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Abstract

Magnetic Resonance Imaging, MRI, is one of the most powerful and harmless ways
to study human inner tissues. It gives the chance of having an accurate insight into
the physiological condition of the human body, and specially, the brain. Following
this aim, in the last decade MRI has moved to ever higher magnetic field strength
that allow us to get advantage of a better signal-to-noise ratio. This improvement
of the SNR, which increases almost linearly with the field strength, has several
advantages: higher spatial resolution and/or faster imaging, greater spectral dis-
persion, as well as an enhanced sensitivity to magnetic susceptibility. However, at
high magnetic resonance imaging, the interactions between the RF pulse and the
high permittivity samples, which causes the so called Intensity Inhomogeneity or B1

inhomogeneity, can no longer be negligible. This inhomogeneity causes undesired
effects that affects quantitatively image analysis and avoid the application classical
intensity-based segmentation and other medical functions. In this Master thesis, a
new method for Intensity Inhomogeneity correction at high field is presented. At
high field is not possible to achieve the estimation and the correction directly from
the corrupted data. Thus, this method attempt the correction by acquiring extra
information during the image process, the RF map. The method estimates the
inhomogeneity by the comparison of both acquisitions. The results are compared
to other methods, the PABIC and the Low-Pass Filter which try to correct the
inhomogeneity directly from the corrupted data.
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Chapter 1

Introduction

1.1 Motivation of this work

Human diseases diagnosis has been one of the principal goals in medicine. Since the
beginning of the modern Medicine, all the research has been focused on finding the
causes of the diseases and its cures by understanding human body behavior. In the
case of the neurological research, this idea has been translated in finding the way
of studying the brain in the harmless way.

Since its first days, MR technology has demonstrated to be the best and more
reliable way to study inner tissues of human body, specially the brain. Indeed, it is
considered the harmless and most potent way for giving and accurately insight into
the physiological condition of the brain.

Much have been done in the field of the MRI acquisition at lower fields but not
at higher fields. In fact, clinical systems had improved since the first ones developed
in early 80′s increasing field strength from 0.2T over 1.5T and 3.0T with specially
good results in contrast and image resolution in human brain imaging. But,
the final target in the history of clinical MR has always been moving to ever higher
magnetic field strength. In point of fact, increasing the main field strength allow
us to get advantage of a better signal-to-noise ratio (which increases almost lin-
early with the field strength [27]). This improvement of the SNR allows higher
spatial resolution and/or faster imaging, a greater spectral dispersion, as well as
an enhanced sensitivity to magnetic susceptibility. Its potential has been cleared
demonstrated for high resolution imaging of the brain microvasculature [1], [9], brain
spectroscopy [20], and functional MRI (fMRI).

It has been with the demand of reliable measurements of MR parameters in the
diagnosis and prognosis of disease, that has been placed increased importance on
the accuracy and precision of MR imaging technique. In fact, in the last decade,
MRI studies conducted at 4T have demonstrate the utility of high magnetic fields
in anatomical imaging of the human brain. If we take also into account the great
and continuous successful results obtained at magnetic field up to 9.4T with an-
imals models [40], we can conclude we find ourselves in the best scenario for the
exploration of magnetic field of higher than 4T for human brain studies. Following
that aim, the technology for high field human MR research, which describes
experiences with 7T , 8T and 9.4T , is crossing the boundary to the clinical issues as
most of the drawbacks of this methodology had been solved and it is almost ready
to address clinical issues. The simply reason is that having the chance of giving an
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accurate insight into the physiological condition of the brain can help, not only as
it can might be thought, in tumoral diseases diagnose, but also in the diagnose and
prognosis of less known diseases as Alzheimer or Senile Dementia.

The main drawback when increasing magnetic field intensity in MR imaging is
that, doing so, it also increases the so-called Intensity Inhomogeneity or bias
field which makes specially difficult most of the medical proceedings for diagnosis,
such as the tissue-segmentation or even a visual inspection, affecting the quantita-
tive image analysis.

In low field acquisition, that is to say, fields from intensity less or equal 3
Tesla, the bias field associated to the MRI acquisition had already been defined. As
it can be considerate smooth and with a slow time variation it can be mathe-
matically modeled by smooth functions such as the Legendre polynomials, or just
removed by low-pass filtering. The PABIC, PArametric BIas COrrection, mainly
developed by Martin Styner [31], has been largely tested in MRI acquisitions of 1.5
T with optimal results in bias field correction.

But if we increase the applied main field, we find unsuitable effects or artifacts
that cannot be treated as we have been doing with low-field acquisitions. In fact,
when increasing field strength (specially if we work with high field acquisitions
(> 7T )), the bias field starts having a wave behavior that makes impossible its
approximation by an smooth function as it is strongly dependent in the dielectric
effects, and the conductivity of each tissue in the brain.

During this report we will focus in this wave behavior of the bias field, giving a
method that could (at least partially) erase it from the original image increasing con-
trast and image resolution. This work is divided in several chapters. The Chapter
2 is focused in MRI acquisition process giving an explanation about physics’ back-
ground of this imaging mechanism and the different types of acquisitions we can
obtain while changing parameters in the acquisition pipeline. In the next Chap-
ter, chapter number 3, we will define the bias field approximation either for low
field acquisition than high field ones, giving the main drawbacks when increasing
the main field strength. After that, we will start talking about the state-of-the-art
methods in bias correction, making difference between the prospective methods and
retrospective ones. This will be in Chapter 4. After having sorted all the methods
developed for achieve bias correction, some test had been performed. With this test,
we want to prove that the main methods used until this moment are not enough
valid for successfully correct MR image acquisition with field higher than 3T . The
results are shown in Chapter 5. Is in Chapter 6 where we propose a method of bias
correction based on the acquisition (at the same time that the high contrast image)
of a RF map, which give us the representation of the bias field in the moment
of the acquisition. The conclusion and the future work are presented in the last
Chapter of the report, defining a possible line of work for posterior studies of bias
field correction in 7T MR imaging.

1.2 Goals of this project

The aim of this project is to remove the bias distortion, so called bias field or in-
tensity inhomogeneity, from MRI images of human brain acquired with 7T MR
machines. The images have been supplied by the CIBM, Centre d’Imaginerie
Biomedicale (www.CIBM.ch) which is a collaboration of the Ecole Polytechnique
Federale de Lausanne (EPFL) with L’Universite de Geneve (UNIGE), L’Universite



de Lausanne (UNIL) and its associated research and teaching hospitals (CHUV and
HUG) in Switzerland.

This work has been done in collaboration with the Siemens Development and
Research Group at the CIBM (www.cibm.ch). The images had been acquired with
a Siemens 7T machine sited at the CIBM, EPFL.

Figure 1.1: Siemens MAGNET for 7 Tesla acquisitions

Its technical characteristics are:

• MAGNET: Magnex Scientific 7 Tesla / 680 mm Bore Active shielded Ultra
short length Zero boiloff magnet

• Cryostat length: 2200 mm

• Cryostat diameter: 2700 mm

• Cryostat weight (excluding cryogens): 28 Tonnes approx.

• Nominal operating current: 192 Amps

• Energy stored: 39.3 MJ

• Console: Siemens

The ultimate goal is, obviously, to supply the medical community with a tool
which can allow them to diagnose, in a reliable way, possible human brain diseases
as well as help them understand its behavior.

There are several ways of improving MR imaging depending in the segment of
the acquisition process in which we want to focus. Even if the aim of this work is
to tackle the inhomogeneity problem focusing on improving postprocessing and
image reconstruction algorithms some work had been done in the acquisition
segment. Actually, a technique which uses the combination of both working lines,
seems to be more appropriate for the success in brain imaging at 7 Tesla, which,
nowadays, is becoming a Gold Standard in Medical Research Institutes all over the
world.

The main contribution of this master thesis is demonstrate that the methods for
performing bias field correction in acquisitions with field less than 3T are no longer
useful for correcting 7T acquisitions. All the conclusions an results we will shown in
this master thesis are based in the fact that at 7T the bias can not be assumed as a
slow and smooth variation. This report focus in MRI acquisition of human brains
images, but actually, the bias appears in all MR imaging techniques, whereas we



are imaging the brain or other parts of the body. So that, the conclusion we will
assess for the specific case of the brain, can be extrapolate to other MR images.

This is my little contribution to this work. My one’s bit part of it.



Chapter 2

MRI Acquisition
Fundamentals

During this report, we will be dealing with several magnitudes and parameters of
the MRI acquisition process. Is for that reason that we are starting this lecture
with a little introduction to the MRI experiment just giving a context to facilitate
the comprehension of the text.

Let us start providing general background information about several technical
aspects of MRI which will be used as the basis of further chapters. It wil also help
the reader understand the MRI acquisition process and its principles.

2.1 MR Physics

The MR imaging is based in an harmless natural process at the atomic level such
as the modification of proton spin by magnetic fields or radio-frequency pulses.
The signal then generated can be registered and evaluated by computer-aided image
processing systems MR imaging, giving as a result an image with different types
of contrast depending on the acquisition parameters used. But, what is the spin?
Why is specially useful in MRI imaging?

Each biological body (that is to say, each living tissue) is rich in water (and
therefore, hydrogen) whose nucleus is composed by one proton. This proton is a
particle that has fundamental properties like charge, mass and spin and is this last
one, the spin, the one used in MRI acquisition process.

Spin is a quantum number and it can be thought as ”magnetic moment”.
Each individual unpaired nuclear particle possess a spin of 1/2 and can have pos-
itive (+) or negative (-) sign, which means that two or more spins can be paired
together in order to erase the net spin. Only nuclei with odd number of particles can
have a non-zero spin so that it can interact with external magnetic field by aligning
themselves along/against the field. When placed in a magnetic field of strength B,
a particle with a net spin different to zero can absorb a photon of frequency. This
the principle of MRI.

The magnetic dipole moment for a spin µ is given by

µ = −γ · S = γ~ · I, (2.1)
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where S is the spin angular momentum and I is the spin. The constant γ is the
gyromagnetic ratio and its value depends on the element (in the hydrogen case
equals about 42.6MHz/T ). Spins are in lower energy state when aligned in the
same direction of the external field and in a higher energy state when they are
aligned in the opposite direction. The specially useful quality of particles with spin
is that they can undergo transitions between the energy states by absorbing (or
releasing) photons with energy

E = h · ν, (2.2)

where h is the Planck’s constant and ν is the frequency of the photon. In the case
of MRI experiments this frequency is also seen as the ”resonance frequency” called
the Lamor frequency, which can be rewrite as

ν =
ω

2 · π =
γ

2 · π ·B0. (2.3)

The energy and the spin temperature determine the ratio between the number of
particles in the lower energy state N− and the higher state N+,

N−

N+
= exp(−E/kT ), (2.4)

and it is the difference between those two elements that cause the magnetization of
the object thus, the local magnetic dipole moment per unit of volume:

M =
∑

µ. (2.5)

The hydrogen nuclei interact with three types of magnetic fields in the MRI exper-
iment:

• B0, the main magnetic field.

• B1, the excitation RF (radiofrequency) field.

• G, the gradient field.

and is depending on the interaction with those fields that we can define different
magnetization moments. In static magnetic field, if there’s no other magnetic
field, the net magnetization vector will have the same direction of B0, that we
usually assign at the z direction. This magnetization is called the equilibrium
magnetization(M0).

The B1 field or radio-frequency field is generated by the RF coil and ap-
plied over the xy axis and its strength depends on the power transmitted per time
value. When an excitation RF field is added at the Larmor frequency, the equilib-
rium of the tissue net spin is broken and the magnetization is tipped away from
the z direction at an angle of certain degree. It will rotate about the z direc-
tion at the Lamor frequency and, eventually, come back to the equilibrium state.
This recovery process of the magnetization along the z axis is called longitudinal
magnetization (Mz) and is characterized by an exponential curve with a time
constant T1. In the same way, the recovery process along the xy axis is called the
transverse magnetization (Mxy) and is characterized by the time constant T2

(as it also follows an exponential curve). In fact, this process is due to the fact
that the spins loose phase coherence and start canceling each other out. Is not a
complicate proceeding; when starting the MRI experiment, the spins rotating at
Lamor frequency have zero phase. After TE/2, considering TE the echo time,
some spins will rotate faster than the Lamor frequency and they will accumulate



a positive phase difference equals sin(ω + φ · TE/2). On the other hand, we can
found, also, spins which rotate slower than the Lamor frequency, so its phase dif-
ference will be sin(ω − φ · TE/2). Is at the time TE when they will be in phase
again. The transition back to equilibrium after a perturbation is called relaxation.

The longitudinal magnetization behavior is defined by:

dMz

dt
=

Mz −M0

T1
, (2.6)

and given the initial condition Mz(0) , the solution of this equation can be written
as

Mz = M0 · (1− exp(
−t

T1
)), (2.7)

where T1 is the spin-lattice relaxation time constant of the imaging sample.
Its value is typically longer at high field strengths whereas in lower fields is smaller
as Mz tkes longer to recover.

The transverse relaxation, also called spin-spin relaxation follows the equa-
tion

dMxy

dt
=

Mxy

T2
, (2.8)

and can be solved giving the result

Mxy = M0 · exp(
−t

T2
), (2.9)

where T2 is the spin-spin time constant. The T2 in tissue is independent of field
strength because its decay is due to the phase coherence’s lost.

The two relaxations occurs simultaneously and the T2 value is always smaller (or
equal at least) than T1. The problem is that in MRI experiments is hard to see the
pure T2 effects because it is due to both spin interactions and the B0 inhomogeneity.
For study this double dependence we use the combined time constant, called T ∗2
who can we expressed as

1
T ∗2

=
1
T2

+
1
T ′2

, (2.10)

where T ′2 is called susceptibility. In fact we can assume that T ∗2 decay is due to local
inhomogeneities which can be re-phases and the tissue properties (spin-spin inter-
actions, different structures in the brain such as bones, cartilages and cerebrospinal
fluid). In figure 2.1 we can see an example of this relaxation times depending on
the protocol used for acquiring the image. .

(a) (b)

Figure 2.1: Longitudinal magnetization and transverse magnetization values for a
T1-weighted (a), and T2-weighted (b) images



The gradient field is a compound of linearly variations of the intensity of the
main magnetic field depending of the space, which are transitory added. This ad-
dition is done in order to localize the signals that belong to each voxel, as these
gradients induce attractions and rejection moments between the coils. Each type
of image obtained by MR experiments (EPI, gradient echo, ...) uses an specific
combination of this gradients. In the section Fundamental Acquisition Methods of
this Chapter we will focus in this property of the gradient fields.

In resume, we have to deal with several external magnetic field interactions and
with different relaxations times for the precession motion of the hydrogen spins in-
side the tissues. But, how can we deal with this all together?

For describe the motion of the magnetization vector due to all the external mag-
netic influences,we use the Block equation. This equation can be used in any
condition and it relates the effect of the combined magnetic fields in the sample and
the relaxation times of its tissues. It can be described as follows:

d
−→
M

dt
= γ · −→M ×−→B − −Mx

−→
i + My

−→
j

T2
− (M ′

z −M0)
−→
k

T1
, (2.11)

On right hand, the first term (γ · −→M × −→
B ) describes the free precession without

considering T1 and T2 effects whereas the second term (−−Mx
−→
i +My

−→
j

T2
) is the T2

effect and the third (− (M ′
z−M0)

−→
k

T1
) is the T1 effects on the magnetization vectors.

2.2 Excitation

The excitation process is the way to establish the phase coherence of individual
magnetic moments , in order to generate a transverse magnetization. In fact, when
the tissue is in the equilibrium state (that is, only influenced by a external static
magnetic field B0), there is not any transverse magnetization because all the phases
are canceled with each other. Is for that reason, that an external force must be
applied at the spin system.

This force is the RF field B1, generated at the RF coils, which is an oscillating
field perpendicular to the main field. The rotation of this B1 field is at the Lamor
frequency so that the energy exchange can be facilitate.

The B1 is normally a RF pulse and can be described by a sinusoidal function:

−→
B1(t) = 2

−−→
B1e(t) cos(ωrf t), (2.12)

where
−−→
B1e(t) modulates the amplitude and ωrf is the carrier of the RF pulse. If we

rewrite the expression using complex notation we obtain:

−→
B1(t) =

−−→
B1e(t) exp(jωrf t) +

−−→
B1e(t) exp(−jωrf t). (2.13)

So we can distinguish two rotating components. One is clockwise, and is called B+
1

and the other, called B−
1 is counterclockwise component. We will see in Chapter

3 (where we will do an analysis of the bias field) that in low field approxima-
tion, the counterclockwise rotating component is not used to compute the field as
is almost negligible in front of the clockwise rotating component. This assumption
could not be done in the high field approximation and this fact will direct us



to one (and the most important) drawback on bias field approximation at high fields.

Coming back to our topic, we can found two types of excitation depending on
if the RF pulse is tuned or not at the Lamor frequency of the main static field.
The on-resonance excitation assumes that there is a constant Lamor frequency
(or uniform B0 field) so the RF pulse can be easily tuned at the same frequency.
When do that, a phase coherence of spin is established. A transverse magnetization
emerges and the B1 field get aligned along the z axis. The condition to have on-
resonance excitation is

ωrf = ω0 = γB0. (2.14)

The effect of the B0 field is offset by the carrier frequency of the RF pulse. The
only observed magnetic field is the B1e. Is for that reason that a much smaller B1

(if we compare it with the main field) can flip the magnetization away from the
direction of the much stronger B0 field. The angular frequency of that rotation is:

ω1 = γB0. (2.15)

Calculating the time integral over the duration of the pulse T of the angular fre-
quency rotation, we can compute the flip angle

α =
∫ T

0

ω1(τ)dτ = γ

∫ T

0

B1e(τ)dτ. (2.16)

For a rectangular RF pulse, solving the integral, we get

α = ω1T = γB1eT. (2.17)

The problem when tuning the RF pulse is that in real cases the B0 is not perfectly
uniform in the whole volume, which means the B0 is a kind of variational function,
so the RF pulse cannot be perfectly tuned to it. The difference between the local
B0 field with the supposed Lamor frequency to which the RF is tuned to is called
off-resonance excitation. This produces a phase shift. This de-phasing effect
caused by the off-resonance is characterized by the T2 equation (2.10).

2.3 Signal Reception

As we have seen in the previous sections of this Chapter, after the tissue has been
excited, its spins will precess at the Lamor frequency so we can detect this motion
with a coil. This is the basis of MRI phenomenon. In fact, as Faraday state in
his law, a time-varying field will induce a voltage in a coil placed perpendicular to
the direction of the magnetic field. This statement is known as the Faraday’s Law.
Mathematically it is represented as

V = −∂Φ(t)
dt

, (2.18)

where Φ is the magnetic flux. So, if we take in account the Reciprocity Principle,
we can determine this flux in the coil. If a current flows in the coil, it will produce
a magnetic field Br(r) at location r. Thus, the magnetic flux throw the coil will be

Φ(t) =
∫

Br(r) ·M(r, t)dr. (2.19)



If we replace this value in equation 2.18, we finally obtain the expression of the
voltage induced in the coil

V = −∂Φ
∂t

∫
Br(r) ·M(r, t)dr. (2.20)

The z component of the magnetization M is parallel to the plane of the coil so
we can ignore the component Mz, keeping only the Mxy component. Is for that
reason that many times the MR signal is often named transverse magnetization.
But we don’t record this signal. The signal we record is usually the voltage after
the demodulation of the high frequency term, and is represented as

S(t) ∝ ω0

∫
Bx

r
y ∗Mxy(r, 0) exp(

−t

T2(r)
) exp(−j∆ω(r)t)dr, (2.21)

where Bx
r
y
∗ is the complex conjugate of the transverse received magnetic field Bx

r
y
∗,

named the receive coil sensitivity.

If we reject the T ∗2 effects, we have that the signal amplitude is proportional to
(1) the Lamor frequency, (2) to the coil sensitivity, (3) the transverse magnetiza-
tion, and finally,(4) to the sample volume. And, as the Lamor frequency is linearly
related to the main magnetic field, we can say that we will supposedly have an
improvement on the signal-to-noise ratio (SNR) when increasing the main field.

The signal equation derived can be directly applied in Free Induction Decay
experiments, which are normally used to optimize MRI systems. In this experi-
ments, the signal is collected after the RF pulse is applied. No gradient fields are
involved there.

However, spatial information can be encoded during the free decay period by
adding a gradient magnetic field over the main field. It can be done in two different
ways, giving us the (1) frequency encoding and the (2) phase encoding.

The frequency encoding was first proposed by Lauterbur et al. in 1973 [19].
Adding a gradient field along an arbitrary line r in the space we can establish a
linear relationship between spatial information along r and the frequencies of the
MR signal. In this case, the Lamor frequency at r is:

ω(r) = ω0 = γGFEr, (2.22)

so after removing the center frequency ω0 and without considering the T2 effects
and the coil sensitivity effects qwe can get to the following expression for the signal
intensity

S(t) ∝
∫ ∞

−∞
M(r) exp(−jγGFErt)dr. (2.23)

To generate a multidimensional image, we also need to use the phase encoding.

The phase encoding method encodes the spatial location with different initial
phases. A gradient field along a line r is turned on for a short period of time, adn
then turned off. The signal after a period (TP )E is

S(t) ∝
∫ ∞

−∞
M(r) exp(−jγGPErTPE)dr. (2.24)



Combining the frequency and phase encoding methods , we can encode a 2D
and 3D space in arbitrary coordinate.

2.4 Image Reconstruction

At this point, we have a raw signal that we need to transform into an image.
There is a Fourier relationship between the raw signal and the MR image. In fact,
looking at the equation 2.24 we can consider its phase term as

φ = −jγ

∫ t

0

Gr(s)rds, (2.25)

so that allow us to define a k-space as

kr(t) =
γ

2π

∫ t

0

Gr(s)ds. (2.26)

Thus the signal is just the Fourier transform of the magnetization.

S(kr) =
∫ ∞

−∞
M(r) exp(−j2πkrr)dr. (2.27)

These equations mean that the k-space coordinates are determined by the area un-
der the gradient waveform.

The k-space is also called the spatial frequency space. It is the conjugate of the
image space. Computing the Fourier transform of this space is how we generate
the MR image. Thus, we can say the k-space is the temporary place where the
raw data is stored. When this space is full, a FFT is computed transforming the
k-space data into the r-space or Euclidean space where we will proceed at the signal
processing. In fact, the raw data contains the frequency information and, when
applying the Fourier transform we obtain the spatial information we will process.

2.5 Fundamental MRI Acquisition Methods

Depending on the way the signal has been generated, we have different types of
MRI images, that is to say, image contrasts. We can consider two main groups in
MR acquisition methods, the (1) spin echo imaging(SE) and the (2) gradient
echo imaging(GE). In the figure below they are been roughly listed:

Figure 2.2: Types of MRI acquisition



The mechanisms used for generate the signal in each case are different. In the
gradient echo imaging, signal is generated by magnetic field refocusing mecha-
nism only. This mechanism is specially used to measure de T2 value of the tissue
as it reflects the uniformity of the magnetic field.

The signal intensity in gradient echo images is governed by

S = S0 exp(
−TE

T2∗ ), (2.28)

where TE is the echo time or time from the excitation to the center of the k-space.

For the spin echo, the signal is generated by a radio-frequency pulse refocusing
mechanism (using and 180 degrees pulse). This image contrast doesn’t reflects the
uniformity of the magnetic field (instead of gradient echo imaging), as it does not
take into account the T2∗ value but T2. The signal in a spin echo acquisition is
governed by the equation

S = S0 exp(
−TE

T2
). (2.29)

In both cases we can achieve a fast imaging. In principle, the fast imaging is
a technique that can generate an entire image by sub-second temporal resolution.
In this technique, steps are taken to destroy any residual transverse magnetization
prior to each excitatory RF pulse. In this way, only longitudinal magnetization is
incorporated into the steady state.

2.5.1 FLASH acquisition

In FLASH, after the signal is collected in the form of a gradient echo, a gradient
pulse called a ”spoiler” is used to destroy any remaining transverse magnetization.
From there, the magnetization recovers longitudinally at the tissue T1 rate. The
brevity of the TR (repetition time) in FLASH necessitates the use of a spoiler;
without it, some transverse magnetization would remain at the beginning of the
next RF pulse.

It provides a mechanism for gaining extremely high T1 contrast by imaging with
TR times as brief as 20 to 30msec while retaining reasonable signal levels, as ex-
tremely short TR times are not possible with the conventional SE technique. In
fact, the presence of a 180 pulse in SE pulse sequences results in a loss of signal as
the TR becomes small compared to the TE . In FLASH acquisition, T ∗2 contrast is
substituted for T2 contrast as the TE is increased.The signal obtained by a Flash
acquisition can be expressed as:

SI =
(1− exp(−TR

T1
)) · exp(−TE

T∗2
)

1− cos(θ) · exp(TR

T1
)

· sin(θ). (2.30)

The FLASH image has less contrast than the MPRAGE acquisition, but, on the
other hand, it is easily acquired and the time lasted for iÄis smaller than the needed
for a complete MPRAGE acquisition. In figure 2.3 we have an example of a FLASH
acquisition.

Let’s clarify the different views we get from a MR image. Transverse view is
the one we get from underneath. The first section (or slice of the volume) is the



Figure 2.3: Transverse, sagittal and coronal view of a FLASH acquisition at 7T of
a human brain

most inferior (bottom). Sagittal view is from right side (and of course,first section
is the right side), and finally, Coronal view is from front. In this case, the first
section (or slice) is the most posterior (the back one).

2.5.2 MPRAGE acquisition

Because the acquisition times in these ultra-fast FLASH images are comparable to,
or less than, tissue T1’s, one plausible strategy for improving contrast is to pre-
cede the acquisition with one or more ”preparation pulses” (leading to the acronym
MP-RAGE for Magnetization-Prepared Rapid Acquisition with Gradient Echoes)
so that the longitudinal steady state, prior to the FLASH acquisition, is altered.
Typical preparatory sequences might be an inversion (180◦) pulse to add T1 con-
trast, or a 90◦ − 180◦ − 90◦ series to add T2 contrast. When the acquisition time
is comparable to, or longer than, the tissue T1, this can lead to some contrast
anomalies as the signal changes during sampling. To compensate for this effect,
some investigators have suggested partitioning the data collection into segments,
each having a relatively short duration, separated by a recovery period and an ad-
ditional preparation pulse.

MPRAGE acquisition (MP-GRE / MPRAGE / MP-RAGE ) is a fast 3D gra-
dient echo pulse sequence that uses a magnetization preparation pulse like Turbo
FLASH. Only one segment or partition of a 3D data record is obtained per inver-
sion preparation pulse. After the acquisition, for all rows a delay time (TD) is used
to prevent saturation effects. MPRAGE is designed for rapid acquisition with T1

weighted dominance. Fast gradient echoes are characterized by their rapid sampling
time, high signal intensity and image contrast while approaching steady state (the
echo is collected during the time when tissues are experiencing T1 relaxation). T1

weighted three-dimensional MPRAGE sequences are used to obtain structural brain
scans. Following an inversion pulse and delay T1, a single segment of a 3D-Gradient
Echo (GRE) image is acquired. After further relaxation delay TD, this process is
repeated for next segment. However, there is a major drawback MP-RAGE imaging
when many partitions are selected. This is the lost of contrast during the segment



acquisition due to relaxation effects.

As Deichmann et al assessed in [10], the image intensity in a MPRAGE acqui-
sition is mainly determined by the value of the longitudinal magnetization available
when the central k-space lines are acquired, so it depends on the PE (Phase En-
coding) used. In centric PE the central k-space lines are acquired first (in the
beginning of the acquisition block) whereas when linear PE is employed, half of
the segment acquisition time has already passed when these lines are acquired (in
fact these lines are acquired in the center of the acquisition block, when a partial
T1
∗ relaxation has already taken place). So, for centric PE, the signal strength is

given by:
Sc = M1 · sin α, (2.31)

While the signal strength when Linear PE is used can we written as:

SI = {M∗
0 + (M1 −M∗

0 ) exp(
−τ

2T ∗1
)}sinθ, (2.32)

with M∗
0 the saturation value of M that can we developed as:

M∗
0 = M(0)

(1− exp(−TR

T1
))

(1− exp(−TR

T∗1
))

, (2.33)

and T ∗1 the time in which this saturation is reached than is expressed as:

T ∗1 = [
1
T1
− 1

TR
· Ln(cos θ)]−1

. (2.34)

One example of a MPRAGE acquisition can be seen in figure 2.4: As we can see

Figure 2.4: Transverse, sagittal and coronal view of a MPRAGE acquisition of a
human brain

here, the contrast obtained is higher than thee one we get with a FLASH acquisi-
tion, but, otherwise, the bias artifacts are also stronger.

The main drawback of a sequence based on centric PE is its vulnerability to
RF inhomogeneities as the contribution of the k-space lines to the image depends
only to sin α since only the transverse component contributes to the signal. For that,



the strategy for bias compensation should be a first order compensation for RF in-
homogeneity effects. In case of linear PE, this compensation requires the knowledge
of the spatial dependence of the field amplitude B1 of the RF coil used. This fact
is specially important. We will see that when increasing the field strength, the RF
inhomogeneities became specially strong. This vulnerability will bring us to a bas
image contrast, that we will try to enhance.

Otherwise, we have some acquisition methods that can achieve ”such speed”.
Is the case of the echo planar imaging. EPI allows highest speed for dynamic
contrast and is highly sensitive to the susceptibility-induced field changes. Besides,
using EPI we can obtain an efficient and regular k-space coverage and a good
signal-to-noise ratio. Even more, it can be applicable to most gradient hardware.
In fact, the SE and GE methods take multiple RF shots to readout enough data to
reconstruct a single image (each shot gets data with one value of phase encoding).
But, if gradient system (that is to say, power supplies and gradient coil) are good
enough, EPI can read out all data required for one image after one RF shot, so the
total time in which signal is available is about 2 · T ∗2 which is nearby 80ms. This
means it can acquire 10− 20 low resolution 2D images per second.

2.6 Field Dependence of MR Imaging Parameters

We have been talking in the previous section about the MR imaging technique at
its parameters. MR imaging is used to study inner tissues of the human body, and
particularly of the brain. This work is focused in this last acquisition, MR imaging
of human brain, but is useless to say that this study can be extended to whereas
we are imaging the brain or other inner tissues in human body.

Human brain is a living load and the tissues present in it have kind of constant
due to its dielectric and conductive behavior. For that, in this section we are making
some further considerations in human brain imaging considering its physiological
proprieties.We will try to explain the dependence of the main part of MRI acquisi-
tion parameters with the applied field.

Anatomical images of brain tissue rely on Proton Density, T1 and T2 differences
between different regions (such as the cortex and the hypothalamus) and in the
tissue types (white matter, gray matter and CSF). Proton density is clearly a mag-
netic field independent parameter [35]. In Chapter 2, we defined the proton density
as the concentration of mobile Hydrogen atoms within a sample of tissue, so its
clearly independent on the field applied to the sample (but not to the type of the
tissue studied, of course).

Otherwise, relaxation times T1 and T2 are field dependent. T1 value generally
increases with the increasing of the field whereas T2 decreases when the field in-
creases. The conventional wisdom (in the previous stages of investigation with MR
and its need to increase field strength), was that T1 value not only increases with
higher magnetic fields but also we wish this value to converge the distribution of
T1 among different tissues types would tend to become narrower, predicting a low
contrast in the image. However, this hasn’t shown to be true when increasing the
field. In contrary, the distribution of T1 values among different types of tissues in
the brain, including the difference between the cortical gray matter and adjacent
superficial white matter increase with increasing magnetic field [35].



Following [35], the T1 value varies linearly with the field:

T1 = 1.226 + 0.134B0, (2.35)

whereas T2 value decreases with increasing magnetic fields with a far linear drop.
Exchange and/or diffusion on the presence of gradients may be the main responsible
of this shortening.

SNR increases with increasing magnetic field strength, but its dependence with
this field rise becomes complex due to the dielectric looses in biological samples.
Some studies had been performed for the different SNR profile variations for 4T up
to 7T . In [35], the SNR is shown to scale ∼ 2 fold more than linearly with field
magnitude in the center of the image and less linearly in the periphery. However,
at high field such as 3T , SNR must be considered as a function of location within
the head and specific coil geometries. Further considerations in power requirements
and SAR values are done in Appendix A.3

2.7 Summary of MR Acquisition Fundamentals

Medical imaging refers to the techniques and processes used to create images of
the human body (or parts thereof) for clinical purposes (medical procedures seek-
ing to reveal, diagnose or examine disease) or medical science (including the study
of normal anatomy and function). As a discipline and in its widest sense, it is
part of biological imaging and incorporates radiology (in the wider sense), radio-
logical sciences, endoscopy, (medical) thermography, medical photography and mi-
croscopy (e.g. for human pathological investigations). Measurement and recording
techniques which are not primarily designed to produce images, such as electroen-
cephalography (EEG) and magnetoencephalography (MEG) and others, but which
produce data susceptible to be represented as maps (i.e. containing positional in-
formation), can be seen as forms of medical imaging.

This project will focus in one of these techniques, the MR imaging. A Magnetic
Resonance Imaging instrument (MRI scanner) uses powerful magnets to polarize
and excite hydrogen nuclei (single proton) in water molecules in human tissue, pro-
ducing a detectable signal which is spatially encoded resulting in images of the
body. In brief, MRI involves the use of three kinds of electromagnetic field: a very
strong (of the order of units of teslas (T )) static magnetic field to polarize the
hydrogen nuclei, called the static field ; a weaker time-varying (of the order of 1
kHz) for spatial encoding, called the gradient field(s); and a weak radio-frequency
(RF) field for manipulation of the hydrogen nuclei to produce measurable signals,
collected through an RF antenna. MRI traditionally creates a 2D image of a thin
”slice” of the body and is therefore considered a tomographic imaging technique.
Modern MRI instruments are capable of producing images in the form of 3D blocks,
which may be considered a generalization of the single-slice, tomographic, concept.
MRI does not involve the use of ionizing radiation and is therefore not associated
with the same health hazards; for example there are no known long term effects
of exposure to strong static fields and therefore there is no limit on the number of
scans to which an individual can be subjected, in contrast with X-ray and CT. This
factor, has not to be denied, as we will have a constraint when acquiring an MR
image: the patient cannot be inside the magnet as much time as we need to have
a perfect contrast, so the posterior digital processing of the image has to deal with
this drawback. In fact, the higher the field applied is, the less time of acquisition
time we have...but we get better contrast...We have here a compromise between
time of acquisition and applied field. However, these risks are strictly controlled as



part of the design of the instrument and the scanning protocols used.

MRI being sensitive to different properties of the tissue, and while any nucleus
with a net nuclear spin can be used, the proton of the hydrogen atom remains the
most widely used, especially in the clinical setting, since it is so ubiquitous and
returns much signal. This nucleus, present in water molecules, allows excellent soft-
tissue contrast. Specially with the MPRAGE acquisition protocol.

This master thesis will focus on human brain acquisitions at 7T . The images had
been acquired following MPRAGE and FLASH protocols and had been supplied by
the Siemens Research Group at the CIBM. Even thought, is useless to say that the
conclusions assessed in this report can be extended to all kind of MR acquisitions
(that is, acquisitions of any part of human body).



Chapter 3

Analysis of the Bias Field

In the previous chapters of this report, we have presented MRI acquisitions and
its fundamentals and basis. And, doing so, we have slightly introduced the one
of the drawbacks of any MRI acquisition, the bias field. This inhomogeneous
radio-frequency field, added to the image, makes often impossible the differen-
tiation between gray matter and white matter of the brain and lead us loosing
image contrast, making hard automated image processing techniques and even vi-
sual inspection. In fact, the bias makes the brightness of the image becomes not
homogeneous along the brain.

The bias field (also termed as the intensity non-uniformity or intensity inhomo-
geneity IIH) usually refers to the slow, non-anatomic intensity variation of the same
tissue over the image domain.

The strong bias field can be detected visually. Figure 3.1 can be a clear example
of what kind of artifacts we can get due to the bias

Figure 3.1: MPRAGE acquisition of a human brain corrupted by bias

In fact, if we look carefully we can see that in most part of the brain, specially
in the frontal and temporal lobe, and the hypothalamus, we don’t have much res-
olution (the edges between grey and white matter are no precisely defined) so in
those points we can be considering that is white mater when is grey one, instead.
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Besides, a part from the shifting between gray or white matter, in the image
be can see bright spots in the center and in the frontal and backwards part of the
image. Is, exactly, in the center of the image where we are supposed to have the best
Signal-to-Noise Ratio but, in 7T acquisitions, this region is the most corrupted
by the bias field. Actually, due to this extremely high brightness, we are not able
to discern none of the pixel values on it, and so, we cannot see this regions with
enough precision to determine whether some disease or not.

In fact, the presence of IIH can significantly reduce the accuracy of image seg-
mentation and registration, hence decreasing the reliability of subsequent quanti-
tative measurements. Our main goal is to remove or at least reduce this artifact,
giving a nice and clear insight view of all parts of the human brain.

3.1 Mathematical approach for a MR image

The generally accepted assumption on intensity inhomogeneity (for low-field acqui-
sitions) is that it manifest itself as a smooth spatially varying function that alters
image intensities that otherwise would be constant for the same tissue type regard-
less of its position in the image. In the most simple form, the model assumes that
the intensity inhomogeneity is multiplicative or additive which means that the
intensity inhomogeneity filed multiplies or adds to the image intensities. [36]

Either on what is the source of the inhomogeneity we want to model, we use
the multiplicative form or the additive. Most frequently, the multiplicative model
has been used as it is more consistent with the inhomogeneities of the receiving coil
but, for modeling the inhomogeneities due to induced currents and non-uniformity
excitation the additive model is more suitable [29].

In addition to intensity inhomogeneities , the MR image formation model should
include the noise, which is supposed to be at high-frequencies. This noise is known
to have a Rician distribution even if, as the Signal-to-Noise ratio (SNR) is not too
low, we can approximate it by a quasi-Gaussian (so, Rayleigh distribution) [28].
The next section is entirely devoted to the noise in MR acquisition, so we will focus
on it later.

Different models of MR image formation has been proposed in the literature.
The most common is the one that assumes an multiplicative bias field and an ad-
ditive noise. But, how we get to the signal expression?

The image processing (as we have seen in Chapter 2) begins when all the MR
information is stored in the k-space. When this space is full, the data is transformed
onto the r-space data by simply computing an FFT [30], [23], [13]. Is when applying
this FFT, when we get the spatial information needed for processing the image. In
fact, the two distributions carry exactly the same information (even if the raw
data, the one stored in the k-space, contains the frequency information). The
transformation from one to the other is, following [30]:

ω(r) =
∫

W (k) exp(−2πj(kr))dk. (3.1)

So, after acquiring the signal and translate it into the r-space, this acquired signal



can be expressed as:

s(x) = (o(x) + nbio(x)) ∗ h(x) + b(x) + nRM (x), (3.2)

where:

• s(x) is the measured and digitalized data.1

• x = (x, y, z). (x, y) are the spatial coordinates of each slice and z moves along
the different slices.

• o(x) is the ideal bias and noise free image.

• nbio(x) is the biological noise due to interior structures of the tissues, physio-
logical noise, cardiac rate, respiration motion...

• h(x) is the model of the blurred border region effect due to discrete sampling
of the tissue.

• nMRis the noise due to the measuring devices acquisition.

• b(x) is the added bias field (considering its value 0 < b(x) < 1).

Considering how the signal intensity, the noise and the bias field interact, we
can find some easier approximations, which lead us to the same results without
making any assumption about the value of h(x). Even if two sources of noise are
described in the signal form (the biological one which corresponds to the within
tissue inhomogeneity and the scanner noise that arises from MR devices imperfec-
tions), usually only one of this sources is modeled [36].The most common model
assumes that the noise, with a Gaussian distribution, arises exclusively from the
scanner and is therefore independent from the bias field. So, following this model,
the acquired signal can be approximated as:

s(x) = o(x)b(x) + nRM (x). (3.3)

If we consider that only the biological noise interacts in the image formation, we
get another expression for the obtained signal, where the ideal signal o(x) and the
noise nbio(x) are scaled by the intensity inhomogeneity field b(x) so that the SNR
is preserved [24].

s(x) = (o(x) + nbio(x))b(x). (3.4)

For images acquired in low-field, we can use, without loss of generality, the
equation 3.3 for modeling the received signal. In this case, as we know that in the
main part of the image n(x) << o(x) · b(x), we can achieve a good bias removal
(as so that, image correction) by dividing the corrupted image s(x) by a correct
estimation of the bias field b̂(x). So that, the corrected image can be expressed as:

ô(x) =
s(x)

b̂(x)
. (3.5)

So, if our approximation for the bias field in good enough to consider b̂(x) ∼= b(x),
then we lead to the result:

ô(x) = o(x) +
n(x)

b̂(x)
. (3.6)

In the parts of the image where n(x) ∼ o(x) · b(x), the signal is not recoverable.

1We must recall at this point the FFT transformation presented in Chapter 2 for image com-
putation(see equation 2.27)



The third MR image formation model is based in logarithmic transformed in-
tensities, by which the multiplicative inhomogeneity becomes additive. We can see
this last model as the logarithmic version of the multiplicative model. The signal
modeled in this log-transformed intensities model can be written as:

log(s(x)) = log(o(x)) + log(b(x)) + n(x), (3.7)

were the noise is still assumed to be Gaussian, which is methodologically convenient
but inconsistent with the first model 3.27, where the noise is assumed to be Gaussian
in the original non-logarithmic domain. Avoiding this fact, the corrected signal will
be:

log(ô(x)) = log(s(x))− log(b̂(x)) ∼= log(o(x) +
n(x)

b̂(x)
). (3.8)

If we focus in the noise term of the corrected form, recalling it n′(x) = n(x)
b(x) , we

can see that the first factor (n(x)) is a random term with zero mean and constant
variance (in fact we are considering the noise as a Gaussian with zero mean). The
second term, b(x) is a deterministic values which varies between 0 and 1 values.
This fact lead us to have an strong dependence between the variance of the noise in
the corrected image (n′(x)) and the bias field value at the same point. That is, say
that the noise variance is higher in the points where the bias value tends to zero.
This behavior on the variance of the noise is due to the non-uniform Signal-to-Noise
ratio along the data set of the acquired image.

3.2 Tissue Signal Distribution

The human brain is mainly composed by three different tissues: grey matter (GM),
white matter (WM) and cerebrospinal fluid (CSF). Each of them has different con-
centration of water, and so, hydrogen atoms. This uneven number of hydrogen
atoms in each element allows different excitations depending on the matter. This
nucleous, present in water molecules, allow the soft-tissue contrast, specially with
the MPRAGE acquisition protocol, giving different intensity values depending on
the sort of tissue.

In fact, each MR image is modeled in the r-space (see eq.2.27) as a finite com-
bination of regions. So for each type of tissue, we get a value of intensity that we
model it. We assume this intensity distribution as Gaussian function of mean µk

and variance σ2
k (see [4]), both are measured in gray levels and k identifies the

different tissues . The probability of an intensity value in a voxel yi, can be written
(as long as be are assuming each pixel belong just to one class of matter) as:

P (yi|µk, σ2
k) =

1√
2πσ2

k

exp(− (yi − µk)2

2σ2
k

) (3.9)

that means that for each type of matter in the brain we will have a gaussian in-
tensity distribution fitting its brightness, so, in theory, we can to distinguish them.
This model is useful for posterior processing techniques, like segmentation of tissues,
where we identify the different tissues in the image for its treatment.

Unfortunately, the image not only presents noise, but also Intensity Inhomo-
geneity (IIH or bias field). This artifact makes the intensity of a certain voxel shift
from its mean value. If this shifting is big enough (and, unfortunately, it uses to be)
the intensity value of the voxel can be considered to belong to the another class.
In general, IIH artifacts makes the intensity of the pixel of the same tissue vary



significantly, overlapping with pixels of the different tissues.

For study this effects (the one due to the noise and the one due to the bias) we
can compute the image histogram. The histogram of an image shows the relative
frequency of occurrence of levels of gray in an image. That is, h(rk) = number of
pixels with gray level rk.

Let us compare two different histograms:

Figure 3.2: Histogram of brain tissue with IIH. Figure (a) shows
two different histograms obtained from BrainWeb-simulated database page
(www.bic.mni.mcgill.ca/brainweb) one with noise and without IIH (solid line) and
the other with noise and IIH (dashed line). Figure (b) is the histogram from a real
brain image.

Figure 3.2(a) clarifies the bias field effects we want to explain. The tissue in-
tensities had been modeled as Gaussian functions2(see eq. 3.9). So that, in Figure
3.2 we can distinguish the three tissues the brain is composed by. From left to
right, the first peak represents the CSF matter, then we find GM and finally WM.
When IIH is added to the simulation (dashed line on Figure 3.2), the differentiation
becomes harder, as the IIH makes the amplitudes of the intensities of the tissues
smaller an nearly similar. In fact, noise makes the peaks get wider and IIH dimin-
ish its amplitude value. This fact is which lead us to sometimes have wrong tissue
classification.

3.3 The Noise in MRI

The noise, as seen before, is an important factor in our correction, so it will be
useful to give a little insight on it.

The radio-frequency signals observed at the receiver (before they are FFT-
transformed to give us a received signal), are corrupted by a noise that we assume

2Notice that we can do that because our intensity signal has noise (recall eq. 2.27) so it gives
us some variance that allows us to model it as Gaussian.



to be thermal. This thermal noise is accurately modeled as White and Gaussian-
distributed noise. Then, as the received signal, this noise is FFT-transformed onto
the r-space (converting it from the k-space into spatial coordinates), but as the
Fourier Transform is a linear transform, the noise distribution at the output, still
remains Gaussian.

The problem appears after phase-encoding the signal3. Due to phase encoding
errors, the reconstructed image will be complex, thus, there is white Gaussian noise
on both real and imaginary components of the signal. That is, our noise becomes
Rician if we take the absolute value of it [26].

The Rician PDF(Probability Density Function) is generated by taking the ab-
solute value of two Gaussian random variables with non-zero mean. If we consider
two deterministic measurements corrupted by additive Gaussian noise:

x1 = µ1 + n1, (3.10)

and
x2 = µ2 + n2, (3.11)

where n1 ∼ N(0, σ2) and n2 ∼ N(0, σ2). Then x1 and x2 are both Gaussian random
variables with x1 ∼ N(µ1, σ

2) and x2 ∼ N(µ2, σ
2). Therefore, we can define a need

random Rician variable as r =
√

x1
2 + x2

2 with a PDF:

pr(r) =
r

σ2
exp(−r2 + A2

2σ2
)I0(

Ar

σ2
), forr > 0. (3.12)

I0 is the zeroth-order modified Bessel function for the first kind:

Io(x) =
1
2π

∫ 2π

0

exp(xcos(θ))dθ, (3.13)

and A = µ1 + µ2

The fact is that, actually, the noise associated with the acquired MR signal is
generally taken to be additive, uncorrelated and Gaussian with zero (or low valued)
mean [40]. So the signal can be modeled as:

sm(k) = s(k) + ε(k), (3.14)

where ε(k) contains the sum over body and electronics contributions.
This assumption can be reached by understanding the noise influence in the spatial
representation, considering that in the k-space the mean of the noise is zero:

µ(p∆x) =
1
N

∑

p′
ε(p′∆k) exp(j2πp′∆x∆kp) = 0, (3.15)

and its variance:

σ2
0(p∆x) =

1
N2

∑

p′

∑

q′
ε(p′∆k)ε(q′∆k) exp(j2πp′∆x(p′∆k − q′∆k)), (3.16)

3Phase-encoding, as we have seen in Chapter 2 (Section 2.3), is the proceeding for encode a 2D
and 3D space in arbitrary coordinate



so it ends as:

σ2
0(p∆x) =

σ2
m

N2

∑

p′

∑

q′
δp′q′ exp(j2πp′∆x(p′∆k − q′∆k) =

σ2
m

N2
. (3.17)

We can extract as a conclusion from here, that we can assume the noise in MR
acquisition is an additive single Gaussian distribution. That is to say, the noise is
added to the factor obtained by multiplying the ideal images by the bias.

Regardless of whether the noise is Gaussian or Rician, high noise levels can sig-
nificantly decrease the usability of medical imagery. The noise in the complex image
can be viewed as continuous white Gaussian noise in four dimensions (three spatial
and time) [6]. We might maximize the SNR by increasing acquisition time, increas-
ing voxel size, increasing coil intensity and applying appropriate edge-preserving
filtering techniques, carefully considering that all this methods have its limitations.

3.4 Bias Field in Low-Field Acquisitions

The MR bias problem occurs in all MR imaging applications. The extent with
which it occurs and the amount of correction that is needed varies from application
to application. Intensity Inhomogeneities (IIH) consist in an anatomically irrelevant
variation throughout data generally reflected in a flip angle variation, but triggers
in this variation can be multiple. Most tissues have some magnetic susceptibility
which can distort the magnetic field; the main magnetic field B0 is not truly homo-
geneous in space, and the slope of the gradient-encoding B1is not truly linear (see
Chapter 2); the response of the transmitting coil (usually the body coil) is not com-
pletely uniform, and for the receiving coil, its response is not homogeneous either;
the variations in B0 and B1 can produce location errors rather than intensity errors.

Those are some examples of the artifacts that can affect the image intensity in
a MRI but there are some other that can had been grouped has follows:

• Artifacts related to acquisition technique.

– Flip angle variation. One of the parameters set when acquiring the image
is the flip angle4. One image is acquired forcing the hydrogen proton
to turn in a certain angle and come back. This angle is the flip angle.
The problem is that when increasing the field, this angle value loose
homogeneity all over the brain as not all the spins rotate the same amount
of degrees. This flip angle variation is one (let’s us to say the main) cause
of B1 inhomogeneities.

– Non-uniform B0 static field. This inhomogeneity can be partially com-
pensate by shim tuning. Its main effects is that leads to a partially
deformation of the imaging plane.

– Gradient fields. The variation in the gradient fields lead to geometrical
distortions.

– RF coil inhomogeneity which depends on its geometry and tuning. The
inhomogeneity is seen in the transmitting coil as well as in the receiving
one, but with different dependence with the B1 field.

4When talking about flip angle it refers to the flip angle of the macroscopic magnetization
vector of the RF pulse.(see Chapter 2)



– MR acquisition pulse sequence parameters: repetition time, number of
echoes, interleaved (or not) acquisition.

• Factors linked to the object itself. Tissue-dependent properties as conductiv-
ity and dielectric values. Besides, the acquisition protocol takes some minutes
to be done, so the normal movements of the patient lead also to inhomo-
geneities in the acquired image too.

For a Low-field acquisitions (which means for main fields strengths lower than
3 Tesla), the bias field added to the image has been largely studied, so we have
some good approaches for its form or value. In next Chapter we will present the
State-of-the-Art of this bias correction methods and its drawbacks when correcting
acquisitions at high fields.

3.5 Drawbacks when Increasing Field Strength

Nowadays, the bias field we obtain when acquiring a MRI is nearly assessed when
the main field applied is not higher than 3T . In fact, as we will see in Chapter 4.1
in the low field case, due to its slow and smooth variation, it can be approximate by
some basis smooth functions, as the Legendre Polynomials so the approximation is
good enough to be used to correct the original image from this artifact, even for the
inhomogeneities induced by the patient. The complexity of the problem increases
when increasing the field applied to the sample, as we start loosing phase coherence
so it appear dielectric effects and those due to the conductivity of the tissues. Those
effects make the bias field act not as a smooth function, but as a wave.

As the field increases, the wavelength (λ) of the field decreases, until the point
of make the RF field comparable to, or even less than, the dimension of the human
body. So, at high frequencies, the RF magnetic field (also called B1 field) inside a
sample exhibits prominent wave behavior. But, how we can explain this behavior?

As the static strength (B0) increases, the frequency of the RF magnetic field
(so B1) increases too and, so that, its wavelength decreases. The wavelength de-
creases even further in biological tissues, since many biological samples have high
relative dielectric constants. Due to this decreasing, the wavelength and the sam-
ple size become comparable. And so, as the sample dimensions represents a larger
percentage of a wavelength, intermediate and far-fields effects, including wave
propagation, become more important. Actually, the significant interactions of the
electromagnetic waves with the load invalidate the use of quasi-static approxima-
tions and require the application of the full wave techniques [32].

In brief, the full-wave solution of Maxwell equations demand is due to
the presence of those intermediate and far field effects as the B1 effect that causes
image inhomogeneity is wave interference [7]. In fact, when the applied main field is
lower than 3T , the far field approximation is good enough because the intermediate
effects are small enough compared to the far-field ones, so the first ones are denied.
But, increasing the main static field applied, those effects are no longer negligible.

Additionally, B1 field and source currents are strongly perturbed by sample
loading. The high dielectric constant of tissue results in generating standing waves
in the object that greatly perturb the effective B1 field. Due to electrical conduc-
tivity of the tissue, the induced voltage at high frequencies yield in eddy currents



large enough to attenuate the applied B1 with increasing depth in the body [14].

Besides, the B1 field distribution inside a sample is important for the Specific
Absorption Rate (SAR). Specific absorption rate (SAR) is a measure of the max-
imum rate at which radio frequency (RF) energy is absorbed by the body when
exposed to radio-frequency electromagnetic field. It is used for exposure to fields
between 100kHz and 10GHz [1]. The SAR value will depend heavily on the ge-
ometry of the part of the body that is exposed to the RF energy, and on the exact
location and geometry of the source of the RF energy. Actually, the electrical prop-
erties and size of the sample strongly affect the RF field distribution (in magnitude
as well as polarization) at high field strengths.

The polarization of the RF field inside the sample varies drastically such that
the RF field in certain regions can rotate predominantly in the direction opposite
to the direction intended in driving the coil.

So, in resume, any mathematical approach of RF field inside the sample (and in
our case, inside the brain) can be extremely complicated due to:

• The quasi-static approximations of Maxwell’s equations are not valid. A full
version of Maxwell’s equations must be employed.

• Human body geometry is irregular and it has different conductivity and di-
electric rates (specially in air-tissue boundaries).

Talking about brain imaging, non uniformity image intensity at high field is
prominent and frequently observed when the human head images are acquired with
a volume coil. It is reflected as a hyperintense region in the center of the head (see
Fig. 5.1) and can be considered to be due to the partially-constructive superposition
of RF waves transmitted from each of the conductors in the coil and reflected from
the sample boundaries, plus the still-substantial near-field contributions. Artifacts
due to wave behavior are initially observed at 3T and become more prominent in
images acquired at higher field strength.

In resume, when imaging using MRI techniques, as frequency increases, elec-
tromagnetic waves decay faster in the brain (as human brain tissues are neither
purely dielectric nor purely conductive) and the boundary between brain and air
becomes less reflective. So that, the amplitude distribution of the fields in the head
is the result of the interference pattern of decaying traveling magnetic waves in
a given sample-coil configuration plus contribution from near fields. Besides, and
no less important, electromagnetic properties of grey and white matter for human
brains are inverse: conductivity increases while dielectric constant decreases with
frequency, which means that the bias field is different in both.

Arguably, the major problem of these 7T images acquisitions is that we can
not make the assumption that the bias has a smooth variation anymore. And this,
unfortunately, is almost the only supposition used in almost all kinds of retrospective
methods for bias correction and/or compensation in human brain imaging.5

5Retrospective methods are postprocessing methods that propose to correct MR images with
only few assumptions on the acquisition process. In Chapter 4.1 we will make an overview of some
of those methods.



(a)

Figure 3.3: Hyper-intense region in the center of the head at 7T and its 3D view .

3.6 Bias Field in High-Field Acquisitions

As seen above, RF behavior becomes complex at ultra-high magnetic fields. A
bright center and weak periphery are observed in images obtained with volume
coils. Destructive interferences are responsible for this variations of brightness in
the image [37]. But, how we can model the signal intensity in such acquisitions?

In paper [16] a study for the polarization of B1 field over a water phantom is
performed. It would give us an insight of wave behavior we want to model in 7T
acquisitions. Following its wave behavior and after considering full-solution Maxwell
equations, the transmitted field can be decompose into two rotating components:

B̂+
t =

(Btx + iBty)
2

B̂−
t =

(B∗
tx − iB∗

ty)
2

. (3.18)

Where the absolute value of the polarization component |B+
t | is given by:

|B+
t | = ([Re(B+

t )]2 + [Im(B+
t )]2)

1
2 . (3.19)

The calculation for the receiving field is similar. The reception field Br can also be
decomposed in two circularly components:

B̂+
r =

(Brx + iBry)
2

(3.20)

B̂−
r =

(B∗
rx − iB∗

ry)
2

. (3.21)

where
|B+

r | = ([Re(B−
r )]2 + [Im(B−

r )]2)
1
2 . (3.22)

The transmission and reception fields are two physically different fields, so they
must be calculated separately for producing the image intensity distributions. Actu-
ally, the polarization behavior of RF field plays an important part in the formation
of the image intensity distribution in a human sample at high field. The transmis-
sion field is produced by the input current in the coil and the reception one by the
current induced by the transverse magnetization. This leads the transmission field



rotate in the same direction as the magnetization precession whereas the reception
field rotates in the opposite direction. The later one is used when the principle of
reciprocity is applied for evaluation of the reception distribution.

In figure 3.4(a), the plot for |B̂t| shows the field strength distribution, while
|B̂t

+| and |B̂t
−| depict the positive and negative circularly polarized components

of the transmission field. The βt contour plot (shown in figure 3.4(b)) describes
the polarization distribution of RF field without the implication of the spatial field
strength variation.6 [37].

Figure 3.4: Grayscale plots of the transmission field and its circularly polarized
components (a), and the contour plot of βt (b) of the quadrature surface coil in
free space (σ = 0, εr = 1). This plot is a ratio of the transmission field defined as
βt ≡ |B+

t |
|B+

t |+|B−t |
Image obtained from paper [16]

The overall intensity of |B+
t | is significantly stronger than |B−

t |, whereas |B−
r | is

much stronger than |B+
r |. So, from here, we can assess that the direct responsible

for the MR image intensity distribution are on one hand B1 field, and on the other
hand its circularly (actually elliptical) polarized components B+

t and B−
r . So, from

this moment, we will consider B+
1 = B+

t and B−
1 = B−

r .

In resume, the RF field interacts with magnetization through the circularly
polarized components, which can be constructed on an axial plane through the
center of the sample as:

B̂+
1 =

(Bx + iBy)
2

B̂−
1 =

(Bx − iBy)
2

, (3.23)

assuming that B̂+
1 is in the direction of nuclear precession, so that, is the component

that determines the excitation.

6The nuclear spin precession is assumed to be in the positive (counterclockwise) direction.



In the low field case, the B1 and its circularly polarized components B̂+
1 and

B̂−
1 can be considered real factors, so the spatial distributions |B̂1|, |B̂+

1 | and |B̂−
1 |

are essentially the same. Arguably, in this quasi-static regime the difference in the
relative spatial distribution between the B1 field magnitude and its polarization
components is insignificant. The magnitude of the transverse B1 can be directly
used to assess the signal intensity distribution.

However, at 7T, as the wavelength of this field approximates the size of the
human brain sample, the distributions of the transverse field magnitude and its
circularly polarized components are markedly different and only the latter can be
used to represent signal intensity.

In fact, in presence of wave behavior at high fields, the distributions of these
quantities are significantly different. In this case |B̂−

1 | must be used to calculate the
contribution to the image intensity.

The image intensity distribution I due to excitation (transmission) is:

I ∝ ρ sin(V |B̂+
1 |γτ), (3.24)

with γ the gyromagnetic ratio, τ the excitation pulse duration and ρ the spin
density. V is a dimensionless factor, proportional to the coils driving voltage and
thus proportional to the flip angle. Whereas, for reception, I is proportional to the
RF field generated by the coil according to the reciprocity principle. Hence:

I ∝ ρV |B̂+
1 |γτ, (3.25)

Thus, in this case the image intensity can be calculated by 7:

I ∝ ρ sin(V |B̂+
1 |γτ)|(B̂−

1 )∗|. (3.26)

As the equation 3.26 shows, the image intensity depends sinusoidally on |B̂+
1 |,

which is the dependence with the transmitted field and linearly on |(B̂−
1 )∗| (which

is the received one) [16]. This difference in excitation and reception leads to an
asymmetric image intensity distribution. In fact, if the flip angle is small (which
happens in the FLASH acquisitions but not exactly in the MPRAGE ones), the
global signal intensity is approximately proportional to |B̂+

t | × | ˆB−∗
r |. 8

Moreover, wave behavior of the RF field makes not only change the intensity dis-
tribution in the image. Other values present distortions due to the bias field as they
are also RF dependent. SAR and SNR also present problems at higher fields. The
increase of SAR (see Section 3.5) may be linearly proportional to B0 in the center of
the brain to quadratically proportionally in the brain periphery with a homogeneous
RF coil [38]. This B1 field enhancement in this center region of the brain (which
appears as a bright spot) is due to the dielectric volume resonance effect related to
the object size and the wavelength of the RF pulse [14]. Similarly, the signal-to-
noise ratio (SNR) is also dependent on the B1 contour as well as B0, increasing a

7It is important to notice that when talking about signal intensity we actually refers to the
signal obtained after the Fast Fourier Transformation from the k-space to the r-space. That is,
we mean the signal obtained when applying equation 2.27. From this point, and for facilitate the
notation, we will call s(x) as I or SI.

8We must be careful with this assumption: this approximation is no longer valid when we
cannot assume a small flip angle approximation, due to an increment on transmission power or
stronger transmission field in certain areas.



better than linear proportion in the brain center and at less than linear rate in the
brain periphery when a homogeneous coil is used. In brief, SAR and SNR as well
as image inhomogeneity and contrast vary with the B1 contours in the anatomy [38].

3.7 Summary of Analysis of Bias Field

In this chapter we have presented an approximation for the bias field in MR ac-
quisitions, and for the noise added in the images. This approximation is needed
in order to find methods to compensate it and give a clear image of the tissues we
want to study.

The general model for the signal intensity presuppose, without lost of generality,
an multiplicative bias field and an additive white gaussian noise. That is:

s(x) = o(x)b(x) + nRM (x). (3.27)

For low-fields acquisitions (which includes the acquisitions performed with
fields lower than 3T ), the IIH manifest itself as a smooth spatially variation and it
has been modeled by fitting its shape with smooth functions. Otherwise, we have
seen that when increasing the main field value, this assumption is no longer feasible.

For high-field acquisition, the bias field acts as a standing wave so the full-
wave solution of Maxwell equations is needed. As frequency increases, the wave-
length decays faster and the boundaries between tissues become less reflective and
this leads on contrast lost between tissues. The amplitude distribution of the mag-
netic field is the result of the interference pattern of decaying traveling waves plus
the contribution of near-field effects.

So that, any mathematical approach of the RF field inside the sample can be
complicate. The methods for bias compensation in this case must take into account
other factors, as we will see in next Chapters.

The main contribution of this master thesis is demonstrate that, due to this
wave behavior, the bias field corrections performed until now are not enough for
correcting 7T acquisitions. All the conclusions an results we will shown in posterior
Chapters are based in the fact that at 7T the bias can not be assumed as a slow and
smooth variation. This report focus in MRI acquisition of human brains images, but
actually, the bias appears in all MR imaging techniques, whereas we are imaging
the brain or other parts of the body. So that, the conclusion we will assess for the
specific case of the brain, can be extrapolate to other MR images.



Chapter 4

State-of-the-Art Methods for
Bias Correction

Since the apparition of the MR techniques for imaging human body, automated
analysis had become mandatory to efficiently cope with the large amount of data
generated using them. Besides, several artifacts affect the quality of the data, with
a considerable amount of degradation. Huge efforts had been placed on finding
methods to erase (or at least compensate) the bias field from the image. In fact,
the goal of all this methods is to facilitate all the quantitative and qualitative anal-
ysis of this data, like segmentation or registration protocols.

This Chapter is an overview of the most important methods proposed in the
recent literature. We will enumerate some of them and, after that, we will focus
on specific ones, validating them for our specific purpose: bias correction in 7T
acquisitions.

4.1 Prospective and Retrospective Methods

Intensity non uniformity (IIH) has different sources. Actually, such artifact that can
affect the image intensity can be related (1) to the acquisition technique, as they
can be induced by the coils used in the acquisition protocol, the sequence selected
or related to (2) the nature and the geometry of the sample, as RF penetration or
RF standing wave effects, otherwise [5]. Considering this rough division, we can
assume two different parts in the MRI correction process, sorting all the existing
methods according their location in the acquisition/processing pipeline and on the
assumptions those methods rely on. We can define:

• Prospective methods, focused on the acquisition part which is, let us to
say, the ”physics’” part.

• Retrospective methods, that rely on the post-processing part, so we
can consider them to belong to the signal processing methods.

For the first ones, their goal is to improve the acquired image quality by a bet-
ter acquisition protocol. Image processing community, instead, try to improve this
quality by the use of retrospective algorithms as first steps to improve quantitative
analysis. This is a rough classification of the correction/compensation methods for
bias in MR acquisitions, as most of them rely in different assumptions.
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4.1.1 Prospective Methods

Prospective methods are based on prior knowledge about acquisitions parameters.
If we recall the signal model seen in Chapter 2 (equation 3.3)

s(x) = o(x)b(x) + nRM (x), (4.1)

we notice we have an ill-posed problem: neither the bias, b(x), nor the true intensity
spatial distribution, o(x), are known. But, we can get a prior knowledge of them
by using specially designed MR acquisition protocol.

These methods suppose the IIH due to the combined effect of (1) the sample,
(2) the MR pulse sequence and (3) the coils, so to get knowledge of one (or more)
of this parameters can facilitate the way for bias correction. That is, prospective
methods try to reduce the number of unknown factors involved. We can find two
main different approaches to this purpose:

1. Combine different data sets.

2. Trying to compensate unwanted flip angle variation during the acquisition
process.

Different data sets combination

There are several ways to get multiple data set combinations. One first approach
is to acquire images from different objects (usually phantoms) with the same imag-
ing parameters [5]. In this case we will be considering data sets only affected by
sequence-dependent and coil-dependent components of IIH. So, once the parameters
are set, the IIH will be directly related to the coil sensitivity. This gives a good rep-
resentation of the receiving coil sensitivity variation [3]. The main limitation is that
this approach does not take into account the influence of the imaged object. And
as we have seen in Section 2.6, this effects can be really important when increasing
the main field strength. So that, those methods are not valid for bias correction at
7T MR imaging.

Other methods face the problem from another point of view: they acquire data
sets of the same object changing the imaging parameters. In this case, they try
to remove the IIH component due to the object studied. In fact, they get a priori
knowledge of the bias field added by using different acquisition protocols or different
coils [5].

Liney et al., in 1998 [22], use same coil acquisitions with different imaging pa-
rameters, considering that an homogeneous tissue is modeled by an homogeneous
intensity distribution (see Chapter 3.1, section 3.2, equation 3.9)

P (yi|µk, σ2
k) =

1√
2πσ2

k

exp(− (yi − µk)2

2σ2
k

). (4.2)

In this case, any variation in signal intensity is attributed to the bias field. So, they
consider the corrupted data as a representation of the bias field spatial variation.
They assessed that a T2-weighted sequence can be corrected using the bias estima-
tion obtained from a PD-weighted (proton density) sequence.

In all this cases, the correction is not complete, as they are only focusing in
one of the sources of the bias. In low-field case, the bias is not as strong as the
one we get when working at high-fields strengths. Is for that reason, that those



methods, even if they just focus in one origin of the IIH, work in a acceptable way
in low-field acquisitions but not as good as we want in high-fields. So, and without
denying them, we can assess that those prospective methods are not suitable for
our purpose: bias correction in 7T acquisitions.

Instead of acquiring different set using the same coil but changing image param-
eters, we can fix this parameters and acquire the data set changing the reception
and transmission coils. Surface coils have good SNR but really poor uniformity,
while body/volume coils are assumed to have uniform sensitivity. A pre-scan of lo-
calization data can also be performed, to obtain prior knowledge about the bias field.

Flip angle variations compensation

A part of the multiple set combination, prospection methods with pre-acquisition
flip angle compensation had been performed too. Actually, as we will see in Chapter
??, in this master thesis we propose a method which combine the acquisition of a
flip angle map with some post-processing techniques applied to the acquired image
to perform its correction.

Coming back to our topic, this second group of prospective methods, assume the
IIH mainly due to the RF coil, so they first estimate the sensitivity for a particular
head coil along the z axis. Then they compute a Look-up-table (LUT) to correct
the variations based on the estimate sensitivity profile [8].

Deichmann et al., in [11] designed an specific RF excitation pulse, based on two
spatially independent terms, compensating unwanted flip angle variations in a head
coil. Actually, this master thesis will give lay in this method, giving a different
approach from the one assess by Deichmann (that will be in Chapter ??). We will
propose (see Chapter ??) the use of a flip angle map (also called RF map or B1 map)
for determine the bias in the acquisition. In that way, and using post-processing
methods (id est, a retrospective method), we will try to correct the bias in the MR
acquisition.

In fact, the main goal of this thesis is to give a bridge between the prospective
methods and the retrospective ones. Instead of focusing in compensate the bias field
acting only in one of the, let’s say, segments of the acquisition/processing protocol,
we will try to combine techniques applied in both of them.

The main idea is that we can combine the knowledge obtained from both seg-
ments. That is, if the methods proposed at this moment are not god enough for
achieving the correction, why don’t combine two of them, to get better results?

4.1.2 Retrospective Methods

Retrospective methods propose to correct MR images corrected by IIH artifact with
only few assumptions regarding the acquisition process. We will focus on them as,
from the point of view of signal processing, they are capable to compensate the bias
in a more generic way than the prospective methods do.

They can be classified in grayscale level-based or transform domain based meth-
ods.



Graysacle Level Based Algorithms

The grayscale level based algorithms rely on the assumption that the bias has
smooth spatially and slow varying across the image , so the ideal image becomes
piecewise constant [5]. Different approaches had been mainly developed, focusing
either on assumption concerning the artefact or the true image:

Surface fitting: Is a type of interpolation. Its aim is to fit a set of data points
to provide a good approximation of the brightness function of the image. Correction
is performed dividing voxel-by-voxel the original image by the computed surfaces
following the principle shown in Chapter 3.1, in equation 3.6. Depending on the
type of the basis function used, we can found different solutions.

Polynomial Basis Functions: Styner et al., in [31], propose a Parametric Bias
Correction for MR images. It is a multiple pass basis function fitting. Considering
the assumption of smooth and low variation of the bias, they estimate it by Legen-
dre Polynomial, computing its coefficients by minimizing and energy function. In
section 5.1 we will talk about it in a broad way.

Spliline Basis Functions: Those methods fit the basis function by single pass
fitting or multiple pass fitting.

Spatial filtering: The main assumption of this methods is that the bias is a
low spatial frequency intensity variation. So, the methods based in spatial filtering,
first extract the IIH, and then perform the correction by dividing the original im-
age by the extracted IIH. This spatial filtering is has been generally done with two
different kind of filters: the Low-Pass filter and the Homomorphic filter.

Low-pass filtering techniques are normally based on Median filter as it is useful
for removing outliers (estreme pixels/voxels values). It uses sliding-neighborhoods,
ordering the pixel/voxel values in a neighborhood prior to choose the median value
as a result.

Homomorphic filtering is a non-linear filtering technique for image enhancement
or correction. This filtering methods rely on the fact that The Fourier transform
is linear and associative under addition, but is not associative under multiplica-
tion. Thus, Fourier methods are suitable for removing noise from images only when
the noise can be modeled as an additive term to the original image. In general
image signal processing, when the noise is not additive, we can define an object
in terms of the illuminance and reflectance so, an image of the object might be
modeled as f(x, y) = i(x, y)r(x, y). According to this approach, input signal is
assumed to consist of two multiplicative components: background and details. Illu-
mination and reflectance are not separable, but their approximate locations in the
frequency domain may be located. Illumination variations can be thought of as a
multiplicative noise, and can be reduced by filtering in the log domain. To make the
illumination of an image more even, the high-frequency components are increased
and low-frequency components are decreased.

If we consider equation 3.27, we realize that for an MR image, the bias (b(x)),
which is the artifact we want to remove, multiplies our ’ideal image’ (o(x)), so is di-
rect to identify ”reflectance” and ”illumination” as ”image” and ”bias”. So, ideally,
Homomorphic filtering is supposed to diminish the bias contribution in the image.

Statistical methods: Those methods mainly aim at segmentation, but they



take IIH into account as it is a important factor that can distort segmentation
results. It can be achieved by means of Maximum-Likelihood (ML) and Maximum-
a-Posteriori Methods (MAP)-based methods or by Fuzzy-C-Means-based methods.
The first two, label pixels according to probability values, which are determined
based on the intensity distribution of the image. It is an estimation problem that
can be based in different criteria as MAP or ML. Parameters estimation can be
achieve by EM (Expectation-Maximization) algorithm. The expectation step is
equivalent to compute the posterior tissue class probability (see. Section 3.2) when
the bias field is known while the maximization step is equivalent to a MAP estima-
tor [5].

The Fuzzy-C-Means-based methods clusters data by computing a measure mem-
bership, called the fuzzy membership, at each voxel for specified number of classes.
However, FCM is not appropriate for data corrupted by IIH [5].

Transformed Domain Based Methods

All the graylevel-based methods work in the spatial domain, but they also work in
other domains as the Fourier or wavelet domain (which are dual), or in the comple-
mentary domain of probability density functions (PDF). Some methods had made
this change of domain, as they can make different assumption on the bias.

When computing the PDF, the original intensity spatial distribution becomes
intensity probability distribution that we can model as an histogram. In this case
the IIH is considered as a parasitic convolution term which increase entropy. The
idea of those methods is to minimize this entropy and deconvolute the parasitic
term to correct the image [39].

Working on Fourier Transform domain has been seldom used in IIH correction.
In fact, normally, the filtering is done in spatial domain (as we have seen in the
previous subsection).

Recently, the used of Discrete Wavelet Transform have been proposed. In [21],
Lin et al., use the DWT to decompose the image into a cascade of orthogonal ap-
proximation and detail subspaces for different spatial resolutions. Each approximate
subspace contains low-frequency information whereas the corresponding detail sub-
space contains high-frequency information. the information of those to subspaces
can be combined to achieve IIH correction.

4.2 Summary of State-of-the-Art Methods for Bias
Correction

Since the apparition of the MR imaging techniques, the main goal has been to
achieve good soft tissue imaging, developing methods to enhance contrast and reso-
lution. In this Chapter we have presented a resume of the State-of-the-Art methods
for this achievement, methods for bias correction

We cannot forget that MR imaging techniques are in constant development. MR
has always been moving to ever higher magnetic field strength. In point of fact,
increasing the main field strength allow us to get advantage of a better signal-
to-noise ratio (which increases almost linearly with the field strength [27]). This
improvement of the SNR allows higher spatial resolution and/or faster imaging,



a greater spectral dispersion, as well as an enhanced sensitivity to magnetic sus-
ceptibility. But, if we increase the field, we find unsuitable effects or artifacts that
cannot be treated as we have been doing with low-field acquisitions. And this fact
becomes a problem.

Actually, all this methods are plenty proved in low field acquisitions. They
are based in the assumption of smooth and slow variation of the bias field along
the image. Unfortunately, as we have seen in Chapter 3.1, for high field strengths
these assumptions are no longer correct. That means, the methods are no longer
suitable for our purpose: bias correction in 7T MRI acquisitions. In next Chapter
we will present some studies about two of the grayscale based methods, showing its
drawbacks in the correction at high fields. The PABIC (Parametric Bias Correctic)
and the LPF (low-pass filtering) approachs are studied, and analyzed. In Chapter
??, a new method is presented, a method which try to palliate this deficiencies.



Chapter 5

Analysis of Retrospective
Methods

In the Chapter 4, we have presented the State-of-the-Art methods used nowadays
for bias correction, sorting them in two different categories: prospective and ret-
rospective methods. The idea is to show that, even thought those methods have
been largely tested in low-field MR acquisitions, they become weak for correct im-
ages acquired at higher fields. That is, the main drawback of this methods appears
when we increase the main field strength as they have not demonstrate to be able
to correct the image IIH due to RF field inhomogeneities.

In this Chapter we will study the two mainly used methods for correction of
MR images, proving its unsuitability for achieve IIH correction in MR acquisition
of over 7T . The PABIC and the Low-Pass filtering approaches are studied. Our
goal is to achieve a common brightness level for each tissue in the image. The quan-
titative analysis will be performed in terms of the Mean Square Error (MSE)
between the corrected image and the image assumed as Ground Truth and the time
elapsed in the simulations. Notice that the power of the computer is responsible of
the time elapsed when running the correction. The tests had been performed over
a Intel(R) Core(TM)Duo CPU 6600 @2.40GHz, 1.98GB of RAM.

We should clarify that, when talking about 7T MR acquisitions, it is difficult
to assess the quality of the correction as we only deal with corrupted data, so even
the ground truth used for the comparison present some bias corruption.

5.1 The Parametric Bias Correction (PABIC)

As seen before, the PABIC is a retrospective method for IIH correction mainly
developed by Martin Styner from University of North Carolina. This polynomial
approach combines bias correction with histogram adjustment. It is not only fo-
cused in bias correction. In fact, besides the correction of intensity inhomogeneities
in magnetic resonance imaging (MRI) it significantly improves intensity-based tis-
sue segmentation. Actually, at the same time as the bias correction, and to facilitate
it, PABIC runs a tissue segmentation of the image, with the estimation of mean
and variance values assess for each tissue by the user.

PABIC is based on a simplified model of the imaging process: a parametric
model of tissue class statistics, and a polynomial model of the inhomogeneity field.
The authors [31] assume that the image is composed of pixels assigned to a small
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number of categories with a priori known statistics. Further they assume that the
image is corrupted by noise and a low-frequency inhomogeneity field. The esti-
mation of the parametric bias field is formulated as a nonlinear energy minimization
problem using an evolution strategy (ES). The resulting bias field is independent of
the image region configurations and thus overcomes limitations of methods based
on homomorphic filtering. Furthermore, PABIC can correct bias distortions much
larger than the image contrast.

The main idea of this method is to determine the correct class k which each
pixel/voxel belongs to, in order to obtain an intensity-based segmentation of the
image. As we have presented in Chapter 3.1, human brain have three main classes
of tissues: white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF),
thus, in this case, k = (1, 2, 3). Here, we must make a consideration. Human brain,
a part from this three types of matter, is composed by other classes such as skull,
skin, blood vessels... This classes are considered to be too small and morphologi-
cally complex to help in the correction so, in a previous step, they are removed by
pre-processing protocols as skull-stripping and masking. We will talk about them
later.

The Parametric Bias Field Correction (PABIC) relies, in one hand, on the model
of the image intensity presented in Section 3.2 and, in the other, on the fact that
b(x) can be thought as a combination of m smooth basis functions (which are Leg-
endre Polynomials). In this method, b(x) is modeled as b′(x, p), where x are the
spatial coordinates and p the coefficients of the Legendre Polynomials.

The p parameters are estimate directly from data by the iteratively search of the
global minimum of a energy function, stepping-out from non-optimal minimum [31].
This energy function is:

e(p) =
∑

i

(ui − vi(p))2, (5.1)

where ui is the data and vi(p) is model a used to parameterize single-class model
and is found between Valley functions which is a robust family of M-estimators:

valley(d) =
d

d2 + 3σ2
, (5.2)

showing inflection points at d± σ. The valley functions of each class are multiplied
so the total energy function remains:

etotimage(p) =
∑

xεimage

Πkvalley(s(x)− b̂(x, p)− µk). (5.3)

We must know that finding p(x) by minimizing this energy function is a nonlinear
problem. The method used in PABIC for this minimization is the 1+1ES algorithm,
where each p(x) represent an individual. Its operation is shown in Appendix E.

PABIC rely in some assumptions:

• The bias field (b(x)) has slow and smooth variation and its mainly due to the
RF field and partially induced by the patient.

• The bias field (b(x)) can be approximate by a parametric model b̂(x, p) as a
superposition of Legendre Polynomials.

• The intensity of the signal for a given class is modeled as a Gaussian of mean
µk and variance σ2

k.



• The hypothetical idealized signal (o(x)) consists on pixels/voxels x each of
which can be assigned to a unique tissue class.

• Noise (n(x)) is caused by biological tissues.

This method is fully automatized, and prior to its application to a specific image
some parameters must be set. This parameters are divided in three groups: (1)
parameters for the class model, (2) parameters for the bias field model and (3)
parameters modeling the optimization. They are listed below:

1. Class parameters:

• Number of classes

• Mean and variance values for each class

• Class mask

2. Bias estimation parameters:

• Type of bias field

• Order of Legendre Polynomials

3. Optimization parameters:

• Mutation factors cgrow and cshrink

• Maximum number of iterations

• Initial values of coefficients p

5.2 Results and validation of PABIC Method

To test PABIC reliability in bias correction over 7T acquisitions, several test over
an MPRAGE acquisition had been performed, treating the PABIC algorithm as a
”black box”. We have used the utility MRI Bias Correction, developed by Martin
Styner, from the ITK C++ library [15]. ITK is a cross-platform application de-
velopment framework, widely used for the development of image segmentation and
image registration programs. ITK was developed with funding from the National
Library of Medicine (U.S.) as an open resource of algorithms for analyzing the im-
ages of the Visible Human Project. ITK stands for The Insight Segmentation and
Registration Toolkit. The toolkit provides leading-edge segmentation and registra-
tion algorithms in two, three, and more dimensions.

As said in the previous section, some parameters must be set before running
Bias Correction utility. The class parameters must be set, as well as bias esti-
mation parameters. Optimization parameters are not compulsory, so in this first
attempt we denied them, working with the default ones.

The choice of the mean and the variance values of each class is not trivial. In
fact, PABIC set values for those variables are mainly used to distinguish between
the different tissues in the segmentation process which is done parallel to the bias
correction. Thus, it is important to assess them in the most accurate way, to avoid
wrong results in the process. For this purpose, we compute the histogram of the
test image and try to accurately discern all the classes considering the peaks in the
histogram.

The first tests were performed with a single slice of an high contrast acquisition
of a human brain at 7T (see Fig.5.1)



(a) (b)

Figure 5.1: 2D human brain image used for first test in bias correction with PABIC.
Single slice for a 7T MPRAGE acquisition corrupted by noise and bias (a) and plot
of the computed histogram of its axial view (b).

In order to improve the results, we mask the image. This lead us to avoid the
parts of the image that are not useful for bias estimation, such as the background.
In fact, removing the background allow us to get better results even in computa-
tion time, as we are dealing with less information. Both, original and mask images
must have the same size. The mask will be superposed over the original image,
determining the pixels of this image that will be dismissed. PABIC can also use a
default mask (in case the user does not introduce its own costumed mask). This
default mask is automatically computed by setting to zero value the pixels which
gray level is bellow the 10 per cent of the histogram.

Masking is normally the first step performed in almost all the image processing
protocols. Its utility is to separate the useful data from the noisy background, re-
moving this last one. It lays on the hypothesis that the background is the darkness
part of the image, and so that, with the lower gray value in our scale1. So that,
the simplest way to compute a mask is by simply threshold the graylevel values in
the image, denying the pixel whom value is smaller than this threshold. There, we
will have a binary image2 so we can multiply it with our image and take only the
values inside the mask. Figure 5.2 shows the mask used for correcting a 2D slice:

5.2.1 Correcting a 2D Human Brain Image

For testing the goodness of PABIC some features are used. We used the p-vector
and the time elapsed in the simulations. Remember that each p-vector can be rep-
resented in a m-dimensional Euclidean space, so we use this output to compare
different simulation, taking advantage of some Euclidean operators such as the dis-
tance between them and the ground-truth.

The first test performed, was to run consecutive simulations of the same data
with the same conditions but changing the variance of the filter before the masking3.

1Actually, images in standard formats are stored so that each pixel/voxel value lies in a range
[0..255]. This range is chosen so that each pixel/voxel can be represented by 8 bits (one byte). So,
in this scale, 0 stands for black, 128 for gray and 255 will represent white.

2Binary image is an special kind of intensity image. Contains only 2 levels, 0 for black and 1
for white.

3In fact, before masking the image, is usual to low-pass filter it to erase part of the noise. In
this case, the filtering had been done by changing the variance of the filter, with a fixed window



(a) (b)

Figure 5.2: 2D human brain image used for first test in bias correction with PABIC.
Single slice for a 7T MPRAGE acquisition corrupted by noise and bias (a) and the
mask used for avoiding background (b).

We set the parameters of PABIC as follows: grade m = 3 for Legendre polynomials
and maximum number of iterations 200000 with a personal mask. For this case, we
took as class-means the values µ1 = 129 and µ2 = 198. And for the class-sigma,
σ1 = 22 and σ2 = 12. In figure 5.3, the evolution of the computing time is repre-
sented.

Figure 5.3: Evolution of the elapsed time in simulation while changing pre-filter
variance

As we see in the image, the mean time elapsed is about 14 minutes. This time is not
extremely big, otherwise the correction performed by PABIC is not good. In fact, if
we take a look to the correction and its vertical and horizontal profiles, we realized
the are not enough homogeneous, that is to say, the intensity is not uniform along
the brain (see Figure 5.4). As an additional point, notice that the vertical profile
has a greater slope than the horizontal one. This is because the vertical section is

size



parallel to the surface coil direction4

(a) (b) (c)

Figure 5.4: 2D human brain image corrected with PABIC (a) and its grayscale
profiles. Horizontal profile (b) and vertical profile (c).

Due to the bad results obtained in our first test, a second experiment was per-
formed. In this case, we tried to improve the correction of a 2D acquisition by
changing the value of the maximum number of iterations allowed. In this case,
we run PABIC with the same mean and variance parameters, and with m = 3 as
the degree of the Legendre polynomials. Here, a computation of the evolution of
the Mean Square Error between the p-vectors was performed. For this purpose we
averaged all the p-vectors obtained after the simulation get stable. The modulus
of our averaged vector (our ground-truth) is represented in by the red line. The
number of iterations varies from 200 iterations until to 4000 by steps of 200. The
results are displayed in figure 5.5:

Figure 5.5: Evolution of the p-vectors while increasing the number of maximum
iterations allowed.

In this figure, we see that when increasing the number of iterations permitted,
the Minimum Square Error (MSE) also increases. The increasing is nearly linear
with the number of iterations until 1600 but then it reaches a nearly constant value.
That means there is an internal criterion in PABIC which stop the simulation when

4The imaginary line in wich the surface coil is transmitting and receiving signal.



it reaches an acceptable result, even if the number maximum of iterations has not
been reached. Nevertheless, we notice the result is not acceptable neither. In fact,
PABIC stop running the simulation, because the result obtained is the best it can
achieve (even if it is not good).

However, we can suppose that the bad results obtained in our second trial are
due to the fact that PABIC is working in a transitory regime. ”Transitory regime”
because with this low number of iteration, PABIC demonstrate to not be able to
reach a global minimum of the energy function, but a local one instead. Keeping
the same parameters, we tried to improve the MSE by increasing the number of
iterations allowed. We start computing the correction up to 40000 iterations. The
results are displayed in the next Figure.

(a)

(b)

Figure 5.6: 2D human brain image corrected with PABIC (a) and the evolution of
the p-vectors while increasing the number of iterations up to 40000 (b).

We notice, the MSE had been improved (avoiding the aberrant measures ob-



tained for 150000 and 300000 iterations). Nevertheless, the correction is not good
enough as we can see in the Figure 5.7 (a). The intensity all over the tissues is not
homogeneous, so we cannot say PABIC is correcting it.

At this point, we get really sceptical about if PABIC is capable to correct an
7T MRI acquisition. As said in Chapter 3.1, the bias is assumed to be smooth and
slow variant when the magnetic field applied in the acquisition is lower than 3T ,
but it does not behave in this way in high-field acquisitions. PABIC lays in this
assumption, so it performs pretty good bias corrections in low-field acquisitions but
not in higher fields. However, some other test had been performed. In this case,
with a 3D image.

5.2.2 Correcting a 3D Human Brain Image

As seen in Chapter 4.1, PABIC presents other abilities. It is capable to correct the
bias field in the 3D space5 for acquisitions under 3T , so we try to test the method
working full power fot 7T acquisitions.

A 3D MRI acquisition is a group of different 2D correlative slices . In our case,
the correction was performed over a 3D volume consistent in 128 slices of 192x192
pixels per slice.

We have to notice, that working over a 3D image will increase the computation
time. Actually, we have N slices of 192x192 so the time will be increase by this
factor, where N is the number of slices.

For achieve this corrections, the same parameters were set in PABIC utility,
allowing until 500000 iterations. The class-means and the class-sigma remained the
same as the case of 2D correction. In this case, the time elapsed in simulation was
40 minutes, but the correction was not good. As we can see in Figure 5.7, where
one single slide is shown:

(a) (b)

Figure 5.7: Slice of a 3D volume human brain image corrected with PABIC (a) and
its intensity histogram (b).

The image is still corrupted by bias and the histogram shows the imperfect correc-
tion. The three main classes are not discernible as the maximum values of each
gaussian are nearly the same, even if they represent three different kinds of matter.

5Remember that an MRI acquisition translated into the r-space is corrupted in all directions.



To plot the vertical and the horizontal profile lead us to clarify this aspect. In
figure 5.8, these plots are represented. In fact, here we see the shape of the profiles
are specially variant. This let us assess that the bias field in a 7T acquisition has not
any smooth variation. Besides, bias affected the image much more than noise (even
if we can see the noise artifact if the take a look at higher frequencies). Besides, we
can realize, looking at the vertical section that the maximum of the image is not
exactly situated in the border of the image but a little bit further than that. This
fact will lead us to have a high frequency discontinuity in the image, and is showing
(again) that we do not have smooth variation of signal intensity, but a higher one,
otherwise.

(a) (b)

Figure 5.8: Vertical (a) and horizontal (b) profiles of gray values of one slice of
a 3D human brain acquisition at 7T after PABIC correction with third degree of
Legendre polynomials.

In Figure 5.9, we present the correction achieve in a 3D volume of a human brain
acquisition over 7T . The central slices had been selected as they present more
information than the lateral ones. Besides, the signal-to-noise ratio is higher in the
center (as we have seen in Chapter 2, and smaller in the periphery of the brain, so
that, in this central slices we are supposed to have better contrast. In this serial of
images, but can see the bias correction is not achieved.

5.3 The Low Pass Filter Correction

The Low-Pass Filtering method is a bias correction method based on the assumption
that the bias remains in low-frequencies of our image and therefore can be estimate
by low-pass filtering our corrupted image. Then, the correction is performed by
dividing the original image by the filtered one.

Actually, is we recall the signal intensity model seen in Chapter 3.1, that repre-
sent the image in the k-space as:

s(x) = o(x)b(x) + nRM (x). (5.4)

we can observe the frequency behavior by calculating its Fourier Transform:

F(s(x)) = S(k) = F(o(x)b(x)+n(x)) = F(o(x)b(x))+F(n(x)) = F(o(x))∗F(b(x))+N(k).

The low-frequency distortion is convoluted with the ideal signal, and it seems
the bias can not be removed by making the convolution with low-pass filter kernel.
However, as we still suppose the bias artifact in the low-frequencies it seems that



Figure 5.9: Central slices of the PABIC correction of a 3D human brain acquisition
over 7T (from top to bottom, first row slices 90 to 93, second row slices from 94 to
97 and last row, slices from 98 to 101).



filtering by a Gaussian filter (specially used in blurring images) or with a Median
filter, we can achieve good results. In fact, those two filters had been tested and
the results are displayed in this section.

Recall that the Gaussian filter is a wide used filter in signal processing. Gaussian
smoothing is often applied because the noise or the nature of the object observed
might be of a Gaussian probable form. In electronics and signal processing, a
Gaussian filter is a filter whose filter window is the Gaussian function

x 7→
√

a

π
· e−a·x2

, (5.5)

or with the standard deviation as parameter

x 7→ 1√
2 · π · σ · e

− x2

2·σ2 . (5.6)

Mathematically, a Gaussian filter modifies the input signal by convolution with a
Gaussian function; this transformation is also known as the Weierstrass transform.
Gaussian filters are designed to give no overshoot to a step function input while
minimizing the rise and fall time (which leads to the steepest possible slope). This
behavior is closely connected to the fact that the Gaussian filter has the minimum
possible group delay.

Note the Gaussian filter gives more weight to the current pixel position and
then tapers the weights as distance increases according to the Gaussian formula.
By weighting a pixels contribution to the final pixel value this filter can better pre-
serve edges than the mean filter which specifies equal weights to all pixels within
the filter window.

Whereas, the median filter is specially useful for removing outliers (that is, ex-
treme pixel values). It used ’sliding neighborhoods’ to process an image, that means
it determines the value of each output pixel by examining and m − by − n neigh-
borhood around the corresponding input pixel as the median value of them.

The goal of this filtering is to determine quantitatively which was the best
method for low-pass filter a 7T acquisition in order to palliate the bias field. The
performance of the filter solution is simple:

CorrectedImage = AmplitudeFactor × HighContrastAcquisition

F ilteredImage
. (5.7)

The test was performed by consecutive filtering the target image changing the
variance and the window size of the filter. The validation is achieved by computing
the Mean Square Error (MSE) between the corrected image and the ground-truth.
THis ground-truth had been computed by dividing two different acquisitions ob-
tained with different protocols. That is, by dividing one MPRAGE acquisition by
one FLASH acquisition. Recalling Chapter 2, Section 2.5, we must clarify that we
are actually diving one high-contrast image (MPRAGE) by one obtained with a
low-contrast protocol (FLASH)6.

Actually, the main goal of this experiment is to have a 2D map showing the
effects of varying this parameters, and find the best option for bias correction by

6This method had been developed by Xavier Peña Piña at the EPFL, with the collaboration
of Siemens Research Group site at the CIBM, Lausanne.



low-pass filtering.

This time, the original image has not only been masked by setting a simply
threshold. Besides, after the threshold that let us avoid the background (as seen
before), the image was ’skull stripped’ using BET7 algorithm. Skull stripping com-
monly refers for Intracranial segmentation, and it segments the brain tissue (cortex
and cerebellum) from the skull and non-brain intracranial tissues in magnetic res-
onance (MR) images of the brain. So that, it isolate brain from extra-cranial or
non-brain tissues. Skull stripping is an important preprocessing step in neuro-
imaging analysis because brain images must typically be skull stripped before other
processing algorithms such as registration, tissue classification, or bias field correc-
tion can be applied.

Besides, the masked and skull stripped image has also been de-noised. We must
say that In order to illustrate this part of the process, we take a single slice of the
3D volume (see Figure 5.10). So that, the images used for this test are:

(a) (b)

Figure 5.10: 7T MPRAGE acquisition of human brain masked by direct threshold
(a) and same acquisition skull stripped and de-noised (b) . (Both in sagittal view).

The skull-stripped and de-noised image, (b), when filtered, is compared to our
ground-truth. And this ground truth is, by its axial view (see Figure 5.12).

In resume, the processing chain for this low pass filtering method is shown in
Figure 5.11.

Figure 5.11: Block diagram of the LPF method proposed

7BEt algorithm belongs to the FSL Software Library. FSL is a comprehensive library of analysis
tools for FMRI, MRI and DTI brain imaging data. FSL is written mainly by members of the
Analysis Group, FMRIB, Oxford, UK. It can be found in http://www.fmrib.ox.ac.uk/fsl/fsl



Figure 5.12: Ground truth for correction goodness’ quantitative comparison. One
single slice of a 3D volume in its axial view. Ground truth obtained by diving
MPRAGE acquisition by parallel FLASH acquisition

Let’s start with the process. In the image we can note even in the inner part
of the brain there are some morphological peculiarities than can make impede the
correct estimation of the bias and, thus, its correction. SO our aim is to remove
them before the estimation.

The first step is to mask the image by direct threshold. This masking process, a
part for removing the background, can be used to remove high frequency artifacts
is the image due to tissue transitions. This tissue transitions are characterized by
having high gradient value. Thus, one way to localize them is by computing the
gradient of the image. With this process we can get some extra information than
can help us in the correction. But, before computing the gradient of the image, a
low-pass filter is applied as the artifact we want to erase are at high frequencies.

After that, the BET algorithm is applied (see [12]), so that we remain with the
inner part of the brain, without skull. Finally, we apply and de-noising filter. At
this point, our image is ready for our purpose: the extraction of the bias field by
low-pass filtering.

5.3.1 Results and Validation of the Method

The first filter tried is the Gaussian filter. By changing the variance and the window
size values, we consecutively filter the corrupted image. For each case, and following
the hypothesis that the bias field is estimated by the low-pass filtering, we compute
the division of the original image by its filtered sample (as shown in 5.3. After that,
the Minimum Square Error between the ground truth and the correction calculated.
So that, considering the variance values ranging from 1 to 25 and the window sizes
moving from 1 to 80, the following results are obtained:
As we can see in the images, the time elapsed in simulation increases while increas-
ing the window size of the filter. This is a result we should expect. In fact, this
filter is applied to an image in a two phase approach. First the horizontal direction
is filtered using the above filter in a similar manner to a convolution filter by taking
each pixel in the image, centering the filter on that pixel (the middle value) and then
multiplying the pixel values by the weight at each filter location followed by a final
divide to get the resulting new pixel value. This process is then repeated vertically
on the horizontally processed image to create the final image. So, growing window
size, will grow the length of the convolution and, thus, the time of computation.



(a) (b)

Figure 5.13: Evolution of the MSE between ground truth and image corrected by
low pass filtering method when changing the variance and the window size of the
filter (a) and evolution of the time elapsed in simulations (b). The low pass filter
applied is the Gaussian filter. (variance values from 1 to 25 and window sizes from
1 to 80).

However, if we compare this time with the one needed to perform PABIC correction
in the same image, we see the low-pass filtering is a faster method for correction.
In fact, the mean time of computation in this case is around 2 minutes, whereas
when running PABIC correction was around 14 minutes in a 2D image and aroun
40 minutes in a 3D one.

One consideration must be done at this point. Window size of the filter is nor-
mally related to the variance. Actually, it was not necessary to cover all the sigma
values from 1 to 25 changing at each time the window size from 1 to 80. It should
have been enough to change the variance from value 2 to 20 in steps of 2, and then,
for each variance value, change the window size from 3× variance to 5× varinace
in steps of the variance value. Nevertheless, the complete coverage has been done
in order to plenty test the method.

If we focus now in the MSE graphic, we realize we do not get acceptable values
for the Mean Square Error between the corrected image and the image assumed as
ground-truth. Thus, we can achieve from here, the filtering by Gaussian filter is not
enough for estimate the bias at high field acquisitions. However, we can see that
considering variance values over 10 gives us a MSE up to 8, whereas if we constraint
our filter with variance values around 5 can give us some acceptable results in the
quantitative comparison with the ground truth. Thus, when low-pass filtering with
a Gaussian filter, we must consider variance σ = 5 and window size between the
values window = (15, 25).

After this trial, the Median low-pass filtering was tested for bias estimation and
correction in 7T MR images.

As said in the previous section, the Median filter uses ’sliding neighborhood’ to
determine the output pixel brightness value. Figure 5.14 shows an example of the
median filter application, as in this case, habitually a 3x3 median filter is used. The
Figure 5.14 (a) presents the concept of spatial filtering based on a 3x3 mask, where
I is the input image and O is the output image. In Figure 5.14, the median value
is determined by placing the brightness in ascending order and selecting the center
value. The obtained median value will be the value for that pixel in the output
image.



(a)

(b)

Figure 5.14: 3× 3 median filter operation. In (a) some samples of input pixel and
its neighboring are displayed. The bright value of the output pixel is computed as
shown in (b).

So that, an as the Median filter8 is supposed to be a more robust method than
the traditional linear filtering, because it preserves the sharp edges, we expect to
achieve a better bias estimation than when applying Gaussian filtering.

Nevertheless, the tests with Median filtering did not give better results. Actu-
ally, the main problem of the median filter is its high computational cost (for sorting
N pixels, the temporal complexity is O(NlogN), even with the most efficient sorting
algorithms). When the median filter must be carried out in real time, the software
implementation in general-purpose processors does not usually give good results.

Besides, even having the complexity of the algorithm increased as well as the
computation time by a factor of O(NlogN), the correction is neither good in terms
of intensity homogeneity.

5.3.2 Summary of Bias Correction with Retrospective Meth-
ods

Two different retrospective methods for bias correction in 7T MR acquisitions had
been tested in this section: the Parametric Bias Correction (PABIC) and the Low

8Median filter is the nonlinear filter more used to remove the impulsive noise. Median filter
is a spatial filtering operation, so it uses a 2-D mask that is applied to each pixel in the input
image. To apply the mask means to center it in a pixel, evaluating the covered pixel brightness
and determining which brightness value is the median value



Pass Filtering approach.

Even if none of the methods plenty achieve the bias correction desired in the
image, one comparison between them can be done.

PABIC method is good to deal with multi-class images, which is one of the
main drawbacks when trying to correct the bias directly from a brain MR image.
This pretty good behavior is due to its parallel segmentation process (which is not
done with the low pass filtering approach). Besides, PABIC parametrizes the bias
field, giving it in terms of the p− vectors so it can be recursively run, giving them
as a initial point for the next step. Otherwise, the computation time became an
important drawback when using this method for bias correction in 3D images. The
time elapsed in simulations are quite acceptable for 2D acquisition but not for 3D
images, as it increases nearly exponentially. Nevertheless, it can be reduced by
forcing PABIC to start with a certain p-vector value (normally our ground truth
vector). However, even in this case, in does not reach good results as it is inca-
pable of found a energy global minimum, remaining most of the times in a local
minima of the energy function. This is not the case for the Low-Pass filter approach.

The main advantage of the Low Pass Filter for bias correction is that this method
is much faster than PABIC (time elapsed in computation with this approach is
nearly then time faster than PABIC). Besides, the simplicity of the algorithm makes
him a good option for image bias correction. However, the correction achieved by
this filtering is worse than the obtained with PABIC. In fact, this method does
not parallel segment the image so is harder to find the tissue boundaries even if a
gradient filter is used. Actually, the LPF method is good for correcting single-class
image9. Nevertheless, its strength is weak when a multi-class image are considered.

Despite what we could had imagine before trying the correction by one of those
retrospective methods, nor PABIC neither the Low Pass Filtering approach, perform
good bias correction in 7T acquisitions. It is due to the fact that the assumptions
of smoothness an slow variation are no longer valid. This leads us to say that a
method to correct the bias directly from the acquisition with no other information
is not suitable for acquisitions at high field strength (i.e. over 7T ). Some additional
information is needed for achieve an acceptable correction in terms of visual inspec-
tion and histogram computing.

Actually, as we can see, there is not only bias in the low-frequency band, but
a mixture of undesired bias field and important information. Both are difficult to
separate without no a priori information.

Following this idea, a new method is presented in next Chapter. This method
take profit from the acquisition of an RF map at the same time of the image. This
amp gives us information about the distribution of the field and the flip angle inside
the brain, thus, information about the bias field added to the image.

9Recall for further information the master thesis Bias Field Correction in Magnetic Resonances
of a Rat Brain [40]



Chapter 6

A New Prospective Solution
Using the RF Mapping

The main goal of this Master Thesis is to estimate and eliminate the bias field added
in the MR acquisitions obtained at high fields (over 7T ). In previous sections we
have proved the impossibility of achieve this correction directly from the corrupted
image. The bias field behavior in high field acquisition avoid this fact. Actually, it
cannot be seen as an spatially sooth and slow variation. Thus, other information is
needed for this purpose.

Following this aim, we present a new method, based on the acquisition of a RF
map after acquiring the image. Note here we have a compromise. As said in Chapter
3.1, the acquisition time is a critical parameter when imaging living tissues. The
patient must stay longer inside the magnet, at this fact present several drawbacks:

• The patient should avoid moving for acquiring this map in the most accurate
way. If he moves, more artifacts will be added to the image. Otherwise, not
moving is not easy, as the magnet is not a comfortable place to lay on.

• Each living tissue presents an maximum absorption rate that cannot be ex-
ceed. Actually, when acquiring an MR image, we are applying a magnetic
field over the tissues (recall Chapter 2) so we must be careful on not expose
the tissues more time that they can stand.

Actually, with this additional acquisition we are trying to get enough informa-
tion to proceed successfully to the bias correction. And, for 7T acquisitions, where
the bias pattern is not already defined, this is the best possibility for this purpose.

B1 mapping is crucial for the understanding of B1 inhomogeneity patterns and
for quantitative studies such as T1 ad T2 measurements. Because there are different
sources of variation of the field behavior inside the brain, B1 mapping add confi-
dence and give important insights into the interpretation of the magnitude images.

It is clear, at this moment, that even susceptibility artifacts appears in the ac-
quired images, in there we can also see substantial signal variability due to the B1

inhomogeneity. Actually, as Trong-Kha et al. assess, regions of low signal corre-
sponds, directly, to regions with low flip angle and/or low receive sensitivity. The
flip angle variability affects not only the SNR but also the image contrast [34].

Considering different types of acquisition, the effect of the bias field changes.
It has been demonstrate that the image contrast will be more severely affected by

53



flip angle variation on T1 weighted images. And, B1 inhomogeneity and the resul-
tant spatial variability of the flip angle become progressively more problematic in
multi-pulse sequences (as the MPRAGE). For small flip angle images, the intensity
distributions are approximately symmetric about the centerline of the coil. With
increasing flip angle, the symmetry in the signal intensity pattern disappears, be-
havior caused (as the reader can imagine) by the asymmetry in transmission and
reception in the data acquisition process.

So that, to quantify this B1 inhomogeneity, we can compute a map of the flip
angle and a map of the receive sensitivity. Different methods had been proposed in
literature for this achievement. In [18] three methods are enumerate:

1. Increment transmitted reference amplitudes and fit as assumed signal behav-
ior.

2. Acquire several echoes and calculate the RF distribution by their proper com-
bination.

3. Use preparation pulses or additional pulses in various sequences.

All of this methods are implemented in 2D due to time constraints, but in [2] we can
see a method based in two simultaneous acquisitions which is the one used for our
purpose. Is not extremely difficult to compute those two maps (the flip angle map
and the receive sensitivity one). Following Siemens’ protocol for flip angle map
computation, two series of low-resolution images are computed with TR >> T1

and flip angles α0 and 2α0. The acquisitions are one Spin-Echo sequence and one
Stimulated-Echo. In this case, the signal intensity at the pixel (x, y) can be written
as:

Sα(x, y) = ρ(x, y)r(x, y) sin[α(x, y)], (6.1)

and
S2α(x, y) = ρ(x, y)r(x, y) sin[2α(x, y)] (6.2)

respectively, where ρ is the proton density, r the received sensitivity and α the local
flip angle. A flip angle map can be computed from the signal intensity ratio of
the two series as follows [34]:

α(x, y) =
S2α(x, y)

2 · Sα(x, y)
. (6.3)

Then, a map of the product of the proton density and the receive sensitivity can be
computed from the flip angle map using 6.1:

ρ(x, y)r(x, y) =
Sα(x, y)

sin[α(x, y)]
. (6.4)

Finally, a measure of the receive sensitivity can be generated from this map by
low-pass filtering (with a 2D boxcar filter) and normalizing between 0 per cent and
100 per cent.

In principle, two measurements with different nominal flip angle are sufficient
for determine the flip angle value α. However, since the resulting flip angle is de-
termined from the linear regression of results of all measurements, the acquisition
of the RF maps with more nominal angles reduces the sensibility of the calculate α
values of the noise [18]. So, we must prevent that this method for calculate the flip
angle and sensitivity map from two different sets of images with nominal flip angles



α0 and 2α0 is theoretically accurate for local flip angle α ranging between 0◦ and
180◦. If the local flip angle exceeds 180◦, this method can no longer determine the
correct flip angle. Actually, signal intensity not only decreases in regions with small
flip angles but also in regions with angles larger than 90◦/180◦, where the spins are
over-flipped.

At this point, it is almost clear that to correct effects of the RF inhomogeneities
in 3D data sets it is necessary to have knowledge of the field distribution inside the
sample. Thanks to the Siemens’ acquisition protocol we can obtain two different
maps from this B1 distribution, the (1) magnitude B1 map and (2) the flip angle
map, which is the relative spatial phase pattern for received and transmitted field.

6.1 Magnitude B1 Mapping and Flip Angle Map-
ping

In Chapter 3.1, we have presented the way of modeling the signal intensity in each
voxel of the image. Assuming that for each voxel we can explain signal intensity
modulation as:

I ∝ ρ sin(V |B̂+
1 |γτ)|B̂−

1 |, (6.5)

where we can see the influence of the transmitted filed ( |B̂+
1 |) and the received one

(|B̂−
1 |).

The way to determine the |B̂1| and calculate its map is by fitting the modulation
of the signal intensity with a sinusoidal function. Once this map is calculated is
straightforward to determine the actual flip angle at each pixel location of an GE
acquisition [37]. Actually, in [37] an experimentally examination of the 7T RF coil
interferences between different coil elements is performed, giving special importance
in phase spatial distribution. In Appendix C the main formulas are transcribed for
interested readers.

An example of this two maps can be seen in Figure 6.1, where Figure 6.1 (a)
in the B1 magnitude map and the Figure 6.1 (b) shown the flip angle map. In
this approach, only the flip angle map had been used as it the less corrupted by
inhomogeneities.

In this images, we can suppose (as Jinghua prove in [17]), that any inhomo-
geneity in the flip angle map is due only to the B1 inhomogeneity. In fact, B0

inhomogeneities can impact the signal intensity, but do not directly influence the
flip angles obtained. In this assessment lean this new approach to bias correction.
We know the flip angle map is only corrupted by the B1 inhomogeneity so, each
inhomogeneity in this map will be due to this artifact. Thus, this flip angle map is,
simply, a map of the inhomogeneity we get when imaging a living tissue.



(a)

(b)

Figure 6.1: Single slice representation of the computed B1 magnitude map (a) and
computed flip angle map (b) from an human brain at 7T .



6.2 Bias Correction using the RF Mapping

As seen before, for correcting an high-field MRI acquisition we need some additional
information. Until now, and for low-field acquisition, the correction was performed
directly from the corrupted data by estimating the bias due its smoothness and
slow variation. Nevertheless, this direct correction cannot be achieved in high-field
acquisition. Some additional data is needed. And, following this aim, we present a
method based on the double acquisition of an image and the RF map (also know
as flip angle map).

The test were performed over one MPRAGE 3D acquisition supplied by the
Siemens Research Center in the CIBM. A B1 magnitude map and a flip angle map
were also supplied. The transverse (axial) MPRAGE acquisition is composed by
160 slices of 216×256 pixels each. This image is presented in Analyze 7.5 format as
it is an high dynamic range image (HDR). In the Analyze coordinate system, with
this acquisition we get:

1. 160 transverse slices laying on the xy plane, each of 216× 256 pixels.

2. 216 sagittal slices laying on the zy plane, each of 256× 160 pixels.

3. 256 coronal slices on the zx plane, each of 216× 160 pixels.

The test wee performed over a Intel(R) Core(TM)Duo CPU 6600 @2.40GHz, 1.98GB
of RAM, but in this case, the time elapsed in simulation was not computed. This
time is much higher than the one needed for retrospective corrections, but, in con-
trary, the correction performed in piecewise better. One consideration must be
done: these tests were performed over a 3D acquisition of high dynamic range so
that, the amount of data is much bigger than the one used for validate other cor-
rection methods. Thus, having increased the time of computation is specially due
to this fact.

The algorithm for the correction is based in nearly the same concept used for
correcting image with low-pass filtering. The corrupted image, after been masked,
skull-stripped and de-noised is divided by the flip angle map and finally multiplied
by the received field contribution. This last multiplication is performed because
when dividing the corrupted image by the flip angle map, we loose some contrast.
A block diagram can be seen in Figure 6.2:

6.3 Results and Validation of the Method

Following the algorithm of bias correction, the MPRAGE acquisition was masked
by setting a threshold. After that, the skull stripping was performed using (as in
the case of the Low Pass Filter approach) the BET algorithm from the FSL Library.
We must say that this method for skull stripping is not the only one. Actually in
the literature, we can find several methods for brain extraction that seem to work
even better that BET algorithm. The choice of this one was done because BET
algorithm is a method fully-automatized and fast and easy to use. Even thought,
we might have test some others. However, due to time constraints, only this one
was tested. It means that some other protocol can be used that might improve
the result or the time of computation. This can be seen as a future work for the
improve of the algorithm.



Figure 6.2: Block diagram of the method proposed. Bias Correction by RF mapping

Once the image is masked and skull-stripped, it is de-noised to facilitate the
correction. Actually, by de-noising we erase some unwanted effects that might be
confused as bias. We must say that the flip angle map was also masked for remov-
ing all the background. Besides, we cannot forget the importance of having the
images well registered. Actually, we are dividing pixel-by-pixel one image by its
corresponding flip angle. If the images are not accurately registered, we might we
dividing one pixel by flip angle value of the neighboring pixel and the results will
be distorted.

The correction was performed over a 3D volume. Nevertheless, to illustrate this
section, only several slices of the volume are presented. In figure 6.3, the three views
(axial, sagittal and coronal view) of a single slice of the volume used for the test
are represented:

The result of the algorithm is seen in Figure 6.4:

The validation of this method had been performed only by visual inspection.
As we can see in the image 6.4, even the bias correction is not totally performed,
the image had been corrected in intensity inhomogeneities. We are still missing
some good results in the hypothalamus and the temporal lobe. This can be due
to the fact that the acquisition of the flip angle map was not plenty co-registered
with the MPRAGE acquisition. In fact, for achieve this registration, the flip angle
map was switched by a 10 degree angle. And when we are talking about one ’angle
representation’ image, this fact is not negligible.

This fact can also explain the lost of contrast of the image. Even after multi-
plying the image by the contrast correction factor which is the contribution of the
received field to the image (i.e. B−

1 ), the contrast is not well recovered. Never-
theless, the improvement of this method in comparison with the retrospective ones



Figure 6.3: Axial (transverse), sagittal and coronal view of a single slice of a 3D
volume MPRAGE acquisition of 216x256x160 pixels before the correction using the
RF mapping.

Figure 6.4: Axial (transverse), sagittal and coronal view of a single slice of a 3D
volume MPRAGE acquisition of 216x256x160 pixels after the correction using the
RF mapping.



analyzed in this report, is that the brightness of the image seems to be more homo-
geneous than in the other cases. We have been able to erase the bright spot in the
middle of the image, attenuating its value and, besides, we have achieved a better
homogeneity in almost all the image (even though we have lost contrast).

This is not a perfect result, but, however, it is a encouraging one. In fact, after
having tried several methods for achieve this bias corrections which was the main
goal if this Master Thesis we realized that none of the actual ones work, so, a need
method is needed. Bias Correction by using the RF mapping can be this needed
one. As a future work, one improvement of this method can be tried, in order
to completely parametrize the bias inside the brain, so that will allow the total
correction of the bias without contrast lost.

6.4 Summary of A New Prospective Solution Us-
ing the RF Mapping

In this Chapter a new prospective solution has been presented. This new approach
lean on the needing of having some additional information for properly achieve the
bias correction in 7T MRI acquisitions.

Actually, for low-field acquisitions, we are able to correct the bias directly from
the corrupted data, as this bias has smooth and slow varying behavior so that in
lays on the low-frequencies of the image. Due to this fact, Low-Pass filtering can
be a good and fast approach for this purpose.

In high-field acquisition, the assumption made for the bias is no longer valid,
so some additional information is needed for perform the correction. The approach
presented in this section, take profit of the acquisition (at the same time of the
image) of a RF map (or flip angle map). This map is a related to the angle of
precession of the spin in the living tissue and, therefore, any inhomogeneity in this
map will be showing the inhomogeneity due to the bias field.

Some tests had been performed and even the result are not completely per-
fect, they give a new line of investigation for future work on bias correction in 7T
acquisitions.



Chapter 7

Conclusions and Future
Work

The aim of this project was to remove the bias distortion, so called bias field or
intensity inhomogeneity, from MRI images of human brain acquired with 7T MR
machines. The ultimate goal was, obviously, to supply the medical community with
a tool which could allow them to diagnose, in a reliable way, possible human brain
diseases as well as help them understand its behavior by having the chance of giving
and accurately insight into the physiological condition of the brain.

The first attempt in this way was to test reliable methods in bias correction un-
der 3T that were plenty proved in this achievement. The PABIC and the Low-Pass
Filter were tested. Both rely in the assumption of smoothness and slow variation
of the bias field along the images. Even its capacity of extrapolate the bias all over
the image (i.e. the region corrected can be bigger than the region measured to
estimate the bias), none of them can completely ensure the success in bias estima-
tion and bias correction. Actually, as the bias does not have smoothness behavior
anymore it cannot be approximate by Legendre Polynomials or other smooth basis
functions. So that, PABIC present several problems to reach the global minimum
of energy needed when estimating the bias. Besides, the bias field presents a multi-
plicative effect over the image intensity that cannot be transformed in additive by
log-transformation. This avoid us getting good results by low pass filtering the im-
age by Gaussian or Median filters, which was a point we want to prove following the
work done at the EFPL by Xavier Peña Piña over 9.4T acquisitions in rat brains [40].

This fact can be seen as the main contribution of this master thesis. We have
demonstrate that the methods for performing bias field correction in acquisitions
with field less than 3T are no longer useful for correcting 7T acquisitions. All the
conclusions and results are based in the fact that at 7T the bias can not be assumed
as a slow and smooth variation all over the image.

Actually, the main drawback is that, when increasing field strength (specially
if we work with high field acquisitions (> 7T )), the bias field starts having a
wave behavior that makes impossible its approximation by an smooth function as
it is strongly dependent in the dielectric effects, and the conductivity of each tissue
in the brain. Artifacts due to B0 and B1 inhomogeneity are severe in ultra-high
magnetic field MRI and experimental and/or numerical mapping of the B0 and B1

inhomogeneity is important in identifying their origin. Detailed characterization of
these effects is an important step in the development and assessment of B0 and B1
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inhomogeneity correction methods. In this fact lean the new prospective approach
presented in this Master Thesis.

The idea of this method is to acquire extra information during the imaging pro-
cess, so that it can help in the bias correction. The main advantage of it (when
comparing with other approaches) is that this correction, if well used, could be more
consistent than the other ones. Actually, it relies in an analytical approach of the
intensity inhomogeneity at high fields strengths. In fact, we have seen during this
report that correcting the bias field directly from the corrupted data has serious
limitations (specially at high-fields).

Nevertheless, this feature has some drawbacks. Its is computationally compli-
cated (specially if we compare it with the Low-Pass Filter approach) as we are
dealing with a big amount of data. And, at this point of the research, we have not
been able to assure neither in this case a perfect bias correction in 7T acquisitions.
However, despite this fact, the results are enough encouraging to keep working in
this line.

In this report we actually present a draft for a method which can combine the
two lines of investigation in bias correction we found nowadays: the prospective and
the retrospective methods. And, as a future work, some new improvements can be
done as a future work.

• A accurate parametrization of the bias should be deeply studied so the B1

mapping can be fully defined. We cannot forget (as said in Chapter 5.1) that
the image registration becomes crucial at this point. When comparing the
image with its RF map, we need all the pixel/voxel to have perfect correspon-
dence in both images.

• Improve the steps prior to the image division. That is, improve the skull
stripping and the de-noising, as well as the masking. In fact, the less artifact
we get in the image (even if they are not due to the bias) the better results
we can get. Several methods are proposed in the literature in this sense, even
we had only tried the BET algorithm due to time constraints.

• To combine previous estimation and post-correction force us to get specially
knowledge of the nature of the images (both MPRAGE acquisition and RF
map). An effort combination between physics and signal processing research
groups had permitted us to outline this new approach. However, keep this
line of research could lead us to successfully estimate an remove the bias in
this high field acquisitions.

As the last point of this Chapter, note that, even if this report focus in MRI
acquisition of human brains images, the bias appears in all MR imaging techniques,
whereas we are imaging the brain or other parts of the body. So that, the con-
clusion assessed for the specific case of the brain, can be extrapolate to other MR
acquisitions. So that, erasing the bias in high field acquisition could give us, not
only a good insight of the brain but the whole human body.



Appendix A

Radio-frequency Power
Requirements of Human
MRI

The values obtained in this Appendix rely on the study carry out by L.Tang in
his paper [32]. The values had been obtained by a simulation model, a 16-element
TEM resonator based on multi-conductor transmission line theory loaded by an
anatomically detailed head mesh.

A.1 Power an SAR Calculations

The input power from the RF coil can be written (deriving it from MAxwell equa-
tions) as:

Pinput = Pabs + Prad +
σ

2

∫ ∫ ∫

v

|−→E |2dv +
1
2

∫ ∫

s

(
−→
E ×−→H ∗)ds, (A.1)

with Pabs and Prad the absorbed and radiated power, σ is the conductivity and
−→
E

and
−→
H are the electric and magnetic fields respectively.

The RF power absorbed is related with the flip angle (as we have seen is linearly
proportional to the circularly polarized component B+

1 we can only consider the
absorbed power. So changing the continuous integration by summation we obtain:

Power =
∑

i

∑

j

∑

k

[
1
2
σ(i,j,k) × (E2

x(i,j,k) + E2
y(i,j,k) + E2

z(i,j,k))], (A.2)

where σ(i,j,k) in [S/m] is the conductivity at the (i, j, k) location. Ex, Ey and Ez

are magnitudes of the electric field components in the x, y and z directions and
expressed in [V/m].

The SAR is modeled as:

SAR(i,j,k) =
1
2

σi,j,k(E2
x(i,j,k) + E2

y(i,j,k) + E2
z(i,j,k))

ρ(i,j,k)
, (A.3)

where ρ(i,j,k) is the tissue density at location (i, j, k). SAR has the unit [W/Kg].
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Appendix B

1D Electromagnetic (EM)
Theory for Wave Interference

At this point, it is proved that the highest B1 inhomogeneity that occurs in a sample
when acquiring an MRI at high field is due to the wave behavior of the field inside
the brain. Actually, as the sample dimensions represent a larger percentage of a
wavelength (λ), intermediate and far field effects, including wave propagation, be-
come more important. At it is this presence which requires the use of the full-wave
solution of Maxwell equations. In this Appendix, 1D theory is explored to explain
the patterns of the interference sources in a phantom. It has been performed in [7].

Whereas the coil used are volume coils, arrays surface coils or single surface coil,
the wave interference effect, appears when a sample is added in a MRI machine.
And this interference, can be constructive o destructive.

The explanation is simple. When a sample is added, and due to the multiple
air/tissue we find in the brain, the applied field will suffer numerous reflections,
giving a multiple path pattern propagation. One example can be seen in figure B.1:

Figure B.1: Multiple propagation path in rectangular sample with large reflection
coefficients at boundaries.

In this figure there are represented some of the possible paths where the wave
would propagate. When getting at the boundary a reflection take place. If at this
moment there is no phase difference between the incident wave and the reflected one,
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we will get a constructive interference and the values of amplitude will be added.
By contrary, if there is a 180 phase difference, the interference will be destructive
and the two wave swill cancel them out. Those 2 cases are the extreme ones but
we can find all the intermediate ones that will cause different level of interference.

So, how we can determine the effects of sample properties and size in this propa-
gation? Let us consider a plane wave traveling with normal incidence (that is to say
perpendicular) to the sample considering B0 on the z direction, a linearly polarized
B1 in the y direction and a wave traveling on the x direction. The sample is formed
by four layers (and it can be extendable) with different physical and electrical prop-
erties (see fig. B.2).

Figure B.2: Sample with four different layers and their physical and electrical prop-
erties.

Assuming the incident wave in a single direction B(x0) = B(x)ŷ (for facilitate
the computation)we get a general form of the solution for the magnetic field B =
B(x)ŷ = By0h(x)ŷ. h(x) is found for solving the wave equation at each layer:

hi(x) = Ci cos ki + Si sin ki, (B.1)

with i = 1, 2, 3, 4 and k the complex wave number defined by:

ki = αi + jβi. (B.2)

In equation B, αi represents the attenuation constant and β−i is the phase constant
in the layer. The skin depth δ is related to α as δ = 1/α.

The coefficients Ci and Si are found using the eight boundary conditions [33] at
the interface between layers:

• Initial value at x0.

• Continuity of E and B fields at x1, x2 and x3.

• Perfect conductor condition at x4.

The layer 1 which is the space between the source of the wave and the sample) is
assigned free space properties. The layer 2 represents the sample and its conduc-
tivity and thickness are varied. Layer 3 assigned for the properties of the free space
and layer 4 is an absorbing boundary condition.

The experimental results obtained for different test performed to demonstrate
the wave behavior of the field inside the sample can be found at [7].



Appendix C

Relative Spatial Phase
Patterns for Received and
Transmitted B1 Field

In this experiment [37], the study of the RF penetration in human body is performed
with an eight-channel transceiver coil array that allows the use of an identical coil
structure as a volume transmitted coil, multichannel receive coil or multiple single
transmit surface coils. The tests are performed over a phantom.

Without studying to much in depth, for the receive B1 field, the complex image
obtained after 2D Fourier Transform the phase of the raw data from one channel
at image coordinate r can be written as:

Φraw
i,j = ϕr,B∗1,jrel + ϕ0,j + ϕr,B1com + ϕr,∆B0 + ϕr,res, (C.1)

For the ϕr,B1com term we get:

ϕr,B1com = ϕr,B+
1

+ ϕr,B−∗1 com. (C.2)

where j is the channel (or coil element). We can group the terms depending on
whereas they depend or not with the coil topology and situation.

• Coil-specific terms.

– ϕr,B∗1,jrel Is the coil-specific relative spatial phase. This term varies with
coil and spatial position and is the one we want to estimate.

– ϕ0,j Stands for the coil specific zero-order phase and it corresponds to
a global phase shift for each channel. It depends on the relative polar
position of the element in the circle formed by the eight coil elements, as
well as on other hardware components inducing phase shifts. It can bee
estimate from the average phase of small ROI1 at the center of the sample
because coils are expected to have the same phase in that location.

• Coil-independent terms. Those terms accounts for B0 inhomogeneities:

– ϕr,B1com is the coil common B1 phase.
– ϕr,∆B0 is the ∆B0 phase derived from the phase of the complex ratio

between two images acquired at 10ms and 6ms echo time (TE).
1ROI stands for Region of Interest
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– ϕr,res accounts here for a slight offset of k-space center.

Some of those terms had been estimated. Thus, the coil specific zero-order terms
is:

ϕ0,j=̂arg[
ROI∑ p̂raw

j exp(−jγTE∆B0) exp(−j)ϕr,res

|p̂raw
j | ], (C.3)

where |p̂raw
j | is the pixel-wise form each channel value and arg(|p̂raw

j |) its phase.
Finally, the common phase term is estimate under the hypothesis that given the
spherical symmetry of the phantom and the eightfold cylindrical symmetry of the
coil structure

ϕr,com = arg(
N∑

j

p̂j,r

|p̂j,r|
), (C.4)

being N the number of coils. The pixelwise raw complex values are defined as:

p̂j = p̂raw
j exp(−jϕ0,j) exp(−jγTE∆B0) exp(−jϕr,res). (C.5)

In the case of the transmitted B1 field we get a similar equation as for the
one determined for the receive field but with some additional terms. The phase
in complex data collected with coil element j when transmitting RF through coil
element k is:

Φraw
i,j,k = ϕr,B−∗1,j rel + ϕr,B+

1,krel + ϕ0,j,k + ϕr,B1com + ϕr,∆B0 + ϕr,res. (C.6)

and
ϕr,B1com = ϕ+

r,B1com + ϕ−∗r,B1com. (C.7)

Removing the terms ϕ0,j,k , ϕr,∆B0 and ϕr,res from the raw data, we get and easier
expression, which is the apparent phase expression:

Φapp
i,j,k = ϕr,B−∗1,j rel + ϕr,B+

1,krel + ϕr,B1com. (C.8)

The estimation of the phase expression ϕr,B+
1,krel+ϕr,B1com is obtained following:

ϕr,B+
1,krel + ϕr,B1com = ϕr,com = arg(

N∑

j

p̂j,r,k

|p̂j,r,k| ). (C.9)

Those eight sums are put together in order to estimate ϕr,B1com as:

ϕr,B1com = arg(
N∑

k=1

N∑

j=1

p̂j,r,k

|p̂j,r,k| ). (C.10)

Finally,each relative coil transmit phase ϕr,B+
1,krel is derived from the previous equa-

tions getting:

ϕr,B+
1,krel = arg((

N∑

j

p̂j,r,k

|p̂j,r,k| ) · (
N∑

k=1

N∑

j=1

p̂j,r,k

|p̂j,r,k| )
∗). (C.11)



Appendix D

Legendre Polynomials

Legendre functions are solutions to Legendre’s differential equation:

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n + 1)Pn(x) = 0. (D.1)

These solutions for n = 0, 1, 2,... (with the normalization Pn(1)=1) form a poly-
nomial sequence of orthogonal polynomials called the Legendre polynomials. Each
Legendre polynomial Pn(x) is an nth-degree polynomial. It may be expressed using
Rodrigues’ formula:

Pn(x) =
1

2nn!
dn

dxn

[
(x2 − 1)n

]
. (D.2)

Legendre Polynomials are used to estimate the bias in PABIC (see. Section 5.1) as
they are smooth. This fact in needed because, as Styner assess in [?], the choice
of an orthogonal basis result a better posed condition for changing the parameters
pi. Actually, the Legendre Polynomials are just one choice in between the other
possibilities.
An important property of the Legendre polynomials is that they are orthogonal
with respect to the L2 inner product on the interval −1 < x < 1

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n + 1
δmn, (D.3)

(where δmn denotes the Kronecker delta, equal to 1 if m = n and to 0 otherwise).
In fact, an alternative derivation of the Legendre polynomials is by carrying out
the Gram-Schmidt process on the polynomials 1, x, x2, ... with respect to this inner
product. The reason for this orthogonality property is that the Legendre differential
equation can be viewed as a SturmLiouville problem

d

dx

[
(1− x2)

d

dx
P (x)

]
= −λP (x), (D.4)

where the eigenvalue λ corresponds to n(n + 1). Polynomial at each coordinate are
multiplied to define basis functions as:

Pl(x) =
n−1∏

j=0

Plj (xj). (D.5)

68



Appendix E

Optimization with (1+1)-ES
algorithm

styner at al., in [31] had developed and nonlinear estimation for bias parametriza-
tion. This algorithm, randomly iterates select a new position in the parameter
space being controlled by a probability function centered at the current position.
The algorithm is summarized in [31] as:

rt ∼ N(0, I). (E.1)

xt+1 = xt + atxt, (E.2)

where
at+1 = at · cgrow, if f(xt+1) < f(xopt) (E.3)

at+1 = at · cshirnk, otherwise (E.4)

and
xopt = xt+1, if f(xt+1) < f(xopt) (E.5)

xopt = xopt, otherwise. (E.6)

The paremeters cgrow, cshrink, a0 and x0 are given as a input and rt ∼ N(0, I) is a
multidimensional random vector of an isotropic normal distribution with zero mean
and variance one.
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