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ABSTRACT 

      Tractography is a non-invasive process for reconstruction, modeling and 

visualization of neural fibers in the white matter (WM) of human brain. It has emerged as 

a major breakthrough for neuroscience research due to its usefulness in clinical 

applications. Two types of tractography approaches: deterministic and probabilistic have 

been investigated to evaluate their performances on tracking fiber bundles using diffusion 

tensor imaging (DTI). The images are taken by applying pulsed magnetic fields in 

multiple gradient directions. After removing the non-brain areas from the images, the 

diffusion tensor indices for each image voxel are calculated.  

      White matter connectivity of the brain, i.e. tractography, is primarily based upon 

streamline algorithms where the local tract direction is defined by the principle direction 

of the diffusion tensor. Simulations are performed using three approaches: fiber 

assignment by continuous tracking (FACT), probability index of connectivity (PICo) and 

Gibbs tracking (GT). Simulation results show that probabilistic tractography i.e. PICo 

and GT can reconstruct longer length of fibers compared to the deterministic approach-

FACT but with a cost of high computation time. Moreover, GT handles the more 

complex fiber configurations of crossing and kissing fibers, more effectively and 

provides the best reconstruction of fibers. In addition, diffusion tensor indices: fractional 

anisotropy (FA) and mean diffusivity (MD) for a region of interest can be quantified and 

used to assess several brain diseases. Prospective investigation of DTI based tractography 

can reveal useful information on WM architecture in normal and diseased brain which 

will speed up the detection and treatment of various brain diseases.  
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CHAPTER 1 

INTRODUCTION  

1.1 Overview 

Diffusion tensor imaging (DTI) has emerged as a powerful method for 

investigating white matter architecture in-vivo and non-invasively. The process of using 

DTI data to obtain explicit information on white matter structures i.e., how human brain 

fiber bundles are connected, is commonly known as tractography. Recently, DTI based 

tractography has been given much attention due to its applications in several medical 

fields such as patients with acute stroke or brain tumors, neurodegenerative disorders 

including multiple sclerosis (hardening or thickening of tissue), epilepsy, Alzheimer 

disease, autism, and movement disorders [3]. DTI enables visualization and 

characterization of white matter fascicles (i.e. bundles of brain fibers) in two and three 

dimensions. A sample of superior longitudinal fascicle is shown in Fig. 1. 

 

(a)     (b) 

Fig. 1: (a) superior longitudinal fascicle (b) cross section of brain fascicle [6] 
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In general, it measures the displacement of water molecules on the micron scale 

and yields information about white matter (WM) fibers that pass within a voxel. Water 

molecules contain protons, which become aligned in a magnetic field. Motion or 

diffusion of water molecules is found to be much faster along the WM fibers than 

perpendicular to them [2]. The difference between the two motions (parallel and 

perpendicular to fibers) is the basis of DTI which is also termed diffusion anisotropy. 

DTI gradient directions are the list of vectors that describe the diffusion weighting 

directions for DTI acquisition on an MRI scanner. To observe the diffusion in all 

directions, many diffusion weighted images with diffusion weighting gradients are 

acquired in different directions. From these diffusion-weighted images, a 3D description 

of the direction for the diffusion of water within a voxel is inferred. Diffusion in white 

matter is anisotropic in nature and an ellipsoid is used to represent diffusion directions as 

shown in Fig. 2. These directions of water diffusion are tracked in DTI based 

tractography.  

 

Fig. 2: Anisotropic nature of water diffusion [14] 

 

Water diffusion 
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Two different approaches to tractography are considered in this research: 

deterministic and probabilistic. In deterministic tractography, the reconstruction of long 

neuronal pathways occurs in small successive steps by following the local direction of the 

fiber in a given voxel. This method is computationally efficient, but minor errors in the 

determination of a local step may significantly affect the final path, making the method 

unstable. More recently, probabilistic approach based tractography methods have become 

predominant. It can also be used on a global scale (referred to as global tractography) to 

create a connectivity map between distinct regions of the brain’s gray matter as shown in 

Fig. 3.   

   

     (a)                (b) 

Fig. 3: Image of (a) single neuron structure and (b) human brain fiber bundles 

tractography [5] 

 

 

Global tractography methods [8] try to reconstruct the fiber paths simultaneously 

while finding the configuration that minimizes the difference between the measured data 

and the reconstruction. This tracking is more stable in the presence of noise and imaging 

artifacts in the data.  
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1.2 Background  

Magnetic resonance imaging (MRI) is a medical imaging technique that produces 

detailed images of organs, tissues, bone and other internal body structures using a 

powerful magnetic field, radio frequency pulses and a computer. It is a non-invasive way 

to create image volumes in which slices can be viewed at any location and direction. It is 

widely used in hospitals for medical diagnosis, staging of disease and for follow-up 

without exposure to ionizing radiation. 

In 1979, the first clinical MRI studies appeared and during that same year the first 

commercial MRI scanner was manufactured by Fonar based on a heavy permanent 

magnet. The MRI market increased because of higher field strength air core resistive 

electromagnets that were lighter in weight but required approximately 40 kW of electrical 

power [1]. 

In the late 1980s, Hawksworth et al. proposed an electromagnetic self-shielding 

concept that eliminated the need for the heavy iron yoke or room shields previously 

required for siting high-field magnets. The practical and economic operation of 

superconducting MRI magnets requires the development of cryogenic systems with very 

low thermal losses. The evolution of such MRI cryostats has been significant over the 

past 25 years, and they have developed from simple liquid helium, liquid nitrogen 

shielded reservoirs with relatively high cryogen evaporation rates to single or multi-

cryocooled cryostats providing nominally zero-boil-off conditions. Recently, the typical 

requirements for a whole body imaging magnet include a central field uniformity of a few 

ppm (mostly in a spherical volume of around 45 cm) and a temporal field stability of 

better than 0.05 ppm/h. The self-shielding concept is applied routinely for field strengths 
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up to 4 T for whole body systems and is currently being introduced also for 7 T systems 

[1]. Magnetic resonance measurements are made of collections of spins. Nuclear spins is 

an intrinsic property of an atom and its value depends on the precise atomic composition. 

 

Fig. 4: Schematic diagram of an MRI machine [13] 

 

 

One can consider that spin is constantly rotating around its own axis causing it to 

behave like a tiny magnet oriented from the North Pole to the South Pole. This generates 

a magnetic moment vector that is parallel to the axis of rotation. The directions of 

magnetic moments are usually considered random because the orientation of the 

individual particles is unknown, so the total magnetic moment over several particles is 

zero [2] as shown in Fig. 5 (a).  

 

   

 

 

                       

 

(a)                (b) 

 

Fig. 5: (a) without an external magnetic field, the protons have their spin vectors oriented 

randomly. The vector sum of these spin vectors is zero. (b) By applying external 

magnetic field, spin vectors are aligned parallel or anti parallel to the field. 

0 

B 
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When an external magnetic field is applied to a group of particles, there is an 

interaction or coupling happens between the proton and the magnetic field which is 

known as Zeeman interaction. This coupling causes a difference in energy between 

proton aligned parallel and anti parallel to the field as shown in Fig. 5(b). The result is 

that spins in the two orientations, parallel and anti parallel have different energies. The 

parallel orientation is of lower energy than the anti parallel orientation. In the magnetic 

field, the numbers of protons oriented parallel to the field are greater than the anti parallel 

oriented protons that induce polarization of the spin orientation. The exact number of 

protons in each energy level is governed by a distribution known as the Boltzmann 

distribution:  

   
𝑁𝑢𝑝𝑝𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟
=  𝑒

−𝑛

𝑘𝑇                                 (1.1) 

Where 𝑁𝑢𝑝𝑝𝑒𝑟 represents the number of spins in the higher energy level, 𝑁𝑙𝑜𝑤𝑒𝑟 

indicates the number of spins in the lower energy level, 𝑘 is Boltzmann’s constant and 𝑇 

is the temperature in Kelvin. 

Once all the particles are aligned and placed in these two distinct states, it is 

possible for the particles in the lower state to transition to the higher state by absorbing 

photons containing the exact amount of energy in the energy gap between the states. The 

energy difference is proportional to the resonant frequency and thus the magnetic field  

𝐵0 : 

    ∆𝐸 = ℎ𝜔0 = ℎ𝛾𝐵0/2𝜋         (1.2)  

where ℎ is the Planck’s constant. 



7 
 

Although an individual proton absorbs the radio frequency (RF) energy, it is more 

useful to discuss the resonance condition by examining the effect of the energy 

absorption on the net magnetization, 𝑀0. For a large number of protons such as in a 

volume of tissue, there is a significant amount of both absorption and emission occurring 

during the RF pulse. However, because there are more protons at the lower energy level, 

there will be a net absorption of energy by the tissue. The energy is applied as an RF 

pulse with a central frequency 𝜔0 and an orientation perpendicular to 𝐵0, as indicated by 

an effective field 𝐵1 shown in Fig. 6. This orientation difference allows a coupling 

between the RF pulses and 𝑀0 so that energy can be transferred to the protons.  

 

 

 

 

 

 

Fig. 6: Absorption of energy by protons from a 900 RF pulse and rotation of M0 into the 

transverse plane. 

 

Absorption of the RF energy of frequency 𝜔0 causes 𝑀0 to rotate away from its 

equilibrium orientation. The direction of rotation of 𝑀0 is perpendicular to both 𝐵0 and 

𝐵1. If the transmitter is left on long enough and at a high enough amplitude, the absorbed 

energy causes 𝑀0 to rotate entirely into the transverse plane, a result known as a 90° 

pulse. When viewed in the rotating frame, the motion of 𝑀0 is a simple vector rotation; 

however, the end result is the same whether a rotating or stationary frame of reference is 

used. When the transmitter is turned off, the protons immediately begin to realign 

x 

𝟗𝟎° pulse 

y 
z 

M0 

B1 

B0 
M0 

x 

 z y 
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themselves and return to their original equilibrium orientation. They emit energy at 

frequency 𝜔0 as they do so.  

Relaxation is a fundamental process in MR by which protons release the energy 

that they absorbed from the RF pulse. In resonance absorption, RF energy is absorbed by 

the protons only when it is transmitted at the correct frequency. Although an individual 

proton absorbs the energy, relaxation times are measured for an entire sample and are 

statistical or average measurements. Two relaxation times can be measured, known as T1 

and T2. Both times measure the spontaneous energy transfer by an excited proton, but 

they differ in the final disposition of the energy. The relaxation time T1 is the time 

required for the z component of M to return to 63% of its original value following an 

excitation pulse. T1 relaxation provides the mechanism by which the protons give up 

their energy to return to their original orientation. The relaxation time T2 is the time 

required for the transverse component of M to decay to 37% of its initial value via 

irreversible processes.  

In clinical MRI, the RF-pulse is selected with the frequency corresponding to the 

energy difference required for protons in water molecules to transition between energy 

states. The released energy is related to the number of hydrogen nuclei. The T1 relaxation 

gives information on the chemical surrounding of the water and the T2 relaxation reflects 

the surroundings of each individual atom, which gives a different contrast. The tissues are 

separated with the help of these variables as they show different characteristics in T1 and 

T2 relaxation time. 
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         The development of magnetic resonance imaging (MRI) has led to the design of 

numerous imaging techniques. Among them, diffusion tensor imaging (DTI) assesses 

white matter changes in the patients that are not normally seen on conventional MRI.  

The relationship between the signal intensity of the diffusion weighted images 𝑆, 

diffusion sensitizing field gradient based on Stejeskal Tanner spin echo scheme and the 

signal value 𝑆0 without the gradient is given in (1.3): 

   S = S0e−γ2G2δ2(∆−
δ

3
)Dapp                            (1.3) 

where 𝛾 is the gyromagnetic ratio of proton, 𝛿 and 𝐺 represent the duration and 

the magnitude of the motion probing (or diffusion sensitizing field) gradient, ∆ is the time 

between the centers of the pair of gradient pulses, and 𝐷𝑎𝑝𝑝 is a scalar value called the 

apparent diffusion coefficient (ADC) which reflects molecular diffusivity under motion 

restriction such as fluid viscosity. 

In DTI, the diffusion coefficient is a 3 ×3 symmetric positive semi-definite matrix 

as shown in (1.4). 

     𝐷 = (

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

)    → (

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) and (𝜀1, 𝜀2, 𝜀3)         (1.4) 

Where 𝜆1, 𝜆2 and 𝜆3 are eigenvalues representing diffusivity along the axes 

whose directions are retained in unit eigenvectors (𝜀1, 𝜀2, 𝜀3). 
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The largest eigenvector of the diffusion tensor as shown in Fig. 7 is assumed to be 

oriented parallel to the local fiber tracts, which can be reconstructed in a brain dataset by 

following paths in the estimated eigenvector field. 

 

Fig. 7: Diffusion tensor represented by an ellipsoid (𝜆1 ≥ 𝜆2 ≥ 𝜆3 ) 

One of the most important factors in DTI acquisition is gradient direction. At least 

6 gradient directions are required to calculate the diffusion tensor [4]. If gradient 

directions are increased, more diffusion weighted images are used to calculate the 

diffusion tensor, resulting in more accurate tensor estimation but much longer imaging 

time [7].  

A long thin ellipsoid means very good diffusion for water along the long axis of 

that ellipsoid. The mean diffusivity (MD) and fractional anisotropy (FA) as shown in 

(1.5) and (1.6) respectively are the most widely used indices for representing the 

motional anisotropy of water molecules. These measures are sensitive to the presence and 

integrity of WM fibers [11, 12]. Color coded FA maps are the way to show the 

directional information embedded in DTI.  

                      𝑀𝐷 =
𝜆1+𝜆2+𝜆3

3
                              (1.5) 

                  𝐹𝐴 = √
3

2
× √

(𝜆1−𝑀𝐷)2+(𝜆2−𝑀𝐷)2+(𝜆3−𝑀𝐷)2

𝜆1
2+𝜆2

2+𝜆3
2                                (1.6) 
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These indices help to detect brain diseases. For example, in case of pediatric 

multiple sclerosis, the value MD increases and FA decreases compare to their normal 

value [9, 10]. After collecting the information of diffusion tensor, tractography is done 

using deterministic or probabilistic methods. Deterministic tractography methods are 

primarily based upon streamline algorithms where the local tract direction is defined by 

the major eigenvector of the diffusion tensor [1]. Tracking the crossing and kissing white 

matter tracts is a challenge for deterministic process. This limitation can be solved using 

global tractography which will be discussed later. 

1.3 Objectives 

The objective of this thesis is to  

 Calculate region of interest (ROI) basis diffusion tensor indices (fractional 

anisotropy, mean diffusivity, relative anisotropy etc.) from DTI datasets. 

 Simulate a DTI dataset considering multiple gradient directions (12D, 20D, 30D, 

64D) using deterministic approach (Fiber Assignment of Continuous Tracking). 

 Simulate a DTI dataset considering multiple gradient directions (12D, 20D, 30D, 

64D) using probabilistic approach (PICo). 

 Simulate a DTI dataset considering multiple gradient directions (12D, 20D, 30D, 

64D) using global tractography approach (Gibbs Tracking). 

 Compare and contrast performance of deterministic and probabilistic tractography 

approaches. 

 Simulate three datasets (All 64D) taken before and after radiation therapy to show 

the effect. 
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CHAPTER 2 

STATE OF THE ART 

     

2.1 Diffusion Tensor Imaging (DTI): 

Diffusion tensor imaging (DTI) also known as diffusion magnetic resonance 

imaging (DMRI)  is a magnetic resonance imaging technique first introduced in the mid 

1980s [18] and during the past 35 years has played an important role in MRI of the 

central nervous system. Diffusion MRI measures the diffusion of water molecules in 

biological tissues. In other words, water molecules are used as a probe that can reveal 

microscopic details about tissue architecture, either in a normal or diseased state. The 

human body is composed of tissues that contain primarily water and fat, both of which 

contain hydrogen. Clinically, DTI is useful for the diagnoses of conditions (e.g., stroke) 

or neurological disorders (e.g., multiple sclerosis), and helps better understand the 

connectivity of white matter axons in the central nervous system. According to 

turbulence and Brownian motion, the movements of water molecules are random in 

an isotropic medium. However, the diffusion may be anisotropic in biological tissues 

where the Reynolds number is low enough for flows to be laminar. For example, a 

molecule inside the axon of a neuron has a low probability of crossing 

the myelin membrane. Therefore, the molecule moves principally along the axis of the 

neural fiber. It is assumed that the majority of the fibers are parallel to the principle 

direction if the molecules in a particular voxel diffuse in that direction.  

Another application of diffusion MRI is diffusion-weighted imaging (DWI). 

Following an ischemic stroke, DWI is highly sensitive to the changes occurring in the 

lesion. It is surmised that in case of cytotoxic edema (cellular swelling), the signal on 
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DWI scan increased due to the increment of restriction (barriers) to water diffusion. The 

DWI enhancement appears within 5–10 minutes of the onset of stroke symptoms (as 

compared to computed tomography, which often does not detect changes of acute infarct 

for up to 4–6 hours) and remains for up to two weeks. Coupled with imaging of cerebral 

perfusion, researchers can highlight regions of "perfusion/diffusion mismatch" that may 

indicate regions capable of salvage by reperfusion therapy. 

Diffusion-weighted images are MR images with signal intensities sensitized to the 

random motion of water molecules. A water molecule, or spin, that migrates along 

trajectory path, 𝑟(𝑡), through a gradient field given by the waveform, 𝐺(𝑡), accumulates 

phase, 𝜑, according to (2.1) 

    𝜑(𝑡) =  −𝛾 ∫ 𝐺(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑟(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑡

0
𝑑𝑡′       (2.1) 

where 𝛾 is the gyromagnetic ratio. For the condition where there is a large number of 

spins (e.g. water molecules in a voxel) having random trajectories, the net phase shift 

averaged over all spins is close to zero because of almost equal numbers of positive and 

negative phase shifts. So unlike coherent directional motion through a gradient field that 

results in measurable phase such as in flow MR imaging, a large number of randomly 

migrating spins yields no net phase shift, rather spin dephasing manifests as signal 

attenuation. Moreover, the degree of signal attenuation increases as the breadth of the 

distribution of phase shifts increases. Equation 2.1 indicates phase shift (thus phase 

distribution width) increases with a longer integral interval, greater gradient strength, 

gradient duration, and/or greater migration path or mobility. 
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Due to random spin diffusion, the signal attenuation is presented by equation 2.2 

 

   𝑆(𝑡) =  𝑆0𝑒−𝐷 ∫ 𝑘(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙𝑘(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑡
0 𝑑𝑡′

         (2.2) 

 

where S(t) is the diffusion attenuated signal, S0, is the signal without diffusion 

attenuation, D is the spin diffusion coefficient, and k(t) relates to the time integral of the 

gradient waveform given by- 

     𝑘(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =  𝛾 ∫ 𝐺(𝑡′)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡

0
𝑑𝑡′        (2.3) 

Equations 2.2 and 2.3 are written in general form for arbitrary gradient 

waveforms. Usually diffusion sensitization gradients are incorporated within an imaging 

sequence, in which case, the imaging and diffusion components of the gradient waveform 

should be included in the equations. Ignoring imaging for a moment, the simple two-

pulse gradient waveform shown in Fig. 8, often referred to as the Stejskal-Tanner pulsed 

field gradient (PFG) (Stejskal et al. 1965), is the default diffusion sensitive sequence.  

 

 

 

 

 

 

 

 

Fig. 8: Standard pulsed field gradient (PFG) waveform for diffusion sensitization 
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Now the b value can be written as-  

   𝑏 = ∫ 𝑘(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∙ 𝑘(𝑡′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑑𝑡′𝑇𝐸

0
= (𝛾𝐺𝛿)2 [∆ −

𝛿

3
]       (2.4) 

Frequently, only the gradient amplitude is altered to vary b-value in a diffusion imaging 

sequence. This leads to change in signal as a function of b-value, from which the 

diffusion coefficient is calculable from a minimum of two b-value settings: 

 

      𝑆(𝑏) =  𝑆0𝑒−𝐷𝑏          (2.5) 

or  𝐷 =
1

(𝑏2−𝑏1)
ln  [

𝑆(𝑏1)

𝑆(𝑏2)
]                    (2.6) 

Often one of the PFG gradients has zero amplitude, in which case 𝑏1 = 0 and 𝑆(𝑏1) = 𝑆0 

The formalism above only considers isotropic molecular diffusion. But neuro tissue can 

be highly anisotropic where the apparent water mobility varies several-fold based on 

relative orientation of measurement axis and myelinated white matter fiber tracts. For the 

anisotropic system, the single valued diffusion coefficient from equation 2.4 is 

generalized to a 3 × 3 second order rank diffusion tensor. Moreover, generalizations of 

(2.4) and (2.6) are as follows-  

                                𝑏𝑖𝑗 = 𝛾2 ∫ (∫ 𝐺𝑖(𝑡")𝑑𝑡") ∙
𝑡′

0
∫ 𝐺𝑗(𝑡")𝑑𝑡")

𝑡′

0
𝑑𝑡′𝑇𝐸

0
                 (2.7) 

and   ln (
𝑆0

𝑆𝑏
) = ∑ ∑ 𝑏𝑖𝑗𝐷𝑖𝑗

3
𝑗=1

3
𝑖=1         (2.8) 

Where 𝑏 = 0 is an isotropic measurement of 𝑆0 and 𝑖 and 𝑗 indices relate to any three 

gradient directions [x, y, z]. The 𝑏𝑖𝑗 elements are the anisotropic corollary to the isotropic 

b-factor and are calculated for each gradient condition of a directionally sensitive 
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diffusion acquisition [17].  At least six non-collinear diffusion gradient directions (plus 

𝑏 = 0) are required to determine the diffusion tensor. Once the diffusion tensor is 

determined, it is very important to summarize the information in an understandable way 

since there are now six unique diffusion values for each pixel in the image. This type of 

imaging technique is known as diffusion tensor imaging (DTI). 

The recent development of DTI enables diffusion to be measured in multiple 

directions and the diffusion indices for each voxel is calculated in each direction. This 

technique allows researchers to make brain maps of fiber directions to examine the 

connectivity of different regions in the brain (using tractography) as well as examine 

areas of neural degeneration and demyelination in case of brain diseases. 

2.2 Tractography 

Diffusion weighted magnetic resonance imaging is a technique to study the 

anatomical and functional brain relationships as well as for the discovery of functional 

distinctions between cortical regions of the brain [24]. It’s a non-invasive tool for 

characterizing WM injury and neuro-degenerative diseases before surgery and for many 

other clinical applications. The tracking of human brain fiber bundles are based on the 

principle direction of diffusion of tensor in each voxel. An important limitation of the DT 

model arises from the Gaussian diffusion assumption which states that there can only be a 

single fiber population per voxel. Water diffusion in biological tissues, especially the 

brain, is not free and cannot be modeled by a single Gaussian distribution. A recent study 

estimates that one-third of white matter voxels contain more than one fiber bundle 

orientation [20]. Moreover, the ADC depends on various experimental and technical 

parameters such as the actual diffusion coefficient of water molecule populations 
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presenting in an MRI voxel, the voxel size, the diffusion time or the degree of 

sensitization of MR images to diffusion (i.e. b- value). Thus, it is possible to follow false 

tracts during tractography using DT. To overcome these limitations of the DT, new High 

Angular Resolution Diffusion Imaging (HARDI) techniques have been developed. Most 

of these methods produce representations of water molecule diffusion as a function of 

direction such as in the cases of Diffusion Spectrum Imaging (DSI), Q-Ball Imaging 

(QBI), Composite Hindered and Restricted Model of Diffusion (CHARMED), Persistent 

Angular Structure (PAS), Diffusion Orientation Transform (DOT) and multi tensor 

distributions. Application of each of these methods results in various representations of 

the angular diffusion profile. For example, the principal directions extracted from the 

Orientation Distribution Function (ODF) [21] can be interpreted as principal directions of 

the underlying fiber architecture. Otherwise, spherical deconvolution (SD) or mixture 

models [22] are used to estimate the distribution of the fiber directions within a voxel 

(fiber ODFs). There are two essential procedures to create a reliable map of brain 

connectivity using so called fiber tractography: the first step is to accurately estimate 

fiber orientations using an adequate diffusion reconstruction method and the second step 

is to implement a robust fiber tracking algorithm [18]. Tractography algorithm techniques 

are categorized by two methods:  

1. Deterministic tractography and  

2. Probabilistic tractography.  

There are various deterministic tractography techniques such as connect the voxels 

[conturo] and Fiber Assignment by Continuous Tracking (FACT) [Mori].  FACT is a 
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widely used streamline-based deterministic method that traces pathways from a seed 

region by following the primary eigenvector from one voxel to the next [23].  

2.2.1 Deterministic tractography:  

Deterministic tractography methods are primarily based upon streamline 

algorithms where the local tract direction is defined by the major eigenvector of the 

diffusion tensor. These approaches provide information about the white matter 

anatomical connection and organization in different regions of the brain. The accuracy 

and variance of the reconstruction process depends on the tractography algorithm, the 

signal-to-noise ratio, the diffusion tensor eigenvalues, and the tract length. However, 

crossing and branching white matter tracts create significant challenges for the 

reconstruction. Some deterministic tractography methods are discussed below. 

Connect the voxel: 

In this approach, the local tensor orientation from each voxel is obtained from 

DTI. The fiber directions are connected to reconstruct the entire pathways by propagating 

through each voxel from a designated starting point (seed point) and following the fastest 

diffusion direction until it reaches a termination point. Tracks are terminated where 

diffusion anisotropy fell below an assigned threshold, typically in gray matter.  
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Fig.  9: Connect the voxel tractography [25] 

To define the direction of the next voxel, the tensor D and its eigenvector 

corresponding to the largest eigenvalues are calculated at each voxel, from interpolated 

DT-MRI data. By repeating this procedure multiple times for every seed point above the 

threshold, tracking of whole brain is achieved [25]. 

FACT: 

The fiber assignment by continuous tracking (FACT) algorithm is a streamline 

tracking algorithm, which takes the principal direction of voxel to track the fiber 

direction. The algorithm uses the whole diffusion tensor matrix to determine the tracking 

direction. In clinical applications, it is the most commonly used method. However, the 

main limitation of this algorithm is that it cannot resolve the fiber crossing issue, which 

results in much shorter or sparser fibers. Several novel methods like Gibbs tracking has 

recently been proposed to overcome the crossing and kissing fiber issue. 
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Fig. 10: Fiber assignment by continuous tracking [31] 

In each voxel, the FACT algorithm takes the corresponding eigenvector of the 

biggest eigenvalue as the fiber tracking direction [31]. This is complimented in a 

continuous coordinate space. Considering a start point's coordinate 𝑥𝑡, which has 

corresponding eigenvector 𝑒1𝑡⃗⃗⃗⃗⃗⃗   and the step Δt, the next point's coordinate 𝑥𝑡+1can be 

expressed as, 

 𝑥𝑡+1 = 𝑥𝑡 + 𝑒1𝑡⃗⃗⃗⃗⃗⃗ × ∆𝑡 .    (2.9) 

 

All the points tracked into a line are then connected, forming a fiber according to 

the start point. For a given region of interest (ROI), all the fibers are tracked accordingly. 

But the tracking process should meet some criteria. 

  First, the threshold value for fractional anisotropy (FA) is set to 0.2, which is 

considered as the boundary value between white matter and gray matter; because the FA 

values of gray matter are usually lower than 0.2. Another threshold value for FACT is the 

curvature between two consecutive steps which is set to 90°. The liberal curvature is 

chosen to allow the detection of strong fiber bending. Second, the deflection angle 
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threshold setting is typically set to 45°-70° because the probability of sharp turns between 

two adjacent neurons is close to zero in the white matter of the human brain. 

This method, and the computation involved is simple and easy to understand. This 

computation can effectively perform fiber visualization in a region with significant 

diffusion anisotropy. Nevertheless, when a region with fiber crossing is encountered, the 

tracking is partially finished or interrupted, resulting in shorter or sparser fibers. This 

approach leads to erroneous results if there are fibers within a voxel running in different 

directions. In addition, fibers with a strong curvature may be difficult to reconstruct. 

2.2.2 Probabilistic Tractography: 

The probabilistic algorithm assumes a distribution of orientations and defines 

pathways by generating multiple curves from seed points using several methods like 

probability index of connectivity (PICo) [19] and Bayesian method [30]. The probability 

of connectivity is then assigned to individual voxels based on the frequency with which 

the curves traverse the voxels. Probabilistic tractography assesses the probability that a 

voxel is connected to a given start point, by means of iterative random walks. This 

method exploits the statistical nature of the information obtained by DWI and determines 

the most probable fiber pathway. 

PICo:  

A number of methods have been used to generate distributed maps of the degree 

or probability of connectivity in different brain regions. In particular, to assess the 

cerebral connectivity, the diffusion process is simulated with the aim of establishing 

connectivity in a probabilistic way using a Monte Carlo processes. For example, a grid-

based random walk process may be simulated, in which a particle is allowed to diffuse at 
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a rate determined by a function of the magnitude of the diffusion coefficient along one of 

the possible inter-grid point (inter-voxel) directions chosen at random. This process 

continues until the random walk has reached some threshold in allowed tensor 

anisotropy. After repeating the process a large number of times, an index of the 

connectivity is provided to each voxel [19]. For the probabilistic connectivity analyses, 

the uncertainty of the principle eigenvector orientation is exploited for each image voxel. 

Streamline propagation is repeated using the probability distribution functions (PDFs) 

describing the inferred distribution in the fiber orientation to establish the confidence of 

connection to the start point of a distributed area.  

Bayesian method:  

The probability of a fiber connecting two areas in the brain can be estimated 

where the probability density function of the local fiber orientation is derived in a 

Bayesian framework. A white matter fiber can be modeled as a finite-length path: 

 𝑣1:𝑛 =  𝑣1, 𝑣2, … … 𝑣𝑛         (2.10) 

If Ω𝐴
𝑛

 is the set of all possible paths of length 𝑛 that originate from A and 

probability to each path in the space is 𝑝(𝑣1:𝑛), we can write 

  ∑ ∫ 𝑝(𝑛)𝑝(𝑣1:𝑛)∞
𝑛=1 = 1                 (2.11) 

Now, let Ω𝐴𝐵
𝑛

be the set of all possible paths of length n between A and another area B. 

We can find the probability 𝑝(𝐴 → 𝐵|𝐷)of a fiber going from A to B, given the diffusion 

data D, by summing the probabilities for all paths of all lengths between these areas 

  𝑝(𝐴 → 𝐵|𝐷) = ∑ ∫ 𝑝(𝑛)𝑝(𝑣1:𝑛 𝐷)∞
𝑛=1      (2.12) 

This integral is estimated by applying Monte Carlo methods. 
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To estimate the maximal probability path, we a need a method for drawing 

random paths 𝑣1:𝑛 = {𝑣1, 𝑣2, … … 𝑣𝑛} from a high dimensional probability density 

function (pfd) 𝑝(𝑣1:𝑛). Assume that the step length is fixed. For simplicity and notational 

convenience, we assume that the vector 𝑣𝑖 only depends only on the previous vector 𝑣𝑖−1. 

The probability for a path of a given length 𝑛 then factors into 

    𝑝(𝑣1:𝑛|𝐷) =  𝑝1(𝑣1𝐷) ∏ 𝑝𝑖(𝑣𝑖𝑣𝑖−1, 𝐷)𝑛
𝑖=2       (2.13) 

The probability function of the step direction is different for every vector in the 

path as indicated by the indexes of the probability functions. Using this equation, random 

paths can be built for 𝑣1. Then sequentially, the random direction 𝑣2 can be drawn using 

𝑣1 and so on [30]. This process is known as sequential importance sampling. In white 

matter tractography, this process is named streamlining. The sequential sampling is 

terminated when the path reaches a certain threshold value or meets a stopping criterion.  

Path integral method: 

The advantages of this approach over the streamline method are a specific 

mechanical representation of the tracts, a probabilistic interpretation of the tract solution, 

and the inclusion of excluded volume interactions.   

 

Fig. 11: path integral method [26] 
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To describe the trajectory of the tract 𝑥(𝑠) as a function of the curvilinear 

coordinate 𝑠 along the tract, the Lagrangian is written as  

ℒ = 𝑇 − 𝑉 where 𝑇 =
1

2𝑎
 𝑋2 is the Wiener measure, 𝑎 is the step and 𝑉 = 𝑉𝜑 + 𝑉𝐾 + 𝑉𝜔 

is the potential energy of the tract which is comprised of the empirical potential 𝑉𝜑 

derived from the diffusion data, the elastic potential energy 𝑉𝐾, and the excluded volume 

potential 𝑉𝜔which arises from interaction between tracts. These parameters are used by 

following the paper [26]. 

The empirical potential is related to the fiber orientation distribution function 

which gives the probability distribution for finding a fiber within a differential solid angle 

around n where n=x/|x| is the bulk direction of the fiber. For the elastic potential of the 

tract, the Frank free energy [26] is, 

                 ℋ𝐾 = 𝐾1(∇ ∙ 𝑛)2 + 𝐾2(𝑛 ∙ ∇ × 𝑛)2 + 𝐾3(𝑛 × ∇ × 𝑛)2   (2.14) 

where the individual terms of equation 20 represent the bending of tracts, shearing of 

planes of fibers, and divergence of tracts. 

The excluded volume interaction can be included by introducing [26] 

 𝑉𝜔 =  
𝜔

2
∫ 𝑑𝑡 𝛿(𝑥(𝑠) − 𝑥(𝑡))                (2.15) 

where 𝜔 is the strength of the excluded volume interaction. The partition function for the 

fiber can then be expressed in terms of the path integral [26] 

   𝑍(𝑥, 𝐿) = ∫ 𝐷𝑥(𝑠)exp {−𝛽 ∫ 𝑑𝑠ℋ
𝐿

0
}    (2.16) 
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Where 𝐷𝑥(𝑠) represents the integral over all possible fiber paths, 𝓗 is the 

Hamiltonian and =
1

𝑘𝑇
 ; kT is the thermal energy [26]. 

2.2.3 Local and Global Tractography: 

Tractography techniques can also be divided into two subgroups:  

1. Local tractography and 

2. Global tractography. 

Local Tractography: 

Local methods reconstruct fibers one by one independently, without taking into 

consideration the influence of neighboring fibers. Because of this, local tractography is 

mostly used to study the white matter in specific predetermined regions where specific 

tracts are of interest, which is useful for numerous medical applications explained in the 

introduction.  The reconstruction of long neuronal pathways is performed in small 

successive steps, either deterministically or probabilistically by following the local, 

voxelwise defined distribution of fiber directions. There are several different approaches 

for local tractography which fall into two subcategories:  

i. Line propagation method and  

ii. Energy minimization method. 

Line propagation method:  

This method uses the local tensor information from each voxel obtained from 

DTI. To reconstruct the fiber pathways, the propagation through each voxel from a 

designated starting point is measured with the assumption that the fiber pathway follows 

the maximum diffusion direction provided by the diffusion tensor. Tractography 

algorithms use this information to track the whole white matter pathway by inferring the 
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continuity of fiber paths from voxel to voxel [27]. The pathway reconstruction process 

continues until it meets the stopping criteria: angular threshold and anisotropy threshold. 

If the angle between two diffusion directions in adjacent voxels is larger than a certain 

threshold, the propagation is terminated. This is used to prevent implausible pathways 

such as a fiber that turns too sharply. Another criterion that stops the propagation when it 

reaches a voxel with very low to no anisotropy is known as anisotropy threshold. 

Anisotropy values are low in gray matter and in the areas of the white matter with many 

crossing fibers where the dominant diffusion direction cannot be distinguished. For the 

linear line propagation model, large errors occur if the angle transition is large. Even for 

the interpolation approach, it should be noted that the diffusion tensor calculation 

assumes that there is no consistent curvature of axonal tracts within a voxel. The presence 

of curvature violates the assumption that the diffusion process along any arbitrary axis is 

Gaussian, thereby invalidating the routine tensor calculation. Therefore, it is preferable to 

set a threshold that prohibits a sharp turn during line propagation. The Streamline 

algorithm is the most used method for line propagation reconstructions.  

 

Fig. 12: Line propagation method [27] 
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This method is fast and suitable to use when one is only interested in the 

dominant pathway between two predetermined regions of interest. 

Energy minimization method: 

This technique focuses on finding the most energetically favorable path between 

two predetermined voxels. The fast marching technique calculates the speed for the 

spreading front propagation in a certain point using the equation 𝐹(𝒓) = 𝐴|𝜖1(𝒓) ∙ 𝑛(𝒓)| 

where 𝐴 is the anisotropy, 𝜖1 is the eigenvector and 𝑛 are the orientation normal to the 

front. This equation indicates that the spreading speed is the largest when the propagating 

front line is parallel to the eigenvector and minimal when it is perpendicular. Using the 

equation, the diffusion shape at different time points are represented by multiple 

contours. A likelihood of connections map is found from these contours. The most likely 

path is created from the gradient of the steepest path. 

Advantages with local methods are mostly that they are fast, but they 

unfortunately struggle in correctly reconstructing fibers in complicated scenarios such as 

branching of fibers, fiber kissing, and fiber crossings showed in Fig. 14 due to the limited 

information given by the diffusion tensor in these scenarios. Local techniques also 

struggle in reconstructing long fibers due to error accumulation along the propagation 

route resulting from local noise in each voxel. Local reconstruction methods are therefore 

unsuitable in their current state for global tractography. This limitation is overcome by 

other tractography methods, namely global methods. 

Global tractography: 

Global methods process the entire diffusion information simultaneously and 

generate a whole-brain reconstruction. This method promises better stability with respect 
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to noise and imaging artifacts. Because it has a better ability to resolve local fiber 

orientations, as it considers more than just the local information. Among various global 

tractography methods, Gibbs tracking and the spin glass method are prominent. 

Gibbs tracking:  

 Gibbs tracking is a powerful global tractography method. This method includes 

three main steps [28]: (1) Creation of a trial fiber configuration, (2) Calculation of the 

corresponding DW signal (simulated signal), and (3) Adjustment of the trial 

configuration with the experimentally measured signal to minimize the difference. 

The building elements of reconstructed fibers are small straight cylinders whose length, 

position and orientation can vary continuously. These cylinders are re-oriented through a 

process similar the distribution of states in the cooling of an ideal gas. The reconstruction 

begins at very high “temperature” where the cylinders are randomly distributed in the 

space occupied by the white matter as shown in Fig 13. The interaction between them 

results in building long fiber chains with decreasing temperatures. Here, temperature is a 

time varying parameter as used in simulating annealing methods [32] to find the global 

optimum solution. The neuronal fibers start and end on predefined surfaces, for example 

at the boundary with the grey matter. Each cylinder contributes a signal typical for 

parallel fibers to all voxels it crosses [28]. 
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Fig. 13 Principle of Gibbs tracking method; (a) at high temperature (b) at lower 

temperature (c) temperatures close to zero. [28] 

 

 

The sum of such contributions is the anisotropic part of the signal. This described 

method is known as the Gibbs Tracking [28], keeping in mind its close analogy to 

statistical physics. On the other hand, the described simulation can be considered as a 

Bayesian approach based on a spatial point processes. The interactions between the 

cylinders represent the a priori probability and the likelihood function represents the 

similarity of the measured signal and simulated signal.  

Spin glass method: 

Spin glass tractography (SGT) is an energy-based paradigm for global 

tractography. Fiber fascicles are parameterized by small segments called spins which are 

optimized to minimize a twofold global energy: the first models fidelity to the diffusion 

data and the second models a low curvature prior [29]. 

Spins are provided with three types of energies: diffusion potentials, interaction 

potentials, and generative potentials.   Diffusion potentials act as a local non-stationary 

magnetic field attracting the spin orientations; interaction potentials control the 

association of spins with neighbors; and the generative potential prevents a spin chain to 
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end inside the domain by allowing the creation of new spins. A global minimization 

procedure is used to retrieve the optimal spin configuration. 

Global tractography is becoming an emerging approach to studying the structural 

connectivity of the brain between different regions. It is not currently clinically feasible 

because of its high computational time. The issue of validation is also important because 

currently there is no absolute ground truth on the connections existing in real brain 

tissues. 

2.3 Tractography Limitations: 

Tractography is a useful tool for tracking human brain fiber connectivity and to 

detect several brain diseases. But it has some limitations. It cannot follow single neuronal 

terminations but the principle axis of the diffusion tensor. Another problem is that 

diffusion tensor tractography assumes a single fiber orientation in each voxel. For voxels 

where fiber kissing, crossing, or branching happen as shown in Fig. 15, the data extracted 

from tractography may give an incorrect approximation and is still the focus of current to 

research. Since ground truth data of brain fiber bundle connections is not available, it is 

not possible to match the tractography result. Thus, in order to interpret tractography 

data, some experience and a priori knowledge are required.  

 

                        (a)                                          (b)                                                   (c) 

Fig. 14: Fiber (a) crossing (b) branching (c) kissing 
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2.4 Application DTI tractography 

The main application of DTI based tractography is to visualize the neural path of 

human brain fiber bundles. It has been used to detect several diseases. Some clinical 

applications are given below: 

 It can be used in patients with stroke to visualize damage. The increment of 

diffusivity at the site of an infarct can be detected by tractography. 

 It helps to assess the pathological process in the white matter pathways and 

introduces the reasons of hardening or thickening of tissue. 

 Change in white matter microstructure during neurodevelopment and in aging. 

 To identify initial sites for electrocortical stimulation that enables the surgeon to 

localize the eloquent cortex quicker. It can also help in neurosurgical planning 

and neuronavigation. 

 To measure the loss of neurons in the case of neurodegenerative diseases like 

Alzheimer disease and epilepsy.  

  To identify movement disorders or development disorders like autism, dyslexia 

etc. 
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CHAPTER 3 

METHODOLOGY 

3.1 Tractography Steps 

Diffusion tensor imaging studies are gaining popularity among clinicians and 

researchers due to its increasing applications for studying white matter architecture in 

vivo, both under healthy and disease conditions. To study the brain network connectivity 

using DTI, several technical and methodological aspects are taken into account.  

The steps of DTI processing for tractography [36] are –  

(i) Data acquisition 

(ii)  Artifacts handling  

(iii) Data quality control  

(iv) Reconstruction process 

(v)  Visualization approaches  

(vi) Quantitative analysis. 

Some of these steps can be done using existing software tools. For the most 

important step, reconstruction, many researchers are trying to develop their individual 

techniques with the goal of overcoming the limitations and improving the performance of 

the tractography. To do so, research is going on to find out the pros and cons of different 

existing tools and to develop new software tools for each stage of the tractography 

process. In the following sections, DTI tractography steps are discussed briefly.  
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 Data acquisition:  

Diffusion-weighted imaging (DWI) is a simple technique of diffusion imaging 

that collects images of entire brain through axial slices with no gap between them as 

shown in Fig. 15. The acquisition is repeated several times while varying the orientation 

or magnitude of the diffusion gradients. It has low signal to noise ratio (SNR) and 

resolution and is very sensitive to motion. This sensitivity increases with the intensity and 

duration of gradient pulses, which are characterized by the 𝑏-value, the scalar that defines 

the amount of diffusion weighting in the experiment. In order to get accurate results, the 

successive images should be in correct order which is ensured by image registration. At 

least six non-collinear diffusion encoding directions along with a minimally T2 weighted 

low b-image (b = 0 s/mm2) are required for diffusion tensor estimation. The b-value is 

taken from the range 700-3000 s/mm2. The spatial resolution is also important for DTI 

quality and when using isotropic voxels, typically 1.4–2.5 mm3 is recommended for fiber 

tracking using interleaved acquisitions to minimize crosstalk between contiguous 

sections. 

 

Fig. 15: Diffusion tensor image/data acquisition 
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Other characteristic parameters of DTI acquisitions are field of view (FOV) usually 

ranging from 240 to 256 mm, acquisition matrix 96 × 96 –128 × 128, Echo time (TE) 50 

–70 ms and repetition time (TR) 8.5 –12s [36]. 

Artifacts handling:  

The main reasons for the presence of artifacts in DWI data sets are the gradient 

system hardware, pulse sequence, acquisition strategy used, and the head motion. 

Artifacts in the data sets result in erroneous fiber reconstruction due to incorrect tensor 

estimation and diffusion maps (FA and MD). Reducing the scan time can minimize the 

influence of motion artifacts. Several imaging techniques like Single- shot Echo Planar 

Imaging (EPI), Fast Spin Echo (FSE), Line Scan Diffusion Imaging (LSDI) and 

Stimulated Echo Acquisition Mode (STEAM) can be used to reduce artifacts [36]. The 

most prominent artifacts are due to eddy currents (EC) that create geometric distortion in 

the DW images. Stronger and longer diffusion gradients create ECs in the conductive 

parts of the magnet. Image registration is done to correct eddy current distortions. Figure 

16 illustrates two diffusion tensor images before (left) and after (right) applying the eddy 

current correction technique [37].  

 

Fig. 16: Two diffusion tensor images which illustrate the effectiveness of the eddy 

current correction technique (left: without correction; right: with correction) [37] 
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Data quality control: 

For DTI quality control, the first step is to import all images correctly. After this, 

a visual inspection of the DWI data is required to detect potential artifacts. DWI is 

sensitive to error introduced by imaging noise as a result of the acquisition sequence, 

magnet field strength, gradient amplitude, and slew rate as well as multichannel radio-

frequency coils and parallel imaging. To obtain error free results, the noise is removed. In 

preprocessing, the raw data is converted into specific image formats. Eddy current 

distortion and head motion artifacts are corrected by image registration to the b0 image. 

After this, skull stripping i.e. removing non-brain areas from the analysis is performed. 

This quality control or preprocessing step can be done using several software packages 

such as ExploreDTI, AFNI, DTIprep etc. 

Reconstruction process: 

After the preprocessing of data, tensor estimation at each voxel is performed. To 

estimate the tensor of the entire data set, at least six gradient directions are acquired. 

Since the diffusion tensor is a symmetric 3 × 3 matrix, it can be described by its 

eigenvalues (𝜆1, 𝜆2, 𝜆3) and eigenvectors (𝜀⃗1, 𝜀⃗2, 𝜀⃗3). At each voxel, the magnitude of 

diffusion is represented by the eigenvalues and the corresponding eigenvectors reflect the 

directions of maximal and minimal diffusion. Using the eigenvalues, the two main 

diffusion indices FA and MD are calculated which represent the magnitude of the 

diffusion process. After that, white matter pathways and connection patterns between 

different brain regions are obtained. This tractography process is divided in three main 

stages: seeding, propagation, and termination. Seeding consists of defining region of 

interest (ROI) and placing one or more seeds in each voxel of the ROI. During 
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propagation, fiber generation and tracking is performed with different algorithms divided 

in two main categories: deterministic and probabilistic. In deterministic tractography, the 

data are modeled to generate or reconstruct one fiber from each seed. On the other hand, 

for probabilistic methods, the probability maps are determined from the uncertainty of the 

estimation, which provides multiple possible fiber directions emanating from each seed. 

The last step is terminating the tracking process based on some termination criteria. 

These criteria aim to avoid propagating the fibers in voxels where the robustness of the 

vector field is not assured. The common termination criteria are minimum FA thresholds 

(typically 0.1 – 0.3 in adult brain and 0.1 in infant) and turning angle threshold (typically 

40° − 70°, depending on the pathway) [36]. 

Visualization: 

To visualize the tractography result and present the tensor information in an 

understandable way is a big challenge. Several tools (e.g. slicer, paraview, explore DTI 

etc) are used to visualize the FA and MD maps and orientation distribution function of 

each voxel. Three dimensional WM pathways or fiber bundles are presented based on the 

primary eigenvector of diffusion. Using the reconstruction algorithms, 3D trajectories of 

fiber pathways are obtained and represented with the visualization tools.  In clinical 

applications, the most common DTI visualization is 2D visualization of scalar maps due 

to its simplicity. Tools are used to show axial, coronal and sagittal views of brain in 2D 

and 3D. 

Quantitative analysis: 

This step is important to extract the information from the analysis to compare the 

results in different situations. It is very difficult to verify the tractography results without 
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ground truth data. Since the brain fiber connection structure varies from person to person 

and also by age of the person, it’s almost impossible to have ground truth data to compare 

to the measured results. Currently, the parametric maps (FA and MD) are used to study 

specific disease processes, developmental conditions, or damaged fiber integrity in the 

brain. Comparing different tractography algorithm approaches gives a better 

understanding of white matter architecture. From the expert analysis, we can understand 

the positive and negative side of different tracking approaches for fiber reconstruction 

and get an idea of improving the tractography technique. 

Generally these steps are followed to complete human brain fiber bundles tractography. 

In the research presented here, a dataset was obtained from St. Jude Children’s Research 

Hospital. This dataset is described below.  

3.2 Data Set 

DTI was performed using an echo-planar imaging sequence on 1.5T and 3 T 

clinical scanners. The data sets obtained have the following characteristics: 

1. 12 gradient direction 4 averages/acquisition 

2. 20 gradient direction 3 averages/acquisition 

3. 30 gradient direction 2 averages/acquisition 

4. 64 gradient direction 2 averages/acquisition 

The raw dataset (in .ima extension) cannot be used directly with the software used in this 

research. To make it usable for analysis, the image extension was changed to the dicom. 

Dicom is a software integration standard that is used in medical imaging extensively. 

Every dicom files holds patients information like ID, name, and data acquisition 

parameters (type of equipment etc). The number of dicom files in each folder is equal to 
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[(Number of directions + B0) * Number of averages]. Each dicom image is a composite 

of all N slices covering the whole brain. In the 12 direction data, the slices are 3mm thick 

with voxel dimension 1.8 × 1.8 × 3 mm and there are 40 slices. For the 20 direction, the 

slices are 2 mm thick with voxel dimension 1.8 × 1.8 × 2 mm and 75 slices. For the 30 

direction, the slices are 2 mm thick with 1.8 × 1.8 × 2 mm voxel size and 70 slices. For 

the 64 direction, the voxel dimension is 1.7 × 1.7 × 1.7 mm where slices are 1.7 mm 

thick and number of slices are 96. The minimum placement of gradient field direction 

required to cover the whole brain is six but more directions can provide better tracking 

with the limitation of more time required to perform the tracking. Figure 17 shows 

samples of the dataset that were acquired by applying 12 and 20 gradient directions. 

  

                                (a)                             (b) 

Fig. 17: Dataset (a) 12 (b) 20 gradient direction 
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3.3 Block diagram of the tractography process used in this research: 

In this research, the data acquisition step was done by researchers and staff at St. 

Jude Children’s Research Hospital. The data was in correct order and sorted correctly. 

The steps followed in this research are shown in the block diagram below: 

          

 

 

Fig. 18: Block diagram of Tractography steps 

These steps are discussed in the following sections. 

Pre-processing: 

After data acquisition, artifacts and the quality of data are needed to be controlled. 

We have four set of raw data that is changed into dicom format for image analyzing. The 

Neuroimaging Informatics Technology Initiative (NIfTI) is a file format used in medical 

imaging to save fMRI data in one *.nii file. It will provide some important information 

like voxel dimension, orientation information (x, y, z values), b value etc. In DWI 

images, distortions caused by eddy current and head motion are the most common 

artifacts. Eddy currents can be corrected with an affine registration to the b0 image and 

motion correction with a rigid body registration to b0. After this, another step is to 

perform skull stripping i.e. removing non-brain areas from analysis and reducing data 

size [36]. 

Reconstruction Algorithms 

This process starts by calculating diffusion tensor indices. To do so, first we need 

to calculate diffusion tensor. This diffusion tensor will be used to measure the fractional 

Reconstruction

/Tractography 

Visualization Quantitative 

analysis 

Preprocessing 
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anisotropy (FA), apparent diffusion coefficient (ADC), rotational anisotropy (RA) etc. for 

each voxel. After calculating these tensor indices, the reconstruction algorithm is applied. 

According to the tractography method, the reconstruction algorithm differs. In the 

following sections, tensor calculation method and the algorithms used for the research are 

discussed shortly. 

Diffusion Tensor Calculation: 

After preprocessing the data, diffusion tensor calculation is done. The diffusion 

tensor can be calculated from DWI data collected with diffusion-sensitizing gradients in 

six or more directions [41]. Considering six distinct tensor elements and the logarithm of 

the 𝑏 = 0 signal intensity, the seven element column vector becomes: 

     𝛼 = [𝐷𝑥𝑥, 𝐷𝑦𝑦, 𝐷𝑧𝑧 , 𝐷𝑥𝑦, 𝐷𝑥𝑧 , 𝐷𝑦𝑧 , ln (𝑆0)]𝑇    (3.1) 

where 𝑆0 is the signal intensity with 𝑏 = 0. 

Each individual 𝑏 matrix is represented by a six element row vector 𝒃𝒊: 

𝑏𝑖 = (𝑏𝑥𝑥𝑖, 𝑏𝑦𝑦𝑖, 𝑏𝑧𝑧𝑖, 2𝑏𝑥𝑦𝑖, 2𝑏𝑥𝑧𝑖, 2𝑏𝑦𝑧𝑖)      (3.2)  

which is part of a seven element row vector 𝑩𝒊: 𝐵𝑖 =

(−𝑏𝑥𝑥𝑖, −𝑏𝑦𝑦𝑖, −𝑏𝑧𝑧𝑖 , −2𝑏𝑥𝑦𝑖, −2𝑏𝑥𝑧𝑖, −2𝑏𝑦𝑧𝑖 , 1)    (3.3) 

The row vectors are combined into one large 𝑁 × 7 B matrix: 

𝑩 = (

−𝑏𝑥𝑥1    −𝑏𝑦𝑦1 −𝑏𝑧𝑧1     −2𝑏𝑥𝑦1  −2𝑏𝑥𝑧1      −2𝑏𝑦𝑧1     1

⋮             ⋮ ⋮                 ⋮        ⋮                 ⋮            ⋮
−𝑏𝑥𝑥𝑁   −𝑏𝑦𝑦𝑁 −𝑏𝑧𝑧𝑁      −2𝑏𝑥𝑦𝑁 −2𝑏𝑥𝑧𝑁        −2𝑏𝑦𝑧𝑁   1

)  (3.4) 
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Without noise, the logarithms of the predicted signal intensities are given by a 𝑁 × 1 

column vector ξ: 

       𝜉𝑖 = 𝑩𝑖𝛼 = ln (𝑆𝑖) = ln(𝑆0) − 𝑏𝑖: 𝑫 

𝜉𝑖 = −𝑏𝑥𝑥𝑖𝐷𝑥𝑥 − 𝑏𝑦𝑦𝑖𝐷𝑦𝑦 − 𝑏𝑧𝑧𝑖𝐷𝑧𝑧 − 2𝑏𝑥𝑦𝑖𝐷𝑥𝑦 − 2𝑏𝑥𝑧𝑖𝐷𝑥𝑧 − 2𝑏𝑦𝑧𝑖𝐷𝑦𝑧 + ln (𝑆0) 

(3.5) 

So, the generalized dot product between the b matrix and the diffusion tensor D becomes 

 

 𝑏𝑖: 𝑫 = 𝑏𝑥𝑥𝑖𝐷𝑥𝑥 + 𝑏𝑦𝑦𝑖𝐷𝑦𝑦 + 𝑏𝑧𝑧𝑖𝐷𝑧𝑧 + 2𝑏𝑥𝑦𝑖𝐷𝑥𝑦 + 2𝑏𝑥𝑧𝑖𝐷𝑥𝑧 + 2𝑏𝑦𝑧𝑖𝐷𝑦𝑧   (3.6) 

𝜉 = 𝑩𝛼

= (

−𝑏𝑥𝑥1𝐷𝑥𝑥 − 𝑏𝑦𝑦1𝐷𝑦𝑦 − 𝑏𝑧𝑧1𝐷𝑧𝑧 − 2𝑏𝑥𝑦1𝐷𝑥𝑦 − 2𝑏𝑥𝑧1𝐷𝑥𝑧 − 2𝑏𝑦𝑧1𝐷𝑦𝑧 + ln (S0)

⋮
−𝑏𝑥𝑥𝑁𝐷𝑥𝑥 − 𝑏𝑦𝑦𝑁𝐷𝑦𝑦 − 𝑏𝑧𝑧𝑁𝐷𝑧𝑧 − 2𝑏𝑥𝑦𝑁𝐷𝑥𝑦 − 2𝑏𝑥𝑧𝑁𝐷𝑥𝑧 − 2𝑏𝑦𝑧𝑁𝐷𝑦𝑧 + ln(𝑆0)

) 

The noisy observed data are represented by a 𝑁 × 1 column vector x: 

𝒙 = (
𝑙𝑛(𝑆1)

⋮
ln (𝑆𝑁)

)         (3.7) 

The noisy data for each acquisition can be expressed as 

𝒙 = 𝑩𝛼 + 𝜼 = 𝝃 + 𝜼         (3.8) 

where η is a noise vector. If we set η = 0, the solution of the true tensor 𝛼 becomes [41]: 

(𝑩−𝟏𝑩)𝛼 = 𝛼 = 𝑩−1𝒙        (3.9) 
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With exactly six directions, the six measured ADCs can be found from the gradient 

scheme in the following Table. The ADCs are given by [41]- 

𝐷1 =
(𝐷𝑥𝑥 + 2𝑢𝐷𝑥𝑦 + 𝑢2𝐷𝑦𝑦)

(1 + 𝑢2)
 

𝐷2 =
(𝐷𝑥𝑥 − 2𝑢𝐷𝑥𝑦 + 𝑢2𝐷𝑦𝑦)

(1 + 𝑢2)
 

𝐷3 =
(𝐷𝑦𝑦 + 2𝑢𝐷𝑦𝑧 + 𝑢2𝐷𝑧𝑧)

(1 + 𝑢2)
 

𝐷4 =
(𝐷𝑦𝑦 − 2𝑢𝐷𝑦𝑧 + 𝑢2𝐷𝑧𝑧)

(1 + 𝑢2)
 

𝐷5 =
(𝐷𝑧𝑧 + 2𝑢𝐷𝑥𝑧 + 𝑢2𝐷𝑥𝑥)

(1 + 𝑢2)
 

𝐷6 =
(𝐷𝑧𝑧 − 2𝑢𝐷𝑥𝑧 + 𝑢2𝐷𝑥𝑥)

(1 + 𝑢2)
 

𝐷𝑎𝑣 =
(𝐷1+𝐷2+𝐷3+𝐷4+𝐷5+𝐷6)

6
=

𝐷𝑥𝑥+𝐷𝑦𝑦+𝐷𝑧𝑧

3
      (3.10) 

For the polyhedral encoding schemes with any value of the tensor element 𝑢, the 𝑏 matrix 

can be calculated from the following table 1. 

Once we calculate the mean diffusivity, other diffusion indices can be easily calculated 

using the value of 𝐷𝑎𝑣. 
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Table 1: Calculation of the 𝑏 Matrix for a Common Six-Direction DTI Gradient-

Encoding Scheme [43] 

 

𝑔𝑥  𝑔𝑦  𝑔𝑧  𝑏𝑥𝑥 𝑏𝑦𝑦 𝑏𝑧𝑧 𝑏𝑥𝑦 𝑏𝑥𝑧 𝑏𝑦𝑧 

1 𝑢 0 1 𝑢2 0 𝑢 0 0 

1 −𝑢 0 1 𝑢2 0 −𝑢 0 0 

0 1 𝑢 0 1 𝑢2 0 0 𝑢 

0 1 −𝑢 0 1 𝑢2 0 0 −𝑢 

𝑢 0 1 𝑢2 0 1 0 𝑢 0 

−𝑢 0 1 𝑢2 0 1 0 −𝑢 0 

 

Originally fractional anisotropy (FA) ranged from 0 to 1, relative anisotropy (RA) 

from 0 to 21/2, and volume ratio (VR) from 1 to 0. The formula for calculating these 

indices in terms of tensor elements are given by: 

Fractional anisotropy, 𝐹𝐴 = √
3[(𝐷𝑥𝑥−𝐷𝑎𝑣)2+(𝐷𝑦𝑦−𝐷𝑎𝑣)

2
+(𝐷𝑧𝑧−𝐷𝑎𝑣)2+2(𝐷𝑥𝑦

2 +𝐷𝑥𝑧
2 +𝐷𝑦𝑧

2 )]

2[𝐷𝑥𝑥
2 +𝐷𝑦𝑦

2 +𝐷𝑧𝑧
2 +2(𝐷𝑥𝑦

2 +𝐷𝑥𝑧
2 +𝐷𝑦𝑧

2 )]
   (3.11) 

Relative anisotropy, 𝑅𝐴 = √
(𝐷𝑥𝑥−𝐷𝑎𝑣)2+(𝐷𝑦𝑦−𝐷𝑎𝑣)

2
+(𝐷𝑧𝑧−𝐷𝑎𝑣)2+2(𝐷𝑥𝑦

2 +𝐷𝑥𝑧
2 +𝐷𝑦𝑧

2 )

3𝐷𝑎𝑣
2   (3.12) 

Volume Ratio, 𝑉𝑅 =
1−[𝐷𝑥𝑥𝐷𝑦𝑦𝐷𝑧𝑧+2𝐷𝑥𝑦𝐷𝑥𝑧𝐷𝑦𝑧−(𝐷𝑧𝑧𝐷𝑥𝑦

2 +𝐷𝑦𝑦𝐷𝑥𝑧
2 +𝐷𝑥𝑥𝐷𝑦𝑧

2 ]

𝐷𝑎𝑣
3   (3.13) 

The tractography methods used in this thesis are discussed in the following sections.  
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Deterministic tractography: FACT 

Fiber assignment by continuous tracking (FACT) algorithm is a time and memory 

effective three-dimensional tract reconstruction method. It is a deterministic tractography 

process that uses a brute-force reconstruction approach. In this method, tracking is 

performed using a continuous coordinate system rather than a discrete voxel-based matrix 

grid. The tracking is started at the center of each voxel having FA value greater than a 

user-defined threshold and proceeds along the principle eigenvector direction [40]. 

Tracking direction is changed at the point where the track intercepts the voxel’s 

boundary. To find the interception point, the 3D space fiber track within the voxel is 

parameterized by arc length 𝑠, and expressed by 

    {  

𝑥 = 𝑥0 + 𝑣𝑥𝑠
𝑦 = 𝑦0 + 𝑣𝑦𝑠
𝑧 = 𝑧0 + 𝑣𝑧𝑠

     (3.14) 

Where 𝒗 = (𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) is the principle eigenvector and 𝑥0 = (𝑥0, 𝑦0, 𝑧0) is the starting 

point where the fiber track enters the voxel and 𝒙 = (𝑥, 𝑦, 𝑧) is the interception point. 

The solution of the equation is the minimum 𝑠 that makes x, y, or z in this equation a 

constant. After getting the interception point in the boundary, the direction of new vector 

is found by taking an inner product between current and the new vector. If the result is 

negative, swap sign of the new vector. To get the complete trajectory, tracking is 

continued in both forward and backward directions initiated from the seed voxel. The 

tracking process is stopped if the angle between current direction and new direction is 

greater than the set threshold and to avoid shorter tracts than a threshold, minimum fiber 

length testing is subsequently performed. The end of the projection is judged based on 

sudden transitions in the fiber orientation and the transition is quantified by- 
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𝑅 = ∑ ∑ 𝑎𝑏𝑠(𝑣𝜆1𝑖 ∙ 𝑣𝜆1𝑗)/𝑠(𝑠 − 1)𝑠
𝑗

𝑠
𝑖        (3.15) 

Where 𝑣𝜆1is the unit vector representing the longest principle diffusion axis and 𝑠 is the 

number of data points referenced. When adjacent fibers are aligned strongly, the R value 

is large, while it becomes small in regions without continuity in fiber direction [38]. 

In a particular region of interest (ROI), the tracking may meet a branching point which 

would be forced to follow a single point of them. Brute-force fiber tracking is used to 

solve this situation. 

Probabilistic Tractography: PICo 

Probabilistic methods utilize the probability density function (PDFs) of each point 

within the brain to describe the local uncertainty in fiber orientation. Each PDF interpret 

the diffusion imaging acquisition information in terms of the likely underlying fiber 

structure. To interpret the diffusion tensor for probabilistic connectivity analyses, two 

orders of uncertainty are introduced. In 0th order case, uncertainty in the 𝑣𝑥 orientation is 

defined by tensor anisotropy, providing an isotropic normal distribution of orientation. In 

the 1st order case, the orientations of 𝑣𝑦 and 𝑣𝑧 and their respective eigenvalues provide 

orthogonal directional uncertainties, thus providing a more accurate bi-normal 

distribution of orientation [34]. 

To calibrate the PICo PDF by adding noise to synthetic data, the parameters of the 

PDF is fitted to the fiber orientation estimates. A zero mean Gaussian model for the 

diffusion displacement density 𝑝 = 𝐺(𝐷, 𝑡) in each voxel, where D is the diffusion tensor 

and t is the diffusion time, is considered to produce a look up table with different 

diffusion tensors that maps tensor anisotropy to PDF concentration. For two fiber bundles 

in a voxel, a Gaussian mixture model is fitted. For each noisy set of measurements, a 
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Gaussian mixture model: 𝑝 = 𝛼𝐺(𝐷1, 𝑡) + (1 − 𝛼)𝐺(𝐷2, 𝑡), where diffusion tensors are 

identically anisotropic, cylindrically symmetric and orthogonally oriented, is considered. 

In a similar way, two spherical PDFs of Bingham distribution [35]: 

𝑓(±𝑥) = 𝐵(±𝑥; 𝜅1, 𝜅2, 𝜇1, 𝜇2) = 𝑀−1 exp[𝜅1(𝜇1
𝑇𝑥)2 + 𝜅2(𝜇2

𝑇𝑥)2] ,      𝜅1 < 𝜅2 ≤ 0, 

           (3.16) 

where the axes μ describes the orientation of the distribution, κ describe the concentration 

and M is a constant, are fitted to the fiber orientation estimates 𝑥1 … … 𝑥2𝑁. 

Given the sample of fiber orientations, the maximum [35] 

 𝐿 = ∑ 0.5𝐵(𝑥𝑖; 𝜅1, 𝜅2, 𝜇1, 𝜇2) + 0.5𝐵(𝑥𝑖; 𝜅3, 𝜅4, 𝜇3, 𝜇4)2𝑁
𝑖=1      (3.17) 

with respect to the orientations and concentration of the two Bingham PDFs is found. 

A step in the streamline propagation process is defined by- 

 𝑥(𝑙 + 1) = 𝑥(𝑙) + 𝑤(𝑙)𝛿𝑡, where 𝑥(𝑙) is the position in ℜ3 of the streamline at point 𝑙 

on its length, 𝑤(𝑙) is the propagation direction at this point (𝑙 → 𝑥), and 𝛿𝑡 is the step 

size. With a single tensor model of diffusion, 𝑤(𝑙) is defined as the interpolated principle 

diffusion direction (PDD) at that point. PDD is determined by tri-linear interpolation of 

surrounding tensor elements. If one or more image voxels are involved in the 

interpolation, the selected tensor satisfies, 

                                                       max
𝑖

(|Г(𝐷𝑖(𝑝)) ∙ 𝑤(𝑙 − 1)|)  

where Г(𝐷𝑖(𝑝)) is the PDD of the 𝑖th tensor at image location 𝑝. This formulation ensures 

further streamline propagation in case of fiber crossing.  
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(a)                                                        (b) 

Fig. 19: (a) streamline propagation (black continuous lines) through a region of crossing 

fibers (b) Illustration of streamline randomization process in the corpus callosum [33] 
 

 

The PICo method utilizes Monte Carlo streamline approach, sampling the orientation 

PDFs within each voxel on each iteration.   

To define a map of the probability, 𝜓, of connection to the start point, is given as 𝜓(𝑝) =

lim
𝑁→∞

𝜇(𝑝,𝑁)

𝑁
≈

𝜇(𝑝,𝑁)

𝑁
 where 𝜇(𝑝, 𝑁) represents number of occasions over N repetitions at 

each voxel 𝑝 is crossed by a streamline [33]. 

Gibbs Tracking: 

This is a global tractography method that can reconstruct crossing and spreading 

fiber configurations without interpolation or strong a priori constraints. In this method, 

the fibers are built with small line elements. Each line element contributes an anisotropic 

term to the simulated DW signal, which is adjusted to the measured signal. The process 

started at high temperature (time parameter of simulated annealing method), which is 

slowly decreased during the simulations to ensure the independence of the initial state 
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and to find the optimal configuration. This process is named as Gibbs tracking” which is 

actually a Bayesian approach, based on spatial point processes [39].  According to this, 

the interaction between the cylinders represents the a priori probability and likelihood 

function is determined by the similarity between the measured and the simulated signals.  

The Gibbs tracking method defines the neuronal pathways by small cylinders. Each 

cylinder is defined by the tuple ℎ𝑖 = (𝑟𝑖, 𝑚𝑖) where 𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) specifies the center of 

the cylinder and 𝑚𝑖 = (𝑙𝑖, 𝜃𝑖∅𝑖) defines the length, polar angle and azimuth angle 

respectively. The radius for all cylinders is identical. The two ends 𝑎𝑖
+ and 𝑎𝑖

− of the 

cylinder ℎ𝑖 are calculated by equation 3.18 and 3.19: 

 𝑎𝑖
+ = 𝑟𝑖 +

𝑙𝑖

2
(

𝑐𝑜𝑠 ∅𝑖 𝑐𝑜𝑠 𝜃𝑖

𝑠𝑖𝑛 ∅𝑖 𝑐𝑜𝑠 𝜃𝑖

−𝑠𝑖𝑛 𝜃𝑖

)        (3.18) 

𝑎𝑖
− = 𝑟𝑖 −

𝑙𝑖

2
(

𝑐𝑜𝑠 ∅𝑖 𝑐𝑜𝑠 𝜃𝑖

𝑠𝑖𝑛 ∅𝑖 𝑐𝑜𝑠 𝜃𝑖

−𝑠𝑖𝑛 𝜃𝑖

)        (3.19) 

To differentiate between the white matter and the gray matter, there are predefined border 

planes which are aligned to the grid and lie on the border surface of two neighboring 

voxels. The probability of a given configuration of cylinders, ω = {h1, … … hn} is defined 

in the form: fT(ω) = exp (−
1

T
UI(ω)) exp (−

1

T
UD(ω, Ŝ))       (3.20) 

where UI represents the interaction energy and UD corresponds to the data energy and T 

is the overall temperature of the system. In the equation, the potential function fT(ω) can 

be seen as a non-normalized a posteriori probability at the temperature T, exp(−
1

T
UI(ω)) 

defines the a priori probability and exp(−
1

T
UD(ω, Ŝ)) defines the likelihood function. 
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The interaction energy favors the formation of the cylinders into chain i.e. neuronal 

pathways and data energy depends on the difference between the measured signal with 

the simulated one to determine the likelihood.  

The interaction energy is expressed in terms of the number of cylinders in different states 

defined according to their position relative to other cylinders and boundaries. In the 

attraction area, two endpoints are attracted with the energy  

gattr(ai, aj) = 1 − (1 −
(dattr−‖ai−aj‖

∞
)

q

(dattr−dcon)q )

1

q

       (3.21) 

Here q is a predefined constant, influencing the shape of the potential function. The 

interaction is switched off if one of the endpoints is connected. So, the interaction energy 

takes the form: 

UI(ω) = wfNf(ω) + wsNs(ω) − waWa(ω) + wwNw(ω)     (3.22) 

where the terms wf, ws, wa and ww are positive weights that influence the priority of 

different criteria and Nf, Ns and Nw are the numbers of free, single connected and 

wrongly connected cylinders respectively. 

The formula for calculating data energy is  

UD(ω) = u ∑ ∑ [(Ŝk
∗(x, ω) − Ŝk

∗(x, ω)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) − (Ŝk(x) − Ŝk(x)̅̅ ̅̅ ̅̅ ̅)]2I
k=1x in WM     (3.23) 

Here Ŝk(x) and Ŝk
∗(x, ω) are the measured and simulated signals, respectively. 

To maximize the a posteriori probability fT(ω), a reversal jump Monte Carlo Markov 

chain (RJMCMC) combined with the simulated annealing can be used. In this method the 



50 
 

last configuration ωJ after reaching the final temperature TJ is used as a result. If we 

consider a series of configuration (ω0, … , ωt, ωt+1, … ) according to a given probability 

density function, fT(ω) , the configurations form a chain of points in the state space Ω 

where the next element depends only on its predecessor.      

After completing tractography, we need to visualize the results. Visualization and the 

quantitative analysis of the results will be discussed in the next chapter. From the 

quantitative analysis, DTI provides information about a healthy and a diseased brain. For 

an example, DTI has been used to differentiate low-grade to high-grade brain tumors and 

its consequences. The change of FA between lesion and contralateral hemispheres 

distinguishes the WM tracts due to brain tumors as edematous, displaced, infiltrated and 

disrupted [42]. The FA change is defined by   

   ∆𝐹𝐴% =
𝐹𝐴𝑙𝑒𝑠𝑖𝑜𝑛−𝐹𝐴𝑛𝑜𝑟𝑚𝑎𝑙

𝐹𝐴𝑛𝑜𝑟𝑚𝑎𝑙
× 100%    (3.24) 

If ∆𝐹𝐴% is less than −30%, it is likely to be associated with WM disruption which 

means anisotropy is markedly reduced resulting at least partially destroyed WM tracts. A 

positive ∆𝐹𝐴% indicates edema or displacement and a ∆𝐹𝐴% between 0% to −30% is 

associated with Wm displacement or infiltration. WM integrity remains unaffected due to 

this alteration of FA values near brain tumors. In summary, DTI can assess white matter 

tract integrity and organization in the brain both in normal and disease case. 
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CHAPTER 4 

SIMULATION RESULTS 

In this chapter, I have reported about the simulation steps, tools used for various 

processing and the results of fiber bundles tracking for all the techniques. The simulations 

are done in three steps: 

1. Pre-processing 

2. Diffusion indices calculation 

3. Tractography 

First two steps are common for both deterministic and probabilistic methods. After 

calculating the diffusion indices, FACT, PICo and Gibbs tracking algorithm are used to 

reconstruct the fiber paths. The steps are described below. 

4.1 Pre-processing 

The dataset is converted from *.ima format to *.dicom for image analysis. Every 

dicom file holds patient information including ID, name, and data acquisition parameters 

(type of equipment etc). After getting the data in correct order, the artifacts due to head 

motion and eddy currents are removed. Deterministic and probabilistic tractography are 

performed using “Camino” [44]. It is an open source software toolkit for diffusion MRI 

processing. Three files are required to start the tractography using Camino. They are:  

(i) A raw DWI data in Neuroimaging Informatics Technology Initiative (NIfTI) format 

(ii) List of gradient directions and  

(iii) Brain mask in NIfTI format separating brain from the background. 
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Eddy current correction: 

In this process, affine registration to the b0 image is done to correct the eddy 

current artifacts. Figure 20 shows a sample of eddy current correction by affine 

registration. Here, the second row shows the distorted images which are corrected by 

taking b0 images as a reference (first row) and following the affine transformation (third 

row). This step is done using “SPM8” [52]. 

 

 

 

 

 

 

 

 

 

Fig. 20: Sample of eddy current correction [51] 

 

Dicom to NIfTI conversion:  

The NIfTI is a file format used in medical imaging to save fMRI data in one *.nii 

file. It provides some important information like voxel dimension, orientation 

information (x,y,z values or gradient directions), b value etc. The registered dicom 

images are converted to NIfTI using “MRIcron” [49] software.  
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Gradient directions are saved in a text file as given in the appendix A for 12 directions 4 

averages data set.  In the text file, each subsequent line represents a separate image in the 

protocol and the order is the same as the order in which the images are acquired. If the b-

value is zero, the gradient direction does not matter so it is set 𝑥 = 𝑦 = 𝑧 = 0 in the text 

file.  The other images are acquired with b-value 1000 s/mm2.  

Creating brain mask: 

Skull stripping or removing non-brain areas using “BrainSuite” [47] is shown in 

Fig. 21. It operates using an edge detector to find a boundary between brain and the skull. 

The detection continues up to some threshold (for example the threshold was 180 for 12 

direction data set brain mask) and morphological operators are used to provide better 

separation of the tissue. Before the edge detection performs, an anisotropic diffusion filter 

is applied to sharpen the high contrast edges and blur the low contrast edges. 

 

Fig. 21: Skull-stripping using BrainSuite. 
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4.2 Diffusion indices calculation: 

When the above three files are ready, a scheme file that lists the details of the 

acquisition is generated. Next the DWI data is fitted to each voxel. Once the data is in 

voxel order, it can be easily split up (e.g. by slice) and processed in parallel. Voxel-based 

single and multi diffusion tensor models for the orientation distribution function (ODF) 

are fit to the data by Camino as shown in Fig. 22. After calculating 𝐷𝑎𝑣 and 𝐹𝐴 using 

equation 3.10 and 3.11 respectively, the orientation distribution function (ODF) is 

obtained. It is then used to describe the directionality of multimodal diffusion in regions 

with complex fiber architecture present in the brain. The maximum diffusivity is 

normalized to voxel size. The color indicates the direction of maximum diffusivity i.e. 

red means left to right, green indicates anterior-posterior and blue for superior-inferior.  

 

Fig. 22: Orientation distribution function (ODF) for slice no. 44 and 47 in a 20D data set. 

 

 



55 
 

4.3 Tractography 

The tractography process is done in three steps: select a region of interest (ROI), 

tracking fibers, and visualization of the connections.  

Selecting a region of interest:  

To initialize the tracking, a seed point from where the tracking will be started is 

selected manually. Seed point is chosen from a defined region of interest (ROI). The 

ROIs can be manually drawn or extracted from other MRI modalities. Here, ROI has 

been selected by “ITK snap” [48] tool. 

Corpus callosum (CC) is the largest white matter structure in the brain.  It connects the 

left and right cerebral hemispheres. Selecting CC as an ROI will give a maximum 

number of fiber connections. To track through the diffusion data, the seed points initiate 

streamlines and the CC is defined as an ROI in the FA map manually.  

Tracking fibers and visualization: 

FACT: The selected ROI and some thresholds for Camino are used for FACT 

simulation. The thresholds, for example, set the angle threshold 60° and anisotropic 

threshold 0.2. These threshold values specify that tracks are terminated when anisotropy 

falls below 0.2 and the angle between 2 diffusion directions in adjacent voxel is larger 

than 60°. During the tracking process, the fibers are gradually generated. 
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Fig. 23: Deterministic tractography of 12 directions 4 averages data set using Camino. 

 

 

Fiber connections are visualized using the “Paraview” [45] tool. Figure 23 shows 

fiber connections for a 12 direction data set in axial view. Deterministic tractography 

models the data to generate/reconstruct one fiber from each seed.  

PICo: For probabilistic tractography, Camino can track streamlines using 

Bayesian tractography and PICo tractography algorithms. In my work, I used the PICo 

algorithm because Bayesian tractography is more data driven and doesn’t generalize 

easily to multiple fiber orientations. In PICo technique, a probability density function is 

computed for each voxel. The probability density functions (pdfs) are calculated from a 

lookup table which is generated for a certain signal to noise ratio (SNR). The seed ROI is 

used to generate the probabilistic tracked streamlines by iteration.  
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Fig. 24: Probabilistic tracking of 12 direction data set. 

 

The reconstructed fibers are again visualized in the Paraview tools. Figure 24 is showing 

tractography result of a 12 directions data set for probabilistic tracking and shows a 

higher density of fibers than the deterministic process.  

Gibbs tracking: For Global tractography, I have used DTI & Fiber tools [50] to 

simulate Gibbs tracking technique as shown in Fig. 4.6. This tool not only is used for 

simulating Gibbs tracking but also for FACT and PICo. Therefore the results obtained 

using this help to compare the methods. Here, the calculated tensors are saved in 

‘dtdStruct’ form, which consist the information of the eigenvalues, eigenvectors and the 

mean of the b0 images.  
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Fig. 25: Simulation of Gibbs tracking 

To start Gibbs tracking for global tractography, diffusion tensor information and a 

brain mask are provided as inputs for simulation. There are two types of parameters that 

are controlled for better reconstruction. Cylinder parameters of the fiber model and 

parameters concerning the iteration process are set manually. The cylinder parameters, 

including length and width, are set. The iteration parameters which include the starting 

and stopping temperature with the number of iterations are set. The values for all the 

parameters are shown in Fig. 25 as set for the simulation. The computation time and 

memory required for Gibbs tracking is very high. For this work, Intel PC core i5, 2.5 

GHz, 8.0 GB RAM windows 8 as an operating system and high power computing (HPC) 

having 512 GB RAM is used and it takes 12-24 hours for completing the simulation. But 

the computation time for FACT and PICo is short; not more than 1 hour which is the 

main advantage of these two methods. The stopping criteria for FACT tracking is 𝐹𝐴 ≤
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0.2 and maximum angular threshold 60°. For PICo, it is limited to visit maximum 150 

voxels and the simulation stops if 𝐹𝐴 ≤ 0.2. 

  Figure 26 and 27 are showing tractography of the whole brain and the fiber paths 

in a single slice of the brain for 12 and 30 direction data sets.  

               

 

        (a)              (b) 

Fig. 26: visualization of tractography using Gibbs tracking (a) 12 D (b) 30 D 

 

            (a)                         (b) 

Fig. 27: visualization of tractography in single slice using Gibbs tracking (a) 12D (b) 30D 
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4.4 Comparison 

Handling crossing and kissing: 

Fiber crossing and kissing is visualized by fitting multi-tensor model to each 

voxel. In Fig. 28, ODF for both single and multi tensor model in a 64 direction data set is 

shown where the overlapping of two tensors indicates kissing and crossing fibers in Fig 

28(b).  

   (a) 

 (b) 

Fig. 28: ODF by applying (a) single tensor (b) multi tensor model in a 64 D data set 
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In deterministic tractography (FACT), the algorithm is forced to take any one 

tensor’s principle direction and adds sequentially each voxel to construct the fiber path, 

which may differ from the exact path. A single mistake in deciding the tensor 

connections when crossing and kissing exist in a voxel may mislead the total fiber 

pathway tracking. It is a major limitation of deterministic tractography which is 

overcome by the probabilistic approach. In the probabilistic approach (PICo), the pdf of 

the multi-tensor in each voxel is used to find the most likely path to connect sequentially.  

Gibbs tracking can handle the crossing and kissing fibers more effectively. It reconstructs 

the fibers by measuring the pdf of the whole fiber pathway.  The performance of all these 

tractography techniques in crossing and kissing fibers tracking are compared on the basis 

of single slice visualization and the mean length of fibers reconstructed in the following 

section. 

Fibers reconstruction: 

Figure 29 and 30 are showing the comparison of fiber connections for the same 

slice (slice no. 23) and plane in three different views of brain: axial, sagittal and coronal 

using 12 direction data set for FACT, PICo and Gibbs tracking.  

 

 

Fig. 29: Fiber connections for FACT, PICo and Gibbs tracking from Sagittal view of 

brain using 12 D data set 
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Fig. 30: Fiber connections for FACT, PICo and Gibbs tracking from axial and coronal 

view of brain using 12 D data set 
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From the figures, it can be seen that the fiber numbers or densities are highest in 

Gibbs tracking whereas the lowest number of fibers is found from the FACT algorithm. 

The mean length of fibers tracked during the reconstruction process for all three 

tractography approaches are listed in table 2. From the table, the mean length of fibers 

tracked in Gibbs tracking is greater than other two approaches for each data set which 

indicates better performance of Gibbs tracking. But compare to deterministic approach, 

probabilistic tractography can reconstruct higher length of fibers. The table also indicates 

that the mean length of fibers increased with an increment in the number of gradient 

directions.  

Table 2: Comparison of mean length of fiber for different tractography approach 

Directions Mean length of fiber (mm) 

Deterministic 

Approach (FACT) 

Probabilistic 

approach (PICo) 

Gibbs tracking 

12 35.3032 53.7876 72.2315 

20 32.9716 55.3511 79.9543 

30 37.0210 77.5026 86.5967 

64 38.2012 78.1388 86.1916 

 

Statistical Comparison: 

For comparing the tractography approaches statistically, paired t-test is performed 

using four set of datasets for greater sensitivity. From table 2, after performing the paired 

t-test between deterministic (FACT) and probabilistic tractography (PICo), I obtained 𝑡 =
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5.2590 and 𝑃 = 0.0135. Consider the standard t-table of significance as given in table 3 

using two-tails hypothesis for degree of freedom, 𝑑𝑓 = 3. 

Table 3: Standard t-table for two-tails hypothesis with different significance level, 𝛼 [53] 

𝑡 → 

𝛼 → 

𝑡0.90 

0.2 

𝑡0.95 

0.1 

𝑡0.975 

0.05 

𝑡0.99 

0.02 

𝑑𝑓 = 2 1.886 2.9199 4.3026 6.965 

𝑑𝑓 = 3 1.638 2.3533 3.1824 4.541 

 

So comparing 𝑡 = 5.2590 and 𝑃 = 0.0134 with table 3, it can be said that it rejects the 

null hypothesis. It indicates that there is statistically significant difference between the 

means of two methods: FACT and PICo. As per table 2, since the mean length of fibers 

in PICo for every data set is greater than FACT tracts mean length, it can be said that 

PICo is better than FACT. Similarly, comparing the FACT and Gibbs tracking using 

paired t-test, I got 𝑡 = 15.8422 and 𝑃 = 0.0005. From table 3, it also rejects the null 

hypothesis. From these two paired t-tests, it is clear that t-value for FACT and Gibbs 

tracking test is higher than FACT and PICo test. So, it can conclude that Gibbs tracking 

provides higher mean length of fibers than other two methods and deterministic 

tractography determines the smallest mean length of fibers. But the result would be more 

reliable from the statistical point of view if we can run simulation on more MRI data sets.  
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4.5 Clinical application of tractography  

From the tractography process, I calculate different diffusion indices which are 

used to differentiate between a healthy and a diseased brain. I have data sets of three 

patients’ who went through radiation therapy (RT) after brain tumor surgery. The data set 

contains two parts: before RT and after RT. Simulating the data sets, I can quantify the 

changes due to radiation therapy as given in the table 4 and 5. Table 4 indicates two 

important indices of tractography FA and ADC for different data sets. These values are 

taken from selecting a particular region of interest (ROI) near to CC. Considering the 

mean of each index, there is some differences in the values between the pre and post 

radiation therapy of every data set. The mean length of fibers is also quantified in table 5. 

So the change of indices and fiber length indicates a variation due to radiation therapy in 

a patient’s brain.  

Table 4: Comparison of pre and post radiation therapy (RT) effect 

Patients No. Pre/post RT Mean FA Mean ADC 

1 Pre RT 7.694 × 10−1 1.006 × 10−3 

Post RT 7.590 × 10−1 0.931 × 10−3 

2 Pre RT 7.081 × 10−1 1.143 × 10−3 

Post RT 8.174 × 10−1 0.843 × 10−3 

3 Pre RT 7.665 × 10−1 0.904 × 10−3 

Post RT 6.488 × 10−1 1.034 × 10−3 
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Table 5: Mean length of fibers comparison between pre and post RT datasets 

Patients/Datasets  

[64 Directions 2 

Averages] 

Mean length of fibers in mm 

Before/pre radiation 

therapy 

After/post radiation 

therapy 

1 76.4938 79.2784 

2 83.3513 80.1393 

3 71.8039 70.5212 

 

FA and ADC values can be used to characterize diseased areas of the brain e.g. to detect 

the WM tracts adjacent to brain tumors to determine a viable tract. This will help to 

determine whether a specific region should be kept or resected during surgery. It also 

specifies patient information how much he/she recovered from a disease after surgery.  

Statistical Comparison of RT effects: 

The FA and ADC values along with mean length of fibers indicate that due to 

radiation therapy some changes occur in the brain after the therapy. A statistical analysis 

using paired t-test is applied to determine how the variation is statistically significant.  

From table 4, after performing the paired t-test between pre and post RT mean FA values, 

I got t = 0.0956 and P = 0.9326. Similarly comparing mean ADC values between pre 

and post RT, the value of t = 0.6577 and P = 0.5783. Recalling table 3 for degree of 

freedom, 𝑑𝑓 = 2, it is considered that the difference is not statistically significant.  

If the paired t-test is performed between mean length of fibers of pre and post RT datasets 

from table 5, I obtained t = 0.3225 and P = 0.7776. Again from table 3 for 𝑑𝑓 = 2, it 

can be said that the difference of mean length of fibers between pre and post RT datasets 

is not statistically significant. But because of a lack of disease information, it is not 
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possible to make conclusions regarding the accuracy of the results and any improvement 

or degradation due to therapy. Simulation of a complete data set having information of 

pre-surgery, post surgery, and post radiation therapy should be studied in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

CHAPTER 5 

CONCLUSION 

Diffusion tensor imaging is a powerful tool for the visualization of white matter 

structures. The growing number of DTI-based studies and applications shows the great 

potential of this method. Although this method provides a better theoretical basis to 

address the complicated diffusion of water in white matter, the simulations are time-

consuming and require considerable computational power. In this thesis, I have presented 

a comparison between deterministic and probabilistic tractography. I have shown the 

effectiveness of Gibbs tracking for global tractography which performs better in tracking 

crossing and kissing fibers. Compared with the other methods examined, the 

deterministic approach is computationally efficient, but probabilistic tractography can 

track longer fibers. I have also quantified various diffusion index values for a ROI near 

the corpus callosum, which can be used to assess different brain diseases.  

The index values usually vary in the regions of brain, and for specific brain 

diseases. From the values of FA and ADC, we can differentiate between a normal and a 

diseased brain. Preoperative assessment of disease will help to detect the exact location of 

areas involved in surgery. In this study, multiple gradient direction data sets are taken 

which have positive effect on tracking though the time requirement for simulation 

increases with the gradient directions, which could limit the clinical application. For the 

accuracy of the measurements, we relied on expert knowledge obtained from St. Jude 

Children’s Research Hospital. The simulation is done from different aspects such as 

changing the controlling parameters of the experiments such as fiber length, temperature, 

curvature angle, anisotropy value that gives different tractography results. So for getting a 
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reliable result, we need a gold standard tractography result which is a topic for future 

research.  

In summary, I have investigated different tractography methods including 

deterministic, probabilistic, and global tractography and their pros and cons in this thesis. 

Simulation is done on DTI data sets having different gradient directions. In addition, I 

also quantified the radiation therapy effects on brain fibers based on the diffusion indices 

and mean length of fibers tracked.  
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Appendix 

Table A: Gradient directions or orientation information for 12 D 4 averages data set 

x Y z 

0.000000000000000    0.000000000000000 0.000000000000000 

0.862981081008911   -0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726           -0.349165558815002 

0.862981081008911   -0.365167051553726           -0.349165558815002 

0.358699887990952   -0.365254640579224           -0.859024584293365 

0.356550574302673                 -0.867405891418457           -0.347100108861923 

0.356612652540207   -0.866849601268768 0.348423719406128 

0.358914166688919   -0.365450441837311 0.858851909637451 

0.358914166688919                  0.365450441837311 0.858851909637451 

0.356612652540207                  0.866849601268768 0.348423719406128 

0.356550574302673                  0.867405891418457           -0.347100108861923 

0.358699887990952                  0.365254640579224           -0.859024584293365 

0.000000000000000                  0.000000000000000            0.000000000000000 

0.862981081008911   -0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726           -0.349165558815002 

0.862981081008911   -0.365167051553726           -0.349165558815002 

0.358699887990952   -0.365254640579224           -0.859024584293365 

0.356550574302673                 -0.867405891418457           -0.347100108861923 

0.356612652540207   -0.866849601268768 0.348423719406128 

0.358914166688919   -0.365450441837311 0.858851909637451 

0.358914166688919                  0.365450441837311 0.858851909637451 

0.356612652540207    0.866849601268768 0.348423719406128 

0.356550574302673    0.867405891418457           -0.347100108861923 

0.358699887990952    0.365254640579224           -0.859024584293365 

0.000000000000000    0.000000000000000 0.000000000000000 

0.862981081008911   -0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726           -0.349165558815002 

0.862981081008911                 -0.365167051553726           -0.349165558815002 

0.358699887990952   -0.365254640579224           -0.859024584293365 

0.356550574302673                 -0.867405891418457           -0.347100108861923 

0.356612652540207                 -0.866849601268768 0.348423719406128 

0.358914166688919   -0.365450441837311 0.858851909637451 

0.358914166688919                  0.365450441837311 0.858851909637451 

0.356612652540207                  0.866849601268768 0.348423719406128 

0.356550574302673                  0.867405891418457           -0.347100108861923 

0.358699887990952    0.365254640579224           -0.859024584293365 

0.000000000000000    0.000000000000000 0.000000000000000 

0.862981081008911   -0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726 0.349165558815002 

0.862981081008911    0.365167051553726           -0.349165558815002 

0.862981081008911                 -0.365167051553726           -0.349165558815002 

0.358699887990952   -0.365254640579224           -0.859024584293365 

0.356550574302673                 -0.867405891418457           -0.347100108861923 

0.356612652540207                 -0.866849601268768 0.348423719406128 

0.358914166688919   -0.365450441837311 0.858851909637451 

0.358914166688919    0.365450441837311 0.858851909637451 

0.356612652540207    0.866849601268768 0.348423719406128 

0.356550574302673                  0.867405891418457           -0.347100108861923 

0.358699887990952    0.365254640579224           -0.859024584293365 
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