enabled
SAO disabled enabled

GOP structure low-delay low-delay
Rate control constant QP constant QP
Parallelization WPP, OWF WPP, OWF

complexity. It is much slower than the veryslow preset, but achieves only slightly
better coding efficiency. Therefore, we will exclude it from our analysis.

We choose to focus on the two practical presets that represent the two extremes of
the complexity–efficiency trade-off: ultrafast and veryslow. Table 2.1 lists the coding
tools of Kvazaar with these presets. The ultrafast preset seeks the fastest possible
encoding speed so only the very basic coding tools are enabled.

Compared with the ultrafast preset, the veryslow preset enables most of the remain-
ing coding tools and disables the optimizations that sacrifice coding efficiency for
speed. CUs of size 32 × 32 are enabled for both intra and inter prediction. The
largest CUs of size 64 × 64 are only used for inter. Intra prediction, on the other
hand, can take advantage of the smallest 4×4 prediction units through the use of the
N × N partition mode. In addition, the number of reference frames is quadrupled.
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With all preset levels, the trade-off between the distortion and size of the compressed
bit stream can be controlled by setting either the QP or the target bit rate. When
the target bit rate is set, Kvazaar will attempt to adjust the QP for each CTU so
that the average bit rate matches the target.

Kvazaar uses a λ domain rate control algorithm with hierarchical bit allocation [26].
First, the video sequence is divided into short segments called groups of pictures
(GOPs), which are typically four to eight pictures long. The target number of bits
per GOP is set based on the number of pictures and bits coded in the past so that
the target bit rate is met over time. Next, the bit budget for the GOP is divided
among the pictures. This allocation is based on a GOP structure, which defines a
weight for each picture in the GOP. Pictures that are not used as a reference are
usually given a lower weight. The GOP structure in Kvazaar is static, meaning that
the same weights are used for each GOP. Finally, the size of the picture header is
subtracted from the bit budget of the picture and the rest is divided among the
CTUs of the picture. CTUs are weighted based on the distortion of the co-located
CTU in the previous picture [26]. A CTU with high distortion is given more bits in
the next picture so that the distortion can be reduced.

Kvazaar seeks to meet the bit rate target for a CTU by adjusting the Lagrange
multiplier λ. The bit rate and λ are assumed to satisfy

λ = αRβ
bpp, (2.1)

where Rbpp is the bit rate in number of bits per pixel [26]. The values of α and β

are dependent on the video content and are updated after each encoded CTU [26].
The value of λ set according to Equation (2.1) is then used to derive the QP value.

If no bit rate target is set, Kvazaar uses a constant QP. This results in a consistent
quality, but may cause fluctuations in bit rate. Rate control is not the focus of this
work so we use a constant QP.
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3. METHODOLOGY

In video coding, there are three quantities of interest: bit rate, quality, and complex-
ity. Bit rate is the number of bits that the encoder spends on encoding a sequence
of pictures. Quality measures the similarity of compressed video and the original
one. A high quality means that there is little to no distortion in the compressed
video. Here, complexity refers to the amount of time spent by the encoder.

The bit rate and quality can be incorporated into a single value called the coding
efficiency. Reducing bit rate or improving quality leads to higher efficiency. Im-
provements in complexity often come with a trade-off in coding efficiency and vice
versa.

This section defines the methods used for measuring the improvements in coding
efficiency and complexity.

3.1 Coding efficiency

Computation of coding efficiency requires that we first measure the bit rate and
distortion. It is easy to measure the bit rate by counting the number of bits the
encoder outputs. For distortion, a comparison with the original video sequence
is necessary. The distortion is measured as the peak signal-to-noise ratio (PSNR)
which is defined in terms of the mean squared error (MSE). Given a monochrome
reference image I and a compressed image Î of size W × H pixels, the MSE is

MSE = 1
W · H

H∑
i=1

W∑
j=1

(
Iij − Îij

)2
.

When computing the PSNR for a sequence with bit depth B, we compare the MSE
with the maximum value 2B − 1 of a single pixel. All the test sequences we use have
bit depth of B = 8. The PSNR is then

PSNR = 10 · log10

(
2B − 1

)2

MSE .
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PSNR is measured using a logarithmic scale. As MSE approaches zero, PSNR
approaches infinity. Accordingly, a higher PSNR corresponds to less distortion and
higher quality.

All video sequences in our tests are in color. Therefore, the PSNR must be measured
separately for the luma (PSNRY) and chroma (PSNRCb and PSNRCr) components.
The combined PSNR is a weighted average of the component PSNR values [27]:

PSNRYCbCr = 6 · PSNRY + PSNRCb + PSNRCr

8 .

The average PSNR of a video sequence is the arithmetic mean of the PSNRYCbCr

values for each frame of the sequence [27]. If the encoder manages to encode a frame
with zero distortion, the PSNR for that frame, as well as the average PSNR for the
sequence, would be infinite. In practice, however, with the used test sequences, there
is always some distortion so this does not pose a problem.

The coding efficiency of two encoders can be compared by combining the bit rate
and distortion into a single quantity, the Bjøntegaard-delta bit rate (BD-rate) [28].
BD-rate is calculated as follows. First, the test sequences are encoded with four
different QP values using both the tested encoder and the anchor. The HEVC
common test conditions [29] specify the QP values of 22, 27, 32, and 37, which
are also used in this work. Bit rate and distortion are then measured for each of
the coded sequences in these four operating points. The bit rate is converted to a
logarithmic scale because a linear scale would overly emphasize high bit rates [28].
Next, a third-order polynomial curve is fitted so that it passes through the four rate–
distortion points [28]. The area under each curve is then calculated by integrating
over the longest interval where both curves are defined [28]. Finally, the BD-rate is
the difference between the areas under the two curves.

A negative BD-rate can be interpreted as meaning that, in order to achieve the
same quality, the tested encoder needs fewer bits than the anchor does. Conversely,
a positive BD-rate means that the encoder spends more bits than the anchor.

3.2 Complexity

We measure encoder complexity by running the encoder multiple times and taking
the arithmetic mean of the running times. In order to prevent interference from other
programs, all other applications are closed and only one test is run at a time. The
first run with a given encoder and test sequence is discarded because it is typically
considerably slower since the operating system has not cached the encoder binary



3.3. Test material 20

Table 3.1 Properties of the test computer.

Processor Intel Xeon E5-2699 v4
Clock frequency 2.20 GHz
Number of cores 22
Number of threads 44
Processor cache 55 MB
Memory 64 GB
Operating system Windows 10 64-bit

and the video file yet.

The value of the QP not only determines the video quality, but indirectly affects
the encoding speed too. With low QP values, more symbols are used to encode the
residual coefficients. The coefficient symbols are compressed using the slow CABAC
process so encoding a sequence using a low QP takes more time than encoding it
with a higher QP.

In our measurements, we encode each test sequence twice with each of the same four
QP values that are used in coding efficiency tests: 22, 27, 32, and 37. For each QP,
we average the two running times and compare the average time with the anchor.
The speedup of the tested encoder is the ratio of the time taken by the anchor and
the time taken by the tested version of the encoder. Finally, the average speedup for
a given video sequence is the arithmetic mean of the speedups with the four tested
QP values.

All complexity measurements are run on a 22-core Intel Xeon E5-2699 v4 processor.
The details of the computer are listed in Table 3.1.

3.3 Test material

The HEVC common test conditions [29] define a set of 24 test sequences of different
size and content. For our tests, we use the 22 sequences that have a bit depth
of 8. These sequences are listed in Table 3.2. The sequences are divided into classes
from A to F. Sequences in classes A, B, C, and D contain varied content of sizes
2560×1600, 1920×1080, 832×480 and 416×240, respectively. Class E is composed
of video conferencing content of size 1280 × 720 with a stationary camera. Class F
contains screen content, such as computer-generated graphics, of various sizes. Most
sequences are 10 seconds long, but there are a few shorter and longer ones as well.
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Table 3.2 Details of the test sequences.

Class Sequence Resolution Frame rate (Hz) Length (s)
A PeopleOnStreet 2560×1600 30 5

Traffic 2560×1600 30 5
B BasketballDrive 1920×1080 50 10

BQTerrace 1920×1080 60 10
Cactus 1920×1080 50 10
Kimono 1920×1080 24 10
ParkScene 1920×1080 24 10

C BasketballDrill 832×480 50 10
BQMall 832×480 60 10
PartyScene 832×480 50 10
RaceHorses 832×480 30 10

D BasketballPass 416×240 50 10
BlowingBubbles 416×240 50 10
BQSquare 416×240 60 10
RaceHorses 416×240 30 10

E FourPeople 1280×720 60 10
Johnny 1280×720 60 10
KristenAndSara 1280×720 60 10

F BasketballDrillText 832×480 50 10
ChinaSpeed 1024×768 30 17
SlideEditing 1280×720 30 10
SlideShow 1280×720 20 25
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4. PROPOSED OPTIMIZATIONS

We implemented four main optimizations to Kvazaar:

Optimization 1. Uniform inter and intra cost comparison

Optimization 2. Concurrency-oriented SAO implementation

Optimization 3. Resolution-adaptive thread allocation

Optimization 4. Fast cost estimation of coding coefficients

In this chapter, these changes are described on the technical level and their indi-
vidual impact on performance is analyzed. The overall effects of the changes and a
comparison to other open-source HEVC encoders are presented in Chapter 5.

4.1 Uniform inter and intra cost comparison

In all-intra coding, Kvazaar was already on par with the other open-source HEVC
encoders [30], particularly the most well known encoder, x265 [10]. However, in
inter coding, Kvazaar was still behind x265 in both coding efficiency and complexity.
Since Kvazaar was performing well in all-intra coding, it seemed plausible that there
room for optimization either in inter motion estimation or in the process of deciding
whether to use intra or inter prediction.

No immediate opportunities for optimization were found in motion estimation so
we decided to look for possible optimizations in the prediction mode decision. As
the first step, we analyzed how large portions of the video were coded using intra
prediction and inter prediction. We wanted to focus the analysis on the prediction
mode decision process and, therefore, wanted to limit the number of coding tools to
the absolute minimum in order to remove the possibility of defects in Kvazaar coding
tools causing interference. Hence, the ultrafast preset was used for both encoders.

Next, we modified the decoder part of the HM software [7] to print the prediction
mode and size for each decoded CU. All test sequences were then encoded with both
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Table 4.1 Kvazaar CU size and mode usage.

Size Inter (%) Intra (%) Total (%)
8 × 8 79.28 0.32 79.60

16 × 16 20.29 0.10 20.39
32 × 32 0.00 0.01 0.01
Total 99.57 0.43 100.00

Table 4.2 x265 CU size and mode usage.

Size Inter (%) Intra (%) Total (%)
8 × 8 0.00 0.00 0.00

16 × 16 71.78 7.78 79.56
32 × 32 18.25 2.19 20.44
Total 90.03 9.97 100.00

Kvazaar and x265 and the generated bit streams were decoded using this modified
decoder. Finally, a Python script was used to read the results and compute the
percentages of each CU size and prediction mode. These are tabulated in Table 4.1
and Table 4.2.

According to the results, x265 coded 10 % of the CUs with intra prediction, whereas
Kvazaar used intra prediction for fewer than 1 % of the CUs. This was an interesting
discovery, since it was intra coding where Kvazaar surpassed x265. One possible
explanation for the low percentage of intra prediction was the intra skip mechanism,
which Kvazaar employed with the fastest presets. The essence of the intra skip is
that when the best MV found in inter motion estimation is deemed good enough
(distortion and cost in bits are below a predefined threshold), the search for a suitable
intra prediction mode is skipped altogether. This yields a considerable speedup at
the expense of BD-rate.

We ran the tests again with intra skip turned off. The new percentages are shown in
Table 4.3. Disabling intra skip raised the use of intra prediction in Kvazaar to 4 %
of the CUs, which was better than before but still far from the 10 % used by x265.

Table 4.3 Kvazaar CU size and mode usage with intra skip disabled.

Size Inter (%) Intra (%) Total (%)
8 × 8 77.39 2.86 80.25

16 × 16 18.87 0.77 19.64
32 × 32 0.00 0.11 0.11
Total 96.26 3.74 100.00
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Table 4.4 BD-rate for different inter cost multiplier values.

Inter cost multiplier
Class 1.0 1.2 1.4 1.6 1.8 2.0

A 0.00 −4.38 −7.13 −7.25 −3.60 +3.01
B 0.00 −4.09 −7.77 −10.09 −8.95 −1.68
C 0.00 −4.50 −8.10 −10.26 −10.35 −7.66
D 0.00 −3.18 −5.91 −7.73 −8.20 −6.91
E 0.00 −1.24 −1.50 +2.15 +13.59 +40.53
F 0.00 −0.64 +0.14 +1.57 +3.52 +6.98

Average 0.00 −3.01 −5.14 −5.64 −3.24 +4.04

Guided by these results, we applied a penalty multiplier to the cost of using inter in
order to force Kvazaar to use more intra prediction. We tested several values for the
multiplier ranging from 1.0 to 2.0. The BD-rate improvements for each multiplier
are listed in Table 4.4.

The best average BD-rate improvement was −5.64 %, corresponding to the cost
multiplier of 1.6. For many sequences, the decrease in BD-rate was over 10 %, but
for a few sequences, it increased instead. This proved that there was indeed a deeper
issue in the logic for deciding whether to use intra or inter prediction.

The decision on which intra mode or inter MV to use for a block is based on the
notion of rate–distortion cost (RD-cost), which takes into account both the distortion
and the number of bits used for the block. The cost is computed for each of the
prediction parameters checked and the one with the lowest cost is chosen.

Like HM, Kvazaar employs three distortion metrics: 1) the sum of squared er-
rors (SSE); 2) the sum of absolute differences (SAD); and 3) the sum of absolute
Hadamard-transformed differences (SATD). In the case of SSE, the cost of a block
is

JSSE = SSE + λ · R,

where rate R is the number of bits spent. Lagrange multiplier λ defines the trade-
off between bit rate and distortion. The SSE is the slowest but the most accurate
metric since it relates directly to the MSE and PSNR, which we use to measure
the visual quality. Due to its complexity, Kvazaar only uses SSE when making the
decision on whether to use one large CU or to split it into four smaller ones.

The fastest distortion metric used in Kvazaar is the SAD. Since the value of the
SAD is less than that of SSE, using the same λ would give too much weight for the
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bit rate. Hence, the square root of λ is used, and the SAD cost is

JSAD = SAD +
√

λ · R.

The third metric used is the SATD, which is similar to SAD, but the differences
undergo a Hadamard transform before we take the absolute value and calculate the
sum. As with the SAD cost, the square root of λ is used. The SATD cost is

JSATD = SATD +
√

λ · R.

The Hadamard transform is similar to the DCT so it gives a good approximation of
the cost of coding the residual coefficients while also being significantly faster than
the DCT.

Kvazaar used SATD to evaluate the intra prediction modes. However, a careful re-
view of the code revealed that in inter motion estimation the cost was first computed
using SAD and then recalculated using SATD if either FME or bi-prediction was
performed. However, when neither FME nor bi-prediction were enabled, the costs
computed with SAD were never replaced. Bi-prediction is disabled by default on
all presets and FME is disabled for the two fastest presets. Hence, when using one
of the two fastest Kvazaar presets, the inter SAD costs were being compared with
the intra SATD costs. SATD typically gives a cost several times larger than SAD,
which explains the fact that intra prediction was hardly used at all.

Our solution was to use SATD costs in all cases by removing the cost multiplier
penalty and adding a step for recalculating the inter costs with SATD before making
the comparison to the intra cost. We verified, using the modified version of HM
decoder, that Kvazaar now used intra prediction for 30 % of the CUs. The BD-rate
decreased by a further 4.96 % over the inter cost multiplier.

The final step was to update the intra skip threshold. Originally, the threshold value
was 20, which meant that the intra search was skipped when the SAD cost for the
block was less than 20 per pixel. The original threshold was found to reduce coding
efficiency too much so we decided to test possible values in the range from 0 to 20.
The effects on BD-rate and complexity for each value are tabulated in Table 4.5.
We settled on the value of 8 as a good compromise between coding efficiency and
complexity at fast presets.

Overall, the fix affected complexity in two ways. First, the added SATD calculation
increased the time spent in inter search. Second, the new value selected for intra
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Table 4.5 BD-rate and speedup for different intra skip threshold values.

Intra skip threshold Average BD-rate (%) Average speedup
0 0.00 1.00×
2 −0.39 1.01×
4 −0.37 1.04×
6 +0.91 1.11×
8 +2.67 1.17×

10 +4.68 1.22×
12 +6.98 1.26×
14 +9.14 1.29×
16 +11.14 1.31×
18 +13.04 1.33×
20 +14.81 1.35×

Table 4.6 Effect of Optimization 1 on BD-rate and complexity.

Class Sequence BD-rate (%) Speedup
A PeopleOnStreet −24.18 0.84×

Traffic −8.93 0.91×
B BasketballDrive −30.76 0.80×

BQTerrace −18.81 0.73×
Cactus −19.88 0.80×
Kimono −12.47 0.85×
ParkScene −11.92 0.78×

C BasketballDrill −25.73 0.84×
BQMall −17.28 0.80×
PartyScene −14.07 0.75×
RaceHorses −23.96 0.80×

D BasketballPass −23.47 0.86×
BlowingBubbles −10.10 0.77×
BQSquare −6.73 0.75×
RaceHorses −21.86 0.86×

E FourPeople −6.89 0.81×
Johnny −3.37 0.97×
KristenAndSara −4.92 0.77×

F BasketballDrillText −21.04 0.81×
ChinaSpeed −15.20 0.88×
SlideEditing −2.40 0.74×
SlideShow −9.16 0.83×

Average −15.14 0.81×
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skip threshold was less aggressive than the old value. This meant that Kvazaar
was not as eager to use the intra skip mechanism so the time spent on intra search
was increased as well. Together, these added up to a 20 % slowdown, which was
considered a reasonable trade-off for the 15 % lower BD-rate. The effects on coding
efficiency and complexity for each test sequence are tabulated in Table 4.6.

4.2 Concurrency-oriented SAO implementation

In order to improve the multi-thread behavior of Kvazaar, we modified Kvazaar to
record timing information on the coding process. The collected times were 1) the
time when an input frame was read in; 2) the time when Kvazaar started coding a
CTU; 3) the time when Kvazaar finished coding a CTU; 4) the time when Kvazaar
started generating the bit stream for a frame; and 5) the time when the bit stream
generation was finished. The times recorded for a frame were written out to a file
after finishing coding the frame.

A separate program was written to visualize the collected data. The visualization,
shown in Figure 4.1, displays the state of every CTU at a given point in time.
Each square represents a single CTU and the color of the square indicates its state.
Gray squares are waiting to be processed, red ones are being coded, and black ones
have been completed. The progression of the encoding process can be visualized
by moving forward and backwards in time. The upper-left corner displays the time
from the start of the encoding in milliseconds. In Figure 4.1, there are six CTUs
belonging to three different frames being encoded.

The visualization revealed that when WPP and OWF were enabled, Kvazaar was
waiting very long before starting to encode a new frame. The first CTU of the next
frame was not started until the last CTU of the second row in the current frame was
finished even though not all threads were in use. This was true for other CTU rows
too: the inter-frame CTU dependencies were being set up so that the first CTU
of any row in a frame always depended on the last CTU of the row below in the
previous frame.

The purpose of the inter-frame CTU dependencies is to make sure that the pixels
in the reference frame are available when they are used for inter prediction in the
current frame. In practice, it is very rare for an inter prediction unit to refer to
pixels that are further away than the width of a CTU. Hence, it should be sufficient
for a CTU to depend only on the eight CTUs in the reference frame that surround
it. Thus, it seemed like Kvazaar was adding unnecessary dependencies.
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Figure 4.1 Visualization of parallel encoding of a 1280 × 720 sequence. Each square
represents a single CTU. Black squares have been completed, red squares are being coded,
and gray squares are waiting to be processed.

The reason for the dependencies was found in the implementation of the SAO filter.
Kvazaar applied SAO for a whole CTU row at a time. As a result, when SAO was
enabled, it was necessary to wait for the whole row to be completed instead of just
a few CTUs in the row. However, these dependencies were being added even when
SAO was disabled.

We modified Kvazaar so that when SAO was disabled, the unnecessary inter-frame
CTU dependencies were removed, as shown in Figure 4.2. The only inter-frame
dependency for each CTU was now the CTU to the right and down of it so it was
no longer necessary to wait until the whole row was completed. The intra-frame
dependencies guarantee that the eight surrounding CTUs in the reference frame
are completed before the processing of the CTU is started. The inter MVs were
originally restricted so that they could point to the CTU below but not any further
downwards. We added a further restriction to constrain the MVs to the CTUs that
were known to be completed at the time. These are shown shaded in Figure 4.2. If
the coordinates of the current CTU are (x, y), then the CTUs that can be used for
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Figure 4.2 Direct and indirect intra-frame and inter-frame dependencies for a single
CTU. The shaded CTUs must be completed before the processing of the CTU (1, 1) in the
second frame can be started. Redundant indirect dependencies are not shown.

inter prediction, are the CTUs whose coordinates (xi, yi) satisfy

yi ≤ y + 1 ∧ xi + yi ≤ x + y + 2.

Removing the dependencies allowed Kvazaar to exploit the large number of processor
cores on the test machine more effectively. We obtained a 2.1× average speedup over
all test sequences with the ultrafast preset, which disables SAO. This confirmed
that it would be worthwhile to try to change the SAO implementation so that the
dependencies could be relaxed even when SAO was turned on. SAO would need
to be applied to each CTU as soon as possible. The HEVC specification states
that conceptually the deblocking filter is first applied to the whole picture and after
that, the SAO filter is applied. Thus, the deblocking filter is the limiting factor in
determining when SAO can be applied.

In the Kvazaar deblocking implementation, the right and bottom edges of a CTU
are not filtered until the neighboring CTUs to the right and down, respectively, have
been reconstructed. This is necessary because pixels on both sides of an edge are
required for deblocking. The rightmost 4 luma and chroma pixels of the horizontal
edges are also delayed because the right edge of the CTU must be filtered before
them. For chroma, it would be sufficient to delay the rightmost 2 pixels, but in
order to simplify the implementation, the delay is set to 4 pixels for both luma and
chroma. In addition, the right edge of the CTU below must be filtered before the
rightmost 4 pixels of the bottom edge of the CTU. The 4 × 4 pixel block in the
bottom-right corner of a CTU is therefore filtered only after the reconstruction of
the CTU diagonally to the right and down.

The pixels with delayed deblocking are therefore the bottommost 4 luma pixels and
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Figure 4.3 CTU split into four regions for in-loop filters.

the rightmost 4 chroma pixels, which cover an area 8 luma pixels wide. As shown
in Figure 4.3a, a CTU can be divided into four segments based on when both luma
and chroma pixels are fully deblocked: 1) The top-left 56 × 60 area is deblocked
immediately after the reconstruction. 2) The top-right 8 × 60 area is deblocked
after the reconstruction of the CTU to the right. 3) The bottom-left 56 × 4 area
is deblocked after the reconstruction of the CTU below. 4) The bottom-right 8 × 4
area is deblocked after the reconstruction of the CTU diagonally to the right and
down. If the CTU is located at the edge of the picture so that the adjacent CTUs do
not exist, the corresponding areas are deblocked at the same time with the top-left
area.

Since computing SAO for a single pixel may require information from the pixels
around that pixel, SAO had to be delayed for at least 9 luma pixels at the right
edge of the CTU and 5 pixels at the bottom edge. Using odd dimensions would
make the code more complex when processing chroma so we decided to round up
the values to even numbers. For simplicity, we chose to make the width of the
delayed area equal at the bottom and the right side of the CTU, thereby settling on
the value of 10 luma pixels.

Figure 4.3b shows how every CTU is divided into four segments for SAO, similarly
to the deblocking regions: 1) The top-left 54 × 54 area is filtered immediately after
deblocking. 2) The top-right 10×54 area is filtered after deblocking the CTU to the
right. 3) The bottom-left 54 × 10 area is filtered after deblocking the CTU below.
4) The bottom-right 10 × 10 area is filtered after deblocking the CTU diagonally to
the right and down.
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Table 4.7 Effect of Optimization 2 on BD-rate and complexity.

ultrafast veryslow
Class Sequence BD-rate (%) Speedup BD-rate (%) Speedup

A PeopleOnStreet 0.00 1.01× −0.03 1.12×
Traffic 0.00 0.98× +0.05 1.08×

B BasketballDrive 0.00 1.40× +0.02 1.51×
BQTerrace 0.00 1.41× 0.00 1.26×
Cactus 0.00 1.16× 0.00 1.28×
Kimono 0.00 1.29× +0.09 1.28×
ParkScene 0.00 1.24× −0.01 1.21×

C BasketballDrill 0.00 2.20× −0.03 2.50×
BQMall 0.00 2.69× +0.02 2.57×
PartyScene 0.00 2.99× +0.01 2.25×
RaceHorses 0.00 2.73× −0.05 2.55×

D BasketballPass 0.00 1.76× +0.01 1.90×
BlowingBubbles 0.00 1.98× 0.00 1.87×
BQSquare 0.00 2.08× 0.00 1.86×
RaceHorses 0.00 1.86× 0.00 1.92×

E FourPeople 0.00 3.45× +0.01 4.34×
Johnny 0.00 2.53× 0.00 3.79×
KristenAndSara 0.00 2.80× 0.00 4.14×

F BasketballDrillText 0.00 2.20× −0.02 2.43×
ChinaSpeed +0.01 3.32× −0.01 3.94×
SlideEditing +0.20 2.03× +0.33 3.26×
SlideShow +0.61 2.68× +2.72 3.89×

Average +0.04 2.08× +0.14 2.36×

This change required some changes to Kvazaar data structures. In order to have the
information required by SAO available, Kvazaar had to store the pixels that have
passed through deblocking but not through SAO. These pixels were originally only
stored for the bottommost row of pixels in every CTU. After the change, this storage
was changed to store the 54th pixel row, which is overwritten when filtering top-left
and top-right parts of the CTU, but is needed when filtering the bottom-left and
bottom-right parts. Similar storage was added for the 54th pixel columns of every
CTU as well.

SAO filter functions were rewritten so that they could filter any of the four parts to
which SAO was applied in a CTU. The decision of the SAO mode and parameters
was left as is. Consequently, the SAO parameters would be partly based on the
pixels at the bottom and the right side of the CTU that were not yet deblocked.
The chosen SAO parameters would therefore be slightly inaccurate, causing a small
increase in BD-rate.

Finally, the inter-frame CTU dependencies were relaxed even when SAO was en-
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abled. The BD-rate and speedup were measured with the ultrafast and veryslow
presets. The results are tabulated in Table 4.7. The speedup was even higher with
the veryslow preset than with the ultrafast preset. The added potential for picture-
level parallelism had the largest effect on the medium-sized sequences, where the
number of threads was severely limited by the dependencies. For the high-resolution
sequences of classes A and B, the number of threads that fit into a single frame is
higher, so most of the available threads were already in use before the change. Con-
versely, for the low-resolution sequences of classes C and D, the number of threads
in a single frame remained small even after the optimization. The speedup was
therefore the highest in class E, where the average speedup was over 4× with the
veryslow preset. The BD-rate increased slightly due to the additional restriction on
MVs and the SAO parameter selection being based on partly non-deblocked pixels.
The loss of coding efficiency was, however, negligible compared with the complexity
improvement.

4.3 Resolution-adaptive thread allocation

Discovering the optimization potential in the SAO implementation suggested a fur-
ther analysis of the multi-thread behavior of Kvazaar. We measured the speedup
with the ultrafast preset in several configurations, varying the video resolution, the
number of threads, and the number of overlapped wavefronts (OWF).

The results for two sequences, PeopleOnStreet (class A) and BlowingBubbles (class
D), are shown in Table 4.8. The results show an expected speedup in PeopleOnStreet
when increasing the number of threads. In BlowingBubbles, however, increasing the
number of threads actually took more time. As the sequence is very small, only a
couple of threads could run simultaneously. Furthermore, the extra threads appeared
to cause a substantial overhead, reducing the encoding speed by up to 52 % compared
with the optimal number of threads. By default, Kvazaar always used 75 % of the
maximum number of threads available on the processor when hyper-threading was
enabled, amounting to 33 threads on the test processor. This was clearly far from
optimal when encoding low-resolution video and warranted changing the algorithm
for selecting the number of threads so that is takes the video resolution into account.

We decided to limit the number of spawned threads to the maximum number of
threads that could possibly run in parallel on a given sequence and a given number
of simultaneously encoded frames. Kvazaar divides the frame encoding task into a
number of CTU encoding tasks. An idle thread can choose any of the available CTU
tasks to be its next workload. The maximum number of threads simultaneously
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Table 4.8 Relative speed for different numbers of threads and OWF.

OWF
Sequence Threads 0 1 3 7 11 15
PeopleOnStreet 1 1.00× 1.01× 1.01× 1.01× 1.01× 1.01×

5 3.80× 4.25× 4.25× 4.25× 4.23× 4.25×
10 5.59× 7.22× 7.21× 7.20× 7.16× 7.16×
15 6.33× 10.22× 10.53× 10.50× 10.47× 10.44×
20 5.22× 11.37× 13.59× 13.59× 13.52× 13.48×
25 4.10× 10.25× 14.56× 14.59× 14.56× 14.48×
30 4.04× 10.09× 14.86× 15.12× 15.05× 15.05×
35 3.84× 9.98× 14.82× 15.74× 15.69× 15.55×
40 3.55× 9.75× 14.85× 16.25× 16.20× 16.14×
44 3.58× 9.62× 14.88× 16.65× 16.54× 16.52×

BlowingBubbles 1 1.00× 1.01× 1.01× 1.01× 1.01× 1.01×
5 1.45× 2.72× 3.68× 3.78× 3.85× 3.89×

10 0.94× 2.30× 3.59× 3.82× 4.05× 4.28×
15 0.80× 2.05× 3.35× 3.67× 3.90× 4.19×
20 0.72× 1.59× 2.80× 3.09× 3.34× 3.61×
25 0.74× 1.51× 2.36× 2.47× 2.60× 2.86×
30 0.74× 1.48× 2.38× 2.56× 2.66× 2.84×
35 0.70× 1.36× 2.12× 2.26× 2.42× 2.80×
40 0.69× 1.36× 2.07× 2.11× 2.29× 2.47×
44 0.69× 1.35× 2.09× 2.19× 2.32× 2.70×

executed is therefore equal to the maximum number of CTUs that can be coded
concurrently.

We express the width and height of the sequence in number of CTUs as WCTU and
HCTU, respectively. When WPP is disabled, tiles may be used to achieve parallel
processing. In this case, Wtiles and Htiles respectively denote the number of tile
columns and tile rows. There are now two cases to handle: 1) WPP disabled with
tiles possibly enabled; and 2) WPP enabled with tiles disabled.

When WPP is disabled, only a single frame can be processed at a time. In this case,
the maximum number of concurrent CTUs Ptiles is equal to the number of tiles.

Ptiles = Wtiles · Htiles (4.1)

When WPP and OWF are enabled, multiple frames can be encoded in parallel. In
this case, not all parallel frames can have the maximum number of parallel threads
because of the inter-frame dependencies. We start by computing the maximum num-
ber of parallel threads in a single frame, considering only intra-frame dependencies
depicted in Figure 4.4 for now. Each CTU needs to wait until the CTU to the left
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Figure 4.4 Intra-frame CTU dependencies in a single frame.
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Figure 4.5 Parallel coding of three consecutive frames with OWF. The darkly shaded
CTUs can be processed concurrently once the lightly shaded CTUs have been coded. They
are located on diagonal 10 in the first frame, diagonal 6 in the second frame, and diagonal 2
in the third frame.

in the current row and the CTU to the right in the row above have been completed.
The maximum number of concurrently coded CTUs in a single frame (PWPP,frame)
can therefore be limited by either WCTU or HCTU:

PWPP,frame = min
{⌈

WCTU

2

⌉
, HCTU

}
. (4.2)

We define diagonal d as the set of the CTUs whose coordinates (xi, yi) satisfy
d = xi + 2yi. Equation (4.2) corresponds to the situation where all CTUs located on
the longest diagonal (that is, containing the maximum number of CTUs) are being
processed concurrently.

When we take into consideration the result obtained above and the inter-frame de-
pendencies, we can derive the maximum number of concurrent CTUs over all frames.
As illustrated in Figure 4.2, before starting to process a CTU, the CTU diagonally
to the right and down of it in the previous frame must have been completed. Sup-
pose we have a frame f where all CTUs on diagonal d are being coded in parallel.
The intra-frame dependencies then guarantee that the inter-frame dependencies for
CTUs on diagonal d − 4 in the frame f + 1 have been satisfied. Similarly, for the
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inter-frame dependencies of frame f to be satisfied, the intra-frame dependencies
for CTUs on diagonal d + 4 in the frame f − 1 must also have been satisfied. This
situation is illustrated in Figure 4.5. The maximum possible number of CTUs pro-
cessed in parallel over all frames (PWPP) can therefore be calculated by adding up
the lengths of OWF + 1 diagonals spaced four units apart:

PWPP = max
c

OWF+1∑
i=1

HCTU∑
y=1

WCTU∑
x=1

I (x + 2y = c + 4i) , (4.3)

where I is the indicator function

I (x + 2y = c + 4i) =

⎧⎪⎨⎪⎩1, if x + 2y = c + 4i

0, if x + 2y ̸= c + 4i.

Equations (4.1) and (4.3) give upper limits for the number of threads in the two
cases. Even if more threads were spawned, they would have no work to do and
would result in nothing but more overhead. Another limit comes from the number
of threads available on the processor (TCPU). If Kvazaar were to spawn more threads
than the processor has, the extra threads would not be able to execute and would
only cause the thread management code to use more time. The value ultimately
chosen as the number of threads is therefore

P =

⎧⎪⎨⎪⎩min {Ptiles, TCPU} if WPP is disabled
min {PWPP, TCPU} if WPP is enabled.

In addition to the selection of the number of threads, we also changed the automatic
OWF selection in Kvazaar. It was rewritten in terms of the new algorithm for thread
count selection. The new implementation gradually increases OWF starting from
zero. For each value, the number of threads is computed with the new algorithm,
and the iteration is stopped if there is no improvement. The obtained OWF value is
then increased by two so that Kvazaar can have two more frames available than can
be encoded in parallel. Consequently, when a frame is finished, the worker threads
can immediately start working on the next frame instead of waiting for the frame
input.

As Kvazaar no longer suffered from the overhead caused by spawning too many
threads for low-resolution sequences, the restriction on the number of threads was
lifted so that Kvazaar was able to use all of the available computing capacity. The
numbers of threads and OWF values chosen by Kvazaar for sequences of different
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Table 4.9 Comparison of the selection algorithms for the number of threads and OWF.

Original Proposed
Resolution OWF Threads OWF Threads

2560×1600 2 33 4 44
1920×1080 3 33 5 44
1280×720 5 33 7 44
1024×768 4 33 10 44
832×480 3 33 8 25
416×240 2 33 4 8

sizes before and after the changes are shown in Table 4.9. The new algorithm
can adapt to low-resolution video by significantly reducing the number of threads
while still taking advantage of all available computing power when encoding high-
resolution video. The number of parallel frames chosen by the new algorithm is
consistently higher, mostly because of the two extra frames added to eliminate
waiting time. For sizes 1024×768 and 832×480, better estimation of the frame-level
parallelism enables Kvazaar to opt for a significantly higher OWF.

The speedups for each test sequence with presets ultrafast and veryslow are shown
in Table 4.10. Altogether, the changes introduced a significant speedup without
any BD-rate penalty. Particularly, class C sequences gained nearly a 2× speedup
with the veryslow preset. The average speedup over all sequences was 1.4× with the
ultrafast preset and 1.5× with the veryslow preset.

4.4 Fast cost estimation of coding coefficients

For further complexity improvements, we analyzed Kvazaar CPU usage with the
ultrafast preset using Intel VTune Amplifier software [31]. The analysis revealed
that 33.1 % of CPU time was spent on inter search, 22.4 % on computing the cost of
the residual coefficients, 14.3 % on intra search, 11.6 % on writing the bit stream with
CABAC, 4.3 % on the deblocking filter, and the remaining 14.3 % on various smaller
operations. Inter search and coefficient cost estimation stood out as promising
candidates for complexity optimizations due to the large amount of time spent on
them. However, much effort had already been spent on making the inter search as
fast as possible, so we chose to focus on optimizing the coefficient cost computations.

The cost of residual coefficient coding is the number of bits required for coding the
remaining coefficients after transform and quantization. Kvazaar uses the number
of bits, together with the SSE distortion, to decide how to form the CU quadtree.
The estimation of the coefficient cost was implemented by passing the coefficients
through the CABAC module, as if they were actually written into the bit stream,
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Table 4.10 Effect of Optimization 3 on complexity.

Class Sequence ultrafast veryslow
A PeopleOnStreet 1.18× 1.22×

Traffic 1.16× 1.36×
B BasketballDrive 1.25× 1.44×

BQTerrace 1.24× 1.73×
Cactus 1.27× 1.45×
Kimono 1.13× 1.51×
ParkScene 1.24× 1.60×

C BasketballDrill 1.73× 1.98×
BQMall 1.75× 1.91×
PartyScene 1.66× 1.97×
RaceHorses 1.54× 1.86×

D BasketballPass 1.67× 1.69×
BlowingBubbles 1.69× 1.73×
BQSquare 1.71× 1.77×
RaceHorses 1.63× 1.75×

E FourPeople 1.00× 1.03×
Johnny 1.01× 1.06×
KristenAndSara 1.00× 1.03×

F BasketballDrillText 1.73× 2.07×
ChinaSpeed 1.24× 1.12×
SlideEditing 1.02× 1.13×
SlideShow 1.02× 1.06×

Average 1.36× 1.52×

and counting the exact number of bits spent. This approach gives a highly accurate
estimate for the cost, but the CABAC process is very slow.

Therefore, we came up with a less accurate but faster method of estimating the cost
based on the sum of the absolute values of the coefficients with the three fastest
presets. For this purpose, we modified Kvazaar to compute the sum of absolute
coefficients in addition to the CABAC coding cost and then print both of the values
to a file. We encoded all of the test sequences using this version of Kvazaar and
collected the results.

Next, we fitted a line to the data points using linear least squares regression. The
fitted line and the data are shown in Figure 4.6. The slope of the line was 1.8 and
the y-intercept was 0.0. We then modified Kvazaar to operate in one of the two ways
depending on the preset. With presets from faster to veryslow, the exact cost was
computed with CABAC as before. However, with presets from ultrafast to veryfast,
we changed the estimate to the sum of the absolute coefficients multiplied by 1.8,
in accordance with the results.
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Figure 4.6 Coefficient coding cost as a function of the sum of absolute values. The gray
points are the measured values and the black line is the best fit.

The results obtained with the ultrafast preset are shown in Table 4.11. This change
had a negative effect on coding efficiency because the estimate is not completely
accurate. The greatest effect was on the sequence FourPeople where BD-rate grew
by 2.79 %. The average increase in BD-rate was 0.90 %. This was accompanied by
speedups in all sequences, ranging from 1.0× to 1.4×. The average speedup over
all sequences was 1.2×, which was considered a reasonable trade-off for the small
BD-rate increase.
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Table 4.11 Effect of Optimization 4 on BD-rate and complexity.

Class Sequence BD-rate (%) Speedup
A PeopleOnStreet +1.43 1.10×

Traffic +1.53 1.09×
B BasketballDrive +1.34 1.13×

BQTerrace +2.01 1.17×
Cactus +2.39 1.15×
Kimono −0.21 1.06×
ParkScene +0.64 1.15×

C BasketballDrill +0.22 1.25×
BQMall +0.55 1.27×
PartyScene +0.47 1.39×
RaceHorses +1.21 1.32×

D BasketballPass +0.51 1.26×
BlowingBubbles +0.73 1.36×
BQSquare +0.40 1.41×
RaceHorses +1.15 1.27×

E FourPeople +2.79 1.06×
Johnny +2.36 1.03×
KristenAndSara +1.95 1.03×

F BasketballDrillText +0.22 1.33×
ChinaSpeed +0.24 1.19×
SlideEditing −1.18 1.18×
SlideShow −0.86 1.07×

Average +0.90 1.19×
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5. OVERALL PERFORMANCE

In order to determine the total impact of the proposed optimizations, we performed
an overall evaluation with the ultrafast and veryslow presets. We also compared
Kvazaar performance with the other notable open-source encoders: Turing and x265.
In these comparisons, we evaluated each encoder with the fastest and slowest presets.
For x265 and Kvazaar, these are ultrafast and veryslow. For Turing encoder, the
respective presets are fast and slow.

Table 5.1 presents a BD-rate and speedup comparison of the fastest presets of the
optimized Kvazaar, Turing, and x265. The BD-rate and speedup are measured
using the original Kvazaar as the anchor. Kvazaar coding efficiency was significantly
improved by Optimization 1. Despite Optimization 4 slightly reducing the coding
efficiency, we managed to reach an average BD-rate of −14.39 % over the original
Kvazaar.

The complexity improvements of Optimizations 2 and 3 were more than enough to
compensate for the slowdown caused by Optimization 1. There was a considerable
speedup in all sequences, with PartyScene in class C reaching an enormous 5.2×
speedup. The average speedup over all sequences was 2.8×.

The comparison with the other encoders shows that with the fastest presets, Turing
and x265 are still leading in coding efficiency. However, the encoding speed of Turing

Table 5.1 Optimized Kvazaar, Turing encoder, and x265 compared with the original
Kvazaar with the fastest presets.

Kvazaar (ultrafast) Turing (fast) x265 (ultrafast)
Class BD-rate Speedup BD-rate Speedup BD-rate Speedup

(%) (%) (%)
A −15.37 1.13× −60.43 0.20× −38.65 1.22×
B −17.99 1.44× −67.82 0.24× −53.37 1.75×
C −19.76 4.61× −63.21 0.44× −46.43 4.23×
D −14.94 3.48× −64.40 0.36× −48.94 3.57×
E −2.84 2.64× −65.42 0.47× −54.43 3.32×
F −12.17 3.17× −53.89 0.37× −18.73 2.95×

Average −14.39 2.84× −62.83 0.35× −43.81 2.91×
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Table 5.2 Optimized Kvazaar, Turing encoder, and x265 compared with the original
Kvazaar with the slowest presets.

Kvazaar (veryslow) Turing (slow) x265 (veryslow)
Class BD-rate Speedup BD-rate Speedup BD-rate Speedup

(%) (%) (%)
A −0.01 1.41× −35.46 0.07× −29.35 0.20×
B −0.01 1.98× −29.82 0.10× −31.29 0.23×
C 0.00 4.68× −22.73 0.29× −25.97 0.28×
D −0.01 3.35× −28.75 0.31× −30.46 0.31×
E −0.01 4.19× −28.19 0.19× −43.31 0.45×
F +0.84 4.24× −33.32 0.20× −37.84 0.32×

Average +0.15 3.38× −29.26 0.20× −32.82 0.30×

is far behind the other two encoders and we have managed to narrow the complexity
gap between Kvazaar and x265 significantly. Even though x265 was originally almost
3 times as fast as Kvazaar, the speed difference has reduced significantly after the
proposed changes. Kvazaar is now faster than x265 in classes C and F and only 5 %
slower on average.

A similar comparison of the slowest presets is shown in Table 5.2. The only two
changes affecting coding efficiency were Optimization 1 and Optimization 4. Since
these changes only affected the fastest presets of Kvazaar, the BD-rate of Kvazaar is
practically unchanged with the veryslow preset. Optimizations 2 and 3 had an even
greater effect with the veryslow preset than with the ultrafast preset. The speedup
was over 4× for almost all sequences in classes C, E, and F. The average speedup
was 3.4×.

The veryslow preset of Kvazaar is now 16 to 18 times as fast as the x265 veryslow
and Turing slow presets in class C sequences. The average speedup of Kvazaar
over the other two encoders is 11.4× over all sequences. The original Kvazaar was
already many times faster than either of the other encoders were and the proposed
optimizations have further widened this gap. However, both x265 and Turing reach
better coding efficiency.
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6. CONCLUSIONS

In this work, we presented four optimizations of Kvazaar HEVC encoder. Opti-
mization 1 changed the selection criterion of the prediction mode for a block by
ensuring that the costs of inter and intra prediction are computed in the same way.
The next two optimizations focused on the concurrency aspects of Kvazaar. Opti-
mization 2 changed the implementation of the SAO filter so that some dependencies
between encoding tasks could be removed. This allowed Kvazaar to make better
use of parallel processing, which made encoding significantly faster. Optimization 3
reduced thread management overhead by adjusting the number of threads spawned
according to the video resolution. Finally, Optimization 4 reduced the complexity
of the coding cost calculations for the residual coefficients by sacrificing accuracy for
speed. Optimizations 2 and 3 affected Kvazaar at all preset levels. They managed
to greatly improve coding speed while having only a slight impact on BD-rate. The
other two optimizations only affected the fastest presets.

Together, the proposed optimizations sped up Kvazaar by a factor of 2.8× with the
fastest preset and by a factor of 3.4× with the slowest preset. The speedup was
accompanied by a 14.39 % BD-rate improvement with the fastest preset, but the
slowest preset suffered a diminutive BD-rate increase of 0.15 %. The most important
optimizations were Optimization 1, which produced the BD-rate improvement with
the ultrafast preset, and Optimization 2, which resulted in an over 2× speedup on
both presets.

Comparison of the fastest presets of Kvazaar, Turing, and x265 showed that the
coding efficiency of Kvazaar is still behind that of the other two encoders. The
coding speed of Kvazaar, however, is very close to that of x265. Kvazaar ultrafast
preset is on average 5 % slower than x265 ultrafast preset, but achieves higher coding
speeds in a few test sequences. Compared with Turing fast preset, Kvazaar reaches
a 7.7× speedup.

With the slowest presets, the optimized Kvazaar is on average over 11 times as fast as
both Turing and x265, and with a few sequences, reaches a speedup of 18× over the
other two encoders. The BD-rate of Kvazaar, however, does not reach that of Turing
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and x265. This sets a clear direction for subsequent research. The coding efficiency
of Kvazaar will be optimized by implementing new coding tools and improving the
existing ones, even at the expense of speed.
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