345 research outputs found

    Contradiction-tolerant process algebra with propositional signals

    Full text link
    In a previous paper, an ACP-style process algebra was proposed in which propositions are used as the visible part of the state of processes and as state conditions under which processes may proceed. This process algebra, called ACPps, is built on classical propositional logic. In this paper, we present a version of ACPps built on a paraconsistent propositional logic which is essentially the same as CLuNs. There are many systems that would have to deal with self-contradictory states if no special measures were taken. For a number of these systems, it is conceivable that accepting self-contradictory states and dealing with them in a way based on a paraconsistent logic is an alternative to taking special measures. The presented version of ACPps can be suited for the description and analysis of systems that deal with self-contradictory states in a way based on the above-mentioned paraconsistent logic.Comment: 25 pages; 26 pages, occurrences of wrong symbol for bisimulation equivalence replaced; 26 pages, Proposition 1 added; 27 pages, explanation of the phrase 'in contradiction' added to section 2 and presentation of the completeness result in section 2 improved; 27 pages, uniqueness result in section 2 revised; 27 pages, last paragraph of section 8 revise

    Handling Inconsistency in Knowledge Bases

    Get PDF
    Real-world automated reasoning systems, based on classical logic, face logically inconsistent information, and they must cope with it. It is onerous to develop such systems because classical logic is explosive. Recently, progress has been made towards semantics that deal with logical inconsistency. However, such semantics was never analyzed in the aspect of inconsistency tolerant relational model. In our research work, we use an inconsistency and incompleteness tolerant relational model called Paraconsistent Relational Model. The paraconsistent relational model is an extension of the ordinary relational model that can store, not only positive information but also negative information. Therefore, a piece of information in the paraconsistent relational model has four truth values: true, false, both, and unknown. However, the paraconsistent relational model cannot represent disjunctive information (disjunctive tuples). We then introduce an extended paraconsistent relational model called disjunctive paraconsistent relational model. By using both the models, we handle inconsistency - similar to the notion of quasi-classic logic or four-valued logic -- in deductive databases (logic programs with no functional symbols). In addition to handling inconsistencies in extended databases, we also apply inconsistent tolerant reasoning technique in semantic web knowledge bases. Specifically, we handle inconsistency assosciated with closed predicates in semantic web. We use again the paraconsistent approach to handle inconsistency. We further extend the same idea to description logic programs (combination of semantic web and logic programs) and introduce dl-relation to represent inconsistency associated with description logic programs

    Paraconsistent Reasoning for OWL 2

    Get PDF
    A four-valued description logic has been proposed to reason with description logic based inconsistent knowledge bases. This approach has a distinct advantage that it can be implemented by invoking classical reasoners to keep the same complexity as under the classical semantics. However, this approach has so far only been studied for the basid description logic ALC. In this paper, we further study how to extend the four-valued semantics to the more expressive description logic SROIQ which underlies the forthcoming revision of the Web Ontology Language, OWL 2, and also investigate how it fares when adapated to tractable description logics including EL++, DL-Lite, and Horn-DLs. We define the four-valued semantics along the same lines as for ALC and show that we can retain most of the desired properties

    Real Islamic Logic

    Get PDF
    Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL is analyzed from several perspectives: (i) parallel distributed systems design, (ii) reception by a community structured audience, (iii) informal logic and applied non-classical logics, and (iv) (in)tractability and artificial intelligence

    On the Satisfiability of Quasi-Classical Description Logics

    Get PDF
    Though quasi-classical description logic (QCDL) can tolerate the inconsistency of description logic in reasoning, a knowledge base in QCDL possibly has no model. In this paper, we investigate the satisfiability of QCDL, namely, QC-coherency and QC-consistency and develop a tableau calculus, as a formal proof, to determine whether a knowledge base in QCDL is QC-consistent. To do so, we repair the standard tableau for DL by introducing several new expansion rules and defining a new closeness condition. Finally, we prove that this calculus is sound and complete. Based on this calculus, we implement an OWL paraconsistent reasoner called QC-OWL. Preliminary experiments show that QC-OWL is highly efficient in checking QC-consistency

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    MetTeL: A Generic Tableau Prover.

    Get PDF
    • …
    corecore