

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 12, 2018

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant

Villadsen, Jørgen; Schlichtkrull, Anders

Published in:
LNCS Transactions on Large-Scale Data- and Knowledge-Centered Systems

Link to article, DOI:
10.1007/978-3-662-55947-5_5

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Villadsen, J., & Schlichtkrull, A. (2017). Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant. LNCS
Transactions on Large-Scale Data- and Knowledge-Centered Systems, 34, 92-122. DOI: 10.1007/978-3-662-
55947-5_5

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/97180606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-662-55947-5_5
http://orbit.dtu.dk/en/publications/formalizing-a-paraconsistent-logic-in-the-isabelle-proof-assistant(16b37f28-8a43-4c78-9ebd-b5f4d2a8b5d4).html

Formalizing a Paraconsistent Logic in the
Isabelle Proof Assistant

Jørgen Villadsen and Anders Schlichtkrull

DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract. We present a formalization of a so-called paraconsistent logic
that avoids the catastrophic explosiveness of inconsistency in classical
logic. The paraconsistent logic has a countably infinite number of non-
classical truth values. We show how to use the proof assistant Isabelle
to formally prove theorems in the logic as well as meta-theorems about
the logic. In particular, we formalize a meta-theorem that allows us to
reduce the infinite number of truth values to a finite number of truth
values, for a given formula, and we use this result in a formalization of
a small case study.

Keywords: Paraconsistent Logic, Many-Valued Logic, Formalization,
Isabelle Proof Assistant, Inconsistency, Paraconsistency

1 Introduction

Proof assistants are computer programs that assist users in conducting proofs.
In general, proof assistants are useful tools both for clarifying concepts and for
catching mistakes [14]. In addition, proof assistants are often able to perform
calculations in different ways using rewriting rules or code generation. We use
the Isabelle proof assistant [28,29], more precisely Isabelle’s default higher-order
logic called Isabelle/HOL, which includes powerful specification tools for ad-
vanced datatypes, inductive definitions and recursive functions.

1.1 Formalization in Proof Assistants

Today’s proof assistants use proof systems with axioms and rules as famously
characterized in the beginning of Kurt Gödel’s seminal paper from 1931 on the
Incompleteness Theorems [15]:

The development of mathematics toward greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can
prove any theorem using nothing but a few mechanical rules.

2 Jørgen Villadsen and Anders Schlichtkrull

Modern computers are indeed excellent at following such mechanical rules used
in proof systems. A book about “the seventeen provers of the world” included
formalizations of a proof of the irrationality of

√
2 from researchers using various

proof assistants and automatic theorem provers [48]. Arguably the two most used
proof assistants with large mathematical libraries are Coq [4] and Isabelle [28,29]
— both the results of more than 30 years of research in automated reasoning.

The creator of Isabelle, Lawrence C. Paulson, states in a recent paper on the
first formalization of Gödel’s Incompleteness Theorems [30]:

Note that this paper contains no definitions or proofs as conventionally
understood in mathematics; rather, it describes definitions and formal
proofs that have been conducted in Isabelle/HOL, and lessons learned
from them.

A formalization can catch mistakes, small or big, in definitions, theorems and
proofs. Furthermore formalizations bring attention to vague specifications and
make it easier to experiment with variants of definitions and theorems.

We return to the ins and outs of formalization in Isabelle in a moment.

1.2 Paraconsistency

In brief, paraconsistency is about handling contradictions in a coherent way, and
many approaches have been investigated [1, 2, 9, 11, 31, 32, 46]. In classical logic
there are only two truth values and everything follows from a contradiction, but
in a paraconsistent logic not everything follows from a contradiction.

In the present paper we formalize the syntax and semantics of a many-valued
paraconsistent logic with a countably infinite number of truth values [20,40–43].
We do not consider any proof systems for our particular paraconsistent logic, but
we can prove theorems and non-theorems using the semantics like it is done with
truth tables for classical propositional logic. However, since our paraconsistent
logic has infinitely many truth values, it is far from obvious that finite truth
tables suffice.

Although we in the present paper formalize a particular many-valued para-
consistent logic, the logic can be changed or even replaced in the formalization.
Isabelle would then show which formal theorems and proofs need to be adapted.

It is helpful to distinguish between weak and strong paraconsistency, quoting
Weber [46]:

Roughly, weak paraconsistency is the cluster concept that
– any apparent contradictions are always due to human error;
– classical logic is preferable, and in a better world where humans did

not err, we would use classical logic;
– no true theory would ever contain an inconsistency.

This is our view on the matter, however, there is another view, again quoting
Weber [46]:

On the other side, strong paraconsistency includes ideas like

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 3

– Some contradictions may not be errors;
– classical logic is wrong in principle;
– some true theories may actually be inconsistent.

The proof assistant Isabelle uses classical logic and it seems hard to adhere to
strong paraconsistency then.

The standard definition of paraconsistency is in terms of non-explosion [46]:

A logic is paraconsistent iff it is not the case for all sentences A, B that
A,¬A ` B.

However, in our paraconsistent logic we have nothing on the left-hand side of
the turnstile (`) so we instead consider the following statement:

` A ∧ ¬A→ B

In order to illustrate the notion of entailment we introduce a small case study.
Classical logic is problematic in, for example, multi-agent systems, since the
belief base of an agent very well could contain contradictory beliefs and thus be
inconsistent. For example, as a small case study, consider an agent with a set of
atomic beliefs (item 0) and a few simple rules:

0. P ∧Q ∧ ¬R
1. P ∧Q→ R

2. R→ S

This leaves the agent with contradictory beliefs, namely R and ¬R, so the agent
might start behaving in an undesirable way if it uses classical logic. It could now
believe that ¬P , or ¬Q — or even ϕ for any formula ϕ. Using our paraconsistent
logic this is not the case [20]. We return to the case study in Section 8.

In multi-agent systems where agents have to take into account the beliefs of
other agents, it can be difficult to use other approaches like belief revision [17]
because belief revision seems to be a rather strong assumption about the capa-
bilities of other agents whereas our many-valued paraconsistent logic is “just” a
generalization of classical logic with respect to both syntax (new operators) and
semantics (more truth values). Think of a judge who has conflicting arguments
of the prosecutor and the defender of a culprit. Such a reasoner needs to take an
unbiased, impartial point of view without the possibility of coercing neither the
prosecutor nor the defender to change their belief in favor of the counterparty.

1.3 Formalization of Logic

We formally prove theorems in the logic as well as theorems about the logic. The
proofs are checked by the Isabelle proof assistant [28, 29]. By submission to the
online Archive of Formal Proofs we make sure that the proofs are maintained
continuously against the current stable release of Isabelle [37]:

http://isa-afp.org/browser_info/current/AFP/Paraconsistency

http://isa-afp.org/browser_info/current/AFP/Paraconsistency

4 Jørgen Villadsen and Anders Schlichtkrull

The above link provides PDF documents with or without proofs and the theory
file can be browsed online. The Archive of Formal Proofs has mid 2017 almost
100,000 theorems and lemmas in total and covers numerous advanced topics in
mathematics, logic and computer science:

http://isa-afp.org/statistics.shtml

Since the start in 2004 more than 250 authors have contributed. There are 42
entries in the logic category. For example, Paulson’s formalization of Gödel’s
Incompleteness Theorems is in the Archive of Formal Proofs [30] and so are two
recent formalizations of proof systems:

1. Jensen, Schlichtkrull and Villadsen [19] formalize a declarative first-order
prover with equality based on John Harrison’s Handbook of Practical Logic
and Automated Reasoning and the entire prover can be executed within
Isabelle as a very simple interactive proof assistant.

2. Michaelis and Nipkow [25] formalize proof systems for classical propositional
logic and prove the most important meta-theoretic results about seman-
tics and proofs: compactness, soundness, completeness, translations between
proof systems, cut-elimination, interpolation and model existence.

These formalizations as well as our work on paraconsistency are in the repository
IsaFoL, Isabelle Formalization of Logic, with the goal to develop lemma libraries
and methodology for formalizing modern research in automated reasoning:

https://bitbucket.org/isafol/isafol/

The repository gives an overview of recent formalizations of logics in the Isabelle
proof assistant. A state-of-the-art approach to the formalization of soundness
and completeness results for logics has been developed by Blanchette, Popescu
and Traytel [6] and the formalization is available in the Archive of Formal Proofs,
but paraconsistent and/or many-valued logics are not considered.

1.4 The Isabelle Proof Assistant

One of Isabelle’s central components is the Isar language for writing proofs [47].
The language bears resemblance to logical systems, handwritten mathematical
proofs and programming languages.

It is similar to logical systems, in particular natural deduction, in that formu-
las can be proved by breaking them down into smaller parts using appropriate
inference rules.

It is similar to mathematical paper proofs because an Isar-proof can be writ-
ten as a sequence of sentences, each one following from the previous ones, that
leads us towards a goal. In particular it is very similar to the structured proof
style that Lamport [22,23] recommends for the 21st century.

It is similar to a programing language in that its syntax is structured and
consists of various commands — these commands instruct Isabelle on how to
prove the desired theorems.

http://isa-afp.org/statistics.shtml
https://bitbucket.org/isafol/isafol/

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 5

Another important feature of Isar is that it allows one to mix this structured
reasoning with state-of-the-art automatic theorem provers.

We illustrate the language with a simple proof of a — perhaps — surprising
theorem called the drinker’s paradox. The theorem states that in a bar there is
a person such that if he is drinking then everybody is drinking (we use predicate
D for drinking). We have the following Isar proof:

Even for the uninitiated the proof should be at least somewhat readable be-
cause keywords such as theorem, proof, assume, then and have are well
known from mathematical literature. Furthermore, each sentence is written in
Isabelle/HOL, which has a similar notation to e.g. first-order logic (FOL).

Let us describe the Isar-proof in detail. After we state the theorem comes a
proof block starting with proof cases and ending with the qed on the very last
line. This proof block allows us to do proof by cases on whether ∀x.D x is true
or not and in both cases we are obliged to prove the theorem. One can easily
imagine a classical proof system with such a rule.

We start by proving the first case ∀x.D x. This proof starts with assume
∀x.D x and ends with then show ?thesis .. two lines below. The proof is similar
to a paper proof of a sequence of three sentences – each line corresponding to a
sentence. Here ?thesis refers to the theorem we are proving.

Next comes the second case ¬(∀x.D x). Again the proof is a sequence of
sentences. To convince Isabelle that the first sentence follows from the second,

6 Jørgen Villadsen and Anders Schlichtkrull

we apply the proof method called simp, which does simplifications, by writing by
simp. Next we use the obtain command to obtain the element a that the previous
sentence proved exists. After this we prove an implication using an inner proof
block. Notice how the inner proof block is nested in the outer proof block. In this
inner proof block we prove the implication by breaking it down structurally using
the implication introduction rule from natural deduction, which states that to
prove an implication we assume the antecedent and prove the consequent. Notice
also that in the inner proof block we use another proof method called metis and
additionally allow it to use the previously labelled sentence nda. The metis proof
method is an automatic theorem prover.

Note that Isabelle/HOL is written in a curried style. This means that function
application is written without parentheses unless necessary. An example is D x
as we saw above. Additionally n-argument functions are typically given a type

′a1 ⇒ (′a2 ⇒ (′a3 ⇒ (· · · ⇒ (′an ⇒ ′b)···)))

or, if we drop the parentheses

′a1 ⇒ ′a2 ⇒ ′a3 ⇒ · · · ⇒ ′an ⇒ ′b

instead of

(′a1 × · · · × ′an)⇒ ′b.

Therefore, an application of, e.g., a binary function R to two arguments x and
y is written as R x y.

You can try to write the above proof in Isabelle. You will notice that it is
easy to accidentally introduce some mistake that makes Isabelle unable to finish
the proof. This is the advantage of proving theorems in Isabelle — the system
is very good at catching small and big mistakes.

1.5 Contributions and Overview

All formulas in the present paper have been checked by the Isabelle proof assis-
tant except for the informal presentation in Section 2. We must emphasize that
the proofs in the paper are not generated by Isabelle or any other computer pro-
gram. All proofs in the paper are word for word authored by us. Our proofs can
— at least in principle — be read and checked by other Isabelle users and can
also be read and checked by the Isabelle proof assistant — and have therefore
been accepted for the Archive of Formal Proofs.

Our main contributions are as follows.

– In Section 3: A formalization of the syntax and semantics of the many-valued
paraconsistent logic with many new definitions.

– In Section 4 and Section 5: A series of theorems and non-theorems of which
only a few have been considered in our previous publications.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 7

– In Section 6: A new analysis of the required number of truth values for
counterexamples.

– In Section 7: A reduction theorem that was originally mentioned without
proof in our extended abstract [20].

– In Section 8: A proposal for entailment and verification of the results for
the case study presented in the present section — these results were also
mentioned without proof in our extended abstract [20].

We describe related work in Section 9 and conclude in Section 10.

2 The Paraconsistent Logic — An Informal Presentation

By “informal” we here mean that we provide a mathematical presentation of
the logic but the formalization in the Isabelle proof assistant is provided in the
following sections. We describe the propositional fragment of our higher-order
many-valued paraconsistent logic [43]. We follow the concise presentation in our
extended abstract [20] but with some additional abbreviations.

2.1 Semantic Clauses and Key Equalities

We have the two classical determinate truth values {•, ◦} for truth and falsity
and a countably infinite set of indeterminate truth values {p, pp, ppp, . . .}.

The indeterminate truth values are not ordered with respect to truth content.
The only designated truth value is • and hence only this truth value yields the
logical truths.

This use of • and ◦ for the classical truth values goes back to our previous
publications [41–43] and the references therein. Note that as usual the corre-
sponding operators are > and ⊥ (see below).

The logic is a generalization of Lukasiewicz’s three-valued logic — originally
proposed 1920–30 — with the intermediate value duplicated many times and
ordered such that none of the copies of this value imply other ones, but the logic
differs from Lukasiewicz’s many-valued logics as well as from logics based on
bilattices [16].

The motivation for the logical operators is based on key equalities shown
to the right of the semantic clauses. We also have ϕ ⇔ ¬¬ϕ as a key equality.
Negation does not change indeterminate truth values since they are not ordered
with respect to truth content. In the higher-order paraconsistent logic [41–43]
the key equalities are proper equalities = corresponding to ⇔ here. The key
equalities do not provide an axiomatization as such but rather they provide for
each logical operator the semantic clauses except for the default case.

Note that in the semantic clauses several cases may apply if and only if they
agree on the result and that the semantic clauses work for classical logic too.
Atoms are interpreted by the basic semantic clause and > by [[>]] = •.

8 Jørgen Villadsen and Anders Schlichtkrull

[[¬ϕ]] =

• if [[ϕ]] = ◦ > ⇔ ¬⊥

◦ if [[ϕ]] = • ⊥ ⇔ ¬>

[[ϕ]] otherwise

[[ϕ ∧ ψ]] =

[[ϕ]] if [[ϕ]] = [[ψ]] ϕ ⇔ ϕ ∧ ϕ

[[ψ]] if [[ϕ]] = • ψ ⇔ >∧ ψ

[[ϕ]] if [[ψ]] = • ϕ ⇔ ϕ ∧ >

◦ otherwise

Abbreviations:
⊥ ≡ ¬> ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

We continue with biimplication (and we then simply obtain implication and
modality as abbreviations). The semantic clauses for ↔ extend the clauses for
⇔, which always give a determinate truth value.

[[ϕ⇔ ψ]] =

{• if [[ϕ]] = [[ψ]]

◦ otherwise

[[ϕ↔ ψ]] =

• if [[ϕ]] = [[ψ]] > ⇔ ϕ↔ ϕ

[[ψ]] if [[ϕ]] = • ψ ⇔ >↔ ψ

[[ϕ]] if [[ψ]] = • ϕ ⇔ ϕ↔ >

[[¬ψ]] if [[ϕ]] = ◦ ¬ψ ⇔ ⊥↔ ψ

[[¬ϕ]] if [[ψ]] = ◦ ¬ϕ ⇔ ϕ↔ ⊥

◦ otherwise

Abbreviations:

�ϕ ≡ ϕ ⇔ > ¬¬ϕ ≡ �¬ϕ ∇ϕ ≡ ¬¬�(ϕ ∨ ¬ϕ)

ϕ⇒ ψ ≡ ϕ ⇔ ϕ ∧ ψ ϕ→ ψ ≡ ϕ ↔ ϕ ∧ ψ

ϕ∧∧ψ ≡ �(ϕ ∧ ψ) ϕ∨∨ψ ≡ �(ϕ ∨ ψ)

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 9

2.2 Truth Tables

Although we have a countably infinite set of truth values we can investigate the
logic by truth tables since the indeterminate truth values are not ordered with
respect to truth content.

In order to grasp the main properties of the operators we need just the two
indeterminate truth values p and pp as in the following truth tables.

�

• •
◦ ◦
p ◦

∧ • ◦ p pp
• • ◦ p pp
◦ ◦ ◦ ◦ ◦
p p ◦ p ◦
pp pp ◦ ◦ pp

∨ • ◦ p pp
• • • • •
◦ • ◦ p pp
p • p p •
pp • pp • pp

¬
• ◦
◦ •
p p

↔ • ◦ p pp
• • ◦ p pp
◦ ◦ • p pp
p p p • ◦
pp pp pp ◦ •

→ • ◦ p pp
• • ◦ p pp
◦ • • • •
p • p • p
pp • pp pp •

¬¬
• ◦
◦ •
p ◦

⇔ • ◦ p pp
• • ◦ ◦ ◦
◦ ◦ • ◦ ◦
p ◦ ◦ • ◦
pp ◦ ◦ ◦ •

⇒ • ◦ p pp
• • ◦ ◦ ◦
◦ • • • •
p • ◦ • ◦
pp • ◦ ◦ •

∇
• ◦
◦ ◦
p •

∧∧ • ◦ p pp
• • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
p ◦ ◦ ◦ ◦
pp ◦ ◦ ◦ ◦

∨∨ • ◦ p pp
• • • • •
◦ • ◦ ◦ ◦
p • ◦ ◦ •
pp • ◦ • ◦

Observe that with respect to validity, viz. the classical determinate truth value •
for truth, the operators ¬ and ¬¬ behave the same and likewise for the operators
⇔ and ↔ and ⇒ and →, respectively.

The truth tables are obtained from the semantic clauses. The formalization
includes features for this calculation but since the truth tables are solely for
informal presentation purposes we have typeset them using the same symbols
as used in the semantics clauses. However, Section 6 contains a few truth tables
calculated by Isabelle. The theory file for the formalization includes all calculated
truth tables.

10 Jørgen Villadsen and Anders Schlichtkrull

3 Syntax and Semantics

We formalize the syntax and semantics of the many-valued paraconsistent logic
as follows. For the syntax we first define the propositional symbols (id) as a
simple abbreviation for text strings and the formulas (fm) as a recursive datatype
(almost as the productions for a context-free grammar).

type-synonym id = string

datatype fm =
Pro id |
Truth |
Neg ′ fm |
Con ′ fm fm |
Eql fm fm |
Eql ′ fm fm

We then define the remaining operators as abbreviations. We do this with
Isabelle’s abbreviation command by giving the name of the abbreviated oper-
ator, e.g. Falsity, and thereafter its type, e.g. fm. After the where keyword we
write the equality that defines the abbreviation, e.g. Falsity ≡ Neg ′ Truth.

abbreviation Falsity :: fm where Falsity ≡ Neg ′ Truth

abbreviation Dis ′ :: fm ⇒ fm ⇒ fm
where Dis ′ p q ≡ Neg ′ (Con ′ (Neg ′ p) (Neg ′ q))

abbreviation Imp :: fm ⇒ fm ⇒ fm where Imp p q ≡ Eql p (Con ′ p q)

abbreviation Imp ′ :: fm ⇒ fm ⇒ fm where Imp ′ p q ≡ Eql ′ p (Con ′ p q)

abbreviation Box :: fm ⇒ fm where Box p ≡ Eql p Truth

abbreviation Neg :: fm ⇒ fm where Neg p ≡ Box (Neg ′ p)

abbreviation Con :: fm ⇒ fm ⇒ fm where Con p q ≡ Box (Con ′ p q)

abbreviation Dis :: fm ⇒ fm ⇒ fm where Dis p q ≡ Box (Dis ′ p q)

abbreviation Cla :: fm ⇒ fm where Cla p ≡ Dis (Box p) (Eql p Falsity)

abbreviation Nab :: fm ⇒ fm where Nab p ≡ Neg (Cla p)

The truth values are the two determinate truth values and the countably infinite
number of indeterminate truth values. We also define a useful abbreviation for
negation (eval-neg). This function turns Det False into Det True and vice versa,
but does not change the value of indeterminate truth values. The function is
defined by a case-expression that matches x with the patterns Det False, Det
True and Indet n (where n can be any value), and returns the value to the

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 11

right of the corresponding arrow. Finally, we define the semantics as a recursive
function on the structure of the given formula (eval) using the fun command.
The function is defined by a number of equations. In one of the equations we
again use a case expression. This time the case expression contains a number of
dummy variables (wildcard patterns), which are typeset as dashes (-). Each one
of these will independently match with anything.

datatype tv = Det bool | Indet nat

abbreviation (input) eval-neg :: tv ⇒ tv
where

eval-neg x ≡
(

case x of
Det False ⇒ Det True |
Det True ⇒ Det False |
Indet n ⇒ Indet n

)

fun eval :: (id ⇒ tv) ⇒ fm ⇒ tv
where

eval i (Pro s) = i s |
eval i Truth = Det True |
eval i (Neg ′ p) = eval-neg (eval i p) |
eval i (Con ′ p q) =

(
if eval i p = eval i q then eval i p else
if eval i p = Det True then eval i q else
if eval i q = Det True then eval i p else Det False

) |
eval i (Eql p q) =

(
if eval i p = eval i q then Det True else Det False

) |
eval i (Eql ′ p q) =

(
if eval i p = eval i q then Det True else

(
case (eval i p, eval i q) of

(Det True, -) ⇒ eval i q |
(-, Det True) ⇒ eval i p |
(Det False, -) ⇒ eval-neg (eval i q) |
(-, Det False) ⇒ eval-neg (eval i p) |
- ⇒ Det False

)
)

We prove a few useful results about the semantics. We first prove a formulation
of the semantics for Eql’ and Neg’ without the eval-neg abbreviation. We then
prove that a double negation with Neg’ does not change the semantics.

12 Jørgen Villadsen and Anders Schlichtkrull

theorem eval-equality :
eval i (Eql ′ p q) =

(
if eval i p = eval i q then Det True else
if eval i p = Det True then eval i q else
if eval i q = Det True then eval i p else
if eval i p = Det False then eval i (Neg ′ q) else
if eval i q = Det False then eval i (Neg ′ p) else
Det False

)
by (cases eval i p; cases eval i q) simp-all

theorem eval-negation:
eval i (Neg ′ p) =

(
if eval i p = Det False then Det True else
if eval i p = Det True then Det False else
eval i p

)
by (cases eval i p) simp-all

corollary eval i (Cla p) = eval i (Box (Dis ′ p (Neg ′ p)))
using eval-negation
by simp

lemma double-negation: eval i p = eval i (Neg ′ (Neg ′ p))
using eval-negation
by simp

We define the notion of valid formulas by quantifying over all interpretations.

definition valid :: fm ⇒ bool
where

valid p ≡ ∀ i . eval i p = Det True

proposition valid Truth and ¬ valid Falsity
unfolding valid-def
by simp-all

The last proposition shows that the logic is consistent in the sense that there is
a formula which is a theorem and not all formulas are theorems. The proof is
explained in the next section.

4 Various Theorems and Proof Styles

We prove a series of theorems and non-theorems most of which are schemata.
The purpose of the following quite long list is twofold: to investigate our para-
consistent logic, and secondly, to show a number of proof styles.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 13

The first seven propositions are proved by unfolding the definition of valid-
ity and then simplifying the result to a true atomic proposition. The next two
propositions are proved by the metis proof method as explained in Section 1.
We let metis use a number of lemmas including eval-equality, eval-negation and
two lemmas about respectively truth values and evaluation, that Isabelle proved
implicitly when we defined these notions. Isabelle’s powerful Sledgehammer tool
has been used to obtain the proofs [5].

The next proposition — P is not valid — is proved by the auto proof method,
which does a combination of simplification and classical reasoning. The following
proposition — ¬P is not valid — is proved by manually providing a counterexam-
ple – unfortunately Sledgehammer cannot find a proof for this proposition. The
counterexample is the interpretation that maps everything to True. It is writ-
ten as a λ-expression as known from the λ-calculus. In general, a λ-expression
λx. F x represents the function that takes any x as input and returns F x.

Hereafter comes a proposition stating that the validity of p implies the non-
validity of Neg’ p. This is written using keywords assumes and shows, which
logically is the same as if we had explicitly written an implication −→, but will
make theorems easier to read when there are many assumptions. Several of the
following propositions are written in the same style.

The remaining propositions are proved using more or less the same proof
methods (one proposition requires the so-called force proof method that can
prove some propositions where auto gives up).

Some propositions have assumptions and in the proof the special fact assms
can be used to refer to the assumptions.

In Isabelle there is no technical difference between the keywords theorem,
corollary, proposition and lemma. We have found it useful to always name
theorems and simply take propositions to be unnamed theorems. Lemmas are
stepping stones and must of course have names in order to be used later in proofs.
A corollary is taken to be readily proved from a theorem; see the theorem named
conjunction (after 14 propositions).

proposition valid (Cla (Box p)) and ¬ valid (Nab (Box p))
unfolding valid-def
by simp-all

proposition valid (Cla (Cla p)) and ¬ valid (Nab (Nab p))
unfolding valid-def
by simp-all

proposition valid (Cla (Nab p)) and ¬ valid (Nab (Cla p))
unfolding valid-def
by simp-all

proposition valid (Box p) ←→ valid (Box (Box p))
unfolding valid-def
by simp

14 Jørgen Villadsen and Anders Schlichtkrull

proposition valid (Neg p) ←→ valid (Neg ′ p)
unfolding valid-def
by simp

proposition valid (Con p q) ←→ valid (Con ′ p q)
unfolding valid-def
by simp

proposition valid (Dis p q) ←→ valid (Dis ′ p q)
unfolding valid-def
by simp

proposition valid (Eql p q) ←→ valid (Eql ′ p q)
unfolding valid-def
using eval .simps tv .inject eval-equality eval-negation
by (metis (full-types))

proposition valid (Imp p q) ←→ valid (Imp ′ p q)
unfolding valid-def
using eval .simps tv .inject eval-equality eval-negation
by (metis (full-types))

proposition ¬ valid (Pro ′′p ′′)
unfolding valid-def
by auto

proposition ¬ valid (Neg ′ (Pro ′′p ′′))
proof −

have eval (λs. Det True) (Neg ′ (Pro ′′p ′′)) = Det False
by simp

then show ?thesis
unfolding valid-def
using tv .inject
by metis

qed

proposition assumes valid p shows ¬ valid (Neg ′ p)
using assms
unfolding valid-def
by simp

proposition assumes valid (Neg ′ p) shows ¬ valid p
using assms
unfolding valid-def
by force

proposition valid (Neg ′ (Neg ′ p)) ←→ valid p
unfolding valid-def
using double-negation
by simp

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 15

theorem conjunction: valid (Con ′ p q) ←→ valid p ∧ valid q
unfolding valid-def
by auto

corollary assumes valid (Con ′ p q) shows valid p and valid q
using assms conjunction
by simp-all

proposition assumes valid p and valid (Imp p q) shows valid q
using assms eval .simps tv .inject
unfolding valid-def
by (metis (full-types))

proposition assumes valid p and valid (Imp ′ p q) shows valid q
using assms eval .simps tv .inject eval-equality
unfolding valid-def
by (metis (full-types))

The key equalities from Section 2 can also be proved but they are omitted here.
The theory file for the formalization has the details.

The preceding propositions show that our paraconsistent logic is well-behaved
in many ways. For example, the last propositions prove the rule of modus ponens
for both kinds of implication.

5 Counterexamples for Non-Theorems

We introduce the possibility for restricting the domain of truth values and use
it for stating counterexamples.

We first define a function domain that, for any given set of natural numbers,
constructs the corresponding domain in our logic. It does so by turning the
natural numbers in the set into indeterminate truth values using Indet and
additionally adding the determinate truth values to the set.

We then prove the theorem universal-domain where the first universal set
{n.True} has type nat set and the second universal set {x.True} has type tv set.
The function domain provides the correspondence.

definition domain :: nat set ⇒ tv set
where

domain U ≡ {Det True, Det False} ∪ Indet ‘ U

theorem universal-domain: domain {n. True} = {x . True}
proof −

have ∀ x . x = Det True ∨ x = Det False ∨ x ∈ range Indet
using range-eqI tv .exhaust tv .inject
by metis

then show ?thesis
unfolding domain-def

16 Jørgen Villadsen and Anders Schlichtkrull

by blast
qed

We define the notion of valid formulas restricted to a given set of indeterminate
truth values. We say that a formula p is valid in U if it is valid considering not all
indeterminate truth values, but only those from U . Or more precisely, if p always
evaluates to true in any interpretation i that has domain U as function range.
In the formalization we use Isabelle/HOL’s range function to get the range of i.

definition valid-in :: nat set ⇒ fm ⇒ bool
where

valid-in U p ≡ ∀ i . range i ⊆ domain U −→ eval i p = Det True

abbreviation valid-boole :: fm ⇒ bool where valid-boole p ≡ valid-in {} p

proposition valid p ←→ valid-in {n. True} p
unfolding valid-def valid-in-def
using universal-domain
by simp

theorem valid-valid-in: assumes valid p shows valid-in U p
using assms
unfolding valid-in-def valid-def
by simp

theorem transfer : assumes ¬ valid-in U p shows ¬ valid p
using assms valid-valid-in
by blast

In particular the above theorem (transfer) is useful in order to prove that a
formula is not valid. As a particular example we will show that P ∧ ¬P → Q is
not valid. First we show that it is valid in the boolean logic. Next we show that it
is not valid in domain {1}. We do this by providing a counterexample. With the
let command we define the counterexample ?i (the let command requires that
we have this question mark). The counterexample is first defined as returning
Indet 1 on any input, and is then modified (using :=) to return Det False on
input q. The proof uses the moreover and ultimately commands. This works
in the way that the statements just before each of the moreover commands are
collected and used to prove the statement after the ultimately command. After
proving this result, we use it together with transfer to prove that the formula is
not valid.

abbreviation (input) Explosion :: fm ⇒ fm ⇒ fm
where

Explosion p q ≡ Imp ′ (Con ′ p (Neg ′ p)) q

proposition valid-boole (Explosion (Pro ′′p ′′) (Pro ′′q ′′))
unfolding valid-in-def

proof (rule; rule)

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 17

fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

i ′′p ′′ ∈ {Det True, Det False}
i ′′q ′′ ∈ {Det True, Det False}

unfolding domain-def
by auto

then show eval i (Explosion (Pro ′′p ′′) (Pro ′′q ′′)) = Det True
by (cases i ′′p ′′; cases i ′′q ′′) simp-all

qed

lemma explosion-counterexample:
¬ valid-in {1} (Explosion (Pro ′′p ′′) (Pro ′′q ′′))

proof −
let ?i = (λs. Indet 1)(′′q ′′ := Det False)
have range ?i ⊆ domain {1}

unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Explosion (Pro ′′p ′′) (Pro ′′q ′′)) = Indet 1
by simp

moreover have Indet 1 6= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

theorem explosion-not-valid : ¬ valid (Explosion (Pro ′′p ′′) (Pro ′′q ′′))
using explosion-counterexample transfer
by simp

The last theorem shows that the many-valued logic is a paraconsistent logic since
P ∧ ¬P → Q is not valid.

6 On the Number of Truth Values

For the normal two-value boolean propositional logic we can decide if a formula
is valid or not by enumerating all interpretations and checking if they satisfy our
formula. This approach will clearly not work for our many-valued logic since there
are infinitely many truth values and thus also infinitely many interpretations.

However, it turns out that we do not need to consider all possibilities of truth
values. For any formula there is a finite subset that it suffices to check. In this
section we will argue for a lower bound on the size of this subset. Specifically
we will argue that for an arbitrary formula containing n different propositional
symbols, we need to consider interpretations with n different indeterminate truth
values.

We first consider the simple case of formulas with one propositional symbol.
In order to conduct the analysis, we first prove that if the range of an inter-

18 Jørgen Villadsen and Anders Schlichtkrull

pretation is a subset of domain U , then any formula will evaluate to a value
in domain U under this interpretation. Then we consider the example of Cla p
where Cla is the unary operator that evaluates to true when its operand evalu-
ates to a Classical truth value. Let us introduce the informal notation ∆ for Cla.
We prove that ∆p is valid in all boolean interpretations. Next we prove that it
is not valid in domain {1}. Therefore we can conclude that considering 0 inde-
terminate truth values is not enough – we need to consider at least 1. We have
also printed its truth table for illustration. In the calculated truth table below
* is used for • and o is used for ◦. The functions unary and binary return truth
tables as strings for unary and binary operators, respectively, and the theory file
for the formalization has the details (about 50 lines of code, cf. [45]). The proof
method code-simp performs the calculations of the truth table strings.

lemma ranges: assumes range i ⊆ domain U shows eval i p ∈ domain U
using assms
unfolding domain-def
by (induct p) auto

proposition
unary (Cla (Pro ′′p ′′)) [Det True, Det False, Indet 1] = ′′

∗
∗
o

′′

by code-simp

proposition valid-boole (Cla p)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla p) = Det True
by (cases eval i p) simp-all

qed

proposition ¬ valid-in {1} (Cla (Pro ′′p ′′))
proof −

let ?i = λs. Indet 1
have range ?i ⊆ domain {1}

unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Cla (Pro ′′p ′′)) = Det False
by simp

moreover have Det False 6= Det True

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 19

by simp
ultimately show ?thesis

unfolding valid-in-def
by metis

qed

We repeat the exercise for a formula with two propositional symbols. This time
we consider the formula ∆2, which is (∆p ∨ ∆q) ∨ (p ⇔ q). We prove it valid
in all boolean interpretations as well as in all interpretations with domain {1}.
Next we prove that it is not valid in domain {1, 2}. Therefore it is not enough
to consider 1 indeterminate truth value – we need to consider at least 2.

abbreviation (input) Cla2 :: fm ⇒ fm ⇒ fm
where

Cla2 p q ≡ Dis (Dis (Cla p) (Cla q)) (Eql p q)

proposition
binary (Cla2 (Pro ′′p ′′) (Pro ′′q ′′))

[Det True, Det False, Indet 1 , Indet 2] = ′′

∗∗∗∗
∗∗∗∗
∗∗∗o
∗∗o∗

′′

by code-simp

proposition valid-boole (Cla2 p q)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range: range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
eval i q ∈ {Det True, Det False}

using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla2 p q) = Det True
by (cases eval i p; cases eval i q) simp-all

qed

proposition valid-in {1} (Cla2 p q)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range: range i ⊆ domain {1}
then have

eval i p ∈ {Det True, Det False, Indet 1}
eval i q ∈ {Det True, Det False, Indet 1}

using ranges[of i {1}]

20 Jørgen Villadsen and Anders Schlichtkrull

unfolding domain-def
by auto

then show eval i (Cla2 p q) = Det True
by (cases eval i p; cases eval i q) simp-all

qed

proposition ¬ valid-in {1 , 2} (Cla2 (Pro ′′p ′′) (Pro ′′q ′′))
proof −

let ?i = (λs. Indet 1)(′′q ′′ := Indet 2)
have range ?i ⊆ domain {1 , 2}

unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Cla2 (Pro ′′p ′′) (Pro ′′q ′′)) = Det False
by simp

moreover have Det False 6= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

We repeat the exercise for a formula with three propositional symbols. This
time we consider the formula ∆3, which is (∆p ∨ ∆q ∨ ∆r) ∨ ((p ⇔ q) ∨ (p ⇔
r) ∨ (q ⇔ r)). We prove it valid in all boolean interpretations as well as in all
interpretations with domain {1} and domain {1, 2}. Next we prove that it is not
valid in domain {1, 2, 3}. Therefore it is not enough to consider 2 indeterminate
truth values – we need to consider at least 3.

abbreviation (input) Cla3 :: fm ⇒ fm ⇒ fm ⇒ fm
where

Cla3 p q r ≡ Dis (Dis (Cla p) (Dis (Cla q) (Cla r)))
(Dis (Eql p q) (Dis (Eql p r) (Eql q r)))

proposition valid-boole (Cla3 p q r)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

eval i p ∈ {Det True, Det False}
eval i q ∈ {Det True, Det False}
eval i r ∈ {Det True, Det False}

using ranges[of i {}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True
by (cases eval i p; cases eval i q ; cases eval i r) simp-all

qed

proposition valid-in {1} (Cla3 p q r)

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 21

unfolding valid-in-def
proof (rule; rule)

fix i :: id ⇒ tv
assume range i ⊆ domain {1}
then have

eval i p ∈ {Det True, Det False, Indet 1}
eval i q ∈ {Det True, Det False, Indet 1}
eval i r ∈ {Det True, Det False, Indet 1}

using ranges[of i {1}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True
by (cases eval i p; cases eval i q ; cases eval i r) simp-all

qed

proposition valid-in {1 , 2} (Cla3 p q r)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {1 , 2}
then have

eval i p ∈ {Det True, Det False, Indet 1 , Indet 2}
eval i q ∈ {Det True, Det False, Indet 1 , Indet 2}
eval i r ∈ {Det True, Det False, Indet 1 , Indet 2}

using ranges[of i {1 , 2}]
unfolding domain-def
by auto

then show eval i (Cla3 p q r) = Det True
by (cases eval i p; cases eval i q ; cases eval i r) auto

qed

proposition ¬ valid-in {1 , 2 , 3} (Cla3 (Pro ′′p ′′) (Pro ′′q ′′) (Pro ′′r ′′))
proof −

let ?i = (λs. Indet 1)(′′q ′′ := Indet 2 , ′′r ′′ := Indet 3)
have range ?i ⊆ domain {1 , 2 , 3}

unfolding domain-def
by (simp add : image-subset-iff)

moreover have eval ?i (Cla3 (Pro ′′p ′′) (Pro ′′q ′′) (Pro ′′r ′′)) = Det False
by simp

moreover have Det False 6= Det True
by simp

ultimately show ?thesis
unfolding valid-in-def
by metis

qed

You might have noticed that there is a pattern in ∆, ∆2 and ∆3. Let us now
study that pattern.

∆ can be read as follows: its operand evaluates to a classical value. It is easy
to realize that this holds when we have only classical values. It is also clear that

22 Jørgen Villadsen and Anders Schlichtkrull

it is not valid already if we allow a single indeterminate value since then the
operand might evaluate to that.

∆2 can be read as follows: Either p or q evaluates to a classical value, or they
evaluate to the same value. It is easy to realize that this holds when we have
only one indeterminate value since if none of them evaluate to a classical value
then they must both evaluate to the indeterminate one. It is also clear that this
does not hold if we allow two indeterminate values since then p and q might
respectively evaluate to these two values.

∆3 can be read as follows. Either p, q or r evaluates to a classical value, or
two of them evaluate to the same value. It is easy to realize that this holds when
we only have two indeterminate values, by a similar argument to the one we saw
for ∆2. It is also clear that this does not hold if we allow three indeterminate
values, again by a similar argument.

It should be clear that this pattern can be extended as necessary for any
number of truth values.

Thus, we now know that in order to check if a formula is valid, we need
to consider interpretations with at least as many indeterminate truth values as
there are propositional symbols in the formula – otherwise we might have missed
an interpretation that falsified the formula. Thus we have found a lower bound
on the number of needed indeterminate truth values. In the next section we will
find an upper bound on the number of needed indeterminate truth values.

7 A Reduction Theorem

We obtain a reduction theorem by considering the number of propositional sym-
bols in a given formula. Several of the proofs are long — about 250 lines — and
are therefore omitted. The theory file for the formalization has the details.

We define a function props that returns the set of identifiers for a formula.
We then prove that only the propositional symbols in the formula are relevant
for the semantics (relevant-props).

fun props :: fm ⇒ id set
where

props Truth = {} |
props (Pro s) = {s} |
props (Neg ′ p) = props p |
props (Con ′ p q) = props p ∪ props q |
props (Eql p q) = props p ∪ props q |
props (Eql ′ p q) = props p ∪ props q

lemma relevant-props:
assumes ∀ s ∈ props p. i1 s = i2 s
shows eval i1 p = eval i2 p
using assms
by (induct p) (simp-all , metis)

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 23

The proof is by induction over formulas (induct) followed by simplifications of
all cases (simp-all) — one case is left over and requires the powerful resolution
proof method (metis).

We define a function change-tv that applies a function to the number in an
indeterminate truth value. We then prove that if f is an injection then change-tv f
is also an injection (change-tv-injection).

fun change-tv :: (nat ⇒ nat) ⇒ tv ⇒ tv
where

change-tv f (Det b) = Det b |
change-tv f (Indet n) = Indet (f n)

lemma change-tv-injection: assumes inj f shows inj (change-tv f)
— Proof omitted

The above proof and the next two proofs are available online.
We define a function change-int that takes a function and applies it to an

interpretation to get a new interpretation. We then prove that if we replace each
indeterminate truth value in an interpretation with another one, then it just
changes the result of the formula accordingly (eval-change).

definition
change-int :: (nat ⇒ nat) ⇒ (id ⇒ tv) ⇒ (id ⇒ tv)

where
change-int f i ≡ λs. change-tv f (i s)

lemma eval-change:
assumes inj f
shows eval (change-int f i) p = change-tv f (eval i p)

— Proof omitted

We prove that if our formula is valid when we have at least one indeterminate
value in our domain for each propositional symbol, then it is valid in general
(valid-in-valid).

theorem valid-in-valid : assumes card U ≥ card (props p) and valid-in U p
shows valid p
— Proof omitted

We reformulate the theorem as follows.

theorem reduce: valid p ←→ valid-in {1 ..card (props p)} p
using valid-in-valid transfer
by force

We prove in the final reduction theorem (reduce) that we can decide the validity
of a given formula by considering as many indeterminacies as the number of
propositional symbols in the formula. This also means that the logic is weakened
when additional indeterminate truth values are added. For the atomic formula
P it is clear that p suffices. To see this we use the fact that indeterminate truth
values are not ordered with respect to truth content. If [[P]] = p and we replace
the truth value with pp then the truth value is still indeterminate.

24 Jørgen Villadsen and Anders Schlichtkrull

8 Entailment — A Case Study

We propose a definition of entailment and verify the results for the case study
presented in Section 1.

The following abbreviation Entail takes a list of formulas (the assumptions)
and a single formula (the conclusion) and returns an equivalent formula with
implication and possibly conjunctions.

abbreviation (input) Entail :: fm list ⇒ fm ⇒ fm
where

Entail l p ≡ Imp (if l = [] then Truth else fold Con ′ (butlast l) (last l)) p

theorem entailment-not-chain:
¬ valid (Eql (Entail [Pro ′′p ′′, Pro ′′q ′′] (Pro ′′r ′′))

(Box ((Imp ′ (Pro ′′p ′′) (Imp ′ (Pro ′′q ′′) (Pro ′′r ′′))))))
proof −

let ?i = (λs. Indet 1)(′′r ′′ := Det False)
have eval ?i (Eql (Entail [Pro ′′p ′′, Pro ′′q ′′] (Pro ′′r ′′))

(Box ((Imp ′ (Pro ′′p ′′) (Imp ′ (Pro ′′q ′′) (Pro ′′r ′′)))))) = Det False
by simp

moreover have Det False 6= Det True
by simp

ultimately show ?thesis
unfolding valid-def
by metis

qed

Recall the formulas P ∧Q ∧ ¬R, P ∧Q→ R and R→ S. We introduce B0, B1
and B2 as the corresponding abbreviations.

abbreviation (input) B0 :: fm
where B0 ≡ Con ′ (Con ′ (Pro ′′p ′′) (Pro ′′q ′′)) (Neg ′ (Pro ′′r ′′))

abbreviation (input) B1 :: fm
where B1 ≡ Imp ′ (Con ′ (Pro ′′p ′′) (Pro ′′q ′′)) (Pro ′′r ′′)

abbreviation (input) B2 :: fm
where B2 ≡ Imp ′ (Pro ′′r ′′) (Pro ′′s ′′)

From B0 and B1 we have explosion in classical logic (in the following theorem p
is an arbitrary formula in our paraconsistent logic; however, in the proof of the
theorem the p in double quotes corresponds to the particular p in B0 and B1).

theorem classical-logic-is-not-usable: valid-boole (Entail [B0 , B1] p)
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {}
then have

i ′′p ′′ ∈ {Det True, Det False}

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 25

i ′′q ′′ ∈ {Det True, Det False}
i ′′r ′′ ∈ {Det True, Det False}

unfolding domain-def
by auto

then show eval i (Entail [B0 , B1] p) = Det True
by (cases i ′′p ′′; cases i ′′q ′′; cases i ′′r ′′) simp-all

qed

corollary valid-boole (Entail [B0 , B1] (Pro ′′r ′′))
by (rule classical-logic-is-not-usable)

corollary valid-boole (Entail [B0 , B1] (Neg ′ (Pro ′′r ′′)))
by (rule classical-logic-is-not-usable)

proposition ¬ valid (Entail [B0 , B1] (Pro ′′r ′′))
proof −

let ?i = (λs. Indet 1)(′′r ′′ := Det False)
have eval ?i (Entail [B0 , B1] (Pro ′′r ′′)) = Det False

by simp
moreover have Det False 6= Det True

by simp
ultimately show ?thesis

unfolding valid-def
by metis

qed

When we consider the full paraconsistent logic, however, everything does not
follow. We illustrate this by showing that the negations of p, q and s do not
follow. Of these three results that use counterexamples we only include the proof
of the last one as they are very similar, but the two others are available in the
theory file.

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′p ′′)))
— Proof omitted

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′q ′′)))
— Proof omitted

proposition ¬ valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′s ′′)))
proof −

let ?i = (λs. Indet 1)(′′s ′′ := Det True)
have eval ?i (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′s ′′))) = Det False

by simp
moreover have Det False 6= Det True

by simp
ultimately show ?thesis

unfolding valid-def
by metis

qed

26 Jørgen Villadsen and Anders Schlichtkrull

We do want something to follow – otherwise we would be unable to reason.
Indeed something does follow namely r, its negation and s. Of the three results
that use proof by cases and the reduction theorem (reduce) we only include the
proof of the last one as they are very similar, but the two others are available in
the theory file.

proposition valid (Entail [B0 , Box B1 , Box B2] (Pro ′′r ′′))
— Proof omitted

proposition valid (Entail [B0 , Box B1 , Box B2] (Neg ′ (Pro ′′r ′′)))
— Proof omitted

proposition valid (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′))
proof −

have {1 ..card (props (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′)))} =
{1 , 2 , 3 , 4}

by code-simp
moreover have valid-in {1 , 2 , 3 , 4}

(Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′))
unfolding valid-in-def

proof (rule; rule)
fix i :: id ⇒ tv
assume range i ⊆ domain {1 , 2 , 3 , 4}
then have icase:

i ′′p ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′q ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′r ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
i ′′s ′′ ∈ {Det True, Det False, Indet 1 , Indet 2 , Indet 3 , Indet 4}
unfolding domain-def
by auto

show eval i (Entail [B0 , Box B1 , Box B2] (Pro ′′s ′′)) = Det True
using icase
by (cases i ′′p ′′; cases i ′′q ′′; cases i ′′r ′′; cases i ′′s ′′) simp-all

qed
ultimately show ?thesis

using reduce
by simp

qed

We hence obtain the following results for the agent using the turnstile symbol
(`) for the entailment given the set of beliefs and rules.

6` ¬P 6` ¬Q 6` ¬S

` R ` ¬R ` S

For comparison, due to the catastrophic explosiveness of classical logic, the fol-
lowing results are obtained using classical logic:

` ¬P ` ¬Q ` ¬S

` R ` ¬R ` S

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 27

9 Related Work

Paraconsistent and/or many-valued logics are occasionally considered in the
proof assistant Isabelle. Krauss [21] considers, in a tutorial for Isabelle/HOL,
a very small example of a three-valued logic only to illustrate pattern matching
in Isabelle/HOL. Brucker, Tuong and Wolff [8] formalize, in Isabelle/HOL, the
four-valued logic OCL, which complements the UML software modelling lan-
guage. Georgescu, Leustean and Preoteasa [13] take an algebraic approach and
formalize, in Isabelle/HOL, the theory of pseudo hoops, which is a generalization
of the BL-algebra and the many-valued BL-logic [10]. Steen and Benzmüller [39]
present a semantic embedding of a many-valued logic in Isabelle/HOL. The truth
values are encoded as particular functions and Isabelle/HOL’s proof methods are
then used directly.

There are several implementations of Dana Scott’s Logic of Computable
Functions (LCF) [26, 38]. HOLCF [33] extends Isabelle/HOL with ideas from
LCF, and allows reasoning about functional programs, including programs that
never complete successfully due to errors or non-termination. Regensburger [34]
formalizes, in HOLCF, the type of lifted booleans, which consists of true, false
and a bottom value. The bottom value of the lifted booleans thus represents
a computation of a boolean value that never completes successfully. The type
of lifted booleans in HOLCF is also described by Müller, Nipkow, Oheimb and
Slotosch [27] as well as by Huffman [18].

We deal with a formalization in a proof assistant of the syntax and semantics
of a many-valued paraconsistent logic. Marcos [24] considers another kind of
many-valued logic and describes a special computer program in the functional
programming language ML. This computer program automatically generates
proof tactics to be used by Isabelle. We do not use any computer programs
(well, except Isabelle itself, of course). And we do not generate proof tactics. We
have ourselves authored all proofs. Furthermore our proofs are in higher-order
logic, Isabelle/HOL, which is the default logic in Isabelle. In [24] the default
higher-order logic is not used. Instead it is replaced by certain finite-valued
logics. This is possible since Isabelle is a generic proof assistant but we do not
use this feature at all. More precisely, we formalize the syntax and semantics of
the logic, and this is not done in [24]. We can prove theorems in the logic as
well as meta-theorems about the logic, but in [24] only theorems in the logic can
be proved. Since the logics are rather different it is not possible to compare the
efficiency of the two approaches when it comes to proving theorems.

Here, we have only considered the formalization of propositional logic, but
the formalization of first-order logic or even higher-order logic is also possible.
Several proof systems for classical first-order logic have been proved sound and
complete:

– Sequent calculus [6, 35].

– Natural deduction [3, 7, 12,44].

– Resolution [36].

28 Jørgen Villadsen and Anders Schlichtkrull

But even without developing a proof system we can obtain many theorems and
meta-theorems by formalizing the syntax and semantics in a proof assistant like
Isabelle.

10 Conclusion

In this paper we considered a logic with infinitely many truth values (cf. Section 3
on the syntax and semantics of the logic). Specifically, we investigated how many
truth values we need to consider in order to decide if a formula is valid or not.
In section 6 we explained that in order to check the validity of a formula with
n different propositional symbols we should consider interpretations that use
n different indeterminate truth values. The reason was that the formula might
be true in any interpretation that uses only n− 1 different indeterminate truth
values but false in one that uses n of them. We gave concrete examples of such
formulas for n = 1, 2, 3. The formulas showed a pattern that we argued would
generalize to any n. Future work includes a formalization of this argument.

Our main theoretic result is the reduction theorem from Section 7:

proposition valid p ←→ valid-in {1 ..card (props p)} p
using reduce .

In the above formulation of the reduction theorem, the right-hand side valid p
means that a formula p is true in all interpretations — of which there are in-
finitely many. The left-hand side valid-in {1 ..card (props p)} p means that p is
true in all the interpretations whose domains are restricted to a finite set con-
sisting of true, false and a number of indeterminate truth values as small as the
number of propositional symbols in p. This important result allows us to reduce
the infinite number of truth values to a finite number of truth values, for a given
formula, and in our case study we use this result. Future work includes further
investigations of the practical applications of the reduction theorem.

Using a proof assistant like Isabelle makes it possible to clarify concepts
and to catch mistakes. However, we have not found errors in our extended ab-
stract [20]. The formalization of the case study shows the limits since using
straightforward proof techniques the results can take up to half a minute for
Isabelle to prove using a standard computer. It has been a pleasure to use the
Isabelle proof assistant for the formalization of our paraconsistent logic. We plan
to make a similar formalization in the Coq proof assistant [4] in order to compare
the two systems.

In our extended abstract [20] several of these results were mentioned without
proof and we now have precise definitions and formal proofs. The reduction
theorem was the most difficult proof and large parts of the 1582-lines theory file
for Isabelle2016-1 are omitted in the present paper. After the initial successful
proofs we spent a lot of time improving the definitions, theorems and proofs; this
also involved discussions with other Isabelle users as well as with our students
in order to obtain the most elegant and general results.

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 29

Acknowledgements

Thanks to Andreas Halkjær From, Alexander Birch Jensen and John Bruntse
Larsen for comments on drafts of the paper. Also thanks to Hendrik Decker and
the anonymous reviewers for many constructive comments.

References

1. S. Akama (editor). Towards Paraconsistent Engineering. Intelligent Systems Ref-
erence Library Volume 110, Springer, 2016.

2. D. Batens, C. Mortensen, G. Priest and J. Van-Bendegem (editors). Frontiers in
Paraconsistent Logic. Research Studies Press, 2000.

3. S. Berghofer. First-Order Logic According to Fitting. Archive of Formal Proofs
http://isa-afp.org/entries/FOL-Fitting.shtml 2007.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
— Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical
Computer Science, Springer, 2004.

5. J. C. Blanchette, S. Böhme and L. C. Paulson. Extending Sledgehammer with SMT
solvers. Journal of Automated Reasoning, 51(1):109–128, 2013.

6. J. C. Blanchette, A. Popescu and D. Traytel. Soundness and Completeness Proofs
by Coinductive Methods. Journal of Automated Reasoning, 58(1):149–179, 2017.

7. J. Breitner and D. Lohner. The Meta Theory of the Incredible Proof Ma-
chine. Archive of Formal Proofs http://isa-afp.org/entries/Incredible_

Proof_Machine.shtml 2016.
8. A. D. Brucker, F. Tuong and B. Wolff. Featherweight OCL: A Proposal for a

Machine-Checked Formal Semantics for OCL 2.5. Archive of Formal Proofs http:
//isa-afp.org/entries/Featherweight_OCL.shtml 2014.

9. W. A. Carnielli, M. E. Coniglio and I. M. L. D’Ottaviano (editors). Paraconsis-
tency: The Logical Way to the Inconsistent. Marcel Dekker, 2002.

10. L. C. Ciungu. Non-commutative Multiple-Valued Logic Algebras. Springer Mono-
graphs in Mathematics, Springer, 2014.

11. H. Decker, J. Villadsen and T. Waragai (editors). International Workshop on
Paraconsistent Computational Logic. Volume 95 of Roskilde University, Computer
Science, Technical Reports, 2002.

12. A. H. From. Formalized First-Order Logic. BSc Thesis, Technical University of
Denmark, 2017.

13. G. Georgescu, L. Leustean and V. Preoteasa. Pseudo Hoops. Archive of Formal
Proofs http://isa-afp.org/entries/PseudoHoops.shtml 2011.

14. H. Geuvers. Proof Assistants: History, Ideas and Future. Sadhana, 34(1):3–25,
Springer, 2009.

15. K. Gödel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems. In From Frege to Gödel, J. van Heijenoort, editor, Harvard Uni-
versity Press, 1967.

16. S. Gottwald. A Treatise on Many-Valued Logics. Research Studies Press, 2001.
17. S. O. Hansson. Logic of Belief Revision. In E. N. Zalta et al., editors, Stanford

Encyclopedia of Philosophy, Online Entry http://plato.stanford.edu/entries/

logic-belief-revision/ Winter Edition, 2016.
18. B. Huffman. Reasoning with Powerdomains in Isabelle/HOLCF. In O. A. Mo-

hamed, C. Muñoz and S. Tahar, editors, TPHOLs 2008, Emerging Trends Pro-
ceedings, pages 45–56. Technical Report, Concordia University, 2008.

http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isa-afp.org/entries/Featherweight_OCL.shtml
http://isa-afp.org/entries/Featherweight_OCL.shtml
http://isa-afp.org/entries/PseudoHoops.shtml
http://plato.stanford.edu/entries/logic-belief-revision/
http://plato.stanford.edu/entries/logic-belief-revision/

30 Jørgen Villadsen and Anders Schlichtkrull

19. A. B. Jensen, A. Schlichtkrull and J. Villadsen First-Order Logic According to Har-
rison. Archive of Formal Proofs http://isa-afp.org/entries/FOL_Harrison.

shtml 2017.
20. A. S. Jensen and J. Villadsen. Paraconsistent Computational Logic. In P. Black-

burn, K. F. Jørgensen, N. Jones, and E. Palmgren, editors, 8th Scandinavian Logic
Symposium: Abstracts, pages 59–61, Roskilde University, 2012.

21. A. Krauss. Defining Recursive Functions in Isabelle/HOL. Isabelle Distribution
http://isabelle.in.tum.de/doc/functions.pdf 2017.

22. L. Lamport. How to Write a Proof. American Mathematical Monthly, 102(7):600–
608, 1995.

23. L. Lamport. How to Write a 21st Century Proof. Journal of Fixed Point Theory
and Applications, 11(1):43–63, 2012.

24. J. Marcos. Automatic Generation of Proof Tactics for Finite-Valued Logics. In
Proceedings of Tenth International Workshop on Rule-Based Programming, pages
91–98, 2009.

25. J. Michaelis and T. Nipkow. Propositional Proof Systems. Archive of Formal Proofs
http://isa-afp.org/entries/Propositional_Proof_Systems.shtml 2017.

26. R. Milner. Logic for Computable Functions: Description of a Machine Implemen-
tation. Stanford University, 1972.

27. O. Müller, T. Nipkow, D. Oheimb and O. Slotosch. HOLCF = HOL + LCF.
Journal of Functional Programming 9(2):191–223, 1999.

28. T. Nipkow, L. C. Paulson and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science 2283, Springer, 2002.

29. T. Nipkow and G. Klein. Concrete Semantics — With Isabelle/HOL. Springer,
2014. Online Book http://concrete-semantics.org/ 2017.

30. L. C. Paulson. A Machine-Assisted Proof of Gödel’s Incompleteness Theorems for
the Theory of Hereditarily Finite Sets. Review of Symbolic Logic, 7(3):484–498,
2014.

31. G. Priest, R. Routley and J. Norman (editors). Paraconsistent Logic: Essays on
the Inconsistent. Philosophia Verlag, 1989.

32. G. Priest, K. Tanaka and Z. Weber. Paraconsistent Logic. In E. N. Zalta et al., edi-
tors, Stanford Encyclopedia of Philosophy, Online Entry http://plato.stanford.

edu/entries/logic-paraconsistent Winter Edition, 2016.
33. F. Regensburger. HOLCF: Higher Order Logic of Computable Functions. In E. T.

Schubert, P. J. Windley and J. Alves-Foss, editors, Higher Order Logic Theorem
Proving and Its Applications, pages 293–307. Lecture Notes in Computer Science
971, Springer, 1995.

34. F. Regensburger. The type of lifted booleans. Isabelle Distribution http://

isabelle.in.tum.de/library/HOL/HOLCF/Tr.html 2017.
35. T. Ridge. A Mechanically Verified, Efficient, Sound and Complete Theorem Prover

For First Order Logic. Archive of Formal Proofs http://isa-afp.org/entries/

Verified-Prover.shtml 2004.
36. A. Schlichtkrull. The Resolution Calculus for First-Order Logic. Archive of Formal

Proofs http://isa-afp.org/entries/Resolution_FOL.shtml 2016.
37. A. Schlichtkrull and J. Villadsen. Paraconsistency. Archive of Formal Proofs

http://isa-afp.org/entries/Paraconsistency.shtml 2017.
38. D. S. Scott. A Type-Theoretical Alternative to ISWIM, CUCH, OWHY. Theoret-

ical Computer Science, 121:411–440, 1993. Annotated version of an unpublished
manuscript from 1969.

39. A. Steen and C. Benzmüller. Sweet SIXTEEN: Automation via Embedding into
Classical Higher-Order Logic. Logic and Logical Philosophy, 25(4): 535–554, 2016.

http://isa-afp.org/entries/FOL_Harrison.shtml
http://isa-afp.org/entries/FOL_Harrison.shtml
http://isabelle.in.tum.de/doc/functions.pdf
http://isa-afp.org/entries/Propositional_Proof_Systems.shtml
http://concrete-semantics.org/
http://plato.stanford.edu/entries/logic-paraconsistent
http://plato.stanford.edu/entries/logic-paraconsistent
http://isabelle.in.tum.de/library/HOL/HOLCF/Tr.html
http://isabelle.in.tum.de/library/HOL/HOLCF/Tr.html
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Resolution_FOL.shtml
http://isa-afp.org/entries/Paraconsistency.shtml

Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant 31

40. J. Villadsen. Combinators for Paraconsistent Attitudes. In P. de Groote, G. Morrill
and C. Retoré, editors, Logical Aspects of Computational Linguistics, pages 261–
278. Lecture Notes in Computer Science 2099, Springer, 2001.

41. J. Villadsen. Paraconsistent Assertions. In G. Lindemann, J. Denzinger, I. J.
Timm and R. Unland, editors, Multi-Agent System Technologies, pages 99–113.
Lecture Notes in Computer Science 3187, Springer, 2004.

42. J. Villadsen. A Paraconsistent Higher Order Logic. In B. Buchberger and
J. A. Campbell, editors, Artificial Intelligence and Symbolic Computation, pages
38–51. Lecture Notes in Computer Science 3249, Springer, 2004.

43. J. Villadsen. Supra-logic: Using Transfinite Type Theory with Type Variables for
Paraconsistency. Logical Approaches to Paraconsistency, Journal of Applied Non-
Classical Logics, 15(1):45–58, 2005.

44. J. Villadsen, A. B. Jensen and A. Schlichtkrull. NaDeA: A Natural Deduction
Assistant with a Formalization in Isabelle. IFCoLog Journal of Logics and their
Applications, 4(1): 55–82, 2017.

45. J. Villadsen and A. Schlichtkrull. Formalization of Many-Valued Logics. In
H. Christiansen, M. D. Jiménez-López, R. Loukanova and L. S. Moss, editors, Par-
tiality and Underspecification in Information, Languages, and Knowledge, chap-
ter 7. Cambridge Scholars Publishing, 2017.

46. Z. Weber. Paraconsistent Logic. The Internet Encyclopedia of Philosophy, Online
Entry http://www.iep.utm.edu/para-log 2017.

47. M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof
Documents. In Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz and C. Paulin,
editors, Theorem Proving in Higher Order Logics, pages 167–183. Lecture Notes
in Computer Science 1690, Springer, 1999.

48. F. Wiedijk. The Seventeen Provers of the World. Lecture Notes in Computer
Science 3600, Springer, 2006.

http://www.iep.utm.edu/para-log

	Formalizing a Paraconsistent Logic in the Isabelle Proof Assistant
	Introduction
	Formalization in Proof Assistants
	Paraconsistency
	Formalization of Logic
	The Isabelle Proof Assistant
	Contributions and Overview

	The Paraconsistent Logic — An Informal Presentation
	Semantic Clauses and Key Equalities
	Truth Tables

	Syntax and Semantics
	Various Theorems and Proof Styles
	Counterexamples for Non-Theorems
	On the Number of Truth Values
	A Reduction Theorem
	Entailment — A Case Study
	Related Work
	Conclusion

