997 research outputs found

    Quantum sensing

    Full text link
    "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits. The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science. In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist.Comment: 45 pages, 13 figures. Submitted to Rev. Mod. Phy

    Microstructural parameter estimation in vivo using diffusion MRI and structured prior information.

    Get PDF
    Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging

    Analysis of Brain Magnetic Resonance Images: Voxel-Based Morphometry and Pattern Classification Approaches

    Get PDF
    This thesis aims to examine two types of elaboration techniques of brain magnetic resonance imaging (MRI) data: the voxel-based morphometry (VBM) and the support vector machine (SVM) approaches. While the VBM is a standard and well-established mass-univariate method, the SVM multivariate analysis has been rarely implemented to investigate brain MRI data. An improvement of our knowledge on the pattern classication approach is necessary to be achieved, both to assess its exploratory capability and to point out advantages and disadvantages with respect to the more largely used VBM approach. Despite these methods are potentially suitable to investigate a large variety of neurological and neuropsychiatric disorders, in the present study they have been employed with the purpose of detecting neuroanatomical and gender-related abnormalities in children with autism spectrum disorders (ASD). In fact, the dierences in the neuroanatomy of young children with ASD are an intriguing and still poor investigated issue. After a description of the physical principles of nuclear magnetic resonance and an overview of magnetic resonance imaging, we specied the two algorithms that represent the object of the current study: voxel-based morphometry and support vector machines classication methods. Hence, we described the theoretical principles they are based on, pointing out schemes and procedures employed to implement these analysis approaches. Then, we examined the application of VBM and SVM methods to an opportunely chosen sample of MRI data. A total of 152 structural MRI scans were selected. Specically, our dataset was composed by 76 ASD children and 76 matched controls in the 2-7 year age range. The images were preprocessed applying the SPM8 algorithm, based on the dieomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure. The resulting grey matter (GM) segments were analyzed by applying the conventional voxel-wise two-sample t-test VBM analysis and employing the stringent family-wise error (FWE) rate correction according to random gaussian elds theory. The same preprocessed GM segments were then analyzed using the SVM pattern classication approach, that presents the advantage of intrinsically taking into account interregional correlations. Moreover, this technique would allow investigations about the predictive value of structural MRI scans. In fact, the SVM classication capability can be quantied in terms of the area under the receiver operating characteristic curve (AUC). The leave-pair-out cross- validation protocol has been adopted to evaluate the classication performance. The recursive feature elimination (RFE) procedure has been implemented both to reduce the large number of features in the classication problem and to enhance the classication capability. The SVM-RFE allows also to localize the most discriminant voxels and to visualize them in a discrimination map. However, the pattern classication method was not employed to predict the class membership of undiagnosed subjects, but as a gure of merit allowing to determine an optimal threshold on the discrimination maps, where possible between-group structural dierences are encoded. With the aim of strengthening the SVM-based methods applied to brain data and to guarantee reliability and reproducibility of the results, we set up the following tests: 1. We evaluated the consistency among all discrimination maps, each obtained from one of the SVM leave-pair-out cross-validation steps, within the chosen range of number of retained features employed. 2. We assessed the dependency on the population of the training set within the cross- validation procedure. In this way we became able to check for the stability of our statistical results with respect to the number of subjects employed during the learning phase. Furthermore, we can evaluate the classication performances for dierent cross- validation schemes. Among the results we obtained, we found that SVMs applied to GM scans correctly discriminate ASD male and female individuals with respect to controls with an AUC above the 87% with a fraction of retained voxels in the 0.4-29% range. By choosing as operative point of the system that corresponding to the lower amount of signicant voxels (0.4% of the total number of voxels) we obtained a sensitivity of 82% and a specicity of 80%. The resulting discrimination maps showed some signicant regions where an excess of GM characterizes the ASD subjects with respect to the matched control group. These regions seemed to be consistent with those obtained from the VBM analysis, nevertheless the SVM analysis highlighted a larger number of interesting gender-specic discriminating regions. Hence, multivariate methods based on the SVM could contribute not only to distinguish ASD from control children, but also to disentangle the gender specicity of ASD brain alterations, consistently with respect to the mass-univariate approach. Achieving a better AUC could make possible to employ the pattern recognition approach not only to individuate brain regions discriminating between patients and controls, but also to predict the class membership of undiagnosed subjects, thus facilitating the early diagnosis of the ASD pathology

    Model-based multi-parameter mapping

    Get PDF
    Quantitative MR imaging is increasingly favoured for its richer information content and standardised measures. However, computing quantitative parameter maps, such as those encoding longitudinal relaxation rate (R1), apparent transverse relaxation rate (R2*) or magnetisation-transfer saturation (MTsat), involves inverting a highly non-linear function. Many methods for deriving parameter maps assume perfect measurements and do not consider how noise is propagated through the estimation procedure, resulting in needlessly noisy maps. Instead, we propose a probabilistic generative (forward) model of the entire dataset, which is formulated and inverted to jointly recover (log) parameter maps with a well-defined probabilistic interpretation (e.g., maximum likelihood or maximum a posteriori). The second order optimisation we propose for model fitting achieves rapid and stable convergence thanks to a novel approximate Hessian. We demonstrate the utility of our flexible framework in the context of recovering more accurate maps from data acquired using the popular multi-parameter mapping protocol. We also show how to incorporate a joint total variation prior to further decrease the noise in the maps, noting that the probabilistic formulation allows the uncertainty on the recovered parameter maps to be estimated. Our implementation uses a PyTorch backend and benefits from GPU acceleration. It is available at https://github.com/balbasty/nitorch.Comment: 20 pages, 6 figures, accepted at Medical Image Analysi

    Diffusion Tensor Imaging Based Tractography of Human Brain Fiber Bundles

    Get PDF
    Tractography is a non-invasive process for reconstruction, modeling and visualization of neural fibers in the white matter (WM) of human brain. It has emerged as a major breakthrough for neuroscience research due to its usefulness in clinical applications. Two types of tractography approaches: deterministic and probabilistic have been investigated to evaluate their performances on tracking fiber bundles using diffusion tensor imaging (DTI). The images are taken by applying pulsed magnetic fields in multiple gradient directions. After removing the non-brain areas from the images, the diffusion tensor indices for each image voxel are calculated. White matter connectivity of the brain, i.e. tractography, is primarily based upon streamline algorithms where the local tract direction is defined by the principle direction of the diffusion tensor. Simulations are performed using three approaches: fiber assignment by continuous tracking (FACT), probability index of connectivity (PICo) and Gibbs tracking (GT). Simulation results show that probabilistic tractography i.e. PICo and GT can reconstruct longer length of fibers compared to the deterministic approach-FACT but with a cost of high computation time. Moreover, GT handles the more complex fiber configurations of crossing and kissing fibers, more effectively and provides the best reconstruction of fibers. In addition, diffusion tensor indices: fractional anisotropy (FA) and mean diffusivity (MD) for a region of interest can be quantified and used to assess several brain diseases. Prospective investigation of DTI based tractography can reveal useful information on WM architecture in normal and diseased brain which will speed up the detection and treatment of various brain diseases

    HARDI Methods: tractography reconstructions and automatic parcellation of brain connectivity

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A neuroanatomia humana tem sido objecto de estudo científico desde que surgiu o interesse na organização do corpo humano e nas suas funções, quer como um todo quer através das partes que o constituem. Para atingir este fim, as autópsias foram a primeira forma de revelar algum conhecimento, o qual tem vindo a ser catalogado e sistematizado à medida que a medicina evolui. Passando por novas técnicas de conservação e tratamento de tecido humano, de que são exemplo as dissecções de Klinger, nas quais se fazem secções de material conservado criogenicamente, bem como por estudos histológicos através da utilização de corantes, conseguiu-se uma forma complementar de realizar estes estudos. Permanecia, no entanto, a impossibilidade de analisar in vivo a estrutura e função dos diferentes sistemas que constitutem o Homem. Com o surgimento das técnicas imagiológicas o diagnóstico e monitorização do corpo humano, bem como das patologias a ele associadas, melhoraram consideravelmente. Mais recentemente, com o aparecimento da ressonância magnética (MRI: do Inglês "Magnetic Resonance Imaging"), tornou-se possível estudar as propriedades magnéticas do tecido, reflectindo as suas características intrínsecas com base na aplicação de impulsos de radiofrequência. Através de ressonância magnética é possível estudar essas propriedades em vários núcleos atómicos, sendo mais comum o estudo do hidrogénio, pois somos maioritariamente consistituídos por água e gordura. Uma vez que só é possível medir variações do campo magnético, aplicam-se impulsos de radiofrequência para perturbar o equilíbrio dos spins e medir os seus mecanismos de relaxação, os quais, indirectamente, reflectem a estrutura do tecido. Contudo, o sinal medido é desprovido de qualquer informação espacial. De facto, para podermos proceder a essa quantificação, é necessária a utilização de gradientes de campo magnético, que permitem modificar localmente a frequência de precessão dos protões, através da alteração local do campo magnético, permitindo assim, adquirir o sinal de forma sequencial. A informação obtida constitui uma função variável no espaço e através da transformação de Fourier pode ser quantificada em frequências espaciais, sendo estes dados armazenados no espaço k. O preencimento deste espaço, caracterizado por frequências espaciais, bem como os gradientes de campo magnético que são aplicados, permitem determinar a resolução da imagem que podemos obter, aplicando uma transformação de Fourier inversa. O estudo da ressonância magnética não se restringe à análise da estrutura mas também ao estudo da função e difusão das moléculas de água. A difusão é um processo aleatório, que se traduz pelo movimento térmico das moléculas de água, e o seu estudo permite inferir sobre o estado do tecido e microestrutura associada, de uma forma não invasiva e in vivo. A técnica de imagiologia de ressonância magnética ponderada por difusão (DWI: do Inglês "Diffusion Weighted Imaging") permite o estudo da direccionalidade das moléculas de água e extracção de índices que reflectem directamente a integridade dos tecidos biológicos. De modo a sensibilizar as moléculas de água à difusão, é necessário aplicar sequências de ressonância magnética modificadas, nas quais se aplicam gradientes de campo magnético de difusão para quantificar o deslocamento das moléculas e a sua relação com o coeficiente de difusão das mesmas. Num ambiente livre e sem barreiras a difusão das moléculas de água é isotrópica, uma vez que se apresenta igual em todas as direcções. Todavia, tal não se verifica no corpo humano. A presença destas barreiras leva a que, na verdade, apenas possa ser medido um coeficiente de difusão aparente. Este, por sua vez, traduz a interacção entre as moléculas de água com a microestrutura e, como tal, uma anisotropia na sua difusão. Como caso particular de difusão anisotrópica a nível cerebral, tem-se a difusão das moléculas de água na matéria branca, uma vez que esta apresenta uma direccionalidade preferencial de acordo com a orientação dos axónios, visto estarem presentes menos restrições à sua propagação, ao contrário do que acontece com a direcção perpendicular (devido à membrana celular e às bainhas de mielina). Por oposição, a matéria cinzenta, constituída pelo aglomerado dos corpos celulares dos neurónios, e o líquido cefalorraquidiano apresentam uma difusão sem direcção preferencial (i.e. aproximadamente isotrópica). A informação obtida através da difusão das moléculas de água encontra-se limitada pelo número de direcções segundo o qual aplicamos os gradientes de difusão. Deste modo, surgiu a imagiologia por tensor de difusão (DTI: do Inglês "Diffusion Tensor Imaging"). Esta técnica permite extrair informação acerca da tridimensionalidade da distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não colineares entre si. A distribuição destas moléculas pode, então, ser vista como um elipsóide, no qual o principal vector próprio do tensor representa a contribuição da difusão das moléculas segundo a direcção do axónio (ou paralela), sendo os dois restantes componentes responsáveis pela contribuição transversal. Além da difusividade média (MD: do Inglês "Mean Diffusivity") e das contribuições da difusão paralela (MD//) e perpendicular (MD ) às fibras, é também possível extrair outros índices, como a anisotropia fraccional (FA: do Inglês "Fractional Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado voxel. Para a matéria branca, tal como já foi referido, existe difusão preferencial e, portanto, a anisotropia fraccional será elevada. Por outro lado, para a matéria cinzenta e para o líquido cefalorraquidiano, verificar-se-á uma FA reduzida, devido à ausência de anisotropia. Todavia, regiões com reduzida anisotropia fraccional podem camuflar regiões de conformação de cruzamento de fibras, ou fibras muito anguladas, que a imagiologia por tensor de difusão não consegue resolver. A razão para esta limitação reside no número reduzido de diferentes direcções de difusão que são exploradas, assim como o pressuposto de que a distribuição das moléculas de água é Gaussiana em todo o cérebro, o que não é necessariamente verdade. A fim de se ultrapassar estas limitações, novas técnicas surgiram, nomeadamente as de elevada resolução angular (HARDI: do Inglês "High Angular Resolution Diffusion Imaging"). Estas fazem uso de uma aquisição em função de múltiplas direcções de gradiente e de uma diferente modelação dos dados obtidos, dividindo-se em dois tipos. As técnicas livres de modelos permitem extrair uma função de distribuição da orientação das fibras num determinado voxel directamente do sinal e/ou transformações da função densidade de probabilidade do deslocamento das moléculas de água. Contrariamente, as técnicas baseadas em modelos admitem existir determinados constrangimentos anatómicos e que o sinal proveniente de um determinado voxel é originado por um conjunto de sinais individuais de fibras, caracterizados por uma distribuição preferencial das direcções das fibras. Todos estes métodos têm como objectivo principal recuperar a direcção preferencial da difusão das moléculas de água e reconstruir um trajecto tridimensional que represente a organização das fibras neuronais, pelo que se designam métodos de tractografia. Esta representa a única ferramenta não invasiva de visualização in vivo da matéria branca cerebral e o seu estudo tem revelado uma grande expansão associada ao estabelecimento de marcador biológico para diversas patologias. Adicionalmente, esta técnica tem vindo a tornar-se uma modalidade clínica de rotina e de diversos protocolos de investigação, sendo inclusivamente utilizada para complementar o planeamento em cirurgia, devido à natureza dos dados que gera. Particularmente no caso de dissecções manuais, nas quais os dados de tractografia são manuseados por pessoal especializado, com vista a realizar a parcelização de diferentes tractos de interesse, o processo é moroso e dependente do utilizador, revelando-se necessária a automatização do mesmo. Na realidade, já existem técnicas automáticas que fazem uso de algoritmos de agregação1, nos quais fibras são analisadas e agrupadas segundo características semelhantes, assim como técnicas baseadas em regiões de interesse, em que se extraem apenas os tractos seleccionados entre as regiões escolhidas. O objectivo principal desta dissertação prende-se com a análise automática de dados de tractografia, bem como a parcelização personalizada de tractos de interesse, também esta automática. Em primeiro lugar, foi desenvolvido um algoritmo capaz de lidar automaticamente com funções básicas de carregamento dos ficheiros de tractografia, o seu armazenamento em variáveis fáceis de manusear e a sua filtragem básica de acordo com regiões de interesse de teste. Neste processo de filtragem é feita a avaliação das fibras que atravessam a região de interesse considerada. Assim, após a localização das fibras entre as regiões de interesse os tractos resultantes podem ser guardados de duas formas, as quais têm, necessariamente, que ser especificadas antes de utilizar o software: um ficheiro que contém todas as fibras resultantes da parcelização e outro que contém o mapa de densidade associado, isto é, o número de fibras que se encontra em cada voxel. Após esta fase inicial, a flexibilidade e complexidade do software foi aumentando, uma vez que foram implementados novos filtros e a possibilidade de utilizar regiões de interesse de diferentes espaços anatómicos padrão. Fazendo uma análise a esta última melhoria, pode referir-se que, através de um procedimento de registo não linear da imagem anatómica do espaço padrão ao espaço individual de cada sujeito, foi possível, de forma automática, guardar o campo de deformações que caracteriza a transformação e, assim, gerar regiões de interesse personalizadas ao espaço do sujeito. Estas regiões de interesse serviram depois para a parcelização básica e para seleccionar tractos, mas também para filtragens adicionais, como a exclusão de fibras artefactuosas2 e um filtro especial, no qual apenas os pontos que ligam directamente as diferentes regiões são mantidos. Além do que já foi referido, recorreu-se também à aplicação de planos de interesse que actuam como constrangimentos neuroanatómicos, o que não permite, por exemplo, no caso da radiação óptica, que as fibras se propaguem para o lobo frontal. Esta ferramenta foi utilizada com sucesso para a parcelização automática do Fascículo Arcuado, Corpo Caloso e Radiação Óptica, tendo sido feita a comparação com a dissecção manual, em todos os casos. O estudo do Fasciculo Arcuado demonstrou ser o teste ideal para a ferramenta desenvolvida na medida que permitiu identificar o segmento longo, assim como descrito na literatura. O método automático de duas regiões de interesse deu a origem aos mesmos resultados obtidos manualmente e permitiu confirmar a necessidade de estudos mais aprofundados. Aumentando a complexidade do estudo, realizou-se a parcelização do Corpo Caloso de acordo com conectividade estrutural, isto é, com diferentes regiões envolvidas em funções distintas. Procedeu-se deste modo, e não com base em informação acerca de divisões geométricas, uma vez que estas já demonstraram incongruências quando correlacionadas com subdivisões funcionais. O uso adicional de regiões de interesse para a exclusão de fibras demonstrou-se benéfico na obtenção dos mapas finais. Finalmente, incluiu-se a utilização de um novo filtro para realizar a parcelização da Radiação Óptica, comparando os resultados para DTI e SD(do Inglês "Spherical Deconvolution"). Foi possível determinar limitações na primeira técnica que foram, no entanto, ultrapassadas pela utilização de SD. O atlas final gerado apresenta-se como uma mais-valia para o planeamento cirúrgico num ambiente clínico. O desenvolvimento desta ferramenta resultou em duas apresentações orais em conferências internacionais e encontra-se, de momento, a ser melhorada, a fim de se submeter um artigo de investigação original. Embora se tenha chegado a um resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto o caminho para o seu aperfeiçoamento. Como exemplo disso, poder-se-á recorrer ao uso combinado das duas abordagens de parcelização automática e à utilização de índices específicos dos tractos, o que poderá trazer uma nova força à delineação dos tractos de interesse. Adicionalmente, é também possível melhorar os algoritmos de registo de imagem, tendo em conta a elevada variabilidade anatómica que alguns sujeitos apresentam. Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a tractografia, têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela existência de uma grande variedade de modelos e algoritmos implementados, sem que, no entanto, exista consenso na comunidade científica acerca da melhor abordagem a seguir.Diffusion weighted imaging (DWI) has provided us a non-invasive technique to determine physiological information and infer about tissue microstructure. The human body is filled with barriers affecting the mobility of molecules and preventing it from being constant in different directions (anisotropic diffusion). In the brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that surrounds them. Only with Diffusion Tensor Imaging (DTI) it was possible to fully characterize anisotropy by offering estimations for average diffusivities in each voxel. However, these methods were limited, not being able to reflect the index of anisotropic diffusion in regions with complex fibre conformations. It was possible to reduce those problems through the acquisition of many gradient directions with High Angular Resolution Diffusion Imaging (HARDI). There are model-free approaches such as Diffusion Spectrum Imaging (DSI) and Q-ball Imaging (QBI) which retrieve an orientation distribution function (ODF) directly from the water molecular displacement. Another method is Spherical Deconvolution, which is a model-based approach based on the computation of a fibre orientation distribution (FOD) from the deconvolution of the diffusion signal and a chosen fibre response function. Reconstructing the fibre orientations from the diffusion profile, generates a three-dimensional reconstruction of neuronal fibres (Tractography) whether in a deterministic, probabilistic or global way. Tractography has two main purposes: non-invasive and in vivo mapping of human white matter and neurosurgical planning. In order to achieve those purposes it is common to apply parcellation techniques which can be subdivided into ROI-based or Clustering base. The aim of this project is to develop an automated method of tract-based parcellation of different brain regions. This tool is essential to retrieve information about the architecture and connectivity of the brain, overcoming time consuming and expertise related issues derived from manual dissections. Firstly we investigated basic functions to handle diffusion and tractography data. In particular, we focused on how to load track files, filter them according to regions of interest and save the output in different formats. Results were always compared with manual dissection. The developed tool increased complexity by introduction a new filtering and the use of regions of interest from different standard spaces, created trough non-linear registrations. Three major tracts of interest were analysed: Arcuate Fasciculus, Corpus Callosum and Optic Radiation

    Inhomogeneity Correction in High Field Magnetic Resonance Images

    Get PDF
    Projecte realitzat en col.laboració amb el centre Swiss Federal Institute of Technology (EPFL)Magnetic Resonance Imaging, MRI, is one of the most powerful and harmless ways to study human inner tissues. It gives the chance of having an accurate insight into the physiological condition of the human body, and specially, the brain. Following this aim, in the last decade MRI has moved to ever higher magnetic field strength that allow us to get advantage of a better signal-to-noise ratio. This improvement of the SNR, which increases almost linearly with the field strength, has several advantages: higher spatial resolution and/or faster imaging, greater spectral dispersion, as well as an enhanced sensitivity to magnetic susceptibility. However, at high magnetic resonance imaging, the interactions between the RF pulse and the high permittivity samples, which causes the so called Intensity Inhomogeneity or B1 inhomogeneity, can no longer be negligible. This inhomogeneity causes undesired efects that afects quantitatively image analysis and avoid the application classical intensity-based segmentation and other medical functions. In this Master thesis, a new method for Intensity Inhomogeneity correction at high ¯eld is presented. At high ¯eld is not possible to achieve the estimation and the correction directly from the corrupted data. Thus, this method attempt the correction by acquiring extra information during the image process, the RF map. The method estimates the inhomogeneity by the comparison of both acquisitions. The results are compared to other methods, the PABIC and the Low-Pass Filter which try to correct the inhomogeneity directly from the corrupted data

    Development and application of quantitative image analysis for preclinical MRI research

    Get PDF
    The aim of this thesis is to develop quantitative analysis methods to validate MRI and improve the detection of tumour infiltration. The major components include a description of the development the quantitative methods to better validate imaging biomarkers and detect of infiltration of tumour cells into normal tissue, which were then applied to a mouse model of glioblastoma invasion. To do this, a new histology model, called Stacked In-plane Histology (SIH), was developed to allow a quantitative analysis of MRI. Validating imaging biomarkers for glioblastoma infiltration Cancer can be defined as a disease in which a group of abnormal cells grow uncontrollably, often with fatal outcomes. According to (Cancer research UK, 2019), there are more than 363,000 new cancer cases in the UK every year, an increase from the 990 cases reported daily in 2014-2016, with only half of all patients recovering. Glioblastoma (GB) is the most frequent and malignant form of primary brain tumours with a very poor prognosis. Even with the development of modern diagnostic strategies and new therapies, the five-year survival rate is just 5%, with the median survival time only 14 months. Unfortunately, glioblastoma can affect patients at any age, including young children, but has a peak occurrence between the ages of 65 and 75 years. The standard treatment for GB consists of surgical resection, followed by radiotherapy and chemotherapy. However, the infiltration of GB cells into healthy adjacent brain tissue is a major obstacle for successful treatment, making complete removal of a tumour by surgery a difficult task, with the potential for tumour recurrence. Magnetic Resonance Imaging (MRI) is a non-invasive, multipurpose imaging tool used for the diagnosis and monitoring of cancerous tumours. It can provide morphological, physiological, and metabolic information about the tumour. Currently, MRI is the standard diagnostic tool for GB before the pathological examination of tissue from surgical resection or biopsy specimens. The standard MRI sequences used for diagnosis of GB include T2-Weighted (T2W), T1-Weighted (T1W), Fluid-Attenuated Inversion Recovery (FLAIR), and Contrast Enhance T1 gadolinium (CE-T1) scans. These conventional scans are used to localize the tumour, in addition to associated oedema and necrosis. Although these scans can identify the bulk of the tumour, it is known that they do not detect regions infiltrated by GB cells. The MRI signal depends upon many physical parameters including water content, local structure, tumbling rates, diffusion, and hypoxia (Dominietto, 2014). There has been considerable interest in identifying whether such biologically indirect image contrasts can be used as non-invasive imaging biomarkers, either for normal biological functions, pathogenic processes or pharmacological responses to therapeutic interventions (Atkinson et al., 2001). In fact, when new MRI methods are proposed as imaging biomarkers of particular diseases, it is crucial that they are validated against histopathology. In humans, such validation is limited to a biopsy, which is the gold standard of diagnosis for most types of cancer. Some types of biopsies can take an image-guided approach using MRI, Computed Tomography (CT) or Ultrasound (US). However, a biopsy may miss the most malignant region of the tumour and is difficult to repeat. Biomarker validation can be performed in preclinical disease models, where the animal can be terminated immediately after imaging for histological analysis. Here, in principle, co-registration of the biomarker images with the histopathology would allow for direct validation. However, in practice, most preclinical validation studies have been limited to using simple visual comparisons to assess the correlation between the imaging biomarker and underlying histopathology. First objective (Chapter 5): Histopathology is the gold standard for assessing non-invasive imaging biomarkers, with most validation approaches involving a qualitative visual inspection. To allow a more quantitative analysis, previous studies have attempted to co-register MRI with histology. However, these studies have focused on developing better algorithms to deal with the distortions common in histology sections. By contrast, we have taken an approach to improve the quality of the histological processing and analysis, for example, by taking into account the imaging slice orientation and thickness. Multiple histology sections were cut in the MR imaging plane to produce a Stacked In-plane Histology (SIH) map. This approach, which is applied to the next two objectives, creates a histopathology map which can be used as the gold standard to quantitatively validate imaging biomarkers. Second objective (Chapter 6): Glioblastoma is the most malignant form of primary brain tumour and recurrence following treatment is common. Non-invasive MR imaging is an important component of brain tumour diagnosis and treatment planning. Unfortunately, clinic MRI (T1W, T2W, CE-T1, and FLAIR) fails to detect regions of glioblastoma cell infiltration beyond the solid tumour region identified by contrast enhanced T1 scans. However, advanced MRI techniques such as Arterial Spin Labelling (ASL) could provide us with extra information (perfusion) which may allow better detection of infiltration. In order to assess whether local perfusion perturbation could provide a useful biomarker for glioblastoma cell infiltration, we quantitatively analysed the correlation between perfusion MRI (ASL) and stacked in-plane histology. This work used a mouse model of glioblastoma that mimics the infiltrative behaviour found in human patients. The results demonstrate the ability of perfusion imaging to probe regions of low tumour cell infiltration, while confirming the sensitivity limitations of clinic imaging modalities. Third objective (Chapter 7): It is widely hypothesised that Multiparametric MRI (mpMRI), can extract more information than is obtained from the constituent individual MR images, by reconstructing a single map that contains complementary information. Using the MRI and histology dataset from objective 2, we used a multi-regression algorithm to reconstruct a single map which was highly correlated (r>0.6) with histology. The results are promising, showing that mpMRI can better predict the whole tumour region, including the region of tumour cell infiltration

    Accelerated Quantitative Mapping of Relaxation Times in MRI

    Get PDF
    Clinical diagnosis ideally relies on quantitative measures of disease. For a number of diseases, diagnostic guidelines require or at least recommend neuroimaging exams to support the clinical findings. As such, there is also an increasing interest to derive quantitative results from magnetic resonance imaging (MRI) examinations, i.e. images providing quantitative T1, T2, T2* tissue parameters. Quantitative MRI protocols, however, often require prohibitive long acquisition times (> 10 minutes), nor standards have been established to regulate and control MRI-based quantification. This work aims at exploring the technical feasibility to accelerate existing MRI acquisition schemes to enable a -3 minutes clinical imaging protocol of quantitative tissue parameters such as T2 and T2* and at identifying technical factors that are key elements to obtain accurate results. In the first part of this thesis, the signal model of an existing quantitative T2-mapping algorithm is expanded to explore the methodology for a broader use including the application to T2* and its use in the presence of imperfect imaging conditions and system related limitations of the acquisition process. The second part of this thesis is dedicated to optimize the iterative mapping algorithm for a robust clinical application including the integration on a clinical MR platform. This translation of technology is a major step to enable and validate such new methodology in a realistic clinical environment. The robustness and accuracy of the developed and implemented model is investigated by comparing with the "gold standard" information from fully sampled phantom and in-vivo MRI data
    corecore