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Introduction

This thesis aims to examine two di�erent elaboration techniques of brain magnetic resonance
imaging (MRI) data: the voxel-based morphometry (VBM) and the support vector machine
(SVM) approaches. While the VBM is a standard and well-established mass-univariate
method, the SVM multivariate analysis has been rarely implemented to investigate brain
MRI data.

Standard univariate analysis of neuroimaging data has revealed several neuroanatomical
di�erences between healthy individuals and patients su�ering a large range of neurological
and psychiatric disorders. Nevertheless, these �ndings have had limited clinical transla-
tion because of their signi�cance only at group level. For this reason, recent attention has
turned towards alternative types of analysis, including SVM machine learning, which allows
classi�cation of an individual's previously unseen data into a prede�ned group using a clas-
si�cation algorithm, developed on a training data set. An improvement of our knowledge on
the pattern classi�cation approach is necessary to be achieved, both to assess its exploratory
capability and to point out advantages and disadvantages with respect to the more largely
used VBM approach.

Despite these methods are potentially suitable to investigate a large variety of neuro-
logical and neuropsychiatric disorders such as Altzheimer's disease, schizofrenia, presymp-
tomatic Huntington's and Parkinson's diseases, in the present study they have been em-
ployed with the purpose of detecting neuroanatomical and gender-related abnormalities in
children with autism spectrum disorders (ASD). In fact, the di�erences in the neuroanatomy
of young children with ASD are an intriguing and still poor investigated issue.

After a description of the physical principles of nuclear magnetic resonance and an
overview of magnetic resonance imaging (see Chapters 1 and 2), we speci�ed the two al-
gorithms that represent the object of the current study: the voxel-based morphometry
(see Chapter 3) and the support vector machines classi�cation methods (see Chapter 4).
Hence, we described the theoretical principles they are based on, pointing out schemes and
procedures employed to implement these analysis approaches.

Then, we examined the application of VBM and SVM methods to an opportunely chosen
sample of MRI data, composed by a total of 152 structural MRI scans. Speci�cally, as
described in Chapter 5, our data set was characterized by 76 ASD children and 76 matched
controls in the 2�7 year age range. The images were preprocessed applying the SPM8
algorithm, based on the di�eomorphic anatomical registration through exponentiated lie
algebra (DARTEL) procedure.

The resulting grey matter (GM) segments were analyzed by applying the conventional
voxel-wise two-sample t-test VBM analysis and employing the stringent family-wise error
(FWE) rate correction according to random gaussian �elds theory (see Chapter 6).

The same preprocessed GM segments were then analyzed using the SVM pattern clas-
si�cation approach, that presents the advantage of intrinsically taking into account inter-
regional correlations (see Chapter 7). In fact, supervised machine learning methods are
sensitive to spatially distributed and subtle e�ects in the brain that would be otherwise
unobserved using standard univariate methods which focus on coarse di�erences at group
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level. Moreover, SVM would allow investigations about the predictive value of structural
MRI scans, thus yielding results with a potentially high level of clinical translation. The
pattern classi�cation capability can be quanti�ed in terms of the area under the receiver
operating characteristic curve (AUC). The leave-pair-out cross-validation protocol has been
adopted to evaluate the classi�cation performance.

The recursive feature elimination (RFE) procedure has been implemented both to reduce
the large number of features in the classi�cation problem and to enhance the classi�cation
capability. The SVM-RFE allows also to localize the most discriminant voxels and to
visualize them in a discrimination map. However, the pattern classi�cation method was
not employed in this study to predict the class membership of undiagnosed subjects, but
as a �gure of merit allowing to determine the optimal amount of voxels encoding the most
relevant structural between-group di�erences that have to be retained in the discrimination
maps.

With the aim of strengthening the SVM-based methods applied to brain data and to
guarantee reliability and reproducibility of the results, we set up the following tests (see
Chapter 8):

1. We evaluated the consistency among all discrimination maps, each obtained from one
of the SVM leave-pair-out cross-validation steps, within the chosen range of number
of retained features employed.

2. We assessed the dependency on the population of the training set within the cross-
validation procedure. In this way we became able to check for the stability of our re-
sults with respect to the number of subjects employed during the learning phase. Fur-
thermore, we can evaluate the classi�cation performances for di�erent cross-validation
schemes.

Finally, as discussed in Chapter 9, we have reported results showing that SVM-RFE
multivariate approach has the potential to contribute not only to distinguish ASD from
matched control subjects, but also to disentangle the gender speci�city of brain alterations,
consistently with respect to the mass-univariate approach.
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Chapter 1

Physical principles of Nuclear

Magnetic Resonance

The main purpose of this chapter is to provide an overview of the basic principles of nuclear
magnetic resonance (NMR). The intrinsic angular momentum of a hydrogen nucleus in a
magnetic �eld precesses at the Larmor frequency, which depends linearly on the magnitude
of the �eld. The physical fundamentals where independently discovered by F. Bloch and
W. Purcell [1, 2] in the 1950s. At the beginnings, the related techniques were applied to
study the physical and chemical properties of molecules. Only in the 1970s the potential-
ities of nuclear magnetic resonance as imaging technique were realized, as the �rst papers
by Lauterbur and Mans�eld testify. They had the idea that the introduction of a spatial
variation of the magnetic �eld across the object, would induce a correlated spatial variation
also in the Larmor frequencies. They pointed out that the di�erent frequency components
of a signal could be separated to give spatial information about the object. Magnetic reso-
nance imaging (MRI) is possible since we can observe the way the protons contained in the
human body respond to external magnetic �elds. In the �rst stage of an MRI experiment,
the proton spin orientation changes because of its interaction with a combination of applied
magnetic �elds. Subsequently, its changes in orientation can be measured with a coil detec-
tor. Although each proton �eld is tiny, a signi�cant signal can be measured resulting from
the sum of all �elds of all a�ected protons of the body.

Magnetic resonance is a phenomenon found in magnetic systems that possess both mag-
netic and angular moments. As examples we have electron spins or nuclei of atoms. Fur-
thermore, it is important to remark that, for static �elds in the Tesla range, electrons
have Larmor frequency in the microwave range. Here lies the reason why in medical �eld,
resonance experiments are made on nuclei (NMR) and not on electrons (Electron Spin Res-
onance, ESR). In fact a microwave pulse would cause an excessive warming of biological
tissues. For this reason, in the next sections we will refer to nuclei, especially to protons.

Extensive use of classical picture will be made, where the proton is viewed as a tiny
spinning charge provided with a circulating electric current. Although much of NMR theory
can be understood classically, we will show how to derive some results of this chapter in the
quantum mechanical framework. Anyway, a complete and exhaustive treatment of NMR
principles can be found within the classical texts of Abragam [3, 4], Carrington [5], Slichter
[6], and Haacke [7], the last especially for MRI.

1.1 System of a single spin

In this section we focus on the response of a single spin, such as a proton, to an external �eld,
ignoring the interactions of each proton with its surroundings. However, these interactions
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Table 1.1: List of selected nuclear species with their spins, their associated magnetic moments
in units of nuclear magneton µn (µn ≡ e~/2mp = 5.05×10−27A·m2), gyromagnetic
ratios, and their relative molar abundances (1M = 1molar = 1mole/liter). For
comparison, the hydrogen (1H) molarity of water is 110 M, and brain gray matter,
for example, has a water content of 80% leading to an abundance of 88 M. The
quoted body abundances will vary from tissue to tissue. Certain common elements
are omitted, such as 12C and 16O, because their nuclear spins (and hence their
magnetic moments) are zero. A negative sign for the moment and the gyromagnetic
ratio refers to to the fact that the magnetic moment is anti-parallel to the angular
momentum vector [7].

Nucleus Spin (units of ~) Magnetic moment (units of µn) γ (MHz/T) Abundance in human body

hydrogen 1H 1/2 2.793 42.58 88M
sodium 23Na 3/2 2.216 11.27 80mM

phosphorus 31P 1/2 1.131 17.25 75mM
oxygen 17O 5/2 −1.893 −5.77 16mM
�uorine 19F 1/2 2.627 40.08 4µM

are very important in MRI, therefore they will be analyzed in the next section.

1.1.1 Interaction with a static magnetic �eld

We now consider an electrically charged particle that is rotating around its axis of inertia
with constant angular velocity ~ω. This physical system possesses a magnetic moment ~µ and
an angular momentum ~L that are linked by the following relation:

~µ = γ~L. (1.1)

With the symbol γ we indicate the gyromagnetic (or magnetogyric) ratio of the particle,
that for a particle characterized by charge q, mass m and Landé factor g is expressed by:

γ = g
q

2m
. (1.2)

This proportionality constant depends on the particle or nucleus. For the proton, it is found
to be:

γ = 2.675× 108 rad

s
T (1.3)

or, what may be referred as `gamma-bar':

γ ≡ γ

2π
= 42.58. MHz/T. (1.4)

Some values of γ for other nuclei are shown in table 1.1. Observing the values reported
there, the reasons why imaging elements other than hydrogen is di�cult in the human body
are more clear. Smaller values of γ with respect to hydrogen are not the only reason, the
problem is also their low concentration. We now introduce a magnetic �eld ~B that forms an
angle θ with respect to the magnetic moment direction (�gure 1.1). Therefore the system
is subjected to a mechanic moment ~Γ = ~µ ∧ ~B and the equation of temporal evolution for
~L is:

d~L

dt
= ~µ ∧ ~B. (1.5)

Remembering the proportionality between ~µ and ~L shown in eq. (1.1), we obtain:

d~µ

dt
= ~µ ∧ (γ ~B). (1.6)
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Figure 1.1: A charged particle with magnetic moment ~µ that is precessing around a magnetic
�eld ~B.

Figure 1.2: The primed reference frame rotating according to a general angular velocity ~Ω
relative to the unprimed reference frame. The rotation is counterclockwise around
~Ω [7].

The last equation is valid independently of the �eld form. For example, if ~B does not change
in time, from the eq. (1.6) we know that the angle between the magnetic moment and the
�eld will remain constant every time, therefore ~µ will design a cone around the rotation
axis in a precession motion. The solution of the eq. (1.6) becomes easier to visualize if we
introduce a new reference system (x̂′, ŷ′, ẑ′) rotating with angular velocity ~Ω with respect to
the laboratory system (x̂, ŷ, ẑ) (�gure 1.2). We suppose that the two frames have coincident
origins. The temporal evolution of the three versors of the rotating frame can be written as
follows:

dx̂′

dt
= ~Ω ∧ x̂ dŷ′

dt
= ~Ω ∧ ŷ dẑ′

dt
= ~Ω ∧ ẑ. (1.7)

Now we want to work out the temporal evolution equation for ~µ in the rotating frame. If
~µ = µx′ x̂

′ + µy′ ŷ
′ + µz′ ẑ

′, we have1:

d~µ

dt
=
dµx′

dt
x̂′ + µx′

dx̂′

dt
+
dµy′

dt
ŷ′ + µy′

dŷ′

dt
+
dµz′

dt
ẑ′ + µz′

dẑ′

dt
=

dµx′

dt
x̂′ +

dµy′

dt
ŷ′ +

dµz′

dt
ẑ′ + ~Ω ∧ ~µ =

∂~µ

∂t
+ ~Ω ∧ ~µ.

(1.8)

Substituting in the last equation the eq. (1.6), we obtain:

∂~µ

∂t
+ ~Ω ∧ ~µ = ~µ ∧ (γ ~B) (1.9)

that implies:

∂~µ

∂t
= ~µ ∧ (γ ~B + ~Ω) = ~µ ∧ γ( ~B +

~Ω

γ
). (1.10)

1We have chosen to distinguish the temporal derivative written in the laboratory frame from which in
the rotating frame, using respectively the symbols: d

dt
and ∂

∂t
.
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Evidently, the temporal evolution equation for ~µ, expressed in the coordinates of the rotating
reference system, is the same of the one written in the laboratory system, (1.6), but with
an e�ective magnetic �eld ~Be de�ned as follows:

~Be = ~B +
~Ω

γ
. (1.11)

Therefore, if the system is subjected to a static magnetic �eld ~B = B0ẑ, a simple manner
to solve the motion of ~µ is to introduce a rotating system at ~Ω = −~ω0 (~ω0 = γB0ẑ, the
Larmor frequency) with respect to the laboratory system. In fact in the rotating frame we
obtain:

~Be = (B0 +
ω0

γ
)ẑ = 0 =⇒ ∂~µ

∂t
= 0. (1.12)

Then in the rotating frame ~µ remains constant during time while in the laboratory it is
rotating with respect to z axis at ω0, moreover µz is constant, instead the expectation
values of µx and µy are oscillating at the Larmor frequency.

We can obtain the same results with a quantum mechanical treatment. For this reason,
we now consider a particle with spin ~S in the presence of a static magnetic �eld ~B = B0ẑ.
The possession of both spin and charge confers on the particle a magnetic moment ~µ which
is proportional to the magnitude of the spin:

~µ = γ~S. (1.13)

Quantum theory requires that the available spin states are quantized, then the projections
of the spin vector on a given direction can only take up one of a set of discrete values which
are +S, S − 1, S − 2, . . . ,−S. The classical interaction Hamiltonian, which is also called
Zeeman interaction, is:

H = −~µ · ~B = −γ~S · ~B = −γB0~m. (1.14)

With m we indicated the angular momentum projection of the particle along z axis, mea-
sured in units of ~. For example, for a particle of spin 1

2 there will be only two possible

projections of ~S on z axis, then we can show the unique two non degenerate eigenvalues of
energy (�gure 1.3):

E↓ = +
γB0~

2
E↑ = −γB0~

2
. (1.15)

and the di�erence between the two energy levels is:

∆E = γB0~ = ω0~ (1.16)

that is linearly proportional to the intensity of the static magnetic �eld and to the gyromag-
netic ratio. Therefore, from a quantum mechanical point of view, the presence of a static
magnetic �eld on a spin implies the splitting of its energy levels. Instead, classically, the
�eld application leads to a precessional motion of the magnetic moment around the �eld
direction. Now we want to work out the expected value of the dipole moment operator
along the three axis directions. For this purpose, we begin to write a generic wave function
as linear combination of the energy eigenstates of the interaction Hamiltonian:

|ψ(t)〉 = C↓e
−
iE↓t
~ |↓〉+ C↑e

−
iE↑t
~ |↑〉 , (1.17)

with |↓〉 and |↑〉 we indicated the eigenstates of the interaction Hamiltonian relative to the
eigenvalues E↓ and E↑, and with C↓ and C↑ two generic complex constants. We aim to
evaluate the following:

〈ψ | µ̂ |ψ〉 = γ
〈
ψ
∣∣∣ Ŝ ∣∣∣ψ〉 =

γ~
2
〈ψ |~σ |ψ〉 , (1.18)
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Figure 1.3: The Zeeman energy levels for a spin one-half system and a positive gyromagnetic
ratio. The spin is parallel to the external �eld B0ẑ in the lower energy state. The
wavy vertical line represents a transition from the higher to the lower state by
photon emission [7].

with ~σ we have indicated the vector of the three Pauli matrices for spin 1
2 particles. Now

we can adopt polar coordinates to facilitate the calculation:

C↓ = cos Θeiα↓ C↑ = sin Θeiα↑ (1.19)

and employing the following change of variables:

Θ =
θ

2
φ0 = α↑ − α↓ (1.20)

we obtain the expectation values of µ̂ in the three cartesian directions:

〈µ̂x〉t =
γ~
2

sin θ cos(φ0 − ω0t)

〈µ̂y〉t =
γ~
2

sin θ sin(φ0 − ω0t)

〈µ̂z〉t =
γ~
2

cos θ

(1.21)

that are equivalent to the motion obtained using the classical approach, in fact the expec-
tation value of the z component of the magnetic moment seems to be static, instead the
transverse components have a rotatory motion with the Larmor frequency. In other words,
the expectation value of the magnetic moment obeys the classical motion equation:

d

dt

〈
~̂µ
〉

=
〈
~̂µ
〉
∧ γ ~B. (1.22)

1.1.2 Interaction with the radiofrequency �eld

The basic idea of a magnetic resonance experiment is to excite a macroscopic sample using
some pulses of frequencies equal to the Larmor one and to observe how the system returns to
equilibrium conditions. Since B0 �elds used in clinical and research medical MR applications
are about few Tesla and the nuclei of potential interest in this �eld are those reported with
the higher abundance in table 1.2, the Larmor frequencies fall in the radiofrequency range2.
In general we will talk about radiofrequency (RF) pulse, and the instrument that generates
this exciting pulse is called radiofrequency (RF) coil.

Rotating magnetic �eld

We now consider a magnetic moment ~µ in the presence of both a static �eld ~B0 = B0ẑ and a
rotating �eld ~B1(t) = B1[x̂cos(ωt)− ŷsen(ωt)], that is left-circularly polarized, lying in the

2Larmor frequencies for 1H are about 60�130 MHz for B0 in the range 1.5�3 T (clinical research) and
about 300 MHz when B0=7 T (only research).
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xy plane and generated by a RF coil. Then, indicating with ~B(t) the total magnetic �eld,
we can write the motion equations for ~µ both in the laboratory frame and in the reference
system that is rotating at ~Ω with respect to the �rst one:

d~µ

dt
= ~µ ∧ (γ ~B(t)), (1.23)

∂~µ

∂t
= ~µ ∧ [γ( ~B(t) +

~Ω

γ
)]. (1.24)

The e�ective magnetic �eld now becomes:

~Be� = B0ẑ +B1[x̂ cos(ωt)− ŷ sin(ωt)] +
~Ω

γ
. (1.25)

If we adopt the resonance condition ~Ω = −~ω0, we obtain:

~Be� = ~B1(t) =⇒ ∂~µ

∂t
= ~µ ∧ (γ ~B1(t)). (1.26)

Therefore, in resonance condition, in the rotating frame the magnetic moment vector ex-
periences only the rotating magnetic �eld and precedes around it at frequency ω1 = γB1.
Instead, in the laboratory frame, the magnetic moment vector is preceding around the total
magnetic �eld ~B(t). For example, we can choose a rotating reference system having the
x′-axis coincident every instant with ~B1, therefore the spin will precede around the x′-axis
at ω1 (�gure 1.4). If the RF pulse is experienced by the magnetic moment vector for a time
interval τ , it will rotate with respect to the z axis of an angle ∆θ:

∆θ = γB1τ (1.27)

that is called �ip angle. We can vary ∆θ in arbitrary way changing the duration of the
RF pulse, thus originating the so-called ∆θ-pulses (e. g. π/2-pulse, π-pulse). Instead,
in the laboratory frame this motion will be seen as a spiral trajectory, resulting from the
combination of the motion seen in the rotating frame and a rotation around the z axis at
the Larmor frequency.

We can obtain the same results with a quantum approach. It is necessary to solve the
Schrödinger equation for a particle of spin 1

2 having magnetic moment ~µ:

i~
∂

∂t
ψ = Hψ (1.28)

with ψ we have indicated the wave function of the particle and with H the interaction
Hamiltonian, that has already been used:

H(t) = −~µ · ~B(t) = −γ~
2

[σzB0 +B1(σxcos(ωt)− σysin(ωt))], (1.29)

where we have reintroduced the Pauli matrices ~σ. With the usual identi�cations for the
frequencies, ω0 ≡ γB0 and ω1 ≡ γB1, we obtain:

H(t) =− γ~
2

 B0 B1[cos(ωt) + i sin(ωt)]

B1[cos(ωt)− i sin(ωt)] −B0

 =

=− ~
2

 ω0 ω1e
iωt

ω1e
−iωt −ω0

 . (1.30)
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Figure 1.4: An on-resonance π/2 spin �ip as viewed in the rotating frame (a) and in the
laboratory frame (b). An o�-resonance trajectory as viewed in the rotating frame
(c) and in the laboratory frame (d). In MR applications, the frequency ω1 would
be much smaller in relation to the RF frequency, but the spiraling would then be
much too dense to illustrate [7].

Therefore, the Schrödinger equation becomes:

i~
∂

∂t
ψ = −~

2

 ω0 ω1e
iωt

ω1e
−iωt −ω0

ψ. (1.31)

A simple set of di�erential equations can be found by a change of variables. For this reason
we consider the following form for the wave function3:

ψ = ψ′1(t)ψ+e
iω0t

2 + ψ′2(t)ψ−e
− iω0t

2 =

 ψ′1e
iω0t

2

ψ′2e
− iω0t

2

 (1.32)

In resonance condition (ω = ω0) we obtain the temporal evolution equations for the two
components of the transformed wave function:

i~
∂

∂t
ψ′ = −~

2
Hψ′, (1.33)

i~


dψ′1
dt e

iω0t
2 + ψ′1

iω0
2 e

iω0t
2

dψ′2
dt e

− iω0t
2 − ψ′2 iω0

2 e
− iω0t

2

 = −~
2

 ω0ψ
′
1e

iω0t
2 + ω1ψ

′
2e
iω0te−

iω0t
2

ω1ψ
′
1e

iω0t
2 e−iω0t − ω0ψ

′
2e
−i iω0t

2 ,

 , (1.34)

dψ′1
dt

=
i

2
ω1ψ

′
2,

dψ′2
dt

=
i

2
ω1ψ

′
1.

(1.35)

The last have the following solutions:

ψ′1(t) = c1 cos
(ω1t

2

)
+ c2 sin

(ω1t

2

)
,

ψ′2(t) = −ic2 cos
(ω1t

2

)
+ ic1 sin

(ω1t

2

)
.

(1.36)

3This change of variables corresponds to a wave function transformation from the laboratory to the
Larmor rotating frame.
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Having calculated the components of ψ′, it is possible to obtain the expectation values of
the magnetic moment operator along the three directions of the rotating frame (x′, y′, z).
The explicit calculation is omitted here, but it is reported in detail in [6] and [7]. The �nal
expressions of the desired expectation values are:

〈µ̂x′〉t = 〈µ̂x′〉0 , (1.37)〈
µ̂y′
〉
t

=
〈
µ̂y′
〉

0
cos(ω1t) + 〈µ̂z〉0 sin(ω1t), (1.38)

〈µ̂z〉t = −
〈
µ̂y′
〉

0
sin(ω1t) + 〈µ̂z〉0 cos(ω1t). (1.39)

Equations (1.38) and (1.39) represent a vector, of �xed magnitude, which is precessing
clockwise the x′ axis, in the rotating frame, with a precession frequency ω1 as predicted by
classical theory. Arbitrary initial conditions are obviously accomodated.

Oscillating magnetic �eld

From an experimental point of view it is easier to use an oscillating �eld perpendicular to the
static �eld, instead of a rotating one. In fact it is su�cient to use a coil currying an oscillating
current with appropriate frequency, having the main axis orientated perpendicularly to the
static �eld direction. If the solenoid is orientated along the x-axis, the magnetic moment
vector will be subjected to a transverse magnetic �eld:

~B1(t) = x̂B1 cos(ωt). (1.40)

An oscillating �eld can be seen as the superimposition of two �elds: a rotating one ( ~BR(t))
and a counter-rotating one ( ~BL(t)):

~BR(t) = x̂
B1

2
cos(ωt)− ŷB1

2
sin(ωt),

~BL(t) = x̂
B1

2
cos(ωt) + ŷ

B1

2
sin(ωt).

(1.41)

These two �elds are identical after the substitution of ω with −ω. Similarly, a rotating �eld
can be obtained with the superimposition of two oscillating �elds in quadrature, mutually
perpendicular and with equal intensities. After these preliminary remarks, we can consider
a magnetic moment in the presence of a static magnetic �eld and an oscillating �eld. We
suppose that ~B1(t) oscillates at ω0 and we consider the rotating frame that has ~BR along
the x′-axis every time. In these conditions we have:

∂~µ

∂t
=~µ ∧ γ[ ~B0 −

~ω0

γ
+ x̂′

B1

2
+ x̂′

B1

2
cos(2ω0t) + ŷ′

B1

2
sin(2ω0t)]

= ~µ ∧ γB1

2
[x̂′(1 + cos(2ω0t)) + ŷ′ sin(2ω0t)].

(1.42)

The precessional motion observed in the rotating frame would occur around an e�ective
magnetic �eld obtained summing the static �eld along the x′-axis and the other, of the
same intensity, that is rotating in the x′y′ plane at the frequency 2ω0. But in the normal
experimental conditions B1 � B0, therefore the precession observed in the rotating frame
happens around a medium e�ective magnetic �eld equal to the rotating component ~BR of
~B1, because the rapid rotation of the counter-rotating component results mediated to zero
in a single precession (rotating wave approximation). Then, in the presence of an oscillating
�eld of intensity ~B1/2, everything happens as the system was only subjected to its rotating
component. Instead, when this approximation is no longer valid, the presence of the counter-
rotating component cannot be neglected, therefore there is a shift of the observed resonance
frequency (Bloch-Siegart e�ect).
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1.2 System of many spins

In the previous sections we have always treated single spins, but it is important to extend our
discussion up to physical systems containing a spin distribution. In fact, the interactions of
the proton spin with its neighboring atoms lead to signi�cant modi�cations to this behavior.
The local �elds change the spin precession frequency, and the proton can exchange energy
with its surroundings. In this section we will model these e�ects, after having introduced
the average magnetic dipole moment density (`magnetization').

1.2.1 Non-interacting spins

We can begin from a simpli�ed point of view, considering N non-interacting spins. The
total magnetization is represented by the mean value of the magnetic moments associated
to a group of N spins contained in a small volume V :

~M = lim
V→0

1

V

N∑
i=1

~µi. (1.43)

This volume has to be small enough that external �elds are to a good approximation constant
over V , but also large to can contain an elevate number of magnetic dipoles. Because
the spins are non-interacting, the magnetization interacts with the external magnetic �eld
~Bext = B0ẑ obeying the same laws of a single magnetic dipole. Therefore the motion
equation for the magnetization becomes:

d ~M

dt
= γ ~M ∧ ~Bext. (1.44)

It is more advantageous to separate the magnetization vector in a component ( ~M‖) parallel

to the static magnetic �eld and another ( ~M⊥) perpendicular to it:

~M‖ = Mz ẑ, (1.45)

~M⊥ = Mxx̂+Myŷ. (1.46)

These lead to the decoupled equations:

d ~M‖

dt
= 0 (non-interacting protons), (1.47)

d ~M⊥
dt

= γ ~M⊥ ∧ ~Bext (non-interacting protons). (1.48)

1.2.2 Spin-Lattice interaction

Equation (1.47) is obviously wrong if we consider interacting protons. In fact, every mag-
netic moment will try to align with the static �eld to minimize its potential energy, through
the exchange of energy with the surroundings. The classical formula for the potential energy
of a magnetic moment subjected to an external magnetic �eld is:

U = −~µ · ~B. (1.49)

This means that the spin tends to line up parallel to the �eld direction in order to reach its
minimum energy state, if energy can be transferred away. Since protons are considered to
be in thermal contact with the lattice of nearby atoms, the thermal motion existing in the
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lattice can account for any change in a given proton spin energy. The energy associated to
the magnetization vector is:

UM = − ~M · ~Bext = −M‖B0, (1.50)

involving only the longitudinal component of the magnetization. The magnetization has
an equilibrium value M0, at room temperature, that obeys Curie's law, depending on the
absolute temperature T and the external �eld B0:

M0 = C
B0

T
. (1.51)

We can explicitly derive the constant C for a particle such as a proton. We have already
explained that a particle of spin 1

2 , possessing a nuclear moment and subjected to a steady
magnetic �eld can assume two possible physical con�gurations: the nuclear moment and
the �eld can be parallel or antiparallel, having chosen the quantization axis along the �eld
direction (�gure 1.3). If we face with a macroscopic sample of N protons immersed in a
steady magnetic �eld, we expect to �nd N↑ spins in the state |↑〉 and N↓ in the state |↓〉. It
is obviously true that:

N = N↑ +N↓. (1.52)

We assume that every spin is in thermal contact with the rest of the set of spins and with the
background lattice all at temperature T . The number N is taken very large with respect to
the lattice size. We want to �nd the thermal equilibrium value ofMz making the calculation
of the z-component of the average total magnetic moment for N spins distributed over all
possible magnetic spin states, neglecting their translational motion. We expect that the
populations are governed by the Boltzmann law:

N↑ =
N

Zsing
e−E↑/kT , (1.53)

N↓ =
N

Zsing
e−E↓/kT , (1.54)

N↑
N↓

= e(−E↑+E↓)/kT = e
γ~B0
kT = e

∆E
kT . (1.55)

The normalization divisor Zsing is the partition function for the single particle of spin 1/2:

Zsing =

1/2∑
m=−1/2

e−E(m)/kT = e−E↑/kT +e−E↓/kT = e
γ~B0
2kT +e−

γ~B0
2kT = 2cosh

(γ~B0

2kT

)
, (1.56)

since for human body temperature (≈ 310 K) and for protons it is true that ~ω0/kT ≈
6.6× 10−6B0, therefore:

e~ω0/kT = 1 +
~ω0

kT
+O

((~ω0

kT

)2)
+ ... ≈ 1 + 6.6× 10−6B0. (1.57)

In this way we can estimate Zsing ≈ 2, that implies:

N↑ ≈
N

2

(
1 +

γ~B0

2kT

)
, (1.58)

N↓ ≈
N

2

(
1− γ~B0

2kT

)
. (1.59)

Now we can estimate the equilibrium value of the magnetization:

M0 =
1

V
(N↑µ↑ +N↓µ↓) =

γ~(N↑ −N↓)
2V

≈ ρ0γ
2~2B0

4kT
= χB0. (1.60)
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Where ρ0 = N/V represents the density of spins per unit of volume and χ the magnetic sus-
ceptibility. Therefore, we have obtained that N nuclei with spin 1/2 have χ = ρ0γ

2~2/4kT
and C = χT . In general, the susceptibility of N nuclei with spin I is given by the following
relation:

χ = ρ0
γ2
I~2I(I + 1)

3kT
. (1.61)

We remark that for a proton at human body temperature and indicating with ∆N the
di�erence between the populations N↑ and N↓, we can estimate:

∆N

N
≈ γ~B0

2kT
≈ 6.6× 10−6B0, (1.62)

therefore for a static �eld equal to 1 T, only 7 protons in one million contribute to the
signal. However the proton density in each voxel is so large (about 1017/mm3) that results
a measurable signal, in fact 1011 of these contribute to the formation of the signal.

Now we suppose that the magnetization vector is disturbed from its equilibrium value
M0ẑ, for example because of the application of a RF pulse. Then, after a characteristic time
interval, the magnetization will return to its equilibrium value, as a result of the continue
presence of the static �eld. It will verify a growth of the interaction rate with the lattice, that
implies a rate of change of the longitudinal magnetization (dMz(t)/dt) proportionally to the
di�erence M0−Mz(t), with a proportionality constant that can be empirically determined.
After these considerations, eq. (1.47) can be replaced by the following:

dMz(t)

dt
=

1

T1
(M0 −Mz(t)). (1.63)

T1 is the experimental `spin-lattice relaxation time' and represents the time scale of the
growth rate. This is due to the energy exchanges between the nuclei and the lattice and
it describes the system of spins ability to reorganize themselves to achieve the equilib-
rium state, that is determined by the static magnetic �eld and by the temperature. Every
molecule has some characteristic frequencies at which it exchanges energy with the sur-
roundings, that depend on its microscopic structure and on its possible rotational and
translational modes. One of the most important types of interaction is the dipolar one.
When two magnetic dipoles are at a certain distance, they interact through a dipole �eld
that depends on their relative angle and distance. If these frequencies would be comparable
to the Larmor frequency, the system will be able to easily generate a magnetization through
energy exchanges, therefore we expect a short T1. If we regard a biological medium, water
characteristic frequencies are greater then the Larmor frequency, therefore T1 will be long,
instead proteins will have short T1. Molecules such as lipids, in particular the cholesterol,
are relatively large, hence their T1 will be short. For this reason in a MRI image obtained
with T1 contrast, lipids will appear light instead mediums with a considerable water concen-
tration, such as the cerebrospinal �uid, will appear dark. Typical values of this parameter
for di�erent tissues are reported in table 1.2. After the application of a RF pulse, the lon-
gitudinal magnetization shows an exponential form in its evolution from the initial value
Mz(0) to the equilibrium value M0 (�gure 1.5 (a)):

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) ( ~Bext ‖ ẑ). (1.64)

1.2.3 Spin-Spin interaction

The spin-spin interaction is an important mechanism for the transverse magnetization de-
cay. The total transverse magnetization is the vector sum of all the individual transverse
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Table 1.2: Representative values of T1 and T2, for hydrogen components of di�erent human
body tissues at B0 = 1.5 T and 37 ◦ C (human body temperature) [7].

Tissue T1 (ms) T2 (ms)

gray matter 950 100
white matter 600 80
muscle 900 50
cerebrospinal �uid 4500 2200
fat 250 60
blood 1200 100− 200

Figure 1.5: (a) The regrowth of the longitudinal component of magnetization from the initial
value Mz(0) to the equilibrium value M0. (b) The decay of the magnitude of the
transverse magnetization from an initial value M⊥(0) [7].

components of the magnetic moments. Spins interact not only with the static �eld ~Bext, but
also experience the presence of local �elds that are combinations of the applied �elds and of
the �elds generated by their neighbors. The rate of reduction in the transverse magnetiza-
tion can be characterized by an experimental parameter: the `spin-spin relaxation time' T2.
This represents the characteristic time interval that the spins need to accumulate a phase
shift capable to reset the transverse magnetization (see eq. 2.6). Therefore, the eq. (1.48)
has to be modi�ed in the following way:

d ~M⊥(t)

dt
= γ ~M⊥(t) ∧ ~Bext −

1

T2

~M⊥(t). (1.65)

In the rotating reference frame the last di�erential equation assumes the standard decay-rate
form:

∂ ~M⊥(t)

∂t
= − 1

T2

~M⊥(t) (rotating frame) (1.66)

with the solution:
~M⊥(t) = ~M⊥(0)e−t/T2 (rotating frame), (1.67)

that describes the exponential decay of the magnitude of ~M⊥ in either the laboratory or
the rotating frame (�gure 1.5 (b)).

Furthermore, there is another dephasing e�ect that contributes to decrease the time
interval necessary to reset the transverse magnetization. In fact ~B0 is not homogeneous
over all the sample because of local �elds, generated by interactions between the spins.
Therefore there are local di�erences between the precessional frequencies of the magnetic
moments that lead the spins to dephase, conducting to a reduction of the net magnetization
vector. To better explain this concept we consider two spins that at t = 0 are in phase in
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Figure 1.6: The upper sequence shows a 90◦ tip of a set of spins into the transverse plane such
that they all lie along the y-axis of the laboratory frame at some instant time,
as shown in the middle �gure. Precession of the individual spins in the xy plane
immediately follows (the recovery of the longitudinal magnetization is ignored since
the focus is on transverse magnetization dephasing e�ects). The lower sequence
shows the same process, but expressed in terms of the net transverse magnetization,
which decreases in magnitude during the precession because of the fanning out of
the spins [7].

the xy plane because of the application of an RF �eld. But, if they experience a di�erent
static magnetic �eld, a di�erence ∆B0 will produce a phase shift ∆ω in their precessional
motion. Therefore, after a time t, they will have been accumulated a phase displacement
equal to:

∆φ = ∆ωt. (1.68)

This reduction in an initial value of ~M⊥ is usually characterized by the decay time T ′2. We
can de�ne the relaxation rates as:

R2 ≡
1

T2
, R′2 ≡

1

T ′2
. (1.69)

Then, the total relaxation rate is the sum of the internal and the external rates:

R∗2 = R2 +R′2. (1.70)

In terms of an overall relaxation time T ∗2 ≡ 1/R∗2:

1

T ∗2
=

1

T2
+

1

T ′2
. (1.71)

The loss of transverse magnetization due to T ′2 is recoverable, instead the intrinsic T2 losses
are not recoverable and are related to local, random, time-dependent �eld variation. In the
dephasing e�ect no energy is lost, therefore to eq. (1.65) corresponds a higher relaxation
rate than eq. (1.63). De�ning R1 = 1

T1
, we have:

R2 > R1 or T2 < T1. (1.72)

Typical values of T2 are shown in table 1.2. If the molecular environment makes possible
many changes in spins position and orientation, these �uctuations will be mediated, therefore
the phase loss will be less e�cient and T2 will result longer. For this reason blood and
cerebrospinal �uid (CSF) have longer T2 with respect to lipidic tissues.
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1.2.4 Bloch equation

The di�erential equations (1.63) and (1.65) for the magnetization in the presence of a static
magnetic �eld ~Bext = B0ẑ, that include the relaxation terms, can be combined into the
following empirical vector equation, that is more commonly called Bloch equation:

d ~M

dt
= γ ~M ∧ ~Bext +

1

T1
(M0 −Mz)ẑ −

1

T2

~M⊥. (1.73)

The last represents the fundamental equation of magnetic resonance and it was phenomeno-
logically introduced for the �rst time by F. Bloch in 1946 [8]. We can derive the three
component equations:

dMz

dt
=
M0 −Mz

T1
, (1.74)

dMx

dt
= ω0My −

Mx

T2
, (1.75)

dMy

dt
= −ω0Mx −

My

T2
. (1.76)

The �rst equation is the same as the eq. (1.63) and obviously has the analogous solution.
The last two can be solved with a simple change of variables, as explained in [7]. The
solutions are the following:

Mx(t) = e−t/T2(Mx(0) cos(ω0t) +My(0) sin(ω0t)), (1.77)

My(t) = e−t/T2(My(0) cos(ω0t)−Mx(0) sin(ω0t)), (1.78)

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1). (1.79)

The eqs. (1.77) and (1.78) have sinusoidal terms modi�ed by a decay factor owing to the
transverse relaxation e�ect. Therefore the longitudinal component relaxes from its initial
value to the equilibrium value M0 and the transverse component precedes clockwise and it
decreases in magnitude. An example of the resulting `corkscrew' trajectory for an initial
magnetization lying in the transverse plane i illustrated in �gure 1.7. The equilibrium or
steady-state solutions can be found applying the asymptotic limit t→∞. In that limit all
the exponentials vanish and we obtain:

Mx(∞) = My(∞) = 0 Mz(∞) = M0. (1.80)

Now we consider the more common situation in which there is a combination of a
static and a RF �eld. In fact the RF pulse is necessary if we want to tip ~M from its
equilibrium direction and then to observe how the system relaxes, with the aim of measuring
the characteristic relaxation times T1 and T2. Therefore, for a left-circularly polarized RF
�eld ~B1 which is at rest in the rotating frame and parallel to x̂′, the total external �eld
~B.upext becomes:

~Bext = B0ẑ +B1x̂
′ (1.81)

And the e�ective magnetic �eld is the following:

~Be� =
(
B0 −

ω

γ

)
ẑ +B1x̂

′. (1.82)

16



Figure 1.7: The trajectory of the tip of the magnetization vector showing the combined re-
growth of the longitudinal magnetization and decay of the transverse components.
The initial value was along the y-axis and the reference frame is the laboratory
[7].

We can �nd the Bloch component equations for ~Be� in the rotating frame:

∂Mz

∂t
= −ω1My′ +

M0 −Mz

T1
, (1.83)

∂Mx′

∂t
= ∆ωMy′ −

Mx′

T2
, (1.84)

∂My′

∂t
= −∆ωMx′ − ω1Mz −

My′

T2
, (1.85)

with ∆ω ≡ ω0 − ω we indicate the `o�-resonance' contributions. We repeat that ω0 is the
Larmor frequency, ω1 is the spin frequency due to the RF �eld and ω is the RF laboratory
frequence of oscillation. Now we want to solve these equations in dependence on the RF
pulse duration.

In most MR measurements the RF pulses have a very small duration (τrf ) with respect
to the relaxation times. Therefore typical values for ω1 are much greater then the decay
rates 1

T1
and 1

T2
. In these conditions we can solve the eqs. (1.83)-(1.84) �rstly neglecting the

relaxation terms, hence we have to employ the simple solutions of the eq. (1.24). Secondly,
the RF pulse is considered to be turned o� (ω1 = 0), therefore we face with the eqs. (1.74)-
(1.76). In this way, in the rotating frame and in resonance condition, we have a simple
exponential decay, described by the eqs. (1.77)-(1.79).

Even if in medicine it is unusual, sometimes a long duration RF pulse is used. The
sample is said to be 'saturated' and the long-term behavior of the magnetization can be
described by steady-state solutions, obtaining:

Mx′ =
M0γB1∆ωT 2

2

1 + (∆ωT2)2 + γ2B2
1T1T2

(1.86)

My′ =
M0γB1T2

1 + (∆ωT2)2 + γ2B2
1T1T2

(1.87)

Mz =
M0(1 + (∆ωT2)2)

1 + (∆ωT2)2 + γ2B2
1T1T2

. (1.88)

We can underline that the term γ2B2
1T1T2, said to be 'saturation term', can be neglected if

ω1 � 1
T1
, equivalently if the RF �eld amplitude is great with respect to the spins absorbtion

and dissipation energy time scale, the system will be subjected to saturation phenomena
and T1 will disappear from the �nal solution. This is a proof of the fact that the longitudinal
relaxation time contains all the information about the energetic exchanges. Moreover it is
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true thatMx′ = My′∆ωT2, hence the transverse components are one in phase and the other
in quadrature with the excitation, therefore the �rst is responsible of the absorbtion and the
second of the excitation. In addition we can calculate the complex magnetic susceptibility
χ = χ′ + iχ′′:

χ′ =
M0γT2

2

∆ωT2

1 + (∆ωT2)2
, (1.89)

χ′′ =
M0γT2

2

1

1 + (∆ωT2)2
, (1.90)

and the absorbed power is:

< P >∝ ω0χ
′′ ∝

ω2
0

1 + (∆ωT2)2
, (1.91)

that is a Lorentian function in the variable ω centered in ω0 and width proportional to T2.
We can also notice that the absorbed power grows proportional to ω0, therefore is linear in
the static �eld. The Fourier transform of the last function is the time signal that is revealed
in a magnetic resonance measure, said to be Free Induction Decay (FID):

signal ∝ e−t/T2 sin(ω0t). (1.92)

1.3 Magnetic Resonance signal detection

We suppose of having a sample in the presence of a static magnetic �eld along the z axis
of the laboratory frame and that has been applied an RF pulse to rotate the magnetization
in the xy plane. We want to reveal the transverse magnetization using a coil orientated in
this plane. Generally this receive coil is the same of the one that transmit the RF pulse.
An electromotive force ε would be created in any coil through which the spin's magnetic
�ux sweeps, as a consequence of Faraday's law. The time-dependent form of this current
carries the information that will be transformed into an image of the sample. According to
Faraday's law, the electromotive force induced in a coil by a change in its magnetic �ux is:

ε = −dΦ

dt
, (1.93)

where the �ux through the coil is:

Φ =

∫
coil area

~B · d~S. (1.94)

As we shall see later, applying the principle of reciprocity, the last equation can be converted
into a form which is more useful for MRI, where the roles of the magnetization source and
the detection coil are reversed. The magnetization of the sample is associated with an
e�ective current density:

~JM (~r, t) = ~∇∧ ~M(~r, t). (1.95)

We can express the �ux in terms of the vector potential at a position ~r:

~A(~r) =
µ0

4π

∫
d3r′

~JM (~r′)

|~r − ~r′|
. (1.96)

The e�ects due to the time delay between the source and the measurement of the �eld are
ignored. We can calculate the magnetic �eld:

~B = ~∇∧ ~A. (1.97)
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Using the Stokes theorem we can obtain the following expression for the �ux:

Φ =

∫
coil area

(~∇∧ ~A) · d~S =

∮
d~l · ~A. (1.98)

The use of eqs. (1.95), (1.96) and (1.98), an integration by parts (where a surface term can
be neglected for �nite sources), and the vector identity ~A · ( ~B ∧ ~C) = −( ~A ∧ ~C) · ~B give:

Φ =

∮
d~l ·
[
µ0

4π

∫
d3r′

~∇′ ∧ ~M(~r′)

|~r − ~r′|

]
=
µ0

4π

∫
d3r′

∮
d~l ·
[(
−~∇′ 1

|~r − ~r′|

)
∧ ~M(~r′)

]
=
µ0

4π

∫
d3r′ ~M(~r′) ·

[
~∇′ ∧

(∮
d~l

|~r − ~r′|

)]
. (1.99)

For current loops the vector potential assumes the form that follows:

~A(~r′) =
µ0

4π

∮
Id~l

|~r − ~r′|
. (1.100)

The last show that the curl integral in the eq. (1.99) is exactly ~Breceive, the magnetic �eld
per unit current that would be produced by the coil at the point ~r′:

~Breceive(~r′) =
~B(~r′)

I
= ~∇′ ∧

(
µ0

4π

∮
d~l

|~r − ~r′|

)
. (1.101)

Finally, the �ux can be written as:

Φ(t) =

∫
sample

d3r ~Breceive(~r) · ~M(~r, t). (1.102)

It is important to notice that the �ux in eq. (1.102) depends upon ~Breceive, the magnetic
�eld per unit of current produced by the detection coil at all points where the magnetization
is nonzero and this is an example of the principle of reciprocity. In fact, we began with a
surface integration over the detection coil area and we are arrived to a volume integration
over the region of nonzero magnetization, in other words we have to calculate the �ux
that has been emanated from the detection coil, per unit of current, through the rotating
magnetization. The electromotive force induced in the coil is:

ε = − d

dt
Φ(t) = − d

dt

∫
sample

d3r ~M(~r, t) · ~Breceive(~r). (1.103)

The dependence of the electromotive force on the excitation or transmit �eld is implicit in
the dependence of eq. (1.103) on the magnetization. The fundamental signal in an MR
measure derives from the detection of the electromotive force induced in the receive coil
(signal ∝ ε). Then, inserting the known solutions for ~M(~r, t) (see eqs. (1.77)-(1.79)) into
the integrand and evaluating the time derivative, it is possible to show that the longitudinal
magnetization can be neglected, even when there is a nonzero z-component for the receive-
coil �eld. This is true because for static �elds at the Tesla level and considering protons, the
Larmor frequency ω0 is at least four order of magnitude larger than typical values of 1/T1

and 1/T2, therefore the proportionality factors, that appear in front of the time derivative
of the z-term, can be neglected. Now we choose to adopt the more convenient complex
formalism for the transverse magnetization:

M+(t) ≡Mx(t) + iMy(t). (1.104)
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Therefore the solution for a static �eld in this representation is:

M+(t) = e−iω0t−t/T2M+(0), (1.105)

M+(t) = |M+(t)|eiφ(t) = M⊥(t)eiφ(t) = e−t/T2M+(0)eiφ(t), (1.106)

since that |M+(t)| = M⊥(t) and M+(0) = M⊥(0). Therefore:

M⊥(t) = M⊥(0)e−t/T2 , (1.107)

with φ(t) = −ω0t+ φ(0).
In this way we can obtain the following form for the detected MR signal:

signal ∝ ω0

∫
d3re−t/T2(~r)M⊥(~r, 0)[Breceivex (~r) sin(ω0t−φ0(~r))+Breceivey (~r) cos(ω0t−φ0(~r))].

(1.108)
It is possible to simplify the last expression writing the receive �eld laboratory components
in terms of the magnitude B⊥ and the angle θB:

Breceivex ≡ B⊥ cos θB Breceivey ≡ B⊥ sin θB. (1.109)

Therefore we obtain:

signal ∝ ω0

∫
d3re−t/T2(~r)M⊥(~r, 0)B⊥(~r) sin(ω0t+ θB(~r)− φ0(~r)). (1.110)

In a more general situation we have to modify the last equation with the replacement
T2 → T ∗2 , that must be made in the presence of external �eld inhomogeneities. In studies of
small homogeneous samples, where the spatial dependence can be neglected, we can consider
all quantities inside the eq. (1.110) to be independent of ~r. Hence, if the sample volume is
Vs, we obtain:

signal ∝ ω0Vse
−t/T2M⊥B⊥sin(ω0t+ θB − φ0) (space-independent limit). (1.111)

Since the signal is characterized by rapid oscillations at the Larmor frequency, it is necessary
an electronic step of demodulation and �ltering, with the aim of removing from the signal
expression the presence of ω0. Demodulation corresponds to the multiplication of the signal
by a sinusoid or cosinusoid with a frequency at or near ω0. The resulting demodulated signal
is low pass �ltered to eliminate the high frequency component. These signal processing
operations are made in both a real and an imaginary channels. In other words, the signal,
as measured in the laboratory, oscillates rapidly near the high Larmor frequency (ω0 = γB0

and B0 ≈ Tesla). The demodulated and �ltered signal, essentially the signal measured in the
rotating frame de�ned by the reference frequency Ω = ω0 + δω, is free of the rapid Larmor
oscillation and it oscillates at the o�set frequency δω (δωt ≡ θB(~r) − φ0(~r) ). Finally, the
eq. (1.110) can be replaced by:

s(t) ∝ ω0

∫
d3re−t/T2(~r)M⊥(~r, 0)B⊥(~r)ei((Ω−ω0)t+φ0(~r)−θB(~r)). (1.112)
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Chapter 2

Magnetic Resonance Imaging

The aim of MR imaging is not only to establish the presence of di�erent nuclei, but also
to determine the spatial distribution of a given species within a sample. Therefore, we
aim to correlate a series of signal measurements with the spatial locations of the various
sources. When all protons are represented by just one chemical species such as water, then
the above spectroscopic analysis simply gives the total signal from all spins without their
spatial location in the static �eld, as long as that �eld is uniform. Here lies the reason why
MRI becomes possible only through the introduction of the gradient �elds. In fact they
enable us to produce a signal with spatially varying frequency components. In this chapter
we brie�y explain how to employ these gradient �elds to transform the measured signal into
an image. Moreover, we describe the main MR image properties, emphasizing how they
depend on the imaging parameters. Finally, we provide some examples of MRI sequences.

2.1 From the Magnetic Resonance Signal to the Image

2.1.1 Signal and E�ective Spin Density

The imaging of a body corresponds to the determination of the spin distribution, rather
than the magnetization. The discussions that will follow are valid for data sampling taking
place over times small compared to T ∗2 . Now we consider the complex signal given by the
eq. (1.112) and we make some assumptions. The transmitting and receiving RF coils are
considered to be su�ciently uniform, so that φ0, θB and B⊥ are all independent of position.
It is now introduced the constant Λ, which includes the gain factors from the electronic
detection system. Moreover we neglect the relaxation e�ects and we take Ω = ω0, therefore
we obtain:

s(t) = ω0ΛB⊥
∫
d3rM⊥(~r, 0)ei(Ωt+φ(~r,t)). (2.1)

The angle φ is the accumulated phase with the counterclockwise positive sign convention:

φ(~r, t) = −
∫ t

0
dt′ω(~r, t′), (2.2)

where ω = ω0 only if there is a uniform static �eld. Now we suppose that a perfect π/2-pulse
has been applied uniformly over the sample. Since we are neglecting the relaxation e�ects,
the initial transverse magnetization is equal to its equilibrium valueM0. As we have already
seen in eq. (1.60), the equilibrium magnetization can be expressed in terms of ρ0(~r), the
number of proton spins per unit of volume:

M⊥(~r, 0) = M0(~r) =
1

4
ρ0(~r)

γ2~2

kT
B0. (2.3)
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Using eqs. (2.1) and (2.3), it is possible to express the signal in terms of the e�ective spin
density ρ(~r):

s(t) =

∫
d3rρ(~r)ei(Ωt+φ(~r,t)), (2.4)

ρ(~r) ≡ ω0ΛB⊥M0(~r) =
1

4
ω0ΛB⊥ρ0(~r)

γ2~2

kT
B0. (2.5)

2.1.2 The Imaging Equation

Now we suppose the presence of three time-dependent gradient �elds:

~G(t) = Gx(t)x̂+Gy(t)ŷ +Gz(t)ẑ, (2.6)

where x̂, ŷ and ẑ do not necessary correspond to the transverse and longitudinal directions
of the magnetization components. De�ning the three implicitly time-dependent components
of ~k as follows:

kx(t) = γ

∫ t

Gx(t′)dt′, ky(t) = γ

∫ t

Gy(t
′)dt′, kz(t) = γ

∫ t

Gz(t
′)dt′, (2.7)

where the integrations run from the onset of the gradient to time t. The use of each of these
gradients has the object to establish a connection between the position of spins along some
direction and their precessional rates, also called frequency encoding along that direction.
In fact the Larmor frequencies acquire a spatial dependence:

ω(~r, t) = ω0 + ωG(~r, t), (2.8)

where ωG(~r, t) = γ~r · ~G(t). Therefore we can write:

ω(~r, t) = γ(B0 + ~r · ~G(t)). (2.9)

In the hypothesis Ω = ω0 (δω = 0), the eq. (2.4) becomes:

s(t) =

∫
d3rρ(~r)eiφ(~r,t) =

∫
d3rρ(~r)e−i

∫ t dt′ωG(~r,t′) =

∫
d3rρ(~r)e−iγ~r·

∫ t dt′ ~G(t′). (2.10)

Finally, substituting the eq. (2.7) in the eq. (2.10), we can write the 3D-imaging equation:

s(~k) =

∫
d3rρ(~r)e−i2π

~k·~r. (2.11)

This expression shows that the signal s(~k) is the Fourier transform of the spin density of
the sample. Therefore, the spin density of the sample can be found by taking the inverse
Fourier transform of the signal:

ρ(~r) =

∫
d3ks(~k)ei2π

~k·~r. (2.12)

In general we have a set of discrete data, sm(~k), from which we would like to reconstruct
the image ρ̂(~r), that represents an accurate estimate of the physical density ρ(~r). Since
our measurements consists of a discrete set, what is practically used is the discrete inverse
Fourier transform.
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Figure 2.1: The k-space coverage for a 2D example. Each dot represents a sampled point.
Lines of connected dots along the read direction are referred to data collected
during the same read period [7].

2.1.3 The 2D Representation

In this section we want to describe how to obtain a 2D representation, for example of a
slice of a body. It is necessary to sample only kx and ky. The 2D k-space coverage is
realized using two gradient �elds, Gx and Gy, the latter responsible of the phase encoding,
the former used as read gradient. Each set of points along a given ky is phase encoded
as γGyτyy. This y-dependent phase contribution remains unchanged during data sampling
along the kx-axis. A standard coverage of 2D k-space is based on a sequence that employs
a single RF pulse to sample the xy plane with parallel lines as shown in �gure 2.1. The
gradients along x̂ and ŷ move the position in k-space from the origin to the bottom left
corner in �gure 2.1. This 2D k-space sampling con�guration is made possible by alternately
turning on the Gx gradient and then the Gy gradient. The read gradient Gx is reversed
after each application of Gy and the phase encoding steps ∆Gy are applied when the read
gradient is turned o�. While the read gradient is turned on data are sampled, instead data
are not collected during the short vertical steps. In this con�guration, all information along
y at a given x is projected on to x. For example, for the line ky = 0, using the eq. (2.11)
we can write:

s(kx, 0) =

∫
d3rρ(~r)e−i2πkxx. (2.13)

Now, calculating the inverse Fourier transform of this line of data, we can obtain the 1D
projection reconstructed image:

ρ̂1D(x) =

∫
dkxs(kx, 0)ei2πkxx =

∫
d3r′ρ(~r′)

∫
dkxe

−i2πkx(x−x′)

=

∫ ∫ ∫
dx′dy′dz′ρ(x′, y′, z′)δ(x− x′) =

∫ ∫
dydzρ(x, y, z). (2.14)

The generalization of the encoding to an arbitrary value of ky follows:

s(kx, ky) =

∫ ∫ ∫
dxdydzρ(x, y, z)e−i2π(kxx+kyy). (2.15)

Finally, after a calculation similar to eq. (2.14), the 2D image projected along ẑ is:

ρ̂(x, y) =

∫
dkxs(kx, ky)e

i2π(kxx+kyy) =

∫
dzρ(x, y, z). (2.16)
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2.1.4 3D coverage of k-space

The above discussion about the coverage of 2D k-space can be generalized to the 3D case
by considering a series of parallel planes. The set can be obtained in 3D k-space by the
application of two phase encoding gradients, one along ky and the other along kz. The
imaging of three dimensions by the use of two phase encoding directions perpendicular to
the read direction is called `3D imaging', to contrast it with `multi-slice 2D imaging'. The
di�erence between the two methods interests the RF excitation. In the latter approach,
a series of RF pulses de�nes the set of slices �lling out the third dimension. Instead, in
the former approach, a RF pulse may be used to excite a thicker slice which is then phase
encoded in the slice select gradient direction.

Now we want to describe how to employ the gradients to obtain a discretized coverage in
3D imaging. The x-gradient de�nes the read direction of the set of lines. During the contin-
uous application of Gz along this direction, it is possible to carry out a set of measurements
at �nite time steps ∆t. The associated step in the kx direction is:

∆kx = γGx∆t. (2.17)

The orthogonal gradients, Gx and Gy, are turned o� during the read sampling, in order to
detain each line parallel to the x-axis. before the read data are taken, the (ky, kz) position
of each line is determined by applying the orthogonal gradients for times τy and τz. After a
given line has been sampled, an adjacent parallel line is considered by turning the orthogonal
gradients back on with the same amplitudes ∆Gy and ∆Gz and for the same times. The
corresponding shifts in k-space are:

∆ky = γ∆Gyτy, (2.18)

∆kz = γ∆Gzτz. (2.19)

It is rare to sample all k-space points after a single RF excitation. Only a small number
of lines of k-space can be collected after each RF excitation before the signal is lost due to
T2 or T ∗2 decay. Generally, after a single RF pulse, it is possible to sample only one line of
data. After a new RF excitation, the phase encoding gradients are increased with step sizes
∆Gy and ∆Gz, followed by the acquisition of another line of k-space data. This process is
repeated every TR (time between two successive RF pulses) until all of the necessary k-space
data are acquired. The total time for a 3D imaging method is given by:

Tacq = NyNzTR. (2.20)

The plane or set of lines in 2D or 3D imaging could be replaced, in principle, by an arbitrary
trajectory through the k-space region of interest as long as the same points are sampled.
A rich variety of RF pulses and gradient combinations can be used to achieve the same
coverage of the k-space. Finally, in 3D imaging, the total imaging time is given by:

TT = NacqNyNzTR. (2.21)

2.1.5 Slice Selection

In general, magnetic resonance images are generated by exciting a single thin slice of the
body by using a combination of gradient �elds and spatially selective RF pulses. Firstly
we have to choose the direction perpendicular to the plane of the desired slice, called `slice
select axis', and the gradient along this direction is de�ned as the `slice select gradient'.
Choosing the z-axis as slice select axis leads to a transverse slice of the body. Instead, if
we select the y-axis, the slice obtained is called coronal. Finally, if the x-axis is chosen, the
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Table 2.1: The relationship between the slice select gradient used and the slice plane obtained
applying it. The nomenclature has an anatomical basis [7].

Applied slice select gradient Name Slice plane orientation

Gx sagittal parallel to yz plane
Gy coronal parallel to xz plane
Gz transverse parallel to xy plane

slice is said to be sagittal. This nomenclature is shown in �gure 2.2 and summarized in table
2.1. The presence of a slice select gradient causes the precessional frequency to be linearly
dependent on the position along the corresponding slice select axis. In MR measurements
it is usually chosen the z-axis as slice select direction. Therefore the frequency at position
z is:

f(z) = f0 + γzGz, (2.22)

where f0 = γB0 is the Larmor frequency at z = 0. The object is to excite uniformly a slice,
de�ned by the coordinate z, such that all the spins contained here have identical phase
and �ip angle after slice selection. Since the frequency spread of a realistic RF pulse is
bandlimited, a region of �nite thickness along the z-axis would have its spins tipped, while
spins outside this region would ideally remain aligned with B0. Therefore, the exciting of
an in�nitesimal slice, using an RF pulse, represents only an ideal case. Now we consider the
more realistic case in which we want to uniformly excite a slice of �nite thickness extending
from z0−∆z/2 to z0 + ∆z/2. The RF pulse should have a frequency pro�le, in the rotating
frame, which is unitary inside the range of frequencies (γGzz0−γGz∆z/2, γGzz0+γGz∆z/2)
and equal to zero outside. The bandwidth BWRF of the RF pulse is given by:

BWRF ≡ ∆f = (γGzz0 + γGz∆z/2)− (γGzz0 − γGz∆z/2) = γGz∆z. (2.23)

Hence, thanks to the presence of the gradient Gz, exists a range of frequencies which can
be excited to create a transverse magnetization in a slice with thickness ∆z, orthogonal to
the z-axis. It is useful to introduce a new notation for the slice thickness:

∆z ≡ TH. (2.24)

As just seen, we can express the slice thickness as a function of the bandwidth of the RF
pulse an of the applied gradient:

TH =
BWRF

γGz
. (2.25)

Since we desire a uniform �ip angle across the selected slice, the RF excitation pro�le as
a function of frequency has to be a rect function (rect(f/∆f)) of bandwidth ∆f . This
necessity imposes that the temporal envelope of the RF pulse (B1(t)), which is the inverse
Fourier transform of the frequency pro�le, would be a sinc function:

B1(t) ∝ sinc(π∆ft). (2.26)

The sinc envelope corresponds to the amplitude modulation of the RF oscillations in the
laboratory frame. The center frequency of the excited bandwidth is γGzz0 in the Larmor
rotating frame and f0 + γGzz0 in the laboratory frame. We have to remark that, since a
sinc function is de�ned from −∞ to +∞, it is necessary to cut o� the temporal envelope,
therefore in the frequency domain we will not obtain a prefect rect function.
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Figure 2.2: The orientation of the orthogonal slice planes correlated with the standard axis
of a whole-body MRI magnet system. The subject is usually placed head �rst
into the magnet and carried in by a sliding gantry on the patient table. The feet
point along the +ẑ, left shoulder along +x̂, and nose along +ŷ when the person is
supine.

Figure 2.3: From the top: the RF excitation pro�le in the frequency domain and the applica-
tion of the slice select gradient along z-axis.
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2.2 Image properties

2.2.1 Signal and Noise

The ability to understand if some object is within a voxel or not depends critically on
whether the signal for the object in that voxel can be distinguished from noise. The signal-
to-noise ratio (SNR) is an essential parameter that characterizes the degree to which noise
a�ects a measurement. In MRI, if the SNR is not high enough, it becomes impossible to
discriminate a tissue from another one or from the background.
As just seen in the precedent sections, the data are assumed to be sampled at a set of points
in 3D k-space. These points are separated by ∆kx, ∆ky and ∆kz, respectively, in the three
orthogonal k-space directions. It is useful to de�ne three sets of integers that run over the
number points sampled in each direction of the image space:

p′ ∈ (−Nx, Nx − 1) q′ ∈ (−Ny, Ny − 1) r′ ∈ (−Nz, Nz − 1). (2.27)

The image is reconstructed by calculating the discrete inverse Fourier transform of the set
of data represented by sm(p′∆kx, q

′∆ky, r
′∆kz), where s(~k) has already been de�ned in eq.

(2.11).
The image is represented by ρ̂m(p∆x, q∆y, r∆z), where the integers p, q and r typically
cover the same range as p′, q′ and r′:

ρ̂m(p∆x, q∆y, r∆z) =
1

NxNyNz

∑
p′,q′,r′

s(p′∆kx, q
′∆ky, r

′∆kz)e
i2π( pp

′
Nx

+ qq′
Ny

+ rr′
Nz

)
. (2.28)

The last equation represents the e�ective spin density and it is also known as the `voxel
signal' S(~r), since it is the signal which will be represented in the volume element ∆x∆y∆z
at position (p∆x, q∆y, r∆z) within the reconstructed image. It is assumed that voxels
are small volumes characterized by uniform spin densities. Therefore, we will neglect the
possibility that a voxel contains more than one tissue type. As we have already seen in
eq. (1.111), the peak signal for homogeneous object is ω0M0B⊥Vsample, which, for proton
imaging and using the eq. (1.60), becomes:

S ≡ ρ̂m(p∆x, q∆y, r∆z) ∝
γ3~2

4kT
B2

0B⊥(p∆x, q∆y, r∆z)Vvoxel. (2.29)

Therefore, the voxel signal is directly related to ρB⊥ and to B2
0 , in addition it shows an

inverse dependence on the sample temperature.
One of the principal objects in an MRI experiment is to achieve enough voxel signal relative
to noise to observe tissues of interest. The measured signal is a�ected by random thermal
�uctuations, which are called `white' �uctuations because they are characterized by equal
expected noise power components at all frequencies within the readout bandwidth (BWread):

σthermal =
√

4kTRBWread, (2.30)

R is the e�ective resistance of the coil loaded by the body, and BWread is the bandwidth of
the noise-voltage detecting system, which can be expressed as follows:

BWread =
1

∆t
= γGxLx, (2.31)

where ∆t is the sampling time step and Lx is the Field of View (FOV) along the read
gradient �eld direction. Now we want to give an expression for the SNR, but not before
having noticed that repeating an entire imaging experiment Nacq times and averaging the
signal over these measurements improve the SNR. In fact this parameter betters as the
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square root of the number of acquisitions if the noise is uncorrelated from one experiment
to the next. Therefore, we can write:

SNR/voxel(p∆x, q∆y, r∆z) =
√
Nacq

γ3~2

4kT B
2
0B⊥(p∆x, q∆y, r∆z)Vvoxel√

4kTRBWread

. (2.32)

Finally, we aim to remark the SNR dependencies on imaging parameters, which are under
experimenter control:

SNR/voxel ∝
√
Nacq

Vvoxel
√
NxNyNz√

BWread

∝ ∆x∆y∆z
√
NacqNyNzTs. (2.33)

To estimate the last we have employed the identity Ts = Nx∆t, where Ts is the time
necessary to sample one line of the k-space. Moreover we have used the relation:

σ2
0(p∆x) =

σ2
m

N
, (2.34)

between the measured variance σ2
m of any point in k-space and the variance σ2

0 in the
image domain. We have taken N as the number of samples collected along kx direction.
The variance measured in any voxel in the image space is N times smaller than in the
detected signal and is the same for all voxels. From the eq. (2.33) it is evident that the
experimenter may augment or decrease the SNR adjusting the number of voxels, the number
of acquisitions or the voxel dimensions. Nevertheless Nx∆t cannot be arbitrarily changed
because of relaxation phenomena.
Since often the acquisition is repeated to augment the SNR, it is convenient to introduce
another parameter: the imaging e�ciency Υ. This represents the SNR/voxel normalized to
the square root of the total imaging time (see eq. (2.21)). Therefore, for a �xed TR, the
imaging e�ciency is de�ned as:

Υ ≡ (SNR/voxel)3D√
TT

∝
∆x∆y∆z

√
NacqNyNzTs√

NacqNyNz

∝ ∆x∆y∆z
√
Ts. (2.35)

In other words, an image with better spatial resolution, such as with ∆y and ∆z halved,
is considered only half as SNR-e�cient as an image acquired with voxel size ∆y or ∆z,
respectively. The main conclusion is that high resolution can be achieved e�ciently only in
the read direction, and even that is limited by the need to keep Ts on the order of T ∗2 or
less.

2.2.2 Contrast, Contrast-to-Noise Ratio and Visibility

Even the highest SNR does not guarantee a useful image. An important object of imaging
for diagnostic purposes is to be capable of distinguish between diseased and neighboring
normal tissues. This problem falls under the category of the 'signal detection' problem and
requires an understanding of the importance of Contrast-to-Noise Ratio (CNR).
The common approach to the contrast concept is to examine the absolute di�erence in
the signal between two tissues of interest. If we label these two tissues with A and B,
respectively characterized by voxel signals SA and SB, their signal di�erence is de�ned as
the `contrast':

CAB ≡ SA − SB. (2.36)

Although the contrast may be large enough to distinguish them, if noise is substantial, the
signal di�erence would not be detectable. Therefore, we can introduce a more appropriate
quantity, that is the contrast-to-noise ratio (CNR):

CNRAB ≡
CAB
σ0

=
SA − SB

σ0
= SNRA − SNRB, (2.37)
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where the noise in each voxel of the image, σ0, is assumed to be the same.
If multiple independent signal acquisitions Nacq are e�ectuated, as already seen in the in
the precedent sections, an average of these signal measurements leads to a decrease of the
e�ective noise standard deviation:

σe� =
σ0√
Nacq

. (2.38)

In an image where the tissue A occupies nvoxel voxels, each of which has signal SA with
independent additive noise with standard deviation σ0, we can introduce a new measure
called `object visibility':

νAB ≡
CAB
σe�

=
CAB
σ0

√
nvoxel = CNRAB

√
nvoxel. (2.39)

2.2.3 Contrast Mechanisms in Magnetic Resonance Imaging

MRI has the advantage to elaborate the tissue signal in many ways, leading to numerous
contrast mechanism. This huge �exibility originates from the presence of lots of imaging and
tissue parameters. The most basic contrast generating mechanisms are based on spin density,
and T1 and T2 di�erences between tissues. Additional examples are magnetic susceptibility
di�erences, magnetization transfer contrast, tissue saturation methods, contrast enhancing
agents and di�usion. For the purpose of understanding the basic concepts regarding the
three main methods, we write the expression of the contrast between tissues A and B for a
90◦ �ip angle gradient echo experiment:

CAB = SA(TE)− SB(TE) =

= ρ0,A(1− e−TR/T1,A)e−TE/T
∗
2,A − ρ0,B(1− e−TR/T1,B )e−TE/T

∗
2,B . (2.40)

Where the signal is assumed to be determined by the tissue signal solution from the Bloch
equation at the echo time TE . CAB can be maximized with respect to either TR or TE .
We will not describe the methods that have just been mentioned, but we will give a brief
description of one of the main contrast mechanism: T1-weighted contrast. This choice is
justi�ed by the fact that we have employed T1-weighted images as input data in the analyses
which will be detailed described in the next chapters.

T1-Weighting

Normal soft tissues T1 values are quite di�erent from one another. Therefore, T1-weighted
contrast o�ers a very powerful method to reveal di�erent tissues. For T1 weighting, only
the e�ects of T2 can be minimized, because the e�ects of spin density di�erences cannot be
neglected. Using the gradient echo example as before, we can notice that the choice of a
very short TE , with respect to T ∗2,A and T ∗2,B, reduces any T

∗
2 contrast, in fact we have:

TE � T ∗2,A =⇒ e−TE/T
∗
2,A ≈ 1, (2.41)

TE � T ∗2,B =⇒ e−TE/T
∗
2,B ≈ 1. (2.42)

Therefore, the eq. (2.40) becomes:

CAB ≈ρ0,A(1− e−TR/T1,A)− ρ0,B(1− e−TR/T1,B ) =

= (ρ0,A − ρ0,B)− (ρ0,Ae
−TR/T1,A − ρ0,Be

−TR/T1,B ). (2.43)
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To optimize the T1-weighted contrast, the eq. (2.43) has to be maximized with respect to
TR. Di�erentiating CAB with respect to TR and setting the derivative equal to zero, we
obtain the following:

∂CAB
∂TR

= 0 =⇒
ρ0,Ae

−TR/T1,A

T1,A
=
ρ0,Be

−TR/T1,B

T1,B
, (2.44)

=⇒ TRopt
=

ln
ρ0,B

T1,B
− ln

ρ0,A

T1,A

1
T1,B
− 1

T1,A

. (2.45)

Some a priori knowledge of tissue properties are evidently very useful. In fact, when several
tissues are present, it may be di�cult to choose a single TR which optimizes at the same
time all contrasts.

2.3 Magnetic Resonance Imaging sequences

An MRI sequence is represented by the combination of RF pulses and gradients. Particular
choices lead to di�erent image contrasts and di�erent k-space sampling. Today, really a
large number of sequences are employed, but the classical ones are: Spin Echo and Inversion
Recovery. The latter makes possible a T1 measurement, instead the former method is used
to e�ectuate a T2 measurement. It will follows a panoramic explanation of these two main
sequences.

2.3.1 Spin Echo

The spin echo method was for the �rst time introduced by Hahn in 1950 [12], but it is still
very used. The spin echo sequence is based on the application of two types of RF pulses (see
the sequence diagram in �gure 2.4): a π/2-pulse followed by a π one, said also `refocusing'
pulse. In the �rst step, we can assume that the magnetization of a sample is instantly tipped
by the π/2-pulse into the transverse plane. Then, at t = 0, the spins at di�erent positions
begin to dephase, relative to each other, as they experience di�erent �eld strengths, each of
which, in general, is not exactly equal to B0. The dephasing e�ect takes place because of
the T ∗2 , which represents a combination of external �eld induced (T ′2) and thermodynamic
(T2) e�ects. After a time interval TE/2, the sample is excited by another RF pulse, but of
the π type. Therefore, the spins which had previously accumulated extra positive phase now
have, at the instant after the π-pulse application, the negative of that phase, and vice versa.
Hence, the phase di�erences between spins gradually decrease and will vanish at t = TE ,
where TE is called echo time. The echo signal s(TE) will be characterized by a decrease in
magnitude because the loss of phase due to T2 is not recoverable:

s(TE) = s0e
−TE/T2 . (2.46)

After a time TE/2 from the echo signal, we can apply another π-pulse and obtain a new
echo signal at t = 2TE . Up to now we have reconstructed two points of the T2 decay curve,
but we can continue to �ll it with other measured points and �nally �t them to estimate T2

(�gure 2.6).
Regarding the applied gradients, we can say that both the RF pulses are slice selective. As
it is illustrated in �gure 2.4, the read gradient is turned on during the echo and the phase
encoding one is activated between the π/2 and the π pulses.
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Figure 2.4: Schematic diagram showing the spin echo sequence.

Figure 2.5: A simulation of an ensemble of spins in the rotating reference frame during a spin
echo experiment [7].

Figure 2.6: Decay envelopes in the laboratory frame, obtained according to the spin echo
method [7].
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Figure 2.7: Schematic diagram showing the inversion recovery sequence.

2.3.2 Inversion Recovery

Spin echo experiments are useful for determining the T2 properties of a sample. As single
experiments, however, they are not sensitive to T1. But, as repeated measurements, their
signals must depend on T1, and the spin-lattice parameters could, in line of principle, be
determined by performing a number of repeated sequences. There is another experiment,
called inversion recovery (�gure 2.7), that is sensitive to T1. This sequence becomes with
the application of a π-pulse that inverts the longitudinal magnetization sign, therefore, we
have:

Mz(0
+) = −M0. (2.47)

Hence, the magnetization becomes to relax towards its equilibrium value M0 because of
spin-lattice interaction, according to the following law:

Mz(t) = −M0e
−t/T1 +M0(1− e−t/T1) = M0(1− 2e−t/T1), 0 < t < TI . (2.48)

After, the longitudinal magnetization is tipped into the transverse plane to provide the
initial signal, at t = TI , employing a π/2-pulse. Hence, the magnitude of the transverse
magnetization evolves as:

M⊥(t) = |M0(1− 2e−TI/T1)|e−(t−TI)/T ∗2 , t > TI . (2.49)

The π/2-pulse has converted the longitudinal magnetization into transverse magnetization
whose precession can be detected as MR signal. This signal represents the beginning of a
spin echo sequence. Repeating the experiment with di�erent TI it is possible to measure
the T1 relaxation time.
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Chapter 3

Voxel-Based Morphometry

The purpose of the current chapter is to give the fundamentals of voxel-based morphometry
(VBM), since that it represents the �rst technique that we have employed to analyse our T1-
weighted images. The software used to do this is the SPM8 package (Statistical Parametric
Mapping, Wellcome Department of Imaging Neuroscience, London, UK, http://www.fil.
ion.ucl.ac.uk/spm), which allows for an easy implementation of the VBM protocol [13].

3.1 An introduction to morphometric methods

Morphometrics is about studying the variability of the form (size and shape) of organisms
or objects [15]. A pioneer in this �eld was D'Arcy Thompson who �rst proposed the concept
of spatial normalization, according to which diverse and dissimilar brains �can be referred
as a whole to identical functions of very di�erent coordinate systems� [16]. The brain of an
individual subject can be modeled by a canonical brain, which is deformed, or warped, to a
di�erent shape. Within this model there is the assumption of a one-to-one mapping between
the anatomy of one brain and that of another, and that is possible to transfer this con�g-
uration of homologous points between them. Morphometry, or computational anatomy,
involves analysing features that characterize the shapes of the brains. A large number of
approaches for characterizing di�erences in the shape and neuro-anatomical con�guration
of di�erent brains have recently emerged due to improved resolution of anatomical human
brain MRI scans (see the MRI scan of a healthy subject in �gure 3.1) and the development
of new advanced image processing techniques.

The traditional approach to morphometry involves manually measuring lengths, angles,
areas, volumes and so on. However, the measures of interest are usually constituted by
volumes. A number of interactive tools are available for manually making volume measure-
ments from MRI data, and it is probably the most widely accepted form of morphometry
among the medical community. Nevertheless, this traditional approach has some disadvan-
tages, e.g. the excessive time-consuming of manual outlining of brain regions. Moreover,
this procedure is subjective and quite a little reproducible. Once the measurements have
been made, they usually would be analyzed in order to detect statistically signi�cant di�er-
ences between populations of subjects. Such analyses are often performed independently,
region-by-region [15].

Studies of brain shape have been carried out by many researchers on a number of di�er-
ent populations, including patients with Alzheimer's disease, schizophrenia, autism, dyslexia
and Turner's syndrome. Often, the morphometric measurements of these studies have been
obtained from brain regions that can be clearly de�ned. These measures typically regard
volumes of unambiguous structures such as the hippocampi. However, there are many mor-
phometric features that may be more di�cult to quantify by inspection. Therefore, it is
necessary to involve new morphometric approaches that are not biased to one particular
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Figure 3.1: T1-weighted high resolution image of a healthy subject (voxel size 2x2x2 mm3,
image dimension 91x109x91).

structure or tissue and that give an even-handed and comprehensive assessment of anatomi-
cal di�erences throughout the brain [18]. In this context we can introduce another approach
for comparing the volume of a tissue type among populations of subjects: voxel-based mor-
phometry (VBM), the morphometric approach which will be explained in this chapter.

VBM is based on a voxel-wise comparison of the local concentration of grey matter
between two groups of subjects. The procedure is relatively direct, and involves spatially
normalizing high-resolution MR images, and smoothing these grey-matter segments. Voxel-
wise parametric statistical tests are performed, which compare the smoothed grey-matter
images from the groups. Corrections for multiple comparisons are employed using the theory
of Gaussian random �elds. VBM has the purpose of localizing signi�cant structural di�er-
ences among populations resulting in a statistical parametric map of regional di�erences. In
the case of VBM, statistical parametric maps are derived from univariate data, where there
is a single variable for each voxel, but there are other morphometric techniques that involve
multivariate data, where there is a number of variables at each voxel. An example of such
methods is tensor-based morphometry (TBM), in which the aim is to identify di�erences
in the local shape of brain structure from the gradients of deformation �elds, rather than
di�erences in the local concentration of GM.

3.2 The Voxel-Based Morphometry Method

The steps that characterize the VBM method can be summarized as follows [13, 17, 18].

• The algorithm begins with the a�ne registration of all subjects' images to the same
stereotaxic space. Therefore, the images become all referred to the same template.
This is necessary because the segmentation procedure in SPM8 requires the images
to be registered with the tissue probability maps [13]. The resulting images are then
divided into di�erent tissue classes according to the segmentation methods that are
described in detail in [20, 21], and that we will try to explain in section 3.3. Many

34



tissue classi�cation methods produce images containing the a posteriori probability for
each voxel to belong to a particular tissue class according to the model. Moreover, the
segmentation step includes parameters that account for image intensity nonuniformity,
which make possible to perform a bias correction.

• To increase the accuracy of inter-subject alignment the Di�eomorphic Anatomical
Registration using Exponentiated Lie algebra (DARTEL) algorithm [26] can be im-
plemented (see also section 3.4). It models the shape of each brain using millions of
parameters (three parameters for each voxel), instead the simpler inter-subject reg-
istration model included in SPM5 used about 1000 coe�cients to parametrize the
shape of the brain. DARTEL works by aligning grey matter among the images, while
simultaneously matching white matter. This is possible because of an iterative align-
ment between data and an average template data. In the current step a study-speci�c
template is generated and the deformation �elds that warp each segmented image to
the average template are also estimated.

• The �nal template image obtained in the previous step is now a�ne registered to MNI1

space. Employing the last transformation and the deformation �elds, the segmented
brain tissues are then spatially normalized to MNI space. This procedure Jacobian
scales the data, with the aim of preserving the total amount of signal from each region
in the images (`modulation'). In this way the �nal VBM statistics will be re�ective of
the absolute amount of grey matter (GM) in di�erent regions rather than the relative
concentration of GM (the proportion of grey matter to other tissue types within a
region). Finally, the resulting images are smoothed through the convolution with a
Gaussian kernel. In this way, every voxel belonging to the smoothed images contains
the average amount of GM from around the voxel. This is often called `gray matter
density'. This step is necessary because the smoothing has the e�ect of rendering the
data more normally distributed, thus augmenting the validity of parametric statistical
tests [29].

• The main step of a VBM analysis is based on the voxel-wise statistical tests (see
also section 3.5). The results consist of a statistical parametric map (SPM), showing
signi�cant regional di�erences among the populations involved in the study. Given
that a SPM contains the results of many statistical tests, it is necessary to correct
for multiple dependent comparisons, employing the theory of Gaussian random �elds
(GRF). The statistical tests are performed in the context of the general linear model
(GLM). The GLM is a really �exible framework, that for example allows to apply
statistical tests with the aim of identifying regions of GM concentration that are
related to particular covariates such as disease severity or age. Standard tests are
t-test and F-test, performed to test the hypothesis, in more accurate terms to reject
with a certain probability a null hypothesis.

3.3 Segmentation

Healthy brain tissue can generally be classi�ed into three broad tissue types on the basis
of an MR image. These are grey matter (GM), white matter (WM) and cerebrospinal �uid
(CSF). We could perform manually this classi�cation on a good quality T1 image, by simply
selecting appropriate image intensity ranges which include most of the voxel intensities of a

1Standard brains from the Montreal Neurological Institute (MNI). The MNI de�nes a new standard
brain by using a large series of MRI scans on normal controls. It wants to de�ne a brain that is more
representative of the population.
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Figure 3.2: A �ow diagram for the tissue classi�cation [17].

particular tissue type. However, this manual selection of thresholds is extremely subjective.
Hence, in morphometric studies automatic segmentation methods are performed.

The classical segmentation approach employs the tissue classi�cation method. It requires
the images to be registered with tissue classi�cation maps [22], at least one for each brain
tissue (GM, WM, CSF) and eventually others describing voxels outside the brain. After
registration, these maps represent the prior probability of di�erent tissue classes being found
at each location in an image [24]. Bayes' rule can then be used to combine these priors with
tissue type probabilities derived from voxel intensities to provide the posterior probability
[21]. The disadvantage is that this procedure requires the knowledge of many parameters,
and to estimate each of these it is necessary to know other parameters. Therefore, the
tissue classi�cation approach is circular, because the registration requires an initial tissue
classi�cation, and the tissue classi�cation requires an initial registration (�gure 3.2). This
circularity is resolved by combining both components into a single generative model [21].
Here classi�cation, registration and bias correction steps are uni�ed, instead to be serially
applied. This uni�ed procedure is detailed described in the Uni�ed segmentation paper
[21], but we will sum up its main elements, because this procedure is employed by SPM8
software to perform tissues segmentation.

3.3.1 The Uni�ed Segmentation framework

The Uni�ed segmentation method [21] works within the mixture of Gaussians model (MOG),
where the intensity distribution of each tissue class is represented by one or more gaussians.
From this model it is possible to de�ne an objective function that is minimized by op-
timum parameters. This objective function can be extended to model smooth intensity
nonuniformity and to accommodate deformations of tissue probability maps.

The MOG model

The distribution of voxel intensities within a brain image can be modeled by a mixture of K
Gaussians (clusters). In the most simple case each Gaussian distribution models one tissue
class, but in more advanced parameterizations, more clusters represent one tissue type. This
is a standard technique that is employed in many tissue classi�cation algorithms [25]. For
univariate data, the k-th Gaussian is characterized by three parameters: the mean cluster
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intensity µk, the standard deviation σ2
k and the mixing proportion γk, which represents

the proportion of voxels that belong to that Gaussian. For the last parameter stands the
following:

K∑
k=1

γk = 1 γk ≥ 0. (3.1)

To segment our image we have to �nd the parameters that describe every cluster. Therefore,
to �t this MOG model we have to maximize the probability of observing the I elements of
data ~y, given the parametrization of the Gaussians. The probability of observing a datum
with intensity yi given that it belongs to the k-th cluster is:

P (yi|ci = k, µk, σk) =
1√

2πσ2
k

exp

(
−(yi − µk)2

2σ2
k

)
. (3.2)

The prior probability that every voxel possesses of belonging to the k-th cluster, indepen-
dently on its intensity is given by the mixing proportion, that represent the prior probability:

P (ci = k|γk) = γk. (3.3)

The joint probability of cluster k and intensity yi is:

P (yi, ci = k|µk, σk, γk) = P (yi|ci = k, µk, σk)P (ci = k|γk). (3.4)

By integrating the last over the total number of clusters used in the model, we obtain:

P (yi|~µ, ~σ,~γ) =

K∑
k=1

P (yi, ci = k|µk, σk, γk). (3.5)

Moreover, the probability of the entire dataset (image composed by I voxels) by assuming
that all elements are independent is:

P (~y|~µ, ~σ,~γ) =
I∏
i=1

P (yi|~µ, ~σ,~γ) =
I∏
i=1

(
K∑
k=1

γk√
2πσ2

k

exp

(
−(yi − µk)2

2σ2
k

))
. (3.6)

The last expression is maximized when the following cost function (ε) is minimized:

ε = −logP (~y|~µ, ~σ,~γ) = −
I∑
i=1

(
K∑
k=1

γk√
2πσ2

k

exp

(
−(yi − µk)2

2σ2
k

))
. (3.7)

We have to remark the fact that the assumption that voxels are independent is hard to
believe. Nevertheless the spatial priors will be modi�ed to lead a higher degree of spatial
dependency.

Intensity nonuniformity

MR images are usually corrupted by smooth, spatially varying artifacts that modulate
the intensity of the image (bias). These nonuniformities, although not usually a problem
for visual inspection, can impede automated processing of the images. Parametric bias
correction models are often an integral part of tissue classi�cation methods. Most algorithms
assume that the bias is multiplicative. In this type of parametric model the observed signal
(yi) is considered to be an uncorrupted signal (µi), scaled by some bias (ρi) with added
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Gaussian noise (ni) that is independent on the bias. The noise source is assumed to be from
the scanner itself:

yi = µi/ρi + ni. (3.8)

Another type of model expects that the noise is added before the signal is scaled. In this
case, the noise is assumed to be due to variations of tissue properties.

yi = (µi + ni)/ρi. (3.9)

Furthermore a combination of the scanner and tissue noise models has been adopted in some
studies. This would probably be a better model, especially for images corrupted by a large
amount of bias. However, the single source model was mainly chosen for its simplicity.

The current method adopts a multiplicative noise model, which assumes that the er-
rors originate from tissue variability rather than additive Gaussian noise from the scanner.
Within the Uni�ed segmentation framework, bias correction is included in the MOG model
through extra parameters (~β) that account for smooth intensity variations. The �eld mod-
elling the intensity variation at element i is denoted by ρi(~β). Therefore, intensity yi that
belongs to the kth cluster assumes the following expression:

P (yi|ci = k, µk, σk, ~β) =
1√

2π(σk/ρi(~β))2

exp

(
−(yi − µk/ρi(~β))2

2(σk/ρi(~β))2

)
=

= ρi(~β)
1√

2πσ2
k

exp

(
−(ρi(~β)yi − µk)2

2σ2
k

)
, (3.10)

hence, the objective function becomes:

ε = −
I∑
i=1

log

(
ρi(~β)

K∑
k=1

γk√
2πσ2

k

exp

(
−(ρi(~β)yi − µk)2

2σ2
k

))
. (3.11)

The model adopted in this paper parameterises the bias �eld as the exponential of a linear
combination of low frequency basis functions. Since the bias tends to be smooth, a small
number of basis functions are employed.

Spatial priors

Prior probability maps are usually generated by registering a large number of subjects to-
gether, assigning voxels to di�erent tissue types and averaging tissue classes over subjects.
The default tissue probability maps are modi�ed versions of the Independent Community
Bankers of Minnesota (ICBM2) Tissue Probabilistic Atlases. The original data are repre-
sented by 452 T1-weighted scans, which were aligned with an atlas space, corrected for scan
inhomogeneities, and classi�ed into GM, WM and CSF. These data were a�ne registered
to MNI space, and down-sampled to 2mm resolution [14]. The most recent version of the
software (SPM8), the one that we will use, is characterized by an important improvement
with respect to the paper we are referring [21]. It employs six tissue probability maps, which
are displayed in �gures 3.3-3.5. Therefore, the tissue classes that are used regard GM, WM,
CSF, soft tissue and air/background. These maps give the prior probability of any voxel in
a registered image belonging of each tissue class, irrespective of its intensity. We can modify

2The ICBM atlas is an average of T1-weighted MRIs of normal young adult brains. The space the atlas
is in is not based on any single subject. Instead it is an average space constructed from the average position,
orientation, scale, and shear from all the individual subjects. The atlas, therefore, is both an average of
intensities and of spatial positioning (http://www.loni.ucla.edu/).
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the model in eq. (3.11), instead of using stationary mixing proportions (P (ci = k|γ) = γk),
allowing the prior probabilities to vary over voxels, such that the prior probability of voxel
i being drawn from the k-th Gaussian can be written as follows:

P (ci = k|~γ) =
γkbik∑K
j=1 γjbij

, (3.12)

where bik is the tissue probability for class k at voxel i. As we have already outlined, a
tissue probability map can be represented by more than one cluster. The assumption of a
single Gaussian distribution for each class does not hold because a voxel may be not purely
of one tissue type and instead contain signal from di�erent tissues (partial volume e�ects).
Typical number of Gaussians could be two for grey matter, two for white matter, two for
CSF, three for bone, four for other soft tissues and two for air/background.

Deformable spatial priors

According to the paper we are referring to [21], the model can be improved by allowing
the tissue probability maps to be deformed through parameters ~α. This makes possible
registration to a standard space to be included within the same generative model. The eq.
(3.12) assumes the following form:

P (ci = k|~γ, ~α) =
γkbik(~α)∑K
j=1 γjbij(~α)

. (3.13)

After including the full priors, the objective function can be rewritten:

ε = −
I∑
i=1

log

(
ρi(~β)∑K

k=1 γkbik(~α)

K∑
k=1

γkbik(~α)√
2πσ2

k

exp

(
−(ρi(~β)yi − µk)2

2σ2
k

))
. (3.14)

The current way of parameterize how the tissue probability maps could be deformed adopts
a low-dimensional approach, which model the deformations by a linear combination of about
a thousand of cosine transform bases [23].

Final overview

Since there is not a closed form solution for the minimization of the objective function
shown in eq. (3.14), optimal values for di�erent parameters are dependent on the values of
others. The employed approach is called Iteration Conditional Modes (ICM) and it begins
by starting estimates for the parameters and then iterating until a locally optimal solution
is found. Each step of the iterative procedure involves alternating between estimating
di�erent groups of parameters, while holding the others �xed at their current best solution.
Therefore, the adopted procedure is a local optimization, and the initial starting values are
randomly assigned.

The current uni�ed segmentation method was evaluated by J. Ashburner and K. J.
Friston in [21], showing that the components of the generative model described above all
contribute to segmentation performance, in at least one data context, improving the seg-
mented output with respect to the previous segmentation approaches.

In conclusion, within the same probabilistic framework, the procedure described in [21]
allows the uni�cation of tissue classi�cation, bias correction and nonlinear warping. This
integration approach presents the disadvantage of being more complex and di�cult to im-
plement. In addition, implementation time is longer and more expertise is required. Nev-
ertheless, this uni�ed procedure is more accurate and makes better use of the information
available in the data. An example of Uni�ed segmentation output through the `New Seg-
ment' tool of SPM8 package is shown in �gure 3.6.
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(a) Grey matter TPM. (b) White matter TPM.

Figure 3.3: Grey matter and white matter Tissue Probability Maps (TPMs) employed in SPM8
software.

(a) CSF TPM. (b) Bone TPM.

Figure 3.4: CSF and bone Tissue Probability Maps (TPMs) employed in SPM8 software.
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(a) Soft tissue TPM. (b) Air/background TPM.

Figure 3.5: Soft tissue and air/background Tissue Probability Maps (TPMs) employed in
SPM8 software.

(a) Original T1-weighted image. (b) GM segmented image.

(c) WM segmented image. (d) CSF segmented image.

Figure 3.6: A T1-weighted image (3.6a) that has been segmented in three tissue types: grey
matter (3.6b), white matter (3.6c) and cerebrospinal �uid (3.6d).
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3.4 The DARTEL algorithm

Since VBM compares the whole brain volumes between two groups of subjects, achieving
an accurate inter-subject registration seems to be a necessary request. For this reason the
Di�eomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algo-
rithm represents a fundamental step to process the segmentation output. This procedure
implements a di�eomorphic warping of each GM segmented image to a study-speci�c tem-
plate generated within the same algorithm. The SPM8 package o�ers a speci�c tool to
implement at the same time the study-speci�c template generation and the di�eomorphic
image registration. This procedure is extensively illustrated in the paper of Ashburner [26],
of which we will remark the main elements.

Image registration is based on the estimation of a smooth continuous mapping between
the points in one image and those in another. Then, the parameters characterizing this
mapping can be used to determine the relative shapes of the images. The aim is to obtain
the single best set of values for these parameters. We can distinguish between two ways of
modelling such mappings:

• The small-deformation model does not necessarily preserve topology and parameter-
izes a displacement �eld (u), which is simply added to an identity transform (x):

Φ(x) = x+ u(x) (3.15)

In this case, the inverse transformation is sometimes approximated by subtracting the
displacement, which fails for larger deformations.

• The large-deformation model generates deformations (di�eomorphisms) that possess
the important property of enforcing the preservation of topology. A di�eromorphism
represents a one-to-one smooth and continuous mapping with derivatives that are
invertible (i.e. nonzero Jacobian determinant). If the mapping is not di�eomorphic,
then topology is not necessarily preserved.

The DARTEL algorithm regards the latter framework, which shows the positive character-
istic of consistency under composition of deformations. In fact, if these are di�eomorphic,
the result of the composition operation will also be di�eomorphic. However, as deformations
are represented discretely by a �nite number of parameters, there may be some small viola-
tions. Instead, perfect (i.e. in�nitely dimensional) di�eomorphisms form a Lie group under
the composition operation, because they satisfy the requirements of closure, associativity,
inverse and identity.

If u(t) is a velocity �eld at time t, then the di�eomorphism Φ evolves as follows:

dΦ

dt
= u(t)

(
Φ(t)

)
. (3.16)

According to the paper we are referring to [26], the DARTEL procedure considers a single
(�ow) velocity �eld, which remains constant over unit time. Registration involves simul-
taneously minimising a measure between the image and the warped template, while also
minimising an energy measure of the deformations used to warp the template. This energy
can be computed by integrating the energy of the velocity �elds over unit time. The �xed
velocity �eld employed has to describe the whole trajectory of an evolving di�eomorphism,
therefore it may be forced to assume complicated and high energy trajectories in order to
achieve good correspondence between images. In Group theory, the �ow �eld may be con-
sidered as a member of the Lie algebra, which is exponentiated to produce a doformation,
which is a member of a Lie group. Because the Jacobian of a deformation that adapts to an
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exponentiated �ow �eld is always positive, we can be sure that the mapping is di�eomor-
phic and, implicitly, that the forward and inverse transformations can be generated from
the same �ow �eld:

Φ = Exp(u). (3.17)

3.4.1 The DARTEL optimization procedure

This di�eomorphic image registration procedure uses a model which contains a number of
unknown parameters that describe how the image is deformed to match with another. The
optimization procedure recurs to a discrete parametrization of the velocity �eld, u(x), that
can be written as a combination of basis functions:

u(x) =
∑
i

νiρi(x), (3.18)

where ν is a vector of coe�cients and ρi(x) is the i-th basis function at position x. The
purpose of the optimization procedure is to individuate the single best set of values that
parameterize the velocity �eld. We can write the posterior probability of the parameters
given the image data (D):

p(ν|D) =
p(D|ν)p(ν)

p(D)
. (3.19)

that is proportional to the likelihood, i.e. the probability of the image data given the
parameters (p(D|ν)) and to the priors of the parameters (p(ν)). The probability of the
data is a constant (p(D)). The eq. (3.19) is the objective function has to be maximized
to obtain a maximum a posteriori estimate for the parameters. Normally, the objective
function is represented by the logarithm of the a posteriori probability (in which case it is
maximized) or the negative logarithm (in which case it is minimized). It may be seen as
the sum of two terms: a prior term and a likelihood term.

− log p(ν|D) = log p(ν)− log p(D|ν), (3.20)

or
ε(ν) = ε1(ν) + ε2(ν). (3.21)

Nevertheless, in practice there are many technical di�culties that can impede a simple
Bayesian interpretation of the problem. The procedure adopted to solve this problem con-
sists in a local optimization, that is practically actuated through the Lavenberg-Marquardt
(LM) algorithm [27]. The necessary matrix solutions are obtained in reasonable time using
a multigrid method.

3.4.2 Group-wise registration

Until now, we have discussed about how to match a pair of images through di�eomorphic
image registration. Nevertheless, our initial purpose was to warp together multiple subjects'
images. For this reason, a study-speci�c template is usually generated and then the defor-
mation �elds that warp each image to this average template are estimated. The scheme
that the DARTEL algorithm follows to construct the study-speci�c template involves an
iterative procedure. Therefore, the DARTEL is used to map the scans to their average,
and then the warped images are used to compute a new average template. This cycle is re-
peated until the spatial precision required has been achieved. An example of output images
implementing DARTEL algorithm in SPM8 is shown in �gure 3.7.

This procedure has been applied to intersubject registration of 471 whole brain im-
ages, and the resulting deformations were evaluated in terms of how well they encode the
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(a) GM segmented and DARTEL-imported image. (b) Study-speci�c template.

(c) Flow �eld that warps the 3.7a into the 3.7b.

Figure 3.7: An example of �ow �eld estimation through the DARTEL algorithm. The T1-
weighted image of one subject has been GM segmented and then spatially nor-
malized to a lower resolution space (i.e. the segmented image has been DARTEL-
imported (3.7a)). The �ow �eld that warps the latter to the study-speci�c template
(3.7b), both computed through the DARTEL algorithm, is shown in 3.7c.

shape information necessary to separate male and female subjects and to predict the age
of the subjects [26]. As explained in the latter paper, cross-validation was used to assess
classi�cation accuracy, showing a performance better than a small-deformation approach.

3.5 Voxel-wise statistical tests

Voxel-based morphometry is a technique that essentially compares segments of grey (or
white) matter obtained from segmented MR images. VBM adopts the General Linear
Model (GLM) to lay out parametric statistical tests to identify and make inferences about
regionally speci�c di�erences. The output of the method is a statistic parametric map show-
ing regions where GM density signi�cantly di�ers among groups.
The statistical analysis involves two steps. Firstly, tests indicating evidence against a null
hypothesis of no e�ect at each voxel are computed. An image representing these results
is then produced. Secondly, this statistical image has to be assessed, well locating voxels
where an e�ect has been detected, at the same time limiting the possibility of false positives
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[28].
The current methods for evaluating the data are parametric. Therefore, the data are as-
sumed to be distributed according to a speci�c form of probability density, and hypotheses
expressed in terms of these distributions depending on unknown parameters are then tested.
In this way, it is possible to compute the parameters and to form a statistic re�ecting evi-
dence against the null hypothesis. The majority of the statistical models represent special
cases of the GLM. In this section we are determined to introduce the GLM with the purpose
of explain the two-sample t-test framework. In fact, the last is one of the main statistical
test that the VBM method employs in order to make voxel-wise comparisons of GM seg-
ments among two groups of subjects. In the following treatment of the GLM we will refer
to [28].

3.5.1 An introduction to the General Linear Model

We now suppose to conduct an experiment in which we can measure a response variable Yj ,
where j = 1, ..., J indicates the observation. Yj represents a random variable. Moreover, we
will introduce for each observation a set of L (L < J) explanatory variables (each considered
without error) denoted by xjl, where l = 1, ..., L. The explanatory variables can represent
covariates, function of covariates, or they may be dummy variables indicating the levels of
an experimental factor.

A GLM models the response variable Yj as a linear combination of L explanatory vari-
ables plus an error term εj :

Yj = xj1β1 + ...+ xjlβl + ...+ xjLβL + εj . (3.22)

The βl are the unknown parameters, corresponding to each of the L explanatory variables
xjl. The errors εj are supposed to be independent and identically distributed (iid) normal
random variables with zero mean and variance σ2, therefore we can write:

εj
iid∼ N (0, σ2). (3.23)

Linear models having other error distributions are called Generalized Linear Models.

Matrix formulation

It can be useful to introduce the matrix formulation of the GLM. We can write out the eq.
(3.22) for each observation j, obtaining a set of J equation:

Y1 = x11β1 + ...+ x1lβl + ...+ x1LβL + ε1
... =

...

Yj = xj1β1 + ...+ xjlβl + ...+ xjLβL + εj
... =

...

YJ = xJ1β1 + ...+ xJlβl + ...+ xJLβL + εJ . (3.24)

We can also write the equivalent matrix form:
Y1
...
Yj
...
YJ

 =


x11 · · · x1l · · · x1L
...

. . .
...

. . .
...

xj1 · · · xjl · · · xjL
...

. . .
...

. . .
...

xJ1 · · · xJl · · · xJL




β1
...
βl
...
βL

+


ε1
...
εj
...
εJ

 ,
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which can be written in the following way:

Y = Xβ + ε, (3.25)

where Y is the column vector of observations, ε the column vector of error terms, and β
the column vector of the unknown parameters. The J × L matrix is said to be the design
matrix, which has one row per observation and one column per model parameter. Into the
design matrix we can quantify our experimental knowledge about the expected signal.

Parameter estimation

Usually, the equations (3.24) implied by the general linear model (with ε = 0) cannot be
solved, because the number of parameters L is typically chosen to be less than the number of
observations J . Hence, it becomes necessary to introduce a method of estimating parameters
that best �t the data. Therefore, the method of ordinary least squares is employed.

We can indicate with β̃ the set of estimated parameters, with Ỹ the �tted values, and
with e the residual errors:

β̃ = [β̃1, ..., β̃L]T (3.26)

Ỹ = [Ỹ1, ..., ỸJ ]T = Xβ̃ (3.27)

e = [e1, ..., eJ ]T = Y − Ỹ = Y −Xβ̃. (3.28)

Therefore, we can write the residual sum of squares S =
∑J

j=1 e
2
j , that measures the �t of

the model with these parameter estimates. The least squares estimates are those parameter
values which minimize the residual sum of squares:

S =
J∑
j=1

(Yj − xj1β̃1 − ...− xjLβ̃L)2, (3.29)

that is minimized in the following case:

∂S

∂β̃l
= 2

J∑
j=1

(−xjl)(Yj − xj1β̃1 − ...− xjLβ̃L) = 0. (3.30)

The last represents the l-th row of the normal equations:

XTY = (XTX)β̂, (3.31)

that are satis�ed by the least squares estimates. If (XTX) is invertible, i.e. if the design
matrix is of full rank, then the least squares estimates are:

β̂ = (XTX)−1XTY. (3.32)

Overdetermined models

If the design matrix (X) is rank de�cient, then (XTX) is singular, and it is not invertible.
Hence, the model is said to be overparameterised: there are in�nitely many least squares
estimates β̂ satisfying the normal equations. In this case it becomes necessary to impose
constraints on the estimates, or by inverting (XTX) using a pseudoinverse technique which
e�ectively implies a constraint. Independently of the adopted method, it is important
to remember that the estimates are related to the particular constraint or pseudoinverse
method chosen. Therefore, when the statistical results have to be used to make inferences, it
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is meaningful to consider functions of the parameters that are unin�uenced by the particular
constraint chosen.

SPM adopts a the pseudoinverse function implemented in MatLab that gives the Moore-
Penrose pseudoinverse. Hence, if (XTX)− denotes the pseudoinverse of (XTX), we can use
(XTX)− in the eq. (3.32) , obtaining:

β̂ = (XTX)−XTY = X−Y. (3.33)

Inference

Now we want to derive the t-statistic which can be used to test for a linear combination of
e�ects (contrasts).

The residual variance σ2 can be estimated by the residual sum of squares divided by the
number of degrees of freedom:

σ̂2 =
eTe

J − p
∼ σ2

χ2
J−p

J − p
, (3.34)

where p = rank(X). A derivation of this result is reported in [28]. If X is full rank then it
is possible to show that the parameter estimates are normally distributed:

β̂ ∼ N
(
β, σ2(XTX)−1

)
. (3.35)

From the last follows that for a column vector c containing L weights:

cT β̂ ∼ N
(
cTβ, σ2cT (XTX)−1c

)
. (3.36)

Furthermore, β̂ and σ̂2 are independent. Prespeci�ed hypotheses regarding linear combi-
nations of the model parameters cTβ can be assessed using a tJ−p Student's t-distribution
with J − p degrees of freedom:

cT β̂ − cTβ√
σ̂2cT (XTX)−1c

∼ tJ−p. (3.37)

For example, if our initial hypothesis is represented by H : cTβ = d, it can be assessed by
evaluating the following:

T =
cT β̂ − d√

σ̂2cT (XTX)−1c
, (3.38)

and computing a p-value by comparing T with a t-distribution with J−p degrees of freedom.
If the model is overparameterized, then there are in�nitely many parameter sets describ-

ing the same model. Therefore, when examining linear compounds cTβ of the parameters
we are forced to consider only those linear combinations that are invariant over the space
of possible parameters. In [28] are thoroughly mathematically characterized such contrasts,
in order to determine whether a linear compound is a proper contrast or not.

3.5.2 Two sample t-test

The two sample t-test is a particular case of the general linear model. We begin from two
independent groups of random variables Yj1 and Yj2. The current test assumes:

Yqj
iid∼ N (µq, σ

2) q = 1, 2, (3.39)

H : µ1 = µ2, (3.40)
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where H is the null hypothesis and q labels the two groups. The index j refers to the data
points in both groups. The standard statistical way of writing the model is:

Yqj = µq + εqj . (3.41)

Moreover, according to the general linear model assumptions, εqj
iid∼ N (0, σ2). The eq.

(3.41) can be manipulated to obtain an expression closer to the eq. (3.22):

Yqj = xqj1µ1 + xqj2µ2 + εqj . (3.42)

Here the dummy variables indicate group membership:

xqj1 =

{
1 if q = 1
0 if q = 2

xqj2 =

{
0 if q = 1
1 if q = 2

. (3.43)

This model leads to a design matrix X with two columns of dummy variables indicating
group membership and parameter vector β = [µ1, µ2]T . Therefore, the null hypothesis in
eq. (3.40) is equivalent to H = cTβ = 0 with c = [1,−1]T . The �rst column of the design
matrix contains n1 1's and n2 0's, indicating the measurements from the �rst group, while
the second column contains n1 0's and n2 1's for the second group. Thus:

(XTX) =

(
n1 0
0 n2

)
=⇒ (XTX)−1 =

(
1/n1 0

0 1/n2

)
=⇒ cT (XTX)−1c =

1

n1
+

1

n2
. (3.44)

Now, using the eq. (3.37), we obtain the t-statistic:

T =
µ̂1 − µ̂2√

σ̂2(1/n1 + 1/n2)
, (3.45)

which is the standard formula for the two-sample t-statistic, with a Student's distribution
of n1 + n2 − 2 degrees of freedom under the null hypothesis.

This statistical model can be re�ned by adding one or more covariates. If we suppose
of having k covariates, in this case we have to add k columns in the design matrix, one
for each added covariate. Moreover, the number of degrees of freedom decreases becoming
n1 + n2 − 2− k.

In our practical case, initial data will be composed by two groups of normalized modu-
lated and smoothed GM image segments, resulting from the VBM pre-processing. Therefore,
the situation is more complicated with respect to the framework described above. In group
studies we have many voxels and therefore many statistic values. We have to calculate a
statistic for each brain voxel that tests for the e�ect of interest in that voxel. When we have
to decide if a brain volume shows any evidence of the e�ect, we have to take into account
that there are many thousands of statistic values. This is the multiple comparison problem
in neuroimaging. Random �eld theory is a recent branch of mathematics that can be used
to solve this problem [30].

3.5.3 The Family Wise Error rate correction

Usually we calculate a statistic with the purpose of deciding whether this represents con-
vincing evidence of the e�ect we are interested in. Within the classical statistical inference
framework, we test the statistic against the null hypothesis, which corresponds to the hy-
pothesis that there is no e�ect. If the statistic is not compatible with the null hypothesis, we
can conclude that there is an e�ect. In order to make a test against the null hypothesis, we
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can compare our statistic value to a null distribution, which is the distribution of statistic
values if there is no e�ect. Using the null distribution, we can evaluate how probably it is
that our statistic could have come about chance. For example if we �nd that our result has
a 5% chance of resulting from a null distribution, we decide to reject the null hypothesis
and to accept the alternative hypothesis that there is an e�ect. Nevertheless, in rejecting
the null hypothesis, we must accept a 5% chance that we take that we are wrong when we
reject the null hypothesis. Therefore, 5% represents our expected type I error rate.

Since in our studies we have many voxels and therefore many statistic values, our hy-
pothesis refers to the whole volume of statistics in the brain. Evidence against the null
hypothesis would be that the entire observed volume of values is unlikely have originated
from a null distribution. Hence, the question we are asking is about the family of voxel
statistics, and the risk of error that we are prepared to accept is the Family Wise Error rate
(FWE), which represents the likelihood that the family of voxel values could have arisen by
chance [30].

The FWE correction method requires that we �nd a threshold to apply to every statistic
value, so that any values above the threshold are unlikely arisen by chance. It presents the
advantage that if we �nd voxels above threshold, we can conclude that there is an e�ect at
these voxel location, therefore the test possesses localizing power.

A threshold that can control family-wise error has to take into account the number of
tests. In fact, if for example we consider a single t statistic value from a null distribution
of 40 degrees of freedom, it has a probability of 1% of being greater than 2.42. We now
imagine an experiment of 1000 t values with 40 degrees of freedom. If we look at each
statistic, then by chance it will have a 1% probability of being greater of 2.42. This means
that we would expect 10 t values in our sample of 1000 to be greater than 2.42. If we �nd
one or more t values above 2.42 in this family of test, it is not a good evidence against
the family-wise null hypothesis, which is that all these values have been drown from a null
distribution. Therefore, we have to compute a new threshold, such that a family of 1000
t statistic values, there is 1% probability of there being one or more t values above this
threshold.

Some neuroimaging analyses use the Bonferroni correction to calculate FWE rates, which
can be easily computed by employing simple probability rules and that considers statistic
values to be independent one from each other [30]. However, most MRI data have some
degree of spatial correlation, therefore there are fewer independent values in the statistic
volume than there are voxels. It is very common to smooth the images before statistical
analysis and, when we apply to our MRI data a smoothing kernel such as a Gaussian,
each value in the image is replaced with a weighted average of itself and its neighbours.
Smoothing has the e�ect of blurring the image, and reduces the number of independent
observations.

Family-Wise Error rate estimation through Random Field Theory

Random �eld theory (RFT) can be used to solve the problem of �nding the height threshold
for a smooth statistical map which gives the required family-wise error rate. The application
of RFT proceeds in stages.

• Firstly, the smoothness (spatial correlation) of the statistical map has to be estimated.

• Then, the smoothness values are inserted in the RFT equation, to give the expected
Euler characteristic (EC) at di�erent thresholds.

• Finally, it is possible to calculate the threshold at which we would expect 5% of
equivalent statistical maps arising under the null hypothesis to contain at least one
area above threshold.
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If we assume that the data were independent before smoothing, we can take the smooth-
ness as entirely resulting from the smoothing we have applied. Therefore, the smoothing can
be expressed as the width of the Gaussian kernel. We can use its FWHM to calculate the
number of resels in the image. `Resel' is a term introduced by Worsley [31] to measure the
number of `resolution elements' in a statistical map. This can be considered to be similar
to the number of independent observations. A resel is de�ned as a block of values (in our
situation, pixels) having the same size as the FWHM. For example, in a 2D image smoothed
with a Gaussian kernel of 10x10 pixels, there are 100 resels.

The Euler characteristic (EC) can be taken as the number of blobs in an image after
thresholding. Therefore, it is a property of an image after it has been thresholded. The
expected EC (E[EC]), approximately corresponds to the probability of �nding an above
threshold blob in our statistic image. Therefore, the probability of a family-wise error is
approximately equivalent to the E[EC], i.e. PFWE ≈ E[EC]. Now, if we know the number
of resels in our image, we can compute the expected EC at any given threshold. For a 2D
image, its formula is given by Worsley [31]. If we indicate with R the number of resels, and
with Zt the Z score threshold, we can write:

E[EC] = R(4loge2)(2π)−
3
2Zte

− 1
2
Z2
t . (3.46)

Analyses of functional imaging lead to three dimensional statistical images. The same
principles of RFT apply in three dimensions, even if the equation for E[EC] is di�erent, it still
depends only on the resels of the image. For simplicity, we have only considered a random
�eld of Z scores, i.e. numbers drawn from a normal distribution. Moreover, there are now
equivalent results for t, F and χ2 random �elds. For example, SPM8 software uses formulae
for t and F random �elds to calculate corrected thresholds. Since it is not exactly correct
the assumption according to which the smoothness is the same as any explicit smoothing
we have applied, algorithms that can calculate the smoothness from the images themselves
have to be applied. In practice, smoothness is evaluated using the residual values from the
statistical analysis as described in [32] and [33].

There are two assumptions underlying RFT. Firstly, the error �elds have to represent a
reasonable lattice approximation to an underlying random �eld with a multivariate Gaussian
distribution. Secondly, it is assumed that these �elds are continuous. If the data have
been su�ciently smoothed and the general linear model correctly speci�ed then the RFT
assumptions will be met and the RFT threshold is more accurate than the Bonferroni [30].
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Chapter 4

Support Vector Machines

Multivariate approaches are taking place as alternative methods to standard univariate anal-
yses such as VBM, in order to be capable of detecting subtle and spatially distributed di�er-
ences in brain anatomy that are di�cult to appreciate using conventional mass-univariate
methods. In contrast to the last, pattern recognition techniques take into account speci�c
inter-regional dependencies, using these information to classify data into one or more classes,
for example patients and controls.

In this chapter describe the Support Vector Machines (SVMs) analytic approach [34],
a multivariate technique whose importance is actually increasing in investigating about
structural brain abnormalities in patients with respect to controls. Moreover, the SVM
pattern recognition technique allows to investigate on the predictive capability of MRI
scan, instead VBM does not provide predictive value, limiting its diagnostic impact [39].

Since in our study we have implemented linear kernel SVMs, we will principally focus on
the theoretical principals their are based on and we will outline the optimization techniques
adopted by Joachims and implemented within the SVM-Light software package (http:
//www-ai.cs.uni-dortmund.de/svm_light) [38].

The SVM classi�cation performance will be evaluated in terms of the area under the
receiver operating characteristic curve (AUC) [35], obtained in a cross-validation framework.
These procedures will be described in the second part of the chapter.

4.1 Linear Support Vector Machines

4.1.1 The separable case

We can begin talking about the simplest case that regards linear machines trained on sepa-
rable data. In the machine learning classi�cation framework, each image is considered as a
point in a high dimensional space, which dimension is equal to the number of voxels in the
image (d). We will face with the simplest task of classifying the images into two classes, for
example patients and controls [36].

Each image can be seen as a vector of d elements (xi ∈ Rd) labelled with yi ∈ {−1, 1},
where i = 1, ..., l and l represents the number of images composing the sample. The clas-
si�cation problem can be viewed as a task of �nding a separating hyperplane that divides
the positive from the negative examples.

The classi�cation procedure consists of two phases: training and testing. Firstly we have
to divide the dataset into two groups: the training set and the test set. During the training,
the algorithm estimates a hyperplane that separates the examples contained in the training
set according to their labels. We can indicate each provided example with {xi, yi}. The
decision function that has been learned from the training data then can be used during the
testing phase to predict the class of a new test example.
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Figure 4.1: Linear separating hyperplanes for the separable case. The support vectors are
circled [36].

We now suppose of having some hyperplane which separates the positive from the neg-
ative examples. The points x which lie on the separating hyperplane satisfy the following:

w · x + b = 0, (4.1)

where w is normal to the hyperplane and |b|/‖w‖ represents the distance from the hyper-
plane to the origin. Let d+ (d−) be the shortest distance from the separating hyperplane
to the closest positive (negative) training point. We can also de�ne the `margin' of a sepa-
rating hyperplane to be d+ + d−. The support vector algorithm searches for the separating
hyperplane characterized by the largest margin.

Suppose now that all the training data satisfy the following relations:

xi ·w + b ≥ +1 for yi = +1, (4.2)

xi ·w + b ≤ −1 for yi = −1, (4.3)

that can be summarized:
yi(xi ·w + b)− 1 ≥ 0 ∀i. (4.4)

The points which satisfy the eq. (4.2) lie on the hyperplane H1 : xi · w + b = +1 with
normal w and distance from the origin |1 − b|/‖w‖. The points for which the eq. (4.3)
holds lie on the hyperplane H2 : xi ·w + b = −1 with normal w and perpendicular distance
from the origin | − 1 − b|/‖w‖. Therefore d+ = d− = 1/‖w‖ and the margin is simply
equal to 2/‖w‖. Moreover H1 and H2 are parallel and no training points fall between them.
Thus we have to �nd the couple of hyperplanes which maximize the margin, therefore we
have to minimize ‖w‖2 subject to constraints in eq. (4.4). The solution for a typical two
dimensional case will have the form shown in �gure 4.1. Those training points which lie
on one of the hyperplanes H1, H2, and whose elimination would change the �nal solution
computed, are called support vectors. These are indicated in �gure 4.1 by extra circles.

We can switch to a Lagrangian formulation of the problem, in fact the constraints in
eq. (4.4) can be interpreted as constraints on the Lagrangian multipliers. This Lagrangian
formulation is the one that is used in the actual training and testing algorithms, in fact it
can be easily generalized to the nonlinear case.

We now introduce positive Lagrangian multipliers αi, where i = 1, ..., l, one for each
inequality constraint in the eq. (4.4). In order to build the Lagrangian function, we have
to subtract the constraints equations multiplied for the αi from the objective function, the
one that we want to minimize. Therefore it gives the Lagrangian:

LP ≡
1

2
‖w‖2 −

l∑
i=1

αiyi(xi ·w + b) +
l∑

i=1

αi. (4.5)
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To solve our problem we have to minimize LP with respect to w, b, and simultaneously
imposing that the �rst derivatives of the Lagrangian with respect of all the αi vanish, all
subject to the constraints αi ≥ 0 (we now call this particular constraints C1). This represents
a convex quadratic programming problem and those points which satisfy the constraints also
form a convex set. According to Fletcher [41], this means that we can equivalently solve
the `dual' problem: maximize LP , subject to the constraints that the gradient of LP with
respect to both w and b vanish, and also to the constraints αi ≥ 0 (we can call these
particular constraints C2). This dual formulation of the problem is called Wolfe dual and
possesses the property that the maximum of LP , subject to constraints C2 occurs for the
same values of w, b and αi for which LP is minimized, subject to the constraints C1.

Minimize the Lagrangian with respect of w and b leads to the conditions:

w =
∑
i

αiyixi, (4.6)

∑
i

αiyi = 0. (4.7)

Because these are equality constraints in the dual formulation, we can substitute them into
the eq. (4.5), obtaining:

LD =
∑
i

αi −
1

2

∑
i,j

αiαiyiyjxixj , (4.8)

where P indicates primal and D means dual. Support vector training takes place by max-
imizing LD with respect to the αi subject to constraints in eq. (4.7) and positivity of the
αi, leading to the solutions reported in eq. (4.6). There is a Lagrange multiplier for every
training point. In the solution, those points for which αi > 0 are called support vectors,
and lie on one of the hyperplanes H1 or H2. All other training points have αi = 0 and lie
on H1 or H2, or on that side of H1 or H2, such that the strict inequality in eq. (4.4) holds.
In these case the support vectors are the critical elements of the training set. Hence, if all
other training points were removed (or moved around, but so not to cross H1 or H2), and
the training algorithm was repeated, the same separating hyperplane would be found.

4.1.2 The Karush-Kuhn-Turker Conditions

The Karush-Kuhn-Tucker (KKT) conditions play a central role in the theory of constrained
optimization. For the minimization problem of LP formulated above, the KKT conditions
are [41]:

∂

∂wν
LP = wν −

∑
i

αiyixiν = 0 ν = 1, ..., d, (4.9)

∂

∂b
LP = −

∑
i

αiyi = 0, (4.10)

yi(xi ·w + b)− 1 ≥ 0 i = 1, ..., l, (4.11)

αi ≥ 0 ∀i, (4.12)

αi(yi(w · xi + b)− 1) = 0 ∀i. (4.13)

The last conditions are satis�ed at the solution of any constrained optimization problem
(convex or not) [36]. The problem for SVMs is convex, and for convex problems, the KKT
conditions are necessary and su�cient for w, b, α to be a solution [41]. Therefore, solving
the SVM problem is equivalent to �nding a solution to the KKT conditions. This fact
results in many approaches to �nding the solution [38]. Finding the solution for real world
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problems usually requires numerical methods, in fact are really rare the cases where the
solution can be found analytically. The support vector optimization problem can be solved
analytically only when the number of training data is very small, or for the separable case
when it is known beforehand which of the training data become support vectors [36].

4.1.3 The non-separable case

The above algorithm for separable data, when applied to non-separable data, will �nd no
possible solution, in fact the Lagrangian shows a growing arbitrarily large [36]. In this case
is introduced a further cost through positive slack variables ξi, i = 1, ..., l, added in the
constraints in eqs. (4.2) and (4.3) [34]:

xi ·w + b ≥ +1− ξi for yi = +1, (4.14)

xi ·w + b ≥ −1 + ξi for yi = −1, (4.15)

ξi ≥ 0 ∀i. (4.16)

An error occurs when ξi exceeds unity, hence
∑

i ξi is an upper bound on the number of
training errors. Therefore we can assign an extra cost for errors by changing the objective
function to be minimized from ‖w‖2/2 to ‖w‖2/2 + C(

∑
i ξi)

k, where C is a parameter to
be chosen by the user, and a larger C corresponds to assigning a higher penalty to errors.
This is a convex programming problem for any positive integer k. Formulating the Wolfe
dual problem [36, 41] for the choice k = 1, it is possible to show that the only di�erence
from the optimal plane case is that the αi now have an upper bound of C. In this case the
Wolf problem becomes maximize:

LD ≡
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxixj , (4.17)

with respect to the following:
0 ≤ αi ≤ C, (4.18)∑
i

αiyi = 0. (4.19)

The solution is given by:

w =

NS∑
i=1

αiyixi, (4.20)

where NS is the number of support vectors. The current situation is displayed is �gure 4.2.

The primal Lagrangian can be written according to its de�nition:

LP =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi{yi(xi ·w + b)− 1 + ξi} −
∑
i

µiξi, (4.21)

where the µi are Lagrange multipliers introduced to enforce positivity of the ξi. The KKT
conditions for this problem are (i = 1, ..., l and ν = 1, ..., d) [36]:

∂LP
∂wν

= wν −
∑
i

αiyixiν = 0, (4.22)

∂LP
∂b

= −
∑
i

αiyi = 0, (4.23)
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Figure 4.2: Linear separating hyperplanes for the non-separable case. The support vectors are
circled. [36].

∂LP
∂ξi

= C − αi − µi = 0, (4.24)

yi(xi ·w + b)− 1 + ξi ≥ 0, (4.25)

ξi ≥ 0, (4.26)

αi ≥ 0, (4.27)

µi ≥ 0, (4.28)

αi{yi(xi ·w + b)− 1 + ξi} = 0, (4.29)

µiξi = 0. (4.30)

We can use eqs. (4.29) and (4.30) to determine the threshold b. Moreover, we can notice
that combining eq. (4.24) with eq. (4.29) we obtain that ξi = 0 if αi < C. Therefore we
can simply take any training point for which 0 < αi < C to use eq. (4.29) (with ξi = 0) to
calculate b.

4.2 An introduction to Nonlinear Support Vector Machines

As seen above, the only way in which the data appear in the training problem (see equations
(4.17)-(4.19)) is in the form of dot products, xi · xj . Therefore we now suppose to map the
data to a new Euclidean space H (possibly in�nite dimensional), using a mapping function
Φ:

Φ : Rd 7→ H. (4.31)

Therefore, the training algorithm will only depend on the data though dot products in H,
of the form Φ(xi) · Φ(xj). Hence, if we de�ne a `kernel function' K:

K(xi,xi) = Φ(xi) · Φ(xj), (4.32)

we would only need to employ K in the training algorithm in order to compute a solution
and we would never need to explicitly know what Φ is. If one replaces xi ·xj with K(xi,xj)
everywhere in the training algorithm, its application will produce support vectors that live
in H.

In order to use the machine in the test phase we need w, that also lives in H. During
test phase an SVM is used by computing dot products of a given test point x with w, or
more precisely by evaluating the sign of the following:

f(x) =

NS∑
i=1

αiyiΦ(si) · Φ(x) + b =

NS∑
i=1

αiyiK(si,x) + b, (4.33)
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where the si are the support vectors. Therefore, again we can avoid the explicit calculation
of Φ(x) and use K(si,x) = Φ(si) · Φ(x) instead.

To be sure of obtaining a unique solution, the kernel function has to be opportunely
chosen. In particular it has to satisfy the Mercer's condition [34, 36]. It says that there
exists a mapping Φ and an expansion:

K(x,y) =
∑
i

Φ(x)iΦ(y)i, (4.34)

if and only if, for any g(x) such that:∫
g(x)2dx is �nite, (4.35)

then ∫
K(x,y)g(x)g(y)dxdy ≥ 0. (4.36)

For speci�c cases it may be not easy to verify whether Mercer's condition is satis�ed.
In general, if one uses a kernel for which Mercer's condition does not hold, there may exist

data such that the Hessian is inde�nite, and for which quadratic programming problem will
have no solution (the dual objective function can become arbitrarily large) [36]. However,
even for kernels that do not satisfy Mercer's condition, one may check if the training data
have a positive semide�nite Hessian, in which cases the training will converge perfectly well.

Some examples showing the di�erence between linear and nonlinear kernel SVMs appli-
cations to a two-class pattern recognition problem are reported in �gure 4.3. Figures 4.3c
and 4.3d show results for the same pattern recognition problem displayed in 4.3a and 4.3b
respectively. Notice that, even though the number of degrees of freedom is higher when a
cubic kernel (a polynomial of degree p in the data K(x,y) = (x ·y +1)p, where p = 3 in the
case of a cubic kernel) is chosen, for the linearly separable case (�gure 4.3c), the solution
is roughly linear, indicating that the capacity is being controlled. Moreover notice that the
linearly non-separable case (�gure 4.3b) has become separable (�gure 4.3d) [36].

The optimization method currently used is an active set method that combines gradient
and conjugate gradient ascendent. Firstly the objective function is computed and also its
gradient, at very little extra cost. In phase 1 the search directions s are �xed along the
gradient. Then, the nearest face along the search direction is found. If the dot product of
the gradient there with s indicates that the maximum along s lies between the current point
and the nearest face, the optimal point along the search direction is computed analytically,
and phase 2 can begin. Otherwise the algorithm jumps to the new face and repeat phase
1. In phase 2 conjugate gradient ascendent is done, until a new face is encountered or
the stopping criterion is met. The algorithm stops when the fractional rate of increase of
the objective function falls below a tolerance. A good manner to verify if the algorithm is
working is to check that the solution satis�es all the KKT conditions for the primal problem.
In fact these represent the necessary and su�cient conditions that the solution be optimal.
The KKT conditions are equations (4.22) through eq. (4.30), with dot products between
data vectors replaced by kernels wherever they appear [36]. Furthermore, a more detailed
description of the optimization algorithm developed for SVM-Light package by Joachims is
given in [38].

4.3 Discrimination maps and Recursive Feature Elimination

As we will see later, in the present study we exclusively used a linear kernel SVM to reduce
the risk of over�tting the data and to make possible the direct extraction of the weight
vector as an image (the SVM discrimination map). We remark that the weight vector is
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(a) (b)

(c) (d)

Figure 4.3: Four examples of a two-class pattern recognition problem. The two classes are
denoted by black and grey circles respectively. The background colour shows the
shape of the decision surface. Figures 4.3a and 4.3b regard linear SVMs, separable
and non-separable cases respectively. Moreover, �gures 4.3c and 4.3d are obtained
using a cubic kernel for the same cases respectively of �gures 4.3a and 4.3b [36].
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a linear combination of the support vectors and is normal to the estimated hyperplane.
Moreover the linear kernel only has one parameter (C) that controls the trade-o� between
having zero training errors and allowing misclassi�cations.

When we use linear kernel SVMs to distinguish between two groups, the weight vector
normal to the hyperplane indicates the direction along which the two groups of images di�er
most [39]. Therefore, we can use this vector to generate a map of the most discriminating
regions, so called discrimination map. Because the SVM classi�er is naturally multivariate,
this map can be interpreted as the spatial pattern by which the groups di�er.

In order to identify the the most discriminating set of voxels, SVM recursive feature
elimination (SVM-RFE) can be applied [42, 43]. This method iteratively removes features
(voxels) from the data set with the purpose of removing the major number of non-informative
features as possible while retaining most discriminating features. Having chosen a feature
ranking criterion to remove a subset of the least informative features, an SVM classi�er is
trained at each iteration with the aim of evaluating the behavior of classi�cation accuracy as
a function of the number of voxels in the data. There is some evidence that SVM-RFE can
produce improvements in the predictive accuracy for functional MRI (fMRI) data [43]. In
contrast, we will use this method to remove non-informative features from the weight vector
and to �nd the most parsimonious weight representation possible. Therefore, each feature
subset does not depend on the test data because the weight vector has been computed
exclusively from the training data and the resulting estimate of accuracy will be unbiased,
since the weight vector group map has been constructed using all subject data [39].

4.4 Evaluation of learning methods

Evaluation is the key to making real progress in learning methods. To determine which
ones to apply in a particular situation we need systematic ways to evaluate how di�erent
methods work and to compare one with another.

4.4.1 Error rate

For classi�cation procedures, it is natural to quantify the classi�cation performance in terms
of the error rate. If the classi�er correctly predicts the class of a instance then it is counted
as a success. Instead, if not, it is counted as an error. Therefore the error rate can be
considered as the proportion of errors made over a whole set of instances, and it measures
the overall performance of the classi�er [35].

Obviously, we are interested on the future performance on new data, not the past per-
formance on old data. Hence, performance on the training set does not represent a good
indicator of performance on an independent test set. If the old data was used during the
learning process to train the classi�er, the error rate on old data cannot be considered to
be a good indicator of the error rate on new data.

The error rate on the training data is called the resubstitution error, since it is calculated
by resubstituting the training instances into a classi�er that was constructed for them.
Although it is not a reliable predictor of the true error rate on new data, it is often usually
to know.

Instead, to evaluate the performance of a classi�er on new data, we have to estimate
the error rate on data that are not been used during the learning phase. This independent
dataset is called test set. It is important that the test data was not used in any way to
create the classi�er. If the training set is used to create the classi�er, then the test data is
used to calculate the error rate of the �nal classi�cation method. The accuracy of the error
estimate can be quanti�ed statistically [35].
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Table 4.1: Di�erent outcomes of a two-class prediction.

Predicted class

yes no

Actual class
yes TP FN

no FP TN

In the two-class classi�cation case with classes yes and no, a single prediction has the
four possible outcomes shown in table 4.1. The true positives (TP) and the true negatives

(TN) are correct classi�cations. A false positive (FP) occurs when the outcome is incorrectly
predicted as positive when it is actually negative. A false negative (FN) occurs when the
outcome is incorrectly predicted as negative when it is actually positive. Therefore we can
de�ne the true positive rate (tp) and the false positive rate (fp):

tp =
TP

TP + FN
(4.37)

fp =
FP

FP + TN
(4.38)

Moreover we can de�ne the overall success rate as the number of correct classi�cations
divided by the total number of classi�cations:

success rate =
TP + TN

TP + TN + FP + FN
(4.39)

Finally, the error rate is one minus the last:

error rate = 1− success rate =
FN + FP

TP + TN + FP + FN
(4.40)

Physicians talk about the sensitivity and speci�city of diagnostic tests. Sensitivity refers
to the proportion of people with disease who have a positive test result, that is tp. Speci�city
refers to the proportion of people without disease who have a negative test result, which is
1− fp. Sometimes the product of these two quantities is used as an overall measure:

sensitivity × speci�city = tp(1− fp) =
TP · TN

(TP + FN) · (FP + TN)
(4.41)

In a multiclass prediction, the result on a test set is often displayed as a two-dimensional
confusion matrix with a row and a column representing each class. Each matrix element
shows the number of test examples for which the actual class is the row and the predicted
class is the column. Good results correspond to large numbers in the main diagonal and
small, ideally zero, o�-diagonal elements [35].

4.4.2 Cross-validation

Since in general we have a limited amount of data for training and testing, the classi�cation
procedure uses a certain amount for testing and the reminder for training. In practical terms,
it is common to hold out one-third of data for testing and use the remaining two-thirds for
training. Both the samples used for testing and for training have to be representative subsets
of the underlying problem. Therefore a random sampling have to be done in such a way
as to guarantee that each class is properly represented in both training and test sets. This
procedure is called strati�cation, and we might speak of strati�ed holdout. A general way to
reduce any bias caused by the particular sample chosen for holdout is to repeat the whole
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process, training and testing, many times with di�erent random samples. In each iteration a
certain proportion of the data is randomly selected for training, possibly with strati�cation,
and the reminder used for testing. The error rates on the di�erent iterations are averaged
to estimate an overall error rate. This is the repeated holdout method of the error rate
estimation.

In a single holdout procedure, one could consider swapping the roles of testing and
training data and average the two results, thus reducing the e�ect of not consistent repre-
sentation in training and test sets. However, it is only possible with a 50:50 split between
training and test data, which is generally not ideal, in fact it is preferable to use more
than half the data for training even at expense of test data. A simple variant of this basic
technique is a statistical method called cross-validation. Within this procedure, one decides
to divide the data in a �xed number of folds, or partitions of the dataset. For example, we
can decide of dividing the data into three approximately equal partitions and each in turn
is used for testing and the remaining is used for training. That is, we are using two-thirds
for training and one-third for testing and then we can repeat the procedure three times
so that, in the end, every instance has been used exactly once for testing. This is called
three-fold cross-validation, and if strati�cation is applied as well, it is called strati�ed cross-

validation. The last only was an example, but there are several ways of measuring the error
rate of a learning scheme on a particular dataset. Two that are particularly important are
leave-one-out cross-validation and the bootstrap.

Leave-one-out

Leave-one-out cross-validation is a n-fold cross-validation, where n represents the number
of instances in the dataset. Each instance in turn is left out, and the classi�er is trained on
all the remaining instances (n − 1). The results of all n judgments are averaged, and that
average represents the �nal error estimate.

This algorithm possesses two advantages. Firstly, the greatest possible amount of data is
used for training at each iteration, which presumably increases the chance that the classi�er
is an accurate one. Secondly, the procedure is deterministic: no random sampling is involved.
There is no way of repeating it, the same result will be obtained at each iteration.

Nevertheless, this method has a high computational cost, because the entire learning
procedure has to be repeated n times, and this is really expensive for large datasets. Another
disadvantage is that this method cannot be strati�ed. Strati�cation involves getting the
correct proportion of examples in each class into the test set, and this is impossible when
the test set contains only a single example.

However, leave-one-out cross-validation seems to o�er a chance of obtaining the maxi-
mum out of a small dataset, resulting in an accurate estimate as possible.

A variant of leave-one-out that we have adopted in the current study is the commonly
used leave-two-out cross-validation approach, which provides a relative unbiased estimate of
the true generalization performance [39]. In each trial observations from one subject from
each group are used to train the classi�er.

The bootstrap

The bootstrap is based on the statistical procedure of sampling with replacement. In the
precedent method, whenever a sample was taken from the dataset to form a training or test
set, it was drown without replacement. Therefore, the same instance, once selected, could
not be chosen again. Instead, the idea of the bootstrap method is to sample the dataset
with replacement to form a training set.

A particular variant is called the 0.632 bootstrap, where a dataset of n instances is
sampled n times, with replacement, to give another dataset of n instances. Since there
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Figure 4.4: An example of ROC curve [35].

must be some instances in the original dataset that have not been picked, they can be used
to form the test set. We can evaluate the chance that a particular instance will not be
picked after n extractions with replacement. It has a 1/n probability of being picked each
time and therefore a probability 1 − 1/n of not being picked. Hence we have to multiply
these probabilities for the number of extractions, obtaining:

p =
(

1− 1

n

)n
≈ e−1 = 0.368 (4.42)

The last gives the chance of a particular instance not being picked at all. Therefore, for a
reasonably large dataset, the test set will contain about the 36.8% of the instances and the
training set the 63.2% (this is the reason why this method is called 0.632 bootstrap).

However, this method usually leads to a pessimistic estimate of the true error rate,
because the training set contains only 63% of instances, which is not great deal compared,
with the 90% of 10-fold cross-validation. Often the whole bootstrap procedure is repeated
several times and the results averaged.

4.4.3 ROC curves

Diagnostic accuracy of data mining schemes can be evaluated through graphical techniques
such as ROC curves (receiver operating characteristic curves)[46, 47]. These curves represent
the performance of a classi�er plotting the sensitivity (tp) versus 1-speci�city, i.e. the false
positive rate (fp). A ROC curve estimates and reports all of the combinations of sensitivity
and speci�city that a diagnostic test is able to provide. The northwest corner is the better
place to be, in fact here there are the maximum number of true positives and the minimum
number of false positives, as shown in �gure 4.4 (ROC curve is the jagged line). In general,
one point is better than another if tp is high, fp is low, or both. The point (0,1) represents
a perfect classi�cation. The diagonal line y = x represents the e�ect of randomly guessing
a class.

It can be estimated by applying cross-validation. A simple approach is to collect the
predicted probabilities for all the various test sets (of which there are 10 in a 10-fold cross-
validation), along with the true class labels of the corresponding instances, and generate
a single ranked list based on this data. This assumes that the probability estimates from
the classi�ers built from the di�erent training sets are all based on equally sized random
samples of the data [35].

ROC curves can be summarized in a single quantity: the area under the curve (AUC).
The last is largely employed because larger is the area then better is the model. The area can
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also be interpreted as the probability that the classi�er ranks a randomly positive instance
above a randomly chosen negative one. Moreover, the meaning of AUC has been proved
to be the probability that a random pair of positive/diseased and negative/non-diseased
individuals would be correctly identi�ed by the diagnostic test [44].
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Chapter 5

Magnetic Resonance Imaging data

acquisition, preprocessing and

volumetric analysis

While the VBM is a standard and well-established mass-univariate method, the SVM mul-
tivariate analysis has been rarely implemented to investigate brain MRI data. An improve-
ment of our knowledge on the pattern classi�cation approach is necessary to be achieved,
both to assess its exploratory capability and to point out advantages and disadvantages
with respect to the more largely used VBM approach. Despite these methods are poten-
tially suitable to investigate a large variety of neurological and neuropsychiatric disorders,
in the present study they have been employed with the purpose of detecting neuroanatomi-
cal and gender-related abnormalities in children with autism spectrum disorders (ASD). In
fact, the di�erences in the neuroanatomy of young children with ASD are an intriguing and
still poor investigated issue.

The preliminary step both in VBM and SVM analyses is the image preprocessing de-
scribed in this chapter. The data acquisition parameters, the demographic characteristics
and the global volumetric analysis of the subjects involved in this study are also presented
and discussed in this chapter.

5.1 Magnetic Resonance Imaging data acquisition

A total of 152 structural MRI scans were selected. Speci�cally, our dataset was composed by
76 ASD children and 76 matched controls in the 2-7 year age range. The matching was based
on age, sex and non verbal intelligence quotient (NVIQ). In fact, both groups of patients
(ASD) and controls (C) were composed by 38 males and 38 females, of which 19 males
and 19 females with NVIQ<70 (ASDm-DD, ASDf-DD, Cm-DD and Cf-DD respectively)
and 19 males and 19 females with NVIQ ≥70 (ASDm-noDD, ASDf-noDD, Cm-noDD and
Cf-noDD respectively), where m stands for male, f stands for female, DD means idiopathic
developmental delay (NVIQ<70) and noDD regards children without developmental delay
(NVIQ ≥ 70).

MRI data were acquired using a GE 1.5 T Signa Neuro-optimized System (General
Electric Medical Systems) at IRCCS Stella Maris Foundation, �tted with 40 mT/m high-
speed gradients. The standard MR protocol for children included FSE T2-wighted, FLAIR,
DWI, SE T1-weighted sequences and a single voxel 1H MR spectrum. Furthermore, a
whole-brain fast spoiled gradient recalled acquisition in the steady-state T1-weighted series
(FSPGR) were collected in the axial plane with repetition time 12.4 ms, echo time 2.4 ms,
inversion time 700 ms, �ip angle of 10◦, yielding 124 contiguous 1.1 mm axial slices with an
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in-plane resolution of 1.1×1.1 mm2 [40].
The research protocol was approved by the Institutional Review Board of the Clinical

Research Institute for Child and Adolescent Neurology and Psychiatry.

5.2 Voxel-Based Morphometry-DARTEL image preprocessing

The T1-weighted volumetric images were analyzed with SPM8 package (Statistical Paramet-
ric Mapping, Wellcome Department of Imaging Neuroscience, London, UK, http://www.
fil.ion.ucl.ac.uk/spm), according to the VBM protocol [13] with modulation. Moreover,
we implemented the DARTEL algorithm [26], where a di�eomorphic warping is applied, in
order to obtain an accurate inter-subject registration and to generate a study-speci�c tem-
plate. The VBM preprocessing involves the following steps [40]:

1. checking for scanner artifacts and gross anatomical abnormalities for each subject of
our dataset;

2. setting the origin of each image to the anterior commissure;

3. SPM8 segmentation of brain tissues through the most recent tool `New Segment' [14];

4. importing the parameter �les produced by the tissue segmentation in the DARTEL
procedure to generate a study-speci�c template, and to obtain the brain tissues seg-
mented according to it;

5. a�ne registration of segmented brain tissues into the MNI space;

6. checking for homogeneity across the sample and using standard smoothing (8 mm
isotropic Gaussian kernel).

After this preprocessing we obtained smoothed modulated normalized data (in the MNI
space) to be used for the volumetric analysis (see Section 5.3), for the voxel-wise two-
sample t-test VBM analysis (see Chapter 6) and as input features in the SVM pattern
recognition approach (see Chapter 7). The aim of the modulation step was to render the
VBM statistics re�ective of the absolute amount of GM in di�erent regions rather than the
relative concentration of GM (the proportion of grey matter to other tissue types within a
region). [17].

5.3 Participant characteristics and volumetric analysis

Group di�erences were evaluated by employing self-written Matlab codes for gray matter
(GM), white matter (WM), cerebrospinal �uid (CSF) absolute volumes, and total intracra-
nial volume (TIV), calculated as the sum of GM, WM and CSF volumes. The brain regional
absolute volumes obtained in the brain segmentation step of the VBM-DARTEL prepro-
cessing were considered. The analysis of variance (ANOVA) was applied to identify any
signi�cant between-group di�erence in global tissue volumes. Table 5.1 shows details of the
entire dataset, composed by 76 males and 76 females; tables 5.2 and 5.3 analyse separately
these two groups and �nally tables 5.4 and 5.5 show the characteristics of the two subgroups
of DD and noDD in male and female subsets. The means and the standard deviations of age,
NVIQ, GM, WM, CSF volumes and TIV are displayed, and the between-groups statistics
are reported.

There are no meaningful di�erences between groups on age and NVIQ. Moreover, results
of ANOVA for brain regional volume group di�erences revealed the following results on
p< 0.05: no signi�cant di�erences between ASD subjects and controls in the subgroups of
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Table 5.1: Sample characteristics and global volume group di�erences in the entire dataset.

Variable Subject group, mean ± SD [ range ] ANOVA

ASD (n=76) C (n=76) F p value

Age, months 53± 17 53± 18 0.0002 0.99
[25− 88] [22− 89]

NVIQ 71± 22 73± 23 0.133 0.72
[30− 113] [35− 112]

GM, ml 662± 67 629± 80 7.39 0.007
WM, ml 424± 47 400± 55 8.84 0.003
CSF, ml 225± 25 218± 34 2.41 0.123
TIV, ml 1311± 134 1247± 162 7.18 0.008

Table 5.2: Sample characteristics and global volume di�erences in male group: the character-
istics of the subsamples of subjects with and without developmental delay (DD)
are separately reported.

Variable Subject group, mean ± SD [ range ] ANOVA

ASDm (n=38) Cm (n=38) F p value

Age, months 53± 16 53± 17 0.006 0.94
[27− 87] [24− 88]

NVIQ 71± 21 74± 23 0.25 0.62
[39− 113] [43− 112]

GM, ml 699± 62 664± 83 4.25 0.04
WM, ml 449± 43 423± 56 5.38 0.02
CSF, ml 238± 25 232± 38 0.53 0.47
TIV, ml 1386± 123 1319± 168 3.9 0.052

DD and noDD have been found; GM and WM volumes were found to be higher in ASD
subjects than controls in the complete dataset and in the subgroups of male and female
data. In addition these statistical analyses pointed out meaningful di�erences in TIV in the
entire dataset, and in CSF volume and TIV in the female subgroup.

These statistical tests allowed whole-brain volume comparisons between groups. How-
ever the VBM-voxel-wise two-sample t-test analysis could detect any brain local regions in
which GM volume is signi�cantly higher in ASD subjects as compared to control group.

Table 5.3: Sample characteristics and global volume di�erences in female group: the charac-
teristics of the subsamples of subjects with and without developmental delay (DD)
are separately reported.

Variable Subject group, mean ± SD [ range ] ANOVA

ASDf (n=38) Cf (n=38) F p value

Age, months 53± 18 53± 19 0.0025 0.96
[25− 88] [22− 89]

NVIQ 71± 22 71± 24 0.0004 0.98
[30− 103] [35− 100]

GM, ml 625± 48 594± 60 5.9 0.018
WM, ml 400± 38 376± 44 5.9 0.017
CSF, ml 212± 17 203± 19 5.1 0.027
TIV, ml 1237± 100 1174± 120 6.1 0.016
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Table 5.4: Sample characteristics and global volume di�erences in the subsets of ASD and
Controls male groups.

Variable Subject group, mean ± SD [ range ] ANOVA Subject group, mean ± SD [ range ] ANOVA

ASDm-DD (n=19) Cm-DD (n=19) F p value ASDm-noDD (n=19) Cm-noDD (n=19) F p value

Age, months 55± 16 52± 13 0.25 0.62 52± 16 54± 21 0.08 0.78
[27− 82] [29− 72] [34− 87] [24− 88]

NVIQ 53± 9 52± 7 0.09 0.77 89± 13 95± 10 2.35 0.13
[39− 68] [43− 75] [70− 113] [78− 112]

GM, ml 702± 61 661± 85 2.98 0.09 696± 65 668± 83 1.34 0.26
WM, ml 453± 44 424± 62 2.72 0.11 445± 43 421± 51 2.55 0.12
CSF, ml 238± 22 228± 31 1.13 0.29 238± 30 236± 44 0.01 0.91
TIV, ml 1393± 121 1314± 171 2.71 0.11 1378± 167 1325± 169 1.24 0.27

Table 5.5: Sample characteristics and global volume di�erences in the subsets of ASD and
Controls female groups.

Variable Subject group, mean ± SD [ range ] ANOVA Subject group, mean ± SD [ range ] ANOVA

ASDf-DD (n=19) Cf-DD (n=19) F p value ASDf-noDD (n=19) Cf-noDD (n=19) F p value

Age, months 47± 18 51± 18 0.5 0.47 59± 16 56± 20 0.4 0.5
[25− 83] [26− 77] [36− 88] [22− 89]

NVIQ 53± 14 50± 9 0.5 0.47 90± 10 93± 10 0.8 0.4
[30− 69] [35− 65] [71− 103] [78− 100]

GM, ml 616± 59 584± 53 3.2 0.08 633± 35 605± 66 2.7 0.1
WM, ml 393± 44 369± 41 3.0 0.09 406± 31 384± 47 2.9 0.1
CSF, ml 211± 20 200± 16 3.5 0.07 214± 13 206± 22 1.7 0.2
TIV, ml 1221± 121 1153± 107 3.4 0.07 1253± 73 1195± 132 2.8 0.1
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Chapter 6

Voxel-Based Morphometry analysis of

grey matter segments

VBM statistical analysis was applied to the entire dataset and then to the male and female
subgroups. In all these cases the ASD versus control subjects were given as input groups
to the voxel-wise two-sample t-test , in order to detect neuroanatomical abnormalities in
patients and healthy subjects.

6.1 Statistical analysis of the entire dataset

The regional grey matter (GM) volumes of the entire dataset, composed by 76 males and
76 females, were compared between the two groups of ASD and controls using the VBM-
DARTEL analysis. In order to quantify the comparison, the conventional voxel-wise two-
sample t-test VBM analysis (see Section 3.5.3) in SPM8 was applied, inserting as covariates
Sex, Age and NVIQ, thus ending up with 147 degrees of freedom. The resulting design
matrix is shown in �gure 6.1.

The usual stringent signi�cance threshold p < 0.05 and the family-wise error rate (FWE)
correction with an extent threshold of 10 voxels were employed. Moreover, an absolute
threshold mask of 0.1 on GM was used to avoid possible edge e�ects around the border
between GM and WM.

A signi�cant volumetric between-group di�erence has been found in the GM of the entire
dataset, as can be seen in �gure 6.2. The resulting regions showing larger local GM volume
in the ASD group compared to control subjects are listed in table 6.1, where both MNI and
Talairach1 (TAL) coordinates of each blob centroid are reported. The involved brain regions
are characterized also in terms of Brodmann Areas2 and of the number of voxels contained
in the cluster. Moreover, the localization in the right (R) hemisphere or in the left (L) one
is speci�ed. The opposite contrast, searching for brain regions having larger GM volume
in the control group compared to controls, gave no signi�cative results, consistently to the
GM volumetric analysis results displayed in table 5.1.

6.2 Statistical analysis of the male subgroup

Normalized modulated and smoothed GM image segments of male subjects, beforehand
obtained according to the male plus female study speci�c template generated adopting the

1The Talairach coordinate system of the human brain is commonly used to describe the location of brain
structures independently of individual di�erences in the size and overall shape of the brain. Distances in
Talairach coordinates are measured from the anterior commissure as origin.

2A Broadmann Area is a region of the cerebral cortex de�ned based on its cytoarchitectural organization
of neurons.
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Figure 6.1: Two-sample t-test design matrix for the entire dataset. Group1=control subjects,
Group2=ASD subjects.

Table 6.1: VBM analysis results for the entire dataset.

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Limbic lobe, Parahippocampal gyrus, BA 35 L 284 (−17,−21,−17) (−16,−20,−13)
Limbic lobe, Parahippocampal gyrus, Hippocampus R 79 (27,−16,−18) (24,−15,−13)
Sub-lobar, Caudate, Caudate tail R 14 (39,−27,−9) (35,−26,−6)
Frontal lobe, Superior frontal gyrus, BA 10 L 244 (−27, 53, 4) (−26, 47, 12)
Temporal lobe, Superior temporal gyrus, BA 22 R 38 (69,−49, 16) (63,−49, 15)
Parietal lobe, Precuneus, BA 31 L 1190 (0,−45, 34) (−2,−47, 30)
Limbic lobe, Cingulate gyrus, BA 23 R 10 (5,−22, 31) (2,−25, 30)

68



Figure 6.2: Brain regions showing larger local GM volume in the ASD group compared to
control subjects are overlaid to a representative structural MR image normalized
to the MNI space. These regions are a VBM result with p < 0.05, FWE corrected
and with an extent threshold of 10 voxels.
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Figure 6.3: Brain region showing larger local GM volume in the male ASD group compared to
male control subjects is overlaid to a representative structural MR image normal-
ized to the MNI space. This region is a VBM result with p< 0.05, FWE corrected
and with an extent threshold of 10 voxels. This blob is composed by 115 voxels
and is localized in the Left Cerebellum, Anterior Lobe, Culmen (MNI coordinates:
(-3,-63,-2) ; Talairach coordinates: (-4,-60,-3)

DARTEL algorithm, were entered into a voxel-wise two-sample t-test analysis in SPM8 to
compare ASD and controls subgroups. Age and NVIQ were employed as covariates, thus
ending up with 72 degrees of freedom, and performing the stringent signi�cance threshold
p < 0.05. The statistical analysis was family-wise error rate (FWE) corrected and an
extent threshold of 10 voxels was applied. An absolute threshold mask of 0.1 on GM
was performed to avoid possible edge e�ects around the border between GM and WM. A
signi�cant volumetric between-group di�erence was found in the GM of the male data set,
as shown in �gure 6.3. The brain blob found represents a brain region in which there is a
greater GM volume in ASD group with respect to control group.

The opposite contrast, searching for brain regions having larger GM volume in the
control group compared to controls, gave no signi�cative results, reliably with respect to
GM volumetric analysis results displayed in table 5.2.

6.3 Statistical analysis of the female subgroup

Normalized modulated and smoothed GM image segments of female subjects, obtained
according to the male plus female study speci�c template generated according to the DAR-
TEL procedure, were entered into a voxel-wise two-sample t-test analysis in SPM8 with
the aim of comparing ASD subgroup with respect to controls. Age and NVIQ covariates
were employed, thus ending up with 72 degrees of freedom, and performing the stringent
signi�cance threshold p< 0.05. The statistical analysis was family-wise error rate (FWE)
corrected and an extent threshold of 10 voxels was used. An absolute threshold mask of 0.1
on GM was used to avoid possible edge e�ects around the border between GM and WM.
None signi�cant volumetric between-group di�erence was found in the GM of the female
dataset employing both the contrasts.
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6.4 Considerations

By extending the signi�cance level in both the statistical analyses of the male and female
subgroups, we reobtained some of those regions that have been detected for the entire data
set. When the stringent FWE correction is employed, several regions are not identi�ed as
signi�cative ones because of the restricted number of data contained in the subsets.
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Chapter 7

Pattern classi�cation approach to

grey matter segments analysis

The preprocessed GM segments obtained using the SPM8 software were analyzed using the
SVM pattern classi�cation approach, that presents the advantage of intrinsically taking into
account interregional correlations.

Then the SVM recursive feature elimination (SVM-RFE) procedure has been imple-
mented both to reduce the large number of features in the classi�cation problem and to
enhance the discrimination capability. The SVM-RFE allows also to localize the most dis-
criminant voxels and to visualize them in a discrimination map. However, the pattern
classi�cation method was not employed to predict the class membership of undiagnosed
subjects, but as a �gure of merit allowing to determine an optimal threshold on the dis-
crimination maps, where possible between-group structural di�erences are encoded.

This pattern classi�cation approach has been implemented both for the entire dataset
and for the male and female subgroups, in order to individuate those regions that character-
ize each group. Since do not exist automatic and standard tools that aid SVMs implemen-
tation like those available to apply VBM, all the examinations have been actuated using
self-written MatLab codes and employing the SVM-Light software package [38] to train and
validate our data.

7.1 Support Vector Machine classi�cation of grey matter seg-

ments

The normalized modulated and smoothed GM image segments regarding the entire dataset
and obtained from the VBM-DARTEL preprocessing were given in input to the support
vector machine (SVM) as vectors of features. Each feature represents the amount of GM in
each voxel, as the modulation step has been performed in the SPM8 software.

Linear kernel SVMs have been applied to counteract the data over�tting, that may
occurr as the number of fatures/voxels is very large (about 4 × 105), compared to the 152
patterns of the dataset. In our analysis each patient is matched to a control with respect
to sex, age and NVIQ score, hence we have 76 couples of data.

The SVMs have been trained according to the leave-pair-out cross-validation (LPO-CV)
procedure, thus excluding one couple of matched subjects from the training set at each
iteration, and validating the trained SVM on it. The classi�cation performance has been
evaluated estimating the area under the receiver operating characteristic curve (AUC), which
meaning has been proved to be the probability that a random pair of positive/diseased and
negative/non-diseased individuals would be correctly identi�ed by the diagnostic test [44].
Linear kernel SVMs depend only on one parameter (C), that holds power on the trade-o�

72



between having zero training errors and allowing for misclassi�cations.
In the current study we employed the SVM-Light software package [38]. Using the

heuristic C value computed by SVM-Light, we obtained a low discrimination performance
of SVM trained with all features/voxels of the GM image segments: AUC=0.63.

Therefore we try to improve it by a C-value optimization procedure. This parameter
was varied as follows:

C = 2k where k = −19, . . . , 10. (7.1)

Then, we selected the one which gives the maximum AUC. In this way we obtained AUCopt=0.63.
Therefore, the AUC already reached the maximum value when the heuristic C value was
used.

7.2 Discrimination maps and Support Vector Machine Recur-

sive Feature Elimination

By employing linear kernel SVMs to distinguish between two groups, the weight vector (w)
normal to the separating hyperplane is computed. Then, we can use this vector to generate
a map of the most discriminating regions, so called discrimination map. Because the SVM
classi�er is naturally multivariate, this map can be interpreted as the spatial pattern by
which the groups di�er. The discrimination map has been evaluated here by employing the
optimized C value.

In order to identify the set of voxels holding the highest discrimination power, hence
to achieve a better AUC, we implemented the SVM recursive feature elimination (SVM-
RFE) procedure [42, 43]. This feature-selection method has been implemented by itera-
tively removing from the data set those features which have absolute value of weight vector
component (|wi|) under a threshold Tj . The last is de�ned as follows:

Tj = min|wi|+ j(max|wi| −min|wi|)/N, with j = 0, . . . , N, (7.2)

and N indicates how �nely the AUC versus the number of retained voxels is sampled [40].
The LPO-CV has been implemented on the retained data, optimizing on the C value at
each step j, hence has been possible to give an estimate of the classi�cation performance of
the SVMs in correspondence of the reduced set of features/voxels.

The behavior of AUC versus the number of retained voxels is shown in �gure 7.1. Clearly
this procedure allows an improvement of the classi�cation performance, in fact we obtained
a much better maximum value: AUCmax=0.9. We chose the point of the �gure in which
AUC=0.87, therefore the relative di�erence between AUC and AUCmax was about 3%, to
achieve a compromise between the number of retained voxels and the classi�cation per-
formance. In the selected point the number of voxels used for the classi�cation is 1876,
corresponding to the 0.4% of the total amount of GM voxels.

The discrimination maps obtained at the corresponding threshold value on |wi| encode
the anatomical information about the higher discriminating sets of voxels. Given two groups,
patients and controls, with labels +1 and −1, respectively, a positive value in the discrim-
ination map means relatively higher GM matter volume in patients than in controls and a
negative value means relatively higher GM volumes in controls than in patients [39]. The
regions where GM is greater in ASD subjects with respect to controls are shown in �gure
7.2, whereas the superimposition of the latter and the regions where the weights wi have
negative values is reported in �gure 7.3. These results have been obtained with AUC=0.87.
The best of the involved brain areas, including the BA information and both the MNI and
Talairach coordinates are reported for positive and negative results in tables 7.1 and 7.2,
respectively.
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Figure 7.1: AUC versus the number of voxels with values of |wi| over threshold Tj , consid-
ered for the SVM classi�cation of the GM segments. The maximum AUC value
(AUCmax=0.9) is obtained considering about 32000 voxels (7.5 % of GM voxels)
in the SVM training. The point marked represents the conditions chosen for the
analysis (AUC=0.87, number of retained voxels 1876, about the 0.4 % of GM
voxels).

Table 7.1: Brain areas where GM is greater in ASD group with respect to control group
(AUC=0.87).

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Temporal lobe, Inferior temporal gyrus, BA 20 R 40 (56,−29,−19) (51,−27,−15)
Cerebellum, Posterior lobe R 29 (35,−69,−13) (31,−65,−13)
Temporal lobe, Fusiform gyrus, BA 37 L 48 (−43,−62,−6) (−41,−59,−7)
Temporal lobe, Sub-gyral, BA 37 R 41 (53,−51,−9) (48,−49,−7)
Temporal lobe, Superior temporal gyrus, BA 22 L 78 (−52,−19,−8) (−49,−19,−6)
Temporal lobe, Superior temporal gyrus, BA 41 R 77 (49,−38, 7) (44,−38, 8)
Occipital lobe, Middle occipital gyrus, BA 19 L 56 (−27,−81, 18) (−26,−79, 12)
Frontal lobe, Superior frontal gyrus, BA 10 L 253 (−26, 52, 4) (−25, 47, 12)
Frontal lobe, Superior frontal gyrus, BA 10 R 79 (28, 50, 10) (25, 44, 18)
Temporal lobe, Superior temporal gyrus, BA 39 R 74 (50,−52, 24) (45,−53, 22)
Occipital lobe, Precuneus, BA 31 L 87 (−27,−69, 31) (−26,−68, 25)
Frontal lobe, Middle frontal gyrus, BA 9 L 25 (−25, 42, 23) (−25, 36, 28)
Parietal lobe, Precuneus, BA 31 R 116 (8,−49, 32) (6,−50, 29)
Parietal lobe, Precuneus, BA 31 L 80 (−6,−45, 34) (−7,−47, 30)
White matter, Parietal lobe, Sub-gyral R 16 (35,−38, 42) (30,−41, 39)

Table 7.2: Brain areas where GM is greater in control group with respect to ASD group
(AUC=0.87).

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Occipital lobe, Fusiform Gyrus, BA 18 L 49 (−24,−99,−5) (−24,−94,−10)
Temporal lobe, Inferior temporal gyrus, BA 37 L 33 (−53,−57,−4) (−50,−54,−6)
Temporal lobe, Inferior temporal gyrus, BA 37 R 340 (50,−52, 4) (45,−51, 4)
Parietal lobe, Precuneus, BA 7 R 15 (31,−66, 33) (27,−66, 28)
Parietal lobe, Angular gyrus, BA 39 L 65 (−31,−56, 38) (−31,−57, 33)
Frontal lobe, Middle frontal gyrus, BA 6 L 171 (−38, 14, 42) (−37, 8, 42)
Parietal lobe, Inferior parietal lobule, BA 40 R 15 (54,−37, 45) (48,−40, 42)
Frontal lobe, Superior frontal gyrus, BA 6 R 11 (18, 35, 47) (15, 27, 50)
Parietal lobe, Precuneus, BA 7 R 57 (23,−56, 54) (20,−59, 48)
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Figure 7.2: Discrimination map overlaid to a representative structural MR image. The voxels
in red scale are the ones holding the highest discrimination power (AUC=0.87)
when the number of retained voxels is about the 0.4 % of the total amount of GM
voxels, and correspond to the brain areas where GM is greater in ASD group with
respect to controls.
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Figure 7.3: Discrimination map overlaid to a representative structural MR image. The vox-
els in red and blue scales are the ones with the highest discrimination power
(AUC=0.87), when the number of retained voxels is about the 0.4 % of the total
amount of GM voxels. Voxels in red scale correspond to the brain areas in which
GM is greater in ASD group with respect to controls, instead voxels in blue scale
represent the brain areas in which GM is greater in controls with respect to ASD
group.
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Figure 7.4: AUC versus the number of voxels with values of |wi| over threshold Tj , considered
for the SVM-RFE classi�cation GM segments of male subjects. The maximum
AUC value (AUCmax=0.97) is obtained considering about 46970 voxels (8.6 % of
GM voxels) in the SVM training. The point marked represents the conditions
chosen for the analysis (AUC=0.93, number of retained voxels 1755, about the 0.3
% of GM voxels).

7.3 Pattern classi�cation of male subgroup grey matter seg-

ments

The same procedure described above in the case regarding the entire data set has been
applied to the reduced data set of male subgroup with the aim of detecting those regions
typical of male subjects.

We �rstly evaluated the linear kernel SVMs classi�cation performance adopting the
heuristic C value, thus obtaining AUC=0.58.

Then, in order to achieve a more suitable classi�cation accuracy we employed the C value
optimization procedure. Then, in correspondence of the optimum C value we obtained:
AUCopt=0.68.

The resulting optimized C value was used to construct the discrimination map. The
last was employed to actuate the SVM-RFE procedure with the C optimization at each
step j. The resulting AUC with respect to the number of retained voxels at each step is
displayed in �gure 7.4. The best classi�cation performance (AUCmax=0.97) is obtained
when the number of retained features is about the 8.6 % of the total amount of GM voxels.
Nevertheless, in order to employ a number of voxels comparable to those used in the case of
SVM-RFE applied to the entire data set, we chose as operative point the one with the 0.3%
of the entire amount of voxels, achieving to AUC=0.93. The resulting signi�cative regions
that contain greater GM in ASD with respect to controls group are listed in table 7.3 and
shown in �gure 7.5.
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Figure 7.5: Male discrimination map overlaid to a representative structural MR image. The
voxels in red scale are the ones with the highest discrimination power (AUC=0.93),
when the number of retained voxels is about the 0.3% of the total amount of GM
voxels, and correspond to the brain areas where GM is greater in ASD group with
respect to control group.
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Table 7.3: SVM-RFE resulting brain areas where male GM is greater in ASD group with
respect of controls group obtained with AUC=0.93.

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Temporal lobe, Inferior temporal gyrus, BA 20 R 19 (56,−26,−20) (51,−25,−15)
Frontal lobe, Medial frontal gyrus, BA 9 L 125 (−27, 52, 3) (−25, 46, 11)
Occipital lobe, Middle occipital gyrus, BA 19 L 215 (−29,−84, 16) (−28,−82, 11)
Limbic lobe, Cingulate gyrus, BA 31 R 624 (4,−48, 32) (2,−49, 29)
Parietal lobe, Precuneus, BA 7 L 46 (−26,−66, 34) (−26,−66, 28)
Frontal lobe, Sub-gyral, BA 6 R 15 (24, 2, 52) (21,−5, 51)

7.4 Pattern classi�cation of female subgroup grey matter seg-

ments

The same procedure described above in the cases regarding the entire data set and after
used for male subgroup has been applied to the reduced data set of female subgroup with
the aim of detecting those regions typical of female subjects.

We �rstly evaluated the linear kernel SVMs classi�cation performance adopting the
heuristic C value, thus obtaining AUC=0.58.

In order to achieve a more suitable classi�cation accuracy we employed the C value opti-
mization procedure and we employed the optimum C value to construct the discrimination
map obtaining AUCopt=0.62.

With the purpose of identifying the voxels having the highest discrimination power we
implemented the SVM-RFE procedure in the same way discussed above, applying the C
value optimization procedure at each step j. The behavior of AUC versus the number of
retained voxels is shown in �gure 7.6. It was chosen the point where AUC had the maximum
value: AUCmax=0.83 with 352 voxels, about the 0.07 % of the total number of GM voxels.
In table 7.4 are listed the blobs obtained with AUCmax (see also �gure 7.7). In this case
we chose to display the results relative to so few retained features in order to preserve a
good classi�cation accuracy; in fact for the female subgroup, the AUC is signi�catively
lower than those obtained for the entire data set and for the male subgroup. This �nding is
not surprising as the studies investigating volumetric brain di�erences within female ASD
subjects and matched controls suggest various and largely unreplicated �ndings [40].

Table 7.4: SVM-RFE resulting areas of the brain where female GM is greater in ASD group
with respect of controls group (AUC=0.83).

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Temporal lobe, Superior temporal gyrus, BA 22 L 14 (−53,−21,−8) (−50,−20,−6)
Frontal lobe, Superior frontal gyrus, BA 10 R 47 (27, 51, 11) (24, 45, 19)
Occipital lobe, Precuneus, BA 31 L 66 (−28,−73, 26) (−27,−72, 20)
Frontal lobe, Middle frontal gyrus, BA 9 L 150 (−25, 44, 22) (−24, 37, 27)
Frontal lobe, Middle frontal gyrus gyrus, BA 6 L 67 (−29,−6, 51) (−29,−11, 48)

7.5 Considerations

The optimization steps involved in the pattern classi�cation approach to grey matter seg-
ments analysis described in this chapter have determined an enhancement of the classi-
�cation performance. The principal improvements are due to the C value optimization
application during the SVM classi�cation and to the �nal combination between the recur-
sive feature elimination algorithm and the C value optimization procedure performed at
each features removal step.

In order to instantly realize these improvements, the AUC outline resulting from the
whole data set and from the male and female subgroups pattern classi�cations is shown in
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Figure 7.6: AUC versus the number of voxels with values of |wi| over threshold Tj , considered
for the SVM classi�cation of the female GM segments. The maximum AUC value
(AUCmax=0.83) is obtained when 352 is the number of retained voxels (about 0.07
% of the entire amount of GM voxels) in the SVM training.

�gure 7.8. Step 1 regards SVM with the heuristic C value employed, step 2 shows the AUC
in correspondence of the optimized C value (AUCopt) and step 3 gives the AUCmax resulting
from the SVM-RFE application combined with the C value optimization procedure.

Evidently, a greater classi�cation accuracy is achievable for male subgroup with respect
to the female one. Although the larger number of subjects contained in the whole group
case training set, thus leading to a potentially better generalization ability, a greater dis-
criminating performance is obtained for male subgroup with respect to the entire data set
pattern classi�cation.
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Figure 7.7: Female discrimination map overlaid to a representative structural MR image. The
voxels in red scale are the ones with the highest discrimination power (AUC= 0.83),
when the number of retained voxels is about the 0.07% of the total amount of GM
voxels, and correspond to the areas of the brain where GM is greater in ASD group
with respect to control group. Instead, the point indicated in �gure (1637 retained
voxels) is the one chosen to obtain the discrimination map shown in �gure 7.6.
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Figure 7.8: AUC versus pattern classi�cation step in the whole group and male and female
subsets cases.Step 1 regards SVM with the heuristic C value employed, step 2
shows the AUC in correspondence of the optimized C value (AUCopt) and step 3
gives the AUCmax resulting from the SVM-RFE application combined with the C
value optimization procedure.

7.6 SVM-RFE applied to preselected grey matter regions of

interest

As we have already seen in the current chapter, the employment in our study of the SVM
recursive feature elimination algorithm with the aim of classifying ASD and control subjects
has improved the classi�cation accuracy. Since it is believed that removing non-informative
signal can reduce noise, and can increase the contrast between labelled groups, several fea-
ture selection methods are being developed with the purpose of achieving greater predictive
accuracies. Nevertheless, not all the feature selection approaches lead to greater classi�ca-
tion performances, for example the obtained results depend on the sample size, as discussed
in [48], and there are still many questions to answer in this context.

One type of feature selection method is based on using prior knowledge about some
interesting regions where neuroanatomical abnormalities of patients with respect to controls
can be contained. Such a region of interest (ROI) approach have been employed in the
current study with the aim of looking for those brain regions where GM is greater in ASD
group with respect to matched controls, when the analysed brain regions are a priori selected
by a medical expert. Thus, we could compare the results obtained with a ROI-based analysis
with those achieved by a whole-brain SVM approach, with the aim of understanding if there
are any brain areas that mostly contribute to the classi�cation when not all the GM voxels
are given as input features to the SVMs classi�er.

In order to actuate this study we selected 18 ROIs of grey matter from those de�ned
in the Laboratory of Neuro Imaging (LONI) Probabilistic Brain Atlas (LPBA40) (http:
//www.loni.ucla.edu/Atlases/LPBA40) [49], which were generated from anatomic regions
of MRI delineated manually from 40 subjects. There are 56 structures in the atlas. A pair
of �gures showing the brain regions that have been considered in our analysis are 7.9 and
7.10.

Our selected ROIs were overlayed into a unique image and a�ne registered to our study-
speci�c DARTEL-created template, in order to create a mask to apply on the GM prepro-
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Figure 7.9: 10 selected ROIs of grey matter de�ned in LONI Probabilistic Brain Atlas: L
and R Cingulate Gyri (red scale), L and R Fusiform Gyri (yellow scale), L and R
Hippocampi (green scale), L and R Insular Cortices (cian scale), L and R Middle
Frontal Gyri (blue scale).

Figure 7.10: 8 selected ROIs of grey matter de�ned in LONI Probabilistic Brain Atlas: L and
R Middle Temporal Gyri (yellow scale), L and R Precentral Gyri (green scale),
L and R Superior Frontal Gyri (blue scale), L and R Superior Temporal Gyri
(magenta scale).
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Figure 7.11: An example of GM preprocessed image scan that has been masked on the basis
of the selected ROIs.

cessed image segments of our entire data set. In this way we obtained for each initial
preprocessed GM scan a subset of grey matter voxels. An example of masked grey matter
scan is reported in �gure 7.11.

These reduced normalized modulated and smoothed GM image segments, obtained ac-
cording to ROI-based selection, were given as input to a SVM classi�er. The leave-pair-out
cross-validation procedure was employed to evaluate the classi�cation accuracy. By using the
heuristic C value we evaluated an AUC of 0.582. Then, we decided to optimize this param-
eter. The optimization procedure leaded to a better classi�cation accuracy: AUCopt=0.692.
The optimized C value was used to build the discrimination map that had to be used within
the SVM-RFE algorithm. Using 20 threshold values depending on eq. (7.2), and optimizing
on C at each feature elimination step we obtained the curve of AUC versus the number
of retained voxels that is shown in �gure 7.12. The maximum AUC was AUCmax=0.868,
reached when the number of retained features is about the 10 % of the total amount of
GM voxels. By choosing as operative point the one containing about the 1 % of the total
amount of GM voxels leading to the analysed ROIs, we have obtained the regions showed
in �gure 7.12 and listed in table 7.5, where the GM of ASD group was greater than that of
controls with AUC=0.844. The resulting regions coincide with those already detected in the
whole-brain SVM-RFE analysis of the entire data set excepted for the last, that has been
obtained only for the whole-brain SVM-RFE analysis of female subgroup. These results are
consistent with those regarding the whole-brain pattern classi�cation, but, using the same
number of retained voxels we have collected only 8 of the 15 regions of the whole-brain plus
another that we have proved to be characteristic of female ASD subjects.
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Figure 7.12: AUC versus the number of retained voxels curve, achieved by applying SVM-
RFE-ROI-based analysis. The maximum AUC was AUCmax=0.868, reached
when the number of retained features is about the 10 % of the total amount
of GM voxels. Instead, the point indicated (about 1% of total GM voxels), was
chosen as operative condition corresponding to AUC=0.844.

Table 7.5: Brain areas where GM is greater in ASD group with respect to control group when
SVM-RFE-ROI-based analysis is applied to the entire data set. (AUC=0.844).

Number of voxels MNI coordinates (x,y,z) Talairach coordinates (x,y,z)

Temporal lobe, Inferior temporal gyrus, BA 20 R 91 (56,−30,−19) (51,−28,−15)
Temporal lobe, Superior temporal gyrus, BA 39 R 120 (55,−52,−8) (49,−50, 7)
Temporal lobe, Superior temporal gyrus, BA 22 L 127 (−52,−20,−8) (−49,−19,−6)
Temporal lobe, Fusiform gyrus, BA 37 L 17 (−44,−62,−6) (−41,−59,−7)
Frontal lobe, Superior frontal gyrus, BA 10 L 513 (−26, 51, 7) (−25, 45, 14)
Temporal lobe, Superior temporal gyrus, BA 41 R 95 (48,−37, 7) (44,−37, 7)
Frontal lobe, Superior frontal gyrus, BA 10 R 138 (28, 51, 10) (24, 44, 18)
Parietal lobe, Precuneus, BA 31 R 408 (3,−46, 34) (1,−48, 30)
Frontal lobe, Middle frontal gyrus, BA 6 L 106 (−30,−6, 50) (−29,−12, 48)
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Figure 7.13: Discrimination map obtained from ROI-based analysis overlaid to a structural
MR scan. The regions in red scale indicate those brain areas where the GM
of ASD group is grater with respect to controls. This map corresponds to
AUC=0.844.
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Chapter 8

Impact of the training set on the

SVM analysis

With the aim of strengthening the SVM-based methods applied to brain data and to guar-
antee reliability of the results, we assessed the dependency on the population of the training
set within the cross-validation procedure. In this way we became able to check for the
stability of our results both with respect to the subject chosen to obtain the discrimination
maps in the SVM-RFE procedure and with respect to the number of subjects employed
during the learning phase. Furthermore, we can evaluate the classi�cation performances for
di�erent cross-validation schemes.

8.1 SVM discrimination map update approach

The SVM algorithm that has been implemented in Chapter 7 built the discrimination map
by randomly extracting the support vector parameters obtained from one of the LPO-CV
steps. Such a procedure, was considered to be reliable since the weight vectors obtained
from di�erent cross-validation iterations seemed to be not too distinct one from each other.
Nevertheless, a more accurate investigation can be performed, in order to check for the
reliability of our above reported results. For this reason, we decided to implement a SVM
discrimination map update approach on the entire data set.

Firstly, we collected all the 76 discrimination maps, each obtained from one of the SVM
LPO-CV steps. Then, we employed each of these maps to start a SVM-RFE procedure,
with the purpose of �nally verifying the convergence of all the 76 AUC versus the number of
retained features outlines in our region of interest (about under 5000 voxels). We have now
to remark that the recursive feature elimination algorithm applied in the above described
approach was characterized by a number of retained features at each elimination step that
depended on min|wi| and max|wi| values. Hence, if we change the initial weight vector,
then we also modify the number of retained voxels at each SVM-RFE step. Therefore,
if we did not apply a di�erent recursive feature elimination algorithm, we would not be
able to compare all the discrimination maps at �xed features step. For this reason we
implemented a new recursive procedure that at each elimination step removes the n less
informative features, where n is �xed at each step but usually it is taken di�erent from a
step to each other. In addition, in each recursive step a discrimination map update was
employed by using the support vectors obtained from the last LPO-CV iteration within the
current SVM-RFE step.

In this way we become able to evaluate the mean and the standard deviation of the 76
discrimination maps at each recursive feature elimination step. Some examples of average
maps and their standard deviations when the number of retained voxels is 144000 and 6000
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Figure 8.1: AUC relative standard deviation as a function of the number of retained voxels
step. Standard deviation is evaluated on the 76 AUC values obtained at each
SVM-RFE step from the 76 di�erent initial discrimination maps. In this case the
heuristic C value has been employed.

are shown in �gure 8.2.
In the current situation, the SVM-RFE procedure was applied without C value opti-

mization, in order to limit the execution time, thus the heuristic C value was employed,
entailing a considerable reduction of the AUC. Nevertheless, such a rough procedure allowed
us to realize the AUC versus the number of retained features curves convergence in our re-
gion of interest and to estimate a superior limit to the AUC variability in correspondence
of a �xed number of employed features. Evidently, the AUC variability decreases when the
number of features reduces and �nally it becomes roughly constant, as shown in �gure 8.1,
where the relative standard deviation of AUC is reported as a function of the number of
retained voxels.

A direct comparison between the discrimination maps (containing |wi| values) obtained
in both the approaches (with and without discrimination map update) when the number
of retained voxels is about 1800 is displayed in �gures 8.3 and 8.4. From these images it
is clear that several equal regions are detected in both the cases even if the discrimination
map update approach has been implemented using the heuristic C value, thus the resulting
AUC is considerable lower with respect to the one obtained by employing the C value
optimization procedure.
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(a) Mean of the discrimination maps
at about 14400 retained voxels.

(b) Standard deviation of the discrimination maps
at about 144000 retained voxels.

(c) Discrimination maps mean
at about 6000 retained voxels.

(d) Standard deviation of the discrimination maps
at about 6000 retained voxels.

Figure 8.2: Some examples of mean of discrimination maps (8.2a e 8.2c ) and their standard
deviations (8.2b and 8.3b) in correspondence of some �xed number of retained
voxels.
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(a)

(b)

Figure 8.3: Discrimination maps overlaid to a representative structural MR image (axial co-
ordinate in range (-26, +14)). The voxels in red scale represent the features (|wi|)
with the highest discrimination power between ASD group and controls. Fig-
ure 8.3a shows the mean of the discrimination maps within the update approach
obtained when the number of retained voxels is 1861 and AUC=0.68 (here, the
heuristic C value has been employed). Instead, �gure 8.3b displays the discrim-
ination map (|wi|) obtained without weight vector update when the number of
retained voxels is 1876 and AUC=0.87. The last discrimination map has already
been shown in �gure 7.3. The chromatic scale is that reported in �gure 8.4.
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(a)

(b)

Figure 8.4: Discrimination maps overlaid to a representative structural MR image (axial coor-
dinate in range (+16, +62)). The voxels in red scale represent the features (|wi|)
possessing the highest discrimination power between ASD group and controls. Fig-
ure 8.4a shows the mean of the discrimination maps within the update approach
obtained when the number of retained voxels is 1861 and AUC=0.68 (here, the
heuristic C value has been employed). Instead, �gure 8.4b displays the discrim-
ination map (|wi|) obtained without weight vector update when the number of
retained voxels is 1876 and AUC=0.87. The last discrimination map has already
been shown in �gure 7.3.
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8.2 Impact of the training set size on the SVM analysis

In all analyses reported in Chapter 7, the SVMs have been trained according to the leave-
pair-out cross-validation (LPO-CV) procedure, thus excluding one couple of matched sub-
jects (the matching was made according to sex, age and NVIQ) from the training set at
each CV iteration and validating the trained SVM on it. Nevertheless we can study how
the classi�cation performance changes if we leave more than one couple of subjects at each
iteration. In order to actuate this examination we decided to apply leave-2pairs-out, leave-
4pairs-out and leave-19pairs-out CV procedures that correspond to divide the whole data
set, composed by 76 couples of subjects, in 38, 19 and 4 folds of equal size respectively.

For example, within the leave-4pairs-out CV algorithm the entire data set is �rstly
randomly divided into 19 subgroups, each composed by 4 pairs of matched subjects. Then,
at each cross-validation iteration one of these subgroups is used as validation set and the
rest as training set. Since we want that the same instance, once selected, could not be
chosen again and that training and validation sets are of the same size at each iteration, the
leave-4pairs-out CV procedure will have 19 iterations. These considerations are summarized
in table 8.1 for the last and for the others CV algorithms considered.

Table 8.1: Leave-pair-out CV when the number of pairs that are left out varies. In all the
cases that are reported here we suppose of having an initial data set composed by
76 pairs of subjects.

CV-procedure training set validation set n. of folds (CV iterations)

n. of pairs n. of subjects n. of pairs n. of subjects

leave-1pair-out 75 150 1 2 76
leave-2pairs-out 74 148 2 4 38
leave-4pairs-out 72 144 4 8 19
leave-19pairs-out 57 114 19 38 4

We have to remark that within leave-one-pair-out CV procedure no random sampling
was involved, instead, when more than one pair is left out we become able to evaluate the
classi�cation performance with respect to the initial random data sampling. In fact there
is only one way to sample a group of n instances by picking one instance at a time without
replacement for n times.

In this chapter we will report the results obtained by SVMs applied to the entire dataset
by adopting leave-2pairs-out, leave-4pairs-out and leave-19pairs-out CV algorithms, in order
to compare the obtained results with those relative to the leave-1pair-out CV (reported
in Chapter 7), where the greatest possible amount of data was used for training at each
iteration.

8.2.1 Leave-2pairs-out cross-validation

SVM classi�cation

We began by evaluating the classi�cation performance of SVMs in correspondence of ran-
domly selected couples of matched subjects to compose training and validation sets within
the leave-2pairs-out CV procedure. For this reason we decided to repeat the SVM classi�ca-
tion 20 times, each with a di�erent initial randomization of the data set and by employing
the heuristic C value. In this way we obtained: AUC= 0.611 ± 0.001.

Hence, an optimization of this parameter seems to be necessary. But, in order to be
sure that the optimized C value does not depend on the initial randomization, we decided
to study how the computed optimized C value is related to the initial random sampling.
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Figure 8.5: AUC versus C value in correspondence of 5 di�erent random samplings, evaluated
within leave-2pairs-out CV. The resulting optimized C value is that corresponding
to the maximum AUC and is the same in all 5 runs.

In fact, we repeated the C value optimization algorithm in correspondence of 5 di�erent
randomly composed training and testing sets. The obtained results are shown in �gure
8.5, where the AUC versus the employed C values are reported in the 5 random situations
that have been analysed. The optimized C values resulted to be the same in all 5 cases,
con�rming that it only depends on the number of features considered for training, as shown
in the following section. In this way we obtained AUCopt=0.634±0.003.

SVM-RFE analysis

The resulting optimized C value was used to extract the discrimination map that has been
employed to start the SVM-RFE algorithm with C value optimization at each step. It was
implemented in such a way the number of retained features at each step was �xed. With
the aim of verifying that the optimized C value at each recursive feature elimination step
in correspondence of di�erent initial random samplings of the data set does not change,
we repeated the SVM-RFE algorithm with 5 �xed steps for 5 runs each di�erent from the
others for the initial randomization. The results are shown in �gure 8.6, which displays
the optimized C value versus the number of retained features for 5 di�erent initial ran-
dom samplings. Because the C value stability with respect to the randomization seems to
decrease when a fewer number of retained features is considered, we decided to intensify
the number of retained voxels sampling in the region containing less than 5000 features.
Thus, we applied the SVM-RFE algorithm using 10 �xed steps for 6 runs. In this way we
obtained the results reported in �gure 8.7. We then concluded that the C value is roughly
independent of the initial randomization.

We can apply the SVM-RFE algorithm keeping �xed the initial random sampling of
the data set. In order to allow a direct �nal comparison between the results obtained
from the application of SVM-RFE by employing di�erent leave-pair-out CV approaches, we
decided to implement a recursive feature elimination algorithm that removes a �xed number
of voxels at each step, chosen in such a way the number of retained features sampling
exactly corresponds to that obtained from SVM-RFE algorithm that has been applied to
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Figure 8.6: Optimized C value versus the number of retained features for 5 di�erent initial
random samplings, obtained from SVM-RFE with leave-2pairs-out CV procedure,
when 5 steps are chosen.

Figure 8.7: Optimized C value versus the number of retained features for 6 di�erent initial
random samplings, obtained from SVM-RFE with leave-2pairs-out CV procedure,
when 10 steps are chosen (n. of retained voxels <5000).
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Figure 8.8: AUC versus the number of retained voxels, obtained within the SVM-RFE leave-
2pairs-out CV. The maximum AUC was achieved when the number of retained
voxel was about the 14% of the total amount of GM voxels (AUCmax=0.893).

the entire data set within the leave-1pair-out CV (see Section 7.2). Therefore we obtained
the behaviour of AUC versus the number of retained voxels that is shown in �gure 8.8. The
maximum AUC was achieved when the number of retained voxel was about the 14% of the
total amount of GM voxels (AUCmax=0.893).
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Figure 8.9: AUC versus C value in correspondence of 5 di�erent random samplings, evaluated
within leave-4pairs-out CV. The resulting optimized C value is that corresponding
to the maximum AUC and is the same in all 5 runs.

8.2.2 Leave-4pairs-out cross-validation

SVM classi�cation

We �rstly evaluated the AUC achieved by applying the SVMs within the leave-4pairs-out
cross-validation employing the heuristic C value and repeating the the cross-validation for 5
times, each di�erent from the others for the initial randomization. In this way we obtained
AUC=0.600 ± 0.002.

Then, we actuated the same optimization procedure described above, repeating it for 5
times by changing the initial randomization. The obtained results are shown in �gure 8.9.
Also in this case the optimized C value does not change when a di�erent initial randomiza-
tion is used. The classi�cation accuracy obtained when the optimized C value is employed
is AUCopt=0.629±0.008.

SVM-RFE analysis

The above obtained optimized C value has been employed to build the discrimination map
that has to be used within the recursive feature elimination procedure. The SVM-RFE
algorithm with 5 �xed step was repeated now, as the starting map in the leave-4pairs-out
cross-validation procedure in correspondence of 5 di�erent randomly composed training and
testing sets, with the aim of verifying that the optimized C value in correspondence of a
certain number of retained features does not depend on the initial data set randomization.
The results, expressed in terms of optimized C value with respect to the number of retained
features are shown in �gure 8.10. Even if sometimes the C value is not exactly the same
for di�erent runs, we can consider our procedure to be stable with respect to the initial
randomization because the number of outliers is really poor.

Then, we have implemented the complete SVM-RFE procedure described in Section
8.2.1 by applying the C value optimization at each step, considering the resulting C value
independent from the initial randomization. Therefore, we obtained the usual AUC versus
number of retained features outline, that is displayed in �gure 8.11. The maximum classi�-
cation performance was obtained when the number of retained voxels was about the 4% of
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Figure 8.10: Optimized C value versus the number of retained features for 5 di�erent initial
random samplings, obtained from SVM-RFE with leave-4pairs-out CV procedure,
when 5 steps are chosen.

the total amount of GM voxels with AUCmax=0.893.
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Figure 8.11: AUC versus the number of retained voxels, obtained within the SVM-RFE leave-
4pairs-out CV. The maximum AUC was achieved when the number of retained
voxel was about the 4% of the total amount of GM voxels (AUCmax=0.893).

8.2.3 Leave-19pairs-out cross-validation

Finally, we evaluated the classi�cation performance of SVMs applied to the entire data set
by cross-validating using the leave-19pairs-out method. In order to reduce the execution
time we considered only one initial randomization, by assuming the previous conclusions
about C value stability with respect to the initial data set randomization to be true also in
this case.

The AUC value obtained when the heuristic C value has been employed is AUC=0.601.
Then, we applied the C value optimization algorithm to improve the classi�cation perfor-
mance, achieving AUCopt=0.6273. Then, by employing the optimized C value, the discrim-
ination map was built and it was given as input to the complete SVM-RFE algorithm. The
resulting AUC versus the number of retained features is shown in �gure 8.12. Evidently, a
decrease in classi�cation accuracy is reached. Now, the maximum is AUCmax=0.804 with a
number of retained features of about the 2% of the total amount.
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Figure 8.12: AUC versus the number of retained voxels, obtained within the SVM-RFE leave-
19pairs-out CV. The maximum AUC was achieved when the number of retained
voxel was about the 2% of the total amount of GM voxels (AUCmax=0.804).

8.2.4 Comparison of obtained results

In order to make a direct comparison between the SVM-RFE results obtained from the
di�erent cross-validation procedures, we can represent all together the AUC versus number
of retained voxels in �gure 8.13. Despite the trend seems to be the same in all the cases, a
sensibly lower classi�cation accuracy is reached when the leave-19pairs-out cross-validation
procedure is applied, thus when the training set only contains 57 couples of subjects.

Moreover, we can choose an operative point in the AUC curve where looking for the
signi�cative most discriminative regions where ASD grey matter is greater than that of
matched controls. In order to be able to compare the most interesting regions obtained from
all the cross-validation algorithm, we decided to choose the same operative point that has
been considered in Section 7.2) and that leaded to the signi�cative regions shown in �gure
7.2. As that operative point the number of retained voxels was about 1800 corresponding
roughly to the 0.4 % of the total amount of GM voxels. The resulting AUC versus the
number of subjects composing the training set is shown in �gure 8.14. Thus, when the
number of couples of subjects employed for training remains above 72 (corresponding to
144 subjects), we are sure that the classi�cation performance does not depend on the size
of training set and our results can be considered to be stable. Instead, when the number of
subjects becomes to decrease, the classi�cation performance gradually gets worse.

In correspondence of these AUC values we can obtain the brain regions where GM
is greater in ASD group with respect to controls. When the number of pairs out in the
validation set is 1, 2 or 4 the resulting interesting regions in the discrimination maps are
the same that have been shown in table 7.1, even if their sizes slightly change. Instead,
when 19 pairs are left, thus the training set contains 57 pairs, some regions disappear, as we
can see in �gure 8.15. However, the leave-19-pairs out cross-validation procedure still leads
to a great considerable classi�cation accuracy and several interesting and already obtained
regions remain visible (AUCmax=0.804, instead AUC in the operative point is 0.778 ).
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Figure 8.13: Superimposition of AUC versus number of retained voxels curves, obtained from
SVM-RFE within leave-1pair out, leave-2pairs-out, leave-4pairs-out and leave-
19pairs-out CV procedures.

Figure 8.14: AUC versus training set size expressed in terms of number of couples of subjects.

100



(a) (b)

(c) (d)

Figure 8.15: Discrimination maps overlaid to a representative structural MR image, obtained
from SVM-RFE analysis using leave-1pair-out (8.15a AUC=0.874), leave-2pairs-
out (8.15b AUC=0.868), leave-4pairs-out (8.15c AUC=0.874) and leave-19pairs-
out (8.15d AUC=0.778) cross-validation, and showing those regions where GM
is greater in ASD group than controls.
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Chapter 9

Discussion of the results and

concluding remarks

The aim of this thesis was to compare the widely implemented VBM approach to group stud-
ies in neuropsychiatric disorders with the innovative SVM based multivariate techniques.
Thus we implemented both the analysis approaches on the same data, composed by 152
male and female subjects, 76 ASD subject and 76 healthy controls matched for sex, age and
NVIQ (see Chapters 6, 7, 8) and we compare the results.

The VBM approach detected interesting between group di�erences in the analysis of
the whole data set, whereas it was no enough sensitive to identify volume di�erences in the
subgroups of male and female subjects (see �g. 6.2 ).

The implementation of a SVM-based classi�cation method carried out in this thesis cor-
rectly discriminated ASD male and female subjects with respect to matched controls with
an AUC above the 87 % and with a fraction of retained voxels in the 0.4�29 % range. By
choosing as operative point of the system that corresponding to the lower amount of sig-
ni�cant features (about 0.4 % of the total amount of GM voxels) we obtained a sensitivity
of 82 % and a speci�city of 80 %. The discrimination maps at that operative point showed
the following main signi�cant regions where the GM of ASD subjects (males and females)
is greater than that of the matched control group: Left (L) and Right (R) Superior Frontal
Gyri (BA 10); L and R Precunei (BA 31); R Temporo-Parietal Junction (BA 39); L Supe-
rior Temporal Gyrus (BA 22); R Superior Temporal Gyrus (BA 41). The separate SVM
analyses of male and female subgroups using the whole-group DARTEL-created template
revealed gender di�erences in the following regions where an excess of GM is found in the
ASD individuals with respect to control group: L and R Precunei dominate the male ASD
subgroup; L and R Superior Frontal Gyri and Middle Frontal Gyrus prevail in the female
ASD subgroup.

The consistency with the standard univariate approach was achieved as also the VBM
analysis detected some characteristic regions such as the L and R Precunei (BA 31) and
the L Superior Frontal Gyrus (BA 10), as shown in �g. 9.1. Moreover, by extending the
signi�cance level in the VBM statistical analyses of the entire data set and of the male and
female subgroups, we reobtained some of those regions that have been detected within the
pattern classi�cation approach.

In this study we demonstrated that multivariate approach based on SVM-RFE could
contribute not only to distinguish ASD from control children but also to disentangle the
gender speci�city of ASD brain alterations [50, 51]. Regional neural di�erences between
male and female ASD children could, in its turn, be related on sex-based di�erences in the
phenotypic expression of ASD. Future studies are then required to speci�cally investigate
this issue.

Nevertheless, our examinations and results have highlighted that multivariate approaches

102



(a) (b)

Figure 9.1: Direct comparison between some of the main regions obtained from VBM (9.1a)
and SVM (9.1a) analyses applied to the entire data set.

such as supervised machine learning methods allow the detection of subtle interesting regions
and spatially distributed patterns that would be otherwise unobservable by only employing
traditional univariate methods. In fact, in recent years, SVM has been successfully applied
in the context of disease diagnosis, transition prediction and treatment prognosis, using both
structural and functional neuroimaging data [45]. Because of its advantages over traditional
analytical techniques and its potentialities in neuroimaging research, standardization and
automatization of this method are needed. In order to make it easily implementable and
reachable to all research groups, opportunely creating protocols and software tools, such as
those actually existing to implement VBM analysis, seem to be necessary.

The increasing interest in the application of pattern classi�cation methods to neuroimag-
ing data to aid diagnosis and prognosis in neurological and psychiatric disorders is justi�ed
by a key advantage of these methods over traditional analytical approaches: they allow
inferences to be made at single subject level. Such methods could have high translational
potential in a clinical setting since they may be used to support autism diagnosis in indi-
vidual cases.

In our context, improving the performance of the decisional systems by achieving a
better AUC could make possible to employ the pattern recognition approach not only to
identify brain regions discriminating between patients and controls, but also to predict the
class membership of undiagnosed subjects, thus facilitating the early diagnosis of the ASD
pathology.

Despite there are several theoretical and practical di�culties to the translational imple-
mentation of this approach, the results achieved from our examinations and those of the
study published so far are encouraging and inciting the development of computer-based
diagnostic and prognostic tools in neurology and psychiatry.
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