
UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

Energy-Efficient Resource Management for Task-based Parallel Applications in Multi-
Aplication Environments

Gestión de recursos energéticamente eficiente para aplicaciones paralelas basadas en

tareas en entornos multi-aplicación

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Luis María Costero Valero

DIRECTORES

Francisco Daniel Igual Peña
Katzalin Olcoz Herrero

Francisco Tirado Fernández

© Luis María Costero Valero, 2021

Energy-Efficient Resource Management
for Task-based Parallel Applications
in Multi-Application Environments

Gestión de Recursos Energéticamente Eficiente
para Aplicaciones Paralelas Basadas en Tareas

en Entornos Multi-Aplicación

Ph.D. Thesis

Luis Maŕıa Costero Valero

Supervised by: Francisco Daniel Igual Peña
Katzalin Olcoz Herrero
Francisco Tirado Fernández

Facultad de Informática
Universidad Complutense de Madrid

December 2020

Energy-Efficient Resource Management
for Task-based Parallel Applications
in Multi-Application Environments

Gestión de Recursos Energéticamente Eficiente
para Aplicaciones Paralelas Basadas en Tareas

en Entornos Multi-Aplicación

Memoria que presenta para optar al t́ıtulo de Doctor en Ingenieŕıa Informática

Luis Maŕıa Costero Valero

Dirigida por los Doctores:

Francisco Daniel Igual Peña
Katzalin Olcoz Herrero

Francisco Tirado Fernández

Facultad de Informática
Universidad Complutense de Madrid

Diciembre 2020

This thesis has been mainly supported by the Spanish MECD under grant No. FPU15/02050.

This thesis has been partially supported by the EU (FEDER) and Spanish MINECO (GA No.
TIN2015-65277R, GA No. RTI2018-093684-B-I00), the Spanish CM (GA No. S2018-TC-4423),

the EC H2020 MANGO project (GA No. 671668), and the HiEPAC network.

A mi familia, directores
y todos los que me han

acompañado en este camino

Agradecimientos

Cuando Katza y Fran me ofrecieron aquella pequeña colaboración el último año de
carrera, poco o nada me imaginaba que aquello iba a desembocar en esta tesis 6 años
después. Durante estos años muchas formidables personas han pasado a mi lado, y que de
una u otra manera, se han ganado mis más sinceros agradecimientos.

En primer lugar, para mis directores Fran, Katza y Paco, por su apoyo durante todos
estos años, por ser una fuente infinita de conocimiento e ideas a explorar, y en resumen,
por ser unos grandes investigadores y mejores personas.

También me gustaŕıa dar las gracias a David y Marina por recibirme en la EPFL, aśı
como todos sus consejos e ideas que siempre nos han llevado a buen puerto. Y por supuesto
a toda la gente de ESL que coincidió conmigo y que hicieron que aquellos 6 meses se me
pasaran volando.

A toda la gente de ArTECS, compañeros y amigos, por su acogida y siempre buen
ambiente. A la gente del laboratorio, por sus buenos momentos y absurdas discusiones. A
Mercedes, Lućıa y Ana, a David y Félix, técnicos y resto de personal de administración
y servicios de ambas facultades. Y por supuesto a toda la gente del aula 16, que han
vivido esta aventura conmigo desde el principio. Y muchas gracias a Pablo y Miguel, que
llevamos juntos 10 años en esta aventura que nunca pensamos que ibamos a embarcarnos.
Y por supuesto muchas gracias a Jesús, que ha aguantado todas mis quejas y sufrimientos
durante estos años, y ha sido un pilar fundamental de esta tesis.

A mi familia y amigos, por su apoyo incondicional y paciencia, por estar ah́ı siempre.

Y por último, a toda esa gente que de una u otra manera han compartido conmigo una
parte de este camino y no he mencionado.

A todos vosotros, mil gracias.

Madrid, 31 de agosto de 2020

i

ii

Resumen

Gestión de Recursos Energéticamente Eficiente para
Aplicaciones Paralelas Basadas en Tareas en Entornos

Multi-Aplicación

El fin del escalado de Dennard, aśı como la llegada de la era post-Moore ha supuesto una
gran revolución en la forma de obtener el rendimiento y eficiencia energética en los procesa-
dores modernos. Desde un incremento constante en la frecuencia de reloj como la principal
forma de aumentar el rendimiento a principios de los 2000, el incremento del número de
núcleos dentro del procesador a frecuencias relativamente moderadas se ha impuesto como
la tendencia actual para incrementar tanto el rendimiento como la eficiencia energética.
El aumento del número de núcleos dentro del procesador ha venido acompañado en los
últimos años por el aumento de la heterogeneidad en la plataforma, tanto dentro del proce-
sador incorporando distintos tipos de núcleos en el mismo procesador (e.g., la arquitectura
big.LITTLE) como añadiendo unidades de cómputo espećıficas (e.g., extensiones multime-
dia), como la incorporación de otros elementos de computo espećıficos, ofreciendo diferentes
grados de rendimiento y eficiencia energética. La evolución de los procesadores no sólo ha
venido dictada por el aumento del número de núcleos, sino que ha venido acompañada por
la incorporación de diferentes técnicas permitiendo la adaptación de las arquitecturas de
forma dinámica al entorno aśı como a las aplicaciones en ejecución. Entre otras, técnicas
como el escalado de frecuencia, la limitación de consumo o el particionado de la memo-
ria caché son ampliamente utilizadas en la actualidad como métodos para incrementar el
consumo y/o la eficiencia energética.

Asociada a la evolución de los nuevos procesadores, las aplicaciones también han evo-
lucionado para aprovechar todos los recursos ofrecidos por las mismas. De forma similar,
las aplicaciones modernas ofrecen un conjunto de parámetros a modificar que permiten
un óptimo aprovechamiento de todos los recursos. Aunque estos parámetros son ajustados
t́ıpicamente de forma estática antes del comienzo de la ejecución, la modificación y ajuste
de estos parámetros de forma dinámica favorece la obtención de un mayor rendimiento y
eficiencia energética a costa de un proceso de decisión mucho más complejo.

En este escenario, los gestores de recursos cobran un papel de vital importancia, ya que
no solo tienen que encargarse de realizar un reparto de recursos adecuado, sino de modificar

iii

iv

de forma dinámica y conjunta los distintos parámetros de la arquitectura y aplicaciones
buscando un objetivo común. Además, el alto rendimiento ofrecido por las nuevas arquitec-
turas ha favorecido escenarios de co-scheduling, donde más de una aplicación es ejecutada
simultáneamente compartiendo los mismos recursos. Este escenario complica aún más la
labor de los gestores de recursos, donde ya no tienen que considerar los resultados de una
única aplicación, sino que tienen que propiciar un escenario de cooperación entre diferentes
aplicaciones por el uso de los mismos recursos para satisfacer los requisitos de todas ellas
de forma simultánea.

El objetivo de esta tesis es el diseño, implementación y validación de diferentes propues-
tas para la gestión de recursos de forma dinámica para aplicaciones paralelas, maximizando
tanto el rendimiento como la eficiencia energética.

Para ello, en esta tesis se muestra como diferentes técnicas de escalado de voltaje y pla-
nificación se pueden integrar dentro de los runtimes encargados de la gestión paralela de las
aplicaciones para maximizar la eficiencia energética en plataformas asimétricas, aśı como se
puede incorporar restricciones de potencia a los mismos para gestionar de forma dinámica
la potencia disponible en servidores modernos, alcanzando resultados óptimos, similares a
los obtenidos mediante mecanismos hardware. Además, el gran número de parámetros dis-
ponibles (tanto de aplicación como de la plataforma), aśı como las posibles relaciones entre
ellas proporcionan escenarios muy complejos dif́ıcilmente manejables por aproximaciones
más tradicionales. Con el propósito de gestionar estos escenarios, en esta tesis se muestra la
creación de una solución completa para la gestión de múltiples aplicaciones en tiempo real
mediante el uso de Aprendizaje por Refuerzo. Nuestra propuesta muestra cómo, a través del
uso de técnicas de Aprendizaje Automático, es posible la gestión de escenarios modernos de
gestión de recursos sin necesidad de realizar un modelado previo del mismo, identificando de
forma automática las posibles relaciones entre parámetros mientras se persigue una meta
multi-objetivo. En concreto, se muestra como este sistema es capaz de gestionar múlti-
ples procesos de codificación de v́ıdeo en tiempo real de forma simultánea, satisfaciendo
requisitos de rendimiento, calidad y consumo simultáneamente.

Abstract

Energy-Efficient Resource Management for Task-based
Parallel Applications in Multi-Application Environments

The end of Dennard scaling, as well as the arrival of the post-Moore era, has meant a big
change in the way performance and energy efficiency are achieved by modern processors.
From a constant increase of the clock frequency as the main method to increase performance
at the beginning of the 2000s, the increase in the number of cores inside processors running
at relatively conservative frequencies has stabilised as the current trend to increase both
performance and energy efficiency. The increase of the number of cores inside processor has
been accompanied in the last years by an increase of the heterogeneity in the systems, both
inside the processors comprising different types of cores (e.g., big.LITTLE architectures)
or adding specific compute units (like multimedia extensions), as well as in the platform
by the addition of other specific compute units (like GPUs), offering different performance
and energy-efficiency trade-offs. Together with the increase in the number of cores, the
processor evolution has been accompanied by the addition of different technologies that
allow processors to adapt dynamically to the changes in the environment and running
applications. Among others, techniques like dynamic voltage and frequency scaling, power
capping or cache partitioning are widely used nowadays to increase the performance and/or
energy-efficiency.

Similar to processors evolution, applications have also evolved to take advantage of all
the resources offered by the newest architectures. Identically to processors, newest applica-
tions offer a set of tunable parameters allowing optimal use of all the available resources.
Although these parameters are typically set prior to the beginning of the execution, a dy-
namic tuning process can achieve greater performance and energy-efficient executions at
the expense of a more complex decision process.

In this scenario, resource managers occupy a vital role, as they do not only have to
perform an optimal distribution of the resources, but they also have to tune application
and architectural parameters jointly to achieve a common goal. Even more, the high perfor-
mance achievable by the newest processors has provoked the emergence of new co-scheduling
scenarios, where multiple applications are run simultaneously sharing the same resources.
In these scenarios, resource managers cannot focus on the results achieved by an unique

v

vi

application, but they have to favour cooperative scenarios with applications sharing the
same resources to achieve all their requirements.

The goal of this dissertation is the design, implementation and validation of different ap-
proaches of dynamic resource management for parallel applications, targeting performance
and energy efficiency.

With this goal, we show how different frequency and scheduling techniques can be incor-
porated into the parallel runtimes to maximize energy efficiency on asymmetric platforms,
as well as how power-capping can be incorporated to dynamically manage power on mod-
ern server processors, achieving optimal results, similar to the ones achievable by top-notch
hardware based alternatives. In addition, the huge amount of available parameters (both
application and platform), as well as the possible relations between them, makes the decision
process a very complex scenario hardly manageable by traditional approaches. To manage
these scenarios, we also describe the creation of a holistic solution to manage multiple appli-
cations running in real-time using Reinforcement Learning techniques. Our proposal shows
how, thanks to the use of Artificial Intelligence techniques, it is possible to manage this kind
of scenario without the need of previous profiling of the applications and the use of platform
models, automatically identifying the possible relations between applications and parame-
ters, achieving a multi-objective common goal. Specifically, we show how our proposal can
manage multiple real-time encoding processes simultaneously, achieving real-time, quality
and power consumption requirements simultaneously.

Contents

Resumen III

Abstract V

1. Introduction 1

1.1. Motivation . 1

1.2. Background and definitions . 3

1.2.1. Target applications and scenarios . 5

1.3. Objectives . 7

1.4. Proposed approaches and contributions . 8

1.5. Document structure . 10

2. State of the art 13

2.1. Traditional Resource Management in parallel computing 13

2.1.1. Targeting performance optimization 13

2.1.2. Targeting energy efficiency optimization 15

2.1.3. Targeting power-capping and thermal management 15

2.2. Novel Resource Management strategies . 16

2.2.1. Machine learning for resource management 16

2.2.2. QoS- and QoE-aware resource management 17

2.3. Frameworks for Resource Management: a comparative study 17

I Runtime-based Resource Management 23

3. Policies for energy-efficient resource management on asymmetric archi-
tectures 25

3.1. OmpSs. Internals and asymmetry-aware implementations 27

3.1.1. Nanos++ implementation design 28

3.1.2. Asymmetry-aware modifications in Nanos++ 28

3.2. Energy-aware policies based on frequency scaling (FS) 31

3.2.1. FS policies description . 32

vii

viii CONTENTS

3.2.2. Experimental results . 35

3.3. Energy-aware policies based on task scheduling (TS) 40

3.3.1. TS policies description . 40

3.3.2. Experimental results . 41

3.4. Conclusions . 43

4. Power budget management for runtime-based applications 47

4.1. Power budget management. Motivation and opportunities 48

4.1.1. Idle workers management . 49

4.2. Resource management for asymmetric power budgeting: a two-level approach 52

4.2.1. BAR + BACO: an overview . 53

4.3. BAR. Runtime support for intra-application power budget management . . 54

4.3.1. Budget re-distribution strategy . 54

4.3.2. Waking up idle workers . 55

4.3.3. Fetching a new ready task . 56

4.3.4. Blocking idle threads . 56

4.3.5. Core frequency selection and Power modelling 56

4.4. Experimental results for BAR . 58

4.4.1. Experimental setup . 58

4.4.2. Preliminar analysis of BAR performance 59

4.4.3. Scenario I: Power capping for one application 60

4.4.4. Scenario II: Multiple applications with different power caps 63

4.5. BACO. Runtime support for inter-application power budget redistribution . 65

4.5.1. Resource manager layer . 66

4.5.2. Application layer . 67

4.6. Experimental results for BACO . 68

4.6.1. Preliminar analysis of BACO performance 68

4.6.2. Scenario I: Different block sizes . 70

4.6.3. Scenario II: Different application arrival rates 72

4.6.4. Scenario III: A realistic simulation 73

4.7. Conclusions . 75

II Application-aware Resource Management. A Machine-Learning
based approach 77

5. Resource Management for QoS-aware applications 79

5.1. Exposing application internals: metrics & knobs 81

5.2. A motivational example: multi-user video transcoding 83

5.2.1. Output metrics, Application- and System-wide knobs, and QoS in
HEVC . 85

5.2.2. Motivation for dynamic resource and knob management 90

5.2.3. Necessity of Machine Learning for multi-user video transcoding . . . 92

5.3. Reinforcement Learning-based formulation for Resource Management 95

CONTENTS ix

5.3.1. Reinforcement Learning: Q-Learning 96

5.3.2. Mapping a generic QoS-aware application to a Q-Learning formulation100

5.4. Conclusions . 103

6. Self-adaptive Application Execution via Reinforcement Learning 105

6.1. A Mono-agent Q-Learning formulation for video transcoding 106

6.1.1. Problem mapping to a QL formulation: states, actions and rewards . 107

6.1.2. Mono-agent Q-Learning: formulation and drawbacks 112

6.2. Integrating Multi-Agent Learning . 113

6.2.1. Agent design and activation sequence 114

6.2.2. New learning rate function . 115

6.2.3. Cooperation process: dealing with a stochastic environment 116

6.2.4. Dealing with sensing noise . 118

6.3. Proposed single-application scenarios and experimental setup 119

6.3.1. System overview and implementation details 119

6.3.2. Dataset definition . 121

6.3.3. Alternative approaches and reported metrics 122

6.4. Experimental results . 123

6.4.1. A detailed analysis of agents’ behavior for High Resolution video se-
quences . 123

6.4.2. General MAL learned policies: High Resolution vs Low Resolution
behaviour . 126

6.4.3. Comparison with a static approach 127

6.4.4. Comparison with a state-of-the-art heuristic (argo) 128

6.5. Conclusions . 129

7. Extensions for Inter-Application Resource Management 131

7.1. Integrating intra-application dependencies into the formulation 132

7.1.1. A modified learning process for system-wide metrics 132

7.1.2. Power capping integration . 133

7.1.3. Management of shared resources . 134

7.2. Experimental results on multi-application scenarios 134

7.2.1. MAL and turbo behaviour . 136

7.2.2. Comparison with a Static solution 136

7.2.3. Comparison with a state-of-the-art heuristic (argo) 138

7.2.4. Improvements over a mono-agent implementation 139

7.2.5. Power capping integration . 142

7.2.6. Overhead introduced by the MAL system 143

7.3. Conclusions . 144

8. A Methodology for Multi-Policy Resource Management 147

8.1. Motivation for multi-policy resource management 148

8.1.1. Heterogeneous QoS for HEVC encoding processes 148

8.2. Designing a Reinforcement Learning multi-policy framework 151

x CONTENTS

8.2.1. Learning different policies . 151

8.2.2. Reducing learning time . 152

8.2.3. A methodology to extract multiple policies 153

8.2.4. Experimental results for multi-policy resource management 154

8.3. Combining multiple policies via heuristics 158

8.3.1. Heuristic design . 159

8.3.2. Experimental results for multi-policy combination heuristic 160

8.4. Conclusions . 162

9. Conclusions 165

9.1. Conclusions and main contributions . 165

9.2. Related publications . 167

9.2.1. Directly related publications . 167

9.2.2. Indirectly related publications . 168

9.3. Open research lines . 168

A. Platform description 171

A.1. Hardware description . 171

A.2. Software description . 172

A.2.1. Dataset definition . 172

B. Centralized Resource Manager 175

B.1. Client design . 175

B.2. Communication protocol . 177

B.3. Centralized Resource Manager (server) . 179

References 183

Acronyms 201

List of Figures

1.1. Diagram showing all the possible interactions between the platforms, appli-
cations and resource manager . 5

1.2. Different scenarios considered in this thesis 11

3.1. Diagram of the proposal described in this chapter 26

3.2. Task-based parallel implementation of the Cholesky factorization 29

3.3. Critical tasks detection by cats, and ready queue size evolution 31

3.4. Behavior of each FS policy when applied to a Cholesky factorization 33

3.5. Experimental measurements for policies from FS1 to FS3 37

3.6. Policy TS2: task scheduling based on the number of ready tasks 40

3.7. Power consumption of each cluster with different number of active cores . . 41

3.8. Experimental results for different TS3 configurations 44

4.1. General overview of the system described in this chapter. 48

4.2. Worker status and energy consumption for a Cholesky factorization 50

4.3. Power consumption of a Cholesky factorization at different frequencies . . . 51

4.4. Thread status and power of two factorizations running simultaneously . . . 52

4.5. Diagram showing the coexistence of bar and baco 54

4.6. Behaviour of BAR using 20 worker threads and a power cap of 63W 60

4.7. Energy consumption for all the different configuration tested 62

4.8. Detailed behaviour of BACO when running two simultaneous factorizations 69

4.9. Assigned and desired budget of two different Cholesky factorizations 72

4.10. Power consumption histograms for different power caps and approaches . . 75

5.1. General overview of the resource manager formulation proposed in this and
the following chapters. 80

5.2. Wavefront parallel processing order, and its associated task dependency graph 87

5.3. Preset, QP and N. threads impact on an encoding process 88

5.4. Our proposal: A centralized QoS-aware resource manager for malleable ap-
plications . 90

5.5. FPS of the same sequence with different resolutions 91

xi

xii LIST OF FIGURES

5.6. Instantaneous FPS of one QuarterBackSneak video 92

5.7. Average FPS for all combinations of QP, number of threads and frequency . 93

5.8. Application- and system-metrics transformation into QL states and rewards 101

6.1. Reward functions for Throughput and psnr 110

6.2. Knobs impact for a ultrafast encoding process 111

6.3. Proposed multi-agent Reinforcement Learning approach 113

6.4. Agent sequence . 116

6.5. Cooperative decision process . 117

6.6. General system overview . 120

6.7. Trace representing an encoding process of Hr4 by the MAL system 124

6.8. MAL behaviour when encoding the same video in different resolutions . . . 126

7.1. Power reward function . 133

7.2. Encoding timeline for a single Lr5 sequence vs. 5 Lr5 sequences 135

7.3. Learning evolution of the mono-agent approach vs multi-agent approach . . 140

7.4. QoS, QoE and resource usage for mono-agent and MAL approaches 141

7.5. Comparison between MAL and other power-capping mechanisms 143

8.1. Rewards obtained for different combinations of sub-reward functions 150

8.2. Proposed methodology to extract multiple policies from the same KB . . . 153

8.3. Sub-reward functions used for the different policies 155

8.4. Reward functions defined for each policy . 155

8.5. System behaviour timelines and metrics obtained 157

8.6. System design combining the heuristic and MAL approaches 159

8.7. Performance of each policy . 162

A.1. Blocked QR factorization . 173

B.1. Average time taken by different inter-process mechanism 178

B.2. Messages sent between applications and resource manager 179

B.3. System overview . 180

List of Tables

2.1. Comparative table of different similar approaches. 21

3.1. List of abbreviations used in this chapter. 34

3.2. Available frequencies for each cluster on each tested platform. 36

3.3. Improvement of average power consumption for FS policies 38

3.4. Improvement of energy efficiency for FS policies for the Cholesky factorization 39

3.5. Improvement of energy efficiency for FS policies for the QR factorization . 39

3.6. Amount of time when the LITTLE cluster is unusable for policy TS1 . . . 42

3.7. Performance for policies TS1 and TS2 for different Nthres 43

3.8. Energy efficiency obtained by TS2 . 43

3.9. Energy performance improvement for different TS3 policy configurations . 45

4.1. Power estimation for one worker at different frequencies on makalu 59

4.2. Execution time and energy consumption of all the tested approaches 61

4.3. Execution times and energy consumption of two simultaneous factorizations 64

4.4. Optimal values when considering the power cap globally 65

4.5. Output metrics for BACO + BAR and rapl when executing two simulta-
neous Cholesky factorizations with different block sizes 71

4.6. Output metrics for BACO + BAR and rapl when executing two simulta-
neous factorizations with different block sizes and start points 74

4.7. Output metrics when running 2 and 4 simultaneous application batches . . 76

5.1. Effective turbo frequency on makalu . 90

5.2. Feasible knob combinations for real-time encoding 94

6.1. Agent configuration overview . 114

6.2. Video sequences characterization . 121

6.3. Activation frequency and actions considered by each tested approach 122

6.4. Output metrics and resource usage for the MAL approach compared with
the Static approach . 127

6.5. MAL compared to the Argo approach . 128

xiii

xiv LIST OF TABLES

7.1. MAL vs Static when encoding multiple of the same resolution simultaneously137

7.2. Output metrics and number of threads (MAL vs Static) for different com-
binations of mixed videos. 138

7.3. MAL compared to the Argo approach when encoding multiple videos . . . 138

7.4. Overhead introduced by MAL into the normal Kvazaar operation 144

8.1. Average values learned by the system for Regular and Premium users . . . 156

8.2. Learning time to obtain n different policies by different approaches 158

A.1. Software version configured in each platform 172

1

Introduction

1.1. Motivation

The strategies followed in processor and system designs suffered an important change
around mid-2000s due to the end of Dennard scaling [52], hitting the integrated circuit (IC)
industry a significant power wall [26, 80]. Newest technology trend allowed the industry
to mitigate some of the power-related problems and still keep valid the Moore’s law [30],
reducing nodes from 65 nm in 2006 to current 5 nm [125]; in this sense, physical limits may
not have been reached yet. However, the end of Moore’s Law is close [124] and, unless a
breakthrough technology revolution occurs soon, the race that has shaped the progress of
computing technologies over the last years will probably come to an end, and will yield the
so-called Post-Moore era [185].

Computer architectures have evolved drastically in the last decades, seeking an optimal
combination of performance and energy efficiency in response to the growing demands of
modern software. The strategies followed in early-2000s cannot be further pursued due to
the lack of technological support, and hence, higher core frequencies have stalled around 2-
4 GHz to keep heat dissipation under control [15]. The shift towards multi-core architectures
alleviated the task of computer architects to improve energy efficiency, but it was revealed as
a short-term solution since homogeneous multi-core designs rapidly faced additional walls,
mainly due to power and memory bandwidth issues [15]. Actually, multi-core processors
have only aggravated the old memory wall faced by High Performance Computing (HPC)
systems. As a response to the diminishing performance of multi-core architectures, however,
designers have pushed towards new, complex heterogeneous systems that incorporate cores
with different energy/performance ratios, together with domain-specific co-processors, in the
hope to obtain better overall energy/performance balances. In other words, specialization
and heterogeneity have emerged as the most valuable strategies to address the limitations
of current architectures [164, 77].

However, both in the HPC arena or in other fields, multi-core architectures are still
a central part of high-performance systems. Technological countermeasures, in terms of
dynamic architectural knobs [134], allow a fine-grained control of compute capabilities in

1

CHAPTER 1. INTRODUCTION

order to adapt the performance/energy consumption ratio to the specific necessities of
the running applications and system’s administrators. Among these techniques, Dynamic
Voltage-Frequency Scaling (DVFS) [32], Power Capping strategies [62] or Cache Partitioning
capabilities [71] are only three examples of hardware-assisted support to add moldability
to modern computing systems, allowing a proper adaptation to external limitations or
requirements in terms of combined performance and power consumption.

In the case of DVFS techniques, moldability is achieved due to the use of different
ACPI-states [88] that allow a modification of the power consumption dynamically by
means in changes on the frequency and/or voltage. Different power capping strategies
take advantage of these power states to try to limit the power consumption based on the
characteristics of the applications running on the system [132, 51, 34]. Recently, hardware
vendors have incorporated hardware support to offer power-capping capabilities by means
of adding specialized power sensors. Running average power limit (RAPL) [138] is one of
the most notorious approaches to limit power consumption on modern Intel processors.
Cache-partition is other example of moldability offered by modern architectures, that allow
to divide non-uniformly the shared cache space and perform a custom assignation of the
chunks to the running applications.

From the software perspective, applications do not only imply increasing requirements
in terms of performance, but also exhibit unprecedented tuning capabilities in terms of
a number of dynamic software knobs [66, 139], with direct implications not only in the
specifics of the application behavior (e.g. quality, accuracy, performance, . . .) but also in
the use of computing resources, including core occupation or energy consumption, among
others. For example, video encoders offer a plethora of parameters to adapt the quality
and resource usage, or even OpenMP applications or Dense Linear Algebra (DLA) libraries
allow the user to tune the number of threads to use before the start of the execution.
Typically, a proper selection of values for these knobs is performed statically, and hence,
the pre-reserved computing resources can be under- or over-utilized during the application
lifespan, specially if resource demands are heavily dependent on input data, and hence
hardly predictable a-priori [22] (e.g., in a video codification process, the amount of resources
needed to encode a frame is ultimately determined by the complexity of the frame being
encoded and not by complexity of the overall encoding process). As a response to the ever-
increasing number of homogeneous or heterogeneous computing resources, and given the
heterogeneity in demands of different applications, the co-existence of several concurrent
applications (or virtual machines) seems to be a common trend in many fields, specially in
the Cloud Computing arena in order to increase resource occupation [31, 33], where decisions
are traditionally done by an external scheduler or hypervisor based on the information
gathered from the applications. Another scenario in which multiple concurrent applications
need to be simultaneously executed arises when applications are tightly coupled, and hence
need to be executed concurrently [203, 204].

The existence of co-scheduled applications, each one featuring a number of application-
level knobs, running on architectures that, at the same time, can be dynamically tuned,
yields a number of challenges related with optimal resource management. In the next years,
it is expected that these challenges will become a paramount problem in the design of
optimal hardware/software interfaces [192]. Actually, the development of holistic solutions
that consider the combination of all metrics (independently or simultaneously) and knobs

2

1.2. BACKGROUND AND DEFINITIONS

(at the system or application level) is far from being a trivial task [19, 47].

Beyond performance and energy efficiency, programmability can be considered as the
third pillar that, in the future, will determine the success or failure of new computing
systems [111]. The increase in the complexity of both heterogeneous architectures and
parallel applications, together with the introduction of dynamic knobs at both levels, will
ultimately come at the expense of programmability, harming code portability not only
in terms of performance, but also energy efficiency. Ideally, resource management via a
proper selection of dynamic knobs should be transparent for users or developers, so that
the impact in their productivity can be considered negligible [134, 146].

In summary, the resource management problem in scenarios in which multiple appli-
cations co-exist on top of fully manageable architectures, with tight restrictions in terms
of performance, application-specific constraints, energy consumption or power limits, is a
problem of paramount interest that will be tackled through the rest of this document.

1.2. Background and definitions

The previous scenario can be formulated in terms of three different actors and their
relations: the platform, the running applications, and the resource manager.

In the following, we use the term platform to refer to the underlying hardware and all
the resources shared between the running applications. Modern processors offer a plethora
of different resources to share and tune, from physical cores [38] or cache space [65] shared
between applications to the clocking frequency of each core [32] or the power budget [75]
shared between resources among others. The term system-knobs (called system-actuators
in control theory) is used to designate all of these parameters offered by the platform
and tunable by an external entity (like a resource manager, or even the application by
themselves). System-knobs can be classified as dynamic- and static-knobs depending if
they can be tuned in the middle of the execution (e.g., the operational frequency of a
core) or they have to be set prior the execution of the application (e.g., enable/disable the
hyperthreading technology) respectively.

To properly tune the aforementioned knobs, platforms offer a set of dynamic values
exposing the internal status of the hardware (e.g., hardware counters [177] or instantaneous
power consumption [138] among others) at each moment (called sensors in theory control).
These metrics, accessible by the running software and called system-metrics in the
following, allow resource managers to dynamically tune the different hardware knobs
on-the-fly, outperforming other static approaches traditionally based on previous profiling
of the applications and systems and built on top of models. However, system-metrics
are traditionally exposed at system-wide level, being resource managers responsible to
determine the impact of each application on the values measured.

Similar to the platforms, applications have evolved to take advantage of all the re-
sources offered by the underlying hardware. One of the most notorious and promising
paradigm that allow applications to exploit all the resources at the same time programma-

3

CHAPTER 1. INTRODUCTION

bility is increased is task-based programming model [156]. In this model, applications are
divided into small pieces of code called tasks and a set of dependencies between tasks that
ultimately determine the order in which tasks are executed [25, 56]. The orchestration of
the different tasks, as well as the order in which they are executed is done through a run-
time, and ultimately determines the performance achieved by the application. Commonly,
runtimes are presented in the form of external libraries general enough to support different
kinds of applications [57]. However, in the case of high-demanding applications, ad-hoc
runtimes can be codified inside the applications [109]. Similar to the platforms, and aiming
at increase the overall performance of the applications, runtimes offer a set of metrics de-
scribing the internal status of the scheduling process (called application-metrics in the
following), as well as a set of tunable parameters (called application-knobs) [87, 66, 67]
that influence in the scheduling process, and can be set prior the beginning of the execu-
tion (e.g., the number of threads to use), or modified in the middle of the execution (e.g.,
the policy used to map the different tasks to the different compute units). Similar to the
system-knobs, we will refer to these as static and dynamic application-knobs respectively.

Complementary to the traditional applications, the huge improvements in the perfor-
mance achievable by modern processors have provoked the emergence of a new family
of applications that do not suffer from a lack of performance but exhibit minimum
requirements in other specific metrics (e.g., Quality of Service (QoS) or Quality of Expe-
rience (QoE)) [95, 87, 66, 67]. Traditionally, the tuning of these metrics has been carried
out independently by the so-called malleable applications: applications that are able
to self-adapt to changes in external parameters, as well as to dynamically modify their
internal parameters and hence tune their behaviour at runtime. For example, an encoding
process can adapt the quality of each frame dynamically to produced a specific framerate.
Similar as before, we will also refer to these metrics as application-metrics, and to these
parameters as application-knobs.

Resource managers close the gap between platform and application by dynamically
tuning the application- and system-knobs in a joint manner, maximizing a (multi-objective)
goal based on a continuous sensing of the application- and system-metrics. Modern resource
managers, typically labeled as autonomous systems [174, 195, 146, 204] expose the
ability to adapt themselves to environmental changes (i.e., adapt the internal decision
process), as well as the capability to improve performance and reduce overloading of the
underlying resources. In this sense, resource managers can be classified in terms of the
well-known IBM-MAPE autonomic model [90], comprising four different steps (Monitoring,
Analyzing, Planning and Executing) constituting what is called a knowledge base, running
in a control loop that features the sensoring and acting capabilities. However, the creation
of this knowledge base is far from being trivial, especially if the number of metrics and
knobs to consider is high.

Multiple approaches have targeted the problems and scenarios previously described in
an individual fashion. However, maximizing performance, quality, or resource usage under
a power cap by means of dynamically modifying application- or system-wide knobs in a
holistic fashion poses new challenges in the design of system software that orchestrates
resource management across applications. The addition of application- and system-metrics
and knobs to the resource managers, together with a multi-objective optimization goal

4

1.2. BACKGROUND AND DEFINITIONS

App1

Runtime

sens. knobs

App2

Runtime

sens. knobs

Appn

Runtime

sens. knobs

core core core core

core core core core

Platform

sens. knobs

RESOURCE
MANAGER

modelsrules logic

App/Runtime
metrics

App/Runtime
knobs

System
metrics

System
knobs

System
metrics

System
knobs

Figure 1.1: Diagram showing all the possible interactions between platform, applications
and resource manager. This diagram will be used to explain later the contri-
butions of each chapter.

result in a plethora of scenarios to consider and optimize, hardly manageable by traditional
approaches. Fortunately, Artificial Intelligence techniques can be of great appeal to face
this complexity burden.

Figure 1.1 shows a diagram with all possible relations between platform, applications
and resource manager in terms of metrics and knobs. The rest of this dissertation is devoted
to explore the different relations between the aforementioned parts, as well as to propose
and validate different strategies to manage this scenario. The same diagram will be used at
the beginning of each chapter to introduce the proposed approach.

1.2.1. Target applications and scenarios

Trying to be as most generic as possible, in this thesis we have explored different
approaches, applications and scenarios targeting energy-efficient resource management in
task-based parallel applications. The applications and scenarios explored are representative
examples of any other application of its field. For example, parallel blocked versions of
the Cholesky and QR factorization were used as representative examples of DLA parallel
operations run through parallel runtimes (like OpenMP), while an HEVC video encoder
was chosen as a representative example of other real-time applications widely used in
the industry nowadays. In addition, each application was run in different scenarios
covering all the possible uses in real-life environments (e.g., running one or multiple ap-
plications at the same time with different input sizes, or with different power requirements).

On-demand multi-user video transcoding [95] is one of the most representative scenar-
ios where malleable applications do not require to achieve the maximum performance, but
a minimum QoE and QoS. This scenario, which is taken as a driving example in a sig-
nificant part of this manuscript, aims at encoding multiple video sequences concurrently
under tight throughput, quality and power consumption restrictions. This problem, which

5

CHAPTER 1. INTRODUCTION

is common for many multimedia streaming providers nowadays, aims at reducing the com-
plexity of the encoding process and saving storage space by performing on-the-fly video
format re-codifications adapted to user demands [95, 47]. In 2015, real-time entertainment
already accounted for more than 74% of downstream network traffic in North America, with
streaming services, including Netflix, YouTube, and Amazon Video, accounting for 57% of
the global share [160], and it is expected to continue growing in the next years. Indeed,
North America is expected to be the first region surpassing the 80% downstream stream-
ing traffic threshold by the end of 2020 [160]. Moreover, video streaming services continue
to grow, and users are shifting towards the use of emerging video technologies, such as
4K video resolution, that require different versions of the video (i.e., different resolutions)
depending on the device used. The current trend to alleviate the computational needs of
serving different versions of the same video to different users involves the storage of all the
different version of each video, serving the one that fits better to each user. However, this
is a costly and inefficient solution [163, 191] non sustainable in the future as the amount of
uploaded and streamed videos is increasing [160].

In this application, both general characteristics of the input data (e.g., video resolution),
specific video contents and request arrival times ultimately determine the final throughput
attained and can be hardly modeled a priori. In this scenario, a centralized resource man-
ager will need to provide malleability in terms of a dynamic modification of different knobs
and/or architectural parameters, consider the specific application metrics that ultimately
depend on individual knob combinations and data inputs, and target external limitations
in application- or system-wide metrics (e.g., quality or power consumption, respectively).
Malleability in video transcoding has been explored in multiple works [207, 113] in terms of
a dynamic adaptation of the Quality (by means of changes in the QP value) to guarantee a
constant framerate. However, this alternatives focus only on the quality and other output
metrics of the application, not considering the implications on the resource usage of the
system.

Contrary to this scenario, multiple applications rely in the use of an external runtime
to manage the parallelism inside the application instead of dealing with the parallelism by
themselves. This is the case of OpenMP [57] or OmpSs [56] task-based applications, that rely
in a set of directives (called pragmas) to directly instruct the runtime (and compiler) about
the parallel flow of the program. Representative examples of this kind of applications (and
used in the first part of this thesis), are the blocked Cholesky and QR factorizations [74].
These factorizations, widely used in the engineering and scientific fields, decompose the
original matrix in other (smaller) dense linear algebra operations, managed by external
state-of-the-art libraries (like Intel MKL [92] or BLIS [183]). In this sense, both factoriza-
tions are representative examples of any other DLA application.

The use of an external runtime to orchestrate the execution of the tasks allow the
runtime to dynamically tune different runtime- and system-knobs in a transparent way
to the user. In this sense, different frequency scaling and scheduling techniques can be
incorporated into these runtimes to manage different metrics. In addition, having control
of the amount and type of tasks executed at each moment can be useful in scenarios where
different applications are competing for the same resources (e.g., physical cores or available
power budget). However, in this scenario, a centralized resource manager is needed to

6

1.3. OBJECTIVES

coordinate all the running runtimes.

Lastly, the use of external runtimes can be useful in specialized and heterogeneous
architectures where complex scheduling is needed to take advantage of all the available
resources [73]. Targeting energy-efficiency, Asymmetric Multiprocessors (AMPs) (like the
ARM big.LITTLE platforms) are one of the most promising solution to reduce the energy
consumption of modern architectures without affecting performance drastically [147]. In
this scenario, an intelligent runtime would map each task to the appropriate compute unit,
based on different internal metrics. In addition, different frequency scaling and scheduling
techniques can be incorporated into this process to increase the overall energy efficiency of
the applications.

1.3. Objectives

Targeting the aforementioned scenarios, the main goal of this dissertation is the “design,
implementation and validation of different autonomous resource management strategies for
energy-efficient multi-application scenarios, dealing with different optimization goals com-
bining application- and system-metrics and dynamically tuning application- and system-
knobs”.

In particular, we target two different approaches to this problem in three different
scenarios: (i) different runtime-based policies for task-parallel applications targeting
energy-efficiency in asymmetric platforms, and software-based power-capping for modern
servers, and (ii) an application-aware holistic solution targeting real-time applications.

This general goal can be divided into the following specific sub-objectives:

To develop and validate a set of solutions targeting energy-efficiency on asymmetric
platforms. The policies developed will aim at combining the tuning of system knobs
(frequency scaling and scheduling policies) with specific runtime-metrics.

To explore software-based power-capping techniques in modern high-end processors,
and increase the overall performance of the system based on specific application met-
rics.

To extend the previous ideas considering a power-limited scenario with multiple ap-
plications running simultaneously, maximizing the overall performance of the system.

To design and develop a holistic resource manager able to dynamically tune
application- and system- wide knobs, automatically detecting the relations between
knobs, and identifying the metrics that are affected by each. A Reinforcement Learn-
ing approach will be developed to automatically extract all the dependencies producing
high quality policies.

To design a solution targeting multi-objective optimization goals, combining
application- and system-metrics into its formulation. In addition, the solution will
be generic enough to modify the optimization goal of the system with minimum ef-
fort.

7

CHAPTER 1. INTRODUCTION

To study and incorporate inter-application dependency management into our Rein-
forcement Learning formulation, making a proper tuning of the different hardware-
knobs based on the current status of each application.

To incorporate power-capping techniques into the system to limit the power con-
sumption at the same time other application metrics are considered, not affecting
them negatively.

On multi-application scenarios, to propose an effective methodology to obtain different
policies for the same scenario with minimum learning time. In addition, to develop
a strategy to apply those different policies to each application based on the current
status of the applications and system, all with a common objective.

To evaluate our approaches in real scenarios with real-world application, and compere
the attained results with other state-of-the-art approaches.

1.4. Proposed approaches and contributions

This thesis proposes three different approaches aiming at resource management in dif-
ferent scenarios. Although all of them pursue the same objective, the first two proposals
are developed on top of a task-based runtime system, being totally agnostic to the running
applications, and therefore, being valid for any task-based parallel applications without any
further modification. The proposed policies are based on simplified models of the platforms,
not depending on the application. These approaches target energy efficiency on asymmetric
platforms and modern high-end processors.

The third approach is an intelligent auto-tuning application-aware resource manager for
malleable applications with QoS requirements. This approach is based on Reinforcement
Learning, building a precise model for the running applications, combining all the output
metrics with the different application- and system-knobs.

Specifically:

1. We introduce in Chapter 3 a set of energy-efficient policies based on frequency scal-
ing and scheduling techniques for task-based parallel codes running on asymmetric
architectures. All the proposed policies rely on the number of ready tasks classified
as critical and non-critical, and their relation. This set of policies consider the type
of core to assign the workload, the number of active cores and the frequency as the
dynamic knobs to tune, while performance and energy consumption are considered as
the metrics to optimize. This approach targets scenarios with only one application
running at a time. In this set of policies:

We show how scaling the frequency of the LITTLE cluster does not achieve any
improvements on the energy efficiency, but a decrease in the energy consumption.

On the contrary, we show how our approach increases the energy efficiency up
to 29.3 % when scaling the big cluster.

We demonstrate that disabling a cluster in different moments of the execution
does not increase the energy efficiency of the system, but a decrease in the power

8

1.4. PROPOSED APPROACHES AND CONTRIBUTIONS

consumption is achieved. However, our solution is able to increase the energy
efficiency up to 17.1 % when switching off the whole cluster instead of disabling
it.

The correction of the different approaches is validated in terms of different
highly-used linear algebra kernels (Cholesky and QR factorizations), and dif-
ferent big.LITTLE platforms comprising different processors (32 and 64 bit ar-
chitectures), and different asymmetry levels (4+4 and 2+4 big and LITTLE cores
respectively on each platform).

2. bar & baco form a holistic solution to apply a power cap to modern processors
via software while the performance of the running applications is maximized. As
this approach aims at running in modern multicore servers, it targets a scenario with
multiple applications running simultaneously. bar proposes a mechanism built on top
of Nanos++ (the runtime used to orchestrate the task-based OmpSs applications)
to achieve the maximum performance when limiting the power consumption. To
do so, our solution redistributes the power used among the different idle and active
threads, changing the frequency accordingly. We introduce baco, a framework able
to orchestrate multiple applications running bar, performing an optimal distribution
of the power budget between them maximizing the overall performance of the system.
Specifically,

We motivate the distribution of the power budget between the different threads of
the same application, and therefore, the use of different frequencies to maximize
the performance while never exceeding the power cap configured.

When running on a modern processor, we show how bar is able to increase the
speed up of the application up to 1.9× and to obtain an average reduction of
46 % on energy consumption when compared with the default configuration in
Nanos++.

We validate the behaviour of bar respect to the optimal results obtained by
RAPL, the state-of-the-art mechanism to apply hardware-based power capping.
We show how our approach obtains optimal results in performance, and no vio-
lations of the different power caps tested.

Similarly, we validate the behaviour of baco on a realistic scenario when multi-
ple applications are executed concurrently over time. We demonstrate how our
approach is able to redistribute the available power budget between applications
to achieve the optimal performance.

3. Multi-Agent Learning (MAL) is a complete and holistic solution targeting real-time
QoS- and QoE-aware scenarios with multiple applications running concurrently and
competing for the same resources. Contrary to other approaches, the design of MAL

considers a multi-objective function to optimize, formed by both application- and
system-metrics. To achieve that goal, MAL incorporates application- and system-
knobs into its formulation, learning how the different knobs can be prioritized and
tuned to achieve a common goal. In particular,

9

CHAPTER 1. INTRODUCTION

We describe how Q-Learning works internally, and how resource management can
be formulated in terms of Q-Learning. Specifically, we propose a new method-
ology to manage this scenarios with minimum effort, offering a fast and easy
method to identify the possible problems in the formulation, and facilitating the
development of multiple policies for the same scenario.

We motivate the use of a cooperative multi-agent approach to handle inter-
applications dependencies. In addition, we extend the traditional Q-Learning
formulation to support inter-application dependencies.

We validate our framework with a real-time HEVC video encoder, showing how
our approach can handle multiple encoding processes at the same time. In ad-
dition, we show how our approach outperforms other approaches, both in terms
of heuristic- and machine learning-based.

We provide insights of how our approach can be used to apply a power cap to
the system, and compare our results with other state-of-the-art approach.

Finally, we propose a methodology to obtain multiple policies, each maximizing
a different multi-objective function goal, reducing the overall learning time of
the process. In addition, a heuristic is built on top of our MAL system to apply
different policies to different applications at the same time, based on the type of
each application and the status of the system at each moment.

Figure 1.2 shows an schema of all the different approaches proposed in this thesis.

1.5. Document structure

This document is structured in two initial introductory chapters, and two main parts
gathering all the approaches proposed.

Chapter 1 (this chapter) motivates the development of this thesis, describes the main
and specific objectives we target, and summarizes the different approaches described in
this dissertation and their characteristics. Chapter 2 presents the current state-of-the-art,
showing different approaches to tackle resource management and auto-tuning frameworks
in terms of heuristics and Machine Learning approaches. Additionally, it presents a com-
parative study of our approach with other state-of-the-art approaches.

Part I describes a set of heuristics targeting energy-efficiency on different platforms.
These policies are built on top of a runtime for task-based applications, being totally ag-
nostics of the running applications. Both chapters follow the same structure, introducing
the problem the approach wants to solve, a detailed description of the solution proposed,
and a complete discussion of the experiments carried out and their conclusions. Chap-
ter 3 deals with asymmetric architectures, proposing an extension of traditional runtimes
for task-based parallel applications to increase the energy efficiency on these platforms. In
Chapter 4, we present a complete solution to increase the performance on power-limited
scenarios targeting high-end processors. First, a solution for only one parallel applica-
tion is presented, being extended later to consider multiple parallel applications running
concurrently, performing a dynamic distribution of the available power budget between ap-
plications. Each chapter solves a different problem, presenting the developed work as well

10

1.5. DOCUMENT STRUCTURE

QR/Cho.

Nanox++

sens. knobs

Perfor.
Power

Freq.
Affinity

App2

Runtime

sens. knobs

Appn

Runtime

sens. knobs

RESOURCE
MANAGER

modelsrules logic

Asymmetric

core
core

core

core

core core

core
core

LITTLE clusterBIG cluster

sens. knobs

(a) Scenario proposed in Chapter 3

Chol.

BAR

sens. knobs

Chol.

BAR

sens. knobs

Chol.

BAR

sens. knobs

core core core core

core core core core

Platform

sens. knobs
BACO

modelsrules logic

Power
consumption

Power
budget

Power
model Freq.

(b) bar & baco. Scenario proposed in Chap-
ter 4

kvazaar1

Runtime

sens. knobs

kvazaar2

Runtime

sens. knobs

kvazaarn

Runtime

sens. knobs

core core core core

core core core core

Platform

sens. knobs

RESOURCE
MANAGER

modelsrules logic

FPS
PSNR (Quality)

QP
nThs

Power
Occup.

Freq.
Affinity

(c) MAL approach. Scenario described in Chapters 5 to 8

Figure 1.2: Different scenarios considered in this thesis.

as the experimental results. In this sense, each chapter is self-contained and can be read
independently.

Contrary to the previous part, Part II is devoted to develop a complete machine learning-
based solution to manage multiple malleable applications running concurrently. The pro-
posed solution targets both application- and system-metrics dealing with application- and
system-knobs at the same time. Moreover, a detailed study of our policy applied to a
real-time application used nowadays in the industry is presented.

Chapter 5 introduces the problem we want to tackle, and all the theoretical concepts
needed to build our solution in the next chapters. In Chapter 6, a complete solution based
on Q-Learning is presented targeting only one running application. In addition, multiple
experimental results are shown comparing the approach proposed with other state-of-the-art
approaches. Chapter 7 extends the system described in the previous chapter to incorporate
inter-application dependencies into the formulation and power capping capabilities. Finally,
Chapter 8 describes how the previous system can be used to produce and apply different
policies at the same time. This chapter describes a heuristic solution built on top of the

11

CHAPTER 1. INTRODUCTION

previous system to determine the best policy to apply to each application based on the type
of application and the status of the system at each moment.

Finally, in Chapter 9 we present the general conclusions of this thesis, a list of the
publications derived from it, and a set of open research lines.

12

2

State of the art

2.1. Traditional Resource Management in parallel computing

2.1.1. Targeting performance optimization

The need for greater performance on the newest architectures has led to an increase
in the number of processing units integrated on the same multi- or many-core chips [83].
However, increasing the parallelism entails a non-negligible impact on the programmability
of such platforms. In the last decade, high-performance computing applications have relied
on task-based programming models as an interesting solution [156] that combines a correct
orchestration of parallel programs and an abstraction layer that reduces the impact on the
complexity of coding the applications and the use of all the different compute units available
on the platform. These models aim to perform an optimal execution of the application by
splitting the applications in uninterruptible and indivisible fragments of code (called tasks)
with data dependencies among them (provided by the programmer), orchestrated by a
runtime task scheduler (or just runtime for short) that correctly schedules the execution
order of the tasks as dependencies are satisfied, as well as the mapping of the tasks to the
correct processor unit.

Several task-based programming models have been proved to be an efficient solution
towards the exploitation of parallelism on multi-core, many-core and heterogeneous archi-
tectures. Among others, following the path pioneered by Cilk [39, 25, 64, 115], efforts like
StarPU [168, 10], Superglue [170, 179, 180], QUARK [150, 198], Kaapi [99, 73], OmpSs [56],
Intel TBB [154, 187], and OpenMP (version ≥3.0) [133, 57, 11], pursue a common goal:
extracting and exploiting task parallelism on modern parallel architectures with minimal
intervention of the programmer.

Targeting performance on task-based parallel models, multiple works have tried to
achieve optimal scheduling policies for multi-core systems like [199] oriented to general
task-based parallel codes, [2] for applications using the StarPU runtime, or [72] using Kappi.
Similarly, multiple approaches have been developed targeting heterogeneous platforms for
different runtimes: [1] using StartPU, [77] for the Quark framework, or [145] for the OmpSs
language. However, as finding the optimal scheduling strategy is an NP problem [18],

13

CHAPTER 2. STATE OF THE ART

most of the previous solutions rely on different performance models or simplified scenarios.
Nevertheless, the performance achieved by these models is near the optimal.

The increase of parallelism and heterogeneity on the newest platforms has entailed
a non-negligible increase in power consumption. AMPs aim at reducing the power con-
sumption by implementing different processors with different power requirements but a
common Instruction Set Architecture (ISA), allowing the migration of the tasks among
cores according to their requirements and system status. The efficient use of AMPs on the
HPC field is a topic of wide appeal nowadays, especially on task-based codes [37, 38, 41, 36]
where dealing with the asymmetry is transparently managed by the runtime system.
However, these works focus only on the scheduling process to manage the heterogeneity
in the resources, ignoring other optimization opportunities like dynamic frequency scaling
among others.

The huge amount of available resources on the platforms makes difficult the selection
of the proper knobs for the applications. Auto-tuning frameworks have emerged as a valid
alternative to reduce this burden. Auto-tuning frameworks can be classified between static
(where knobs are predefined at installation time or process level) [174, 122, 195, 188], and
dynamic (where knobs are tuned based on the knowledge extracted from the running ap-
plications) [190, 146, 204, 203, 134]. Orthogonally to auto-tuning frameworks, malleable
applications offer a set of internal knobs to tune, adapting their execution to the changing
knob values. Although the term malleability has traditionally referred only to a dynamic
change in the number of threads [117, 155], this term can be extended to other application
knobs, either managed by the application themselves, or by an external runtime. Combin-
ing auto-tune frameworks and malleable applications, multiple works have developed new
frameworks [87, 66, 67, 19, 139, 162] to exploit the malleability of the applications based on
different application- and system-metrics. A detailed description of these frameworks can
be found later. Although all of them solve a specific problem involving knobs and/or metrics
from applications and system, none of the aforementioned proposals describe a complete
solution extensible to any application able to deal with the four dimensions of the problem
at the same time (i.e., application metrics and knobs, and system metrics and knobs).

Additionally, the emergence of cloud computing as a new standard for high performance
computations has favored the evolution of traditional resource management and auto-tuning
approaches to properly orchestrate the execution of the applications among the different
available nodes [101]. For example, [173] proposes a scheduling strategy to assign applica-
tions to nodes, considering the best way to pack different applications in the same node
to avoid bottlenecks and increase performance based on previous profiling, or [128], that
proposes new techniques to make a dynamic workload distribution in cloud environments
where performance varies among nodes. However, most of the approaches in the cloud only
consider the requirements and dependencies between applications prior their execution, ig-
noring the variable resource requirements during their execution, as well as the optimization
opportunities derived from it. Similarly, the deployment of malleable applications in the
cloud is also a topic of interest nowadays [31, 33]. However, opposite to malleability in the
node, cloud systems considers malleability of the applications in terms of their ability to
adapt to the changes in the amount of resources produced by changes in the cloud system
(also called elasticity of the cloud), and not by their own internal requirements (e.g., changes
in the amount of parallelism required in each phase of the application).

14

2.1. TRADITIONAL RESOURCE MANAGEMENT IN PARALLEL COMPUTING

2.1.2. Targeting energy efficiency optimization

Considering energy consumption as a goal to optimize, several papers have been pub-
lished trying to increase the energy efficiency of the applications (i.e., increase the perfor-
mance obtained while reducing the power consumption) both in power-constrained scenarios
as well as systems without any power cap set. Different policies and approaches have been
developed targeting energy-efficient executions in terms of heuristics like [164] that proposes
a specific approach for CPU/GPU systems, [65] that proposes a DVFS and L2-cache par-
tition heuristic to control the energy consumption of the system, [9] specifically designed
for cloud systems, or [184] that proposes an application-agnostic system to limit the energy
consumption in the processor, or in terms of model-based approaches like [51]. Contrary
to the approaches described in this thesis, none of the previous works bases its decision
on the internal information of the running applications. In addition, some works propose
specific scheduling policies to increase the energy efficiency, both for multi-core processors
and cloud systems [86, 121, 193, 208], ignoring other techniques like DVFS among others.

Targeting heterogeneous systems [175], and especially asymmetric multi-processors,
multiple works have explored how to achieve energy-efficient executions. Works like [147]
or [123] have explored these ideas on big.LITTLE platforms, or SPARTA [55], that
proposes a throughput-aware multi-application policy for big.LITTLE systems, based on
a classification of the running applications. Similar as before, all of these approaches are
proposed in terms of an external entity aware of the system status, and not of the internal
status of the applications.

Energy efficiency (that is, increase performance while limiting power consumption) has
been traditionally searched through the use of DVFS [32], modifying dynamically the opera-
tional frequency of the processors or cores (by means of changing among ACPI-states [88])
to reduce the power consumption while maximizing performance as [63], that proposes a
Reinforcement Learning approach to manage the frequency or [9] that explores how DVFS

can be used to consolidate Virtual Machines in a cloud infrastructure to increase the en-
ergy efficiency among others [107]. Specifically targeting at video encoders, several works
have explore how to apply DVFS to HEVC encoders [131, 132]. Although these approaches
achieves good results when considering energy efficiency, other application and system met-
rics are not considered on these works.

2.1.3. Targeting power-capping and thermal management

The increase of performance on the processors has entailed a non-negligible increase
in power consumption and thermal dissipation, being close to the dark silicon prob-
lems [58] (the number of transistors is high enough to draw more power than they
can sustain). Trying to keep processors safe under a strict power cap, several software
systems have been proposed in the literature [62, 114, 152, 153, 196]. Targeting not only
power capping but performance on power and thermal constrained scenarios, multiple
approaches have been developed in terms of heuristics [75, 79, 143, 176] and model-based
solutions [16, 98, 197, 166, 17].

15

CHAPTER 2. STATE OF THE ART

Due to the importance of power capping on the newest processors, Intel has introduced
a hardware-based power capping mechanism to its newest chips, called RAPL [138]. RAPL

offers an automatic way to measure and limit the power consumption of different parts
of processors (called domains). Although RAPL can set a strict power consumption limit
in the most common situations, different approaches have explored how to use it in other
situations. In particular, [76] explores how RAPL can be used to measure small pieces of
codes shorter than the refresh frequency of the system, while [103] describes how RAPL

works, using it over a set of different benchmarks in a public Amazon EC2 cloud.

Special mention requires the work of Huazhe Zhang and Henry Hoffmann [202] that ex-
plores a hybrid software-hardware approach to achieve high performance and energy-efficient
executions under a power cap. While RAPL is used as the hardware-based mechanism to
apply power cap, software power capping is done through the tuning of multiple hardware
knobs: frequency, cores in use, hyperthreading use, number of sockets in use on the platform
and number of memory controllers. Contrary to hardware-based power capping, software
mechanisms can achieve greater performance as they can be aware of the status of the
running applications. Other works as [190, 204, 203] have also explored the same idea of
modifying hardware knobs dynamically to increase the performance while limiting power
consumption. However, contrary to our approach, they do not consider the status of each
application individually, ignoring the possibility of redistribute the resources (like power
budget) between those applications that would benefit more of them.

2.2. Novel Resource Management strategies

2.2.1. Machine learning for resource management

Similar to other research fields, Machine Learning (ML) techniques, and in particular
Reinforcement Learning (RL) algorithms [161], have been used to tackle different problems,
mainly application-specific.

Addressing resource management problems, different approaches have been developed
targeting different objectives (performance, power consumption, energy efficiency, etc.),
both in servers and cloud infrastructures. [84] proposes a model-based solution to model a
system using Reinforcement Learning. However, the proposal seems difficult to extrapolate
to real and more complex scenarios than the one proposed in the paper. Contrary to the
previous approach, [63] proposes a model-free approach to apply DVFS techniques on NoCs
systems.

[54] and [118] propose the use of rule-based systems using Learning Classifier Tables
(LCTs) to increase different application- and system- metrics. An LCT is a table formed
by the different rules the system can apply, together with the conditions the system needs
to meet to apply a specific rule and a fitness value indicating how good each rule is. The
fitness value is modified dynamically based on the metrics measured from the system, using
a Reinforcement Learning approach (typically, the tuning of the fitness value is done based
on the Bellman’s equation [108]). However, the specific rules has to made specifically to the
system, being difficult to extrapolate to other systems with minimum effort.

Targeting power and thermal management, [97] propose the use of a mono-agent
Q-Learning (QL) implementation to optimize the execution of a non-real-time sequential

16

2.3. FRAMEWORKS FOR RESOURCE MANAGEMENT: A COMPARATIVE STUDY

HEVC implementation. Although the proposal is complete enough to be be extrapolated
to other systems, the use of a non-optimized video encoder makes difficult to extrapolate
the results to other real-time applications used in the industry.

Similar to the heuristic approaches, Reinforcement Learning-based approaches have been
extensively studied in the cloud. For example, resource management has been explored in
[14], in [206] using Deep Reinforcement Learning, or in [149] using region-based reinforcement
learning (RRL) to determine the best cloud configuration to run a specific workload. Mixing
Reinforcement Learning with other approaches, [189] proposes the use of Random Neural
Networks (RNNs) to dispatch tasks in the cloud and [178] mixes Reinforcement Learning
(RL) with Queuing theory.

Focusing on big.LITTLE cloud systems, [130] proposes Hispter, a solution combining
heuristics and Reinforcement Learning to use DVFS techniques targeting energy efficiency
and QoS-aware executions. Using Reinforcement Learning techniques instead of a more
traditional approach allows Hipster to adapt better to the dynamic workload and hidden
dependencies between applications.

2.2.2. QoS- and QoE-aware resource management

Complementary to resource management, several approaches explore QoS- and QoE-
aware alternatives to, not achieve the maximum possible performance, but a minimum of
requirements in quality [110]. In the cloud environment, QoS-aware approaches usually
target to achieve a minimum level of quality in terms of Service Level Agreement (SLA).
[165] targets this problem in terms of resource management via a self-configuration and
self-optimization policy, while [61] targets the problem of allocating and deallocating
virtual machines in the cloud showing the results in a simulated scenario. Dynamic
resource provisioning has also been tackled in terms of multiple priorities for heterogeneous
QoS requirements [68, 69]. Targeting load balancing, [104, 3] approaches propose different
solutions for video scenarios.

Specifically targeting video encoding scenarios, multiple approaches have been formu-
lated in terms of heuristics [142, 119] and Machine Learning-based [35, 205, 141] solutions.
However, some of these approaches do not consider multiple sequences being encoded si-
multaneously, while others do not consider the competition for the same resources between
encoding processes. Alternatively, [116] and [135] propose specific cloud architectures to
serve video streaming on demand.

2.3. Frameworks for Resource Management: a comparative study

Our approach gathers characteristics from traditional resource managers, auto-tuning
frameworks and malleable applications modifying application- and system-knobs dynam-
ically, and QoS- and QoE-aware solutions, targeting both application-specific metrics and
system metrics as power consumption. In addition, our proposal is able to apply different
policies to different applications, supporting multi-objective policies for scenarios with
multiple parallel applications running concurrently. Although we have not identified any
complete solution gathering all the previous characteristics, multiple solutions have been

17

CHAPTER 2. STATE OF THE ART

proposed in the literature targeting one or multiple characteristics:

ReBudget [190] targets a scenario with multiple applications competing for the same
resources, each with a different amount of requirements. In this scenario, ReBudget
describes a set of metrics and algorithms targeting efficiency and fairness, together with
theoretical proofs of their validation. Although ReBudget does not propose a centralized
resource manager distributing the resources, it achieves a proper (and stable) distribution
of the resources through an iterative process in which, at each step of the process,
applications bid for the resources they need until the market is stable. This algorithm
guarantees the convergence of the system, and therefore, an optimal distribution of the
system. However, as a centralized resource manager is not used, different trade-offs based
on internal metrics of the applications cannot be done. In addition, although ReBudget
has been proved to be valid in a simulated scenario sharing the shared-cache space and
power budget, considering only the speed-up of each application as the output metric, this
is far from being executed on a real scenario.

Tangram [146] presents a complete solution targeting heterogeneous platforms,
considering multiple hardware knobs and hardware metrics. Tangram proposes a set of
hierarchical controllers each covering a different zone of the system and in charge of tuning
a set of different hardware knobs. Tangram internally divides each controller in three
different engines, each with a different goal and priority (a safety engine in charge to never
violate system limits like maximum TDP or temperature, an engine in charge to apply
a set of predefined rules in specific situations, and an enhancement engine that applies
different rules following a dynamic polynomial model). Authors have demonstrated how
the system is able to deal with performance, power, temperature and number of active
threads modifying dynamically the frequency and number of active cores. However, this
approach does not target multi-application domains nor application knobs, not considering
a number of opportunities to improve the overall execution of the applications (e.g., a
dynamic adaptation of the quality in an encoding process), as our approach does.

PoDD [204] targets a specific multi-application scenario: coupled-applications in a
cluster system with a power cap set. Two applications are called coupled applications if
the performance of one of them is limited by the performance of the other, being needed
to speed up the slowest one to improve the performance of the others. Targeting this
scenario, authors propose a three steps approach to classify the running applications and
distribute the available budget between the different nodes of the cloud system that are
running these. In the first step, different hardware counters are collected and send to
a special node of the system where applications are classified using a 2-level classifier.
Later, a power/performance model is created for each application following a binary search
strategy. Finally, power and applications are distributed between nodes using the ideas
described in PowerShift [203]. PowerShift proposes a set of different algorithms to
redistribute the power between nodes of a cluster running coupled applications, classifying
them between those that are close to the power budget assigned and those that not, and
in the first case, if increasing the budget would improve the performance of the system or
not. However, the ideas presented do not consider any application metric or knob, focusing

18

2.3. FRAMEWORKS FOR RESOURCE MANAGEMENT: A COMPARATIVE STUDY

only on a cloud environment, ignoring the complexity of sharing resources in the node.

Authors in [134] describe a novel idea to automatically manage different hardware
knobs for OpenMP applications. In this paper, authors propose libprism, a library that
automatically and transparently to the user intercepts the different OpenMP calls, setting
automatically the best hardware knobs for each parallel code region identified. libprism
achieves this goal by an initial profiling of all the hardware knob values for the running
application, sorting them in a specific way to later dynamically tune them with the
minimum impact in performance. Although authors propose different policies to apply, the
design of the system does not allow to change the policy in the middle of the execution,
an useful characteristics in scenarios where the workload varies over time. In addition,
although the experimental results show how the approach is perfectly valid for tuning
multiple hardware knobs on an IBM POWER8 processor, the specific characteristics of
this processor makes difficult to extrapolate the results to other commercial processors,
being needed more experiments to ensure that.

Dealing with application metrics and knobs, PowerDial [87] presents a framework
to automatically tune application knobs trading-off performance and QoS. Internally,
PowerDial relies on previous profiling of the different knobs, classifying them in a
performance vs QoS space. Dealing with scenarios with power caps, authors have shown
how PowerDial is able to adapt to a changing power cap externally applied. However,
no power cap logic is integrated into the system.

argo [66] addresses the same problem as PowerDial, however, contrary to Power-
Dial, the argo C++ framework allows the system to not consider QoS and performance as
the only metrics in the system, but other application- and system- metrics as throughput,
memory usage, CPU usage, or hardware counter among others. On its core, argo relies
on an internal database storing all the application knobs configurations (called Operating
Point) and an estimation of the effect of each knob value on the output metrics. In addition,
argo maintains a set of coefficients that allows it to modify the estimations dynamically
based on online measurements. In [67], authors extend the ideas of argo into a new
framework called mARGOT. However, contrary to our approach, both approaches target a
scenario with only one application running, not dealing with the possible inter-application
dependencies.

[19] proposes a complete approach targeting both system- and application- knobs. In
the paper, authors describe BarbequeRTRM, a framework to dynamically distribute the
available resources to the running applications at the same time QoS is maximized. Similar
to Tangram, BarbequeRTRM relies on a set of hierarchical distributed controllers to
perform the proper knob configurations. The internal logic based on the control theory
allows BarbequeRTRM to handle a multi-objective scenarios. However, contrary to our
proposal, BarbequeRTRM does not offer an easy way to handle multiple policies at the
same time.

Contrary to the previous approaches, SOSA [54] proposes a Machine Learning-based
approach for a multi-application scenario. The main goal of SOSA is to increase the

19

CHAPTER 2. STATE OF THE ART

performance of an application running in the foreground, while other applications run
on background, as well as control energy consumption of the system. To do so, SOSA
internally stores a table with all the possible rules the system can apply, together with the
conditions the system has to meet to apply each rule, and a fitness value meaning how good
is each rule. The fitness value is modified dynamically following a variation of the Bellman
equation based on the measurements read from hardware sensors. Experimentally, authors
simulate how the system behaves considering the change of the frequency and the migration
of the application between cores as the only hardware knobs. In addition, although the sys-
tem targets multi-application scenarios, the dependencies between them are not considering.

Table 2.1 summarizes all the characteristics of the previous approaches, and compare
them against our proposal.

20

2.3. FRAMEWORKS FOR RESOURCE MANAGEMENT: A COMPARATIVE STUDY

K
n

o
b

s
M

et
ri

cs
M

u
lt

i-
ap

p
M

u
lt

i-
ob

j
P

ow
er

C
ap

p
in

g
L

og
ic

R
ea

l/
S

im
u

.
N

o
d

e/
cl

ou
d

P
ar

al
le

l.
p

ar
ad

ig
m

A
P

P
S

Y
S

A
P

P
S

Y
S

H
E

U
M

L

R
e
B

u
d
g

e
t

[1
90

]
7

4
7

4
4

7
4

4
7

si
m

n
o
d
e

a
g

n
o
st

ic
T

a
n
g

r
a
m

[1
4
6]

7
4

7
4

7
4

7
4

7
r
e
a
l

n
o
d
e

a
g

n
o
st

ic
P

o
D

D
[2

04
]

7
4

7
4

4
4

4
4

7
r
e
a
l

c
l
o
u
d

c
o
u
p
l
e
d

P
o
w

e
r
S
h
if

t
[2

0
3]

7
4

7
4

4
7

4
4

7
r
e
a
l

c
l
o
u
d

c
o
u
p
l
e
d

li
b
p
r
is

m
[1

34
]

7
4

7
4

7
7

7
4

7
r
e
a
l

n
o
d
e

O
p
e
n
M

P
P

o
w

e
r
D

ia
l

[8
7
]

4
7

4
4

7
7

7
4

7
r
e
a
l

b
o
t
h

a
g

n
o
st

ic
a
r
g

o
[6

6]
4

7
4

4
7

4
7

4
7

r
e
a
l

n
o
d
e

a
g

n
o
st

ic
m

A
R

G
O

T
[6

7]
4

7
4

4
7

4
7

4
7

r
e
a
l

n
o
d
e

a
g

n
o
st

ic
B

a
r
b
e
q
u
e
R

T
R

M
[1

9]
4

4
4

4
4

4
7

4
7

r
e
a
l

n
o
d
e

a
g

n
o
st

ic
S
O

S
A

[5
4
]

7
4

7
4

4
7

4
7

4
si

m
n
o
d
e

a
g

n
o
st

ic

O
U

R
P

R
O

P
O

S
A

L
4

4
4

4
4

4
4

4
4

r
e
a
l

n
o
d
e

a
g

n
o
st

ic

T
a

b
le

2
.1

:
C

om
p

ar
at

iv
e

ta
b

le
of

d
iff

er
en

t
si

m
il

ar
ap

p
ro

ac
h

es
.

21

CHAPTER 2. STATE OF THE ART

22

Part I

Runtime-based Resource
Management

23

3

Policies for energy-efficient resource
management on asymmetric

architectures

Asymmetric Multiprocessors (AMPs) are a class of heterogeneous parallel architectures
in which cores that implement different micro-architectures share a common ISA and, pos-
sibly, a subset of memory resources. Typically, the available architectural heterogeneity is
exploited pursuing energy efficiency and performance by a proper redistribution of the appli-
cations between the different types of cores. Leveraging low-power architectures to the HPC

arena is one of the main trends in the road towards the Exaflop barrier. Indeed, Fugaku has
achieved the first position on the latest Top5001 ranking comprising ARM processors. Same
ARM processors occupy the fourth position in the Green500 ranking1. Among them, ARM
Cortex-A processors, and more specifically, asymmetric System-on-chips (SoCs) based on
this micro-architectural family, are nowadays on the spotlight as one of the most promising
architectures to achieve such a goal.

To reduce the impact on the programmability of such platforms, task-based parallel
programming models have emerged as a promising solution. The extension of these pro-
gramming models and associated runtimes to heterogeneous architectures, managing data
coherency and data transfers among isolated memory spaces has been implemented in a
number of software efforts, together with techniques that drive to performance gains in
multi-core, many-core, accelerator-based and distributed-memory architectures [172, 102].
The necessary efforts to adapt these programming models to AMPs is also a topic of in-
terest of recent works [37, 38], pursuing the goal of boosting performance by correctly
mapping critical tasks to the most appropriate element of the asymmetric architecture.
These works complement energy-efficiency studies specifically targeting asymmetric archi-
tectures [55, 148]. However, the impact and possibilities of task schedulers in terms of
improving energy efficiency of task-parallel implementations has not been previously stud-
ied in such a level of detail as needed. The development of policies that equip runtime

1https://top500.org

25

https://top500.org

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

QR/Cho.

Nanox++

sens. knobs

Perfor.
Power

Freq.
Affinity

App2

Runtime

sens. knobs

Appn

Runtime

sens. knobs

RESOURCE
MANAGER

modelsrules logic

Asymmetric

core
core

core

core

core core

core
core

LITTLE clusterBIG cluster

sens. knobs

Figure 3.1: Diagram of the proposal described in this chapter.

schedulers with energy-efficient self-adaptive capabilities is still a field of maximum inter-
est.

In this chapter, we pursue the goal of reducing energy consumption with minimal impact
on performance and programmability. To that end, we propose extensions to Nanos++,
the runtime task scheduler underlying the OmpSs [56] programming model. All these poli-
cies leverage internal application-level status to improve energy efficiency, and hence are
completely transparent to the application developer, and orthogonal to other techniques
that pursue, for example, performance improvements. Figure 3.1 shows a simplified version
of our approach. The chapter also serves as an introduction to runtime task-schedulers in
general and internal implementation generalities in Nanos++, in particular. Specifically,
Section 3.1 is a detailed review of the state-of-the-art in the field of task-based programming
models and system software support.

In Sections Section 3.2 and Section 3.3, respectively, we:

Introduce a set of policies (FS policies) that modify the frequency of operation of
modern AMPs via DVFS in an autonomous manner, depending on the internal status
of the task scheduler targeting energy consumption reduction, and integrate them
within Nanos++.

Propose new policies implemented on top of the Nanos++ runtime to modify the
task scheduling algorithm for AMPs (TS policies), disabling (switching off) a whole
cluster based on the number of ready tasks at each moment, and hence improving
energy efficiency only when needed.

In both cases, we include detailed evaluations of their benefits in terms of both perfor-
mance and energy efficiency on two different commercial implementations of the big.LITTLE
architecture (a Samsung Exynos 5422 SoC implementing a 32-bit architecture, and a Juno
board implementing an armv8-a 64-bit architecture, described with more detail in Ap-
pendix A), and two different math kernels intensively used in the scientific and engineering
fields (Cholesky and QR factorization of dense matrices).

26

3.1. OMPSS. INTERNALS AND ASYMMETRY-AWARE IMPLEMENTATIONS

3.1. OmpSs. Internals and asymmetry-aware implementations

OmpSs is one of the most widely accepted programming models nowadays, having influ-
enced greatly on the Open Multi-Processing (OpenMP) task directives design. At a glance,
this programming model is based on the inclusion of directives (pragmas) similar to those
used in OpenMP, that annotate specific sections of code as tasks, that is, minimum unin-
terruptible scheduling units. These annotations include information about operands and
their directionality (input, output and input/output). At runtime, this information is han-
dled by a task scheduler (named Nanos++) that maps each task to the most appropriate
computational resource available as the inferred data dependencies are satisfied.

In the following, we employ the Cholesky factorization of a dense matrix as an illus-
trative example of the necessary modifications required by OmpSs to extract and exploit
the available task parallelism in a specific operation. The Cholesky factorization is at the
same time a widely used routine in many problems that arise in science and engineering,
and illustrative of other DLA implementations with similar features. Given a symmetric
positive definite matrix A of dimension n × n, the Cholesky factorization decomposes it
into A = UTU , where the Cholesky factor U is an upper triangular matrix. Listing 3.1
sketches a C implementation of a blocked Cholesky factorization for a blocked matrix A
composed of s × s blocks of dimension (block size) b × b each. Note that the routine de-
composes the global operation into a collection of basic kernels or fundamental operations,
namely: po cholesky (Cholesky factorization of the diagonal block); tr solve (solution of
a triangular system); ge multiply (general matrix-matrix multiplication); and sy update

(symmetric rank-b update).

1 void cholesky (double *A[s][s], int b, int s) {

2 for (int k = 0; k < s; k++) {

3 // Cholesky factorization (diagonal block)

4 po_cholesky (A[k][k], b, b);

5

6 for (int j = k + 1; j < s; j++)

7 // Triangular system solve

8 tr_solve (A[k][k], A[k][j], b, b);

9

10 for (int i = k + 1; i < s; i++) {

11 for (int j = i + 1; j < s; j++){

12 // Matrix -matrix multiplication

13 ge_multiply (A[k][i], A[k][j], A[i][j], b, b);

14 }

15 // Rank -b update

16 sy_update (A[k][i], A[i][i], b, b);

17 }

18 }

19 }

Listing 3.1: Simplified C version of a blocked Cholesky factorization.

Each of these kernels composes the fundamental parts of the overall computation, or
tasks. Obviously, provided each task is internally executed in a sequential fashion, the
aforementioned code would not extract any further level of parallelism. Figure 3.2a includes
the necessary modifications in the definitions of each task in order to exploit the OmpSs
programming model and, thus, to extract task parallelism in a transparent manner. Note
how each task is annotated with the corresponding #pragma omp task directive, including
the directionality of each operand involved in the computation. At runtime, the invoca-

27

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

tion of each task in Figure 3.2a is intercepted by the runtime task scheduler (Nanos++),
that dynamically builds a Direct Acyclic Graph (DAG) as the one shown in Figure 3.2b,
including tasks (nodes) and data dependencies among them (edges). Only when all the data
dependencies for a given task are satisfied, the runtime dispatches that task to an available
processor, effectively exploiting task parallelism.

3.1.1. Nanos++ implementation design

The OmpSs programming model relies on two different pieces of software: mercurium,
a source-to-source compiler in charge of parsing and translating the user defined tasks and
their dependencies into runtime calls, and Nanos++, the runtime in charge of executing the
applications, creating and managing the tasks and data dependencies during the execution.
At runtime, the invocation of a fragment of code identified as a task is intercepted by
Nanos++, inserting the task into the DAG of the application with its data dependencies.
Once a task is executed, its output dependencies are released, checking if new tasks can
be executed as all their input dependencies have already been satisfied. Observe how,
contrary to other models, OmpSs performs a dynamic creation of the DAG, not knowing
any information of the application structure before the start of the execution.

The Nanos++ runtime comprises a pool of threads in charge of executing the different
tasks (called worker threads or workers), and a set of highly customizable modules (called
plugins) defining the behaviour of different aspects of the runtime, as the task scheduling plu-
gin, the throttling plugin or the dependencies management plugin, among others. Contrary
to other approaches, the strategy followed by nanox to achieve the maximum performance
relies on the creation of all the workers before the start of the execution of the application,
reusing them to execute all the tasks during the whole execution. If no tasks are ready to
be executed, workers are called idle workers, and are blocked until new tasks are released.
In addition, all the serial code is also executed by one of these workers, called the main
thread. By default, the Nanos++ runtime creates as many workers as compute units exist
in the architecture (i.e., number of cores for a multi-core system), setting the affinity of
each worker to a different compute unit, avoiding oversubscription situations. Every time a
worker finishes to execute a task, its output dependencies are released, checking if new tasks
can be executed (because all its input dependencies have already been satisfied). If a new
task can be executed, it is called a ready task, and it is inserted into a queue of tasks (called
ready queue). The order in which tasks are executed, as well as the mapping between tasks
and workers is determined by the scheduling plugin selected by the user.

3.1.2. Asymmetry-aware modifications in Nanos++

The design of efficient task scheduling algorithms on multi-core and heterogeneous sys-
tems has been extensively studied in the past. In platforms with one or multiple accelera-
tors, specialized versions of the runtimes (for example OmpSs, StarPu, MAGMA, Kappi or
libflame [201] among others) were developed to schedule the different tasks to both general
purpose cores (CPUs) or accelerators (like GPUs or Intel Xeon Phi), mapping each task
to a different compute unit based on the task characteristics and the platform status (for
example, [10, 12, 73, 151, 180]).

28

3.1. OMPSS. INTERNALS AND ASYMMETRY-AWARE IMPLEMENTATIONS

1 #pragma omp task inout([b][b]A)

2 void po_cholesky(double *A, int b, int ld){

3 static int INFO = 0;

4 static const char UP = ’U’;

5

6 // LAPACK Cholesky factorization

7 dpotrf (&UP, &b, A, &ld , &INFO);

8 }

9

10 #pragma omp task in([b][b]A) inout([b][b]B)

11 void tr_solve(double *A, double *B, int b, int ld){

12 static double DONE = 1.0;

13 static const char LE = ’L’, UP = ’U’,

14 TR = ’T’, NU = ’N’;

15

16 // BLAS -3 triangular solve

17 dtrsm(&LE , &UP, &TR, &NU , &b, &b, &DONE , A,

18 &ld , B, &ld);

19 }

20

21 #pragma omp task in([b][b]A,[b][b]B) inout([b][b]C)

22 void ge_multiply(double *A, double *B,

23 double *C, int b, int ld){

24 static double DONE = 1.0, DMONE = -1.0;

25 static const char TR = ’T’, NT = ’N’;

26

27 // BLAS -3 matrix multiplication

28 dgemm(&TR , &NT, &b, &b, &b, &DMONE , A, &ld , B,

29 &ld , &DONE , C, &ld);

30 }

31

32 #pragma omp task in([b][b]A) inout([b][b]C)

33 void sy_update(double *A, double *C, int b, int ld){

34 static double DONE = 1.0, DMONE = -1.0;

35 static const char UP = ’U’, TR = ’T’;

36

37 // BLAS -3 symmetric rank -b update

38 dsyrk(&UP , &TR, &b, &b, &DMONE , A, &ld , &DONE ,

39 C, &ld);

40 }

(a) Annotated tasks for the blocked Cholesky factorization.

C00

T01 T02 T03

S11 G12 G13

C11
S22

G23

S33

T12 T13

S22
G23 S33

T23

C22

S33

C33

(b) DAG with tasks and data de-
pendencies extracted from the
code on the left when s = 4.

Figure 3.2: Task-based parallel implementation of the Cholesky factorization, and its asso-
ciated DAG on a matrix with 4× 4 blocks (s=4). The labels in the DAG specify
the type of kernel/task as follows: “C” for the Cholesky factorization; “T” for
the triangular system solve; “G” for the matrix-matrix multiplication, and “S”
for the symmetric rank-b update. The sub-indices (starting at 0) specify the
sub-matrix updated by the corresponding task.

29

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

Due to the increasing interest of the asymmetric architectures, some of these works have
been recently extended in order to accommodate AMPs as the target platform. Examples
of these efforts are cats [37] or cpath and hybrid [38], extending the ideas previously
developed for heterogeneous systems, differentiating only two types of compute nodes (a
fast node formed by the big cores, and a slow node formed by the LITTLE cores), removing
the computing of the costs associated to data transfers between nodes.

These algorithms aim at dynamically identify which tasks belong to the critical path
of the DAG, assigning them to the fastest cores, thus reducing the total execution time. A
task is considered critical if, in the case the task is delayed, the total execution time of
the application is extended too. The cats algorithm tries to identify dynamically those
tasks belonging to the critical path to execute them on the fastest cores, and therefore, to
improve the overall performance of the application. Speeding up the critical tasks does not
only improve performance by reducing the execution time of these specific tasks, but also
speeds up the release of data dependencies, possibly increasing the number of new ready
tasks, and therefore, increasing the parallelism of the applications. The main characteristic
of cats versus other similar algorithms is that cats tries to identify the critical tasks
dynamically, without building the dependency graph before the execution and profiling the
different tasks.

To properly identify the critical tasks, a complete profiling of application is required to
determine the execution time of each task as well as the DAG associated to the application to
identify the dependencies between tasks. This approach, even feasible, requires a previous
perfect knowledge of the application and a previous pre-processing of the data recorded,
making it not practical in scenarios that requires an on-the-fly scheduling strategy. To
reduce this burden, cats identifies the critical tasks as those that belong to the longest
path on the dynamic DAG of the application. Although this method does not identify the
critical tasks properly, it has been proved to be valid for AMPs architectures [37, 38].

To do so, each task in the DAG is dynamically annotated with an integer (called priority),
meaning the length of the longest path from that tasks to a leaf node in the dependency
graph. This number is updated every time the DAG changes (i.e., a new task is created and
inserted into the graph). Note that, opposite to other models, cats focuses in runtimes
that do not calculate the DAG before the execution but it is built on runtime as the different
tasks are finished and new ones are created (as Nanos++ does), being needed to calculate
and update this distance dynamically. Every time a new task is created and added to the
DAG, all of its predecessor nodes in the graph are updated if the longest path between each
task and a leaf node increases. Proceeding this way, the longest distance between each task
and a leaf node is always updated. Figure 3.3a shows the critical path determined by cats
for a Cholesky factorization of 8× 8 blocks (i.e., s = 8). Note that those tasks identified by
cats as critical might not be real critical tasks, which would only be identified by means of
a previous profiling of the whole application. Nevertheless, identifying the tasks belonging
to the longest path as critical tasks avoids the need of profiling, reducing the total overhead
introduced and still improving the performance of the applications as shown in [37].

When a task becomes ready for execution, it is classified as critical or non-critical based
on the priority annotated by the scheduler before (the length of the maximum path between
the task and a leaf node at the moment): if it belongs to the longest known path, it is stored
as a critical task. Each set of ready tasks (critical and non-critical) is dynamically sorted
by the annotated priority, prioritizing those with longest distances. Targeting AMPs, cats

30

3.2. ENERGY-AWARE POLICIES BASED ON FREQUENCY SCALING (FS)

(a) Critical path detected by cats in a
Cholesky factorization of 8 × 8 blocks
(s = 8). Source: [37].

Non-critical tasks
Critical tasks

Q
u

e
u

e
 s

iz
e

Time

0

5

10

15

20

25

(b) Evolution of the queue sizes when executing
the previous factorization in odroid.

Figure 3.3: Critical tasks detection by cats, and ready queue size evolution in odroid.

assigns the critical tasks to the big cores, and the non-critical tasks to the LITTLE ones.
If no critical tasks are ready, big cores can be used to execute non-critical tasks too. On
the contrary, LITTLE cores are not supposed to execute critical-tasks as it can delay the
overall execution time; however, as it can be useful in some applications, users can enable
this behaviour on demand.

In OmpSs the cats implementation is called Botlev (Bottom level-aware scheduler),
and it has been used as a starting point for the strategies described in the next section.
Internally, ready critical and ready non-critical tasks are stored in two different priority
queues sorted by their annotated distances. When a core becomes idle, its worker thread
retrieves a ready task depending on the kind of core it is tied to: big cores execute ready
tasks stored in the critical queue, and LITTLE cores retrieve tasks from the non-critical
queue. Botlev enables work stealing for big cores by default, allowing big cores to execute
non-critical tasks if the critical-queue is empty. Optionally, work stealing can be activated
in a bi-directional fashion. Figure 3.3b shows the evolution of the size of the ready queues
when executing a Cholesky factorization configured with 8 × 8 blocks on the odroid (see
Section A.1) platform.

The previous strategy has demonstrated to be a valid approach to increase the per-
formance on asymmetric architectures. However, no considerations were done in terms of
energy consumption nor energy efficiency. In the next sections we propose a set of different
policies built on top of Botlev to increase the energy efficiency of the running applications
targeting AMPs.

3.2. Energy-aware policies based on frequency scaling (FS)

We introduce two different general approaches that pursue an improvement in the energy
efficiency of task-parallel codes on asymmetric architectures. The first group of policies, de-

31

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

scribed in this section and named as FS (standing for Frequency Scaling policies), is based
on the dynamic application of DVFS techniques at runtime. The goal is to integrate these
techniques on an asymmetry-aware scheduler, and to reduce energy consumption by modify-
ing the frequency of one of the clusters based on the internal state of the scheduler, without
further modifications on the scheduling algorithm. Pursuing the same goal, the second group
of policies, described in Section 3.3 and named TS (standing for Task Scheduling policies),
implements different asymmetry-aware scheduling algorithmic variations on existing task
schedulers.

In the following, all policies are based on the Botlev scheduling algorithm previously
described, that is, tasks identified as critical are executed only in big cores, meanwhile non-
critical tasks are executed in LITTLE cores. If big cores are idle, non-critical tasks can be
executed in big cores too.

3.2.1. FS policies description

DVFS techniques represent a set of different techniques characterized by a dynamic ad-
justment of the operational frequency to increase the energy efficiency or decrease the
instantaneous power consumption. Nowadays, this kind of techniques are of wide appeal
on mobile devices, where the battery duration is a factor of vital importance to take into
account. However, this technique does not limit only to this type of devices, but any other
processor with dynamic frequency support. Among others, Intel supports this family of
techniques through the Intel SpeedStep technology [93], or AMD through the Cool’n’Quiet
technology [7] for server processors, and AMD PowerNow! [6] for mobile ones. In addition,
similar techniques can be also applied to specific domain devices, as the ones implemented
by AMD for its GPUs and APUs (called AMD PowerTune).

ARM big.LITTLE processors family also supports a dynamic adjustment of the running
frequency. However, contrary to the other approaches, all cores in the same cluster share
the same frequency domain, hence per-core frequency selection is not possible. In addition,
as big.LITTLE processors are mainly designed for mobile and embedded systems, the range
of frequencies each core can run is highly limited by design factors.

Applying DVFS techniques to a task-parallel problem requires three main runtime de-
cisions to be made, namely: (i) which frequencies (among those available) to use, (ii) at
which moments of the parallel execution these changes need to be made, and (iii) which
elements of the architecture (among those that support DVFS) are affected by the volt-
age/frequency scaling. The set of frequencies that a processor can run at is usually defined
by the architecture, so the first decision is reduced to choosing between using all the avail-
able frequencies or just a subset of them. The remaining decisions are directly related to
the specific problem to tackle, and the knowledge that the task scheduler has of it.

Figure 3.4a shows, for a Cholesky factorization of a 1024×1024 matrix divided in blocks
of dimension 64× 64 (i.e., m = 1024, b = 64, s = 16), the evolution in time of the amount
of critical and non-critical tasks ready for execution (Ncrit and Nnon crit, respectively, being
Nready = Ncrit +Nnon crit), together with the ratio between them (Rc nc = Ncrit/Nnon crit).
In the following, we also consider Nnc

max and Nmax as the maximum amount of ready non-
critical tasks and ready tasks (critical and non-critical) observed from the beginning of the
execution at each moment. Both values, Nnc

max and Nmax, are constantly monitored and
updated at runtime by the scheduler. Finally, Rnon crit = Nnon crit/N

nc
max denotes the ratio

32

3.2. ENERGY-AWARE POLICIES BASED ON FREQUENCY SCALING (FS)

Time
0

20

40

60

80

N
u
m
.
of

re
ad

y
ta
sk
s
(N

r
e
a
d
y
)

5

10

15

20

R
at
io

(R
c
n
c
)

Non-critical tasks (Nnon crit)
Critical tasks (Ncrit)
Ratio (Rc nc)

(a) Evolution of the number of critical and non-critical ready tasks.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en

cy
(M

H
z)

Little cluster
Big cluster

>6

5

4

3

2

<1

R
c
n
c

(b) Policy FS1.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en
cy

(M
H
z)

Little cluster
Big cluster

<16%

33%

50%

66%

83%

100%

R
n
o
n

c
r
it

(c) Policy FS2. Notice that policy FS3 will exhibit the same behavior,
but applied to the other cluster.

Time

800

900

1000

1100

1200

1300

F
re
q
u
en
cy

(M
H
z)

Little cluster
Big cluster

<50%

>50%

R
n
o
n

c
r
it

(d) Policy FS2’.

Figure 3.4: Behavior of each FS policy when applied to a Cholesky factorization configured
as m = 1024, b = 64 on odroid.

33

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

Abbr. Meaning

Ncrit Number of ready critical tasks
Nnon crit Number of ready non-critical tasks
Nready Number of ready tasks (Ncrit +Nnoncrit)
Rc nc Ratio between ready tasks (Ncrit/Nnoncrit)
Nnc

max Maximum amount of ready non-critical tasks from the beginning of the execution
Nmax Maximum amount of ready tasks from the beginning of the execution
Rnon crit Ratio between non-critical ready tasks and the maxim value (Nnon crit/N

nc
max)

Table 3.1: List of abbreviations used in this chapter.

of non-critical ready tasks compared with the maximum amount observed for this value.
Table 3.1 summarizes all the abbreviations used in this chapter.

Policy FS1. Tasks limited by the critical path

Runtime task schedulers annotate tasks while the DAG is built and, typically, no further
external information is used; thus, it is possible that multiple paths of the DAG are detected
as critical at the same time. On an asymmetry-aware scheduler like Botlev, this fact
entails moments of the execution with most of the ready tasks classified as critical, so that
there are not enough tasks ready to execute on the LITTLE cores. Asymmetry-aware task
schedulers alleviate these situations by allowing critical tasks to be executed by both types
of cores until new non-critical tasks are ready to run. However, using LITTLE cores to
execute critical tasks can slow down the execution as, despite the fact that tasks can start
their execution earlier due to the greater number of available cores, running a task on a
slow core can increase its execution time meaningfully.

Our approach to respond to this situation is different, as is our goal (reducing energy
consumption or increasing energy efficiency): the FS1 policy leverages these moments –
where the number of ready critical tasks is greater than the number of ready non-critical
tasks– to reduce power consumption by decreasing the frequency of the LITTLE cluster.
The side effect is that the execution time of non-critical tasks increases, but as the global
execution time is limited by the critical tasks executed on the big cluster, delaying the
execution of non-critical tasks on these moments should not dramatically impact the global
performance of the application.

In FS1, the decision on which frequency the LITTLE cluster should run at is made
by the scheduler each time the number of ready tasks changes (i.e., when a task becomes
ready or a ready task is executed by an idle core), and it is based on the relation between
the sizes of both queues (Rc nc), that determines the specific frequency step that will be
applied to the LITTLE cluster. For example, if Rc nc = 2, the LITTLE cluster will run
at its second maximum available frequency; if Rc nc = 5, the cluster will run at its fifth
maximum frequency available.

Figure 3.4b reports the instantaneous frequency applied by the task scheduler when
applying FS1 on the same execution as that shown in Figure 3.4a. Observe how, when the
number of ready critical tasks is higher than the number of ready non-critical tasks (e.g.
at the beginning and end stages of the execution in this example), the frequency of the
LITTLE cluster is scaled down, and how the frequency chosen for the cluster is directly

34

3.2. ENERGY-AWARE POLICIES BASED ON FREQUENCY SCALING (FS)

related with Rc nc. Also, note how, when Nnon crit increases, the policy forces the LITTLE
cores to run at a higher (even at the maximum) frequency.

Policies FS2 and FS2’. LITTLE cluster frequency scaled based on the workload

Instead of modifying the frequency based on the ratio between the number of both types
of ready tasks, policies FS2 and FS2’ modify the frequency based on the absolute amount
of non-critical tasks at each moment, i.e., if there is a high number of non-critical tasks, the
LITTLE cluster will run at a high frequency, and if the number is low, the frequency will
be lower. In this policy, only non-critical tasks are taken into account as critical tasks will
run on big cores, and they are not affected by these policies.

In order to determine when the number of non-critical tasks is considered high or low,
Nnon crit is compared with Nnc

max. If higher, FS2 and FS2’ will consider that the number
of non-critical tasks is high, and the LITTLE cluster will run at its maximum frequency;
if not, frequency is scaled down depending on the value of Rnon crit.

The difference between FS2 and FS2’ is the set of frequencies to select: while FS2
chooses one between all the available frequency steps according to Rnon crit (see Figure 3.4c),
FS2’ only uses the highest and lowest available frequencies (see Figure 3.4d). In this case,
if the current number of non-critical tasks is lower than the 50% of the maximum amount
recorded (that is, if Rnon crit < 0.5), the frequency will be the lowest available, in other
case, it will be the highest.

Observing the evolution of Ncrit and Nnon crit in Figure 3.4a, two different phases can
be distinguished: a first phase where the number of ready non-critical tasks increases, and
a second phase where it decreases. This behaviour matches with a Cholesky factorization
DAG, which enlarges very fast at the beginning, and decreases slowly later. During the first
phase, the maximum amount of ready non-critical tasks is growing, so the LITTLE cluster
is running at its maximum frequency; during the second phase, the scheduler scales down
frequency based on the amount of non-critical tasks and available frequencies.

Policy FS3. Big cluster frequency scaled based on the workload

The behavior of policy FS3 is similar to that of FS2, but, instead of modifying the
frequency of the LITTLE cluster, FS3 scales the frequency of the big cluster, depending
on the absolute amount of non-critical tasks at each moment.

3.2.2. Experimental results

Experimental setup

We target two different big.LITTLE platform for our experiment: an odroid board
implementing a 32-bit architecture configured with a 4+4 big and LITTLE cores respec-
tively, and a juno board implementing a 64-bit architecture with a 2+4 core configuration
(big and LITTLE respectively). As explained before, in both platforms core frequency is
shared among all the cores of the same cluster. Table 3.2 shows the different frequency
values configurable on each cluster. A more detailed description of both platforms can be
found in Appendix A.

35

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

Platform Cluster Frequencies supported

odroid
LITTLE

800 MHz, 900 MHz, 1.0 GHz, 1.1 GHz, 1.2 GHz, 1.3 GHz
big

juno
LITTLE 450 MHz, 575 MHz, 700 MHz, 775 MHz, 850 MHz

big 450 MHz, 625 MHz, 800 MHz, 950 MHz, 1.1 GHz

Table 3.2: Available frequencies for each cluster on each tested platform.

In the following, we report the experimental results obtained for the Cholesky factor-
ization described before, and the QR factorization described in Appendix A. Similar to the
Cholesky factorization, the QR factorization is a highly used routine in the DLA domain, be-
ing implemented in terms of other linear algebra routines (larft to form a triangular factor
of a block reflector, larfb to apply a block reflector to a general matrix, and geqrf to apply
a QR factorization). All experiments were carried out using single precision and gathering
power results from physical meters exposed in each board. Each experiment was repeated
ten times, showing the average measurements in the following. In all cases, we show results
for performance (in terms of GFLOPS), average power consumption (in Watts) and energy
efficiency (in GFLOPS/Watt). Only results of the parallel phase are shown, omitting those
measurements related with the memory reservation and matrices initialization.

For the sake of fairness, we compare our approach against an execution using the
Botlev scheduling algorithm without any additional policy (named PBotlev in the fol-
lowing).

Detailed results

Figure 3.5 shows the results obtained when applying policies from FS1 to FS3 to dif-
ferent Cholesky and QR factorizations on an Odroid platform. The experiments cover
a range of different matrix sizes and block dimensions. A number of general, preliminar
remarks can be extracted from the results. Depending on the matrix size, the conclusions
differ, namely:

When factorizing small matrices (m ≤ 2048) with the Cholesky decomposition, there
is a considerable difference between the performance obtained when the factorization
is made without any policy (PBotlev) and when using any of our policies. This big
difference in the performance has a huge impact on the energy efficiency.

For large matrices (m ≥ 4096), applying our policies also implies a penalty in per-
formance, as expected. However, energy efficiency measurements are very similar to
PBotlev. In this case, FS3 clearly outperforms PBotlev in terms of energy ef-
ficiency. In addition, as a positive side effect and for this range of problem sizes,
the application of any FS policy clearly reduces the average power consumption (in
Watts) of the execution.

Applying policies FS1, FS2 and FS2’ have a similar impact on the energy efficiency
than not applying them, however, using policy FS3 achieves improvements in energy
efficiency and power consumption over using an asymmetry-aware scheduler (policy

36

3.2. ENERGY-AWARE POLICIES BASED ON FREQUENCY SCALING (FS)

Cholesky factorization

ODROID

0

3

6

9

12

G
F

L
O

P
S

0

1

2

3

4

W
a
tt
s

0

1

2

3

4

G
F

L
O

P
S

/W
a
tt

PBotlev FS1 FS2 FS2' FS3

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

JUNO

0
3
6
9

12
15

G
F

L
O

P
S

0

1

2

3

W
a
tt
s

0

2

4

6
G

F
L
O

P
S

/W
a
tt

PBotlev FS1 FS2 FS2' FS3

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

QR factorization

ODROID

0

2

4

6

8

G
F

L
O

P
S

0

1

2

3

4

W
a
tt
s

0

1

2

3

G
F

L
O

P
S

/W
a
tt

PBotlev FS1 FS2 FS2' FS3

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

JUNO

0

1

2

3

G
F

L
O

P
S

0

1

2

W
a
tt
s

0

1

2

G
F

L
O

P
S

/W
a
tt

PBotlev FS1 FS2 FS2' FS3

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

(b) 32 64 128 32 128 256 32 256 512 32 256 512
(m) 1024 2048 4096 4608

Figure 3.5: Experimental measurements for policies from FS1 to FS3 on odroid and juno
platforms for Cholesky and QR factorizations with different configurations.
PBotlev stands for a normal execution using the Botlev scheduler without
any additional policy. Tags in the horizontal axis represent the sizes of the
matrix (m) and blocks (b) of each experiment.

37

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

ju
n
o

FS1 -0.54 -0.90 0.04 0.10 0.05 0.05 0.05 0.40 0.02 0.28 0.0 0.16
FS2 -0.38 -0.69 0.23 0.15 0.16 0.15 0.14 0.36 0.14 0.25 0.13 0.27
FS2’ -0.54 -0.63 0.12 0.16 0.09 0.18 0.13 0.34 0.12 0.26 0.11 0.27
FS3 -0.13 -0.56 0.85 1.04 0.87 0.85 0.89 1.26 0.89 1.22 0.87 1.09

o
d
r
o
id

FS1 -0.93 -0.30 -0.04 0.17 0.00 0.13 0.11 0.42 0.07 0.39 0.05 0.27
FS2 -1.22 -0.46 0.15 0.27 0.22 0.30 0.21 0.41 0.22 0.40 0.19 0.34
FS2’ -0.78 -0.09 0.13 0.22 0.20 0.23 0.20 0.33 0.18 0.35 0.22 0.31
FS3 -1.09 -0.21 0.73 0.93 0.87 0.96 0.89 1.18 0.85 1.21 0.86 1.23

Table 3.3: Improvement of average power consumption (in Watts) for FS policies respect
to PBotlev for the Cholesky factorization. Similar results are obtained for the
QR factorization in both platforms.

PBotlev). The reason of this behaviour is that, while LITTLE processors are
highly energy optimized, not having enough room to increase the energy-efficiency,
the greater power consumption of big cores allow our solution to reduce the energy
consumption enough to increase the energy efficiency.

Diving into details of average power and energy efficiency results for each policy, a
number of specific insights can be extracted:

First, the gap in performance, average power and energy efficiency between policies
FS2 and FS2’ is not remarkable and, similar to policy FS1, experimental results do
not show any improvement in terms of energy efficiency when using these policies for
these applications and platforms. However, although using these policies does not
achieve any improvement in performance or energy efficiency over not using them, a
decrease in the power consumption is observed, making these policies of great appeal
when targeting environments where the power consumption is limited by design. Ta-
ble 3.3 reports the decrease of power consumption (in Watts) achieved for each policy
for the Cholesky factorization, obtaining similar results for the QR factorization. In
the first set of matrices (the ones with lowest size), the power consumption increases,
but, in the second group, the power consumption decreases in all matrix configurations
and for all the policies, achieving a decrease up to 0.41 Watts (12.85 %) for policies
FS2 and FS2’, and a decrease up to 1.21 Watts (34.88 %) for policy FS3.

Second, the penalty introduced by the application of FS1, FS2 and FS2’ in terms of
performance does not make up for the improvements in average power introduced by
the frequency scaling in those policies. Thus, for this problem, they actually increase
the energy consumption of the solution.

Finally, from Figure 3.5 we can observe that the policy which obtains the best results
is FS3, outperforming Botlev in terms of energy efficiency. Table 3.4 reports a
detailed study of the energy efficiency improvement (in GFLOPS/Watt) of each policy
and matrix configuration compared with a normal execution using Botlev for the
Cholesky factorization. For matrices larger than 2048 elements, FS3 obtains a rise

38

3.2. ENERGY-AWARE POLICIES BASED ON FREQUENCY SCALING (FS)

Cholesky factorization

(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

o
d
r
o
id

FS1 -4.84 -3.84 0.04 -0.19 -0.12 -0.07 -0.05 -0.10 -0.06 -0.20 -0.03 -0.12
FS2 -5.12 -4.87 -0.04 -0.16 -0.11 -0.17 -0.17 -0.16 -0.11 -0.26 -0.18 -0.25
FS2’ -4.64 -2.49 -0.01 -0.23 -0.16 -0.19 -0.12 -0.04 -0.15 -0.19 -0.25 -0.27
FS3 -5.01 -4.22 0.41 0.31 0.34 0.43 0.41 0.43 0.31 0.48 0.36 0.50

ju
n
o

FS1 -1.41 -1.96 -0.32 -0.15 -0.18 -0.12 -0.12 -0.47 0.10 -0.33 -0.01 -0.25
FS2 -1.64 -1.20 -0.29 -0.06 -0.26 -0.01 -0.04 -0.42 0.25 0.18 0.07 0.01
FS2’ -1.44 -1.77 -0.09 -0.08 -0.06 0.00 -0.01 -0.22 0.13 0.01 0.02 -0.06
FS3 -1.60 -1.97 0.46 1.50 0.65 1.05 0.86 1.39 1.05 1.64 1.11 1.26

Table 3.4: Improvement of energy efficiency (in GFLOPS/Watt) for FS policies respect to
PBotlev for the Cholesky factorization.

QR factorization

(m) 1024 2048 4096 4608
(b) 32 64 128 32 128 256 32 256 512 32 256 512

o
d
r
o
id

FS1 -0.09 -0.05 0.01 0.10 0.04 0.11 -0.08 0.05 0.03 0.01 0.07 -0.16
FS2 -0.05 -0.11 -0.09 0.11 0.10 0.03 0.03 0.07 -0.14 0.04 -0.02 -0.19
FS2’ -0.02 0.07 -0.01 0.14 0.11 0.05 0.07 0.08 -0.10 0.26 -0.03 -0.11
FS3 -0.01 0.08 0.12 0.26 0.23 0.20 0.19 0.35 0.23 0.20 0.26 0.42

ju
n
o

FS1 -0.54 -0.24 -0.10 -0.13 -0.03 -0.13 -0.12 -0.12 -0.17 -0.07 -0.19 -0.11
FS2 -0.79 -0.32 -0.09 -0.52 -0.10 -0.12 -0.30 -0.14 -0.17 -0.22 -0.19 -0.12
FS2’ -0.55 -0.21 -0.09 -0.27 -0.19 -0.13 -0.17 -0.19 -0.18 -0.14 -0.26 -0.11
FS3 -0.70 -0.04 0.22 -0.18 0.37 0.43 0.06 0.53 0.35 0.07 0.42 0.47

Table 3.5: Improvement of energy efficiency (in GFLOPS/Watt) for FS policies respect to
PBotlev for the QR factorization.

on energy efficiency, achieving improvements from 11.7 % up to 29.3 %. Similar as
before, experiments using the QR factorization (shown in Table 3.5) produce the
same behaviour as the obtained by the Cholesky factorization.

In general, for policies FS1, FS2 and FS2’, the reduction in power consumption is
negligible respect to the decrease in performance, which implies a subsequent decrease in
energy efficiency. For policy FS3, performance also decreases, but the big improvements in
power consumption make the energy efficiency rise. As a side effect, one of the consequences
of applying policy FS3 is that power consumption in the LITTLE cluster increases. The
reason of this behavior is that, when big cluster scales down its frequency, ready tasks
increase their execution time. As a result, big cores cannot execute non-critical tasks that
they would have stolen if the critical tasks had been executed earlier. This behavior makes
the LITTLE cores to run tasks that, in a normal execution, would be run by the big
cluster, and therefore, increase the energy consumption. However, the increase in power
consumption of the LITTLE cluster is traded off by the decrease on big cluster, improving
the overall energy efficiency.

39

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

W
o
rk

er
s

(a) Execution trace per core.

A
m

ou
n
t

(b) Num. of ready tasks.

Figure 3.6: Policy TS2: task scheduling based on the number of ready tasks, for a Cholesky
factorization of a square 4096×4096 elements matrix, grouped in square blocks
of 512 × 512 elements each executed on an odroid platform, where 0-3 cores
belong to LITTLE cluster, and 4-7 cores to big cluster. Color key: red=trsm,
pink=potrf, blue=syrk, green=gemm, white=idle.

3.3. Energy-aware policies based on task scheduling (TS)

The TS (task scheduling) policies described next are based on the same ideas as FS
(frequency scaling) policies but, instead of applying DVFS techniques, they decide at runtime
the phases in which both clusters are considered to execute tasks, or just one of them is
used as a scheduling target. On one hand, using only one of the clusters in specific moments
means that power consumption is likely to decrease, but on the other hand, performance
will also be affected. Our goal is to find a trade-off between both parts, and thus to improve
energy efficiency.

3.3.1. TS policies description

Policies TS1 and TS2. Making cluster unusable depending on the workload

Similar to policies FS2 and FS3, these policies track the value of Nready at each moment,
and determine when the amount of tasks is increasing or decreasing (comparing this value
with Nmax). If the number of ready tasks is low enough, the policy will not assign any new
task to one of the clusters, making it to be in an idle state from the scheduler’s perspective,
and saving power consumption. If the number of tasks increases later, the cluster becomes
available again and it will execute new tasks as they become available. The amount of tasks
(or threshold) that determines when to disable or enable the cluster (denoted as Nthres

in the following) is configurable and not defined by the policy; several experiments with
different values for Nthres can be found in the next section.

The difference between policies TS1 and TS2 is that, while TS1 acts on the LITTLE
cluster, TS2 acts disabling and enabling the big cluster. As TS2 disables the big cluster in
some moments of the execution, critical tasks are executed on LITTLE cores until the big
cluster is enabled again.

40

3.3. ENERGY-AWARE POLICIES BASED ON TASK SCHEDULING (TS)

| 4 cores | 3cores | 2 cores | 1 core | 0 cores |

0.1
0.15

0.3
0.35
0.4

W
a
tt
s

Cortex-A7 (LITTLE)
Cortex-A15 (big)

Figure 3.7: Power consumption of each cluster on idle state with different number of active
cores. Linux kernel does not allow switching off the whole LITTLE cluster,
thus measures could not be made for this scenario.

Figure 3.6 shows an execution of policy TS2 applied to a Cholesky factorization, where
the cluster is disabled when the current number of ready tasks is under the 30% of Nmax

(that is, Nthres = 30%). Each line in the trace corresponds to a specific core executing tasks
(colored areas) or in idle state (white areas). The trace has been obtained on an Odroid
platform, where cores (numbered from the top to the bottom) 0-3 belong to the LITTLE
cluster, and cores 4-7 to the big cluster. The plot at the bottom shows the number of ready
tasks at each moment. On the top of it, a plot with the state of each core at each moment
is shown. Each color means one type of tasks (the meaning of each color can be read on
the caption of the figure), and white color means that the core is idle. Observe how, at
the beginning, the task scheduler assigns tasks to all the available cores, until the number
of ready tasks is under 30% of maximum recorded; from that moment on, no tasks are
assigned to big cluster. As there are less cores to execute ready tasks, in some moments of
the execution the number of ready tasks becomes greater than Nthres, starting big cores to
execute ready tasks until the number of ready tasks decreases again and the cluster becomes
unavailable for scheduling purposes.

Policy TS3. Cluster disabled based on workload

Some platforms allow switching off one of the clusters under demand via the Operating
System (OS), which entails a decrease on power consumption, as shown in Figure 3.7. This
is the case for the odroid platform, not being possible to do the same on the juno board.
Policy TS3 is similar to policy TS2, but in addition to deactivating the big cluster to the
task scheduler, it switches it off completely. As the Linux Kernel does not allow powering off
the core number zero in our platform, experiments related with switching off the LITTLE
cluster could not be performed.2

3.3.2. Experimental results

Opposite to FS policies, TS policies do not pre-define a specific moment of the execution
in which a cluster is disabled. The experiments described below take into account different
configurations of the policies, from disabling the cluster when the amount of ready tasks is
50% of the maximum amount recorded (that is, Nthres = 50%), to disabling it when the

2Switching cores on/off under demand was done through the /sys/devices/system/cpu/cpuN/online

mechanism offered by the Linux kernel.

41

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

ju
n
o

50% 69.4 45.8 43.4 50.8 39.4 38.5 40.9 42.1 39.2 35.2 40.3 48.3
40% 68.2 31.3 29.4 33.3 30.6 32.7 32.7 30.5 32.8 30.4 30.2 37.9
30% 63.4 34.6 21.1 32.5 20.9 24.9 25.0 28.1 23.1 25.4 21.8 33.8
20% 20.4 17.9 11.4 31.7 12.0 17.3 18.4 21.0 14.6 19.1 13.1 26.7
10% 23.1 15.0 5.3 20.0 4.9 11.5 9.6 15.1 7.7 10.3 5.6 12.9

Table 3.6: Amount of time when the LITTLE cluster is unusable for different configura-
tions of policy TS1 (rows) and Cholesky factorization sizes (columns) in a Juno
platform.

amount is only at 10%. Note that disabling the cluster when the current number of ready
tasks is, for example, half of the maximum amount recorded does not imply that the cluster
will be unusable 50% of the execution time.

Similar as before the Cholesky and QR factorization were used to run the experiments
on both platforms, achieving similar behaviour for both applications.

Policies TS1 and TS2

Table 3.6 shows the percentage of time in which the LITTLE cluster is unusable for
policy TS1, depending on the configuration of the policy and problem dimensions.

The experiments reveal that Nthres has a high impact on the final performance, inde-
pendently of the cluster (LITTLE in TS1 or big in TS2) which is affected by the policy.
Table 3.7 shows the performance achieved by each policy for different Nthres values and both
platforms on a specific configuration. In general, observe how, the policy TS1 achieves worse
results than TS2 in the juno platform. Similar behaviour happens on the odroid board,
except for the first columns of the table that the behaviour is the opposite one. This differ-
ence in the juno platform can be explained in terms of the number of cores on each cluster:
2 cores in the big cluster, and 4 in the LITTLE. Switching off the LITTLE clusters makes
only 2 big cores available to execute the ready tasks, decreasing drastically the available
parallelism in the platform. On the contrary, disabling the LITTLE cluster on the odroid
board still offers 4 big cores to the applications, having a lower impact on the performance.
As an additional observation, we can conclude that, although a big core on the juno plat-
form obtains better performance than a LITTLE one, using the four of them outperforms
the results obtained by an unique big core. In general, both policies exhibit worse energetic
results than not using any policy. Whereas policy TS2 has similar energy efficiency results
than PBotlev, the results obtained when TS1 is used are worse than when not using it.

Table 3.8 shows the improvement of GFLOPS/Watt obtained when policy TS2 is com-
pared with a normal execution (policy PBotlev). Although this policy does not achieve
an improvement in energy efficiency, it obtains similar energy-efficiency measurements with
lower overall power consumption, making this policy, together with policies FS2 and FS2’,
good candidates for scenarios where the power consumption is limited.

42

3.4. CONCLUSIONS

juno odroid

50% 40% 30% 20% 10% 50% 40% 30% 20% 10%

TS1 52.2% 59.6% 67.3% 78.3% 85.9% 70.5% 75.9% 82.2% 87.6% 91.4%
TS2 58.2% 63.0% 69.9% 76.1% 84.8% 62.0% 67.9% 74.6% 82.0% 90.3%

Table 3.7: Performance obtained for policies TS1 and TS2 for different Nthres values for
a Cholesky factorization respect to the performance obtained by PBotlev.

(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

o
d
r
o
id

10% -3.7 4.1 -0.5 -0.3 -0.5 -0.4 -0.3 0.1 -0.3 -0.1 -0.4 -0.2
20% -4.0 2.0 -0.3 -0.2 -0.5 -0.2 -0.3 0.0 -0.3 0.0 -0.3 -0.1
30% -4.0 -1.0 -0.2 -0.1 -0.3 -0.1 -0.1 0.0 -0.2 0.0 -0.3 -0.0
40% -3.7 1.6 0.1 -0.1 -0.2 0.0 0.0 0.0 -0.1 0.0 -0.2 0.0
50% -4.0 -1.5 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 -0.1 0.1

ju
n
o

10% -1.5 -1.9 -0.2 0.4 -0.3 0.1 -0.0 -0.1 0.1 0.0 -0.1 0.4
20% -1.3 -1.6 -0.3 0.2 -0.4 0.0 -0.1 0.0 0.1 0.0 0.0 0.4
30% -1.4 -1.8 -0.1 0.3 -0.3 -0.1 -0.1 -0.0 0.0 0.0 -0.1 0.4
40% -1.4 -1.6 -0.2 0.3 -0.2 0.1 -0.1 -0.0 0.0 0.0 -0.1 0.3
50% -1.2 -1.5 -0.2 0.3 -0.1 -0.0 -0.0 0.0 0.1 0.1 -0.1 0.3

Table 3.8: Energy efficiency obtained by TS2 when compared with an execution without
any policy (PBotlev) for a Cholesky factorization in both platforms.

Policies TS3

Policy TS3 does achieve an improvement in terms of energy efficiency on most of the
tested configurations. Figure 3.8 shows the results obtained when this policy was applied
for different problem dimensions on a Cholesky factorization. The application of the pol-
icy attains an improvement of up to 17.1 %. Table 3.9 shows the improvements for each
configuration in terms of GFLOPS/Watt.

Although policies TS2 and TS3 exhibit similar behavior (policy TS2 does not use big
cores meanwhile policy TS3 switches them off), the performance obtained is lower for policy
TS3. This overhead is probably caused by the OS when it migrates the processes running
on a big core to a LITTLE one when a complete cluster is switched off (and similarly when
it is switched on again). However, due to the considerable decrease in power consumption
when the cluster is off (as shown in Figure 3.7), the decrease in performance does not entail
a big impact on the overall energy efficiency.

3.4. Conclusions

In this chapter we have explored a number of ways to extend an asymmetry-aware
scheduler to optimize the energy efficiency of task-parallel applications, focusing on ARM
big.LITTLE systems-on-chip. To do so, the described approaches base their decisions on

43

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

0

3

6

9

12

G
F
L
O
P
S

0

1

2

3

4

W
a
tt
s

0

1

2

3

G
F
L
O
P
S
/W

a
tt

botlev 50% 40% 30% 20% 10%

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

(b) 64 128 128 256 256 512 256 512 512 1024 512 1024 512 1024
(m) 1024 2048 4096 4608 5120 6144 8192

Figure 3.8: Experimental results for different TS3 configurations applied to multiple matrix
sizes.

the internal status of the runtime: the classification of the different ready tasks in critical
and non-critical, and their evolution during the execution time.

When testing the proposed approaches in different asymmetric architectures and
different linear algebra applications, a number of insights have been extracted, namely:
(i) scaling the frequency of the LITTLE cluster does not have a positive effect on the energy
efficiency, but a reduction in average power consumption is constantly achieved, (ii) scaling
the frequency of the big cluster does achieve considerable improvements on energy
efficiency, increasing it up to 29.3 %, and (iii) we have demonstrated that disabling the use
of one of the clusters in some moments of the execution also achieves a decrease on power
consumption, but not in energy efficiency, unless the switching off of the whole cluster is
supported by the hardware and OS, with improvements on energy efficiency of up to 17.1 %.

However, although the proposed policies have achieved good results for this kind of
platforms, extending them to other multi-core processors is not a trivial tasks. In the next
chapter we describe new strategies targeting DVFS on modern multi-core servers to improve
performance on power-constrained scenarios, considering the execution of multiple parallel
applications simultaneously.

44

3.4. CONCLUSIONS

(m) 1024 4096 4608 5120 6144 8192
(b) 64 128 256 512 256 512 512 1024 512 1024 512 1024

10% -4.98 -5.02 -0.16 -0.08 -0.02 0.01 0.02 -0.02 -0.01 0.02 0.24 0.33
20% -4.95 -4.70 0.00 -0.05 0.03 -0.03 0.01 0.01 0.01 -0.02 0.35 0.35
30% -4.71 -4.83 0.12 0.07 0.16 0.04 0.05 0.01 0.05 -0.05 0.13 0.33
40% -4.92 -4.44 0.15 0.02 0.29 0.07 0.09 0.03 0.04 -0.01 0.13 0.41
50% -4.89 -3.92 0.06 0.02 0.14 0.06 0.09 -0.01 0.04 -0.03 0.05 0.37

Table 3.9: Energy performance improvement (in GFLOPS/Watt) for different TS3 pol-
icy configurations compared with a normal execution using Botlev (policy
PBotlev) for a Cholesky factorization.

45

CHAPTER 3. ENERGY-EFFICIENT RESOURCE MANAGEMENT ON ASYMMETRIC . . .

46

4

Power budget management for
runtime-based applications

In the previous chapter we demonstrated the feasibility of enriching a runtime system
with a strategy aware of the internals of the scheduling state, specifically keeping track
of the amount of ready tasks at each execution point, together with a criticality-based
classification of tasks. Experimental results revealed it to be an effective mechanism to
transparently improve the energy efficiency of applications in a big.LITTLE architecture.
Specifically, we developed strategies and policies that decreased the resources granted to the
application (in terms of frequency and number of cores) if the amount of work is considered
low enough, increasing them otherwise under high demanding situations.

In this chapter, we address a totally different, yet complementary question: given a fixed
amount of resources granted to an application (in our case, in terms of maximum power
budget and number of cores), how can runtimes and/or resource managers be extended to
maximize the overall application performance without exceeding the resources assigned a
priori?

In order to answer this question, we proceed with a two-step approach:

BAR: Dynamic intra-application power budget re-distribution. First, we
investigate and propose an extension of a task scheduler called BAR (Power Budget-
Aware Runtime Scheduler) to carry out a dynamic power budget redistribution be-
tween workers threads belonging to the same application, targeting performance max-
imization under tight power cap limits. To do so, the number of ready tasks is con-
stantly monitored at runtime detecting periods with idle workers, and performing
a re-distribution of the power budget across active workers. Ultimately, the distri-
bution of budget allows increasing the frequency of cores where active threads are
bound, while setting minimum frequency to the idle ones, improving performance
without exceeding the assigned power cap.

BACO: Dynamic inter-application power budget re-distribution. Second,
we extend the intra-application approach by considering multiple simultaneous ap-
plications, allowing a global power budget redistribution, not only between workers

47

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

Chol.

BAR

sens. knobs

Chol.

BAR

sens. knobs

Chol.

BAR

sens. knobs

core core core core

core core core core

Platform

sens. knobs
BACO

modelsrules logic

Power
consumption

Power
budget

Power
model Freq.

Figure 4.1: General overview of the system described in this chapter.

within the same application, but also across applications. We introduce a centralized
resource manager, BACO (Power Budget-Aware Co-scheduler) aware of the internal
status of each runtime/application running BAR, providing an optimal distribution
policy of the power budget among them.

Section 4.1 motivates how a strategy aware of the number of active and idle workers
can improve the performance of the applications by performing a proper distribution of the
power budget. Section 4.2 shows an overview of the proposed system, while Section 4.3
and Section 4.5 show a detailed description of BAR and BACO respectively. Section 4.4
and Section 4.6 show some experimental results for BAR and BACO, when compared with
other state-of-the-art approaches, as well as with an optimal approach. Finally, Section 4.7
shows some conclusions and final remarks.

Figure 4.1 shows a general overview of the relation of our proposal with the running
applications and platform. As shown there, our proposal receives the metrics from the
runtimes and send back its decisions, being the runtimes in charge of applying the changes
accordingly to the platform (in this case by means of frequency changes).

4.1. Power budget management. Motivation and opportunities

In the previous chapter we explored how to extend the Nanos++ runtime to improve
energy efficiency on big.LITTLE platforms. Our approach determines how to change the
frequency or to turn specific cores off based on the number of ready tasks tracked by the
runtime, and their classification between critical and non-critical tasks. Taking the decision
based on the internal status of the runtime (number of ready tasks and their classification,
in this case), instead of specific application metrics makes the approach perfectly valid
for any application running on top of a runtime, without any modification on the user’s
applications.

The previous approach, specifically designed for asymmetric platforms, is mainly sup-
ported by two characteristics: (i) the frequency is the same across all the cores belonging

48

4.1. POWER BUDGET MANAGEMENT. MOTIVATION AND OPPORTUNITIES

to the same cluster, and (ii) the classification of tasks into critical and non-critical is done
through the CATS (Botlev) algorithm. However, both premises are not valid in modern
multicore servers. Indeed, modern processors support the configuration of each core with
a different frequency at the same time, and CATS algorithm was specifically designed for
asymmetric architectures were the behaviour of one application can change drastically if a
given task is executed in one cluster or the other. In addition, to consider the number of
ready tasks in the queues by its own does not represent accurately the amount of work to
be performed, as it is necessary to compare it in relation with the number of workers in the
system.

Targeting modern multicore processors, in this chapter we propose a new approach built
on top of Nanos++ to achieve maximum performance where the instantaneous power
consumption is limited to a certain level (that is, a tight power cap is imposed). Our
approach bases its decision on the number of ready tasks compared with the number of
workers, blocking idle workers when needed (and therefore saving energy), and waking up
those blocked workers if the amount of work surpasses a given threshold. Besides, individual
core frequency is modified based on the number and affinity of the active workers, increasing
performance without exceeding the power cap.

4.1.1. Idle workers management

Consider the task-based, block-oriented implementation of a Cholesky factorization de-
scribed in the previous chapter, that will also be employed as a driving example throughout
the chapter. As all the ideas described next affect runtimes and not applications, they
can be extrapolated to any task-based application without any significant modification. In
addition, they are general enough to be integrated into any other runtime with minimum
effort.

The first plot in Figure 4.2 shows the execution of a Cholesky factorization of a matrix
configured as: m ≈ 10000, b = 1024, s = 9, on makalu (see Section A.1), using 20 worker
threads running at 1.6 GHz. Each row represents the status of a worker during the execution
of the application, colored in gray if the worker is in idle status (i.e., it is not executing
any task), and colored in orange if it is active (i.e., executing a task). As observed, the
execution can be split into three different phases: a middle phase where the factorization
is carried out, being all the workers active; and two phases (at the beginning and the
end) where the parallelism decreases, without enough tasks to feed all the workers. The
first phase, purely sequential, occurs during the reservation of the memory for the different
matrices internally used, the data initialization filling those matrices with random values,
and the transformation of the original matrix into a blocked-form matrix. The last phase is
a consequence of the parallel algorithm, directly related to the decreasing width (amount of
potential parallelism) of the DAG associated with the problem. These phases are of special
interest for us. Depending on the final goal of the system, two main strategies can be
followed to manage these idle threads:

Active waiting (polling): Idle workers are kept on an infinite loop constantly checking
if there is a new task to be executed. This strategy guarantees maximum performance
executions (as there is no delay associated with the process of blocking and waking
up the workers), at the expense of a higher energy consumption.

49

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

(a) Worker status during the execution. Each row represents a different worker, colored in gray
if it is in idle status, and orange if it is active.

0 1 2 3 4 5 6 7

Time (s)

20

40

60

80

P
o

w
e

r
(W

)

active

passive

(b) Energy consumption when the idle threads are blocked in an active wait (blue) or passive wait
(red).

Figure 4.2: Worker status and energy consumption for a Cholesky factorization with
m ≈ 10000, b = 1024, s = 9. On the top, the status of each worker during
the execution (active/idle). On the bottom, instantaneous energy consump-
tion when idle workers are blocked in an active and passive wait. On the pas-
sive wait, idle workers are blocked through the default Nanos++ mechanisms
(--enable-block option).

Passive wait (blocking). In this strategy workers are blocked by a synchronization
mechanism (e.g., semaphores, mutexes or conditional variables among others). De-
pending on the overhead of the selected mechanism, performance can be affected and
hence reduced. However, contrary to the previous approach, and depending on the
number of idle workers during the execution (and therefore, depending on the appli-
cation), the reduction in energy consumption is not negligible.

The plot on the bottom of Figure 4.2 reports the instantaneous power consumption when
idle workers are blocked in an active and passive wait (blue and red lines, respectively). As
expected, in the middle phase where all the workers are active, the power consumption is
maximum and equal in both approaches, decreasing on the red line as the number of active
workers decreases. Similarly, in the first phase where only one worker is active (serial phase),
a considerable reduction in power is achieved (greater than 2×). As a side note, observe how,
even only one worker is active in this phase, the instantaneous power is not constant (power
increases in the interval between 2 and 3.5 seconds). This period corresponds to the matrix
initialization with random values (through the larnv call) and the additional operations
needed to ensure the matrix is definite-positive (required by the Cholesky factorization).
The periods with lowest power consumption correspond to memory allocation calls (via
malloc), and data copies between matrices to transform the original matrix into a blocked
form.

50

4.1. POWER BUDGET MANAGEMENT. MOTIVATION AND OPPORTUNITIES

0 1 2 3 4 5 6

20

40

60

80

100

W

1.9GHz

0 1 2 3 4 5 6 7

Time (s)

20

40

60

80

100

W

1.6GHz

Figure 4.3: Instantaneous power consumption of a Cholesky factorization (b = 1024, s = 9,
m = 9216) using 20 worker threads at 1.9 GHz (top) and 1.6 GHz (bottom).
The red line represents the 75 W value.

In summary, blocking idle workers in a passive wait achieves a considerable reduction
in power consumption. In a scenario where maximum performance is required, but a strict
power cap exists, this power not consumed by idle workers can be redistributed between
the active workers, increasing the operational frequency, and therefore the overall perfor-
mance, and still satisfying power restrictions. This redistribution of power budget can be
done between workers of within an application, or between workers of different applications
running concurrently, as described next.

Power budget redistribution between workers within the same application. Figure 4.3
shows the power consumption of the Cholesky factorization described before with idle work-
ers blocked in a passive wait when the frequency is configured at 1.9 GHz and 1.6 GHz (top
and bottom, respectively). Consider a hypothetical power cap of 75 W, represented by the
red line in the figure. On one hand, executing the application at 1.6 GHz guarantees an ex-
ecution always below the power cap. On the other hand, an execution at 1.9 GHz achieves
maximum performance, exceeding only the limit on the phase where all the workers are
active (area marked in gray in the figure), being below the threshold on the other phases
where the number of active workers decreases.

Combining both traces, an intelligent approach should set the maximum frequency when
the number of active workers is low enough not to exceed the power limit, achieving maxi-
mum performance, and reduce the frequency as the number of active workers increases, not
violating the power cap. However, this strategy requires a precise control on per-thread
execution status and per-core frequency, as well as a precise estimation of the power con-
sumption by each worker at each selectable frequency. In the next section, we propose a
heuristic approach implementing these ideas to manage a dynamic distribution of the power
budget and frequency between workers, achieving optimal executions in performance, with-
out violating the different power caps.

Power budget redistribution between different simultaneous applications. Consider now
an execution of two simultaneous Cholesky factorizations of different block sizes, not ex-

51

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

Figure 4.4: Thread status and power consumption of two Cholesky factorizations running
simultaneously with 10 workers each at 1.7 GHz. The ten first rows correspond
to a factorization of a matrix configured as b = 512, s = 19. The other ten rows
correspond to a similar factorization configured as b = 1024, s = 9. Orange
and gray colors mean active and idle status respectively.

ecuted at the same time. Figure 4.4 represents an example of this situations where two
different Cholesky factorizations (b = 512 and b = 1024) are run with a 1s offset between
them. The plots represent the thread status of each application, as well as the system-wide
power consumption.

In this scenario, a static distribution of the power budget between applications does not
guarantee the maximum performance, and therefore demanding a more advanced strategy
redistributing the power budget between applications. Indeed, observe how, in the moments
of the execution where an application does not have all the workers active (red region in
the plot), the power consumption decreases, as it is not used by any application. In this
moments, an intelligent redistribution of that budget to the other application will allow it
to increase the frequency, and therefore to increase the performance, at the same time the
power is not wasted, and the power cap is not exceeded. Similarly, if an application starts
or finishes its execution before the other (gray zones in the plots), a redistribution of the
power budget can increase the performance of the applications that can benefit from it (for
example, if an application is in a parallel phase).

However, the proper redistribution of the budget is not trivial, requiring a global and
intelligent approach able to know the status of each application during the whole execution,
performing an online redistribution of the budget between them, as described next.

4.2. Resource management for asymmetric power budgeting: a
two-level approach

Armed with the previous motivations, in the following we propose strategies and actual
implementations of resource management schemes embedded into an application-based run-
time scheduler (Nanos++) and an ad-hoc co-scheduler (see Appendix B). Our solutions

52

4.2. RESOURCE MANAGEMENT FOR ASYMMETRIC POWER BUDGETING: A
TWO-LEVEL APPROACH

target a common scenario in today’s HPC or data-center nodes, in which overall computing
resources need to be –symmetrically or asymmetrically– distributed across applications, and
afterwards individually exploited in an optimal manner by them. In our case, power budget
is the resource to be globally distributed, while individual core number and frequency are
the knobs to be dynamically managed at application level.

It seems natural, hence, pursuing the target by following a two-level approach, with a
common goal but different specific strategies depending on the specific level.

Application-wide level Given a granted amount of resources (in our case, in the form of
a tight limit in terms of power budget and number of cores), an application should ideally
apply internal policies to optimally exploit the granted resources. Task-parallel applications
are usually characterized by the existence of phases with different amount of potential task
parallelism. In this scenario, opportunities for power budget redistribution arise in those
phases in which parallelism is scarce, and a full leverage of the underlying resources is not
possible, mainly due to insufficient core occupation. Other situations, not studied in this
thesis, could include bandwidth occupation or LLC partitioning, for example, following
similar approaches.

Moreover, this type of policies should be applied in a way to be portable across systems
and transparent (non-intrusive) for the user. As task-parallel applications usually rely on a
lower-level runtime task scheduler, it seems logical to integrate them within the runtime.

System-wide level At a higher level, system-wide restrictions on power consumption to
meet SLA policies, for example, can also be applied. Under circumstances in which the
amount of resources granted to individual applications/users is asymmetric, or granted
resources are wasted at a given execution point for an application, an intelligent power
budget distribution also becomes mandatory.

Following a similar idea as that for application-wide requirements, a piece of software
(usually a centralized resource manager or co-scheduler) should be in charge of autonomously
and dynamically applying policies and heuristics that assure a proper distribution of the
available budget.

4.2.1. BAR + BACO: an overview

Our solution to the problem is based on a two-level strategy, and actually implemented
within two isolated (while highly coupled) pieces of software, namely:

BAR: Power Budget-Aware Runtime Scheduler, is an extension of the Nanos++
runtime task scheduler, that embeds strategies and techniques for autonomous and
dynamic power reduction and budget redistribution among worker threads. The so-
lution is based on an intelligent idle worker thread management and core frequency
selection based on power models (see Section 4.3).

BACO: Power Budget-Aware Co-Scheduler. An ad-hoc development that manages
resources at a higher level (system-wide level), receiving application registration re-
quests and dynamically offering power-budget shares between running applications
based on the information dynamically received from them.

53

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

Core
#1

Core
#n

Core
#n+1

Core
#m... ...

BAR #1 BAR #2

BACO

Resources
assigned

Resource usage
Resource request

Ap
pl

ic
at

io
n

Le
ve

l
Sy

st
em

-w
id

e
Le

ve
l

Idle worker management

Core frequency selection

Power consumption modellization

Dynamic power redistribution

Figure 4.5: Diagram showing the coexistence of two bar applications interacting with a
baco instance.

Figure 4.5 shows a general overview of the BAR+BACO tandem deployed on a hy-
pothetical DVFS-capable multi-core server with two managed applications. Note that each
element is responsible of different (while complementary) tasks, and information flows bidi-
rectionally between BACO and each BAR application. Specifically, each registered appli-
cation will constantly monitor the status of its worker threads, modifying the core frequency
and communicating the new power needs to the baco instance, while the co-scheduler will
be in charge of responding to these interactions by redistributing the available power budget
between those applications that can benefit from it.

In the following, we offer more details regarding each element of the infrastructure.

4.3. BAR. Runtime support for intra-application power budget
management

4.3.1. Budget re-distribution strategy

BAR introduces a new approach to achieve high performance executions on a power-
constrained environment. Our approach is based on the ideas described above: a precise
control on the mechanism to detect and block idle workers, a fast and effective way to wake
up blocked workers, and an estimation of the power consumption of each workers at each
possible frequency, as well as at idle state. As soon as a worker becomes idle, it is blocked
in a passive wait, estimating the saved power consumption, and increasing the frequency of
the rest of the active workers accordingly. As soon as new tasks are created, idle workers are
woken up, decreasing the frequency of active workers appropriately without exceeding the
cap. The approach is described next in terms of the Nanos++ runtime, but the presented
ideas are generic enough to be implemented in any other task-based runtime with minimum
effort.

As described in Section 3.1.1, task-based runtimes are built on top of a pool of threads
called workers, each one typically bound to a different core. Workers execute an infinite loop

54

4.3. BAR. RUNTIME SUPPORT FOR . . . POWER BUDGET MANAGEMENT

until all tasks are completed and the application finishes. In this loop, each worker checks if
a task is ready to be executed, and runs it. If there are no ready tasks available, the worker
becomes idle. Upon task finalization, its output dependencies are released; when a new
task is ready to be executed (i.e., all its input dependencies have been already satisfied),
the task is inserted into a queue (in the following, readyQueue) to be executed as soon as
a worker thread becomes available. The order in which ready tasks are executed differs
between different scheduling strategies, although our approach is perfectly valid for all of
them, and hence agnostic of the scheduling policy in place.

All the BAR logic is incorporated in this loop. Specifically, Algorithm 4.1 shows a
pseudocode of our approach, which is based on four main ideas: (i) when and how idle
workers wake up (Section 4.3.2), (ii) how to determine if new tasks are ready to be executed
or not (Section 4.3.3), (iii) when and how an idle thread needs to be blocked (Section 4.3.4),
and (iv) how to properly modify the frequency not to exceed the power cap (Section 4.3.5).
This routine is invoked by each worker every time it finishes the execution of a task, and
returns the new task to execute by the worker (if it exists), or blocks the worker (if no tasks
are ready). At this point, all the output dependencies have been released and all the new
ready tasks have been inserted into readyQueue.

Algorithm 4.1: BAR logic. Main worker loop.

1 begin
/* Wake up idle workers? */

2 if (nReadyTasks > 1 and nActiveWorkers < nWorkers) then
3 maxWorkers ← getMaxThreads(Budget) - nActiveThreads
4 wakeUp threads(min(nReadyTasks - 1, maxWorkers));

5 end
/* Try to get a ready task to execute */

6 task ← readyQueue.pop()
7 spins ← maxSpins // User defined. For example, 60000

8 while (task = none and spins > 0) do
9 task ← readyQueue.pop()

10 spins ← spins - 1

11 end
/* Block worker? */

12 if (task = none) then sleepThread(thread.self) ;
13 return wd

14 end

4.3.2. Waking up idle workers

Upon termination of a task, and before it fetches a new task to execute, a worker
determines if new workers should be woken up. To wake up an idle worker, two conditions
need to be met simultaneously: there are at least 2 tasks ready to be executed, and of course,
there is at least one blocked worker (line 2). Assuring at least two ready tasks allows both
workers (the current one, and the one to be woken up) to execute a task, and therefore,
avoids to wake up a thread and block it again immediately, reducing overhead. The number

55

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

of workers to be woken up is determined by the number of ready tasks in readyQueue and the
maximum number of workers that can run concurrently without exceeding the established
power cap.

The following equation is used to determine the maximum number of simultaneous active
workers (line 3) for a specific power budget:

Budget ≥ nActive · Powerf min + nIdle · Poweridle =⇒ (4.1)

nActive =

⌊
Budget− nWorkers · Poweridle

Powerf min − Poweridle

⌋
(4.2)

where Budget is the current power budget assigned to the application, nActive and nIdle
are the number of active and idle workers respectively, and Powerf min and Poweridle are
the estimation of the power consumption of an unique thread at minimum frequency and
idle state respectively. This equation determines the maximum number of workers that
can run simultaneously, considering they run at a minimum frequency. Experimentally, we
have determined that, for our tested applications and scenarios, having a high number of
workers running at a low frequency achieves better results than a lower number of workers
at a higher frequency. However, this policy can be modified if there is any other goal in
the system (for instance, to minimize the number of active cores). Note that this function
determines the maximum number of workers able to run concurrently without exceeding
the power cap, but not the optimal frequency, which is calculated at a later step, described
next. At the same time idle workers are woken up, the new frequency is calculated and set
accordingly to all cores running active workers (see Section 4.3.5).

4.3.3. Fetching a new ready task

Once the additional workers have been woken up and the frequency has been properly
set, the worker tries to fetch a new ready task to execute. Lines 5–11 show the strategy
followed. Note that this code can be executed by multiple workers simultaneously, being
possible for a worker to fetch the only task in the queue, and therefore, leaving other
workers without tasks to run. In this case, the worker spins around a loop to check if new
tasks become ready (due to any other worker finishes a task that makes new tasks ready).
This loop prevents workers to become idle immediately, avoiding the overhead associated
to sleeping the thread.

4.3.4. Blocking idle threads

In the case no ready task is fetched by the worker after the spin loop, the worker becomes
idle and blocks itself into a passive wait (line 12). Blocking the worker itself, instead of
being blocked by another worker, reduces the time other workers spend without executing
a task. Once the worker is declared as idle, and before blocking itself, the worker sets the
frequency of its core to the minimum available frequency, and increases the frequency of
the other active cores appropriately.

4.3.5. Core frequency selection and Power modelling

Our approach relies on an internal table storing an estimation of the power consumption
of one worker running at each available frequency, completed with power consumption

56

4.3. BAR. RUNTIME SUPPORT FOR . . . POWER BUDGET MANAGEMENT

when idle. This estimation is performed through a previous profiling of the different tasks,
storing the maximum consumption of all of them. Storing the highest consumption of all
tasks makes the approach conservative, contributing to never violate the power cap. In
addition, considering the maximum power consumption makes the table valid for other DLA

applications without need of additional profiling. However, other approaches can be taken.

Every time the number of active threads varies (i.e., a worker is blocked or woken up),
the running frequency of the active workers is modified properly, choosing the one which
maximizes power consumption (i.e., the highest one), without exceeding the power cap as
follows:

arg max
f∈Freqs

{
P = nActive · Powerf + nIdle · Poweridle

∣∣ |Pcap− P| ≤ offset
}

Note that the previous formulation allows to exceed the power cap by a certain value
(offset). This value, tunable by the user or system administrator, offers a mechanism to
finely approximate the actual power consumption of the application to the power cap, and
trading off possible errors in the power estimation.

This internal table storing all the estimations for the different frequencies is filled through
a previous profiling of the different tasks of the application. To do that, all the different tasks
are executed individually while power consumption is recorded at all the different available
frequencies, as well as the power consumption of a worker blocked at minimum frequency.
As the final goal of the approach is never violate the power cap, the maximum consumption
among all the tasks is selected. On one hand, this ensures executions always below the
power cap, but on the other hand, it is possible to overestimate the power consumption, and
therefore not achieve the maximum performance. If the power cap restriction is relaxed,
other alternatives can be considered as taking the average consumption of all the tasks,
or even the minimum one. In addition, previous works have explored the idea of doing
the estimation based on the current tasks being executed at each moment. For example,
authors in [145] profile and store the execution times of different versions of the same tasks,
estimating the best version to execute at each moment.

Once this table is filled, power consumption can be estimated as

P = nActive · PowercurrFreq + nIdle · Poweridle

where nActive and nIdle represents the number of active and idle workers respectively, and
PowercurrFreq and Poweridle are the power consumption of a thread running at currFreq
or idle state respectively. Observe that, although our approach runs all the active workers
at the same frequency, this estimation can be easily adapted to other formulations with
different workers running at different frequencies.

Although this model is perfectly valid, and achieves high-quality estimations (as shown
later), power consumption of turbo frequencies on modern processors cannot be estimated
through it. When turbo is enabled, power consumption, as well as effective frequency, does
not depend only on the current frequency set, but also on the number of simultaneous active
cores, being impossible to make an estimation of each core individually. Nevertheless, our
approach is model-agnostic, so it is still valid for a model that can consider turbo frequencies.

57

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

4.4. Experimental results for BAR

To test our approach, we run BAR on two different scenarios, comparing it with compa-
rable state-of-the-art alternatives. On the first scenario, only one application was run with
different power caps, deploying as many workers as physical cores exist. On the second sce-
nario, two applications were run simultaneously, each with a different power cap assigned,
to show how our approach is able to deal with asymmetric power-budget scenarios. In ad-
dition, different application configurations were tested to proof the validity of our approach
in different scenarios with different amount of idle workers.

The experimental results include comparisons between the following strategies:

BAR: This is our proposal. Given a strict power cap, the system dynamically modifies the
frequency of the active cores based on the number of idle workers at each execution
point. It also performs the process of detecting if there are enough tasks for all the
workers, sleeping and waking up idle workers as needed.

Breadth First (bf-freq): This is the default strategy implemented in Nanos++ and
used as our comparison baseline. Tasks are executed in a First-In-First-Out (FIFO)
fashion, with idle workers blocked in an active wait (polling). For the sake of fairness
in the comparison, given a specific power cap, all cores were set to the maximum
frequency that guarantees the maximum power cap is not exceeded.

RAPL with active wait (rapl-act): This strategy implements a hardware-based power
capping strategy on top of the Nanos++ runtime. Similar to the previous strategy,
it implements a breadth-first scheduling policy, but frequency is set to the maximum
(i.e., 1.9 GHz) before execution. In this case, RAPL is used to dynamically modify the
frequency and not exceed the power cap. RAPL is a mechanism introduced by Intel
on the latest architectures to limit the power consumption via hardware through an
automated DVFS mechanism.

RAPL with passive wait (rapl-pass): This is considered the optimal strategy and is
used to check how far our proposal is from an optimal solution. Similar to the previous
strategy, it implements the RAPL hardware-based power-capping mechanism on top of
the Nanos++ runtime and the breath-first scheduling policy. In this case, however,
idle workers are blocked in a passive wait using the internal mechanism offered by
Nanos++.

Note that RAPL-based solutions are not always available (power capping capabilities
need to be provided by the manufacturer). Hence, demonstrating that our approach is
close to (or even mimics) RAPL-based solutions is mandatory and a demonstration of the
feasibility of our software-based approach.

4.4.1. Experimental setup

The described strategy has been implemented in makalu (see Section A.1), a real server
comprising a modern 20-core Intel CPU. Hyperthreading technology was disabled for all
the experiments. The Nanos++ runtime was chosen to implement BAR as it offers a
mechanism to easily extend the scheduling policy and implement alternative strategies.

58

4.4. EXPERIMENTAL RESULTS FOR BAR

Freq (GHz) idle 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Power (W) 1.47 2.97 3.09 3.22 3.35 3.43 3.56 3.79 3.97 4.24 4.45

Table 4.1: Power estimation for one worker at different frequencies on makalu.

Our mechanism was implemented on top of the breath-first policy (the default policy in
Nanos++). POSIX unnamed semaphores were used to block idle workers in a passive
wait. The same task-based parallel Cholesky implementation as in Chapter 3 was chosen
to run the experiments, as it is a representative example of other linear algebra opera-
tions. In addition, the blocked parallelization of the Cholesky factorization is carried out
in terms of other linear algebra operations widely used in most of the scientific applica-
tions (for instance, a matrix-matrix multiplication, gemm, or a symmetric rank-b matrix
update, syrk). Frequencies from 1.0 GHz to 1.9 GHz were selected to run the experiments,
as greater (turbo) frequencies are not handled by the used model, as previously described.
The estimated power values are shown in Table 4.1. Experimentally, we have observed a
maximum difference of 4.46 W for the whole socket when measuring the power consumption
through RAPL and our estimations (TDP=125 W). offset parameter on the power model was
experimentally set to 0.8.

Each experiment was repeated 5 times, showing average values in the following. The
results are reported in terms of the execution time of the sequential and parallel phase,
global speed up and power and energy consumption. Power consumption is reported in
terms of a moving average, in order to reduce noise in power measurements.

All the experiments were carried out over a matrix randomly initialized of size
m ≈ 10000. Three different block sizes were used covering all the possible scenarios:
b = 512, s = 19 ensures enough tasks for all the threads during most of the execution
time, b = 1024, s = 9 produces enough tasks to feed all workers in the most demanding pe-
riod, decreasing the number of tasks as the factorization is completed, and b = 2048, s = 4
does not generate enough tasks for all the workers at any moment of the execution.

4.4.2. Preliminar analysis of BAR performance

Figure 4.6 shows a detailed trace of our approach when executing a Cholesky factoriza-
tion configured as s = 9 and b = 1024, with a power cap of 63 W (≈ 50% TDP), using 20
worker threads (i.e., all the available cores of the processor). The first plot represents the
number of workers set active by our approach, while the second one shows the frequency
configured on those workers at each moment of the execution. The third plot shows the
instantaneous power of the socket measured through an external library (see Section A.2).

As observed, our approach is able to detect the sequential phase at the beginning of the
execution, having only one thread active and setting its associated frequency at maximum
(1.9 GHz) to speed up this phase and achieve maximum performance. Once this phase is
finished, and the parallel phase starts, all the workers are woken up as there are enough
tasks to feed all of them. At the same time workers are woken up, frequency is reduced to
not violate the power restrictions. Contrary to the previous chapter, having a power model
to estimate the power consumption allows our strategy to set the frequency to 1.1 GHz in
this scenario, instead of minimum frequency. As the number of ready tasks decreases, idle

59

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

0

10

20
n

.
A

c
ti
v
e

 W
o

rk
e

rs

0 4 4.5 5 5.5 6

1

1.5

2

F
re

q
 (

G
H

z
)

0 4 4.5 5 5.5 6

time (s)

0

50

100

P
o

w
e

r
(W

)

0 4 4.5 5 5.5 6

Figure 4.6: Behaviour of BAR when executing a Cholesky factorization configured as
m ≈ 10000, b = 1024, s = 9, using 20 worker threads and a power cap of
63 W (50% of the TDP). From top to bottom: number of active workers across
execution, frequency set by our approach at each moment, and power consump-
tion measured through RAPL.

workers are blocked, increasing the frequency of the active ones properly. Observe how our
approach is able to always set the maximum frequency as possible, never exceeding the
power cap set.

4.4.3. Scenario I: Power capping for one application

Table 4.2 shows the experimental results of our approach when compared with the other
three approaches previously described, in terms of execution time of the sequential and
parallel phases, and average power consumption. The experiments covered all the possible
values of power caps and frequencies (the table only reports the maximum, minimum and
intermediate values). For the sake of fairness, for each tested power cap, the frequency
chosen for bf-freq was the maximum (between 1.0 GHz to 1.9 GHz) that does not exceed
the power cap in our model.

In terms of performance, all approaches attain similar qualitative numbers, obtaining
the better results as block size decreases, and hence, potential task parallelism increases
accordingly. As described before, large block sizes do not expose enough parallelism to
keep all the workers active (20 workers in the experiments). Indeed observe how, for all the
approaches, reducing the block size obtains better performance than increasing the power
cap (for instance, b = 512 and 60 W, compared with b = 2048 and 90 W). However, in those
scenarios with a high number of idle workers, redistributing the power budget between
active cores can improve performance greatly, as shown later.

60

4.4. EXPERIMENTAL RESULTS FOR BAR

b PCAP Freq
Time (s) - seq. phase Time (s) - parallel phase Power (avg.)

bar
bf

freq
rapl
act

rapl
pass bar

bf
freq

rapl
act

rapl
pass bar

bf
freq

rapl
act

rapl
pass

512

60 1000 3.8 6.7 5.4 3.8 2.1 2.3 2.0 1.9 44.2 51.8 57.0 44.3
66 1300 3.8 5.4 4.9 3.8 1.8 1.7 1.6 1.6 44.8 58.1 61.9 45.4
74 1600 3.8 4.6 4.1 3.8 1.5 1.4 1.4 1.4 46.0 66.0 71.5 46.3
90 1900 3.8 4.0 4.0 3.8 1.2 1.2 1.2 1.2 47.3 74.5 74.6 47.6

1024

60 1000 3.7 6.7 5.4 3.7 2.4 3.6 3.2 2.4 43.3 52.2 57.1 43.5
66 1300 3.7 5.3 4.8 3.7 2.2 2.7 2.6 2.2 44.0 58.2 62.0 44.0
74 1600 3.7 4.5 4.0 3.7 2.1 2.2 2.0 2.0 44.1 66.3 71.9 44.4
90 1900 3.7 3.9 4.0 3.7 1.9 1.9 1.9 1.9 44.7 74.7 74.3 45.1

2048

60 1000 3.6 6.6 5.3 3.7 5.2 9.7 7.7 5.2 37.9 51.2 57.2 38.6
66 1300 3.7 5.3 4.8 3.6 5.2 7.5 6.7 5.2 37.7 57.1 61.6 38.4
74 1600 3.7 4.4 4.0 3.6 5.2 6.1 5.3 5.2 37.8 65.4 72.0 38.7
90 1900 3.6 3.9 3.9 3.6 5.2 5.2 5.2 5.2 38.0 73.5 73.4 38.7

Table 4.2: Execution time of the sequential and parallel phase, and energy consumption
of all the approaches when executing different Cholesky factorization configura-
tions under different power caps. Only representative experiments are shown in
the table, but similar behaviour applies to the rest of the experiments.

From a quantitative perspective, however, some comparative remarks should be noted.
The reported results show how BAR is a perfectly valid and competitive approach,
outperforming the bf-freq approach (the default policy implemented in Nanos++,
and used as our base line) in all the tested configurations, with an average speed up of
1.2×, 1.3 × and 1.4× for b = 512, b = 1024, b = 2048, respectively, and a maximum speed
up of 1.9× (for b = 2048, pcap = 60). rapl-act achieves better results than Nanos++,
as it is able to redistribute the power budget across the active threads. However, as idle
threads are blocked in an active wait, most of the power budget is still consumed by those
threads, not achieving optimal executions in terms of power. Compared with rapl-act,
BAR achieves average speed ups of 1.1×, 1.2 × and 1.2× for b = 512, b = 1024, b = 2048
respectively. In addition, BAR is the best solution in most of the configurations, with a
maximum penalty of 3% in performance in the worst case, as detailed next.

A more detailed analysis of the results yield a number of interesting insights, namely

For the experiments where the power cap is high enough to run all the cores at
maximum frequency during the whole executions (that is, 90 W, 1.9 GHz), all the
approaches obtain similar execution times. This scenario, equivalent to a situation
with no power capping, shows how the blocking mechanism chosen (both in BAR and
in Nanos++), as well as the process used to detect when a worker becomes idle and
active, does not introduce any remarkable overhead in terms of execution times.

When blocking idle workers in an active wait (bf-freq and rapl-act), power con-
sumption keeps constant independently of the number of idle workers (i.e., block size).
However, when idle workers are blocked in a passive wait, the reduction in power con-
sumption is not negligible. Indeed, just blocking workers in a passive wait and not

61

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

60 62 64 66 68 72 74 78 84 90 60 62 64 66 68 72 74 78 84 90 60 62 64 66 68 72 74 78 84 90

Power cap

200

400

600

800
E

n
e
rg

y
 (

J
o
u
le

s
)

BAR

BF-FREQ

RAPL-ACT

RAPL-PASS

m=2048

m=1024

m=512

Figure 4.7: Energy consumption (Joules) for all the different configuration tested.

changing the frequency (e.g., when the power cap is 90 W), reduces power consump-
tion up to 36 % when the number of idle workers is low (b = 512), and up to 40 % and
48 % when the number of idle workers increases (b = 1024 and b = 2048 respectively).

When comparing BAR with an optimal solution (rapl-pass), our approach obtains
similar results in performance. Specifically, for block sizes b = 1024 and b = 2048,
the measured times are exactly the same, while for b = 512, the execution time of the
parallel phase is slightly greater (both for rapl-pass and rapl-act). In the case of
executions with a high number of active workers, the introduction of a small overhead
in the process can, hence, introduce a small increase factor in the attained execution
time.

As discussed before, no overhead was introduced in the process of managing idle
workers, meaning the difference in time is merely caused by the frequency management
process. Indeed, as RAPL bases its decisions on real measurements of the system and
not in power models (as BAR does), the selected frequency at each moment guarantees
the optimal execution. On one hand, basing the decisions on real measurements of the
system allows to have optimal executions without exceeding the power cap. However,
on the other hand, power measurements are usually carried out at the processor level
(not at the core level), being impossible to run scenarios where different power caps
are assigned to different applications.

Focusing on energy efficiency (GFLOPS/Watt), both approaches achieve similar val-
ues, verifying our assumption that there is no overhead introduced by our approach,
and an optimal (more sophisticated) power model would yield optimal executions by
BAR.

In any case, our approach obtains similar results to the optimal solution in most of
the cases, with a minimum speed up of 0.974× in the worst case (b = 512, pcap=60 W).

As described before, the execution time increases as the block sizes increase due to the
absence of enough parallelism to feed all the workers during most part of the execution.
Similarly, as shown in Table 4.2, the average power consumption decreases too as not all the

62

4.4. EXPERIMENTAL RESULTS FOR BAR

workers are active. The amount of power saved compared with the increase in execution time
will ultimately determine if reducing the block size produces savings in energy consumption.
Figure 4.7 shows the total energy consumed by all the approaches in all tested configurations
(different block sizes and power caps). The results show how, in general, reducing the block
sizes achieves the best savings in energy consumption and fastest executions. Same as
before, BAR outperforms the default configuration of Nanos++ (bf-freq) in all cases,
with an average and maximum savings of 46% and 60%, respectively. In particular, observe
how BAR achieves better results in the least favorable scenario (b = 2048, pcap = 60) than
bf-freq for the best configuration (b = 512, pcap = 90). Similarly to the previous results,
BAR obtains similar results than the optimal approach in terms of performance.

As a side note, observe how in this platform, power caps greater than 78 W do not have
any impact on energy consumption, meaning that for those power consumption levels (and
frequencies associated to those power levels), the increase in performance is linear to the
increase in power consumption.

In summary, our proposal is able to detect where workers are idle in the execution,
blocking those idle and redistributing the power budget between the others active work-
ers (in form of frequency increase), improving performance and energy consumption, never
violating the preset power cap. In particular, BAR outperforms the default policy imple-
mented in Nanos++, obtaining an average speed up of 1.3× (with a maximum speed up of
1.9×), and an average reduction of 46% on energy consumption. In addition, BAR achieves
similar results than an optimal approach, where energy measurements, as well as frequency
managements are done autonomously via hardware mechanisms.

4.4.4. Scenario II: Multiple applications with different power caps

The previous scenario explored a configuration where only one application was running
in the system, deploying a worker thread per available physical core. Under this situation,
we showed how BAR is able to outperform the default strategy followed by Nanos++,
and to obtain similar results to an optimal approach using RAPL to dynamically modify the
frequency accordingly without exceeding the power cap set.

However, although RAPL achieves the optimal results thanks to the access to online
power measurements, modern platforms only offer power measurements at the processor
level, making RAPL approach not useful in those scenarios where not all the cores are used,
or the power budget is not distributed equally across workers. On the contrary, approaches
based on power models, as the one embedded in BAR, offer the possibility of estimating
the power consumption per core or per application, allowing to manage scenarios where not
all the cores are used, or not all the power is proportionally shared between them.

To proof the validity of BAR in these scenarios, we run a second round of experiments
where two similar applications (same block size and 10 workers each) share computing re-
sources, each one with a different power cap. Specifically, a first configuration where both
applications are power constrained (33 W and 40 W, respectively), and a second configu-
ration where one of the applications has a power restriction while the second one is not
power-limited (35 W and 45 W)1.

1Note that, in our platform, a power cap greater than 45 W for 10 workers is equivalent to not setting
any power cap at all.

63

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

Pcap1 Pcap2 b
Time app1 (s) Time app2 (s) Energy (J)

bar
bf

freq opt. bar
bf

freq opt. bar
bf

freq

33W
1.2GHz

40W
1.7GHz

512 6.9 9.1 6.8 6.2 6.5 6.0 351.8 440.2
1024 6.9 9.5 7.0 6.4 6.8 6.4 348.8 446.2
2048 8.8 13.6 8.8 8.8 9.7 8.8 390.8 554.0

35W
1.5GHz

45W
1.9GHz

512 6.6 7.4 6.6 6.0 6.0 6.0 345.4 388.7
1024 6.6 7.8 6.7 6.3 6.3 6.3 342.7 389.0
2048 8.8 11.0 8.8 8.8 8.8 8.8 391.8 468.7

Table 4.3: Execution times and energy consumption of two simultaneous Cholesky factor-
izations with different power caps assigned. For each experiment, both factor-
izations are configured with the same block size, and 10 workers each.

Table 4.3 shows the results obtained for bar and bf-freq, together with the results
obtained for an hypothetical optimal approach done through RAPL (opt. on the table).
To calculate the optimal measurements, two applications were run simultaneously using
rapl-act, with double the assigned power cap. Assuming a proportional distribution of
the power cap is done, each application is executed with half of the power cap assigned.
However, note that RAPL cannot provide different power caps to each application, being
only possible to set a global power cap for the whole system.

Similar as before, experimental results reveal how BAR outperforms the baseline imple-
mentation (bf-freq) both in terms of execution time and energy consumption. In addition,
results show how BAR is able to apply different power caps to each application, thanks
to the use of a power model, and therefore, to apply different policies to each application.
This approach, as described before, cannot be implemented by system-wide approaches (like
RAPL), which base their decisions on global measurement, and tune the system (changing
the frequency in this case) in a system-wide mode, instead of per-application or per-core,
leveraging internal application-specific information.

Applying a different power cap to each application can be useful in scenarios where
different requirements exist for each application, in terms of external constraints, or in terms
of resource requirements. However, if no special requirements exist, a centralized approach
considering the power cap as a dynamic resource, instead of performing a static distribution
of it between applications, can increase the overall performance of the system. For example,
consider now the same scenario for rapl-pass, but instead of having a different power cap
for each application, consider an unique power cap gathering both (as the sum of each
individual power cap). Similar to the previous scenario, this definition also guarantees that
the maximum power cap is not violated at any moment of the execution. However, thanks
to consider the power budget as a global resource, a proper and dynamic redistribution of
the budget can be done between applications depending on their resource needs, increasing
the overall performance. Indeed, Table 4.4 shows the results obtained when the power cap is
considered globally in the previous scenarios, and executed using the rapl-pass approach.
Although is not fully comparable, the total execution time is reduced respect to the one
obtained by bar. In general, considering the power limits globally can improve the overall

64

4.5. BACO. RUNTIME SUPPORT FOR INTER-APPLICATION POWER BUDGET
REDISTRIBUTION

Pcap b
rapl-pass

ExecTime (s) Energy (J) Max power (W)

73W
(33 + 40)W

512 6.4 350.5 69.1
1024 6.6 355.1 69.8
2048 8.8 407.6 60.2

80W
(35 + 45)W

512 6.0 346.2 77.6
1024 6.3 344.4 77.2
2048 8.8 403.9 60.0

Table 4.4: Optimal values for the same scenario considering the power cap globally, instead
of assigning an individual power cap to each application.

performance of the applications, as well as the energy consumption. In the following sections
we will extend bar to consider a global power cap, performing a dynamic distribution of
the budget between the applications based on the internal status of each runtime.

4.5. BACO. Runtime support for inter-application power budget
redistribution

In scenarios where multiple applications run concurrently, a distribution of the power
budget across applications is required to not exceed the global power cap. As applications
do not have knowledge about others, granting a fixed amount of budget to each one ensures
that the power limit is never jointly exceeded. In the previous sections we have shown how
a static and asymmetric distribution of the budget between applications can be done to not
exceed the power restrictions imposed. Internally, BAR manages the assigned budget so
that it can be freely redistributed between workers of the runtime to achieve highly efficient
executions.

However, there are situations in which the assigned budget is not fully used by all the
workers within an application (for example, due to a very low number of active workers),
or the distribution done a priori is not the perfect one and needs to be modified at runtime.
In these situations, a considerable amount of power budget can be wasted. Nevertheless,
a dynamic distribution of the power budget between applications can increase the overall
performance of the system, redistributing the power budget not used by an application to
those which can benefit more from it. In this scenario, a centralized resource manager,
aware of the power consumption of each application, is required to properly redistribute
the power budget between the different running applications. We target this problem next,
and introduce BACO, a centralized resource manager able to perform this kind of power
budget redistribution across registered applications.

Next, we propose a two-layer approach to address those scenarios where the power bud-
get of the system is dynamically distributed between simultaneous applications to increase
the overall performance of the system without exceeding the power cap. The first layer
comprises a centralized resource manager (BACO) aware of the status of each running
application; the second comprises all the different running applications, each one armed

65

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

with a BAR runtime. BACO is responsible of distributing the budget dynamically across
applications, and each application is responsible of using the assigned budget optimally.

Decoupling the process of redistributing the budget to the process of using it, provides
an effective method to run multiple applications with different power usage policies. BACO
is based on a continuous and bidirectional communication between the resource manager
and the applications, where applications inform the resource manager about the current
power consumption and desired power budget, and the resource manager communicates to
the applications the assigned power budget at each moment.

4.5.1. Resource manager layer

BACO (the centralized resource manager) is responsible for, based on the knowledge
of each application at each moment, redistributing the unused power budget between those
applications that can benefit most from it. In particular, our proposal is based on two
main ideas: (i) Applications cannot steal power budget from others without permission.
This implies that, if a specific power budget has been assigned to an application, it cannot
be reassigned to other application. Contrary, under our deployment, applications will be
responsible to release and notify to BACO the unused/excessive power budget at runtime,
and (ii) Applications are not delayed. This means that applications are executed as soon
as they are launched. If there is not enough budget to run the application (even with one
worker at the minimum frequency), it is possible to steal the assigned budget from other
applications. This ensures that, independently from the overall performance, the individual
execution time of each application is not extended.

To properly distribute the power budget between applications, BACO internally stores,
for each registered application, a tuple containing the power budget assigned (assigned),
the current power consumption of the application (used), and the power budget requested
(desired), as well as the power budget not assigned to any application (available). The
assigned and available power budget are directly controlled BACO, while the other two
(desired and used) are continuously communicated by each application. Every time an
event occurs in one application (e.g., the beginning or the end of the execution, the power
consumption changes, etc.), the system will use the information stored to redistribute the
power budget between applications.

Based on these parameters, applications are classified in three categories, namely:

1. Demanding applications: Applications that can benefit from receiving more budget,
as they have workers not running at maximum frequency, or even not enough power
to wake up idle workers. This situation arises when desired>assigned. Note that, as
applications cannot use more budget that that assigned, these applications need to
guarantee that used=assigned.

2. Neutral applications: Applications that are using all the assigned budget, but do not
benefit from having more budget. These applications satisfy that desired=assigned,
and used=assigned.

3. Donor applications: Applications that are using less budget than that assigned. In
this case, the exceeding power budget can be redistributed between the demanding
applications to increase the overall performance of the system. These applications are
characterized by used<assigned and used=desired.

66

4.5. BACO. RUNTIME SUPPORT . . . POWER BUDGET REDISTRIBUTION

Every time an event occurs in one application, a communication with BACO is gener-
ated, sending a tuple {used, desired}, and a response from BACO is triggered including
the assigned power budget. In order to determine the new power budget assigned to each
application, the previous classification is used. If the application is classified as neutral,
no changes are done in the budget. If the application is classified as a donor, the assigned
budget is decreased to the actual power consumption, keeping the unused budget as avail-
able. In the case the application is classified as a demanding application, a new budget is
assigned to it based on the desired budget, and the available budget in the system.

Algorithm 4.2 shows the pseudocode of the proposed policy.

Algorithm 4.2: Budget redistribution

1 begin
2 if assigned - used > δ then // Donor app

3 availableBudget ← availableBudget + (assigned - used);
4 assigned ← used;

5 notifyNewBudget(clientId, used);

6 else if |desired-assigned| ≤ δ then // Neutral app

7 notifyNewBudget(clientId, used);
8 else if required - assigned > δ then // Demanding app

9 extraBudget ← min(available, required - assigned);
10 available ← available - extraBudget;
11 assigned ← assigned + extraBudget;

12 notifyNewBudget(clientId, assigned);

13 end

14 end

When an application is launched, an initial power budget is assigned by BACO based
on the amount of budget requested initially by the application and the available budget
unassigned to any application. If not enough available budget exists to run the application,
a redistribution of the budget between running applications is carried out. In the latter
situation, each registered application is requested to free a predefined amount of budget so
that it can be assigned to the new application. The amount of budget released by each
application is calculated supposing an equal distribution of the budget across applications.
If the number of running applications is Napps (including the new application), the amount
of budget released by each application is:

Pcap

Napps · (Napps− 1)
=

(
Pcap

Napps− 1
− Pcap

Napps

)
(4.3)

4.5.2. Application layer

The second layer is composed by all the applications running on the system, each with
a specific power budget assigned ensuring the power cap is not exceeded globally. These
applications are considered to be task-parallel, and are equipped with a Power-Budget-
Aware runtime (e.g. BAR). However, how the power budget is used by each application is

67

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

not specified by the resource manager, letting each application to use it as desired. In other
words, BACO is agnostic to the internal per-application power budget management policy.
Additionally, in order to support a dynamic distribution of the power budget, applications
have to constantly communicate with BACO to inform about the power usage and the
desired budget, as well as to receive the power budget to use at each moment.

Satisfying the previous conditions, we propose the extension of the policy described
in the previous section. On one side, we have demonstrated how it can achieve optimal
executions never exceeding the dictated power budget. On the other side, targeting runtimes
to deal with power consumption and communications with the centralized resource manager
allows us to run any application without any modification.

Similar to the previous section, the communication with BACO can be integrated into
the running loop of each worker, so it is considered as an extension of the BAR runtime.
Every time a worker completes the execution of a task, it checks with BACO if a new
budget has been assigned, modifying the frequency of the active workers, if needed, to the
maximum frequency that guarantees not to exceed the newly assigned budget. Similarly,
every time an idle worker is blocked or woken up, the worker sends to BACO the used and
desired budget.

The used power is determined by the number of active workers running at the moment
and the frequency set used = nIdle · Poweridle + nActive · PowercurrFreq. The desired power
is the prediction of the power used by the same number of active workers, but running
at maximum frequency desired = nIdle · Poweridle + nActive · PowermaxFreq. Those values
heavily depend on the number of active workers, making that, on those moments where the
amount of active workers is low, the unused power can be redistributed to other applications.

4.6. Experimental results for BACO

We present next the results measured in two different realistic scenarios, and compare
them against an optimal state-of-the-art approach. The first scenario comprises executions
of two simultaneous Cholesky factorizations with different block sizes and different power
caps. The second scenario extends it by executing the applications at different arrival
times, overlapping their sequential and parallel phases. For the sake of completeness, we
compare our approach with the RAPL state-of-the-art approach, which applies an homoge-
neous DVFS setup across all cores to never exceed the preset power cap. Finally, the third
scenario simulates a realistic scenario running multiple simultaneous batches of different
applications, each configured with different block sizes and spread over time following a
normal distribution,

4.6.1. Preliminar analysis of BACO performance

Consider the execution trace represented in Figure 4.8, that reports the behaviour
BACO when running two simultaneous Cholesky factorizations (b = 512 and b = 1024)
under a 70 W power cap. The first two plots represent the number of active workers at each
moment, and the power budget requested by the first application (equipped with a BAR
runtime) and the budget assigned by BACO, respectively. The next two plots show the
same information for the second application. The last plot shows the instantaneous power

68

4.6. EXPERIMENTAL RESULTS FOR BACO

0

5

10

n
.
A

c
ti
v
e
 W

o
rk

e
rs

b=512

0 4 4.5 5 5.5 6 6.5 7

0

20

40

W
a
tt
s

0 4 4.5 5 5.5 6 6.5 7

Desired Given

0

5

10

n
.
A

c
ti
v
e
 W

o
rk

e
rs

b=1024

0 4 4.5 5 5.5 6 6.5 7

0

20

40

W
a
tt
s

0 4 4.5 5 5.5 6 6.5 7

Desired Given

40

60

80

W
a
tt
s

System Power

0 4 4.5 5 5.5 6 6.5 7

Figure 4.8: Detailed behaviour of BACO when running two simultaneous Cholesky fac-
torizations (b = 512 and b = 1024) under a 70 W power cap. The first two
plots represent, for the first application, the number of active threads and the
power budget desired by the runtime and the budget assigned by the resource
management. The next two plots show the behaviour of the second application.
The plot on the bottom shows the power consumption of the whole processor
measured through an external component (see Section A.2).

69

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

consumption of the whole processor, measured by an external library (i.e., real measure-
ments are shown here).

Focusing on the reported instantaneous power consumption (bottom plot), we can ob-
serve how the BACO + BAR implementation is able to dynamically distribute the power
budget between the applications, never exceeding the power cap. Also, observe how the
distribution of the budget between applications entails the use of all the available power
during the whole execution, meaning no power was assigned to an application and never
used afterwards. The remaining four plots illustrate the actual behaviour of the applications
and proposed system in terms of the number of active threads and the requested budget to
BACO, and the budget assigned by it to each application. These traces show the general
strategy followed by BACO: granting as much available budget as is requested to each
application, redistributing only the unused budget by any application and not that already
assigned.

Indeed, observe how during the sequential phase, the budget requested and assigned to
each application is the minimum necessary to run one active worker at maximum frequency,
keeping the rest of the budget unassigned to any application, and classified as available by
BACO. As soon as the parallel phase starts, and the applications request more budget, the
available budget is redistributed across applications. In this case, as the second application
arrives first to this phase, the BACO grants all the requested budget to it. Contrary, as
the available budget is lower than that requested by the first application (because it was
assigned to the other application before), only the available budget is assigned, forcing the
application not to run all the workers at the maximum frequency. As the number of active
workers decreases in the second application (and therefore, the desired budget), the system
dynamically redistributes the budget not used to the first application, allowing the runtime
to increase the frequency of the active workers.

As a conclusion, this behaviour shows how BACO is able to dynamically (re)distribute
the power budget based on the current status of the applications, never exceeding the pre-
established power cap, and producing an optimal assignation of if (no unused power budget
is observed).

4.6.2. Scenario I: Different block sizes

In this scenario, we explore the behaviour of BACO when running simultaneously two
Cholesky factorizations of different block sizes under different power caps. Each factoriza-
tion was run with ten workers, mapped to different physical cores (i.e., half of the available
cores). The power caps tested ranges a wide of different values, from 90 W (a value high
enough to run all the cores at maximum frequency during the whole execution) to 60 W
(less than 50% of the Thermal Design Power (TDP)), and intermediate values of 80 W and
70 W (≈ 65% and 56% of the TDP respectively).

Table 4.5 reports the results obtained by our approach (BACO + BAR) and RAPL, in
terms of the execution time of each application (serial and parallel phases combined), the
global energy consumption, the energy efficiency (in terms of GFLOPS/W), and the speed
up of BACO + BAR w.r.t. RAPL. As both applications are run simultaneously, the total
execution time is determined by the slowest factorization (i.e., the one with largest block
size for this specific problem).

70

4.6. EXPERIMENTAL RESULTS FOR BACO

Pcap b1 b2
Time app1 Time app2 Energy (J) GFLOPS/W

SpeedUp
pbacs+
bar rapl

pbacs+
bar rapl

pbacs+
bar rapl

pbacs+
bar rapl

90W
512 1024 6.0 6.0 6.2 6.3 347.3 341.2 0.99 0.97 1.01
512 2048 6.0 6.0 8.9 8.8 412.9 409.1 0.82 0.82 1.00
1024 2048 6.3 6.3 8.9 8.8 409.4 402.9 0.83 0.82 1.00

80W
512 1024 6.1 6.0 6.6 6.3 350.3 346.3 0.97 0.97 0.96
512 2048 6.0 6.0 8.9 8.8 418.1 406.4 0.83 0.81 0.99
1024 2048 6.2 6.3 9.0 8.8 408.3 409.1 0.82 0.82 0.98

70W
512 1024 6.6 6.4 6.9 6.7 358.7 355.1 0.79 0.80 0.97
512 2048 6.0 6.0 9.4 8.9 419.8 427.1 0.94 0.93 0.94
1024 2048 6.2 6.3 9.5 8.9 412.7 427.3 0.80 0.81 0.94

60W
512 1024 6.9 7.4 7.7 7.7 384.5 384.0 0.88 0.88 1.00
512 2048 6.1 6.6 10.9 9.4 431.1 478.8 0.70 0.78 0.87
1024 2048 6.4 6.9 10.1 9.5 423.4 442.7 0.76 0.79 0.94

Table 4.5: Output metrics for BACO + BAR and rapl when executing two simultaneous
Cholesky factorizations with different block sizes, under different power caps.

In general, BACO + BAR achieves optimal results in terms of energy efficiency and
performance, when the power cap is high, decreasing both as the power cap decreases.
Nevertheless, a performance loss greater than 5% occurs only when the power cap is lower
than 70 W (56% of the TDP), being a low enough value not to be used on a realistic scenario.
Besides that, the average speed up achieved by our solution is 0.97 compared with an optimal
solution, with a maximum loss of 13% in time. Similar as in the previous sections, when
no power cap is applied (i.e., pcap≥90 W), both approaches achieve the exact same values,
showing no overhead is introduced by the BACO or BAR integration.

Although both approaches achieve high performance executions without exceeding the
power cap set, observe how the behaviour of both approaches differs, as the execution time of
each individual application varies between approaches. While BACO does not redistribute
an assigned budget until the applications release it, RAPL redistributes the budget uniformly
between all the cores, setting them to the same frequency. For this scenario, both approaches
have demonstrated to be perfectly valid, achieving similar results in both cases. However,
in scenarios where different policies need to be applied individually to each application (for
example, they have different priorities), approaches like RAPL, that base their decisions on
system-wide changes, cannot be utilized.

Targeting energy consumption, the experiments can be classified in two different sets:
experiments where BACO has a slightly greater consumption than RAPL, and the contrary.
The first set comprises the experiments with the highest power caps, and correspond to those
scenarios with an speed up close to 1.0. On the contrary, when the energy consumption
of BACO is lower than the consumption for RAPL, performance also diminishes. This
correlation between energy consumption and speed up, and its relation with the different
power caps, lead us to conclude that our energy model does not estimate perfectly the power
consumption of the lowest frequencies, and a better energy model would produce executions
closer to the optimal one. In addition, the energy efficiency follows the same behaviour as

71

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

20

30

40

50

W
a
tt
s

0 5 6 7 8 9 10 11

Desired

Given

20

30

40

50

W
a
tt
s

0 5 6 7 8 9 10 11

Desired

Given

(a) t=5s

20

30

40

50

W
a
tt
s

0 5 6 7 8

Desired

Given

20

30

40

50

W
a
tt
s

0 5 6 7 8

Desired

Given

b=512

b=2048

(b) t=2s

Figure 4.9: Assigned and desired budget of two different Cholesky factorizations when exe-
cuted concurrently with a 5 (top) and 2 (bottom) seconds delay between them
and a power cap of 60 W. Note that for the first application, the desired budget
is almost identical to the given budget as explained in the text.

the speed up and energy consumption. For the highest power caps, our approach is able
to achieve the same energy efficiency as RAPL, even greater values in some experiments,
increasing the difference when the power cap decreases.

4.6.3. Scenario II: Different application arrival rates

This scenario explores a more realistic situation in which applications do not start
simultaneously, but simulates an environment where multiple users can launch them at
different time points. Contrary to the previous scenarios where there was always enough
budget available to launch both applications (as serial phases matched in time), it can be the
case for BACO to perform a redistribution of the budget, removing some assigned budget
to one application to assign it to a new applications waiting to run. For example, if the first
application is in the parallel phase using all the available budget, and a new application
is launched, a redistribution of the budget between applications has to be performed, as
explained before (see Equation 4.3).

In particular, in this scenario we explore two different points of times at which applica-
tions can start, that cover all the possible cases: t = 2s and t = 5s. For t = 2, it ensures
that the second application starts while the first one is still on the sequential phase, and
therefore, there is enough available budget to start the second one. Starting the second ap-

72

4.6. EXPERIMENTAL RESULTS FOR BACO

plication at t = 5, guarantees that the second application starts when the first factorization
is on its parallel phase, so that it is possible for the resource manager not to have enough
available budget, and needing to steal some budget from the running application to assign
it to the second one and start its execution. Figure 4.9 shows the desired and assigned bud-
get for an scenario where two different factorizations (b = 512 and b = 1024) are executed
concurrently, with a 5 and 2 seconds gap between them (top and bottom respectively) and a
power cap of 60 W. In this scenario, all the power budget is assigned to the first application
as it is started before. As explained before, because there is not available power budget for
the second applications, the required budget to run the second application is removed from
the first one, assigning it to the second, and therefore, avoiding to delay the execution of
the second.

Similar as for the previous scenario, we have explored all the different combinations
of block sizes, and the same power cap values. For all cases, the total execution time of
our approach is equal to the one obtained by RAPL (maximum difference between both
approaches is less than 1%). The same situation happens for the energy efficiency or the
total energy consumption.

On the contrary, as explained before, the execution time of each individual application
differs between approaches. While RAPL does a homogeneous distribution of the budget and
frequency between applications, BACO does not redistribute it until it is not going to be
used any more by the application. From the results, we can conclude that both approaches
are perfectly valid, and useful in all the scenarios. Table 4.6 shows the results of different
experiments in terms of execution time of each application, and the speed up between both
approaches (∆).

4.6.4. Scenario III: A realistic simulation

For the sake of completeness, we have run our system on a realistic scenario, where
different batches of Cholesky factorizations were run simultaneously, simulating a real
system where multiple applications are run concurrently, and the workload varies over time.
On our experiments, each batch was composed by 100 different Cholesky factorizations
spread over time. The delay between the end of a factorization and the beginning of
the next one was randomly chosen following a normal distribution. Specifically, we have
tested our approach running 2 and 4 simultaneous batches, assigning 10 and 5 physical
cores to each batch respectively. To increase the variability of the system, each batch was
configured to run with a different block size, using b = 512 and b = 1024 when only 2
batches were run simultaneously, and 2 × b = 512 and 2 × b = 1024 when 4 batches were
executed. Similar to the other experiments of the chapter, the matrix size was configured
as m ≈ 10000. For each configuration, four different power caps where tested.

For the shake of clearness, consider first the experiment where only two application
batches were run simultaneously. Going in depth in the behaviour of the system, we can
clearly differentiate three different states the system can be:

a Moments of the execution where two applications are executed simultaneously and
both expose enough parallelism (in form of ready tasks) to utilize all the available
resources.

73

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

t = 2s t = 5s

Pcap b1 b2

pbacs+
bar RAPL

∆

pbacs+
bar RAPL

∆
t1 t2 t1 t2 t1 t2 t1 t2

9
0W

512 512 5.97 6.18 6.10 6.22 1.01 5.99 5.99 5.98 5.99 1.00
2048 512 8.84 6.17 8.94 6.20 1.01 8.82 6.08 8.82 6.13 1.01
2048 1024 8.83 6.38 8.89 6.45 1.01 8.83 6.32 8.83 6.32 1.00

80
W

512 1024 5.98 6.42 6.05 6.47 1.01 5.98 6.22 5.98 6.22 1.00
512 2048 5.98 9.00 6.03 9.04 1.01 5.98 8.84 5.98 8.83 1.00
1024 1024 6.20 6.43 6.33 6.49 1.01 6.22 6.24 6.24 6.25 1.00

70
W

512 512 5.97 6.17 6.06 6.22 1.01 5.98 5.99 5.99 5.99 1.00
512 2048 5.98 9.02 5.98 9.04 1.00 5.98 8.82 5.96 8.83 1.00
1024 1024 6.22 6.43 6.26 6.48 1.01 6.19 6.24 6.22 6.22 1.00

60
W

1024 512 6.29 6.25 6.43 6.31 1.01 6.29 5.98 6.25 5.98 1.00
2048 512 9.37 6.40 9.13 6.47 0.98 8.81 6.07 8.83 6.11 1.01
2048 1024 9.24 6.59 9.23 6.82 1.00 8.82 6.30 8.82 6.31 1.00

Table 4.6: Output metrics for BACO + BAR and rapl when executing two simultaneous
Cholesky factorizations with different block sizes and different start points (2
and 5 seconds), under different power caps.

b Moments of the execution where two applications are running simultaneously, but not
all the resources are used. For example, this is the case where one application is in
the serial phase (as only one worker is active), or both applications are in the parallel
phase, but there is not enough parallelism to use all the resources. Clearly, this is the
most frequent state.

c Moments of the execution where no application is run in any of the batches, being
the whole system in idle state.

Those states are clearly represented on the left plot of Figure 4.10, showing the his-
tograms of the instantaneous power consumption measured during the experiments for 2
(left) and 4 batches (right). Each bar represents a different power cap tested (indicated by
the horizontal red line and the labels on the x-axis). Lightest colors represent the most com-
mon power consumption measured over time (in a scale from yellow to dark blue). Darkest
points correspond to punctual measurements related with the noisy nature of the date and
can be ignored.

As observed, in each experiment three different power levels can be distinguished as the
most frequent ones (those marked as a, b and c) corresponding each to the previously states
mentioned. As expected, the plots confirm the state b as the most common one.

Focusing on the evolution of the three regions when the power cap decreases we can
determine how our approaches affects the behaviour of the system. While states b and
c are not affected in any situation as the power consumption of these states are far from
the maximum one, our system needs to limit the power consumption of the system when

74

4.7. CONCLUSIONS

90W 80W 70W 60W

20

40

60

80

100

W
a
tt
s

BAR + BACO

90W 80W 70W 60W

Pcap

20

40

60

80

100

W
a
tt
s

RAPL

a

b

c

a

b

c

(a) 2 lines

90W 80W 70W 60W
20

40

60

80

100

W
a
tt
s

BAR + BACO

90W 80W 70W 60W

Pcap

20

40

60

80

100

W
a
tt
s

RAPL

(b) 4 lines

Figure 4.10: Power consumption histograms for different power caps and approaches. A
lighter color means a most common measurement of that power. Darkest blue
points correspond to noisy measurements and can be ignored.

it is in state a, i.e., when all the resources are used. The plots also shows how the RAPL

approach has a similar behaviour in all the cases. When 4 different batches are run, a
greater number of states appears as the number of combinations between phases of the
applications of different batches can occur, resulting in a greater number of phases visible
in the traces shown in the left of Figure 4.10. Nevertheless, the overall behaviour of the
approaches is similar to the one described before.

Table 4.7 shows the output metrics of all the experiments in terms of total execution time
(in seconds) and average power consumption (in watts). Similar to the other experiments
in the chapter, the results confirm that our approach achieves optimal results, obtaining the
same results as RAPL when launching 2 simultaneous batches, and slightly better results
when 4 are launched. Results for 4 simultaneous batches run under 60 W are not shown as
our approach is not able to run all the applications under the power cap the whole time,
violating the power cap the 4.69 % of the time. Nevertheless, a power cap of 60 W is less
than the 50 % of the TDP, being a low enough limit to not be used in any real system.

4.7. Conclusions

In this Chapter we have explored how traditional resource managers can be extended to
achieve high performance executions in modern platforms where the instantaneous power
consumption is strictly limited. Our approach is based on a light and effective process to
detect idle workers, a passive blocking mechanism with no overhead, and a proper redistri-
bution of the saved power between the active workers in form of an increase in the frequency.
This redistribution of the power budget and the calculation of the frequency to set is sup-

75

CHAPTER 4. POWER BUDGET MANAGEMENT FOR RUNTIME-BASED APPLICATIONS

Time (s) Power avg.

pbacs+
bar RAPL

pbacs+
bar RAPL

90 W 717.8 720.8 53.3 52.8
80 W 726.4 721.8 52.7 52.8
70 W 738.2 732.0 52.3 52.3
60 W 755.0 764.6 51.3 51.1

2 simultaneous batches

Time (s) Power avg.

pbacs+
bar RAPL

pbacs+
bar RAPL

90 W 755.0 820.2 59.1 59.3
80 W 821.5 821.7 58.6 59.3
70 W 829.9 841.8 59.1 58.0

4 simultaneous batches

Table 4.7: Output metrics when running 2 and 4 simultaneous application batches

ported by a conservative power model created from a simple profiling, but proved to be
perfectly valid for the tested scenario. In addition, the profiling of the different tasks makes
the model perfectly valid for other DLA operations. Nevertheless, the proposed strategy do
not actually depend on the model used, being valid for other power models.

The proposed approach has been tested on a real platform, outperforming the default
policy implemented in Nanos++, obtaining a speed-up up to 1.9 (average value: 1.3),
and a reduction in energy consumption of 46% in average. In addition, our approach
achieves the optimal results in performance and energy consumption, similar to RAPL,
which bases its decisions on a real-time power measurements, and a system-wide policy.
Additionally, we have shown how our approach is able to do an asymmetric distribution of
the budget between applications, contrary to RAPL, which has a proportional distribution
of the frequency between all the cores.

Considering a more realistic scenario where not all the applications are similar, or they
are not executed simultaneously, we described how to incorporate a centralized resource
manager to the previous ideas to perform a dynamic distribution of the power budget
between the running applications, assigning the budget not used by one application to
those applications which can benefit from it. This approach have been proved to be
perfectly functional, achieving the same results than the ones produced by RAPL, both in
terms of execution time and energy consumption.

Finally, in the last two Chapters we have shown how the resource management process
can benefit from having knowledge of the status of the runtime to improve different metrics
(execution time, energy consumption, energy efficiency, power capping, etc.), and how this
can be useful for scenarios where multiple applications are running, and how a centralized
resource manager can be useful to orchestrate the different applications. In the next chapters
we extend these ideas to consider not only metrics of the runtime, but also specific metrics of
the running applications, offering a plethora of new opportunities to optimize. However, this
new opportunities makes the decision space hardly manageable by traditional approaches,
needing to incorporate machine learning techniques to handle it.

76

Part II

Application-aware Resource
Management. A Machine-Learning

based approach

77

5

Resource Management for QoS-aware
applications

In Chapters 3 and 4 we have demonstrated how resource managers can include the
knowledge of the internal status of the running applications in general, and of the status
of the runtime task scheduler supporting the execution of the applications in particular.
This approach makes it possible to extend and complement the knowledge of the environ-
ment and system status, as traditional resource managers usually do. In particular, this
extended knowledge allows resource managers not only to exhibit a more precise control of
the environment and to achieve a better exploitation of all the resources exposed by the un-
derlying architecture, but also to optimize the execution based on different metrics offered
by runtime systems (e.g. progress, number of ready tasks, number of idle worker threads
or task-execution-time estimation, among others). In addition, this knowledge can also be
leveraged to perform better decisions on traditional objectives like energy consumption,
execution time or the efficient use of the available resources, among others.

However, although resource managers can potentially exploit information from multiple
sources to optimize both the application execution phases and to improve resource usage,
there is still a considerable number of optimization opportunities that are not usually consid-
ered, mainly due to the absence of a deeper and more specific knowledge of each application
and its internal status.

In this chapter, we propose extending resource managers to consider specific knowledge
of the running applications both in terms of metrics to optimize, and application knobs
that can be potentially exposed and dynamically tuned. Obviously, the exposition of these
new available metrics and knobs naturally entails a huge decision space that can be hardly
managed by traditional heuristic-based approaches. The proposal in this chapters orbits
around the integration of ML approaches (specifically a RL approach) in order to tackle the
increasing complexity in the decision process for resource management. Figure 5.1 shows an
overview of the systems, describing the relation between platform, applications and resource
manager.

The goal of the chapter is two-fold. First, to provide a general overview of a prototypical
QoS-aware application that exposes dynamically tunable knobs and pursues specific output

79

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

kvazaar1

Runtime

sens. knobs

kvazaar2

Runtime

sens. knobs

kvazaarn

Runtime

sens. knobs

core core core core

core core core core

Platform

sens. knobs

RESOURCE
MANAGER

modelsrules logic

FPS
PSNR (Quality)

QP
nThs

Power
Occup.

Freq.
Affinity

Figure 5.1: General overview of the resource manager formulation proposed in this and the
following chapters.

metric values, mainly related with QoS fulfilling. Second, motivating the use of Machine
Learning approaches in order to alleviate the massive decision space generated from mal-
leable applications. As a motivating example, we will employ from now on a motivational
use-case in terms of a QoS-aware highly malleable application: multi-user video transcoding.
This chapter develops a discussion regarding the impact of a proper selection of values for
the exposed knobs for the aforementioned application that will be useful for the development
of Chapters 6, 7 and 8. Specifically, in this chapter:

1. We propose an extended design for resource managers that considers not only infor-
mation from the system, but also metrics obtained from the running applications.

2. We consider malleable applications that expose a number of internal knobs that can be
dynamically tuned, each with a direct impact on a specific system- or application-wide
metric.

3. We demonstrate how this new scenario offers a plethora of new knob combinations that
can be hardly managed by traditional approaches, and describe how a ML approach
can reduce the complexity by means of unsupervised learning. This approach is able
to find autonomously the relations between metrics and configuration parameters.

4. We describe the internals of Q-Learning (QL), and how a generic resource manager
can be formulated to incorporate the Q-Learning approach in its decision process for
generic QoS-driven applications.

Section 5.1 extends the definition of malleable applications, showing how an external
resource manager can handle different application knobs based on specific application met-
rics. We will refer to this approach as QoS-aware resource management. In addition, we
discuss how, in co-scheduling scenarios, applications can benefit from delegating the tuning
of its internal knobs to a centralized resource manager. Section 5.2 provides deep insights of
an example of a malleable and QoS-aware application: HEVC online video transcoding, that

80

5.1. EXPOSING APPLICATION INTERNALS: METRICS & KNOBS

will be used through the development of this and the following chapters; the section also
performs an analysis of the internal and external parameters (knobs) that affect its execu-
tion, and how they are related with different internal and external metrics. It also presents
a detailed motivation for dynamic resource and knob management, arguing why traditional
approaches cannot efficiently handle this scenario. Section 5.3 describes the mathematical
model of a Markov Decision Problem (MDP), and how a resource manager can be formulated
in terms of it. Also, it describes how a Q-Learning algorithm works and how it is able to
find an optimal policy to solve a MDP problem based on a dynamic programming approach.
Finally, Section 5.4 closes the chapter with the main contributions and motivation for the
following chapters.

5.1. Exposing application internals: metrics & knobs

The increase in the number of cores per processor has been a trend of paramount impor-
tance in the evolution of modern processing architectures, becoming the current tendency
(together with heterogeneity) to increase performance in current processors [83]. This rise in
the number of cores allows both the exploitation of intra-application parallelism, and also the
execution of multiple concurrent applications in the same node, exploiting inter-application
parallelism and hence increasing the overall system throughput. In order to boost perfor-
mance, traditional resource managers usually distribute the available cores statically across
applications, by means of sophisticated heuristics based, for example, on a priori profiling,
trying to avoid the co-existence of multiple application instances competing for the same
resources, and hence reducing contention [22].

As we saw in Chapter 4, the behavior of an application is far from being uniform in
resource requirements during its life cycle; even more, even two consecutive instances of
the same application could differ in behavior depending on their input data. Anyway, in
phases where an application does not utilize all the (pre-)assigned resources, those can
be shared with or granted to other co-existing applications, increasing the performance
of the latter without affecting the execution of the former. A clear example arises when
an application (or a thread within) is blocked in Input/Output (I/O) operations [155],
communication points [70], or due to a coupled-application behaviour [204, 203] (typically
producer-consumer relationships between workloads) among others, and has been widely
studied in the past. This behavior also appears on parallel applications with variable work-
loads, and hence needing different amount of resources during their execution, and therefore,
benefiting from a dynamic resource distribution. This scenario has been studied in Chap-
ter 4, showing how a centralized resource manager aware of the internal status of the task
scheduler executing each application can handle this scenario.

In the following, we will use the term QoS-aware applications to describe a class of
applications that do not necessarily need to achieve maximum performance, but to fulfill
a minimum level (quality) in a given metric or set of metrics during the whole execution.
We will refer to these application specific metrics as internal metrics (e.g., quality), and to
those more traditional system-wide metrics as external metrics (e.g., power consumption).
These applications, by their nature, do not need to use all the available resources (even if
they exhibit enough workload to fully use them). For example, video streaming seeds to
provide 24 FPS and not more.

81

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

These resource requirements vary between applications, and range from real-time
requirements in terms of execution time, to energy consumption limits (power capping)
or maximum response time, among others. These applications are of special interest
nowadays in cloud environments, where multiple application instances (equal or different
between them) are simultaneously executed in the same computing node [136]. In this
scenario, the simultaneous quest of an optimal use of resources and a minimum quality
fulfilling in terms of Service Level Agreements (SLAs) has to be provided by the cloud
provider. Usually, the actual use of resources and the value of QoS metrics is highly
sensitive, and can be modified by tuning application specific parameters (called internal
knobs), or system-wide parameters (called external knobs). Each knob can affect one or
multiple metrics, and each metric can be affected by one or multiple knobs. Determining the
best value for those knobs at each execution point is, obviously, far from being a trivial task.

A näıve yet effective way to handle this situation consists of a static distribution of all re-
sources across applications on a pre-execution fashion, together with a proper configuration
of all the application-level knobs in accordance with the resource (pre-)assignment. Once
this distribution is completed, each application will be in charge of utilizing its assigned
resources accordingly to satisfy the established QoS requirements. However, although this
approach is perfectly valid, it presents two major drawbacks, namely:

(a) Resource imbalance. Typically, different applications require different amount of re-
sources. If the resource distribution is not properly performed, some applications will
waste assigned resources, while others will not achieve the required performance due
to the absence of them.

(b) Resource rigidity. As resources are distributed a priori, and the knobs are statically
configured, they need to be set in a conservative fashion, so that the QoS requirements
are fulfilled at the most demanding stage of the application lifetime. If the amount of
work varies, this can imply that stages where the assigned resources will not be used
can arise, wasting resources that could be assigned to other applications.

On the contrary, as we described in Chapter 4, if a dynamic resource distribution is
in place (i.e., not determined a priori, but elastic enough to be varied during execution,
under request), the aforementioned problems can be alleviated. Assigning resources upon
application request does not only avoids the problem of wasting assigned resources, but also
allows the redistribution of resource to other applications that can potentially need them.

However, in order to support dynamic resource distribution, traditional resource
managers have to be extended to be aware of the internal status of all the running
applications and their internal metrics. This extension does not only affect resource
managers, but also applications that need to inform about the current values of the
observed metrics. In addition, if some of those metrics are affected only by internal
knobs, applications should also expose those knobs to the resource managers, so they
will be able to externally modify them together with other system knobs (or external knobs).

The class of applications that can modify their internal knobs dynamically during their
lifetime are usually named malleable applications in the literature. Strictly, the term mal-
leability usually restricts the dynamic nature of applications to only one knob: the number

82

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

of active threads in the application [117]. Thread malleability, also referred as elasticity in
the cloud computing arena, has been of wide appeal in the last years. It has been deeply
studied mainly in terms of dynamic thread variation in the fields of High Performance
Computing (HPC) [53] and multi-cluster systems and cloud computing [31, 33]. Thread
malleability however, can be extended and generalized to other dynamic application knobs.
In the following we extend the definition of malleable application to not consider only the
applications that are able to tune themselves, but also to those that expose their internal
knobs and metrics to be tuned by an external resource manager. The ability of a resource
manager to access to internal application metrics as well as to knobs that directly affect
these metrics allows us to: (i) tune the internal and external knobs by the same resource
manager, being able to discover and learn the relations between knobs and metrics, and
(ii) execute multiple malleable applications at the same time, being able to perform a proper
resource distribution and knobs value selection to avoid situations with multiple applications
competing for the same resources and or wasting resources.

However, the addition of all these new metrics and knobs to the resource managers,
together with the more traditional knob and optimization goals, result in a considerable
amount of knobs to tune and a plethora of scenarios to optimize; its implementation and
efficiency is, hence, a daunting task. Fortunately, Artificial Intelligence (AI) techniques can
be of great appeal to face this complexity burden. In the rest of the chapter we discuss how
a centralized resource manager can be formulated to incorporate AI techniques to tackle all
these problems, dealing with QoS-oriented malleable applications.

5.2. A motivational example: multi-user video transcoding

As explained in Section 1.2, online video streaming services account for 57% of the global
Internet share, and it is supposed to surpass the 80% downstream threshold by the end of
2020 [160]. The increase in the visualization of media contents via streaming, specially the
so called Video On Demand (VOD), has entailed the emergence of new problems for video
providers. As a result of the increasing diversity in video formats, users’ devices (and thus,
media resolution), and available bandwidth, the original media has to be adapted to the
different users via a transcoding process, typically a high resource-intensive process [191,
116].

The typical solution to alleviate this two-stage process used nowadays, consists of
storing multiple versions of the same video in different formats, serving the most suitable
to users on demand. However, given the amount of new video content daily uploaded to
data centers, implies that ad-hoc storage is a costly and inefficient solution. A transcoding
process is a two-phase process, in which the original video is decoded to an intermediate
format to be encoded again with the requested features. In addition, in multi-user
scenarios, video providers’ servers receive multiple simultaneous transcoding requests, each
with different quality or throughput requirements. A promising alternative is real-time
video transcoding, which re-encodes the original video on the fly depending on user’s
requests.

High Efficiency Video Coding (HEVC) has emerged as a feasible solution to alleviate
the exponential growth in network traffic originated both for live streaming and Video

83

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

On Demand, because it provides up to 50 % better compression compared with their
predecessors keeping video quality [144]. This dramatic reduction in bandwidth, however,
entails a proportional increase in computational complexity, shifting the wall from network
performance to video providers’ servers in terms of both performance and energy consump-
tion. Regarding performance, the efficiency with which servers can handle the increase
and variety in user requests, dynamically managing internal resources to meet quality
requirements without unnecessarily wasting computing resources, is key to maintain a
proper user QoE [142] under a reasonable resource usage. Regarding energy consumption,
meeting restrictive per-server power capping thresholds to maintain data center energy
consumption under control is also of capital importance for providers [192]. While
mechanisms exists that force tight power capping thresholds (e.g. Intel RAPL on Intel Xeon
servers) [138], the use of application-aware power capping mechanisms can greatly improve
the efficiency –performance delivered under the cap– and timeliness –response time after a
new cap is enforced– [202], as we show in the previous chapter.

Many modern video transcoding standards, including HEVC, expose a number of
dynamically tunable knobs with different implications in resource usage and attainable
Quality of Service, converting these applications into QoS-aware and malleable applications.
Similarly, modern techniques exposed by hardware also have considerable impact on appli-
cation throughput and power consumption. Hence, a proper selection of application-side
and system-level parameters to simultaneously fulfill QoS requirements of clients while
optimizing resource usage becomes a challenging task to increase the productivity of the
underlying computing platforms. Focusing on HEVC as the de-facto standard for video
encoding, the bottleneck for achieving real-time transcoding is the encoder complexity,
which is approximately 100× higher than that of the decoder [29]. Moreover, the numerous
parameters available for adjusting the output quality and throughput add extra complexity.
Finally, dealing with multi-user environments, where multiple different encoding requests
have to be fulfilled simultaneously, and dynamic video contents poses other challenges on
video providers’ servers. Thus, we exclusively focus on resource management to HEVC

encoder in order to optimize performance and energy of the servers while providing the
required per-user QoS and QoE. However, the development of a holistic, autonomous
resource management scheme to simultaneously adapt application- and system-wide knobs
with real-time requirements is far from being a trivial task, as shown next.

All in all, multi-user video transcoding is a real application of wide appeal to develop
and integrate our ML-based resource-management proposals, mainly due to the following
characteristics:

Real-life application: Multi-user video transcoding is not a synthetic benchmark, but a
real-life application widely used nowadays worldwide, and with a good perspective to
be further implemented in the future.

QoS awareness: Tight limits in application-level metrics –throughput, quality or compres-
sion ratio (see Section 5.2.1)– require a careful selection of application-level knobs, and
hence derive complex resource management schemes.

84

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

Dynamic application-level knobs: Modern video transcoders usually include a number
of dynamically modifiable parameters (knobs) that can be selected and modified au-
tonomously or externally by resource managers to adapt QoS with direct implications
on application metrics and system-wide resource usage.

Dynamic system-level knobs: Modern servers in which video transcoding processes are
usually deployed also exhibit a number of architectural knobs that can be modified at
runtime to adapt or limit application- and system-wide metric limits (e.g. throughput
or power consumption, respectively); per-core Dynamic Frequency-Voltage Scaling
(DVFS) or power capping mechanisms are just two examples of such system-level
knobs.

Restrictions at system-level metrics: as for application-level metric limits (to fulfill
QoS), the imposition of system-wide limits shared by all applications is usually in
place and imposes an additional difficulty in resource management.

5.2.1. Output metrics, Application- and System-wide knobs, and QoS in HEVC

A generic HEVC encoder (and typically any modern encoder) is built on top of different
processing blocks, each of which has multiple input tunable parameters or knobs, and is
characterized by different metrics related to both the output file and the performance ob-
tained during the encoding process. A modification on any of those parameters affects the
behavior of the encoder in terms of one or multiple output metrics, and features system-wide
collateral effects (e.g., chip power consumption [97] or socket occupation, among others).

Application-level metrics:

Among all the set of different metrics available, those that best represent the behaviour
of the encoding process, and therefore, the most studied in the literature are:

Frames per second (FPS). Measures the throughput of the encoding process, and repre-
sents the overall performance of the system. An encoding process is considered real-time if
the process is able to encode above 24 FPS (defined in the NTSC standard [129]), or 60 FPS
(in the latest standards) [85]. The throughput of the process is highly affected by the overall
performance of the physical system, but also by the desired quality of the output sequence
and the contents of sequence being encoded (texture and motion).

Peak signal-to-noise ratio (PSNR). Relation between the original data and the noise in-
troduced in the encoding process, measures the quality of reconstruction. A value between
30 and 50 dB for lossy compression codecs (as HEVC) represents an acceptable quality for
the human vision, being the greater the best [194, 78]. Peak Signal-to-Noise Ratio (PSNR)
is measured on a frame-to-frame basis.

Bitrate. Measured in Mbits/s determines the compression level of the output sequence.
For streaming purposes, this value should be lower than the bandwidth offered by the
standard technologies used nowadays (3G bandwidth ranges from 2 Mbits/s to 6 Mbits/s,

85

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

while 4G technology offers a bandwidth from 7 Mbits/s to 17 Mbits/s) [21].

Video format and, most importantly, specific video contents play a key role in the
attained throughput, video quality and compression, and also in the instantaneous power
consumption. Since video contents may differ on a frame-to-frame basis without any pre-
defined pattern, encoding parameters should be regularly adapted (ideally, frame by frame)
for Quality of Service (QoS) optimization under a limited power budget.

System-level metrics:

Systems offer a plethora of different metrics to consider and optimize, some of them
related with the running applications (e.g., number of cores in use limits the parallelism of
the applications), and some of them independent (e.g., temperature). The most important
metrics, broadly studied in the literature are:

Power consumption. Of special interest in embedded systems [42] and cloud environ-
ments [4]. Power consumption is directly related with the resource usage and the frequency
processors are running. Modern hardware exposes power measurements to the running soft-
ware [13] allowing resource managers to tune it via software-defined strategies (e.g. power-
save governor), or hardware-based policies (e.g., RAPL [50]) as described in the previous
chapter.

Core occupation. This metric represents the number of cores in used at each moment.
This metric can be considered as an optimization goal (to minimize the resource usage), or
can be used by resource managers to take better decisions as other metrics and knobs are
directly related with it (for example, power consumption is highly influenced by the number
of active cores, or the effective frequency when turbo mode is enabled is also determined by
this metric).

Temperature. Multiple works, like [49], [96] or [97], consider this metric as an optimiza-
tion objective, trying to achieve maximum performance without exceeding a thermal limit.
Although this metric is not considered in the following, the ideas presented in this thesis are
generic enough to incorporate temperature to the problem formulation without additional
efforts.

Application-level knobs:

Since its introduction in 2012, several implementations of the HEVC encoding standard
have been proposed, from the non-real-time HM Test Model [27] as the reference software,
to Kvazaar [186] and x265 [8], both of which are able to provide real-time HEVC encoding
through parallel processing and architectural-aware adaptations at different levels. In this
thesis, we consider the Kvazaar open source encoder as the baseline of our investigation, as
it achieves faster multi-threaded transcoder compared to x265 [109] and it is a clear example
of a highly optimized and dynamically tunable HEVC encoder. Each basic building block in
Kvazaar (similarly to other HEVC encoders) is parameterized by means of input knobs with
application-wide impact (e.g., throughput, encoding quality or compression among others)

86

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

Pool of threads

Figure 5.2: Wavefront parallel processing order, and its associated task dependency graph.

and/or system-wide effects (e.g., power consumption). Some of them must be decided and
statically fixed a priori with no option for runtime modification (for example the preset
selection); others can be modified, with different granularity, at runtime (e.g., Quantization
Parameter (QP), or Number of Threads used to codify each frame1). We will refer to them
as static and dynamic knobs, respectively, following the idea proposed in [87]. Moreover,
not all dynamic knobs have the same impact on the encoding process, so that it is not
necessary or feasible to tune all the available ones, but only those with a highest impact
on the output Frames Per Second (FPS), quality, bitrate and/or power consumption. After
an exploration of all the different knobs, and the impact of each of them on the considered
metrics, we have limited the scope of our proposal to those with the largest impact on the
output quality and performance. However, our proposal can be mapped to other knobs
with minimal changes.

Quantization Parameter (QP). Dynamic knob in charge of the quantization degree per
frame [169]. QP plays a significant role in output quality and can be tuned on a frame-to-
frame basis at runtime [97, 95, 137]. Traditional approaches, as Huang et al. [89], Biatek
et al. [23], or Czuni et al. [48] among others, have worked on proper QP estimation and
selection of the ideal QP value of each frame, mainly based on the differences of content
between frames.
Quantization Parameter (QP) does not only affect quality, but also has a significant effect
on FPS and bitrate. Decreasing the QP value increases the obtained quality at expense
of a more demanding codification process, and therefore, affecting negatively to FPS and
bitrate. QP values of 22, 27, 32 and 37 are suggested by JCT-VC [28] to yield desirable
quality. However, even with this knowledge, the optimal value is still unknown to meet the
required PSNR, bitrate, FPS, and power budget at runtime. The optimal QP varies between
frames due to inter- and intra-video variations, and its adaptive selection is still a subject
of detailed study in the literature [82, 207].

Thread parallelism in HEVC. A key feature of Kvazaar that enables real-time encoding is
Wavefront Parallel Processing (WPP) [169]. WPP divides each frame into different rows and
blocks which are processed in raster-scan order (i.e., for processing one block, the blocks
above and the block on its left have to be processed in advance). Kvazaar implements this
technique following a task-based parallel paradigm, building an implicit graph with all the

1The capability of modifying the amount of threads on a frame-to-frame basis has been added in the
framework of this thesis and is not part of the standard Kvazaar release.

87

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

0 20 40 60 80 100

FPS

34

38

42

46

P
S

N
R

 (
d
B

)

uf vf m vs

QP=27

QP=32

QP=37

QP=22

(a) Preset and QP impact on FPS and quality
using 6 threads

0 20 40 60

FPS

55

60

65

P
o
w

e
r

(w
a
tt
s
)

uf vf m vs

2 ths

1 th

3 ths
...

6 ths

(b) Preset and N. Threads impact on FPS and
power with QP=22

Figure 5.3: Preset, QP and number of threads impact when encoding the Quarterback
1080p sequence (see Table 6.2). All the experiments are encoded at 2.0 GHz.
The legend represents different values for the preset knob: uf=ultrafast,
vf=veryfast, m=medium, vs=veryslow.

dependencies between the blocks. When a block is processed, its output dependencies are
released, and possibly new blocks can be processed as soon as their input dependencies are
satisfied.
In order to provide runtime support to the execution of tasks and to exploit the potential
data-flow parallelism, a pool of worker threads is deployed upon initialization. When a
thread finishes to process a block, it checks whether there is a new block with no dependen-
cies to be processed. If there is none, it remains in idle status until new blocks are released.
To support dynamic number of threads, Kvazaar implementation was modified to block or
wake up the number of threads dictated by the dynamic knob before the codification of each
frame, offering a dynamic number of threads at each frame with no overhead. Figure 5.2
summarizes this process.

Preset. Present in many HEVC encoders, ultimately sets the value of internal knobs before
execution. Kvazaar, for example, offers 10 different preset values, ranging from ultrafast,
to medium or ultraslow configurations. The selection of a preset ultimately means the
configuration of 24 different knobs (both static and dynamic) before the execution, offering
different trades-off between quality, throughput and compression.
Given that the preset selection determines the value of the static knobs, the preset
selection, together with the possible values of the dynamic knobs, will ultimately determine
the range of the output metrics. Figure 5.3 shows the range of different output metrics
when a 1080p sequence (described later in Table 6.2) is encoded with different presets
and dynamic-knob configurations (QP and number of threads). Observe, for example, how
even PSNR is mainly determined by the QP value, although the other static knobs set by
the preset have also a slightly influence on the quality obtained. Among all the presets,
ultrafast provides trade-offs supporting all the interesting range of FPS and PSNR at a lower
computational cost. So, we will use it in the following.

88

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

System-level knobs:

Similar to application-level knobs exposed by HEVC encoders, modern multi-core archi-
tectures on which they typically run also expose a number of system-level dynamic knobs,
ranging from traditional frequency scaling techniques, to newer power control mechanisms
like processor turbo mode or dynamic power capping. Its proper selection offers trade-offs
between power consumption and performance, and a proper adaptation to variable work-
loads with imposed resource limits. Similarly to HEVC knobs, we have limited out study
to those dynamic knobs with the highest impact on the encoding process, but additional
knobs can be incorporated into the formulation with minimal changes. These system-wide
knobs include:

Dynamic Voltage-Frequency Scaling (DVFS) [32]. Mechanism to dynamically select the
operating frequency of the processor, typically done through voltage modifications at the
hardware level, and supported by specialized drivers at the operating system level. This
technique is commonly used for reducing the dynamic power consumption [63, 9]. On
modern processors, the selection of the frequency is done at the core level, allowing to have
different cores running at different frequencies on the same processor. Usually, changing
the frequency from the operating system has a negligible overhead of ≈10 µs on a modern
server-oriented processor. Changing the frequency has direct implications on performance
but also on power consumption [107].
However, the selection of the proper frequency at each frame is not a trivial task, and heavily
depends on a correct and precise estimation of the performance and energy consumption of
each frequency and the content of the frame being encoded. Previous attempts as [131, 132]
have tried to model this trade-offs based on previous profiling of the architecture. However,
due to the complexity of creating the model, ML techniques have arisen as a promising
solution [181].

Dynamic power capping. On modern processors, the instantaneous energy consumption
can be estimated based on internal hardware events and read by the running software. Hav-
ing access to the underlying energy consumption allows to consider the power consumption
as a knob that can be tuned dynamically. Modern Intel processors offer automatic power
capping done by the RAPL mechanism, which allows to set a maximum energy consumption
in short and large term. Internally, the capping is done by the hardware using Dynamic
Voltage-Frequency Scaling techniques. However, in platforms where this mechanism is not
present, or an application-specific power capping is needed, the limitation of the power
consumption has to be done via software as shown in Chapter 4. Traditionally, power cap-
ping has been done using detailed models [16, 98] (as we explored on previous chapters), or
reactive heuristics (like [75, 79]). In this thesis, we explore a third alternative based on the
extraction of those models and rules through an automatic machine learning process.

TurboBoost management. Modern Intel processors (including all the i3 - i9 and Xeon
families manufactured since 2008) incorporate the TurboBoost feature that allows to raise
operating frequency on a per-core basis when demanding tasks are running, boosting
performance under specific application requirements [158]. The frequency is accelerated
above the normal operational frequency and is limited by processor’s power, thermal limits,

89

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

Num. active cores
Freq. Base 1-2 3-4 5-8 9-12 13-16 17-20

Normal 2.0 3.7 3.5 3.4 3.2 2.9 2.7
AVX2 1.6 3.6 3.4 3.2 2.7 2.5 2.3
AVX512 1.3 3.5 3.3 2.7 2.3 2.0 1.9

Table 5.1: Effective TurboBoost frequency on makalu (see Section A.1). The Turbo fre-
quency is ultimately determined by the number of cores in use and the instruc-
tion set used by the applications.

ApplicationsApplicationsApplications System Resource
 Manager

Metrics

Knobs

FPS,
PSNR,
Bitrate

Power, temp,
core occup.

DVFS, Power
Capping, ...

N. Ths,
QP, Preset

Figure 5.4: Our proposal: A centralized QoS-aware resource manager for malleable appli-
cations.

number of cores in use, and the type of vector instructions delivered [94]. Table 5.1 shows
the effective frequency of TurboBoost on an Intel Xeon Gold 6138 CPU2, (the one used
later in the experiments), and how it varies depending on the number of active cores and
the instruction set in use.
As the resulting frequency will depend on the status of all the socket, an individual
application cannot predict the effective value of the turbo frequency by its own, so the
management of the turbo frequency by a centralized manager aware of the status of the
whole socket is needed. In addition, the activation of turbo frequency by an individual
application can entail a negative impact on other applications relying on turbo frequency.
Thus, applications need to use turbo frequencies in a restricted and intelligent way,
considering a full view of the system usage. This situation adds an extra challenge in
runtime frequency management, and shows how a global resource manager can be useful
to solve this difficulties.

Figure 5.4 shows a general diagram of our approach, showing how a centralized resource
manager is fed with metrics from applications and system status, and tunes the appropriate
system- and application- knobs.

5.2.2. Motivation for dynamic resource and knob management

The development of a proactive, self-adaptive policy for resource management in a multi-
user environment with multiple video requests is motivated by two main intrinsic charac-
teristics of this kind of application, namely: (i) intra-video requirement variations (due to

2https://en.wikichip.org/wiki/intel/xeon_gold/6138. Last visit: Sep 2020

90

https://en.wikichip.org/wiki/intel/xeon_gold/6138

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

100 200 300 400 500

Frame

20

30

40
F

P
S

Low Resolution High Resolution

Figure 5.5: Timelines representing the FPS of the same sequence (QuarterBackSneak) with
different resolutions: High in black (1280× 720) and Low in blue (832× 480),
when encoding with the same knobs (3 threads at 1.5 GHz, setting QP=22 and
preset=ultrafast). The discontinuous red line represents the real-time threshold
(24 FPS).

changes in the content), and (ii) inter-video interactions (both in terms of different video
requirements and the variable number of running applications).

Let us illustrate this fact in terms of actual throughput (reported as Frames Per
Second), extracted on makalu (see Section A.1), a real platform later used for the
experiments, for different scenarios (varying resolution and number of concurrent encoding
processes) using a static resource assignment.

Intra-video requirements variability (due to content variation). The black line in Fig-
ure 5.5 reports a timeline of the observed FPS of a complete transcoding process of a High
Resolution (HR) video (QuarterBackSneak, see Table 6.2) using static computing resources
(3 threads at 1.5 GHz, QP=22 and preset=ultrafast). Considering a target throughput of
24 FPS [129] (red discontinuous line on the plot), the video contents ultimately determine
the instantaneous FPS attained. Consider, for example, the timeline between frames 200
and 350, in which the computing resources are sufficient (or even wasted) to fulfill real-time
encoding. However, between frames 0-100, or 400-500, the same resources are not enough,
resulting in frequent QoS violations. This is a very common situation, and demonstrates
how intra-video computing requirements vary depending on the specific video contents or
complexity, and how a strategy trying to determine a priori the resources needed by an
encoding process is not feasible.

Inter-video requirements variability (due to different resolution). Figure 5.5 shows the
FPS obtained for the same video sequence with two different resolutions: High and Low
resolution (black and blue lines, respectively) using the same values of knobs -number
of threads, frequency and QP-. While the low resolution video transcoding process can
achieve real time transcoding (i.e., 32.5 FPS on average), the high resolution video suffers
from frequent QoS violations (i.e., 25.5 FPS).

91

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

100 200 A 300 400 500

Frame

10

20

30

40

50
F

P
S

1 HR video 6 simultaneous videos

Figure 5.6: Timeline representing the instantaneous FPS of one High Resolution video
(QuarterBackSneak) running with 3 threads and QP=22 at turbo frequency.
Until point A, the video is encoded alone. From that point on, it is encoded
simultaneously with other 5 videos (3 threads each). Each video is encoded on
independent physical cores.

Inter-video resource contention (due to changing number of requests). Figure 5.6 sim-
ulates a situation in which an on-going isolated transcoding process with fixed assigned
resources has its FPS diminished upon the appearance of other independent transcoding
processes (point labelled as A in the Figure). The same sequence as that in Figure 5.5
is encoded with the same knobs, except that in this case turbo frequency is used. When
the process is executed in isolation, the FPS is much higher than required; but as soon
as other transcoding processes appear in the server, and although each process is mapped
to independent cores in the experiment, the achieved FPS is dramatically reduced. The
attained throughput is thus highly sensitive to both general video characteristics, associ-
ated assigned resources and machine occupation. This type of scenario results in wasted
resources when the process runs alone and constant quality of service violations when the
server is loaded. Obviously, some of the resources could have been distributed to accom-
modate all six processes. In this situation, an increase in QP, for example, could balance
throughput and quality. This combined decision, however, is not trivial and must be taken
in an holistic/integral way.

5.2.3. Necessity of Machine Learning for multi-user video transcoding

Once motivated the plethora of different decisions and factors that can affect throughput
and quality in our scenario, we illustrate next the necessity of a machine learning-based so-
lution to tackle the complexity and size of the decision space. Figure 5.7 gives a quantitative
and qualitative overview of the amplitude of the design space considering QP, number of
threads and frequency for the encoding of a single video (FourPeople, see Table 6.2). Each
point represents an execution of the video with a different knob configuration (determined
by the three axis). The average FPS of each encoding process is represented by the color
the point is filled. The different plots shown in the Figure represent a different encoding
scenario under a specific power cap and throughput constraints. Each colored point in the
figure represents a valid solution, with different throughput (from 24 FPS in dark blue to
more than 80 FPS in red), power and quality; colorless points represent solutions where
power or throughput constraints are violated. Observe how areas in which both QoS and

92

5.2. A MOTIVATIONAL EXAMPLE: MULTI-USER VIDEO TRANSCODING

(a) FPS≥24 and POWER≤63 W

22

6

5

4

N
. T

h
re

a
d
s

2
3 1.8

Freq (G
Hz)1.6

2 1.4

1.2
1 1

27

Q
P

32
37

25

35

45

55

65

75

85

F
P

S

(b) FPS≥60 and POWER≤63 W

(c) FPS≥24 and POWER≤57 W

22

6

5

4

N
. T

h
re

a
d
s

2
3 1.8

Freq (G
Hz)1.6

2 1.4

1.2
1 1

27

Q
P

32
37

25

35

45

55

65

75

85

F
P

S

(d) FPS≥60 and POWER≤60 W

22

6

5

4

N
. T

h
re

a
d
s

2
3 1.8

Freq (G
Hz)1.6

2 1.4

1.2
1 1

27

Q
P

32
37

25

35

45

55

65

75

85

F
P

S
(e) FPS≥24 and POWER≤53 W

22

6

5

4

N
. T

h
re

a
d
s

2
3 1.8

Freq (G
Hz)1.6

2 1.4

1.2
1 1

27

Q
P

32
37

25

35

45

55

65

75

85

F
P

S

(f) FPS≥60 and POWER≤58 W

22

6

5

4

N
. T

h
re

a
d
s

2
3 1.8

Freq (G
Hz)1.6

2 1.4

1.2
1 1

27

Q
P

32
37

25

35

45

55

65

75

85

F
P

S

Figure 5.7: Average FPS for all combinations of QP, number of threads and frequency
for three different values of power capping, when encoding the HR sequence
“FourPeople”. Colorless points represent knob combinations not satisfying the
constraints. In the experiment, idle cores were set at 2.0 GHz.

93

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

QP N. ths Freq (GHz) FPS Power (W) PSNR

≈
24

F
P

S

37 1 1.8 25.9 54.2 36.4
32 2 1.0 24.0 49.3 38.9
27 2 1.2 24.9 52.6 41.3
22 3 1.4 25.3 55.0 43.4
22 5 1.0 25.1 54.3 43.4

≈
60

F
P

S

32 3 2.0 60.2 58.1 38.8
27 4 2.0 60.8 59.5 41.3
32 5 1.6 60.7 57.6 38.8
37 6 1.4 60.8 57.3 36.4

Table 5.2: Feasible knob combinations producing near-24 FPS (top) and near-60 FPS (bot-
tom) encoding on average, and impact on the other output metrics.

power restrictions are met (FPS ≥ threshold and power < power cap) grow larger as power
capping is relaxed, yielding more potential knob combinations.

Consider the left side plots in Figure 5.7, which correspond to different executions with a
24 FPS throughput constraint and different power caps requirements. The dark blue points
represent, between all the valid configuration that satisfy both constraints, those which are
closer to 24 FPS. Table 5.2 summarizes different assigned resources and output metrics
(averaged for the complete execution). Thus, for the best quality the chosen knobs would
be QP = 22, 5 threads and 1 GHz, while the lowest power solution would be QP = 32, 2
threads and 1 GHz. Plots on the right shows the solutions when the throughput constraint
is set to 60 FPS (the standard value used nowadays) [85] and the power requirement varies.
Observe how, when the requirements change, the optimal configurations differ considerably
from previous one: the maximum quality is obtained when using 4 threads, QP = 27, and
2.0 GHz, while the execution with the lowest power consumption uses 6 threads, QP = 37
and 1.4 GHz. Observe how for the same problem, different solutions that satisfy both
constraints exists, each of them optimizing different optimization goals (e.g., minimize power
consumption or maximize quality).

The results above change for the different frames of the video, depending on video
contents. Let us assume an encoding process with support for Nenc different encoding
knobs values and Nsys different system parameters (e.g., frequency), which can be tuned
at runtime, at a frame granularity. Consider now the encoding of a t-second video at
a frame rate of Fr: in order to find the best encoding configuration for that frame,
Nenc × Nsys × t × Fr profiles should be statically obtained. For instance, 4 QP values,
5 number of threads values, and 10 DVFS values, for a 10-second video at a frame rate
of 24 FPS, would yield 48 000 combinations to obtain the optimal encoding configuration
and DVFS settings for the video, which gives a hint of the complexity of the brute-force
approach.

In summary, simultaneously dealing with: (i) performance restrictions, (ii) energy
consumption thresholds, (iii) the increasing complexity of video encoders, and (iv) the
dynamic nature of multimedia material and user requests is, obviously, a challenge for video

94

5.3. REINFORCEMENT LEARNING-BASED FORMULATION FOR RESOURCE
MANAGEMENT

providers that needs to be addressed. In addition, configuring the encoding parameters is
dramatically more challenging when considering multiple concurrent videos running on a
server, in a so-called multi-user video transcoding. First, the inter-video resource contention
impacts the throughput obtained by the independent encoding processes. Second, the
power constraint may not let all encoding processes run at their own optimal configuration
simultaneously.
Tackling these problems in a holistic, combined and automatic fashion will become
mandatory in the next years. A few previous works, such as [104] and [3], have modeled
the output and complexity of an HEVC encoder as a function of a few encoding parameters
by exhaustive profiling of the application. However, these models only take into account a
reduced number of output metrics, ignoring the impact on QoS and output throughput [97].
Moreover, since the contents of other videos may be completely different, such an exhaustive
static profiling needs to be performed or each video instance in order to obtain the best
combination of video quality and compression. The approach is, thus, neither practical nor
feasible for real-time video encoding.

Machine learning techniques are able to consider complex, and sometimes hidden, in-
terrelations of encoding parameters on any arbitrary platform along with video contents.
This, however, requires a model-free learning algorithm, as provided by Reinforcement
Learning (RL) in general, and the Q-Learning (QL) algorithm in particular, as described in
the following section.

5.3. Reinforcement Learning-based formulation for Resource
Management

The resource management scenario described in the previous sections can be mathemat-
ically modeled as a Markov Decision Problem (MDP). A Markov Decision Problem [20, 5]
is a mathematical framework for modelling decision making problems in stochastic envi-
ronments. A MDP= (S,A,P,R) is defined by a finite set of states the system can be at
each moment of the execution, S, a finite set of actions, A, that can be applied to the
system and can produce a change in the state the system is, a set of probability func-
tions P = {Pa(s, s′) : S × S × A → [0, 1]} which determine the probability of moving
from one state (s) to another (s′) after taking an action (a), and a set of reward functions
R = {Ra(s, s′) : S × S × A → R} which define how good or bad was the transition s→ s′

due to action a.

At each step of the process, the system in a specific state s chooses any action a that
is available in state s. On the next time step, the process moves randomly to a new state
s′, and gives the system the corresponding reward associated to that transition Ra(s, s

′).
The destination state s′ is determined by a random factor (dependent on the environment)
modeled by the probability functions P that comprises the formulation. Observe that
the destination state s′ depends only on the probability functions, the current state s,
and the chosen action a, but never on previous events. It means that a MDP makes the
decisions based on the information of the current and future states, but never based on
the previous states it has visited (i.e., a MDP satisfies the Markov Property). Although
the mathematical formulation allows to have a different set of actions at each state (As),

95

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

traditional approaches assume that all actions are available in all states (As = A, ∀s ∈ S),
giving very low rewards to those actions which cannot be applied in specific states, meaning
that those pairs state/action cannot be explored.

Translating this formulation into a Resource Management context, every time an
event occurs in the system and the resource manager needs to act (called step in the
original formulation), the resource manager has to decide which are the best values
for all the knobs (actions), based on the values of the different metrics measured at
each moment (state of the system). Once the resource manager takes an action, the
output metrics of the application and system will be affected by the new knob values,
moving the system to a new state. The new state will be ultimately determined by the
knob values but also by the stochastic behaviour of the application and system, having
to formulate these transactions through a set of probability functions (P) depending
on the current state and knob values, similar to the MDP formulation. However, the
definition of states and actions based on the output metrics, as well as the definition of re-
ward functions based on the optimization goals of the resource manager is not a trivial task.

The final goal of a Markov Decision Problem (MDP) is to find an optimal policy π(s)
which maximizes the expected accumulated reward when transitioning through the system.
For a resource manager, the policy which better meets the optimization goals. Once this
policy π(s) has been found, the system will move through the different states taking the
actions dictated by π(s). Note that this definition entails that if the system is provided
with different reward functions, the obtained policies will be different, even if the state
and action definition are kept constant. Theoretically, it is possible for any system to find
the optimal policy π(s) by an infinite-time process. However, due to the infinite nature of
the formulation, different solutions have been developed to find policies π′(s) as close as
possible to the optimal one in a finite number of steps. In addition, in most real problems,
determining the probabilities or rewards that define a specific MDP is not an easy task, being
in most of the cases unknown, or estimated from noisy observations. To find the policy π′(s),
multiple approaches have been proposed in the past, from Dynamic Programming [157] to
Reinforcement Learning [161] approaches. In the following, we will focus on Q-Learning, as
a Reinforcement Learning method to solve the problem.

5.3.1. Reinforcement Learning: Q-Learning

Reinforcement Learning (RL) is an area of Machine Learning (ML) which can tackle
the problem of finding an optimal policy π(s) for a MDP where the probabilities or
rewards functions are unknown. Unlike other Machine Learning approaches, Reinforcement
Learning is characterized by not needing labelled input/output pairs. Instead, the
learning mechanism is based on an exploration of the solution space, building the solution
progressively, while the different possible pairs state/action are classified from exploration
states (the learning process is still learning the policy for that pair) to exploitation (when
there is a final policy for that pair). Due to the exploration nature of RL, it makes all the
RL algorithm family ideal for problems where the only way to collect information about
the environment is to interact with it, and not to read it from a dataset.

96

5.3. RL-BASED FORMULATION FOR RESOURCE MANAGEMENT

Specifically, Q-Learning (QL) [159] has been proved as a valid Reinforcement Learning
algorithm able to find the optimal policy following dynamic programming techniques [171].
Q-Learning is a model-free algorithm which can handle problems with unknown stochas-
tic transitions based on an infinite-time exploration of the transitions between states when
different actions are applied based on a partially-random policy of choosing actions. In addi-
tion, it is exploration-insensitive, thus, more suitable for practical problems [100]. However,
due to the infinite-nature of the formulation of the algorithm, the optimality of the ob-
tained policy π′(s) will be ultimately based on the time the algorithm has been exploring
the system and, in essence, the distribution of the number of times each pair state/action
has been explored. In real-time problems, where the definition of the state comes from
real measurements of the environment, this exploration time depends on the frequency the
system provides the different metrics, producing long time training sessions.

A (mono-agent) Q-Learning model is composed of an agent (learner) able to select and
take actions from a finite action set, A, and capable of observing (sensing) its current state
from a finite state space, S. The agent applies actions starting from an initial state and
moving to a new one. Applying particular actions in particular states is encouraged or
discouraged based on a reward received after moving to the new state. Starting from an
usually random policy to select actions, the agent is ultimately able to follow a learned
policy, π′, which is a mapping from the state space to the action set. This mapping simply
implies if action at in state st is worth to be applied.

Learning process – method

In a Q-Learning process, a policy is determined by a table called Q-table. To learn
the best policy, the agent maximizes the reward by storing in its Q-table a Q-value per
state/action pair (Qπ(s, a)), indicating the quality of applying action a in state s. In other
words, the Q-value represents the most probable long-term reward, provided the agent
starts from state s, applies action a, and follows the policy π. Once the table is created and
completely filled, the agent will take in each state the action with maximum Q-value (i.e.,
the one which maximizes the expected reward).

To learn a policy, the agent starts the process with an empty Q-table, which is updated
at the same time the different states and actions are explored. Each time a pair state/action
is visited, the corresponding Q-value (Qπ(s, a)) is updated following the Equation 5.1 [171]:

Qt+1(st, at) =Qt(st, at) + α(st, at) [Rt+1 + γmax
a

Qt(st+1, a)−Qt(st, at)] = (5.1)

= [1− α(st, at)] × Qt(st, at) + (5.2)

+ α(st, at) × [Rt+1 + γmax
a

Qt(st+1, a)] (5.3)

where Qt(st, at) and Qt+1(st, at) are, respectively, the current and updated Q-values corre-
sponding to the current taken action at at the current state st and Rt+1 is the immediate
reward after next state st+1 is observed.

Gamma (γ ∈ (0, 1]) is the discount factor and controls the significance of the history of
the Q-values against the recently obtained reward. If γ is closer to zero, the agent will tend

97

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

to consider only immediate rewards. On the contrary, if γ is closer to one, the agent will
consider future rewards with greater weight, willing to delay the reward.

α(st, at) determines the learning rate, and it is defined for each pair state/action. So,
the learning can vary from one pair to another depending on the number of times each
pair has been visited by the agent. Through the learning rate definition, we ensure that a
specific state/action pair has been observed a sufficiently large number of times.

In stochastic environments where applying action at at state st does not always result in a
particular next state st+1, the learning rate is critical to ensure a fast and flawless learning
phase. If the learning rate is assumed constant and set to 1.0, the previous reinforced
information is overridden every time the pair st/at is observed (Equation 5.2 values zero,
setting the new value based only on the destination state by Equation 5.3). If the learning
rate is constant and set to zero, there is no learning process (Equation 5.3 is not considered,
and the destination state is not taken into account to determine the new value). For fully
deterministic environments, α(st, at) = 1.0 provides optimal learning.

However, for stochastic problems, a decreasing-to-zero function for learning rate [171]
is able to provide optimal learning phase. A common definition for such a learning rate
function is presented in Equation 5.4 [59]:

α(st, at) =
β

Num(st, at)
(5.4)

where β is a pre-defined constant (β ∈ (0, 1]) and Num(st, at) is the number of observation
of the state/action pair (st, at).

At the beginning of the exploration, when a pair is explored for the first times,
Num(st, at) is close to 1, (and therefore α ≈ β), the learned values are more influenced
by the newest explored transitions than the previous ones (the coefficient in Equation 5.2
will be smaller than the coefficient in Equation 5.3). As a pair state/action is explored,
Num(st, at) value increases, and therefore, the learning rate decreases down to zero, stop-
ping the learning rate (Equation 5.3 will be close to zero) and defining the final policy. A
greater β value signifies a larger learning time, but the resulting policy will be closer to the
optimal. It is responsibility of the designer of the experiment to set the β value properly,
finding the trade-off between the quality of the final policy and the learning time. As ex-
plained next, a pair state/action is considered learned (and therefore, no more updated)
when the learning rate α decreases under a certain value.

Learning process – phases

The previous definition of the learning rate makes the learning process an infinite pro-
cess. However, as a pair state/action is explored, the learning rate decreases making at each
exploration step smaller changes in the corresponding Q-value. A threshold αth2 is set to
stop the learning process. Once the learning rate decreases below that threshold (α < αth2),
the corresponding Q-value is not updated anymore, and therefore, that pair is considered as
learned. Similar to the definition of β, the value of this threshold will determine ultimately
the relation between the speed of the learning process and the quality of the obtained policy.

Following the ideas presented in the literature [49], we consider three phases for the
learning process: exploration, exploration-exploitation and exploitation, each one delimited

98

5.3. RL-BASED FORMULATION FOR RESOURCE MANAGEMENT

by two different thresholds (αth1 and αth2). Ultimately, this phases will determine the
behaviour of the agent:

Learning Phase =

1.0 ≥ α > αth1 Exploration

αth1 ≥ α > αth2 Exploration-Exploitation

αth2 ≥ α > 0 Exploitation

When an agent is in a specific state, the next action it will take is determined by the
phase it is:

1. Exploration phase (1.0 ≥ α > αth1): At the beginning, the agent explores as many
different actions as possible. In this phase, the actions are taken randomly trying to
explore all the states and actions as quickly as possible. To explore all the actions
uniformly, the selection is done randomly between those actions that have been visited
a smaller number of times.

2. Exploration-Exploitation phase (αth1 ≥ α > αth2): Once a state is explored enough
number of times, the agent will take the action that maximizes the Q-values learned
in the previous phase trying to maximize the expected reward. The learning process
has not finished yet, so the different Q-values are still updated as described before.

3. Exploitation phase (αth2 ≥ α > 0): In this phase we consider that the agent has
completely learned, and therefore, it has obtained the final policy π′. In this case, the
agent will take the action that maximizes the Q-values similar to the previous phase
(a = arg maxa∈AQ

π
t (st, a)). The Q-table is not updated anymore.

Having a different learning rate for each pair state/action allows to have a more precise
control of the learning progress of each state. However, it is possible to have for a specific
state, different actions in different phases of the learning process. In this cases, it is not
clear which action should an agent choose, as it will depend on the learning phase. To solve
this issue, we have followed a two step approach: (i) In the first step, the agent chooses
the phase it is going to explore, but not the specific action. This is because the method to
choose the next action will depend on the phase selected (for example, in exploration it will
choose an action randomly while in exploitation it will choose the action which maximizes
the expected reward), and (ii) In the second step, the agent chooses, between the actions
belonging to the phase selected on the previous step, the next action following the selection
rules of each phase described before.

Algorithm 5.1 shows the pseudo-code followed by an agent to choose the next phase to
explore (step i). If all the actions belongs to the same phase, the decision of which phase
select next is clear (1–5). However, in the case where actions belong to different phases,
the agent will try to progress the learning process exploring those actions that are still in
the exploration phase first. To do that, the agent will choose randomly the next phase to
explore giving the double of probability to the exploration phase than the other two phases,
trying to choose the exploration phase over the other phases, and therefore, trying to avoid
to keep actions in exploration phase too much time. To do that, in the case there is at
least one pair in exploration phase, the agent will give a probability of 1/2 to select that
phase, and a probability of 1/4 to the other phases (lines 5 to 10). The decision between
exploration-exploitation and exploitation phases are done with the same probabilities.

99

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

Algorithm 5.1: Algorithm to determine the phase of the next action to choose.

Data: number of actions at each phase (nExploration, nExplor Exploi, . . .) and
number of available actions (|A|).

Result: choosen ← phase of the next action to choose.
1 begin

/* =A=: All the pairs are in the same phase: */

2 if nExploration = |A| then choosen ← exploration;
3 else if nExplor Exploi = |A| then choosen ← exploration exploiation;
4 else if nExploitation = |A| then choosen ← exploitation;

/* =B=: Pairs mixed with different phases */

5 else if nExploration > 0 then // If ∃ exploration, set double prob.

6 if rand() ≥ 0.5 then // P=0.50

7 choosen ← exploration;

8 else // P=0.25

9 choosen ← randomSel(exploration exploiation, exploitation);
10 end

11 else // if @ exploration, same prob. to explorExploi & exploi

12 choosen ← randomSel(exploration exploiation, exploitation);
// P=0.50

13 end

14 end
15 Function randomSel (phase1, phase2) is:
16 Selects randomly between both phases.
17 Checks if there is at least one action in each phase before choosing it.

18 end

5.3.2. Mapping a generic QoS-aware application to a Q-Learning formulation

Similarly to a Markov Decision Problem where the ultimate goal of the system is to
transit between states that maximize the expected accumulated reward, the ultimate goal
of a resource manager is to tune the system and applications properly during the whole
execution to satisfy the optimization goals as much as possible at any given time. To solve
the problem, a MDP formulation is based on a set of states in which the system can be,
a set of actions the system can take and ultimately makes the system to transit between
states, and a set of rewards that define how good or bad is the transition between two
states caused by the taking of a specific action.

Following the same formulation, a resource manager can be defined in terms of the val-
ues the different metrics report at each moment (states), the different knob configurations
the system can set (actions), and how much the optimization goals are satisfied at each
moment of the execution (rewards).

Formulating a resource management scenario as a Q-Learning scenario, rather than a
more traditional heuristic-based scenario has a considerable number of advantages, namely:

100

5.3. RL-BASED FORMULATION FOR RESOURCE MANAGEMENT

ApplicationsApplicationsApplications System Resource
 Manager

Metrics

Knobs

States

Rewards

fn

Actions

FPS,
PSNR,
Bitrate

Power, temp,
core occup.

DVFS, Power
Capping, ...

N. Ths,
QP, Preset

Knobs

Metrics

Q-
table

Figure 5.8: Application- and system-metrics transformation into QL states and rewards.

Supposing the states, actions and rewards are properly defined, the policy extraction
is done automatically by the agents; in this case, expert knowledge of the problem is
unnecessary or reduced, differently from a heuristic approach in which knob tuning
needs to be performed manually.

Due to the exploration nature of the process, Q-Learning agents are able to learn by
their own the transitions and probabilities relating different states and actions (P),
which are usually difficult to identify by a human expert.

Although Q-Learning takes the decisions based only on the current state, the learning
process is formulated to take into account both the current and destination states,
making the decision process aware of the implications of the current actions on future
states, and therefore, producing better long-term policies.

Figure 5.8 shows a detailed view of how a resource manager transforms the application-
and system- metrics into internal states assigning a reward value to these states, later used
to determine the next actions to take (i.e., how to tune the different knobs). However, the
quality of the obtained policy and the learning time, is ultimately determined by the correct
definition of these states, actions and rewards. This is still far from being a trivial task,
and in this decision, expert knowledge is still needed. This makes the process of defining a
resource manager in terms of Q-Learning a hard problem, usually tackled by a tune-and-test
process, where the obtained policy has to be tested and states and rewards have to be tuned
based on the observed results. In particular, this methodology can be summarized as:

1. In a first step, a definition of states, rewards and actions has to be done based on the
available knobs, metrics and expert knowledge of the problem.

2. Second, the system is trained with a predefined set of inputs, obtaining a policy for
the system (i.e., a Q-table with all the pairs in exploitation phase).

3. This policy is later applied to another predefined set of input different from the one
used to train the system.

101

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

4. Based on the results observed for this input set, states and rewards are tuned, repeat-
ing all the process from step one again.

Although this is a complex and large process, it can be alleviated by a proper initial
state and reward definition, and speeded up storing intermediate results as shown later in
Chapter 8.

The previous QL formulation presents the learning process as an intensive exploration
process where the final policy is only obtained when all state/action pairs have been explored
completely a minimum number of times (i.e., all pairs are in exploitation phase). Indirectly,
this problem formulation requires the exploration space to be finite allow the exploration of
all the actions in a finite amount of time. However, although this is normally the case for
the action set (usually the knobs can only be configured with a predefined set of different
values), this is not the case for states, since many of the metrics that define the system
report continuous values, and therefore, they have to be discretized.

If the metrics are discretized in a small number of buckets (or intervals), the learning
process will be short as the agent will need to explore a low number of states. However,
if the number of states is too small (i.e., each state covers a huge interval), it can lead
to bad quality policies. Suppose a scenario where, after applying two different actions
(modifying two different knobs), the measured values from the metrics are close enough to
be classified in the same state. In this scenario, the agent will not be able to distinguish
the effects of both actions, and it will consider them equivalent, ignoring optimization
opportunities offered by each knob. On the contrary, if each state covers a smaller interval,
it can mitigate the previous problem at the expense of a longer learning period. But, if the
covered intervals are too small, in stochastic problems the effects of a specific action can
be classified into two different states, producing again a bad quality policy. The trade-off
between the space decomposition, the learning time, and the quality of the learned policy
has to be done by a human expert, and usually is done through a trial-and-test process.

Similar to the state definition, the optimization goals of the system have to be
discretized into reward functions giving different rewards to different states. Those states
that best satisfy the optimization goals will have a higher reward, while those states farther
away from the desired ones will receive lower rewards. However, if the reward given to two
different states is similar, the system will not distinguish which state is the best, obtaining
not so good policies. On the contrary, if the difference between the rewards given to two
similar states are too big, the system can learn not to transit between those states, even
if moving to a worse state allows the system to move to a better state in the future. The
process of defining the rewards that best fit the optimization goals of the system requires
expert knowledge of the problem, and usually is done via a test-and-tune process.
Traditionally, reward functions have been used to model maximization or minimization
objectives, however, the use of negative or zero rewards can be used to model other
behaviors like constraints, or forbidden actions. For example, in scenarios where not all
the actions are available in all the states, giving a negative reward to these forbidden pairs
state/action will make the system to learn not to chose these pairs in the future.

102

5.4. CONCLUSIONS

Together with the definition of the states, the proper definition of the rewards will
ultimately determine the quality of the learned policy, and will set a trade-off between the
quality and the learning time.

5.4. Conclusions

Extending resource managers to consider specific knowledge of the running applications
(both in terms of metrics and tunable knobs) allow them to perform a deeper control of the
system, and to consider new optimization goals derived from the internal metrics. This is
of special importance for QoS-aware applications, which do not benefit from obtaining the
maximum performance, but have special requirements in other metrics. A representative
example of a QoS-aware application is HEVC online video transcoding, where a minimum
requirements in terms of throughput, quality and compression have to be satisfied. Trying
to fulfill all of these requirements, HEVC video encoders expose a set of different tunable
knobs able to modify one or multiple of those metrics. However, the multiple relations
between the different knobs and metrics, as well as the strong dependencies present in this
kind of applications (both intra- and inter-application dependencies), makes this kind of
scenarios hardly manageable by traditional heuristic-based approaches.

Obviously, the exposition of these new metrics and knobs to resource managers
entails a huge decision space to consider. Machine Learning approaches have emerged as
promising solutions able to handle this type of scenarios. Specifically, resource managers
can be formulated in terms of a Markov Decision Problem, where Reinforcement Learning
approaches can easily find policies that satisfy all the optimization goals through a dynamic
programming learning process. However, even if mathematically the definition of a resource
manager is similar to the definition of a MDP, the actual definition of states, actions and
rewards are far away from being a trivial task.

In the next chapter, we show how an online video-transcoding scenario can be mapped
into a Q-Learning approach, managing all the intra-application dependencies to obtain a
real-time codification process fulfilling quality requirements at the same time. In addition,
we show how the Q-Learning formulation presented in this Chapter can be extended to a
stochastic multi-agent formulation, comparing our approach with a static and a heuristic
approach.

103

CHAPTER 5. RESOURCE MANAGEMENT FOR QOS-AWARE APPLICATIONS

104

6

Self-adaptive Application Execution via
Reinforcement Learning

The integration of internal metrics delivered by malleable and QoS-aware applications,
together with the ability to manage their internal application-specific knobs offers resource
managers a new plethora of potential optimization opportunities, both in terms of metrics
to be monitored and optimized, and also in terms of which and how knobs should be tuned
in order to fulfill a certain level of QoS with a proper resource usage. However, as described
in the previous chapter, the management of this kind of applications involves a new set of
dependencies to be handled (intra- and inter-application), and generates massive decision
spaces, hardly manageable by traditional heuristic-based resource management schemes. A
representative example of this kind of applications is HEVC online video transcoding, as it
offers a range of different metrics and knobs to tune, and at the same time, its behaviour
heavily depends on the contents of the sequence being encoded, and ultimately also on other
encoding processes running simultaneously in the system.

Machine Learning has emerged as a promising solution to tackle these burdens.
Specifically, provided a proper formulation of the problem is given, Q-Learning promises
to obtain high-quality policies through an unsupervised exploration-based process. In
particular, following with our driving application, a reformulation in terms of a Q-Learning
process mixing knobs and metrics from the application (e.g, QP knob or Frames Per
Second, respectively) with external ones (e.g., processor frequency or power consumption)
is an approach of wide appeal to learn complex dependencies between them, and properly
apply the most suitable set of actions. However, although the canonical formulation
of Q-Learning presented in the previous chapter is perfectly valid, it presents a set of
drawbacks when implemented in a real system. The first one is the considerable learning
time directly derived from the exploration-based nature of the algorithm. The second
one is related with the stochastic nature where the learning process is usually developed,
that typically introduces noisy measurements with a direct impact on the quality of the
extracted policy.

105

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

In this chapter, we introduce a modified multi-agent implementation of the canoni-
cal Q-Learning formulation that addresses and solves the aforementioned problems, and
we demonstrate it to be a valid solution for its integration into a real resource manager.
Specifically, throughout the chapter, we:

1. Show how an HEVC encoding process can be formulated in terms of a Q-Learning
algorithm, modelling real-time throughput restrictions and quality requirements.

2. Extend the previous Q-Learning formulation to: (i) consider a multi-agent formula-
tion, reducing the learning time at the same time multiple agents co-operate to obtain
a better policy, (ii) incorporate the stochastic component into the decision-making
process, and (iii) mitigate the negative effects induced by noisy metric measurements.

3. Implement and test the described approach in a real multi-core server, comparing
our proposal with a static and a heuristic-based approach in terms of throughput
constraint violations and attained quality.

Section 6.1 describes how an online HEVC encoding process can be formulated in terms
of a Q-Learning algorithm, mapping the different metrics, knobs and optimization goals
into specific states, actions and rewards, respectively. Section 6.2 extends the previous for-
mulation into a co-operative multi-agent formulation. It also reveals how problems derived
from a stochastic environment with noisy metrics can be solved and integrated into the
formulation. In Section 6.3, we compare our approach with a static approach (in which
knob values are fixed a priori and are not modified throughout the encoding process) and
a heuristic-based state-of-the-art strategy, both in terms of real-time constraint violations
and obtained quality for a varied set of videos of different content and resolution. Finally,
Section 6.5 shows some conclusions and final remarks.

6.1. A Mono-agent Q-Learning formulation for video transcoding

To show how the resource management of an online encoding scenario can be formulated
in terms of a Q-Learning algorithm, we describe next a scenario in which one video is
encoded in an isolated fashion in the system, under two simultaneous encoding requirements,
namely: (i) applying real time throughput requirements (in our case, FPS≥ 24), and (ii) at
the same time, maximizing quality.

In the following, our formulation responds to these requirements in throughput and qual-
ity by tuning application-wide dynamic knobs (QP and number of threads) and system-wide
knobs (core frequency) while monitoring specific application and system metrics (through-
put and quality, and core occupation, respectively). In Chapter 7, we extend this formu-
lation to consider power consumption as an additional constraint. The considered scenario
includes two additional conditions, namely: (i) resource usage should be minimized, pro-
vided Throughput is met, and (ii) only if Throughput constraint is satisfied, quality
should be maximized provided there are enough available resources. In addition, two differ-
ent resolutions will be supported (High Resolution (HR) and Low Resolution (LR)), affecting
how our formulation is done.

Gathering all the aforementioned restrictions, the scenario is complex enough to il-
lustrate the potential of our RL-based resource management scheme. In Chapter 7, this

106

6.1. A MONO-AGENT Q-LEARNING FORMULATION FOR VIDEO TRANSCODING

scenario will be extended to encode multiple videos simultaneously and therefore, to con-
sider not only intra-application knob and metric dependencies, but also the inter-application
relationships and their implications in resource management.

6.1.1. Problem mapping to a Q-Learning formulation: states, actions and re-
wards

As described in Section 5.3.2, mapping this problem statement into an actual Q-Learning
process requires a correct definition of states, actions and reward functions. The number,
granularity and value distribution of states and actions is ultimately a trade-off between
learning time and control degree on the accuracy of output metrics, in which both expert
knowledge and application specifics play an important role. A correct definition of the
reward function will ultimately determine the success in maximizing/minimizing output
metrics, optimality in resource usage and the compliance with the imposed restrictions.

State definition

Designing and training a Q-Learning system is a trial-and-error process in which the
designer of the experiment modifies and tunes the state and reward function definitions until
the obtained policy meets the desired behavior. Although this process can be alleviated
by incorporating expert knowledge of the problem into the tuning process, it is still an
extremely complex and long process. The decomposition of the states and reward spaces
into multiple simpler sub-spaces can reduce the complexity of this process.

Instead of placing a unique and complete definition of state, we propose the division of
the states space into different independent sub-spaces (i.e., the metrics required to build one
sub-space are not employed in the creation of any other sub-space). This state definition
allows a more fine-grained control on the behaviour of the system, and provides a direct way
to verify how a change in the definition of the problem impacts each sub-space independently
from the others. In addition, as in our formulation each output metric, measured from the
application or from the system, is mapped to only one sub-space (to have independent sub-
spaces), it is relatively straightforward to determine, both for the human and for an agent,
the reason of a change in one sub-state, and therefore, to incorporate those changes into
the learned policy:

s = (s1, . . . , sn), with s ∈ S = S1 × . . .× Sn, si ∈ Si (6.1)

Since our target scenario aims at attaining QoS-aware real-time transcoding, the state
space is divided into three different sub-spaces in our formulation, each one related to a
different monitored metric: PSNR, FPS, and occupation level of the processor (measured in
terms of the number of cores in use). While the first two sub-spaces correspond to metrics
directly sensed from the application, and optimization goals of the system, the last one is
a system-wide metric; it will assist the resource manager to deal with turbo frequencies, as
described next. The system constantly senses the output metrics on a frame-to-frame basis,
discretizating the measurements and mapping each particular observation into a particular
state.

107

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

Quality (Spsnr): For 8-bit-depth videos with lossy compression, the video quality should
range between 30 dB and 50 dB for acceptable human vision [194]. In our setup, we
divide this range into the following intervals to constitute PSNR states:

Spsnr ≡ {PSNR ∈ (0, 30), [30, 35], (35, 40], (40, 45], (45, 50], (50,∞) dB } .

Although the PSNR metric is measured every frame, the state is built based on the
average value of the last frames. The amount of frames considered will depend on the
frequency the agent acts, and therefore, the frequency the state is read and built.

Throughput (SFPS): As our scenario aims at encoding sequences under a strict real-
time limit (24 FPS), and at the same time reducing resource usage, this ultimately
means to encode the sequences never under the throughput threshold and as close as
possible to 24. Following this dual purpose, we divide SFPS into the following states:
FPS < 24, < 28, < 32, < 35, < 40, < 50 and ≥ 50. This division allows us to return
a negative reward to those states below 24 FPS, and to distinguish the goodness of
each state above the threshold.

SFPS ≡ {FPS ∈ (0, 24), [24, 28), [28, 32), [32, 35), [35, 40), [40, 50), [50,∞) }

This non-regular formulation of the states is a trade-off between quality of the obtained
policy and learning time. On one side, having smaller intervals near the threshold
allows the system to distinguish the effects of similar actions and to have a more
precise control on the applications. On the other side, having larger intervals far from
the threshold reduces learning times, with a minimum impact on the quality of the
obtained policy.

However, this space decomposition is not useful by its own, and it needs to be ac-
companied with the correct reward function able to exploit this asymmetric state
classification. Similar to PSNR, the FPS metric is measured in a frame-to-frame basis.
However, due to the huge variation measured in this metric across frames (mainly due
to content changes), a moving mean is used to build the state.

Turbo (Socc): As detailed in Section 5.2.1, the use of turbo frequency management into
our framework motivates the introduction of buckets of level of occupation (in terms
of number of cores occupied at a given execution point by all transcoding processes
co-existing in the system) into the state definition as an additional state (Socc), as
the actual processor frequency directly depends on this value. In our platform, we
distinguish 6 different levels of occupation:

Socc ≡ {N. active cores ∈ [1, 2], [3, 4], [5, 8], [9, 12], [13, 16], [17, 20] }

This metric depends exclusively on the status of the machine, and the reported value
corresponds to the current value, differently from the average value taken on the rest
of the metrics. Even if this state is not useful for encoding an individual sequence, it
will be of great importance when multiple videos are encoded simultaneously, using
almost all the resources of the machine. This scenario (multiple sequences being
encoded simultaneously) is explored later in Chapter 7.

108

6.1. A MONO-AGENT Q-LEARNING FORMULATION FOR VIDEO TRANSCODING

Experimentally we have checked that the compression achieved in all of our tested
sequences is below the range of users’ network bandwidth around the world, both for 3G
(from 6 Mbits/s to 2 Mbits/s) and 4G (from 17 Mbits/s to 7 Mbits/s) [21]. This is the
reason why bitrate is not considered as a metric to tune (and therefore, a state to consider).
However, bitrate can be incorporated into the formulation following a similar methodology
applied to the other metrics.

Reward Function. Sub-reward definitions

The definition of the reward function follows a similar decomposition as that used for
the state definitions: instead of designing a unique definition for it, we propose the use of
multiple sub-reward functions (normalized to 1), each one valuing the goodness of each sub-
state. Then, we combine all sub-reward functions into an unique composed reward through
the use of different coefficients:

R(s) = R(s1, . . . , sn) = λ1 ·R1(s1) + . . .+ λn ·Rn(sn), where si ∈ Si, λi ∈ R (6.2)

Although the behaviour of the global system depends on the combination of the different
sub-reward functions, each sub-reward can pursue a different sub-goal (for example, one
reward can try to maximize one metric while other sub-reward tries to minimize another
independent metric). Additionally to maximize or minimize one metric, a reward definition
can reflect a constraint not to exceed. To do that, returning a value low enough (even a
negative value) for those states will make the system to learn to avoid those combinations
that moves the system to those states. In our formulation, we have determined that a
reward of −4 in a sub-state is low enough to consider the global state as bad (having in
mind the different λ values as well as the values reported by the rewards of the other
sub-states).

In our specific problem, we propose two different reward functions showing all the afore-
mentioned behaviors: minimizing a metric under one lower limit, and maximizing a metric
between two different limits. Note that this two situations can emerge in a wide variety of
applications, not exclusively in video transcoding.

Quality (maximizing output metric between two bounds): As explained in Sec-
tion 5.2.1, a minimum PSNR of 30 dB guarantees an acceptable quality for the human
vision. However, assuming there are available resources, quality should be maximized
to improve both QoS and QoE. Hence, this (sub-)reward function assigns higher re-
wards to states with higher quality, decreasing the reward for those states with lower
quality, as follows:

R(PSNR) =

{
−4.0 PSNR < 30 or PSNR > 50

a · ePSNR/50 − b otherwise.

where a and b are set to return a maximum reward of 1.0 when PSNR=50, and a
reward of 0 when PSNR=30. Observe how the constraint of being always above 30 dB
is formulated giving a negative reward to the states below. Similarly, states with
quality greater than 50 dB are penalized as quality greater than that is imperceptible
for the human vision, but ultimately translates into a waste of resources.

109

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

20 24 30 40 50 60

FPS

-4

-2

0

2
R

(F
P

S
)

20 30 40 50 60

PSNR

-4

-2

0

2

R
(P

S
N

R
)

Figure 6.1: Reward functions for Throughput and PSNR. Blue and dotted black lines
show the reward after and before discretization, respectively. All functions are
normalized between [0,1]. Constraint violations are penalized with a negative
reward of -4.0.

Throughput (minimizing an output metric under one lower bound): We define
the following reward function based on the target frame rate (24 FPS):

R(FPS) =

−4.0 FPS < 24

a · FPS + b 24 ≤ FPS < 50

0.0 FPS ≥ 50.

This (sub-)reward function provides negative values if the throughput is smaller than
the target frame rate. The a and b parameters are adjusted to produce a maximum
reward of 1.0 if FPS meets the target of 24, and a decreasing reward down to 0 for
larger FPS. The reason is that achieving larger FPS may result in wasting resources,
which ultimately means fewer users can be served. In the case where FPS > 24, spare
encoded frames can be buffered. Buffered frames can be used to compensate the
overall framerate if, at some points, FPS temporarily drops below the target.

Although the proposed rewards describe continuous functions, they need to be dis-
cretized in the same way the states were discretized in the previous section. Figure 6.1
illustrates the reward functions defined for FPS and PSNR in our problem formulation, and
the effective values after they are discretized (blue lines). The dotted black lines represent
the rewards before the discretization.

Actions definition

The definition of actions taken by the system (both in terms of number and distribution
within a range), similarly to states, must be chosen based on expertise (problem knowledge)
and requirements of learning time and accuracy. The different actions to consider are
determined by those knobs to tune, and their possible values. Figures 5.3 and 6.2 provide
Pareto curves that relate different output metrics and actions for a transcoding process on
the target architecture: makalu (see Section A.1). Based on those results, the throughput,
quality and bitrate requirements of our scenario, and the fact that preset knob is static and
hence cannot be modified once set at the beginning of the execution, we have determined

110

6.1. A MONO-AGENT Q-LEARNING FORMULATION FOR VIDEO TRANSCODING

20 40 60 80

FPS

36

38

40

42

44

P
S

N
R

1 2 3 4 5 6

QP:22

QP:27

QP:32

QP:37

(a) Number of threads and QP impact on
Quality (PSNR) and Throughput (FPS)

20 40 60 80

FPS

50

53

56

59

62

1.0 1.2 1.4 1.6 1.8 2.0

W
a
tt
s

QP:22 QP:27 QP:32 QP:37

(b) Frequency and QP impact on Power con-
sumption and Throughput (FPS)

Figure 6.2: Metrics obtained with different knobs, setting 2.0GHz (left), and setting
4 threads (right), while encoding a 1080p-video using the default ultrafast
Kvazaar configuration.

that the ultrafast preset fulfills all the requirements offering a good trade-off between quality
and resource consumption. Therefore, in the following, all the experiments are configured
to use the ultrafast preset; hence, it is not necessary to incorporate the preset knob into
the decision process. For the remaining knobs, we base our decisions on the experimental
results shown in Figures 5.3 and 6.2:

QP: As described in Section 5.2.1, QP is one of the most important encoding parameters, as
it affects FPS, PSNR, and bitrate [95, 137]. Although QP can take a wide range of values
(from 1 to 51), we use the same QP values proposed by JCT-VC: QP ∈ {22, 27, 32, 37}.
Experimentally we have determined that these values produce valid encoding results
for our requirements, as shown in the plots.

Number of Threads: While HEVC encoding can always benefit from multithreading to
increase FPS, the results in Figure 6.2a reveal that Frames Per Second saturates above
a certain number of threads. In addition, this limitation varies depending on the
resolution of the encoded sequence. Based on this observation, we consider a limited
number of threads: from 1 to 5 threads for High Resolution videos, and up to 3 threads
for Low Resolution sequences.

DVFS: Our specific platform (see Section A.1) supports frequencies ranging from 1.00 GHz
to 2.00 GHz and Turbo, selectable on demand and in a core-by-core basis in steps
of 100 MHz (with Turbo enabled, this range extends up to 3.7 GHz, but is not under
direct control of the user, as it depends on the current core occupation). Therefore, we
consider the selection of frequencies within this range and granularity as valid values
for the DVFS knob.

111

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

6.1.2. Mono-agent Q-Learning: formulation and drawbacks

As we are targeting the encoding of videos with two different resolutions in our scenario,
each behaving differently for the same knobs modification, the original agent in our design
is instantiated multiple times in our system, one in charge of a different resolution. These
agent instances are defined to be independent, meaning that there is not any communication
or information shared between them. In particular, each agent has its own Q-table, and
the learning process is carried out independently by each one. On top of all the agents, a
simple piece of logic is in charge of activating/deactivating the corresponding agent based
on the resolution of the video being encoded. As we are considering scenarios where only
one video is simultaneously encoded, in practice this means that only one agent is acting
at each moment.

Intuitively, deploying only one agent to handle both resolutions will ultimately induce
the system to learn poor-quality policies. In this regard, as the system can measure
different output metrics when applying the same action to the same state, the outcome
of the learning process will be sub-optimal, as the destination space will depend on the
resolution of the video being encoded. Adding a new subspace to the space definition
pointing to the current resolution of the video solves this problem. However, this solution
is equivalent to having multiple agents, each in charge of a different resolution. Moreover,
having different independent agents can improve the learning process in the sense that the
total learning time can be split into smaller learning process, each for a different agent.
The actual impact of the multi-agent approach is revealed in Section 6.3.

In the specific case of video transcoding, the modification of a knob does not always
yield an instantaneous consequence on the encoding process, but the effects can appear a
number of frames after. Experimentally, we have determined that the maximum delay is
lower than 6 frames in our platform, meaning that an agent should act, at maximum, every
6 frames (i.e., supposing a constant framerate of 24 FPS, the agent will act 4 times per
second).

Although the action space was divided into different sets in the previous section, having
only one agent in charge of tuning the different knobs ultimately means that the agent has
to consider all the possible combinations of all the different knobs every time it takes an
action. In our formulation, that means 240 and 144 different knob configurations for High
Resolution and Low Resolution videos respectively (4 QP values × 5/3 possible threads ×
12 different frequency values = 240/144). A similar observation can be extracted for the
space definition: although the space is divided into multiple sub-spaces, all of them need to
be considered as a unique space. This ultimately means that the agent needs to consider
126 different states (considering that Socc can take only three different values when only
one video is encoded).

Altogether, this makes the exploration space for one agent to be composed by
126 × 240 = 30 240 different state/action pairs in our scenario. Under the assumption
that the agent is able to maintain an average framerate of 24 FPS, and it acts every 6
frames, the amount of time needed to explore each pair at least one time is 2.1 h in perfect
conditions

(
30 240 actions · 6 frames

1 action ·
1 s

24 frames ·
1 h

3600 s = 2.1 h
)
. However, if the framerate

decreases under 24 FPS, or the states are not uniformly explored, the learning time can
increase even more. Also, for a proper learning process, each pair needs to be explored

112

6.2. INTEGRATING MULTI-AGENT LEARNING

QP={22, 27, 32, 37}
nThs = {1... 5}

DVFS={1.0, ..., 2.0, Turbo}

Design Space:

Design Space Decomposition

Q-table 1

Q-table 3
Q-table 2

Action Set

Subset 1

nThs

Subset 3

QP

Subset 2

DVFS AGths

AGQP

AGDVFS

Application 3
Application 2

FPS, PSNR

Application 1

Power, Occ

ENVIRONMENT

DVFS, ThsQP, Ths

Figure 6.3: Proposed multi-agent Reinforcement Learning approach.

multiple times, making the learning time far from being negligible.

Multi-Agent Learning (MAL) addresses those problems by decomposing the problem do-
main into smaller sub-problems, deploying multiple agents acting simultaneously, each one
in charge of a different knob. In MAL, multiple agents need to interact and behave coopera-
tively or competitively with some degree of autonomy. As a result of such co-operative and
concurrent learning, it is feasible to deal with considerably larger search spaces. Therefore,
if complexities arising from interactions between agents are correctly managed, co-operative
multi-agent learning is a promising alternative to explore larger design spaces with less com-
putational complexity, leading to faster learning phases compared to mono-agent learning.

The main challenge of co-operative concurrent learning is that each learner (agent) needs
adjust its behaviour according to the others. In the next Section, we show how our problem
formulation can be extended to a Multi-Agent Q-Learning scenario.

6.2. Integrating Multi-Agent Learning

Similar to conventional mono-agent learning, the QL algorithm in multi-agent learning
is composed of a finite action set A = A1 × . . .×An split in multiple independent, a finite
state space S and a a reward function valuing the optimality of each action at each state.
Each agent AGi is in charge of taking action ait ∈ Ai at each moment t, and moves the whole
system from its current state st to the next one st+1. The state definition is shared between
all the agents, having each a different Q-table. Then, the corresponding Q-table [171] is
updated after each reward, showing the value of applying ait at st, is received.

In our MAL formulation, we consider three different agents, each in charge of a different
action subset (i.e., in charge of tuning a different knob). Each agent modifies its internal
Q-table, but at the same time it is able to consult other agents’ Q-tables during the decision
process. This makes the agents to cooperate on the decision process instead of competing,
as described later. Figure 6.3 shows an overview of the proposed approach where three
agents cooperate with each other.

This new formulation of the system is able to reduce the learning time (the action space
is split and therefore reduced) at the same time it can improve the quality of the learning

113

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

Agent Action frequency Main target Action Origin

AGqp k · 24 + 0 Application Application
AGthread k · 12 + 1 Application and Platform Application and Platform
AGdvfs k · 6 + 2 Application and Platform Platform

Table 6.1: Agent configuration overview.

policies (due to the cooperation between agents). However, modelling the system as a
multi-agent approach entails a new set of difficulties to tackle:

1. Determining the best activation sequence and frequency of each agent so they do not
compete, but the actions chosen by one agent can be useful by the agents acting on
the next frames.

2. The previous learning rate function (Equation 5.4) was designed to consider only one
agent, not being valid for scenarios where multiple agents learn simultaneously at
different speeds.

3. The decision-making process has to be reformulated to incorporate the cooperative
process at the same time it is adapted for a stochastic environment.

4. Measuring metrics in a real system can led the system to read noisy measurements
and affect negatively the learning process; those state/action pairs that are affected
by wrong measurements need to be cleaned.

6.2.1. Agent design and activation sequence

In MAL, we propose the use of three different agents acting cooperatively, based on the
different knobs to tune. Therefore, we define agents for tuning QP (AGQP), deciding the
number of threads used to encode a frame (AGthread) through Wavefront Parallel Processing
(WPP), and per-core DVFS (AGdvfs). Similarly to the mono-agent approach, an independent
set of agents is configured for each resolution. If needed, adding the resolution into the state
definition allow to have an unique set of agents for all the resolutions at the expenses of
increasing the learning time.

We consider a different action frequency for each agent based on the environment
domain that each agent can directly influence, and the origin of their action (from the
application, or from the platform). Action granularity is also directly related with the
agent activation sequence, and with the relative effects on output metrics of a single
step variation in each action. Hence, one step in terms of QP implies large modifica-
tions in both quality and throughput (see Figure 6.2). For the latter, wrong actions
taken by the QP agent can be solved or alleviated, with more detail, by subsequent
application of actions by the threads or DVFS agents, each one with progressively higher
granularity. This is actually the activation sequence of agents in our design, as detailed next.

We experimentally determined how frequently each agent should act, based on overhead,
impact on our target objectives, and the number of parameter values to be explored as it
is desirable that all agents finish the exploration phase at the same time. For our setup,

114

6.2. INTEGRATING MULTI-AGENT LEARNING

AGQP acts every 24 frames. With one frame as the offset, AGthread takes action every 12
frames. AGdvfs takes action every 6 frames with an offset of 2 frames. Since AGdvfs and
AGthread act after AGQP , they can modify the output throughput if it is degraded (or above
the required constraints) because of AGQP taking an action to increase (decrease) the video
quality. In addition, as AGdvfs takes actions more frequently, it can take charge of small
content variations and tune the throughput to the desired FPS. Also, not having different
agents acting in the same frame makes easier for the system to determine and isolate the
real effects each action has on the system. Figure 6.4 shows the proposed sequence for the
agents, and Table 6.1 summarizes this information.

6.2.2. New learning rate function

Since each agent acts at a different frequency, the speed of the learning process of each
agent varies. In addition, although all the agents have the same states to explore, the
number of actions differs, and so does the size of the exploration space of each agent, and
therefore, the number of pairs it has to explore before obtaining the final policy. Thus, each
agent must have its own learning rate for each state/action pair. The proposed learning
rate function is a decreasing function of the number of state-action observations, differently
from those proposed by the literature [97, 96, 105]. The reason is that if a learning rate
function similar to the literature is considered, it is likely that an agent claims the end of
the exploration phase even if other agents have not taken enough different actions. This
issue ultimately makes one or more agents behave sub-optimally. Alternatively, we use the
following learning rate function for each agent, AGi, which allows each agent to monitor
the number and variety of actions taken by other agents:

α(i)(st, a
i
t) =

βi
Num(st, ait)

+
β′i

1 +
∑
j 6=i

(
min
a∈Aj

(Num(a))

) (6.3)

Here, the first term is taken from the literature [105] and it is the one used in the mono-
agent formulation. This term represent the learning progress of the agent on its own, while
the second term represents the learning progress of the other agents.
Indeed, in the second term, Num(a) is the number of times agent AGj has taken action
a ∈ Aj . Then, mina∈Aj (Num(a)) gives the minimum number of times that all actions

available to AGj have been selected. Subsequently, constants βi and β
′
i need to be set such

that the exploration phase for (st, a
i
t) cannot finish until the following two conditions are

satisfied: (i) (st, a
i
t) is observed so many times that βi

Num(st,ait)
can drop below a threshold,

and (ii) other agents have tried all their actions (at least once).

Now, let us assume two extreme cases. The first one occurs if AGi observes (st, at) a
large number of times such that βi

Num(st,ait)
−→ 0, and not all other agents tried all their

actions at least once. Then, α(i)(st, a
i
t) = β

′
i implies that αth < β

′
i must hold. In the second

extreme case, (st, at) is observed once while all other agents have tried all their actions so
many times that

∑
j 6=i(mina∈Aj (Num(a))) −→ ∞. Consequently, α(i)(st, a

i
t) = βi and this

implies that αth < βi must hold.

115

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

24m+0 12m+1 6m+2 6n+2 12k+1 6k+2 24i+0

Action
decision

Table
update

AG1 AG2 AG3 AG3 AG3AG2 AG1
...

AG1 AG2 AG2AG3 AG3 AG3

...

...

...

Figure 6.4: Agent sequence. Colored arrows show the cooperation between agents to take
an action.

Due to the different frequencies at which each agent takes an action, in addition to the
different sizes of the sub-spaces each agent needs to explore, the learning rate parameters
can vary from one agent to the other. However, in this work we experimentally set βi = 0.3
and β′i = 0.2, αth1 = 0.1 and αth2 = 0.05, and γ = 0.6, which is the discount factor and
controls the significance of the history of Q-values vs. recently obtained rewards.

6.2.3. Cooperation process: dealing with a stochastic environment

Since each agent has its own action set, we let the agents explore only its own actions.
As we need to deal with a stochastic environment, applying action ait by AGi at state st
may not always result in a particular st+1. The reason lies in the fact that: (i) contents
of a video can change from one frame to another, (ii) other agents taking actions for
a specific video may apply an action that alters the next expected state to a different
one, and (iii) other videos existing in a multi-user platform with their corresponding
contents and agents can change the state unexpectedly. Thus, once ait is taken at state
st, all state transitions to new states need to be recorded during the exploration phase.

Assume that Num(st
ait−→ st+1) shows the number of times that applying ait at st resulted

in st+1, and Num(st, a
i
t) represents total number of times that ait was taken at state

st. Then, the probability by which, after taking ait at st, the agent observes st+1 is

P (st
ait−→ st+1) = Num(st

ait−→ st+1)/Num(st, a
i
t). This probability is updated throughout

the learning process, and used to choose the best action cooperatively as described next.
This process is equivalent to building the set of probabilities P referenced in the MDP

formulation.

Similarly to the mono-agent approach described before, the learning process of the
different agents follows a three-phase approach; however, while in exploration phase the
agents still explore the different actions randomly, when moving to the following phases
they start to cooperate.

Although each agent explores the design space separately and has its Q-table, it needs
to act in the exploitation phase cooperatively. Consequently, the goal of each agent is
not just to maximize the Q-value attainable from its Q-table, but rather, maximizing the
expected Q-value after a sequence of actions taken by all agents. Consider, for example, the
sequence of agents shown as in Figure 6.4 representing our particular scenario. The first
agent, AG1, is followed by two different agents, AG2 and AG3 in consecutive frames. Thus,

116

6.2. INTEGRATING MULTI-AGENT LEARNING

s1

Ag
1 /a

n

· · ·

Σ

sk
· · ·

P (s
1 →

s
k)|Ag

1/a
k

· · ·

s2

Σ

Sn max
a∈A3

QV alue(Sn, a))

P (s2 →
sn)|Ag2/a

k

· · ·

Sm max
a∈A3

(QV alue(Sm, a))

P (s2
→ sm)|Ag2/

ak

Ag2 |ak

Ag2
|a1

P (s1→ s2)|Ag1/ak

Ag1/ak

Ag
1
/a

1

Actions Prob. dest. states

AG1

Actions Prob. dest. states

AG2

Actions + QValues

AG3

Figure 6.5: Cooperative decision process. Each path in the tree represents a possible tran-
sition of the system.

the action taken by AG1 should consider the probable transitions from one state to the
other throughout the entire chain, composed of these three agents, in order to maximize
the Q-value. Indeed, AG1 should select an action which ultimately moves the entire system
to a state in which an action taken by AG3 is capable of providing the highest Q-value. This
is equivalent to considering the expected Q-value given that a particular action is selected
by AG1. Hence, the conditional expected Q-values should be computed for all available
actions in the current state st, in the chain of AG1 → AG2 → AG3 in Figure 6.5.

Algorithm 6.1: Decision-making process: exploitation phase.

Input : Qi, P (st
ait−→ st+1), A ; // i ∈ {1, . . . , N}

Output: ai∗t ; // current action taken by the ith agent

1 ai∗t ← arg max
a∈A∗i

(∑
P (st

a−→ s′t+1)×E[QV alue(AGi.next(),s
′
t+1)]

)
2 Function E[QV alue(AG, s)] is: // list of agents, state

3 if (AG.next() == NULL) then
4 return max

a∈A∗AG

(
QAG(s, a)

)
5 else

6 return

(
max
a∈A∗AG

(∑
P

PAG(s
a−→ s′)×E[QV alue(AG.next(),s

′)]

))
7 end

8 end

To calculate this expected Q-value, a recursive strategy is proposed in Algorithm 6.1.
If there is not any other agent acting in the next frame (line 3), the expected Q-value for
that agent at state s is determined by its own Q-values recorded. If another agent is acting

117

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

next, the expected Q-values are not the ones from the agent, but the ones stored in the
Q-table of the next agent. In addition, because we are modelling a stochastic environment,
each Q-value is adjusted by the recorded probability of each transition (line 6). The action
chosen by the agents is the one which maximizes the expected Q-value (line 1).

6.2.4. Dealing with sensing noise

The previous definition of learning rate, as well as the three-phases learning process,
guarantee a uniform exploration of all the actions of a specific state. However, it does not
guarantee a uniform exploration of all the states, being possible to produce sub-optimal
policies, or even non-terminating learning processes.

This problem arises especially when dealing with a non-deterministic problem, where it
is common that not all the states are visited uniformly. This fact can be caused by two
different reasons: (i) because of the definition of the states, or (ii) because of wrong/noisy
measurements from the system. A bad definition of the states or actions can affect the
learning process not only in the learning time, but also in the quality of the policy. For
instance, if a state definition is too strict and the interval is too narrow, it is less probable
to visit this state than to visit other larger states. The second problem (noisy measure-
ments) is a common problem and affects different metrics. For example, in a real system,
power consumption measurements can be affected by other running processes, or precision
problems can arise when measuring the frame processing time.

The first problem can be addressed by redefining the state definitions; the second prob-
lem cannot always be fixed, leading to the need to adapt the learning process to deal with
this issue. In the mono-agent approach described in Section 6.1, this behaviour has no
impact on the learning process as each pair state/action can evolve independently of the
other pairs. However, in the multi-agent approach, the learning rate definition depends
not only on the number of times one pair state/action has been visited, but also on the
minimum number of times another agent has visited each pair state/action (second term
of Equation 6.3). This definition affects not only the learned policy, but also the evolution
of learning phases, making the worst case stall the system on the exploration phase, not
allowing to progress to the next phases. To tackle this problem, we propose the use of a
slightly modified version of the classical Z-score algorithm [167, 126] to detect outliers [81].
Our proposal, shown in Equation 6.4, identifies those state/action pairs that have not been
visited enough times compared with the other pairs, but still to consider the states that
have been visited more times than the others (this states usually will be detected as outliers
too by classical algorithms). To identify those pairs, the classical Z-score formulation has
been adapted (z-score′(i)(st)) to consider the standard deviation (σ′) of only the pairs that
are below the average (Si), and not of the all pairs.
When the learning rate function has to be calculated, the states detected as bottom-outliers
are discarded to compute on the function. However, these states are not removed from the
Q-tables since it is possible that they will be visited in the future enough number of times to
count again in the learning function. Experimentally, we have determined that discarding
states with z-score′ ≤ −3.5 achieves the expected results.

z-score′(i)(st) =

∑
ait
Num(st, a

i
t)− µ(i)

σ′(i)
(6.4)

118

6.3. PROPOSED SINGLE-APPLICATION SCENARIOS AND EXPERIMENTAL SETUP

where:

µ(i) =

∑
st,ait

Num(st, a
(i)
t)

|S|
, Si =

st ∈ S
∣∣∣∣ ∑

ait

Num(st, a
(i)
t) ≤ µ(i)

µ′(i) =

∑
ŝt∈ S,ait

Num(ŝt, a
(i)
t)

|S(i)|
, σ′ =

√√√√√ ∑̂
st∈S

(∑
ait
Num(ŝt, ait)− µ′(i)

)2
|S(i)|

6.3. Proposed single-application scenarios and experimental
setup

In this section, we experimentally evaluate a real implementation of the previously
described MAL system on a modern multi-core server, makalu (see Section A.1). In the
following, we report output metrics (application- and system-wide) both in terms of efficient
use of the resources available in the platform, and in terms of the QoS obtained in the
different encoded sequences.

In order to validate our approach in a sufficiently wide and representative spectrum
of scenarios, we carry out all the experiments with a variety of videos covering realistic
situations, as well as with different resolutions, ranging from Low Resolution videos –usually
played in portable devices like mobile phones or tablets– to High Resolution videos –in this
case, usually meant to be visualized in computers with a stable and high-bandwidth Internet
connection–.

Additionally, we compare our proposal to two alternative strategies: a Static approach,
and a state-of-the-art heuristic-based strategy (argo [66, 67]). Our results reveal better QoS

and a comparable exploitation of the available resources comparing with both strategies, at
the expense of a more flexible and automated policy extraction process.

6.3.1. System overview and implementation details

Figure 6.6 depicts a general diagram of our formulation, and shows how actions are
chosen and applied. The system is continuously sensing the environment and receiving
different (application- and system-wide) metric values frame to-frame basis, storing and
processing them. Upon each agent activation, the state is built from the current and stored
metrics, discretizating the continuous values according to the states defined in Section 6.1
(step 1 in the diagram). This state is used to update the Q-table of the previous agent
(step 2, equation 1), and to determine the action of the next agent (step 3). As the learning
rate is defined for each state/action pair, different pairs can belong to different learning
phases –exploration, exploration-exploitation or exploitation– for the same state. In step
4, the system determines the phase of the next action and then which action belonging to
that phase applies (step 5), explained in Algorithm 5.1. Finally, the system applies the
chosen action in step 6.

119

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

Q-table 1

Q-table 3
Q-table 2

Application 3
Application 2

FPS, PSNR

Application 1

Power, Occ

ENVIRONMENT

AGths

AGQP

AGDVFS

2. Update
prev. Ag.

3. Determine
next Ag.

4. Choose
phase to
explore

5. Choose
action on

that phase

QP, N. Ths DVFS, N. Ths

6. Apply
action

Current
State

1. Discretize
state

Figure 6.6: General system overview.

Similar to the heuristic-based resource management techniques described previously in
Chapters 3 and 4, all the tested approaches explored here have been implemented and
integrated into our centralized Resource Manager (see Appendix B). The main work of
the resource manager is to integrate the multi-agent Q-Learning logic as well as the other
tested approaches, and to interact with the encoding application. Specifically, the resource
manager is in charge of:

1. Receiving the application-specific metrics on a regular basis (e.g., PSNR measurements
or instantaneous FPS among others) from the encoding process. Also, the Resource
Manager stores this information and processes it accordingly to its nature. For ex-
ample, FPS measurements are processed through a moving window due to the great
variability on the data.

2. Periodically sensing, storing and processing the underlying platform metrics (e.g.,
power consumption, thread affinity, or core occupation).

3. Managing all the underlying shared resources performing an efficient allocation to
the application. In the case of an unique application running on the system, it is
responsible of setting the proper core affinity to avoid a high number of thread mi-
grations between cores, and to set the proper frequency only to those cores used by
the application at each moment.

4. Deciding the most appropriate knob(s) to be applied to the encoding application based
on the application metrics received and the running approach (i.e., MAL, Static or
argo approach). In the case of the MAL approach, the discretization of the metrics
according to the state definitions detailed in Section 6.1 is also a task for the centralized
Resource Manager.

A detailed description of the actual implementation of the system and communication
mechanisms used can be found in Appendix B. The Kvazaar encoder was slightly modified

120

6.3. PROPOSED SINGLE-APPLICATION SCENARIOS AND EXPERIMENTAL SETUP

Video Id Video Name µ FPS σ FPS min FPS max FPS
T

ra
in

in
g Hr1 FourPeople 30.6 6.5 11.2 47.6

Hr2 KristenAndSara 30.2 4.1 12.6 40.3
Hr3 OldTownCross 15.4 1.5 8.6 18.2

T
es

t

Hr4 QuarterBackSneak1 26.1 2.9 14.5 38.5
Hr5 BT709Parakeets 29.1 5.1 11.3 49.7
Hr6 Johnny 31.7 5.7 13.0 44.2
Hr7 ThreePeople 29.7 6.3 9.5 44.7

Table 6.2: Video characterization using static encoding resources: 3 threads, 1.5 GHz,
QP=22. The corresponding Id prefixed by Lr denotes low resolution versions
of each video.

to support dynamic knob tuning and integration into the resource manager. In total, 37
new lines were added to the code base, where 5 of them are responsible of communicating
with the centralized resource manager (to inform about the start and end of the execution,
to send the metrics measured at each frame, and to ask for the QP value and the number
of threads to use at each frame), while the others are responsible of adapting the encoding
process to the dynamic knob values received from the centralized resource manager.

6.3.2. Dataset definition

We consider videos with two very different resolutions: Low Resolution (LR) videos,
which is the default resolution provided by YouTube (832× 480 pixels), and High Resolu-
tion (HR) videos which is the resolution considered as “High Definition” (720p/HD videos
with resolution 1280× 720). HR videos have been extracted mainly from the test sequences
proposed by the JCT-VC [28]; LR videos used are the same as their HR counterparts,
re-scaled to the proper resolution.

To characterize and classify the different videos, each sequence is encoded using the same
resources during the complete execution (3 threads at 1.5 GHz with QP=22, i.e. maximum
quality), measuring instantaneous FPS at the end of each frame. Table 6.2 shows the average
FPS measured in each video (µ FPS), as well as the standard deviation of the instantaneous
FPS measurements (σ FPS), and the maximum and minimum FPS recorded during the whole
encoding process (max FPS and min FPS respectively). As shown, the chosen sequences
cover a wide range of scenarios. On the one hand, videos like Hr6 or Hr1 produce high
variability on the obtained FPS, but with low resource requirements (30.6± 6.5 FPS with
fixed resources). On the other hand, Hr3 or Hr4 are sequences with low variability but
higher resource demands (26.1± 2.9 FPS or 15.4± 1.5 FPS when encoded with the same
knob values).
In our experiments, we divide the sequences between training and test, incorporating both
types of videos in both groups. The training set (used to train the MAL system and fill the Q-
tables), is comprised of a sequence with high variability but low resources demands (Hr1),
a low demanding sequence but with lower variability (Hr2), and the highest demanding

121

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

Action
freq.

Freq. (GHz) N. Ths QP

HR LR HR LR HR LR

MAL

AGdvfs 6 {1.0, · · · , 2.0} — —
AGthread 12 — 1 – 5 1 – 3 —
AGQP 24 — — {22, 27, 32, 37}

Static — 1.5 1.4 3 3 32 22

argo 6 ondemand 1 – 5 {22, 27, 32, 37}

Table 6.3: Activation frequency and actions considered by each tested approach. Notice
how the number of threads varies depending on the resolution of the video as
the amount of parallelism is limited by the resolution. argo approach has been
tested only for HR videos.

sequence with low variability (Hr3). Similarly, the test group is also formed by videos
covering all the spectrum.

Training the system with a mix of videos (instead of a different training process per type)
allows us to encode any video in the future without needing to determine its type before
starting the encoding (and therefore which policy among those learned should be applied).
The main problem of this approach is that different videos can introduce a considerable
amount of noise into the learning process: if the system applies an action in a specific state,
the destination state can differ depending on the video being encoded. However, a proper
state and reward definitions together with the previously presented ideas can mitigate this
problem.

6.3.3. Alternative approaches and reported metrics

For the sake of fairness, we propose a comparison between our proposal and two alter-
native strategies:

MAL approach: This is our proposal. The selection of each knob at runtime is carried out
by the different agents which form our system (AGdvfs, AGthread and AGQP). Each
agent has a different frequency in which they take an action (based on the impact on
the output metrics). Depending on the resolution, the amount of threads available
to the encoding process varies due to the exposed parallelism in Kvazaar, which is
limited by the video resolution. Table 6.3 shows the configuration options set in the
experiments.

To train our system, different randomly selected videos of the training set are encoded
one by one through the MAL system at the same time it fills its internal tables. This
process is repeated until all the state/action pairs are in exploitation phase. As
explained before, our training set comprises 2 videos with low resource requirements,
and 1 video with low variability but a higher resource requirements. Targeting a
correct learning process, the random selection of the video to be encoded at each time
is performed with probabilities 1/4, 1/4 and 2/4, respectively. In this way, both types

122

6.4. EXPERIMENTAL RESULTS

of videos are explored the same number of times, and therefore, the obtained policy
is valid for a wider variety of videos.

Static approach: In this approach, knob values are fixed to a constant value during the
whole execution. For the sake of fairness, knob values in Static correspond to the
average value learned by the MAL system for the training videos. For High Resolution
videos, the sequences are encoded using 3 threads at 1.5 GHz with a QP value of 32.
For Low Resolution videos, 3 threads at 1.4 GHz are used and a QP value of 22.

argo approach: This is the heuristic approach described in [66, 67] adapted to our sce-
nario. argo bases its decisions on an internal database storing all feasible knob
configurations called Operating Points (OPs), and an estimation of the output metrics
obtained for each OP. argo maintains a set of constraints that the system should
never violate. At runtime it chooses, among all the promising OPs that do not violate
the constraints, the configuration that maximizes a user-defined rank function. To
provide self-adaptation, argo computes and modifies on the fly different coefficients
to relate the obtained measurements to those expected and stored.

To compare our proposal with argo, we generate its internal database by profiling
the same training videos used in our system; we set QP and number of threads as
the dynamic knobs managed by the heuristic, delegating the frequency adjustment to
the ondemand governor of the OS. To make the comparison as fair as possible, the
heuristic acts every 6 frames (matching the minimum frequency of the agents in our
approach), and the rank function used to evaluate OPs in argo matches the reward
function used in the MAL approach. Without loss of generality, argo is compared
only when encoding the most demanding resolution (HR).

Table 6.3 summarizes the aforementioned approaches and the configuration decisions
made on each one. In the following, all the reported data correspond to the average value
of five different executions. Results are reported in terms of QoS metrics measured from
the application and resource usage metrics measured from the centralized resource manager.
QoS metrics are reported in terms of: (i) QoS violations (i.e., percentage of the time the video
is encoded below the predefined real-time threshold, represented as -∆-), and (ii) attained
quality measured in PSNR (dB). Note that dB are measured in a logarithmic scale, so small
variations in the numeric values entails big changes in the quality. Resource usage metrics
are reported in terms of: (i) average number of threads used, (ii) average QP value set, and
(iii) average frequency used during the whole encoding process.

6.4. Experimental results

6.4.1. A detailed analysis of agents’ behavior for HR video sequences

Consider the execution trace represented in Figure 6.7. The plots on the left represent
the complete encoding process of a Hr4 sequence (QuarterBackSneak1). The first two
plots on the top report output metrics of the applications (i.e., instantaneous FPS and PSNR

measured frame by frame), while the remaining three report the decisions taken by the
system in terms of knob modifications and the resources used at each frame.

123

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

0 100 200 300
0

15

30

45

F
P

S

0 100 200 300
36

39

42

45

P
S

N
R

0 100 200 300

22
27
32
37

Q
P

0 100 200 300

2

4

N
.

T
h
re

a
d

s

0 100 200 300

#Frame

1
1.3
1.6
1.9

F
re

q
 (

G
H

z
)

A B

(a) Full Hr4 encoding trace.

255 260 265 270 275 280 285 290 295 300
0

15

30

45

F
P

S

255 260 265 270 275 280 285 290 295 300
36

39

42

45

P
S

N
R

255 260 265 270 275 280 285 290 295 300

22
27
32
37

Q
P

255 260 265 270 275 280 285 290 295 300

2

4

N
.

T
h
re

a
d

s

255 260 265 270 275 280 285 290 295 300

#Frame

1
1.3
1.6
1.9

F
re

q
 (

G
H

z
)

B

4

3

2

1

7

6

5

(b) Detailed view of the marked zone.

Figure 6.7: A trace representing an encoding process of Hr4 by the MAL system. On the
left, the full trace of the whole sequence. On the right, a zoom in view of the
marked zone. In both figures, the first two plots on the top represent the QoS

output metrics of the application (FPS and PSNR), while the last three represent
the resource usage metrics of the system (QP set, number of threads used and
frequency utilized). Points marked in the Figure are explained in the text.

Focusing on the measured FPS, we can observe how the MAL system is able to encode
most of the video above the real-time constraint set in this experiment (24 FPS represented
by the red line in the figure), and how, when the instantaneous FPS drops under the thresh-
old, the system recovers the required FPS again with a delay of only two frames. In addition,
the PSNR measurements reveal how MAL is able to maintain the quality between the required
limits (PSNR ranging from 30 dB to 50 dB).

The remaining three plots show the actual modifications carried out in knobs to adapt
to video contents, and give an overview of the general strategy autonomously learned
by the agents: varying system frequency more often than the number of threads, and
modifying number of threads more often than QP. This strategy does actually have an
explanation, and an intelligent behavior can be envisioned in the agents’ behaviour. As
introduced previously in this chapter, one-step frequency modification has a relatively
small impact on the encoding process, exposing a finer-grained control over throughput.

124

6.4. EXPERIMENTAL RESULTS

If the system needs to perform larger changes in the encoding process (e.g., due to large
changes in video contents), it will first modify the number of threads or QP. Next, the
system will change the frequency to tune the execution in a finer-grained way. Observe how
the main changes in FPS and PSNR are caused by changes in the QP value. This high-level
behaviour exhibiting the impact of each knob (in the order of frequency, number of threads
and QP) has been extracted automatically during the learning process, and is one of the
main benefits of the RL-based approach.

Plots on the right side show a zoomed-in version of the trace enclosed between marks
A and B on the left. In these plots, different points have been marked (circled numbers
in red) explaining with more detail the policy learned by our system to encode a HR

sequence. Although the actions taken by the system varies between executions (even for
the same sequence) due to the stochastic nature of the system, the overall behaviour has
been observed to be similar in other executions of the same sequence, as well as for the
other tested sequences. Later, we will discuss how the system learns a different policy
for LR videos, enhancing the use of a RL-based approach instead of a more traditional
heuristic approach.

Summarizing, the different decisions taken by the system in the different points can be
explained as follows:

1 At this point, MAL observes that the instantaneous FPS are under the real-time re-
quirements. Because MAL is composed by three different agents acting at different
frequencies, the system will not take any action until the next frame in which one of
the agents acts. In the worst case, the next agent will not act until the next 6 frames
are processed.

2 In this example, the first agent to act is AGdvfs, which increases the frequency seeking
to achieve real-time encoding process again.

3 The increase in frequency has positive impact on the instantaneous FPS. However
the obtained FPS rate is still below the threshold, so other agent will need to take a
trade-off action in the following frames.

4 As the number of threads cannot be increased, the AGQP decides to increase the QP

one step. Note that this change is performed as the agent has learned not only that
increasing the QP entails an increase in FPS, but also that the resulting PSNR will fall
between the required limits.

5 As explained before, the increase in the QP value has a huge impact in the FPS,
encoding again the sequence on real-time.

6 Observe how the change in QP also has a huge impact on the quality of the processed
frame, but the PSNR is always maintained above the limit (30 dB).

7 When possible, the system will try to modify the QP value again to maximize the
quality, always subjected to the restriction that the new knob configuration will encode
the video at ≥ 24FPS.

125

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

6.4.2. General MAL learned policies: HR vs LR behaviour

0 100 200 300 400 500
0

15
30
45
60

F
P

S

0 100 200 300 400 500
36
39
42
45

P
S

N
R

0 100 200 300 400 500

22
27
32
37

Q
P

0 100 200 300 400 500

2

4

N
.

T
h

re
a

d
s

0 100 200 300 400 500

Frame

1.0
1.5
2.0

Turbo

F
re

q
 (

G
H

z
)

(a) High Resolution version (Hr5).

0 100 200 300 400 500
0

15
30
45
60

F
P

S

0 100 200 300 400 500
36
39
42
45

P
S

N
R

0 100 200 300 400 500

22
27
32
37

Q
P

0 100 200 300 400 500

2

4

N
.

T
h

re
a

d
s

0 100 200 300 400 500

Frame

1.0
1.5
2.0

Turbo

F
re

q
 (

G
H

z
)

(b) Low Resolution version (Lr5).

Figure 6.8: MAL behaviour when encoding the same video (Hr5/Lr5 – Parakeets) in both
resolutions. Observe how the learned policy is different in both sequences.

Figure 6.8 corresponds to the encoding of the same video (Parakeets) by the MAL system
in two different resolutions: High Resolution on the left and Low Resolution on the right.
The behaviour when encoding the highest resolution is consistent with the one previously
described: sporadic changes in QP trying to increase the quality when possible, or trying not
to encode the sequence below 24 FPS when there is no other knob configuration possible;
and more frequent changes in the number of threads (hence, applying a finer control on the
output metrics) and a constant adjustment of the frequency producing the finest tuning of
the output metrics.

In the case of Low Resolution sequences, the behaviour of the system is slightly different
to the previous one (but consistent among all the videos of the same resolution). Through
the learning process, MAL has learned that LR videos need lower amount of resources to
be encoded than HR videos, and therefore, it can increase the quality without increasing
the amount of violations of the FPS constraints. Indeed, the system is able to encode the
videos at the maximum quality (minimum QP) while adjusting the FPS metric by tuning
the number of threads and frequency. This is possible thanks to the use of Turbo frequency.
In the case of LR videos, the amount of threads used to codify a sequence is limited up to
3, meaning that Socc ∈ {1, 2}, and therefore, the effective frequency will be high enough to
encode the sequence (3.6 GHz and 3.4 GHz) at maximum quality. However, in Chapter 7 will

126

6.4. EXPERIMENTAL RESULTS

Output metrics Avg. Knob values

–∆– PSNR (dB) Freq N. Ths QP

MAL Static MAL Static MAL

H
R

1×Hr4 7.8 14.6 41.1 40.8 1.6 4.0 31.1
1×Hr5 0.9 0.4 40.2 39.9 1.4 3.8 31.4
1×Hr6 1.0 0.4 40.7 40.1 1.2 3.6 31.3
1×Hr7 0.5 0.4 39.3 39.2 1.3 3.5 31.9

1×HR Avg. 2.5 4.0 40.3 40.0 1.4 3.7 31.4

L
R

1×Lr4 27.9 71.7 44.0 44.7 1.7 2.5 23.7
1×Lr5 7.4 0.5 44.4 44.5 1.5 2.8 22.4
1×Lr6 0.9 0.4 44.8 44.8 1.3 3.0 22.0
1×Lr7 0.5 0.5 44.0 44.0 1.4 3.0 22.0

1×LR Avg. 9.2 18.3 44.5 44.6 1.5 2.8 22.5

Table 6.4: Output metrics and resource usage for the MAL approach compared with the
Static assignment for Hr (top) and Lr videos (bottom). Static approach
encodes the different sequences with the average values learned by the MAL

approach (i.e., 3 threads, 1.5 GHz and QP=32 for HR videos, and 3 threads,
1.4 GHz and QP=22 for LR videos).

show how, when the number of simultaneous videos increases (and therefore the effective
turbo frequency decreases), the system is able to sacrifice (reduce) quality to mitigate the
effects of the frequency decrease.

6.4.3. Comparison with a static approach

Table 6.4 illustrates the behaviour of our approach compared with Static when en-
coding the different testing video sequences in terms of the QoS metrics (percentage of the
time the FPS constraint is violated -∆-, and output quality measured through the PSNR).
The resource usage of MAL (average number of threads, QP value and frequency set) is also
shown in the table. These results illustrate how the MAL approach is able to restrict the
attained throughput to the real time threshold. On the contrary, the percentage of time the
Static strategy is not able to fulfill these requirements is larger even though the selected
(and fixed a priori) values for each knob are those learned by our system. This is a clear sign
of the benefits of the dynamic knob tuning process accompanied by an application-aware
knowledge. The awareness of the status of the application at each moment allows not only
to react when the constraints are violated, but to constantly tune the most suitable knobs
in advance based on the predictions carried out with the current measurements and the
recorded history.

From the results shown in the table, a number of insights can be extracted, namely:

Based on the results and in the previous characterization, we can divide the sequences
into two groups: Hr4 sequence as the most demanding one, and Hr5, Hr6 and Hr7
as non-demanding sequences.

127

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

HR

Output metrics Avg. Knob Values

–∆– PSNR (dB) N. Ths QP Freq

MAL argo MAL argo MAL argo MAL argo MAL argo

1×Hr4 7.8 9.6 41.1 43.6 4.0 2.7 31.1 25.0 1.6 Turbo
1×Hr5 0.9 8.5 40.2 42.5 3.8 1.5 31.4 26.7 1.4 Turbo
1×Hr6 1.0 9.9 40.7 42.9 3.6 1.1 31.3 25.2 1.2 Turbo
1×Hr7 0.5 7.0 39.3 41.7 3.5 1.0 31.9 26.4 1.3 Turbo

1×HR Avg. 2.5 8.8 40.3 42.7 3.7 1.6 31.4 25.8 1.4 Turbo

Table 6.5: MAL compared to the Argo approach. With comparison purposes, MAL results
are reported again in this table.

For the non-demanding sequences, both approaches behave correctly, obtaining similar
results in terms of QoS metrics. In terms of resources, MAL requires more threads than
Static (3 threads), but the frequency set in average is lower (1.5 GHz in Static).

For the most demanding video, the MAL system has learned to increase the assigned
resources (number of threads when dealing with HR sequences, and frequency when
encoding LR videos). This is possible thanks to the dynamic knob adaptation and
application-aware knowledge available in MAL, but not in the the Static strategy.

MAL reduces the number of QoS violations when compared with the Static approach,
yielding 1.6× and 2× better results for the HR and LR sequences respectively. In
addition, the fast reaction of the MAL system when the throughput constraint is
violated can favor the use of buffering techniques to serve the video to the final users
in real time, avoiding delays in the stream.

To sum up, the dynamic knob tuning process, together with a constant knowledge of
the internal status of the application allows a more precise tuning of the different knobs,
and therefore, to obtain higher-quality executions in terms of any output metric.

6.4.4. Comparison with a state-of-the-art heuristic (argo)

Table 6.5 shows the results obtained when encoding the different HR videos under argo
approach. For the sake of clarity, we report the MAL results again in this table.

At a glance, although Argo obtains higher PSNR in all the tested scenarios, the amount
of time the system violates the throughput constraint (-∆-) is systematically larger than in
our proposal. This behavior is explained in terms of the changes in the content of the video.
While our proposal is able to perform a fine-tuning process by adjusting the processors’ fre-
quency, Argo delegates this to the governor of the operating system. This delegation
results on setting the frequency at turbo in all scenarios, thus, argo needs to increment the
number of threads to compensate a violation in the QoS constraint. However, as explained
before, although a change in the number of threads can have a huge impact on the instan-
taneous throughput, the consequences on the output metrics are rougher compared with

128

6.5. CONCLUSIONS

the expected consequences when changing the frequency. The later is the policy followed
by the MAL approach.

In addition, in the case of videos with high requirements (like Hr4), argo increments
the number of threads to increase the instantaneous throughput (up to 2.7 threads when
the average is 1.6). On the contrary, our approach has learned to decrease the quality in
these scenarios, having more room to change the frequency and number of threads when
needed, and therefore, to avoid violations in the throughput constraint.

6.5. Conclusions

In this chapter, we have shown how a resource management process for online HEVC

video encoding can be formulated in terms of a Q-Learning algorithm. A generic state,
action and reward decomposition was presented to easily map a generic malleable and
QoS-aware application, allowing a fastest learning process than a mono-agent formulation
and an easy tuning of the rewards ad states. However, although the mono-agent approach
is perfectly valid for most scenarios, in complex scenarios where the number of states and
actions increases, the time required for learning the system makes this formulation almost
unfeasible.

A co-operative multi-agent approach solves this problem by splitting the actions be-
tween different agents, and therefore, reducing the exploration space. A new learning rate
function and activation sequence for the agents were proposed to allow the agents to learn
at different speeds and still obtain high-quality policies. In addition, the decision-making
process was reformulated to incorporate the cooperative behaviour when the system runs
on a stochastic scenario. Lastly, we provided the system formulation with an efficient
mechanism to detect an ignore noisy measurements coming from the application or
environment metrics measurements.

From the experimental perspective, our formulation was tested on a real platform encod-
ing different sequences of two different resolutions, reporting the behaviour of our approach
when comparing to the Static and argo approaches.

The results demonstrate how our multi-agent approach is able to adapt to changes in
video contents and at the same time it is able to fulfill the throughput requirement and
maximize the quality. The results also show how the system is able to learn different policies
for the different resolution tested, and therefore, it proves that the system is able to make
a decision based on the running applications.

When comparing our system with the Static approach, the results show how
being aware of the application internals achieves remarkable improvements for HR

and LR resolutions, respectively. Also, our proposal reduces the number of times the
Throughput requirement is violated compared with argo, as it has learned to sacrifice
quality to guarantee encoding is above 24 FPS, contrary to argo, which tries to increase
the throughput increasing the number of threads, but still obtaining worst results than MAL.

To sum up, the main contribution of the chapter can be summarized as the demonstra-
tion of the feasibility of porting a specific application into a Q-Learning formulation (both
mono- and multi-agent), and how a classical formulation can be modified to be applied into

129

CHAPTER 6. SELF-ADAPTIVE APPLICATION EXECUTION VIA RL

a real system with a huge stochastic exploration space and noisy measurements. The pre-
sented formulation has been tested in a real scenario, and is generic enough to be mapped
to other applications, both in the multimedia area and in other fields.

However, the contributions and experiments in the chapter are limited to one concur-
rent application scenarios. The next chapter extends the formulation to consider multi-
application environments.

130

7

Extensions for Inter-Application Resource
Management

The main contribution of Chapter 6 was the design and implementation of a ML ap-
proach (specifically a QL approach) that is able to efficiently manage all the intra-application
metric interactions by dynamically tuning the proper knobs (both at application and system
level). In particular, up to this point, we have shown how to model the design space in
terms of states and substates, actions and reward functions to achieve high-quality real-time
codification processes.

This chapter goes one step further, and proposes an extension of the previous scenario
that incorporates the management of inter-application interactions. Hence, our target sce-
narios (both theoretical and practical) are shifted from single-application management to
multi-application management.

The main objective of the chapter is to illustrate how a multi-agent QL resource man-
agement approach can be extended to integrate multi-application scenarios, and to discuss
the necessary modifications in the baseline model to accommodate this new functionality.
Being aware of all the running applications, a resource manager can determine the best
knob configuration for each application, satisfying individual per-application constraints,
and optimizing global metrics at the same time.

Following with our motivational application, our framework is developed and deployed
considering a multi-core server in which a number of transcoding requests from users arrive
at random points in time, each one of a different video type (resolution and contents), and
hence, heterogeneous resource requirements. In addition, the previous application-specific
constraints (performance/Throughput and quality/PSNR), are extended to consider a
system-wide constraint: power capping.

However, to handle new intra-application dependencies, the basic formulation in Chap-
ter 7 requires a number of modifications and extensions. In particular, this extended for-
mulation needs to integrate a number of new features, among which we can highlight:
(i) redefining the states and rewards to consider the new global metrics, (ii) properly man-
aging the shared resources to avoid overuse (in our scenario, manage the thread affinity to

131

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

avoid oversubscription scenarios), and (iii) defining a proper method to train the system
to avoid the interference between multiple agents of different applications into the learning,
being able to associate system-wide effects to specific local actions.

The Chapter is structured in two main parts. Section 7.1 extends the ideas of the
previous Chapter to incorporate the management of inter-application dependencies into
our formulation. Specifically, it describes the new metrics, states and rewards added to
the system, as well as the new problems associated to the management of simultaneous
applications, and their solutions. In Section 7.2 we compare our formulation with the same
approaches used in the previous Chapter (Static and argo approaches), a equivalent
mono-agent implementation, and RAPL, the state-of-the-art hardware-based power capping
mechanism. Lastly, Section 7.3 presents a set of conclusions and final remarks.

7.1. Integrating intra-application dependencies into the formula-
tion

The extended multi-application design is composed by different agents each associated
to a different knob, similar to that presented in Chapter 6; different Q-tables are consid-
ered for each resolution. However, if multiple videos of the same resolution are encoded
simultaneously, a set of different agents is deployed for each process, all of them sharing the
same Q-table, and therefore, the same policy. The existence of multiple agents using the
same table has two major drawbacks, namely: (i) A synchronization mechanism is needed
to avoid two simultaneous modifications of the same state/action pair in the table. This
problem occurs only in the exploration and exploration/exploitation phases; the exploitation
phase does not require this explicit synchronization, given the read-only nature of agents’
access, and (ii) If a resource is shared between agents (for example, physical cores in our
case), it needs to be serialized to avoid oversubscription situations.

7.1.1. A modified learning process for system-wide metrics

As previously exposed, deploying multiple agents accessing the same table during the
learning process can yield race conditions, and therefore, sub-optimal or incorrect policies.
There is, however a second major problem in the extended formulation, mainly related
with system-wide metrics; a clear example in our case is power consumption. This implies
that changes in power may not be directly related to the changes applied by one specific
application, but can be bound with other applications adapting their knobs at runtime. This
phenomena can lead to incorrect learning from the agents, updating the Q-tables based on
observations that are not consequences of their own actions.

To address this problem, we propose modifications in the learning process to deal with
system-wide output metrics. During the learning process, only one encoding process learns
and updates the Q-tables, and multiple background process encode random sequences and
provide different scenarios to the first application. The number of background processes
varies over time, allowing the learning process to explore all the different scenarios. In the
case of our formulation for HR sequences, the system is first trained with only one sequence
until the substate Socc = 1 is fully explored, increasing the number of videos progressively
to explore the other occupation states, up to 6 simultaneous videos that guarantees the

132

7.1. INTEGRATING INTRA-APPLICATION DEPENDENCIES INTO THE FORMULATION

PCap

W

-4

-2

0

2

R
(P

o
w

e
r)

Figure 7.1: Power reward. This function does not maximize or minimize any metric, but
penalizes power consumption above a specific cap by returning a negative re-
ward of −4.0.

exploration of the Socc = 6 substate. In the case of LR videos, the system is trained
similarly, increasing the number of background sequences progressively until all states are
fully explored.

Once the system has learned (and the Q-tables are not modified anymore), all processes
can proceed with the encoding procedure using the same trained agents.

7.1.2. Power capping integration

To incorporate power capping abilities into our previous formulation, new state and
reward functions are needed. However, thanks to our decomposition of the state definition
(see Equation 6.1) and reward function (see Equation 6.2) into sub-states and sub-rewards,
respectively, only the definition of a new substate and a new subreward function are required
instead of the redefinition of the whole state or reward:

Power sub-state (Spower): As we are not considering power as a metric to maximize of
minimize, but as a cap not to exceed, the Power state (Spower) is divided only into
two different values: those below the cap, and those above the cap (power < Pcap and
power ≥ Pcap). In case that Pcap is considered as a metric to minimize, the state
space can be split into multiple sub-states, similar to Spsnr.

Spower ≡ { power ∈ [0, Pcap), [Pcap,∞) }

Power sub-reward: Power consumption is limited to a value defined by the server ad-
ministrator (Pcap). The reward function will return a negative value to those states
above the power cap, and no reward to the other state. Figure 7.1 illustrates the
behaviour of this reward.

R(power) =

{
−4.0 power ≥ Pcap
0.0 otherwise.

Besides the addition of the new sub-state, encoding multiple videos simultaneously
makes Socc increasing from 3 different values up to 6. This implies that an agent should
visit 504 different states and explore all the state/action combinations multiple times before

133

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

obtaining the final policy. In the case of a mono-agent approach, this space decomposition
summarizes in 120 960 different pairs (504 states × (4 × 5 × 12) actions), which takes a
considerable amount of time to be explored. Opposite to this formulation, a multi-agent
approach is able to reduce the exploration time by performing a proper division of the
action set (note that the states need to be equal for all agents). In our formulation, this
decomposition reduces to 10 584 different pairs state/action (504× 4 + 504× 5 + 504× 12),
yielding a reduction of ≈ 12×.

7.1.3. Management of shared resources

The formulation presented here is able to determine the proper value of each knob at
a specific moment while satisfying the required constraints. However, if the underlying
resources whose use is modified by a knob variation are shared across different applications,
additional logic is needed to: (i) check if the resource is available or it has been taken by
other agent, and (ii) in the case the action cannot be taken (because there are not enough
free resources), modify the learning process to avoid learning incorrect transitions.

In our formulation, both problems are present in the AGthread agent: it is possible that
the agent decides to assign to an application more threads than available free cores; and it
is possible to assign the same physical cores to different applications simultaneously.

To solve the first problem (the agent requires more threads than available free cores),
the agent checks after deciding which action to take, and before communicating it to the
application if it is possible to apply that action. If not, the agent does not notify the
application about the new knob value, and annotates this action to not update the Q-
table in the next iteration. Additionally, to avoid oversubscription, the agent keeps internal
information regarding core-to-application mapping. When this assignation needs to be
modified (due to increases or decreases in the number of required threads), the agent will
modify this allocation trying to reuse the same physical cores, and therefore, avoid thread
migrations between cores.

7.2. Experimental results on multi-application scenarios

To test the extended abilities of our approach to manage inter-application dependencies,
we have followed the same methodology used in Section 6.3. First, we show the behaviour
of our MAL approach, and how the learned policy is different when dealing with different
number of videos (i.e., Socc varies). Second, we compare our proposal with the Static
approach in two different scenarios: multiple videos of the same resolution being encoded
simultaneously, and sequences of different resolution mixed. Later, we show the behaviour
of our approach compared with the argo heuristic, and the benefits to use a multi-agent
approach instead of a mono-agent approach. Finally, we show how our approach behaves
in a power constrained scenario, and compare the results with RAPL, a power capping
hardware-based alternative. And at the end of the chapter, we show the minimum overhead
our approach introduces into a normal Kvazaar process.

134

7.2. EXPERIMENTAL RESULTS ON MULTI-APPLICATION SCENARIOS

20
30
40
50
60

F
P

S

1xLR5

50 100 150 200 250 300

Frame

1.0

1.4

1.8

Turbo

F
re

q
 (

G
H

z
)

20
30
40
50
60

F
P

S

5xLR5

1.0

1.4

1.8

Turbo

F
re

q
 (

G
H

z
)

22

27

32

37

Q
P

50 100 150 200 250 300

Frame

1

2

3

N
.

T
h

s

Figure 7.2: Encoding timeline for a single Lr5 sequence (top) vs. 5 Lr5 simultaneous
sequences (bottom). For a single sequence, the system sets the number of
threads to 3 and the QP value to 22 (not shown in the plots).

135

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

7.2.1. MAL and turbo behaviour

Consider the traces shown in Figure 7.2. The plots on the left represent an encoding
process of a single high-demanding Lr5 video, while the plots on the right show the be-
haviour of when 5 Lr5 videos are encoded simultaneously (only traces of one of them are
shown, but all sequences have similar behaviour). When a single video is encoded, the MAL

system decides in this case to set the number of threads to 3 and QP value to 22, adapting
itself to the video content changing only the frequency between 1.3 GHz and turbo frequency
(3.4 GHz due to low occupation). This policy allows the system to codify the video with
the maximum quality and still to not violate the throughput constraint set.
However, as described in Section 5.2, as the number of physical cores in use increases (and
therefore Socc increases too), the effective value of the turbo frequency decreases (down to
2.5 GHz when there are 15 cores occupied) not being enough to maintain the codification
process above 24 FPS. Consequently, the system learns autonomously how to adapt to the
content by properly modifying the other knobs. Similarly to the policy learned for 1 HR

video, the system follows the same knob classification to tune the process: frequency is
changed the most as it provides the finest control on the process, followed by less frequent
changes in the number of threads, and lastly changes in QP, as it can make huge changes in
the output, but provides no much control on the metrics. This is the general policy followed
in all the videos and scenarios tested as described next. It is important to notice that there
are not different tables nor learning process for different number of videos, but there is only
one table for each agent, and thanks to the definition of Socc, the agent is able to predict
the effective frequency of turbo, and therefore, to act consequently.

7.2.2. Comparison with a Static solution

To compare our approach with the Static approach, we have evaluated both in two
different scenarios. In the first scenario we run as many videos of the same resolution as
possible, avoiding oversubscription. This scenario tests the behaviour of the MAL system
when encoding from 2 to 4 simultaneous high resolution random videos, and from 2 up to
6 low resolution sequences being encoded concurrently. The second scenario corresponds to
a more realistic scenario, where multiple videos of different resolutions need to be encoded
simultaneously satisfying a Throughput above 24 and maximizing quality at the same
time.

Scenario 1. - Homogeneous-resolution videos: Table 7.1 shows the results of execut-
ing multiple videos of the same resolution concurrently, comparing MAL and Static. The
sequences used in each experiment were randomly chosen, ensuring all the possible combi-
nations in the number of high-demanding and non-demanding videos were explored. The
main conclusion we can extract from the results is that when there is more than one video
being encoded simultaneously, the results clearly show how our approach is consistently able
to encode the different workloads with a low number of QoS violations, adapting to different
occupation levels and video resolutions (mainly increasing QP, that is, decreasing quality to
compensate the lower turbo frequency). While the Static approach works relatively well
for a low number of videos, its QoS decreases when the computational demands increase, as
shown in the table.

136

7.2. EXPERIMENTAL RESULTS ON MULTI-APPLICATION SCENARIOS

Output metrics Avg. Knob values

–∆– PSNR (dB) Freq N. Ths QP

MAL Static MAL Static MAL

H
R

2×HR Avg. 3.1 5.4 40.3 40.1 1.3 3.3 31.8
3×HR Avg. 4.5 8.5 39.4 40.1 1.3 3.3 33.7
4×HR Avg. 7.1 9.9 39.0 40.1 1.4 3.1 34.8

L
R

2×LR Avg. 11.1 11.1 44.0 44.6 1.5 2.6 23.6
3×LR Avg. 12.7 16.1 43.7 44.6 1.5 2.6 24.1
4×LR Avg. 13.1 19.9 43.9 44.6 1.6 2.5 23.7
5×LR Avg. 15.0 22.7 43.3 44.6 1.5 2.6 25.2
6×LR Avg. 13.8 35.0 41.7 44.6 1.5 2.6 28.6

Table 7.1: Output metrics and resource usage for the MAL approach compared with the
Static assignment for Hr (top) and Lr videos (bottom) when encoding multi-
ple time simultaneously.

Diving into details of the behavior of each experiment, we can extract a number of
specific insights, namely:

As shown in Section 6.3, when there is only one video running, the Static approach
behaves relatively well for most of the sequences. However, when the number of
concurrent videos increases, so does the number of QoS violations.

The flexibility of the MAL approach allows a dynamic adaptation of knobs during the
execution to satisfy the different demands of the different videos on different server
loads, obtaining better results than the Static approach. In the case of HR sequences,
the degradation of the QoS ranges from 3.1 % to 7.1 % when the MAL approach encodes
2 to 4 simultaneous videos respectively, and from 5.4 % to 9.9 % when the videos are
encoded using the Static approach. When LR sequences are encoded, it ranges from
11.1 % when 2 videos are encoded simultaneously (for both approaches), up to 13.8 %
in the MAL approach and 35.0 % in the Static approach when 6 videos are considered.

Although the MAL approach decreases the PSNR when the number of videos increases,
the loss in quality is only of 2.9 dB in the worst case, thanks to the QP adaptation
previously described.

To recap, the percentage of time in which the QoS requirements are violated increases
with the number of simultaneous videos. However, the QoS degradation is greater for Static
than for MAL. Hence, our proposed solution is able to adapt to different levels of occupation,
which results in more desirable outcomes (1.7× and 2.5× for HR and LR videos respectively).
This demonstrates how the MAL system is able to self-adapt to server’s occupation, in
addition to the adaptation to the video contents described before.

Scenario 2.- Behaviour under video combinations: Table 7.2 shows the results obtained
for a more realistic scenario, where different number of videos of different resolutions are

137

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

PSNR (dB) –∆– N. Threads

MAL Static MAL Static MAL Static

1Hr+1Lr 41.5 42.0 1.2 0.3 5.7 6
1Hr+3Lr 42.8 43.4 7.6 9.9 10.8 12
1Hr+5Lr 42.0 43.8 11.6 10.7 14.8 18

2Hr+1Lr 41.0 41.5 2.8 2.3 8.6 9
2Hr+3Lr 39.6 42.6 6.3 3.8 13.3 15
2Hr+5Lr 39.6 43.3 10.0 20.7 18.6 21

3Hr+1Lr 39.4 40.9 2.3 3.7 10.8 12
3Hr+3Lr 39.8 42.3 10.0 14.4 16.8 18
3Hr+5Lr 38.6 42.7 11.3 26.6 20.0 24

4Hr+1Lr 39.1 40.8 3.6 3.9 14.0 15
4Hr+3Lr 38.1 41.8 7.1 16.4 19.0 21
4Hr+5Lr 38.1 42.6 9.0 35.5 20.0 27

Table 7.2: Output metrics and number of threads (MAL vs Static) for different combi-
nations of mixed videos.

simultaneously encoded. Each reported result corresponds to the average value of 10 dif-
ferent mixes of videos, each repeated 3 times. Qualitatively, the behavior is similar to the
previous experiments: as the occupation of the server increases, the QoS violations increase
too. In addition, in the extreme cases where the Static approach assigns more threads
than available cores (20 in our platform) arising oversubscription (i.e. two active threads
are executed on the same physical core), our approach is able to adapt the quality and
number of threads between the videos in order not to exceed the available physical cores
and to obtain maximum QoS. MAL obtains 2× improvements in QoS when compared against
Static assigning 21 threads (experiment 2HR +5LR), and up to 4× when 27 threads are
used by Static (experiment 4HR +5LR). The loss in quality is minimum, i.e., encoding
always sequences with PSNR above 38 dB.

7.2.3. Comparison with a state-of-the-art heuristic (argo)

HR

Output metrics Avg. Knob Values

–∆– PSNR (dB) N. Ths QP Freq

MAL argo MAL argo MAL argo MAL argo MAL argo

2×HR Avg. 3.1 9.4 40.3 42.7 3.3 1.6 31.8 25.8 1.3 Turbo
3×HR Avg. 4.5 6.3 39.4 42.7 3.3 1.7 33.7 25.8 1.3 Turbo
4×HR Avg. 7.1 7.1 39.0 42.7 3.1 1.9 34.8 25.9 1.4 Turbo

Table 7.3: MAL compared to the Argo approach when encoding multiple videos at the
same time. MAL results are reported again with comparison purposes.

138

7.2. EXPERIMENTAL RESULTS ON MULTI-APPLICATION SCENARIOS

Table 7.3 shows the results obtained when execution the same combination of videos
used in the previous section. For the sake of clarity, we report the MAL results again in this
table.
Similar to the results obtained when only one video was encoded (Section 6.3), argo ap-
proach is able to encode the different sequences with a slightly better quality due to the use
of a lower QP value. However, this increase in quality carries an increase in the complexity
of the encoding process, that argo tries to compensate supported by the turbo frequency
of the system. However, similar to the experiments for one video, the amount of time the
real-time constraint is violated is superior than in MAL (up to 3×).
Table 7.3 also shows that the number of threads used by argo increases with the number
of videos. As described when talking about turbo behaviour in Section 5.2, the turbo fre-
quency decreases as the number of active core increases. Hence, an increase in the amount
of threads is needed to compensate the loss in frequency. Opposite to the strategy followed
by argo, observe how the policy learned by MAL prefers to decrease the quality slightly
(increasing the QP value) instead of increasing the number of threads.

7.2.4. Improvements over a mono-agent implementation

To show the advantages and disadvantages of our multi-agent proposal against other
mono-agent-based Q-Learning approaches, we have implemented the general mono-agent
approach described in previous chapters. For the sake of fairness, the mono-agent takes an
action every 6 frames (the minimum frequency in MAL), and considers all possible combi-
nations of actions considered by MAL. All results hereafter correspond to a training process
with 4 HR simultaneous transcoding processes, using the sequences for training and test de-
scribed before. Only results with 4 simultaneous videos are reported due to the unfeasible
time required to train the mono-agent system for different number of videos, as commented
in the previous chapter and described with more details next. The reported results corre-
spond to the average values obtained when encoding 4 test sequences selected randomly at
the same time (each executed 5 times), using the same combination of sequences for both
approaches.
Data measured confirm the weak points previously mentioned for the mono-agent approach
and alleviated by the MAL implementation, namely:

1. The learning time for the mono-agent is dramatically larger than that of the MAL

approach (6 times longer in our experiments).

2. The mono-agent approach has less control on the consequences of each action as the
decision space considers all the knobs together, hiding the relations between them.

3. Changing all the knobs constantly (specially the output quality), can produce a neg-
ative impact on the Quality of Experience (QoE).

Learning time: The two plots on the top of Figure 7.3 report the learning time for the
mono-agent and multi-agent approach, respectively, under equivalent experimental scenar-
ios. Each line represents the amount of state/action pairs (in terms of percentage) at each
phase of the learning process. In the case of the multi-agent approach, lines represent com-
bined data for the three agents. Both x-axes are equally scaled for comparison purposes,

139

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

0 1000 2000 3000

Time (n. videos)

0

25

50

75

100

%

monoAgent

0 1000 2000 3000

Time (n. videos)

0

25

50

75

100

%

multiAgent (all agents combined)

Explor.

Explor.-Exploi.

Exploi.

0 500

Time (n. videos)

0

25

50

75

100

%

AG
QP

0 500

Time (n. videos)

0

25

50

75

100

%

AG
thread

0 500

Time (n. videos)

0

25

50

75

100

%

AG
dvfs

Figure 7.3: Learning evolution of the mono-agent approach vs multi-agent approach. Each
line represents the percentage of state-action pairs that are in each phase. Top,
the mono-agent approach vs the multi-agent approach (all agents combined).
Bottom, a detailed view of the behavior of each agent.

and represent the status of the system after training with a certain number of sequences
(≈ 500frames/sequence). The results clearly show how all state/action pairs start in the
exploration phase, and how they move to exploration-exploitation and then to exploitation
phase while the pairs are being visited over time. As described in Section 6.2.4, running
the system on a real platform produces noisy measurements, which forces the adoption of
filtering techniques to remove these noisy data. Our filtering algorithm does not remove
these measurements, but ignores them until it is sure that these measurements are correct
(Equation 6.4). This leads to the lines in the plot not to be monotonic, but still conver-
gent. As the decision space for the mono-agent considers all combinations for all actions (4
QP values × 5 different numbers of threads × 12 frequencies = 240 different actions), the
convergence for the mono-agent is slower than for the multi-agent, which splits the decision
space and explores them concurrently, yielding 6× faster learning times for the tested setup.

The plots at the bottom illustrate the learning process of each agent in MAL. Even
though all of them show the same behavior, the convergence slightly varies among them,
due to the different number of actions each agent needs to explore, as well as by the different
frequency at which each agent acts.

Learned policies: Figure 7.4a shows how the number of threads and selected frequency are
similar to those learned by MAL (3.0 vs 2.9 threads for the MAL and mono-agent respectively,
and 1.4 GHz vs 1.6 GHz); in the mono-agent case, QP values are considerably smaller (26.9 vs
34.6), yielding higher-quality videos while the computing resources increase. This implies

140

7.2. EXPERIMENTAL RESULTS ON MULTI-APPLICATION SCENARIOS

3.0 2.9

1.4 1.6

3.5
2.7

- N. Ths - Freq (GHz) QP (x10)
0
1
2
3
4
5
6

v
a

lu
e MAL Mono

(a) Avg. Knob values.

5.0

17.2

5.9

45.2

6.1 9.6

- - N. Changes QP Avg QP Dist.
0

10

20

30

40

50

L
o
w

e
r

is
 b

e
tt
e
r

MAL

Mono

(b) QoE metrics.

Figure 7.4: Top: resource usage by the MAL and mono-agent approach. Bottom: QoS
and QoE metrics obtained. The data represents average values for different
combinations.

an increase in the QoS violations shown in Figure 7.4, obtaining worse results than for
MAL. The reason of this behavior is that, when considering simultaneous knob changes, the
relation between them is hidden, obtaining at the end a more coarse-grained control than
the MAL approach.
Also, MAL does not only rely on the Q-values learned on the decision process, but also
on the stored probabilities between states when applying each action. Thus, it has more
information than the mono-agent to make right decisions.

Actions variability (QoE): In addition to QoS, it is also crucial to consider Quality of Expe-
rience (QoE) [142]. This is directly related to the perception of the user when visualizing the
encoded sequence. For example, even if the frame rate is always above 24 FPS, continuous
or abrupt changes in quality can damage QoE.
To quantify these two metrics, Figure 7.4b reports the number of QP changes during the
encoding process (i.e. quality changes), and average distance between the selected QP values
(if the distance is large, the change in quality is significant). Besides the coarser-grained
control of the mono-agent when knobs are considered jointly, it is impossible to set a differ-
ent frequency (for agent activation) to modify each knob. This produces a higher number
of changes in QP than MAL (in our case, every 6 frames vs every 24), and hence constant
changes in quality. In addition, as the mono-agent learned to use a lower QP value with the
same number of threads and frequency as MAL, when the system needs to adapt the QP

value, it performs abrupt changes, damaging QoE. For the example shown in Figure 7.4,
the benefits in terms of QoS and QoE can be summarized as a reduction of 12 % in FPS
violations, 7× less QP changes, and 30 % reduction in average QP distance.

141

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

7.2.5. Power capping integration

Finally, we investigate on the ability of MAL to apply tight power capping limits while
adapting resources and keeping thresholds on Throughput and Psnr. The experiments
are based on the execution of the maximum number of similar videos before oversubscription
arises (in our case, 6 LR simultaneous videos), combined with a power capping limit (75 W,
which is 60 % of TDP). We study three different power capping mechanisms, adding to
the previous MAL formulation power capping abilities via software and via hardware, and
compare all the results with similar executions where no power capping were applied:

Software capping (Mal-Sw): This approach corresponds to our MAL formulation in
which MAL autonomously learns the optimal knob combinations to achieve power
capping. This approach correspond to the one presented at the beginning of this
chapter.

Hybrid software-hardware capping (Mal-SwHw): A version of MAL in which no
power states are considered at learning time and there is no power reward, but instead
hardware mechanisms are applied to maintain power under the cap. In our platform,
this is done via the Intel-RAPL [138] mechanism.

Static-hardware capping (Static-Hw): An implementation with hardware capping
where the values for the different knobs are statically selected a priori. The val-
ues chosen for the Static-Hw approach correspond to the average values learned by
MAL.

No powercapping (MAL-NoPcap): executions using MAL with no power capping abil-
ities. Used in this section as the baseline to compare with the other three approaches.

We report results in terms of used resources (Figure 7.5b) and output metrics (Fig-
ure 7.5a and Figure 7.5c) for the three power capping mechanisms and for MAL-NoPcap,
which means MAL with TDP as power cap.

First, consider the capabilities of the three methods to maintain power consumption
below the cap. For reference, if none of the three previous mechanisms is used, the amount
of time in which the cap is exceeded in a normal execution of the MAL system ranges from
52 % (Lr4) to 10 % (Lr6). By using any of the three approaches, power capping violations
(labelled as %P > 75W) reduce this range in all cases. When hardware capping is applied,
obviously, the percentage of capping violations is reduced to a value close to 0 %. In the
case of pure software capping, it ranges from 13 % (Lr4) to 0 % (Lr6), which demonstrates
the ability of MAL to dynamically adjust knobs to meet the power capping requirements.

Regarding QoS, both software-hardware and software power capping are able to achieve
similar FPS violations (columns labelled as %FPS < 24) in all cases compared with situ-
ations in which no power capping is applied. Recall that, in those cases, power capping is
simultaneously met. This achievement is possible due to a correct adaptation (reduction) of
quality (PSNR). At a glance, MAL manages to slightly reduce average core frequency, from
a range between 1.62 GHz (Lr4) to 1.47 (Lr6) to a range between 1.55 GHz (Lr4) to 1.23
(Lr6). This reduction is accompanied by an increase in QP, and hence a reduction in quality
(PSNR), see Figure 7.5c. Note that, however, quality is maintained under acceptable limits.
In summary, the static approach combined with hardware power capping mechanism is able

142

7.2. EXPERIMENTAL RESULTS ON MULTI-APPLICATION SCENARIOS

6xLR4 6xLR5 6xLR6 6xLR7

%P
>75

W
%F

PS<
24

%P
>75

W
%F

PS<
24

%P
>75

W
%F

PS<
24

%P
>75

W
%F

PS<
24

0

10

20

% 30
50

80
MAL-NoPcap

MAL-Sw

MAL-Sw/Hw

Static-Hw

(a) QoS metrics

6xLR4 6xLR5 6xLR6 6xLR7

n.Ths

Freq (G
Hz)

QP (x
10)

n.Ths

Freq (G
Hz)

QP (x
10)

n.Ths

Freq (G
Hz)

QP (x
10)

n.Ths

Freq (G
Hz)

QP (x
10)

0

1

2

3

4

K
n

o
b

 v
a

lu
e

(b) Resource usage

6xLR4 6xLR5 6xLR6 6xLR7

38

40

42

44

46

P
S

N
R

(c) PSNR

Figure 7.5: (a) QoS, (b) resource usage, and (c) quality for the same 6 videos simultaneously
encoded under a power cap of 75 W, using the different policies described in the
text. The bars represent: (blue) the MAL system without power cap; (red) the
MAL system when power capping is learned and applied via software; (yellow)
the MAL system when power capping is applied via hardware; and (purple) the
Static approach combined with power capping via hardware.

to keep the power consumption under the power limit set, at the expense of a considerable
number of QoS violations. On the contrary, MAL achieves software power capping by means
of reducing the frequency and trading off quality. Besides, if hardware capping mechanisms
are available, MAL can cooperate with them.

7.2.6. Overhead introduced by the MAL system

To minimize the overhead introduced by MAL in a typical real-time Kvazaar encoding
process, the system has been designed trying to minimize as much as possible the time
Kvazaar has to be blocked waiting for the synchronization with MAL. To do that, the system
has been designed to be able to execute in parallel with Kvazaar without interrupting the
normal operation of it. However, there are three moments of the execution where Kvazaar
has to interrupt its execution to synchronize with MAL:

143

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

Comm. Type Type Time (µs/comm) Freq (N/sec) % Time

Transfer Metrics Rx 5.68 24 0.014%
Adjust QP Rx & Tx 20.16 1 0.002%
Adjust n. Ths Rx & Tx 95.44 2 0.019%

Table 7.4: Overhead introduced by MAL into the normal Kvazaar operation. The measured
time comprises the time taken by the transmission of the message from Kvazaar
to MAL, the computations of the new metrics by MAL, and the transmission
time of the message containing the new knobs.

1. To transfer metrics. Each time Kvazaar finishes to encode a frame, the output metrics
of that frame are sent to MAL. This message has no answer from MAL, so Kvazaar
can start to encode the next frame without needing to wait for the answer. This
transfer is also used to notify MAL about the beginning of a new frame, and therefore,
to determine if AGdvfs needs to act. In that case, the frequency is modified at the
same time Kvazaar starts to encode the next frame, avoiding to block Kvazaar.

2. To ask for the new QP value. Every 24 frames, Kvazaar asks MAL about the QP value
to use in the following 24 frames. In this case, Kvazaar blocks until the MAL system
decides the next value to use (i.e., AGQP determines the next action), and receives
the answer.

3. To determine the number of threads to encode the next 12 frames. Similar to the
previous communication, Kvazaar blocks until MAL determines the number of threads
to use in the following 12 frames. As described previously, to determine the number
of threads to use, not only AGthread has to act, but also the system has to determine
the affinity of those threads to avoid oversubscription situations.

Table 7.4 shows the amount of time each of these communications take individually,
and the percentage it represents of the whole process. As expected, transferring the output
metrics is the fastest communication as Kvazaar has not to wait for an answer, while asking
for the number of threads to use is the slowest because the system has to determine and set
the affinity of each thread. In general, the amount of the time Kvazaar is blocked is below
0.03 %, being low enough to not affect our real-time encoding processes.

7.3. Conclusions

In this Chapter, we have extended the ideas presented in the previous Chapter to sup-
port inter-application dependencies by our Q-Learning formulation. In addition, we have
extended the capabilities of our approach to support power capping restrictions. To do so,
the learning process, as well as the management of the shared resources were modified to
consider the possible interferences between agents of different processes.

The proposal was tested on different real scenarios, comparing our approach with other
state-of-the-art approaches. In particular, the results have demonstrated that our multi-
agent approach adapts to changes in video contents and server occupation, achieving an

144

7.3. CONCLUSIONS

improvement of 2×/4× when the occupation of the server is low/high, respectively. We have
given evidences that reveal the appealing of a multi-agent approach in terms of learning time
(6× reduction compared with a mono-agent approach) and quality of learned policies (3.4×
improvements on QoS, and 7× in QoE). We have shown how power capping capabilities can
be incorporated into the resource manager obtaining competitive results when compared
against hardware power capping mechanisms. The management of dynamic application-
and system-level knobs in a holistic fashion is general enough to be extended with further
parameters or output metrics, and to other applications, both in the multimedia area and
in other fields; also, the architectural-related techniques applied to deal with system knobs
are of wide appeal to be applied (isolated or in conjunction) to other present and future
architectures.

This Chapter, together with the previous one, have proven our proposal as a valid
approach to handle multiple applications concurrently in a real environment. To do so,
our formulation relies on a QL approach to handle the multiple application- and system-
knobs based on the metrics received from both application and system. However, the
current proposal considers only the generation and utilization of one policy governing all
the applications simultaneously. In the next Chapter, we extend the current formulation
to generate multiple policies with minimum effort, and show how a real system can benefit
from having multiple policies, deciding which policy to apply to each application at each
moment, based both in application- and system- metrics.

145

CHAPTER 7. EXTENSIONS FOR INTER-APPLICATION RESOURCE MANAGEMENT

146

8

A Methodology for Multi-Policy Resource
Management

Chapter 7 has demonstrated the feasibility of applying a Reinforcement Learning strat-
egy to manage both resources and application knobs via a centralized resource manager,
able to autonomously learn and apply policies both at application and system-wide level
to optimize a common QoS objective. In all cases, the learned policies are considered
to be homogeneous across applications. However, it is common to find scenarios in
which a number of parallel applications coexist, each one featuring different Quality of
Service (QoS) requirements. This heterogeneity in requirements entails new challenges in
terms of resource management in order to improve resource usage while meeting acceptable
rates in terms of QoS.

With this regard, in this chapter we pursue two different objectives:

1. We propose an efficient methodology to build multiple policies that depart from a
common Reinforcement Learning formulation, and that can be served to different
applications at runtime to fulfill heterogeneous QoS requirements. Specifically, we
show how the Reinforcement Learning formulation described in the previous chapters
can be reformulated to obtain multiple policies with minimum effort and learning
time, and we propose a simple methodology to accomplish this goal in an easy and
controlled manner.

2. We show how multiple of these ML policies can be combined together at a higher
level. To demonstrate that, we build a two-component resource manager that can
handle multiple applications concurrently with different QoS requirements. This two-
component resource manager is comprised by a MAL system similar to that described
in previous chapters, and a heuristic layer determining which policy will be applied
to each application at each moment. Here, the MAL system is in charge of tuning
the different application- and system-knobs based on the measured metrics and the
learned policy, while the heuristic component is in charge of communicating with the

147

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

MAL system about which policy apply to each application, based on system metrics
and its internal status.

Specifically, Section 8.1 motivates the existence of real scenarios where different QoS

policies are applied simultaneously, and describes how different policies can be formulated for
our driving example, HEVC online video transcoding. Section 8.2 describes a framework to
obtain multiple Q-Learning policies with minimum effort while minimizing the learning time,
showing the results obtained when the system encodes different sequences with different
policies. In Section 8.3 we describe how the resource manager can be extended to incorporate
multiple policies, describing a simple heuristic aware of the system status to determine the
best policy to apply to each instance. Lastly, Section 8.4 closes the chapter with some
conclusions.

8.1. Motivation for multi-policy resource management

The integration of multiple polices for resource management and application tuning
in shared computing systems, specially in the cloud, is becoming a field of paramount
interest to efficiently exploit the potential of the underlying architectures without human
intervention. In situations where limitations in terms of Quality of Service (QoS), tight
per-application Service Level Agreement (SLA) or energy consumption are imposed, the
development and application of such policies become a hurdle difficult to be automatically
addressed [189].

Usually, the development of those different policies is commonly carried out in a loop
fashion where different metrics and actions are tested and applied to applications and sys-
tem, sensoring the effects on the output metrics. This cyclic steps orbit around the existence
of a shared Knowledge Base (KB) [90] storing rules that, properly orchestrated, can fulfill
the requirements and restrictions imposed without further human intervention.
The development of the KB, however, can become a daunting task when the amount of archi-
tectural and application-level knobs increase and their interplay is nontrivial. In stochastic
environments such as shared nodes in cloud deployments, in which the application of a
given rule does not always yield the same result in terms of performance and/or energy
consumption, the creation, maintenance and effective application of the knowledge of the
KB is even a more complex task. The challenge is harder in scenarios in which the request
arrival rate and its distribution are unknown, or when the throughput or quality attained
are content-dependent, and hence unpredictable.

In the following, we leverage RL to build, maintain and enrich the Knowledge Base
of our centralized resource manager in shared servers in order to attain automatic and
efficient resource management and allocation for multiple concurrent applications exhibiting
heterogeneous QoS demands.

8.1.1. Heterogeneous QoS for HEVC encoding processes

In the previous chapters we have shown how a multi-agent Q-Learning approach can
be applied to a real-world HEVC encoding application to obtain simultaneous real-time
encoding processes (that is, with a tight lower bound in throughput of 24 frames per

148

8.1. MOTIVATION FOR MULTI-POLICY RESOURCE MANAGEMENT

second –FPS–), meeting at the same time constraints in terms of quality and power
consumption. However, in that scenario, a unique common policy was applied to all the
videos concurrently processed by the system.

For the sake of clarity, let us consider now a simpler problem formulation in which
turbo frequencies are not considered, and power is considered as an independent value for
each application, based on a previous profiling of the system and online estimation, similar
to Chapter 4. Also, consider a slightly different decomposition of the states as shown in
Equation 8.1. Similar to the previous chapter, we design a reward function composed by
three different sub-reward functions, each one associated to a specific sub-state, and its
coefficients as described before. In this scenario, and assuming the state definition and
action set stay constant, this simpler formulation offers 9 different dimensions (3 reward
definitions × 3 coefficient values) the designer of the experiment can tune to obtain different
policies.

Spsnr ≡ {PSNR ∈ (0, 36], (36, 38], (38, 40], (40, 42], (42, 44], (44,∞) dB }
SFPS ≡ {FPS ∈ (0, 24), [24, 30), [30, 40), [40, 50), [50,∞) }
Spower ≡ { power ∈ [0, 17), [17, 21), [21, 24), [24,∞) }

(8.1)

Figure 8.1 shows different combinations of sub-rewards and coefficient values in this
scenario. Each dot in the plot represents different state in our formulation; and its color
represents the reward given to that state (the higher the better). On the left, three different
examples of sub-reward functions are shown, namely:

1. RPSNR−H which gives maximum reward to the states with maximum quality.

2. RPSNR−L which minimizes quality, but ensures a minimum quality (giving a reward
of 0 to the states below the threshold).

3. RFPS which aims at obtaining real-time encoding processes giving no reward to the
states with throughput below 24 FPS, maximum reward to the states between 30 and
40 FPS, and a decreasing reward to the states above.

Observe how modifications in the sub-reward functions alter which are the best solutions,
or goal states (yellow points in the figure). This fact can be clearly observed in the first
two plots: while the former one maximizes quality, changing the definition, the latter turns
the states with minimum quality, but above the constraint (36 dB in the plot), into the goal
states.

On the right, different combinations of the same sub-reward functions with different
coefficients are shown. For the sake of clarity, only the states with reward ≥ 0.75 are
colored. In this case, RPOWER minimizes power consumption. Observe how small changes
in the way functions are combined dramatically alter the goal states of the system. For
example, results vary from maximizing quality and ensuring real-time throughput on
the top, to restricting the goal space to those with minimum power, meeting real time

149

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

1.0 ·RPSNR−H + 0.0 ·RFPS + 0.0 ·RPOWER 0.5 ·RPSNR−H + 0.5 ·RFPS + 0.0 ·RPOWER

1.0 ·RPSNR−L + 0.0 ·RFPS + 0.0 ·RPOWER 0.0 ·RPSNR−H + 0.5 ·RFPS + 0.5 ·RPOWER

0.0 ·RPSNR−H + 1.0 ·RFPS + 0.0 ·RPOWER 0.3 ·RPSNR−H + 0.3 ·RFPS + 0.3 ·RPOWER

Figure 8.1: Rewards obtained in the different states for different combinations of sub-
reward definitions (left) and coefficients (right)

150

8.2. DESIGNING A REINFORCEMENT LEARNING MULTI-POLICY FRAMEWORK

requirements in the middle, and a combination of both behaviors on the bottom.

The figure ultimately demonstrates how, even for a simple space decomposition, there
is a huge number of different policies that can be applied to the same problem, obtaining
different results. However, the definition of those policies, and its subsequent extraction
is far from being trivial, and it is definitely a time consuming task if it is not carried out
following a proper methodology. In the next section, we proceed with a description of how
the creation of different policies can be standardized, and we propose a methodology to
follow when creating the following policies to alleviate this burden.

8.2. Designing a Reinforcement Learning multi-policy framework

Reinforcement Learning (RL) algorithms tackle the problem of finding the optimal policy
of a MDP where the set of probabilities (P) relating the different actions and transitions
between states are unknown (see Section 5.3). In most real problems, determining the
probabilities that define a specific MDP is not an easy task, being in most of the cases
unknown, or estimated from noisy measurements.

Throughout the previous chapters, Q-Learning (QL) has been proved to be a valid RL

algorithm to learn the optimal policy through an autonomous exploration of the design space
(and inherently, discovering the probabilities that define the problem). However, due to the
infinite nature of the formulation of the algorithm, the optimality of the obtained policy π′

will be ultimately based on the time the algorithm has been exploring the system and, in
essence, the distribution of the number of times each state/action pair has been explored.
In real-life problems, where the definition of the state comes from real measurements of
the environment, this exploration time depends on the frequency the system provides the
different metrics, producing long time training sessions. Moreover, if the final goal is to
train the system several times to obtain different behaviors (with a modification in the
reward functions prior to each iteration), the total training time can grow to unacceptable
times.

In the following, we address both questions, namely:

1. How to define the system to obtain different learned behaviors.

2. How to boost the learning time providing the transition probabilities to the
Q-Learning system.

8.2.1. Learning different policies

Training a Q-Learning system is a trial-and-error process in which state and reward
function definitions are modified until the obtained policies meets the desired behaviour.
Even with expert knowledge, this process can be tedious or even unfeasible in some scenarios.
To reduce this burden, in Chapter 6 we proposed the decomposition of states and rewards
into multiple substates, allowing us to propose a new methodology to obtain new policies
with minimum effort:

s = (s1, . . . , sn), with s ∈ S = S1 × . . .× Sn, si ∈ Si

151

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

R(s) = R(s1, . . . , sn) = λ1 ·R1(s1) + . . .+ λn ·Rn(sn), where si ∈ Si, λi ∈ R

Given this definition of a reward function, training the system to obtain different policies
boils down into tuning each sub-reward to obtain the desired behaviour, by means of a
tuning-and-test cycle as described in Section 8.2.3. This tuning process can be carried out
in two different ways based on the desired behaviour:

Modifying the coefficients: Assuming all sub-reward functions have the same range
(i.e., all functions produce values in the same interval), each coefficient λi represents
the importance of each sub-state in the problem. Modifying these coefficients allows
us to give more or less importance to each sub-state, and consequently to the metrics
used to build it.

Modifying the reward functions: Each sub-reward function represents how the system
will behave, respectively, on each sub-state (and, therefore, on each metric used to
define each sub-state). The goal of modifying the definition of a sub-reward is not to
modify the importance given to a set of metrics as before, but instead to modify the
behaviour of the system with respect to this metric. For instance, changing one sub-
reward function can imply modifying the behaviour from maximizing certain metric
to minimizing it.

8.2.2. Reducing learning time

As described in Chapter 5, classical Q-Learning formulations are based on a table com-
bining all the actions and states (Q-table), and representing the expected rewards obtained
for each pair. This table, initially empty, is updated at the same time the system explores
the different transitions. As the exploration level advances, the learned policy is more sim-
ilar to the optimal policy, but the convergence ratio decreases. It is a responsibility of the
designer of the experiment to set a trade-off between the exploration time and the optimal-
ity of the learned policy. Implicitly, at the same time the table is updated, the system is
learning the unknown probabilities between states and actions (P).

Although at a first glance the bottleneck of the algorithm seems to be the number of
the iterations the system needs to perform in order to explore all the transitions enough
number of times, in real-world problems it is limited by the frequency at which the actions
can be applied and the metrics needed to build the states can be measured. For example,
in a situation in which the system is applied to a video encoding process at 24 frames per
second, and a transition occurs between frames, the speed of the exploration is limited to 24
transitions per second. In the case when multiple policies are required, and consequently,
one training session per policy is needed, this limitation in the speed of the algorithm can
make the problem unfeasible.

However, if the probability set between states (P) is known a priori, the algorithm does
not need to wait for actual readings of the required environmental metrics to determine
movements between states; on the contrary, it can simulate the transitions based on the
information provided by P.

Following this idea, we propose an offline learning process which dramatically reduces
the amount of time needed to obtain each policy:

152

8.2. DESIGNING A REINFORCEMENT LEARNING MULTI-POLICY FRAMEWORK

States, actions &
rewards definition

Detailed
simulation

Train & Test
Real Scenario

P~State & Actions

New rewards
& coeffs

Train
using P~

Test new
policy

π'

1 2 3
4

Figure 8.2: Proposed methodology to extract multiple policies from the same KB.

1. First, all combinations between states and actions are explored enough number of
times to build a transition table (P ′) that stores the probabilities of moving from one
state to the others when applying a specific action.

2. Once P ′ has been built, following training processes can proceed with the classical
Q-Learning formulation. However the state is determined based on the information
provided by P ′, not by observation.

The process of building P ′ can be carried out independently of the learning process,
or can be extracted from one initial training process storing explicitly the probabilities at
the same time the classical Q-Learning algorithm explores the different transitions of the
system.

The obtained P ′ table will be valid for all the subsequent learning processes, unless the
transitions between states change due to external factors (for example, processor operating
frequency can be altered by changes in temperature), or due to changes in the definition of
states or actions. Note that P ′ is used only in the learning process, but once the system
has finished learning, the states and transitions are obtained directly from measurements
of the system, and not from P ′.

8.2.3. A methodology to extract multiple policies

As explained before, the creation of these policies can be a time-consuming process
due to the tune-and-test nature of the process. To reduce the amount of time required to
complete the process, we propose a simple and concise methodology to generate the different
policies based on the previous ideas, removing a reasonable amount of time and effort from
the process:

(Step 1) In a first step, the definition of the different states and rewards is carried out. Each
sub-state needs to be discretized based on expert knowledge of the problem, while the
reward functions are defined based on the goal the policy has to achieve. In this step,
coefficients are set together with each reward function.

(Step 2) In a second step, a detailed simulation of the reward functions for the different states is
performed to check if the goal states are the right ones (similar to the space exploration
shown in Figure 8.1). If the states with higher rewards are not the desired ones, steps
1 and 2 are repeated until the reward functions and coefficients are properly tuned.

153

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

(Step 3) Once the reward functions and states are properly tuned, the system is trained with
the previous rewards and coefficients. Note that this process has to be carried in the
real scenario, and can take a considerable amount of time. If the obtained results
are not the desired ones, all the previous steps are repeated until states, rewards and
coefficients are correct. At the same time the system is trained, the table storing
P ′ is recorded. As described in Section 8.2.2, this table can be used in subsequent
learning processes to simulate the environment, instead of training the system in the
real system, and therefore, to reduce the time spent on the process.

(Step 4) Once the definition of states and actions is set, and the table P ′ is recorded, obtaining
new policies is a trivial process where the reward functions or coefficients are modified,
and the system is trained and tested offline.

The main steps of the methodology are depicted in Figure 8.2.

8.2.4. Experimental results for multi-policy resource management

To illustrate our proposal, and following with our driving example, let us consider now
a more realistic scenario in which a video provider needs to attend multiple video encoding
requests from different users with different requirements:

Regular users which require a minimum of quality.

Premium users which need encoded videos with maximum quality.

In both cases, real-time results are expected in the encoding process. In this scenario,
two different policies are desirable: one which maximizes quality for premium users (πP),
and another which guarantees a minimum quality for regular users (πR). Additionally, when
the server load increases, it would be desirable to apply different policies to minimize the
resources used by each user, satisfying a minimum quality to each type of user, and still
maintaining real-time throughput (24 FPS) (policies πP and πR).

To achieve that, the sub-rewards shown in Figure 8.3 were used to generate the policies:
three different reward functions which provide three different levels of quality (RPSNR−L,
RPSNR−M , and RPSNR−H), a reward function which guarantees real-time encoding (RFPS),
and a reward function which minimizes power (RPOWER).

To guarantee a minimum of quality, the functions shown in Figure 8.1 were slightly mod-
ified to give a negative reward to those states below the threshold (PSNR < 36). Similarly,
the definition of RFPS gives a negative reward to the states below real-time. In this case, a
lower reward is given to ensure that, in the case both constrains are violated (quality and
throughput), the system will maximize throughput instead of quality, and therefore, achieve
real-time encoding processes. The maximum reward of RFPS is not given to 24 FPS, but
to the next state, due to the fact that, being close to 24 FPS will produce a higher amount
of frames being encoded below the threshold due to the variability on the content between
frames.

To estimate the power consumption of each application, the model
P = nth ∗ (α ∗ freq2 + β) + γ was used, experimentally setting the parameters for our

154

8.2. DESIGNING A REINFORCEMENT LEARNING MULTI-POLICY FRAMEWORK

36 38 40 42

PSNR

-2

0

1

R
(p

s
n

r)

R
PSNR-L

36 38 40 42

PSNR

-2

0

1

R
(p

s
n

r)

R
PSNR-H

36 38 40 42

PSNR

-2

0

1

R
(p

s
n

r)

R
PSNR-M

24 30 40 50 60

FPS

-4

0

1

R
(f

p
s
)

R
FPS

17 21 24

power

0.2

0.4

0.6

0.8

1

R
(p

o
w

e
r)

R
POWER

Figure 8.3: Sub-reward functions used for the different policies: three sub-rewards for dif-
ferent levels of quality (top), and the functions for real-time encoding and power
(bottom).

πR : 0.7 ∗RPSNR−L + 0.1 ∗RPOWER + 0.5 ∗RFPS
πP : 0.7 ∗RPSNR−H + 0.0 ∗RPOWER + 0.5 ∗RFPS
πR : 0.7 ∗RPSNR−L + 0.5 ∗RPOWER + 0.5 ∗RFPS
πP : 0.7 ∗RPSNR−M + 0.5 ∗RPOWER + 0.5 ∗RFPS

Figure 8.4: Reward functions defined for each policy.

specific platform, obtaining a root mean squared error of 0.97 W and a maximum error of
2.4 W, which are negligible in our machine with a maximum energy consumption of 125 W.

We identify πR as our base policy, used to tune and polish the actions and state defi-
nitions, at the same time the transition table P ′ is recorded. Once this policy is created,
other policies can be easily derived in a reasonable time by means of the methodology in
Section 8.2.3. Our policies, detailed in Figure 8.4, were defined based following a number
of considerations:

The definition of πR is a combination of a function which minimizes PSNR but ensures
a minimum quality (RPSNR−L), and a function which ensures real-time encoding
(RFPS). Additionally, a reward to minimize power consumption was incorporated
with a small coefficient (RPOWER).

155

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

Nth Freq QP Quality ∆
πR πR πR πR πR πR πR πR πR πR

R
eg

u
la

r
Hr4 4.2 3.3 1.6 1.7 35.2 36.0 39.4 39.1 6.0 2.4
Hr5 3.1 2.9 1.4 1.5 37.0 36.9 37.8 37.8 0.4 0.4
Hr6 3.1 2.6 1.3 1.5 37.0 37.0 38.0 38.0 0.3 0.3
Hr7 3.3 2.9 1.3 1.4 37.0 37.0 37.1 37.1 0.4 0.4
avg. 3.4 2.9 1.4 1.5 36.6 36.7 38.1 38.0 1.8 0.9

πP πP πP πP πP πP πP πP πP πP

P
re

m
iu

m

Hr4 4.6 3.6 1.8 1.6 24.9 33.4 43.7 40.2 2.0 6.3
Hr5 4.2 3.3 1.7 1.4 24.9 32.2 43.2 40.2 2.3 4.2
Hr6 4.2 3.1 1.6 1.3 23.7 33.0 43.4 39.9 0.6 0.7
Hr7 4.7 3.1 1.7 1.3 22.1 33.2 43.2 39.0 0.7 0.5
avg. 4.4 3.3 1.7 1.4 23.9 33.0 43.4 39.8 1.4 2.9

Table 8.1: Average knob values learned by the system for Regular (top) and Premium
(bottom) users with and without resource minimization, and output metrics for
the different videos used to validate the system.

The major difference between πR and πP is the reward function used to evaluate
quality. The former minimizes quality, and the latter maximizes it (RPSNR−H). To
achieve high quality videos without throughput violations, the reward which minimizes
power is removed. As real-time encoding is mandatory in both cases, this term is still
in place without modifications.

If resource minimization is desired for a regular user, πR achieves that goal by increas-
ing the coefficient of the function which minimizes the power consumption respectively
to its counterpart πR (from 0.1 to 0.5).

The design decisions to create πP are similar to the ones used to create πR but in
this case, because obtaining high quality videos is a resource-hungry process, the sub-
reward function associated with PSNR is modified to still obtain high quality videos,
but lower quality than that in πP (RPSNR−M).

Results for individual policies

The aforementioned policies have been implemented as described in Chapter 7 and under
the same conditions. Table 8.1 reports the behaviour of each described policy applied to
each video, showing the average knob values set for number of threads (Nth), frequency
(in GHz) and QP, and the gathered output metrics: quality (PSNR, measured in dB), and
real-time throughput violations (measured as the percentage of time the video has been
encoded below 24 FPS (-∆-)).

First, observe how changes in one reward function can produce opposite behaviors.
Consider, for example, policies πR and πP : by modifying exclusively the reward function in
charge of quality, the obtained PSNR changes drastically (38.1 dB to 43.4 dB, respectively).

156

8.2. DESIGNING A REINFORCEMENT LEARNING MULTI-POLICY FRAMEWORK

0 100 200 300

20

35

50

F
P

S

Regular Regular min. res.

0 100 200 300
36

39

42

45

P
S

N
R

 (
d

B
)

0 100 200 300

Frame

1

2

3

4

5

N
.

th
s

(a) Regular users

0 100 200 300

20

35

50

F
P

S

Premium Premium min. res.

0 100 200 300

36

39

42

45

P
S

N
R

 (
d

B
)

0 100 200 300

Frame

1

2

3

4

5

N
.

th
s

(b) Premium users

Figure 8.5: System behaviour timelines and metrics obtained when encoding the Hr4 se-
quence with all different policies for Regular users (left) and Premium users
(right). The yellow line indicates real-time encoding (24 FPS).

On the contrary, observe how modifications in the coefficients without altering the reward
functions can keep the global behaviour of the system intact, but modify the internal
actions chosen by the system. Comparing policies πR and πR, both achieve comparable
quality levels (38.1 dB vs 38.0 dB), but the number of threads used when the policy πR is
acting decreases down to one thread in average (in the case of Hr4 sequence) with respect
to πR. Regarding policies πP and πP , observe how the impact in the number of threads
is the same as in the other policies, but the change in the reward which affects quality
produces slightly lower PSNR.

Figure 8.5 shows a timeline of the encoding process of the sequence Hr4 under different
policies. For the sake of clarity, only changes in number of threads are shown, but dynamic
adaptation of frequency and QP values are also in place. In overall, observe how in the case
of regular users, both policies πR and πR obtain similar (and lower) quality but the number
of threads used in each one changes drastically. On the right, both policies obtain higher
quality results, but there is a clear difference in quality and resource usage between them
as desired in our formulation.

157

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

N. frames Learning Time

mono-agent n× 3000 n× 17h
multi-agent n× 500 n× 3h
This Methodology 500 + (n− 1)× 500 3h+ (n− 1)× 1min

Table 8.2: Learning time to obtain n different policies by different approaches. The Mono-
and Multi-agent approaches are those described in Chapter 6. Learning time
has been calculated assuming a learning rate ≈ 24fps.

Learning time analysis

Following the ideas described in Section 8.2.2 to boost learning time, once the first policy
(πR) was defined, the training time to obtain the remaining policies was reduced from days
to hours, as shown in Table 8.2 when compared against the traditional approach described
in Chapter 6.

Note that, in this example, learning times were extracted using the same machine and
setup; also, observe that our approach inherits the advantages of the multi-agent implemen-
tation (in terms of a reduction in the number of necessary frames to converge from 3000
to 500 compared with a mono-agent approach), and adds additional gains as the number
of desired policies increases. In this case, adding a new policy is translated into roughly
one extra minute of computing time. In the case of the traditional mono- or multi-agent
approaches, each new policy would require a complete learning process, adding 17 h and 3 h
per policy, respectively.

8.3. Combining multiple policies via heuristics

In the previous section, we have explored how different policies can be extracted from
the same formulation of the system, and how, following the proposed methodology, the
effort and time needed to produce them can be considerably reduced. In this section, we
show a simple and effective way to combine those policies in a realistic scenario, where
multiple requests from different types of users arrive distributed over time, varying the
number of users to attend simultaneously at each moment. Under this scenario, if the
number of simultaneous videos is large enough, it may be impossible to attend all the
request simultaneously due to an insufficient amount of resources. In these situations,
it is common to enqueue the requests, and attend them in order as the resources are
freed by previous clients. Of course, the time a request is hold in the queue does not
depend only in the videos being encoded, but also on the type of user that made the request.

To handle this scenario, we propose the use of a 3-tier heuristic that, based on the
policies obtained in the previous section, is able to choose the proper policy to apply to
each client and thus reduce the overall waiting time. This heuristic demonstrates how all
the ideas described in this thesis can be combined in an unique solution:

At the application level, a MAL solution is used to tune the different knobs based on
application and system metrics.

158

8.3. COMBINING MULTIPLE POLICIES VIA HEURISTICS

Policy 1
Policy 2

...
Policy N

HEURISTIC

MAL system Environment

Application

Figure 8.6: System design. The MAL system is in charge of modifying the knobs while the
heuristic decides the best policy to apply to each application at each moment.

At a higher level, the heuristic influences he decision taken by MAL choosing the proper
policy to apply.

The policy decision is not randomly taken, but also from the data measured from the
system (occupation) and the application (user type). Figure 8.6 shows how the heuristic
and the MAL system are integrated into the system.

Note that this heuristic is just an illustrative example of how a simple approach can
benefit from having different policies to apply, obtaining better results than other static
approaches. Moreover, the methodology described in the previous sections is also valid for
any other approach based on multiple simultaneous policies.

8.3.1. Heuristic design

The proposed 3-tier heuristic is based on a Finite State Machine (FSM) with three differ-
ent states. Each state represents a different level of occupation, and therefore, a different set
of policies to apply to each user type. Algorithm 8.1 shows a detailed pseudocode describing
how the heuristic moves between the following states:

1. S0, the initial state. This state is active when there are enough resources for all the
clients, so that resource usage reduction is not needed. In this state, policies πR and
πP are applied to regular and premium users, respectively, to produce encoding with
maximum quality for both kind of users

2. If there are not enough resources to encode all requests, state S1 reduces resource
consumption of regular users by applying policy πR. In this state, premium users are
still allowed to use as many resources as they require (policy πP).

3. When there are not enough resources for the incoming request in state S1, and only if
the incoming request arrives from a premium user, the heuristic will move to state S2,
minimizing the resources for both kind of users, regular and premium. In this state,
policies πR and πP are used.

To determine if a client can be attended in a specific state, the function canRunClient

predicts if it is possible or not based on a estimation of the number of cores each running
client is using in the specified state. In order to predict the number of cores in use, the
function relies in an internal table storing the average number of cores used by each policy
with the training videos, as an estimation value of the cores used by future videos.

159

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

Algorithm 8.1: 3TierPol: Determine if a new request can be processed.

Data:
queue<ClientRequest> queue: clients’ requests waiting to be processed
nReg, NPrem: number of regular and premium users running on the server
currentState: state the system is

Result: True if it was possible to attend the request. False in other case.
1 Function startClient () is:

/* Determine new state */

2 cl ← queue.first;
3 newState ← currentState;
4 if (canRunClient(currentState, cl, NReg, NPrem)) then
5 newState ← currentState;
6 else if (currentState = S0 AND canRunClient(S1, cl, NReg, NPrem)) then
7 newState ← S1 ; // Try to move to S1

8 else if (cl.type = premium AND canRunClient(S2, cl, NReg, NPrem)) then
9 newState ← S2 ; // Try to move to S2

10 else
11 queue.insert front(cl); // Not enough resources

12 return False;

13 end

/* Update state */

14 currentState ← newState;
15 if (client.type = regular) then nReg++;
16 else nPrem++;

/* Start encoding request */

17 return runClient(cl);

18 end

Armed with the instantaneous knowledge of the policies that are in use (i.e., the current
state), the number of regular and premium users being attended, and the incoming user
type, a prediction of the total number of cores in use is calculated.

If the amount of predicted cores is lower or equal to the number of physical cores of the
machine, the request is attended and the video encoding can commence. Else, the heuristic
tries to move to the next state. If there is not enough room for the user in any state, the
request is pushed in front of the queue again. Inserting the client in the front (instead of
enqueueing it again in the back) allows to attend the users at arrival order. When a video
finishes to be encoded and enough resources are freed, the heuristic checks if it can move
to a previous state that does not minimize the resource usage and provides bigger quality.

8.3.2. Experimental results for multi-policy combination heuristic

In order to improve realism, we assume that several different videos from different users
arriving over time need to be served simultaneously, minimizing the waiting time of each
client and meeting requirements in quality (based on the type of user) and throughput

160

8.3. COMBINING MULTIPLE POLICIES VIA HEURISTICS

(≥24 FPS). Each experiment is determined by the arrival rate (5s, 10s and 15s), and the
percentage of premium users (0%, 25%, 50%, 75% and 100%). Each experiment comprises
10 sequences to be encoded, randomly selected, with a duration of 2500 frames each (≈ 100
seconds at 24 FPS).

Each video is concatenated to itself multiple times producing 2500 frames sequences. To
obtain reliable data, each configuration of frequency and premium/total users relation was
explored through 5 different combinations of 10 videos, and each combination was run 3
times, reporting average values. Although three different arrival frequencies where explored
in the experiments (5s, 10s and 15s), only the results of 10s are shown, although similar
and comparable measurements were observed for other frequencies.

For the sake of comparison, we have compared 3TierPol with two modifications of
the MAL approach presented in previous chapters. Both alternatives implement a static
decision making process, choosing the policy to serve each video based on the kind of user,
and not on the environment. The policy utilized does not change during the whole encoding
process:

1Pol: This strategy corresponds to the MAL approach presented in previous chapters,
where only one policy (πR) is used to encode all the sequences as an extreme case,
trading off quality for throughput. Note that in this case, no premium users are
considered.

2Pol: This approach corresponds with a slightly modified MAL approach. In this case,
the system determines between two different tables, which policy apply on the user
type to attend (πR and πP). This policy is the opposite to the previous one: it offers
maximum quality to each type of user, without considering decreasing quality to serve
more users simultaneously.

3TierPol: The heuristic proposed in this chapter. It uses a heuristic to determine the
policy to apply to each client. A MAL instance is in charge to apply the policies.

In the former two cases, the algorithm used to determine whether a video can be
encoded or needs to wait on the queue is the same as that used in 3TierPol.

The plot on the top of Figure 8.7 shows the amount of users attended per minute (on
average) based on the number of premium user requests for the three explored approaches.
Depending on the number of premium users, two different behaviors are observed: when
the amount of premium users is below 50 %, and when the amount is greater or equal. On
the first group, 3TierPol outperforms the other strategies, and it is able to process more
users per minute reducing slightly the quality obtained (0.13 dB for regular and 1.9 dB for
premium users in the worst case), see the bottom plot in Figure 8.7.

Diving into details of the behaviour of the second group (premium ≥ 50%), we observe
how the amount of premium users impacts in the performance of the system: as many
premium users are attended, more resources are used to encode these videos, and less
resources are available to encode new incoming requests. This behaviour is shown in 2Pol
and 3TierPol, but not in 1Pol. In the case of 1Pol, the observed behaviour is to encode
all the videos with the same policy (πR), used by the others approaches to encode only
regular users. On the one hand, this approach uses less resources to process each premium

161

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

0 25 50 75 100

premium/users (%)

0

1

2

3

4
n

.u
s
e

rs
/m

in

1Pol 2Pol 3TierPol

0

50

%
 t
im

e
 i
n
 S

2

0 25 50 75 100

premium/users (%)

38

40

42

44

P
S

N
R

 (
d
B

)

Figure 8.7: Users per minute attended by each approach with users requests arriving every
10 seconds (top), and quality obtained by each approach when encoding videos
from premium users (bars), and percentage of time 3TierPol is in the S2 state
(line).

user (because they are considered as regular), but on the other hand, the quality obtained
(lower plot on the Figure) is quite lower than the other approaches, obtaining not admissible
levels for premium users (up to 5.4 less dB in PSNR).

Second, when comparing 2Pol and 3TierPol, we can observe how the latter is able to
serve more videos at the same time (up to 1.24×), reducing slightly the obtained quality (a
loss of 2.4 dB in the worst case). Finally, observing the PSNR obtained in each experiment
(lower plot) we can see the internal behaviour of 3TierPol: as the number of premium
users increases, 3TierPol needs to move to states that reduce the resource usage at the
expense of reducing the quality. This can be seen in the plot at the bottom of Figure 8.7,
showing the percentage of the time 3TierPol is in the S2 state depending on the number of
premium users. Observe how the time 3TierPol is at state S2 increases with the number
of premium users.

8.4. Conclusions

In previous chapters we have shown how Reinforcement Learning can be used to for-
mulate and implement a complex resource manager to apply a global policy to multiple
applications simultaneously. However, some scenarios require the application of different
policies to each application, based on specific characteristics of the running applications
and/or the status of the system at each moment of the execution.

The previous formulation allows to obtain multiple policies for the same scenario, at
expenses of a considerable amount of training time, as well as a manual tuning process for
the different states and rewards. To reduce this burden, in this chapter we have proposed a
new methodology to obtain these policies with minimum effort and with minimum learning
time. To do so, our methodology decomposes the design space into different sub-spaces,
helping the users to tune the reward functions with minimum effort. In addition, storing the

162

8.4. CONCLUSIONS

probability functions relating the different states and actions allows the creation of those
policies without needing to re-train the system.

In addition, in this chapter we have shown how a FSM can be built on top of MAL,
to dynamically apply different policies to different applications based on the type of the
applications and the status of the system. Our solution determines the best policy to apply
at each application at each moment, while the MAL system is in charge to apply the selected
policy.

163

CHAPTER 8. A METHODOLOGY FOR MULTI-POLICY RESOURCE MANAGEMENT

164

9

Conclusions

9.1. Conclusions and main contributions

As described in the motivation of this dissertation (Section 1.1), the evolution of the
newest architectures yields complex scenarios where performance is not the sole optimization
target, but a conjunction of conjunction of multiple system- and application-wide metrics
needs to be considered to manage them. To achieve these goals, modern solutions need to
consider different application- and system-wide metrics as a holistic solution, determining
the best knob configuration at each moment, taking into account the effects of each knob in
the output metrics, as well as the possible dependencies among knobs and across applica-
tions. However, the management of multiple knobs targeting multi-objective optimization
goals in a multi-application scenario is far from being trivial, and hardly manageable by
traditional approaches.

In this scenario, the main goal of this thesis was the “design, implementation and vali-
dation of different resource management strategies for power-constrained multi-application
scenarios, able to deal with a multi-objective optimization goal combining application- and
system-metrics, dynamically tuning application- and system-knobs”.

Targeting this objective, three different approaches were described targeting different
scenarios, all of them with the previous goal as a common objective. The main contributions
of this work can be summarized as:

We have shown how resource managers can leverage internal information of the run-
ning applications and runtimes to properly orchestrate the distribution of shared re-
sources across applications, as well as the correct dynamic configuration of the different
knobs.

We have shown how intra- and inter-application dependency management can be
integrated into the resource manager formulation. In addition, we have shown how
resource managers can tune different knobs simultaneously, each affecting the same
output metrics.

165

CHAPTER 9. CONCLUSIONS

We have demonstrated how software-based power-capping techniques are as effec-
tive as other equivalent hardware-based approaches. However, unlike hardware-based
techniques, our approaches are able to optimize other metrics at the same time as a
power-cap is applied due to the online sensing of multiple application- and system-
metrics.

We have tested all the approaches in real platforms using applications widely used
in the industry simulating real-world scenarios. Running all the experiments on real
platforms, instead of simulated scenarios, guarantees that our approaches are perfectly
valid for real scenarios.

In addition to this general contributions, each proposal explores a different scenario,
and therefore, each of them has some specific contributions:

Targeting asymmetric platforms

A full of set of policies for task-based parallel application have been developed target-
ing energy-efficiency on asymmetric architectures. The policies explore different frequency
scaling and scheduling techniques for both clusters in the platform. All the proposals rely
on the internal classification of the tasks among in critical and non-critical, and they are
completely agnostic to the running applications.

A complete implementation and evaluation of the different proposed policies has been
developed on top of the Nanos++ runtime, and performed in different asymmetric plat-
forms. The QR and Cholesky factorization were used to carry out the experiments, as they
are representative examples of dense linear algebra operations, widely used in multiple sci-
entific fields. Experimental results reveal how, taking advantage of the classifications of the
different tasks and their relation, our approach increases the energy efficiency consistently
in all the tested applications and platforms.

Targeting power-limited scenarios on modern platforms

Another contribution of this dissertation was the development of bar and baco to in-
crease the performance on power-limited scenarios. Given a limited amount of power budget
to one application, bar performs a dynamic redistribution of the budget between threads in
terms of frequency adaptation of the running cores. bar was built on top of the Nanos++
approach, and bases its decisions in the status of the running threads. Similarly to the
previous approach, the developed approach relies only in the internal information extracted
from the runtimes and not from the applications, being totally agnostics to them. baco
extends the previous approach dealing with scenarios with more than one application run-
ning simultaneously. Based on the status of each runtime at each moment, baco performs
a dynamic redistribution of the power budget assigned to each application, managed by the
bar instance.

Several contributions are derived from the implementation of bar and baco. As for the
bar implementation, optimal results were achieved in traditional scenarios, outperform-
ing the default configurations used in Nanos++. Our approach was proved to work on
scenarios with a non-uniform distribution of the power budget, contrary to other hardware-
based approaches that are not able to distinguish the running application, and therefore,

166

9.2. RELATED PUBLICATIONS

to perform an application-specific policy. baco was tested on multiple random scenarios,
achieving optimal results with negligible or no overhead.

These proposals show how software-based power-capping can be used to manage power-
limited scenarios obtaining optimal results thanks to a constant monitoring of the runtimes.
The use of runtime metrics, as well as domain-specific power models makes the contribution
agnostic to the running applications, and therefore, valid for any application.

Targeting QoS-aware scenarios

On scenarios with application-specific metrics, a complex approach was developed to
combine application- and system-metrics in a unique multi-objective goal, dealing with
application- and system-knobs in a jointly manner. Our approach was based on the use
of Reinforcement Learning to automatically tune the available knobs. A specific model for
the applications was developed targeting multi-user real-time encoding scenarios with tight
limits in throughput, quality and power consumption. The use of Q-Learning to formulate
resource managers has been proved as a promising alternative to manage complex scenarios
with complex dependencies between multiple knobs and metrics.

Our solution has demonstrated how application- and system-knobs can dynamically be
tuned to achieve high-quality encoding processes never violating the real-time requirements
imposed, by an autonomous classification of the different knobs based on their impact on
the output metrics.

In addition, a methodology was proposed to create multiple policies with minimum effort
and no overhead on the learning process. A heuristic solution was built to deliver these
different policies to multiple clients based on the type of application, as well as the status
of the system as each moment of the execution. The proposed solution demonstrated how
different policies can be applied simultaneously to different applications, while pursuing a
common goal.

9.2. Related publications

The contributions of this thesis are supported by the publication of multiple articles in
different peer-reviewed international conferences and journals. Publications are classified in
directly and indirectly-related to the content of the dissertation.

9.2.1. Directly related publications

journalCostero, L., Iranfar, A., Zapater, M., Igual, F. D., Olcoz, K., and Atienza,
D. Resource Management for Power-Constrained HEVC Transcoding Using Reinforcement
Learning. IEEE Transactions on Parallel and Distributed Systems 31, 12 (2020), 2834–2850

journalCostero, L., Igual, F. D., Olcoz, K., and Tirado, F. Leveraging knowledge-as-
a-service (KaaS) for QoS-aware resource management in multi-user video transcoding. The
Journal of Supercomputing (2020)

conference

proceedings
Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Providing On-Demand

Quality & Resources for Malleable Applications. In International Conference Computa-
tional and Mathematical Methods in Science and Engineering - CMMSE (2019)

167

CHAPTER 9. CONCLUSIONS

conference

proceedings
Costero, L., Iranfar, A., Zapater, M., Igual, F. D., Olcoz, K., and Atienza,

D. MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User
Video Transcoding. In Design, Automation and Test in Europe Conference and Exhibition
- DATE (2019)

conference

proceedings
Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Energy Efficiency

Optimization of Task-Parallel Codes on Asymmetric Architectures. In International
Conference on High Performance Computing Simulation - HPCS (2017)

conference

proceedings
Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Modifying OmpSs/Nanox

to exploit energy efficiency in asymmetric architectures for the Cholesky factorization.
In HiPEAC Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems - ACACES (2017)

9.2.2. Indirectly related publications

journal Corpas, A., Costero, L., Botella, G., Igual, F. D., Garćıa, C., and
Rodŕıguez, M. Acceleration and energy consumption optimization in cascading classifiers
for face detection on low-cost ARM big. LITTLE asymmetric architectures. International
Journal of Circuit Theory and Applications 46, 9 (2018), 1756–1776

journal Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez, R.,
and Quintana-Ort́ı, E. S. Revisiting conventional task schedulers to exploit asymmetry
in multi-core architectures for dense linear algebra operations. Parallel Computing 68
(2017), 59 – 76

9.3. Open research lines

The research developed in this Ph.D. thesis has addressed the design and development
of resource managers combining multiple application- and system-metrics while tuning both
application- and system-knobs, targeting energy-efficiency. The techniques proposed have
tackled different scenarios, from asymmetric platforms with only one application running, to
power-limited modern servers with multiple applications running simultaneously. However,
some interesting points of future research have emerged during the evolution of this work.

Some of the open research lines are detailed next:

The use of heterogeneous platforms is widely extended in the HPC field nowadays,
being fully supported by most of the current task-based runtimes. As this kind of
platforms offers a plethora of new knobs to tune and metrics to optimize, our proposals
can be extended to support this kind of platforms.

The learning process can be improved by a profiling of the different tasks of the
applications, performing an automatic classification of them to improve the scheduling
algorithms.

168

9.3. OPEN RESEARCH LINES

Furthermore, a proper characterization of the different task can be used on hetero-
geneous platforms to perform an optimal assignation of the tasks to the different
compute devices. Autonomous learning techniques can be applied to this scenario.

Our MAL approach is based on an extension of the Q-Learning algorithm to support
a cooperative multi-agent behaviour. Other reinforcement learning algorithms can be
used to train the system and compare the quality of the learned policies. Specifically,
neural networks are highly used nowadays to train this kind of systems due to the
emergence of hardware accelerators speeding up the learning and inference process.

The extension of our proposals to support multi-application scenarios in cloud systems,
managing the resources at the cloud level instead of node level. A more complex
approach can be developed comprising two different layers, one working at the cloud
level, and the other managing the resources inside each node, both cooperating to
achieve optimal results.

Other applications a part of dense linear algebra kernels and video encoding can be
used to validate our proposal, as well as other platforms implementing other micro-
architectures or system organizations.

169

CHAPTER 9. CONCLUSIONS

170

A

Platform description

A.1. Hardware description

All the experiments presented on this thesis have been carried out in three different
platforms: multi-core 32- and 64-bits ARM big.LITTLE boards (odroid and juno), and
a modern Intel Xeon server (makalu). Those systems are a representative example of the
different architectures present nowadays, so most of the results extracted on these platforms
can be extrapolated to other platforms without loss of generality.

ODROID: odroid refers to the odroid-xu3 board manufactured by Hardkernel Co.
Ltd.1. This board comprises a Samsung Exynos 5422 SoC featuring a 32-bit ARM
big.LITTLE processor and a 2 GB DDR3 RAM. The chip features an ARM Cortex-
A15 quad-core processing cluster (big cluster) and a Cortex-A7 quad-core processing
cluster (LITTLE cluster). Both types of cores implement an ARMv7a architecture,
with an in-order pipeline in Cortex-A7, and an out-of-order pipeline in Cortex-A15.

Each ARM core (either Cortex-A15 or Cortex-A7) has a 32+32KByte L1 (instructions
+ data) cache. The four A15 cores share a 2-MByte L2 cache, while the four A7 cores
share a smaller 512-KByte L2 cache. All cores of the same cluster share the same
frequency of operation, clocking from 800 MHz to 1300 MHz in steps of 100 MHz in
both cases. This board exposes independent power measurements for each cluster.

JUNO: juno arm development platform, developed by ARM, is the first ARMv8-a
64-bit platform featuring a Cortex-A57 dual-core processing cluster (big cluster) and
a Cortes-A53 quad-core processing cluster (LITTLE cluster).

Big cluster clocks up to 1.1 GHz, while frequency of the LITTLE cluster is limited up
to 800 MHz. Cortex-A57 implements a 15-step out-of-order pipeline, and Cortex-A53
implements a 8-step in-order pipeline. Big and LITTLE clusters have an L2 cache
of 2 MByte and 1 MByte respectively. Each Cortex-A53 has a 32 KByte L1 cache
(instructions and data share same cache space), while each Cortex-A57 is accompanied

1https://www.hardkernel.com/shop/odroid-xu3/

171

APPENDIX A. PLATFORM DESCRIPTION

Software package odroid juno makalu

OS/kernel 3.10.51+ 3.10.63 4.9.0-11-amd64 (Debian 9)
GCC/G++ Compiler 4.8 4.9.1 6.3.0
Nanos++ 0.10a 0.10a 0.15a
Mercurium 2.0.0 2.0.0 2.3.0
Extrae 3.2.1 3.2.1 3.6.1
BLIS 0.1.8 0.1.8 -
Intel MKL - - 2018.1.163
Kvazaar - - 2018-07-18

Table A.1: Software version configured in each platform.

by a 48+32KByte L1 cache (instructions + data). This board offers physical shunt
resistors exposing independent power measurements for each cluster.

MAKALU: makalu refers to a modern Intel server comprising two 20-core Intel Xeon
Gold 6138 CPU and 128 GB of DDR4 RAM. Per-core DVFS ranges from 1.00 GHz
to 2.00 GHz and turbo frequency. Turbo frequency ranges from 2.3 GHz to 3.7 GHz
depending on the number of cores and the instruction set used (normal, AVX2 or
AVX512). Maximum power consumption is limited by a TDP of 125 W.

Each core has a 32+32KBytes L1 cache (instructions + data) and an independent
1 MByte L2 cache. A 28 MByte L3 cache is shared between cores. Hyperthreading
was disabled in all the experiments.

A.2. Software description

The software used in our work can be divided in two different groups, each related
with a different part of this document. All the runtime-based experiments carried out in
Part I were built on top of the OmpSs programming model [56], comprising the Nanos++
runtime [127], and its associated Mercurium compiler [120]. Linear algebra kernels were
executed using BLIS [183, 182] and Intel MKL [92] libraries in ARM and Intel platforms
respectively. Offline analysis was carried out using Extrae [60] and Paraver [140] software.

For the experiments shown in Part II, Kvazaar [186] video encoder was used. Energy
measurements have been done through RAPL mechanism, using the PAPI [177] library when
on-line measurements were needed, and Pmlib [13] for external application measurements.
Table A.1 summarizes all the software and system versions configured in each platform.

A.2.1. Dataset definition

Dense linear algebra operations

The Cholesky and QR factorizations were chosen to carry out all the experiment related
with runtime-based proposals (Part I). These operations in particular are a representative
example of many other factorizations used to solve linear equation systems, so many of

172

A.2. SOFTWARE DESCRIPTION

1 void qr_blocked(int m, int n, int t) {

2 //m=n. rows; n=n.columns; t=tileSize

3

4 int nt = (n + t - 1) / t;

5 int nr = nt * t;

6 int mr = m < nr?nr:m;

7 int tt = t * t;

8 int mt = mr * t;

9

10 // [...]

11 for (int j = 0 ; j < nt ; j++) {

12 int skip = j*t;

13

14 double *Ab = &A[mt*j];

15 double *Sb = &S[j*tt];

16

17 //QR fact. & triang. fact. of block reflect.

18 ompss__dgeqr2_dlarft(skip , mr, t, Ab, Sb);

19

20 int jj;

21 for (jj = j+1 ; jj < nt ; jj ++) {

22 double *Aupd = &A[mt * jj];

23 //Block reflector

24 ompss__dlarfb(skip , mr, t, Ab, Sb, Aupd);

25 }

26 }

27 }

(a) Simplified C version of a blocked QR factorization

QR+
larft

larfb larfb larfb

QR+
larft

larfb larfb

QR+
larft

larfb

QR+
larft

(b) Diagram dependencies

Figure A.1: Blocked QR factorization.

the conclusions done for these factorizations can be easily extrapolate to other similar
applications widely used in science and engineering.

Cholesky factorization: The Cholesky factorization [74] decomposes a symmetric positive-
definite matrix A in the product A = UTU , where U is an upper triangular matrix. This
routine block-oriented decompose the main operation in a set of kernels: Cholesky factoriza-
tion (potrf), linear triangular system resolution (trsm), matrix multiplication (gemm), and
symmetric rank-b update (syrk), operating on the different blocks, and implemented on the
LAPACK [112] and BLAS [24] standards. Section 3.1 shows a simplified C-implementation
of this kernel.

QR factorization: Similar to the Cholesky factorization, the QR factorization [74] (QR
decomposition or QU factorization) is widely used in the science and engineering fields, and
it is a representative example of many other DLA operations. Given a matrix A, the QR
factorization decompose the matrix in the form A = QR where Q is an orthogonal matrix
and R an upper triangular matrix.

The code in Figure A.1a shows a simplified C-like implementation for the factorization
of matrix A of size m × n, divided in blocks of size t. The order in which the different
kernels are invoked during the execution, but also the sub-matrices each kernel reads and
writes, generate a DAG showing the dependencies between tasks (kernel instances), and
therefore, the potential parallelism between tasks. For instance, Figure A.1b corresponds

173

APPENDIX A. PLATFORM DESCRIPTION

1 #pragma omp task inout(A[0;m*n]) output(Q[0;n*n])

2 void ompss__dgeqr2_dlarft(int skip , int m, int n, double *A, double *Q)

3 {

4 //[...]

5 A = A + skip;

6 int Adim = m - skip;

7

8 dgeqrf_(&Adim , &n, A, &m, tau , w, &n, &info); //QR factorization

9 dlarft_("Forward", "Columnwise",

10 &Adim , &n, A, &m,

11 tau , Q, &n); // Triangular factor of a block refector

12 //[...]

13 }

14

15

16 #pragma omp task input(A[0;m*n], T[0;n*n]) inout(Aupd [0;m*n])

17 void ompss__dlarfb(int skip , int m, int n, double *A, double *T, double *Aupd)

18 {

19 //[...]

20 Aupd += skip;

21 A += skip;

22 int Adim = m - skip;

23

24 dlarfb_("Left","Transpose","Forward","Columnwise",

25 &Adim , &n, &n, A, &m, T, &n, Aupd , &m,

26 LDWORK , &n); // Block reflector to a general matrix

27 //[...]

28 }

Listing A.1: Parallel implementation of a QR Factorization in OmpSs.

to the DAG of the previous code when executing a factorization on a matrix divided into
4× 4 sub-matrices, showing the tasks (nodes) and dependencies (edges).

The code on Listing A.1 shows the annotations needed to exploit the task parallelism
of a QR block-based factorization in OmpSs (#pragma lines). Note how clauses input,
output and inout denote the direction of the data dependencies, and help the runtime
to keep track of the dependencies between tasks during runtime. In this implementation,
the basic kernels are implemented as calls to external libraries offering dgeqrf (general QR
factorization), dlarft (triangular factor of a block reflector) and dlarfb (block reflector to a
general matrix) application programming interfaces (APIs).

Video sequences

All the experiments covering video encoding processes were carried out using the video
sequences proposed by the JCT-VC committee [28], as they offer highly variability in the
contents of the videos. The same sequences were used in two different resolutions: High
resolution (720p/HD, 1280×720 pixels) and Low resolution (832×480 pixels), obtaining the
low resolution sequences from rescalating the high resolution ones. Specifically, the following
sequences were chosen: FourPeople, KristenAndSara, OldTownCross, QuarteBackSneak1,
BT709Parakeets, Johnny and ThreePeople. A detailed description of these sequences can
be found in Section 6.3.2.

174

B

Centralized Resource Manager

All the ideas proposed in this thesis and the experimental results shown orbit around a
centralized resource manager implemented from scratch. This centralized resource manager
is in charge of collecting all the application- and system-metrics continuously, and select
the most appropriate application and system-knobs. Application metrics are received from
the clients through a provided library, while system metrics are measured directly from the
system using different mechanisms. Similarly, application knob configurations are transmit-
ted to applications through the same library, while system knob configurations are applied
directly by the resource manager. Indirectly, this design implies that applications have an
active role in the management process, being responsible to send the metrics and apply the
knob configuration received. To mitigate the possible complexities of this process, all the
interactions are encapsulated into a library, providing developers a non-intrusive and easy
method to integrate their applications into the system.

The general design of the system is a client/server infrastructure, where the multiple
running applications (clients) register into the resource manager (server) and communicate
with it sending the different metrics and receiving the different knob configurations. The
design and implementation of the system tries to be the most generic and flexible as pos-
sible, at the same time performance considerations are taken into account to minimize the
introduced overhead, and therefore, to support real-time process management (as online
video encoding).

B.1. Client design

As explained before, and trying to support as many application as possible with a
minimum effort by the application developers, the integration of the applications into the
resource manager is done through an external C library encapsulating all the logic and
communications with the resource manager. The design of the library, similar to the rest
of the system, follows a twofold objective: be as most generic as possible, and minimize the
overhead introduced into the applications.

175

APPENDIX B. CENTRALIZED RESOURCE MANAGER

Trying to be the most generic as possible, the library provides functions to synchronize
with the server (start and end point), send metric values to the resource manager and
receive knob configurations from it. However, the measurement of the metrics, as well as
the application of the knob configurations received from the server, is not specified by our
design, being each application responsible to implement these actions. In addition, if the
applications are run on top of a runtime (like OmpSs or OpenMP), the integration of this
library into the runtime allow the execution of the applications with our resource manager
without any modification. Indeed, this was the strategy followed in Part I.

Trying to maximize the performance of the applications, the communication protocol
(described later) supports synchronous and asynchronous messages, and assumes that all
the communications are started on the client side. On one side, this fact avoids clients to
constantly check if there is a new message from the resource manager. On the other side,
this design implies that the resource manager cannot change an application-knob at any
moment, but only when a client asks if there is a new configuration to apply (for example,
every frame in the Kvazaar implementation used in Chapter 6).

The code in Listing B.1 shows the API exposed by the library to the applications. This
API offers all the functionality needed to synchronize the application with the resource
manager (SS initLibrary, SS startExecution and SS finishLibrary), send metric val-
ues (SS updateMetric) and receive knob configurations (SS receiveKnobConfiguration).

1 /* Synchronization operations */

2 int SS_initLibrary(int nOpts , int* optionIds , float* values);

3 int SS_startExecution(void); // Blocks until permission is granted

4 int SS_finishLibrary(void); //Async.

5

6 /* Dynamic resource management */

7 int SS_updateMetric(int metricId , float value); //Async.

8 int SS_updateMetrics(int nValues , int* metricIds , float* values); // Async.

9

10 int SS_receiveKnobConfiguration(int knobId , float* value);

11 int SS_receiveKnobConfigurations(int nKnobs , int* knobIds , float* values);

Listing B.1: Functions exposed to the applications by the library.

Specifically:

SS initLibrary: This function call initializes the internal structures of the library and
starts a communication channel with the server. Additionally, the server is notified
about the application, creating the control structures needed on its side. Internally,
this function call sends to the server the PID of the applications, the timestamp, and
other additional information. All this information is gathered and sent automati-
cally by the library, without further intervention of the application developer. This
function call also allows the programmer to send additional information in the form
[key, value] pairs. In our experiments, this was used to sent the resolution of the
video being encoded, among others.

SS startExecution: This function has to be called before the beginning of the execution.
The application is blocked into this call until the resource manager grants the appli-
cation to start its execution. This function allows the resource manager to control

176

B.2. COMMUNICATION PROTOCOL

how many applications can run simultaneously, being able to delay the execution of
some of them if there are not enough available resources.

SS finishLibrary: Notifies the server about the end of the execution, and frees all the
resources reserved by the library. The communication is asynchronously, meaning that
application does not wait to the server to receive the message, but exists immediately
after sending it.

SS updateMetric: Sends the value associated to a specific metric to the servers. This is an
asynchronous operation (i.e., the application does not wait for confirmation from the
server). A similar function is provided to submit more than one metric in the same
function call.

SS receiveKnobConfiguration: Asks the resource manager for the value of a specific ap-
plication knob. The application is blocked in this call until an answer from the server
is received. If there is not any modification on the knob configuration, the server
answers with the previous value. Similar to the previous function, a similar version
to ask for multiple knob configurations is provided.

B.2. Communication protocol

Interprocess communication mechanisms

Modern operating systems offer a plethora of different solutions for communicating dif-
ferent processes in the same machine (inter-process communication mechanisms), each one
with some advantages and disadvantages over the others. For our purpose, the communi-
cation between the applications and the resource manager, the method chosen has to fulfill
two main characteristics: (i) it has to be generic and extensible, allowing to add new kinds
of messages easily in the future if needed, and (ii) it has to be fast enough in order to not
produce an overhead in the execution time. In the following, we offer a brief comparison
between some of the solutions which satisfy this requirements. An exhaustive comparison
of the different methods can be found in [91, 106, 200].

Figure B.1 collects the different experiments carried out for evaluation the different cho-
sen mechanisms, namely, named pipes (FIFOs), Unix Sockets using datagram and sequential
packets, and System V message queues. Although all the tested mechanisms are limited to
Linux systems (our target platform), the chosen mechanism is hidden to the application by
the provided library, being possible to modify it without changes in the applications.

The plots show the average time taken to submit a batch of 1 000 000 messages between
two processes for different sizes. Each value represents the average value for 10 executions
on makalu (see Section A.1). On the left it is shown the results when both processes
(sender and receiver) are running in the same processor; on the right if they are executed
in different sockets.

From the results shown in the Figure, a set of general remarks can be extracted:

1. Independently of the allocation of the processes (same or different processor), the rel-
ative performance between all of the mechanisms keeps constant, being the System V

177

APPENDIX B. CENTRALIZED RESOURCE MANAGER

0 20 40 60

Message size (bytes)

1

1.5

2

2.5

T
im

e
 (

s
)

FIFO SysV msg. sck-dgram sck-seq.

(a) Producer and consumer on the same proces-
sor

0 20 40 60

Message size (bytes)

1

1.5

2

2.5

T
im

e
 (

s
)

FIFO SysV msg. sck-dgram sck-seq.

(b) Producer and consumer on different proces-
sors

Figure B.1: Average time taken by different inter-process mechanism when sending
1 000 000 messages of different sizes, where producer and consumer are in the
same (left) or different (right) processors, on makalu.

message queues the fastest mechanism in our platform followed by named pipes. The
slowest mechanisms are socket communications, having similar results.

2. The size of the message does not affect to the transmission time when the size is small.
No greater sizes were tested as the messages sent in our design are not bigger than
those.

3. Allocating the processes into the same processor or on different processors increases
the transmission time about 1.3×−1.6×.

In view of these results, the method chosen for the communication between both sides
of the framework is the System V message queues mechanism. This mechanism does not
only allow a fast communication, but also, thankfully to the API provided by the system,
provides natively a generic and easy way for managing different kind of messages (each one
identified by a type and an user defined content) at the same time allow synchronous and
asynchronous communication, simplifying enormously the communication process.

Message description

All the communications between the applications and the resource manager are done
though multiple channels (called queues in the System V terminology). This channels are
used to share information in a sequential way (i.e., messages are delivered in order), storing
the messages until they are read by one extreme of the channel, and therefore, allowing
asynchronous communication between both parts. In our design, each channel is composed
by two different queues, one for each direction of the communication.

By default, a public channel is created to register the applications into the resource
manager. When an application notifies the system about its existence (through the

178

B.3. CENTRALIZED RESOURCE MANAGER (SERVER)

Function call Sync./Async. Msg. size

initLibrary Sync. 104 Bytes
answer: Sync. 12 Bytes

startExecution Sync. 16 Bytes
answer: Sync. 8 Bytes

updateMetric Async. 24 Bytes
receiveKnobConf Sync. 12 Bytes

answer: Sync. 16 Bytes
finishLibrary Async. 16 Bytes

(a) Messages exchanged between applications and the re-
source manager.

1 struct msg_registration_t

2 {

3 long type;

4 unsigned long long

timestamp;

5

6 int clientId;

7

8 int nOps;

9 int opsIds[MAX_OPS];

10 float values[MAX_OPS];

11 }

(b) Actual content sent by
SS initLibrary call

Figure B.2: Messages sent between applications and resource manager. On the left, a
detailed list of the function calls and the associated messages showing the type
of communication (synchronous or asynchronous) and the number of bytes
exchanged. On the right, an example of the actual implementation of one of
those messages (the associated with the SS initLibrary call).

SS initLibrary call), a new private channel is opened for future private communication
between the application and server. As soon as all the initialization has been done in the
server side, a confirmation message is sent to the client with the information of the new
private communication channel to be used for future communications. This information
is automatically processed by the library, which opens and sets the new communication
channel without any further intervention by the application. Having a private channel for
each client allows the server to attend all the clients in a concurrent way, avoiding delays
on one client due to a high amount of messages of another client which can potentially
saturate the channel.

Table on the left of Figure B.2 shows a detailed list of all the messages exchanged
between the applications and the resource manager, grouped by the function call which
triggers these messages. To allow fastest communications, the size of each message was
reduced at minimum as detailed in the table. At implementation level, each message is
coded like a C struct with a mandatory header indicating the type of communication (long
type field), and an optional field containing the timestamp of the message. The body of
the message will depend on the type of the message exchanged, being even possible to be
empty. On the right of Figure B.2 is shown the actual implementation of the message sent
when an application registers into the system (triggered by the SS initLibrary call).

B.3. Centralized Resource Manager (server)

The centralized resource manager is a modular multi-threaded C++ application in
charge of managing the communications with the running applications (clients), sensor-
ing and tuning the underlying platform, and making the decisions based on the metrics
received from the clients and the values measured from the platform. This framework com-

179

APPENDIX B. CENTRALIZED RESOURCE MANAGER

Server / ManagerEntry
Point

System Manager
Sensing
+ Store

Modify
knob

Client Tracker

Client 1
Info

Client 1
Info

Client 1
Info

Decision Module

Action 1 ...Action 2 Action n

Application Manager Module

Client 1
Manager

Client 2
Manager

Client n
Manager...

Figure B.3: System overview.

prises four different modules: a highly tunable and extensible module in charge of choosing
the best values of each knob (decision module), and other three modules in charge of help-
ing the first one in the decision process (system manager, applications manager and client
tracker).

Figure B.3 shows an overview of the different modules and the way they interact:

System Manager: Performs a periodic and configurable sensing of the underlying system
metrics, storing them for future query by the decision module. In addition, it provides
functionality for tuning all the hardware-knobs. The access to the system-metrics, as
well as the modification of the hardware-knobs, is provided in a thread-safe manner.
In the experiments shown in this thesis, this module was configured to sense power
consumption via the RAPL component in PAPI, set the frequency via the libcpufreq
library or set the application-to-core affinity by means of POSIX Thread Affinity API
calls, among others.

Applications management: Multi-threaded module in charge of communicating with
each running client and addressing each message accordingly to its content. For each
registered client a new thread is deployed and attached to the private channel com-
munication created on the initialization. This configuration allows to attend multiple
clients at the same time avoiding contention problems on the server side.

Client Tracker: This module keeps track of the metrics received from each client, as well
the current knob values and other information needed by the decision module. Similar
to the System Manager module, offers a thread-safe way to access the information, as
well as different functionalities to access the stored data (as getting average values,
apply a moving window function to the stored values or access directly to the raw
values).

Decision Module: Selects the most appropriate knob configuration to be applied to each
registered application based on both application metrics and platform status gath-
ered by the previous modules, applying predefined techniques (e.g., multi-agent Q-
Learning, mono-agent Q-Learning, ad-hoc heuristics, etc.). This module comprises a
set of plugins called actions, that are called in a specific order. Each action is invoked
every time an event in the system occurs (i.e., a message from one client is received).

180

B.3. CENTRALIZED RESOURCE MANAGER (SERVER)

All the actions follow the same API, providing an efficient and easy mechanism to
extend the logic of the resource manager by the users.

In the case of this thesis, the different approaches proposed were implemented changing
the actions used in this module, not needed to modify any other module in the system.

181

APPENDIX B. CENTRALIZED RESOURCE MANAGER

182

References

[1] Agullo, E., Beaumont, O., Eyraud-Dubois, L., Herrmann, J., Kumar, S.,
Marchal, L., and Thibault, S. Bridging the Gap between Performance and
Bounds of Cholesky Factorization on Heterogeneous Platforms. In Heterogeneity in
Computing Workshop - HCW (2015).

[2] Agullo, E., Beaumont, O., Eyraud-Dubois, L., and Kumar, S. Are Static
Schedules so Bad? A Case Study on Cholesky Factorization. In IEEE International
Parallel & Distributed Processing Symposium - IPDPS (2016).

[3] Ahn, Y. J., Hwang, T. J., Sim, D. G., and Han, W. J. Complexity model
based load-balancing algorithm for parallel tools of HEVC. In IEEE International
Conference on Visual Communications and Image Processing - VCIP (2013).

[4] Ahvar, E., Ahvar, S., Mann, Z. A., Crespi, N., Garcia-Alfaro, J., and
Glitho, R. CACEV: A Cost and Carbon Emission-Efficient Virtual Machine Place-
ment Method for Green Distributed Clouds. In IEEE International Conference on
Services Computing - SCC (2016).

[5] Altman, E. Constrained Markov Decision Processes. CRC Press, 1999.

[6] AMD. AMD PowerNow! Technology. Available at: http://www.

amd.com/us/products/technologies/amd-powernow-technology/Pages/

amd-powernow-technology.aspx.

[7] AMD. Cool‘n’Quiet Technology Installation, 2004. Available at: https:

//web.archive.org/web/20100415060544/http://www.amd.com/us-en/assets/

content_type/DownloadableAssets/Cool_N_Quiet_Installation_Guide3.pdf.

[8] Angelini, C. Next-Gen Video Encoding: x265 Tackles HEVC/H.265. Tom’s
Hardware (2013). Available at: https://www.tomshardware.com/reviews/

x265-hevc-encoder,3565.html.

[9] Arroba, P., Moya, J. M., Ayala, J. L., and Buyya, R. Dynamic Voltage
and Frequency Scaling-aware dynamic consolidation of virtual machines for energy
efficient cloud data centers. Concurrency and Computation: Practice and Experience
29, 10 (2017), e4067.

183

http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
https://web.archive.org/web/20100415060544/http://www.amd.com/us-en/assets/content_type/DownloadableAssets/Cool_N_Quiet_Installation_Guide3.pdf
https://web.archive.org/web/20100415060544/http://www.amd.com/us-en/assets/content_type/DownloadableAssets/Cool_N_Quiet_Installation_Guide3.pdf
https://web.archive.org/web/20100415060544/http://www.amd.com/us-en/assets/content_type/DownloadableAssets/Cool_N_Quiet_Installation_Guide3.pdf
https://www.tomshardware.com/reviews/x265-hevc-encoder,3565.html
https://www.tomshardware.com/reviews/x265-hevc-encoder,3565.html

REFERENCES

[10] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. StarPU: A
unified platform for task scheduling on heterogeneous multicore architectures. Con-
currency and Computation: Practice and Experience 23, 2 (2011), 187–198.

[11] Ayguade, E., Badia, R., Cabrera, D., Duran, A., Gonzalez, M., Igual,
F., Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J., and
Quintana-Ort́ı, E. S. A proposal to extend the OpenMP tasking model for het-
erogeneous architectures. Lecture Notes in Computer Science 5568 (2009), 154–167.

[12] Badia, R. M., Herrero, J. R., Labarta, J., Pérez, J. M., Quintana-Ort́ı,
E. S., and Quintana-Ort́ı, G. Parallelizing dense and banded linear algebra li-
braries using SMPSs. Concurrency and Computation: Practice and Experience 21, 18
(2009), 2438–2456.

[13] Barreda, M., Barrachina Mir, S., Catalán, S., Dolz, M. F., Fabregat, G.,
Mayo, R., and Orti, E. An integrated framework for power-performance analysis
of parallel scientific applications. In International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies - ENERGY (2013).

[14] Barrett, E., Howley, E., and Duggan, J. Applying reinforcement learning
towards automating resource allocation and application scalability in the cloud. Con-
currency and Computation: Practice and Experience 25, 12 (2013), 1656–1674.

[15] Barroso, L. A. The price of performance: An economic case for chip multiprocess-
ing. Queue 3, 7 (2005), 48–53.

[16] Bartolini, A., Cacciari, M., Tilli, A., and Benini, L. Thermal and En-
ergy Management of High-Performance Multicores: Distributed and Self-Calibrating
Model-Predictive Controller. IEEE Transactions on Parallel and Distributed Systems
24, 1 (2013), 170–183.

[17] Bartolini, A., Cacciari, M., Tilli, A., Benini, L., and Gries, M. A Virtual
Platform Environment for Exploring Power, Thermal and Reliability Management
Control Strategies in High-Performance Multicores. In ACM Great Lakes Symposium
on VLSI - GLSVLSI (2010).

[18] Baskiyar, S., and Dickinson, C. Scheduling directed a-cyclic task graphs on a
bounded set of heterogeneous processors using task duplication. Journal of Parallel
and Distributed Computing 65, 8 (2005), 911–921.

[19] Bellasi, P., Massari, G., and Fornaciari, W. A RTRM proposal for
multi/many-core platforms and reconfigurable applications. In International Work-
shop on Reconfigurable and Communication-Centric Systems-on-Chip - ReCoSoC
(2012).

[20] Bellman, R. A Markovian Decision Process. Journal of Mathematics and Mechanics
6 (1957), 679–684.

[21] Belson, D. The State of the Internet. Akamai (2013), 40. Available at http:

//www.akamai.com/dl/documents/akamai_soti_q213.pdf?WT.mc_id=soti_Q213.

184

http://www.akamai.com/dl/documents/akamai_soti_q213.pdf?WT.mc_id=soti_Q213
http://www.akamai.com/dl/documents/akamai_soti_q213.pdf?WT.mc_id=soti_Q213

REFERENCES

[22] Bhadauria, M., and McKee, S. A. An approach to resource-aware co-scheduling
for CMPs. In ACM International Conference on Supercomputing - ICS (2010).

[23] Biatek, T., Raulet, M., Travers, J. F., and Deforges, O. Efficient quantiza-
tion parameter estimation in HEVC based on ρ-domain. In European Signal Processing
Conference - EUSIPCO (2014).

[24] OpenBLAS. http://xianyi.github.com/OpenBLAS/.

[25] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall,
K. H., and Zhou, Y. Cilk: An efficient multithreaded runtime system. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPOPP
(1995).

[26] Bohr, M. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE
Solid-State Circuits Society Newsletter 12, 1 (2007), 11–13.

[27] Bordes, P., Andrivon, P., Hiron, F., Salmon, P., and Boitard, R. Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11, 2016. Available at https://hevc.hhi.fraunhofer.de.

[28] Bossen, F. Test Conditions and Software Reference Configurations, JCTVC-L1100.
JCT-VC Doc (2013). Available at https://hevc.hhi.fraunhofer.de/.

[29] Bossen, F., Bross, B., Suhring, K., and Flynn, D. HEVC complexity and im-
plementation analysis. IEEE Transactions on Circuits and Systems for Video Tech-
nology 22, 12 (2012), 1685–1696.

[30] Brock, D. C., and Moore, G. E. Understanding Moore’s Law: Four Decades of
Innovation. Chemical Heritage Foundation, 2006.

[31] Buisson, J., Sonmez, O., Mohamed, H., Lammers, W., and Epema, D.
Scheduling malleable applications in multicluster systems. In IEEE International
Conference on Cluster Computing - ICCC (2007).

[32] Calore, E., Gabbana, A., Schifano, S. F., and Tripiccione, R. Evaluation
of DVFS techniques on modern HPC processors and accelerators for energy-aware
applications. Concurrency and Computation: Practice and Experience 29, 12 (2017),
e4143.

[33] Caron, E., and De Assuncao, M. D. Multi-criteria malleable task management
for hybrid-cloud platforms. In International Conference on Cloud Computing Tech-
nologies and Applications - CloudTech (2017).

[34] Cesarini, D., Bartolini, A., and Benini, L. Benefits in relaxing the power
capping constraint. In Workshop on AutotuniNg and ADaptivity AppRoaches for
Energy Efficient HPC Systems (2017).

[35] Charvillat, V., and Grigoraş, R. Reinforcement learning for dynamic mul-
timedia adaptation. Journal of Network and Computer Applications 30, 3 (2007),
1034–1058.

185

http://xianyi.github.com/OpenBLAS/
https://hevc.hhi.fraunhofer.de
https://hevc.hhi.fraunhofer.de/

REFERENCES

[36] Chen, Q., and Guo, M. Adaptive Workload-Aware Task Scheduling for Single-ISA
Asymmetric Multicore Architectures. ACM Transactions on Architecture and Code
Optimization 11, 1 (2014).

[37] Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., and
Valero, M. Criticality-aware dynamic task scheduling for heterogeneous architec-
tures. In ACM International Conference on Supercomputing - ICS (2015).

[38] Chronaki, K., Rico, A., Casas, M., Moretó, M., Badia, R. M., Ayguadé,
E., Labarta, J., and Valero, M. Task scheduling techniques for asymmetric
multi-core systems. IEEE Transactions on Parallel and Distributed Systems PP, 99
(2016), 1–1.

[39] Cilk project home page. http://supertech.csail.mit.edu/cilk/.

[40] Corpas, A., Costero, L., Botella, G., Igual, F. D., Garćıa, C., and
Rodŕıguez, M. Acceleration and energy consumption optimization in cascading
classifiers for face detection on low-cost ARM big. LITTLE asymmetric architectures.
International Journal of Circuit Theory and Applications 46, 9 (2018), 1756–1776.

[41] Costero, L., Igual, F. D., Olcoz, K., Catalán, S., Rodŕıguez-Sánchez,
R., and Quintana-Ort́ı, E. S. Revisiting conventional task schedulers to exploit
asymmetry in multi-core architectures for dense linear algebra operations. Parallel
Computing 68 (2017), 59 – 76.

[42] Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Energy Efficiency
Optimization of Task-Parallel Codes on Asymmetric Architectures. In International
Conference on High Performance Computing Simulation - HPCS (2017).

[43] Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Modifying OmpSs/Nanox
to exploit energy efficiency in asymmetric architectures for the Cholesky factorization.
In HiPEAC Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems - ACACES (2017).

[44] Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Providing On-Demand
Quality & Resources for Malleable Applications. In International Conference Com-
putational and Mathematical Methods in Science and Engineering - CMMSE (2019).

[45] Costero, L., Igual, F. D., Olcoz, K., and Tirado, F. Leveraging knowledge-as-
a-service (KaaS) for QoS-aware resource management in multi-user video transcoding.
The Journal of Supercomputing (2020).

[46] Costero, L., Iranfar, A., Zapater, M., Igual, F. D., Olcoz, K., and
Atienza, D. MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time
Multi-User Video Transcoding. In Design, Automation and Test in Europe Conference
and Exhibition - DATE (2019).

[47] Costero, L., Iranfar, A., Zapater, M., Igual, F. D., Olcoz, K., and
Atienza, D. Resource Management for Power-Constrained HEVC Transcoding Us-
ing Reinforcement Learning. IEEE Transactions on Parallel and Distributed Systems
31, 12 (2020), 2834–2850.

186

http://supertech.csail.mit.edu/cilk/

REFERENCES

[48] Czúni, L., Császár, G., and Licsár, A. Estimating the optimal quantization
parameter in H.264. In International Conference on Pattern Recognition - ICPR
(2006).

[49] Das, A., Al-Hashimi, B. M., Shafik, R. A., Kumar, A., Merrett, G. V., and
Veeravalli, B. Reinforcement learning-based inter-and intra-application thermal
optimization for lifetime improvement of multicore systems. In Design Automation
Conference - DAC (2014).

[50] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. RAPL:
Memory power estimation and capping. In ACM/IEEE International Symposium on
Low Power Electronics and Design - ISLPED (2010).

[51] Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T. F., and Bianchini,
R. CoScale: Coordinating CPU and memory system DVFS in server systems. In
IEEE/ACM 45th International Symposium on Microarchitecture - MICRO (2012).

[52] Dennard, R. H., Gaensslen, F., Yu, H.-N., Rideout, L., Bassous, E., and
LeBlanc, A. Design of ion-implanted MOSFET’s with very small physical dimen-
sions. IEEE Journal of Solid-State Circuits 5 (1974).

[53] Desell, T., Maghraoui, K. E., and Varela, C. A. Malleable applications for
scalable high performance computing. Cluster Computing 10, 3 (2007), 323–337.

[54] Donyanavard, B., Muck, T., Rahmani, A. M., Dutt, N., Sadighi, A., Mau-
rer, F., and Herkersdorf, A. SOSA: Self-optimizing learning with self-adaptive
control for hierarchical system-on-chip management. In IEEE/ACM International
Symposium on Microarchitecture - MICRO (2019).

[55] Donyanavard, B., Muck, T., Sarma, S., and Dutt, N. SPARTA: Runtime task
allocation for energy efficient heterogeneous manycores. In International Conference
on Hardware/Software Codesign and System Synthesis - CODES+ISSS (2016).

[56] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Mar-
torell, X., and Planas, J. OmpSs: a proposal for programming heterogeneous
multi-core architectures. Parallel Processing Letters 21, 2 (2011), 173–193.

[57] Duran, A., Corbalán, J., and Ayguadé, E. Evaluation of openmp task schedul-
ing strategies. In International Workshop on OpenMP - IWOMP (2008).

[58] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and
Burger, D. Dark silicon and the end of multicore scaling. IEEE Micro 32, 3 (2012),
122–134.

[59] Even-Dar, E., and Mansour, Y. Learning rates for Q-learning. Lecture Notes in
Computer Science 2111, Dec (2001), 589–604.

[60] Extrae. https://tools.bsc.es/.

187

https://tools.bsc.es/

REFERENCES

[61] Farhad, S. M., Bappi, M. S. I., and Ghosh, A. Dynamic Resource Provisioning
for Video Transcoding in IaaS Cloud. In IEEE International Conference on High
Performance Computing and Communications & IEEE International Conference on
Smart City & IEEE International Conference on Data Science and Systems - HPC-
C/SmartCity/DSS (2017).

[62] Felter, W., Rajamani, K., Keller, T., and Rusu, C. A performance-conserving
approach for reducing peak power consumption in server systems. In ACM Interna-
tional Conference on Supercomputing - ICS (2005).

[63] Fettes, Q., Clark, M., Bunescu, R., Karanth, A., and Louri, A. Dynamic
Voltage and Frequency Scaling in NoCs with Supervised and Reinforcement Learning
Techniques. IEEE Transactions on Computers 68, 3 (2019), 375–389.

[64] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation of
the cilk-5 multithreaded language. In ACM SIGPLAN Conference on Programming
Language Design and Implementation - PLDI (1998).

[65] Fu, X., Kabir, K., and Wang, X. Cache-aware utilization control for energy
efficiency in multi-core real-time systems. In Euromicro Conference on Real-Time
Systems - ECRTS (2011).

[66] Gadioli, D., Palermo, G., and Silvano, C. Application autotuning to support
runtime adaptivity in multicore architectures. In International Conference on Embed-
ded Computer Systems: Architectures, Modeling and Simulation - SAMOS (2015).

[67] Gadioli, D., Vitali, E., Palermo, G., and Silvano, C. MARGOt: A dynamic
autotuning framework for self-aware approximate computing. IEEE Transactions on
Computers 68, 5 (2019), 713–728.

[68] Gao, G., Wen, Y., and Westphal, C. Dynamic resource provisioning with QoS
guarantee for video transcoding in online video sharing service. In ACM Multimedia
Conference - MM (2016).

[69] Gao, G., Wen, Y., and Westphal, C. Dynamic Priority-Based Resource Pro-
visioning for Video Transcoding With Heterogeneous QoS. IEEE Transactions on
Circuits and Systems for Video Technology 29, 5 (2019), 1515–1529.

[70] Garcia, M., Corbalan, J., and Labarta, J. LeWI: A Runtime Balancing Al-
gorithm for Nested Parallelism. In International Conference on Parallel Processing -
ICPP (2009).

[71] Garcia-Garcia, A., Saez, J. C., Risco-Martin, J. L., and Prieto-Matias,
M. PBBCache: An open-source parallel simulator for rapid prototyping and evalu-
ation of cache-partitioning and cache-clustering policies. Journal of Computational
Science 42 (2020), 101102.

[72] Gautier, T., Besseron, X., and Pigeon, L. Kaapi: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In International
Workshop on Parallel Symbolic Computation - PASCO (2007).

188

REFERENCES

[73] Gautier, T., Lima, J. V. F., Maillard, N., and Raffin, B. XKaapi: A runtime
system for data-flow task programming on heterogeneous architectures. In IEEE
International Parallel and Distributed Processing Symposium - IPDPS (2013).

[74] Golub, G. H., and Van Loan, C. F. Matrix Computations, fourth ed. The Johns
Hopkins University Press, Baltimore, 2013.

[75] Gupta, U., Ayoub, R., Kishinevsky, M., Kadjo, D., Soundararajan, N.,
Tursun, U., and Ogras, U. Y. Dynamic power budgeting for mobile systems
running graphics workloads. IEEE Transactions on Multi-Scale Computing Systems
4, 1 (2018), 30–40.

[76] Hähnel, M., Döbel, B., Völp, M., and Härtig, H. Measuring energy consump-
tion for short code paths using RAPL. Performance Evaluation Review 40, 3 (2012),
13–17.

[77] Haidar, A., Cao, C., Yarkhan, A., Luszczek, P., Tomov, S., Kabir, K.,
and Dongarra, J. Unified development for mixed multi-gpu and multi-coprocessor
environments using a lightweight runtime environment. In IEEE International Parallel
and Distributed Processing Symposium - IPDPS (2014).

[78] Hamzaoui, R., and Saupe, D. Document and Image Compression. CRC Press,
2006.

[79] Hanumaiah, V., Desai, D., Gaudette, B., Wu, C. J., and Vrudhula, S.
STEAM: A smart temperature and energy aware multicore controller. ACM Trans-
actions on Embedded Computing Systems 13 (2014).

[80] Hardavellas, N., Ferdman, M., Falsafi, B., and Ailamaki, A. Toward dark
silicon in servers. IEEE Micro 31, 4 (Jul 2011), 6–15.

[81] Hayward, C., and Madill, A. A Survey of Outlier Detection Methodologies.
Artificial Intelligence Review 22, 2 (2004), 85–126.

[82] He, J., Yang, E. H., Yang, F., and Yang, K. Adaptive Quantization Parameter
Selection for H.265/HEVC by Employing Inter-Frame Dependency. IEEE Transac-
tions on Circuits and Systems for Video Technology 28, 12 (2018), 3424–3436.

[83] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative
Approach, sixth ed. Morgan Kaufmann, 2017.

[84] Ho, H. N., and Lee, E. Model-based reinforcement learning approach for planning
in self-adaptive software system. In ACM International Conference on Ubiquitous
Information Management and Communication - IMCOM (2015).

[85] Hoffmann, H., Itagaki, T., Wood, D., and Bock, A. Studies on the Bit Rate
Requirements for a HDTV Format With 1920×1080 pixel Resolution, Progressive
Scanning at 50 Hz Frame Rate Targeting Large Flat Panel Displays. IEEE Transac-
tions on Broadcasting 52, 4 (2006), 420–434.

189

REFERENCES

[86] Hoffmann, H., Maggio, M., Santambrogio, M. D., Leva, A., and Agarwal,
A. A generalized software framework for accurate and efficient management of per-
formance goals. In ACM SIGBED International Conference on Embedded Software -
EMSOFT (2013).

[87] Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A.,
and Rinard, M. Dynamic knobs for responsive power-aware computing. In Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS (2011).

[88] Hogbin, E. J. ACPI: Advanced Configuration and Power Interface, 2015.

[89] Huang, Y., Chen, C., Fu, C., Hsu, C., Chang, Y., Chuang, T., and Lei,
S. Method and Apparatus of Delta Quantization Parameter Processing for High
Efficiency Video Coding, 2012. US Patent App. 13/018,431, Google Patents.

[90] IBM. An architectural blueprint for autonomic computing. Tech. rep., IBM,
2005. Available at https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%

20White%20Paper%20V7.pdf.

[91] Immich, P. K., Bhagavatula, R. S., and Pendse, R. Performance analysis of
five interprocess communication mechanisms across UNIX operating systems. Journal
of Systems and Software 68, 1 (2003), 27–43.

[92] Intel Corporation. Intel math kernel library (MKL). http://software.intel.

com/en-us/intel-mkl.

[93] Intel Corporation. Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor, March 2004. White Paper. Available at: http://download.intel.com/

design/network/papers/30117401.pdf.

[94] Intel Corporation. Intel Xeon Processor Scalable Family: Specification Up-
date, 2018. Available at https://www.intel.com/content/dam/www/public/us/

en/documents/specification-updates/xeon-scalable-spec-update.pdf.

[95] Iranfar, A., Pahlevan, A., Zapater, M., Žagar, M., Kovač, M., and
Atienza, D. Online efficient bio-medical video transcoding on MPSoCs through
content-aware workload allocation. In Design, Automation and Test in Europe Con-
ference and Exhibition - DATE (2018).

[96] Iranfar, A., Shahsavani, S. N., Kamal, M., and Afzali-Kusha, A. A heuristic
machine learning-based algorithm for power and thermal management of heteroge-
neous MPSoCs. In ACM/IEEE International Symposium on Low Power Electronics
and Design - ISLPED (2015).

[97] Iranfar, A., Zapater, M., and Atienza, D. Machine Learning-Based Quality-
Aware Power and Thermal Management of Multistream HEVC Encoding on Multicore
Servers. IEEE Transactions on Parallel and Distributed Systems 29, 10 (2018), 2268–
2281.

190

https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf

REFERENCES

[98] Jung, H., Rong, P., and Pedram, M. Stochastic modeling of a thermally-managed
multi-core system. In Design Automation Conference - DAC (2008).

[99] Kaapi project home page. https://gforge.inria.fr/projects/kaapi.

[100] Kaelbling, L. P., Littman, M. L., and Moore, A. W. Reinforcement learning:
A survey. Journal of artificial intelligence research 4 (1996), 237–285.

[101] Kehrer, S., and Blochinger, W. Elastic Parallel Systems for High Performance
Cloud Computing: State-of-the-Art and Future Directions. Parallel Processing Letters
29, 2 (2019), 1950006.

[102] Khan, B., Goodman, D., Khan, S., Toms, W., Faraboschi, P., Luján, M.,
and Watson, I. Architectural support for task scheduling: hardware scheduling for
dataflow on NUMA systems. The Journal of Supercomputing 6, 71 (2015).

[103] Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K., and Ou, Z. RAPL in
action: Experiences in using RAPL for power measurements. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems 3, 2 (2018).

[104] Khan, M. U. K., Shafique, M., and Henkel, J. Power-Efficient Workload Bal-
ancing for Video Applications. IEEE Transactions on Very Large Scale Integration
Systems 24, 6 (2016), 2089–2102.

[105] Khan, U. A., and Rinner, B. Online learning of timeout policies for dynamic power
management. ACM Transactions on Embedded Computing Systems 13, 4 (2014), 96.

[106] Khaneghah, E. M., Mirtaheri, S. L., and Sharifi, M. Evaluating the effect
of inter process communication efficiency on high performance distributed scientific
computing. In IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing - EUC (2008).

[107] Khattar, N., Sidhu, J., and Singh, J. Toward energy-efficient cloud computing:
a survey of dynamic power management and heuristics-based optimization techniques.
Journal of Supercomputing 75, 8 (2019), 4750–4810.

[108] Kirk, D. E. Optimal Control Theory: An Introduction. Prentice-Hall, 1970.

[109] Koivula, A., Viitanen, M., Vanne, J., Hämäläinen, T. D., and Fasnacht,
L. Parallelization of Kvazaar HEVC intra encoder for multi-core processors. In IEEE
International Workshop on Signal Processing Systems - SiPS (2015).

[110] Kotselidis, C., Clarkson, J., Rodchenko, A., Nisbet, A., Mawer, J., and
Luján, M. Heterogeneous Managed Runtime Systems: A Computer Vision Case
Study. In ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments - VEE (2017).

[111] Krommydas, K., Scogland, T. R. W., and Feng, W. On the Programmability
and Performance of Heterogeneous Platforms. In IEEE International Parallel and
Distributed Processing Symposium - IPDPS (2013).

191

https://gforge.inria.fr/projects/kaapi

REFERENCES

[112] Lapack project home page. http://www.netlib.org/lapack.

[113] Lee, J., Shin, I., and Park, H. Adaptive intra-frame assignment and bit-rate
estimation for variable GOP length in H.264. IEEE Transactions on Circuits and
Systems for Video Technology 16 (2006), 1271–1279.

[114] Lefurgy, C., Wang, X., and Ware, M. Power capping: A prelude to power
shifting. Cluster Computing 11, 2 (2008), 183–195.

[115] Leiserson, C. E. The cilk++ concurrency platform. In Design Automation Con-
ference - DAC (2009).

[116] Li, X., Salehi, M. A., Bayoumi, M., Tzeng, N. F., and Buyya, R. Cost-
Efficient and Robust On-Demand Video Transcoding Using Heterogeneous Cloud Ser-
vices. IEEE Transactions on Parallel and Distributed Systems 29, 3 (2018), 556–571.

[117] Marchal, L., Simon, B., Sinnen, O., and Vivien, F. Malleable Task-Graph
Scheduling with a Practical Speed-Up Model. IEEE Transactions on Parallel and
Distributed Systems 29, 6 (2018), 1357–1370.

[118] Maurer, F., Donyanavard, B., Rahmani, A. M., Dutt, N., and Herkers-
dorf, A. Emergent Control of MPSoC Operation by a Hierarchical Supervisor/Rein-
forcement Learning Approach. In Design, Automation and Test in Europe Conference
and Exhibition - DATE (2020).

[119] Menkovski, V., and Liotta, A. Intelligent control for adaptive video streaming.
In IEEE International Conference on Consumer Electronics - ICCE (2013).

[120] Mercurium project home page. https://pm.bsc.es/mcxx.

[121] Merkel, A., Stoess, J., and Bellosa, F. Resource-conscious scheduling for en-
ergy efficiency on multicore processors. In European Conference on Computer Systems
- EuroSys (2010).

[122] Miceli, R., Civario, G., Sikora, A., César, E., Gerndt, M., Haitof, H.,
Navarrete, C., Benkner, S., Sandrieser, M., Morin, L., and Bodin, F.
AutoTune: A plugin-driven approach to the automatic tuning of parallel applications.
Lecture Notes in Computer Science 7782 (2013), 328–342.

[123] Moazzemi, K., Maity, B., Yi, S., Rahmani, A. M., and Dutt, N. HESSLE-
FREE : Heterogeneous Systems Leveraging Fuzzy Control for Runtime Resource Man-
agement. ACM Transactions on Embedded Computing Systems 18, 5 (2019).

[124] Moore, S. K. Another Step Toward the End of Moore’s Law. IEEE Spectrum
(2019).

[125] Moore, S. K. The node is nonsense. IEEE Spectrum 57, 8 (2020), 24–30.

[126] Murray R., M., and Terry, S. Statistics for Engineering and the Sciences, fith ed.
Pearson / Prentice Hall, 2007.

[127] Nanos++ project home page. https://pm.bsc.es/nanox.

192

http://www.netlib.org/lapack
https://pm.bsc.es/mcxx
https://pm.bsc.es/nanox

REFERENCES

[128] Narra, K. G., Lin, Z., Kiamari, M., Avestimehr, S., and Annavaram, M.
Slack squeeze coded computing for adaptive straggler mitigation. In International
Conference for High Performance Computing, Networking, Storage and Analysis -
SC (2019).

[129] National Television System Committee. Report and Reports of Panel No.
11, 11-A, 12-19, with Some supplementary references cited in the Reports, and the
Petition for adoption of transmission standards for color television before the Federal
Communications Commission. National Television System Committee, 1953.

[130] Nishtala, R., Carpenter, P., Petrucci, V., and Martorell, X. The Hipster
Approach for Improving Cloud System Efficiency. ACM Transactions on Computer
Systems 35, 3 (2017), 1–28.

[131] Nogues, E., Berrada, R., Pelcat, M., Menard, D., and Raffin, E. A DVFS
based HEVC decoder for energy-efficient software implementation on embedded pro-
cessors. In IEEE International Conference on Multimedia and Expo - ICME (2015).

[132] Nogues, E., Heulot, J., Herrou, G., Robin, L., Pelcat, M., Menard, D.,
Raffin, E., and Hamidouche, W. Efficient DVFS for low power HEVC software
decoder. Journal of Real-Time Image Processing 13, 1 (2017), 39–54.

[133] OpemMP Architecture Review Board. OpenMP Application Program-
ming Interface. Tech. Rep. Version 5.0, OpemMP Architecture Review
Board, 2018. Available at https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5.0.pdf.

[134] Ortega, C., Alvarez, L., Casas, M., Bertran, R., Buyuktosunoglu, A.,
Eichenberger, A. E., Bose, P., and Moreto, M. Intelligent Adaptation Of
Hardware Knobs For Improving Performance and Power Consumption. IEEE Trans-
actions on Computers 9340, c (2020), 1–1.

[135] Pääkkönen, P., Heikkinen, A., and Aihkisalo, T. Online architecture for
predicting live video transcoding resources. Journal of Cloud Computing 8, 1 (2019).

[136] Pahlevan, A., Qu, X., Zapater, M., and Atienza, D. Integrating Heuristic and
Machine-Learning Methods for Efficient Virtual Machine Allocation in Data Centers.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37,
8 (2018), 1667–1680.

[137] Palomino, D., Shafique, M., Susin, A., and Henkel, J. Tone: Adaptive tem-
perature optimization for the next generation video encoders. In ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design - ISLPED (2014).

[138] Pan, J. RAPL (Running Average Power Limit) driver. LWN: news from the source
- online, Apr 2013. Available at: https://lwn.net/Articles/545745/.

[139] Paone, E., Gadioli, D., Palermo, G., Zaccaria, V., and Silvano, C. Evaluat-
ing orthogonality between application auto-tuning and run-time resource management
for adaptive OpenCL applications. In IEEE International Conference on Application-
Specific Systems, Architectures and Processors - ASAP (2014).

193

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://lwn.net/Articles/545745/

REFERENCES

[140] Paraver: the flexible analysis tool. https://tools.bsc.es/.

[141] Petrangeli, S., Claeys, M., Latré, S., Famaey, J., and De Turck, F.
A multi-agent Q-learning-based framework for achieving fairness in HTTP adaptive
streaming. In IEEE/IFIP Network Operations and Management Symposium - NOMS
(2014).

[142] Petrangeli, S., Famaey, J., Claeys, M., Latré, S., and De Turck, F. QoE-
driven rate adaptation heuristic for fair adaptive video streaming. ACM Transactions
on Multimedia Computing, Communications and Applications 12, 2 (2015), 28:1——
–28:24.

[143] Petrica, P., Izraelevitz, A. M., Albonesi, D. H., and Shoemaker, C. A.
Flicker: A dynamically adaptive architecture for power limited multicore systems. In
International Symposium on Computer Architecture - ISCA (2013).

[144] Pham Van, L., De Praeter, J., Van Wallendael, G., Van Leuven, S., De
Cock, J., and Van De Walle, R. Efficient Bit Rate Transcoding for High Effi-
ciency Video Coding. IEEE Transactions on Multimedia 18, 3 (2016), 364–378.

[145] Planas, J., Badia, R. M., Ayguadé, E., and Labarta, J. Self-adaptive ompss
tasks in heterogeneous environments. In IEEE International Parallel and Distributed
Processing Symposium - IPDPS (2013).

[146] Pothukuchi, R. P., Greathouse, J. L., Rao, K., Erb, C., Piga, L., Voul-
garis, P. G., and Torrellas, J. Tangram: Integrated control of heterogeneous
computers. In IEEE/ACM International Symposium on Microarchitecture - MICRO
(2019).

[147] Pricopi, M., Muthukaruppan, T. S., Venkataramani, V., Mitra, T., and
Vishin, S. Power-performance modeling on asymmetric multi-cores. In International
Conference on Compilers, Architecture and Synthesis for Embedded Systems - CASES
(2013).

[148] Pricopi, M., Muthukaruppan, T. S., Venkataramani, V., Mitra, T., and
Vishin, S. Power-performance modeling on asymmetric multi-cores. In Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded Systems -
CASES (2013).

[149] Qin, H., Zawad, S., Zhou, Y., Yang, L., Zhao, D., and Yan, F. Swift machine
learning model serving scheduling: A region based reinforcement learning approach.
In International Conference for High Performance Computing, Networking, Storage
and Analysis - SC (2019).

[150] QUARK project home page. http://icl.cs.utk.edu/quark.

[151] Quintana-Ort́ı, G., Quintana-Ort́ı, E. S., van de Geijn, R. A., Van Zee,
F. G., and Chan, E. Programming matrix algorithms-by-blocks for thread-level
parallelism. ACM Transactions on Mathematical Software 36, 3 (2009), 14:1–14:26.

194

https://tools.bsc.es/
http://icl.cs.utk.edu/quark

REFERENCES

[152] Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., and Zhu, X. No
”power” struggles: Coordinated multi-level power management for the data center.
ACM Operating Systems Review 42, 2 (2008), 48–59.

[153] Reda, S., Cochran, R., and Coskun, A. K. Adaptive power capping for servers
with multithreaded workloads. IEEE Micro 32, 5 (2012), 64–75.

[154] Reinders, J. Intel Threading Building Blocks : outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly, 2007.

[155] Roca, A., Rodriguez, S., Segura, A., Marquet, K., and Beltran, V. A
Linux Kernel Scheduler Extension for Multi-core Systems. In IEEE International
Conference on High Performance Computing - HiPC (2019).

[156] Rodrigues, C. F., Riley, G., and Luján, M. Exploration of Task-Based Schedul-
ing for Convolutional Neural Networks Accelerators under Memory Constraints. In
ACM International Conference on Computing Frontiers - CF (2019).

[157] Ross, S. Introduction to Stochastic Dynamic Programming. Academic Press, 1983.

[158] Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., and Rajwan,
D. Power-management architecture of the intel microarchitecture code-named Sandy
Bridge. IEEE Micro 32, 2 (2012), 20–27.

[159] Russell, S., and Norving, P. Artificial Intelligence: A Modern Approach, third ed.
Pearson, 2016.

[160] Sandvine. Global Internet Phenomena. Tech. rep., Sandvine, 2016.
Available at https://www.sandvine.com/hubfs/downloads/archive/

2016-global-internet-phenomena-report-latin-america-and-north-america.

pdf.

[161] Shoham, Y., Powers, R., and Grenager, T. Multi-Agent Reiforcement Learn-
ing: a critical survey. Tech. rep., Computer Science Department, Standford University,
2003. Available at https://www.cc.gatech.edu/classes/AY2009/cs7641_spring/
handouts/MALearning_ACriticalSurvey_2003_0516.pdf.

[162] Silvano, C., Agosta, G., Cherubin, S., Gadioli, D., Palermo, G., Bartolini,
A., Benini, L., Martinovič, J., Palkovič, M., Slaninová, K., Bispo, J. a.,
Cardoso, J. a. M. P., Abreu, R., Pinto, P., Cavazzoni, C., Sanna, N., Bec-
cari, A. R., Cmar, R., and Rohou, E. The ANTAREX Approach to Autotuning
and Adaptivity for Energy Efficient HPC Systems. In ACM International Conference
on Computing Frontiers - CF (2016).

[163] Silveira, D., Porto, M., and Bampi, S. Performance and energy consumption
analysis of the X265 video encoder. In European Signal Processing Conference -
EUSIPCO (2017).

[164] Singh, A. K., Prakash, A., Basireddy, K. R., Merrett, G. V., and Al-
Hashimi, B. M. Energy-efficient run-time mapping and thread partitioning of concur-
rent OpenCL applications on CPU-GPU MPSoCs. ACM Transactions on Embedded
Computing Systems 16, 5s (2017).

195

https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.cc.gatech.edu/classes/AY2009/cs7641_spring/handouts/MALearning_ACriticalSurvey_2003_0516.pdf
https://www.cc.gatech.edu/classes/AY2009/cs7641_spring/handouts/MALearning_ACriticalSurvey_2003_0516.pdf

REFERENCES

[165] Singh, S., and Chana, I. QoS-aware autonomic resource management in cloud
computing: A systematic review. ACM Computing Surveys 48, 3 (2015).

[166] Singla, G., Kaur, G., Unver, A. K., and Ogras, U. Y. Predictive dynamic
thermal and power management for heterogeneous mobile platforms. In Design, Au-
tomation and Test in Europe Conference and Exhibition - DATE (2015).

[167] Spiegel, M. R., and Stephens, L. J. Schaum’s Outlines Statistics, fourth ed.
McGraw Hill, 2008.

[168] StarPU project home page. http://starpu.gforge.inria.fr/.

[169] Sullivan, G. J., Ohm, J. R., Han, W. J., and Wiegand, T. Overview of the
high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and
Systems for Video Technology 22, 12 (2012), 1649–1668.

[170] Superglue project home page. http://www.it.uu.se/research/scientific_

computing/software/superglue.

[171] Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction, vol. 1.
MIT press Cambridge, 1998.

[172] Tan, X., Bosch, J., Vidal, M., Álvarez, C., Jiménez-González, D.,
Ayguadé, E., and Valero, M. General Purpose Task-Dependence Management
Hardware for Task-Based Dataflow Programming Models. In IEEE International
Parallel and Distributed Processing Symposium - IPDPS (2017).

[173] Tang, X., Wang, H., Ma, X., El-Sayed, N., Zhai, J., Chen, W., and Aboul-
naga, A. Spread-n-share: Improving application performance and cluster throughput
with resource-aware job placement. In International Conference for High Performance
Computing, Networking, Storage and Analysis - SC (2019).

[174] Tapus, C., I-Hsin Chung, and Hollingsworth, J. Active Harmony: Towards
Automated Performance Tuning. In ACM International Conference on Supercomput-
ing - ICS (2015).

[175] Tembey, P., Gavrilovska, A., and Schwan, K. A case for coordinated resource
management in heterogeneous multicore platforms. Lecture Notes in Computer Sci-
ence 6161 (2012), 341–356.

[176] Teodorescu, R., and Torrellas, J. Variation-aware application scheduling and
power management for chip multiprocessors. In International Symposium on Com-
puter Architecture - ISCA (2008).

[177] Terpstra, D., Jagode, H., You, H., and Dongarra, J. Collecting performance
data with PAPI-C. In International Workshop on Parallel Tools for High Performance
Computing (2010).

[178] Tesauro, G., Jong, N. K., Das, R., and Bennani, M. N. A hybrid reinforcement
learning approach to autonomic resource allocation. In International Conference on
Autonomic Computing - ICAC (2006), pp. 65–73.

196

http://starpu.gforge.inria.fr/
http://www.it.uu.se/research/scientific_computing/software/superglue
http://www.it.uu.se/research/scientific_computing/software/superglue

REFERENCES

[179] Tillenius, M. Superglue: A shared memory framework using data versioning for
dependency-aware task-based parallelization. SIAM Journal on Scientific Computing
37, 6 (2015), C617–C642.

[180] Tillenius, M., Larsson, E., Badia, R. M., and Martorell, X. Resource-aware
task scheduling. ACM Transactions on Embedded Computer Systems 14, 1 (2015),
5:1–5:25.

[181] van Hasselt, H. Reinforcement Learning in Continuous State and Action Spaces.
Springer Berlin Heidelberg, 2012.

[182] Van Zee, F. G., Smith, T., Igual, F. D., Smelyanskiy, M., Zhang, X.,
Kistler, M., Austel, V., Gunnels, J., Low, T. M., Marker, B., Killough,
L., and van de Geijn, R. A. The BLIS framework: Experiments in portability.
ACM Transactions on Mathematical Software 42, 2 (2016), 12:1–12:19.

[183] Van Zee, F. G., and van de Geijn, R. A. BLIS: A framework for rapidly
instantiating BLAS functionality. ACM Transactions on Mathematical Software 41,
3 (2015), 14:1–14:33.

[184] Vega, A., Buyuktosunoglu, A., Hanson, H., Bose, P., and Ramani, S. Crank
it up or dial it down: Coordinated multiprocessor frequency and folding control. In
IEEE/ACM International Symposium on Microarchitecture - MICRO (2013).

[185] Vetter, J. S., DeBenedictis, E. P., and Conte, T. M. Architectures for the
Post-Moore Era. IEEE Micro 37 (2017), 6–8.

[186] Viitanen, M., Koivula, A., Lemmetti, A., Ylä-Outinen, A., Vanne, J., and
Hämäläinen, T. D. Kvazaar: Open-Source HEVC/H. 265 Encoder. In ACM Mul-
timedia Conference - MM (2016).

[187] Voss, M., Asenjo, R., and Reinders, J. Pro TBB: C++ Parallel programming
with Threading Building Blocks. Apress open, 2019.

[188] Voss, M. J., and Eigenmann, R. ADAPT: Automated De-coupled Adaptive Pro-
gram Transformation. In International Conference on Parallel Processing - ICPP
(2000).

[189] Wang, L., and Gelenbe, E. Adaptive Dispatching of Tasks in the Cloud. IEEE
Transactions on Cloud Computing 6, 1 (2018), 33–45.

[190] Wang, X., and Mart́ınez, J. F. ReBudget: Trading Off Efficiency vs. Fairness in
Market-Based Multicore Resource Allocation via Runtime Budget Reassignment. In
International Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS (2016).

[191] Wang, Z., Sun, L., Wu, C., Zhu, W., Zhuang, Q., and Yang, S. A joint
online transcoding and delivery approach for dynamic adaptive streaming. IEEE
Transactions on Multimedia 17, 6 (2015), 867–879.

197

REFERENCES

[192] Watson, D. Challenges of Exascale Computing. In ENES Workshop on High Per-
formance Computing for Climate and Weather (2011).

[193] Weiser, M., Welch, B., Demers, A., and Shenker, S. Scheduling for reduced
cpu energy. Low-Power CMOS Design (1998), 177–187.

[194] Welstead, S. Fractal and Wavelet Image Compression Techniques. SPIE Optical
Engineering Press, Bellingham, WA, 2009.

[195] Whaley, R., and Dongarra, J. Automatically Tuned Linear Algebra Software.
In ACM/IEEE Conference on Supercomputing (2014).

[196] Winter, J. A., Albonesi, D. H., and Shoemaker, C. A. Scalable thread schedul-
ing and global power management for heterogeneous many-core architectures. In
Parallel Architectures and Compilation Techniques - PACT (2010).

[197] Yan, K., Zhang, X., Tan, J., and Fu, X. Redefining QoS and customizing
the power management policy to satisfy individual mobile users. In IEEE/ACM
International Symposium on Microarchitecture - MICRO (2016).

[198] YarKhan, A., Kurzak, J., and Dongarra, J. QUARK Users’ Guide: QUeue-
ing And Runtime for Kernels. Tech. rep., Innovative Computing Laboratory, Uni-
versity of Tennessee, 2011. Available at https://www.icl.utk.edu/publications/
quark-users-guide-queueing-and-runtime-kernels.

[199] Yesil, S., Heidarshenas, A., Morrison, A., and Torrellas, J. Understand-
ing priority-based scheduling of graph algorithms on a shared-memory platform. In
International Conference for High Performance Computing, Networking, Storage and
Analysis - SC (2019).

[200] Yuan, C., Yue, Y., Li, X., and Feng, L. Performance analysis and optimization
of inter process communication in android. In International Conference on Electronics
Information and Emergency Communication - ICEIEC (2016).

[201] Zee, F. G. V. libflame. the complete reference, 2016. http://www.cs.utexas.

edu/users/flame.

[202] Zhang, H., and Hoffmann, H. Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems -
ASPLOS (2016).

[203] Zhang, H., and Hoffmann, H. Performance & Energy Tradeoffs for Dependent
Distributed Applications Under System-Wide Power Caps. In International Confer-
ence on Parallel Processing - ICPP (2018).

[204] Zhang, H., and Hoffmann, H. PoDD: Power-capping dependent distributed appli-
cations. In International Conference for High Performance Computing, Networking,
Storage and Analysis - SC (2019).

198

https://www.icl.utk.edu/publications/quark-users-guide-queueing-and-runtime-kernels
https://www.icl.utk.edu/publications/quark-users-guide-queueing-and-runtime-kernels
http://www.cs.utexas.edu/users/flame
http://www.cs.utexas.edu/users/flame

REFERENCES

[205] Zhang, Y., Kwong, S., and Wang, S. Machine learning based video coding
optimizations: A survey. Information Sciences 506 (2020), 395–423.

[206] Zhang, Y., Yao, J., and Guan, H. Intelligent Cloud Resource Management with
Deep Reinforcement Learning. IEEE Cloud Computing 4, 6 (2017), 60–69.

[207] Zhao, T., Wang, Z., and Chen, C. W. Adaptive Quantization Parameter Cas-
cading in HEVC Hierarchical Coding. IEEE Transactions on Image Processing 25, 7
(2016), 2997–3009.

[208] Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., and Prieto, M.
Survey of energy-cognizant scheduling techniques. IEEE Transactions on Parallel and
Distributed Systems 24, 7 (2013), 1447–1464.

199

REFERENCES

200

Acronyms

AI Artificial Intelligence . 83

AMP Asymmetric Multiprocessor . 7

API application programming interface . 174

DAG Direct Acyclic Graph . 28

DLA Dense Linear Algebra . 2

DVFS Dynamic Voltage-Frequency Scaling. .2

FIFO First-In-First-Out . 58

FPS Frames Per Second . 87

FSM Finite State Machine . 159

HEVC High Efficiency Video Coding . 83

HPC High Performance Computing. .1

HR High Resolution . 91

IC integrated circuit . 1

I/O Input/Output. .81

ISA Instruction Set Architecture . 14

KB Knowledge Base . 148

LCT Learning Classifier Table . 16

LR Low Resolution. .106

MAL Multi-Agent Learning . 9

MDP Markov Decision Problem . 81

ML Machine Learning . 16

OP Operating Point .123

OpenMP Open Multi-Processing . 27

OS Operating System . 41

PSNR Peak Signal-to-Noise Ratio . 85

QL Q-Learning . 16

QoE Quality of Experience . 4

QoS Quality of Service . 4

QP Quantization Parameter . 87

RAPL Running average power limit . 2

RL Reinforcement Learning . 16

201

REFERENCES

SLA Service Level Agreement . 17

SoC System-on-chip . 25

TDP Thermal Design Power .70

VOD Video On Demand. .83

WPP Wavefront Parallel Processing . 87

202

	Portada
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background and definitions
	Target applications and scenarios

	Objectives
	Proposed approaches and contributions
	Document structure

	State of the art
	Traditional Resource Management in parallel computing
	Targeting performance optimization
	Targeting energy efficiency optimization
	Targeting power-capping and thermal management

	Novel Resource Management strategies
	Machine learning for resource management
	QoS- and QoE-aware resource management

	Frameworks for Resource Management: a comparative study

	I Runtime-based Resource Management
	Policies for energy-efficient resource management on asymmetric architectures
	OmpSs. Internals and asymmetry-aware implementations
	Nanos++ implementation design
	Asymmetry-aware modifications in Nanos++

	Energy-aware policies based on frequency scaling (FS)
	FS policies description
	Experimental results

	Energy-aware policies based on task scheduling (TS)
	TS policies description
	Experimental results

	Conclusions

	Power budget management for runtime-based applications
	Power budget management. Motivation and opportunities
	Idle workers management

	Resource management for asymmetric power budgeting: a two-level approach
	BAR + BACO: an overview

	BAR. Runtime support for intra-application power budget management
	Budget re-distribution strategy
	Waking up idle workers
	Fetching a new ready task
	Blocking idle threads
	Core frequency selection and Power modelling

	Experimental results for BAR
	Experimental setup
	Preliminar analysis of BAR performance
	Scenario I: Power capping for one application
	Scenario II: Multiple applications with different power caps

	BACO. Runtime support for inter-application power budget redistribution
	Resource manager layer
	Application layer

	Experimental results for BACO
	Preliminar analysis of BACO performance
	Scenario I: Different block sizes
	Scenario II: Different application arrival rates
	Scenario III: A realistic simulation

	Conclusions

	II Application-aware Resource Management. A Machine-Learning based approach
	Resource Management for QoS-aware applications
	Exposing application internals: metrics & knobs
	A motivational example: multi-user video transcoding
	Output metrics, Application- and System-wide knobs, and QoS in HEVC
	Motivation for dynamic resource and knob management
	Necessity of Machine Learning for multi-user video transcoding

	Reinforcement Learning-based formulation for Resource Management
	Reinforcement Learning: Q-Learning
	Mapping a generic QoS-aware application to a Q-Learning formulation

	Conclusions

	Self-adaptive Application Execution via Reinforcement Learning
	A Mono-agent Q-Learning formulation for video transcoding
	Problem mapping to a QL formulation: states, actions and rewards
	Mono-agent Q-Learning: formulation and drawbacks

	Integrating Multi-Agent Learning
	Agent design and activation sequence
	New learning rate function
	Cooperation process: dealing with a stochastic environment
	Dealing with sensing noise

	Proposed single-application scenarios and experimental setup
	System overview and implementation details
	Dataset definition
	Alternative approaches and reported metrics

	Experimental results
	A detailed analysis of agents' behavior for High Resolution video sequences
	General MAL learned policies: High Resolution vs Low Resolution behaviour
	Comparison with a static approach
	Comparison with a state-of-the-art heuristic (argo)

	Conclusions

	Extensions for Inter-Application Resource Management
	Integrating intra-application dependencies into the formulation
	A modified learning process for system-wide metrics
	Power capping integration
	Management of shared resources

	Experimental results on multi-application scenarios
	MAL and turbo behaviour
	Comparison with a Static solution
	Comparison with a state-of-the-art heuristic (argo)
	Improvements over a mono-agent implementation
	Power capping integration
	Overhead introduced by the MAL system

	Conclusions

	A Methodology for Multi-Policy Resource Management
	Motivation for multi-policy resource management
	Heterogeneous QoS for HEVC encoding processes

	Designing a Reinforcement Learning multi-policy framework
	Learning different policies
	Reducing learning time
	A methodology to extract multiple policies
	Experimental results for multi-policy resource management

	Combining multiple policies via heuristics
	Heuristic design
	Experimental results for multi-policy combination heuristic

	Conclusions

	Conclusions
	Conclusions and main contributions
	Related publications
	Directly related publications
	Indirectly related publications

	Open research lines

	Appendices
	Platform description
	Hardware description
	Software description
	Dataset definition

	Centralized Resource Manager
	Client design
	Communication protocol
	Centralized Resource Manager (server)

	References
	Acronyms

