4,068 research outputs found

    Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas

    Get PDF
    A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed

    Seasonal photosynthesis, respiration, and calcification of a temperate Maërl bed in southern Portugal

    Get PDF
    Rhodolith (maerl) beds are biodiversity hotspots with a worldwide distribution. Maerl is the general term for free-living non-geniculate rhodoliths or coralline red algae. In southern Portugal, maerl beds are mainly composed of Phymatolithon lusitanicum, recently identified as a new species and commonly misidentified as Phymatolithon calcareum. Photosynthesis, respiration, and growth rates of the algae were measured seasonally, as well as the photosynthetic pigment composition. To characterize the seasonal and interannual patterns of key abiotic conditions in the largest described maerl bed of the Portuguese coast, temperature, irradiance, and dissolved oxygen were continuously monitored over a 2-year period. At the bed depth (22 m), temperature ranged between 14 degrees C in winter and 24 degrees C in summer, irradiance varied from 5 to 75 mu.mol m(-2) s(-1) , and dissolved oxygen from 5.8 to 7.25 mg O-2 L-1. We found a strong linear relationship (r(2) = 0.95) between gross primary production (GPP) and relative electron transport rates (rETRs). Both methods led to similar results and an average molar ratio of 0.24. Photosynthesis and respiration increased in summer and decreased in autumn and winter. In the summer of 2013, the growth rates were twofold higher (1.34 mu.mol CaCO3 g(-1) day(-1)) than in the other seasons. In winter and spring, to compensate for light deprivation and low temperature, algae increased their chlorophyll a and carotenoid concentrations while also decreasing their phycobilin concentration, in this case probably due to nutrient limitation. To isolate the role of temperature on the algae's metabolism, the photosynthetic and respiration rates of individual thalli were measured at eight different temperatures in the laboratory (from 12 degrees C to 26 degrees C). Phymatolithon lusitanicum photosynthesis increased twofold after a threshold of 18 degrees C (from 2.2 at 18 degrees C to 3.87 mu mol O-2 m(-2) s(-1) at 20 degrees C), whereas respiration increased fourfold with temperature after a threshold of 22 degrees C (from -0.38 at 18 degrees C to -1.81 (mu mol O-2 m(-2) s(-1) at 24 degrees C). The significant increases on respiration, photosynthetic rates, and maximum growth with temperature reveal that the metabolic rates of P. lusitanicum are highly sensitive to ocean warming.UIDB/04326/2020info:eu-repo/semantics/publishedVersio

    PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence

    Get PDF
    Solar-Induced Chlorophyll Fluorescence (SIF) is an emission of light in the 650–850 nm spectral range from the excited state of the chlorophyll-a pigment after absorption of photosynthetically active radiation (PAR). As this is directly linked to the electron transport chain in oxygenic photosynthesis, SIF is a powerful proxy for photosynthetic activity. SIF observations are relatively new and, while global scale measurements from satellites using high-resolution spectroscopy of Fraunhofer bands are becoming more available, observations at the intermediate canopy scale using these techniques are sparse. We present a novel ground-based spectrometer system - PhotoSpec - for measuring SIF in the red (670–732 nm) and far-red (729–784 nm) wavelength range as well as canopy reflectance (400–900 nm) to calculate vegetation indices, such as the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the photochemical reflectance index (PRI). PhotoSpec includes a 2D scanning telescope unit which can be pointed to any location in a canopy with a narrow field of view (FOV = 0.7°). PhotoSpec has a high signal-to-noise ratio and spectral resolution, which allows high precision solar Fraunhofer line retrievals over the entire fluorescence wavelength range under all atmospheric conditions using a new two-step linearized least-squares retrieval procedure. Initial PhotoSpec observations include the diurnal SIF cycle of single broad leaves, grass, and dark-light transitions. Results from the first tower-based measurements in Costa Rica show that the instrument can continuously monitor SIF of several tropical species throughout the day. The PhotoSpec instrument can be used to explore the relationship between SIF, photosynthetic efficiencies, Gross Primary Productivity (GPP), and the impact of canopy radiative transfer, viewing geometry, and stress conditions at the canopy scale

    Long-term fluorometric measurements of photosynthetic processes in Antarctic moss Bryum sp. during austral summer season

    Get PDF
    Photosynthetic activity pattern of Bryum sp. was monitored for 28days using a chlorophyll a fluorescence measuring system installed in the field. For the study, long-term research plot, a moss-dominated vegetaiton oasis at seashore located close to the J.G. Mendel station (James Ross Island, Antarctica) was selected. In this study, two measuring sites were used: (1) control plot with moss cover and (2) moss located inside open top chamber (OTC). At both sites, effective quantum yield of photosynthetic processes in photosyntem II (FPSII) was measured and relative photosynthetic electron transport rate (ETRrel) evaluated each 15 min. Simultaneously, microclimate of the sites was measured including air and moss surface temperature, relative air humidity and photosynthetically active radiation. The length of photosyntetically active period depended mainly on hydration of moss cushion. Water availability, however, was not limiting in the measuring period (Jan 8 - Feb 18, 2009), because the sites were well suplied by melt water from neighbouring snowfield. Thus, daily courses of ETRrel were dependent on incident PAR. On sunny days, ETRrel reached values over 400. Inhibition of primary photosynthetic processes due to below-zero temperature and resulting freezing of moss cushions appeared two times within the measuring periods thanks to rapid decreases in air temperature. The effect of low air temperature on ETRrel was less apparent in OTC site since moss cushion freezing period was shorter and less pronounced than in control site thanks to OTC-induced shift in air temperature. For future photosynthetic studies in Antarctic mosses, simultaneous measurements of gas exchange- and chlorophyll fluorescence-related parameters is recommended so that the effects of particular limiting factors for photosynthesis and photosynthetic productivity can be distinguished and evaluated

    Development & evaluation of chlorophyll a fluorescence as a bioanalytical tool for pollutant identification

    Full text link
    University of Technology, Sydney. Faculty of Science.There is potential to improve water quality monitoring programs by generating pollution data that better represents the aquatic ecosystem being monitored. By incorporating rapid and cost-effective bioanalytical methods into water quality monitoring programs, risk associated with unrepresentative data can be reduced by increasing the number of samples collected without incurring additional costs. The rapid and cost-effective toxin-identification method presented here is based on quantifying patterns of change in chlorophyll a fluorescence (fluorescence fingerprints) associated with a toxicants mode of action (MoA). Chlorophyll a fluorescence yield is influenced by environmental factors and can be used to identify stress caused by light, nutrient status and the presence of pollutants. When the functional state of the photosynthetic apparatus changes, the yield of fluorescence emission also changes, generating a chlorophyll a fluorescence response that has previously been thought to be unique based on a toxicants mode of action. The toxin-identification method was developed as a bioanalytical system based on the chlorophyll a fluorescence responses of a microalgae (Dunaliella tertiolecta) to herbicide and nutrient impacts, measured using the Imaging-PAM fluorometer. The analysis of the fluorescence response was the novel method; a holistic approach was employed. Unlike previous approaches which measured one fluorescence parameter for toxicant identification, the method presented here assessed the temporal unity of change in energy dissipation, which was found to be unique depending on a chemical ' s mode of action (i.e. its physico-chemical properties and toxicokinetic relationship with the organism). The method was tested for two different uses: (1) as a non-specific biosensor able to identify herbicides (and their potency) in a water sample of unknown constituents, and (2) a method specific to the identification and potency of nutrients in a water sample. Seven herbicides were examined totaling three different MoAs; PSII inhibitors (DCMU, Irgarol, Bromacil and Simazine), uncoupling of phosphorylation (Dinoseb and PCP) and creation of reactive oxygen species (paraquat). By first generating a database of reference response patterns, the response patterns of laboratory derived test samples were then measured and quantitatively compared to the reference patterns. The unknown or test sample was compared to reference toxicants using a mean-square fit (MSF) software program. The MSF program tells the user how well the fingerprint of the test sample fits to each of the fingerprints of the reference chemicals. The method showed 93% accuracy in correctly identifying six herbicides, with false negative identifications occurring for only two toxicants, simazine (8% of samples) and Dinoseb (27% of samples). Phosphate induced fluorescence transients were also assessed to demonstrate that the toxin-identification method was versatile in its ability to also be used as a selective biomarker. By culturing P-limited D. tertiolecta cells, a unique fluorescence response was recorded upon additions of PO₄³⁻. The NIFT (nutrient induced fluorescent transient) response was specific to PO₄³⁻ additions compared to NH₄³⁺ and NO²⁻ additions. Quantification of the NIFT response showed high levels of precision and specificity for multiple fluorescence parameters. The toxin-identification method presented here is still in its preliminary stages and higher levels of validation are still necessary including testing environmental samples, and comparing results from the toxin-identification method to results from chemical analysis. However, this thesis presents the foundational work of a unique and powerful bioanalytical tool with the potential to greatly improve water quality management practices

    Active Fluorometry Improves Nutrient-Diffusing Substrata Bioassay

    Get PDF
    Benthic algal nutrient bioassays traditionally have been done by measuring periphytic algal biomass that has grown on fertilized or unfertilized patches of habitat produced by nutrient-diffusing substrata (NDS). This method requires destruction of the accumulated periphyton communities and, thus, does not allow for convenient monitoring through time. Variable fluorescence methods of estimating algal biomass and photosynthetic activity have been used in aquatic environments, but generally not over different nutrient treatments and not for a substantial duration. We evaluated the use of a pulse amplitude modulated (PAM) fluorometer for measuring algal biomass and photosynthetic activity in conjunction with NDS over several weeks in a wetland under several nutrient-addition treatments. We were able to detect a significant fluorometric response as early as 1 wk into the study with addition of both N and P. Wetland periphyton was co-limited by N and P. Dark-acclimated minimal fluorescence was highly correlated with chlorophyll a in different nutrient treatments. Our results suggest that active fluorometry is a useful method for measuring periphytic responses to nutrients and for evaluating the effect of nutrient additions on overall photosynthetic efficiency

    Intra-leaf gradients of photoinhibition induced by different color lights: Implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers

    No full text
    We studied how different color lights cause gradients of photoinhibition within a leaf, to attempt to resolve the controversy whether photon absorption by chlorophyll or Mn is the primary cause of photoinhibition, suggested by the excess-energy hypothesis or the two-step hypothesis, respectively. Lincomycin-treated leaf-discs were photoinhibited by white, blue, green or red light. Combining a micro-fiber fluorometer, a fiber-thinning technique and a micro-manipulator enabled us to measure the chlorophyll fluorescence signals within a leaf. Photoinhibition gradients were also compared with results from various conventional fluorometers to estimate their depth of signal detection. The severity of photoinhibition was in the descending order of blue, red and green light near the adaxial surface, and in the descending order of blue, green and red light in deeper tissue, which is correlated with the chlorophyll and Mn absorption spectrum, respectively. These results cannot be explained by either hypothesis alone. These data strongly suggest that (1) both the excess-energy and the two-step mechanisms occur in photoinhibition, and (2) fluorometers with red or blue measuring light give overestimated or underestimated Fv/Fm values of photoinhibited leaves compared with the whole tissue average, respectively; that is, they measured deeper or shallower leaf tissue, respectively

    Spectral fingerprinting for specific algal groups on sediments in situ: a new sensor

    Get PDF
    Currently it is still extremely difficult to adequately sample populations of microalgae on sediments for large-scale biomass determination. We have now devised a prototype of a new benthic sensor (BenthoFluor) for the quantitative and qualitative assessment of microphytobenthos populations in situ. This sensor enables a high spatial and temporal resolution and a rapid evaluation of the community structure and distribution. These determinations are based on the concept that five spectral excitation ranges can be used to differentiate groups of microalgae, in situ, within a few seconds. In addition, because sediments contain a lot of yellow substances, which can affect the fluorescence and optical differentiation of the algae, the device was equipped with a UV-LED for yellow substances correction. The device was calibrated against HPLC with cultures and tested in the field. Our real-time approach can be used to monitor algal assemblage composition on sediments and is an ideal tool for investigations on the large-scale spatial and temporal variation of algal populations in sediments. Apart from the differentiation of algal populations, the BenthoFluor allows instantaneous monitoring of the chlorophyll concentrations and determination of which algae are responsible for this on the uppermost surface of sediments in the field and in experimental set-ups
    corecore