2,993 research outputs found

    On the Optimization of PV Cells’ Orientation Angles and Their Deployment at Base Stations for Energy-efficient Cellular Networks

    Get PDF
    The inherent problem of solar-powered base stations (BSs) will be tackled in this thesis, i.e., the problem that the energy generation of the photovoltaic (PV) cells does not match the energy consumption of the BS in time, which results in energy being wasted. In Chapter 1, a comprehensive literature review is given. In Chapter 2, the orientation angles of N PV cells powering one BS are jointly optimized to improve the match between the two profiles on a daily timescale. The energy generation profiles of randomly inclined and oriented PV cells are analytically derived based on the Reindl model. The energy drawn per day from the main grid by the BS given its energy consumption profile is used as the performance metric to determine the optimal set of orientation angels. The main results are that deploying one PV cell (or several PV cells) with the (same) optimized orientation angle is recommended for BSs with an energy consumption profile that has one significant local maximum between sunrise and sunset. Deploying two PV cells (or two equal-sized groups of PV cells) where the two orientation angles (of the two groups) are jointly optimized is recommended for BSs with an energy consumption profile that has significant local maxima in the morning as well as in the afternoon or with a constant energy consumption profile. In Chapter 3, a battery model is added to the system model. The battery model is based on a Markov chain. The effects of different battery capacities on the optimal PV cell orientation angle are investigated. It is shown that PV cell orientation angle optimization should be done for BSs deployed with small batteries. In Chapter 4, the system model is extended to a multi-cell cellular network and a mixed-integer linear programming problem is developed to determine how energy harvesters with anti-correlated energy generation profiles should be deployed to every BS. In Chapter 5, the thesis is concluded

    Pv-battery power supply for next-generation cellular telecommunication networks

    Get PDF

    Design of a positioning system for solar panels

    Get PDF
    Introduced into the positioning system of a two-coordinate low-power information-measuring scanning system. It registers the brightness of the heavenly space and determines the angular coordinates of solar panels, at which solar panels generate maximum power from the scattered radiation flux, which makes it possible to increase the energy efficiency of the solar station. To optimize the system of Sun tracking, it is necessary to consider the step-by step mode of auto-tracking of the Sun. Advantages of search engine control systems – high accuracy of support of an extreme at the minimum quantity of sensors irrespective of type of the engine. Thanks to the control capabilities that monitor the electric drive, it allows to increase the efficiency of the solar photovoltaic power plants with rational energy consumption. The analysis of terrestrial autonomous solar photovoltaic power plants, tracking systems, solar position sensors, allowed to form the technical requirements for the tracking system by two-coordinate electromechanical actuator, solar position sensors, specialized tracking controller.У цьому дипломі представлена двокоординатна малопотужна інформаційно-вимірювальна система сканування сонячного випромінювання. В рамках даної роботи розроблено метод обробки вимірювань ВАХ фотоелектричних модулів з різним затіненням та аналітичним розрахунком середньодобової генерації. Це дозволяє знаходити інтервали оптимальних значень кутів нахилу та відстані між рядами сонячних панелей для конкретних регіонів розташування фотоелектричної електростанції. Були розроблені математичні моделі для отримання параметрів "земної" екліптики для будь-якого даного момент часу, і розроблена відносно точна математична модель, яка враховує сидеральні дні. Запропоновано конструктивні зміни в кінематичній схемі стандартних двокоординатних платформ стеження за Сонцем. Це дозволяє розробити програмні додатки для використання як одного з інструментів проектування сонячних електростанцій космічних станцій.In this diploma two-coordinate low-power information-measuring scanning system was introduced. In the scope of this work the method for processing the measurements of the VAC of PV modules with different shading and analytical calculation of the average daily output was developed. It allows to find the intervals of optimal values of the tilt angles and inter-row spacings of solar panels for specific regions of the location of the PV power plant. Mathematical models have been developed to obtain the parameters of the "ground" ecliptic for any given moment in time, and a relatively accurate mathematical model has been developed that takes into account sidereal days. Constructive changes in the kinematic scheme of standard two-coordinate platforms are proposed. It is possible to adapt the developed software applications for use as one of the design tools for solar power plants of space stations.INTRODUCTION 1 ANALITYCAL SECTION 1.1 Analysis of problems and systems 1.2 Types of panels for a solar power plant 1.3 Overview of different solar positioning systems 1.4 Purpose and scope of tracking electric drives 1.5 Overview of tracker actuator control systems 1.5.1 Control with multiple photodetectors 1.5.2 Control according to azimuthal and zenith angles 1.5.3 Method of control according to the program for calculating the location of the Sun 1.6 Mechanisms of rotation and tilt of the batteries depending on the direction of sunlight 1.7 Overview of existing photovoltaic solar observation power plants 1.8 Adaptive positioning system 1.9 Cloudy radiation 2 PROJECT DESIGNING SECTION 2.1 Measurements of PV parameters 2.2 Simulation of VAC of PV modules in conditions of partial shading . 2.3 Loss of power when shading PV module 2.4 Influence of the power factor on the optimal row spacing and angle of inclination of solar panels 3 CALCULATIONS AND RESEARCH SECTION 3.1 Formulation of the problem 3.2 The concept of solving the problem 3.3 The efficiency of the three-axis control system 3.4. Optimization of the positioning of solar panels on the ISS 3.4.1. Optimizing the positioning of solar panels when using a two coordinate system 3.4.2. Optimizing the positioning of solar panels for three coordinate systems 4 LABOUR OCCUPATIONAL SAFETY AND SECURITY IN EMERGENCY SITUATIONS 4.1. Analysis of hazardous and harmful production factors of the designed solar power plant 4.2. Engineering and technical measures for labor protection 4.3. Fire prevention 4.4. Safety measures during installation of PV panels GENERAL CONCLUSIONS REFERENCE

    2D perovskite stabilized phase-pure formamidinium perovskite solar cells.

    Get PDF
    Compositional engineering has been used to overcome difficulties in fabricating high-quality phase-pure formamidinium perovskite films together with its ambient instability. However, this comes alongside an undesirable increase in bandgap that sacrifices the device photocurrent. Here we report the fabrication of phase-pure formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and stability. Incorporation of 1.67 mol% of 2D phenylethylammonium lead iodide into the precursor solution enables the formation of phase-pure formamidinium perovskite with an order of magnitude enhanced photoluminescence lifetime. The 2D perovskite spontaneously forms at grain boundaries to protect the formamidinium perovskite from moisture and suppress ion migration. A stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE of 19.77%) is achieved with a short-circuit current density exceeding 24 mA cm-2 and an open-circuit voltage of 1.130 V, corresponding to a loss-in-potential of 0.35 V, and significantly enhanced operational stability

    A review of solar collectors and thermal energy storage in solar thermal applications

    Get PDF
    Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper focuses on the latest developments and advances in solar thermal applications, providing a review of solar collectors and thermal energy storage systems. Various types of solar collectors are reviewed and discussed, including both non-concentrating collectors (low temperature applications) and concentrating collectors (high temperature applications). These are studied in terms of optical optimisation, heat loss reduction, heat recuperation enhancement and different sun-tracking mechanisms. Various types of thermal energy storage systems are also reviewed and discussed, including sensible heat storage, latent heat storage, chemical storage and cascaded storage. They are studied in terms of design criteria, material selection and different heat transfer enhancement technologies. Last but not least, existing and future solar power stations are overviewed.Peer reviewe

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Energy Efficient Building's Envelopes. Numerical and experimental analysis of innovative solutions

    Get PDF
    The aim of this study is to set up a simplified and validated numerical platform to describe several technologies concerning the energy performance improvements of glazed and opaque building envelopes. The study included the validation of DIGITHON, a detailed simulation software and the development of a simplified transient numerical model in respect of glazed buildings. DIGITHON, was validated against experimental data, and then a parametric study was carried out through it to evaluate the air pre-heat efficiency of implementing the façade as an energy recovery unit. The simplified model was dedicated to the thermal engineering designers dealing with projects preliminary phases .The simplified model was validated against experimental data. Later an extensive comparison between the detailed software DIGITHON and the simplified model was carried out for different climatic conditions to evaluate the influence of considering indoor zones thermal inertia. Although the simplified model estimates thermal loads higher than DIGITHON, nevertheless this can be considered a beneficial design safety aspect as long as it is implemented in the preliminary design phases. Later an innovative locating of photovoltaic modules at building glazed facades was investigated through the commercial software TRNSYS. The methodology of modelling double skin-glazed façades combined with different strategies of ventilation applying TRNflow software was thoroughly clarified. The results show a reduction in thermal heating loads compared to conventional location of PV on external building surfaces. On the other hand the cooling loads are increased, hence to improve the performance of the system in summer hot season, the technology of phase changing material (PCM) was tackled in the research as a latent thermal storage system. A numerical investigation of the effect of PCM in building sector, solely and combined with PV modules to improve its thermal performance, has been carried out. Two numerical models (equivalent capacitance and enthalpy linearization methods) describing the PCM thermal and optical performance have been developed and validated. Results show that thermal loads reductions of a system implementing PV/PCM modules reach 30% in summer season. Afterwards, the research through experimental campaign and numerical heat transfer modelling optimised the selection and location of two technologies within a residential roof attic: the technologies considered were PCM modules and reflective surfaces; five transient numerical models have been developed and validated. The results clarify the influence of the proper selection for melting-solidification PCM range suiting each application in order to reach optimum specific heat capacity values which could improve the overall thermal balance of the inner zone. Finally, computational fluid dynamics CFD models have been applied to different case studies to describe the thermal performance of vertical glazed envelopes

    Bioreplicated Light-Harvesting Layers for Photovoltaics

    Get PDF
    Die hierarchischen Mikro-/Nanostrukturen, welche die Blütenblattoberflächen einer Vielzahl von Blütenpflanzen zieren, weisen oftmals hervorragende Lichtsammlungs- sowie Selbstreinigungseigenschaften auf. Diese Qualitäten können mit Hilfe von direkten Replikationsverfahren technisch nutzbar gemacht werden, beispielsweise für die photovoltaische Stromerzeugung. Replikationsverfahren zielen darauf ab die multi-skalige Oberflächenstruktur von Blütenblättern in ein transparentes Polymer zu übertragen und auf der Vorderseite von Solarmodulen aufzubringen. Im Laufe der letzten Jahren haben sich hauptsächlich Polymerabgüsse und die sog. Soft-Imprint Nanolithographie als gängige Verfahren zur direkten Kopie von (sowohl künstlich hergestellten, als auch) natürlichen Mikro-, Nano-, und multi-skaligen Strukturen in adäquate technische Materialien, wie z.B. Polymere zur Ausnutzung ihrer hochoptimierten optischen und/oder Benetzungseigenschaften für optoelektronische Bauteile, etabliert. Eine großflächige Anwendung dieser Verfahren wurde jedoch bislang aufgrund der naturgegebenen Maximalgröße von Blütenblättern nicht etabliert. Des Weiteren kann auf Basis eines einzigen Polymerstempel nur eine limitierte Anzahl an Replikaten mit hoher Strukturqualität mittels Soft-Imprint hergestellt werden. Ein Teil dieser Arbeit befasst sich mit der Überwindung dieser Hürden durch Weiterentwicklung der Replikationstechniken für pflanzliche Oberflächenstrukturen. Eine solche, in der Fläche hochskalierte Bioreplikationsmethode mit gleichzeitig erheblich gesteigertem Durchsatz wird in dieser Arbeit am Beispiel der hierarchischen Oberflächenstruktur von Rosenblütenblättern als natürliche Strukturvorlage aufgezeigt. Das vorgestellte Verfahren basiert auf der Entwicklung metallischer Prägewerkzeuge, welche in einem statischen Heißprägeprozess eingesetzt werden. Diese Entwicklung ermöglicht die Herstellung von Replikaten pflanzlicher Oberflächenstrukturen mit hoher Strukturqualität, in nie dagewesener Stückzahl, und erstmals auch in einer für eine Integration in kommerzielle Solarmodule relevanten Größe. Die hochskalierten, temperaturstabilen und mechanisch robusten Prägewerkzeuge werden dabei per galvanischer Nickelabscheidung hergestellt. Die primäre Strukturvorlage für diesen Prozess wird dabei durch vorsichtige Aneinanderreihung mehrerer natürlicher Rosenblütenblätter zu einer möglichst lücken- und nahtlos strukturierten Einheit erzeugt. Der Heißprägeprozess zur Herstellung hochskalierter Polymerreplikate der Rosenblütenblattstruktur wird anhand von drei verschiedenen, transparenten Folienmaterialien diskutiert. Sowohl für Polymethylmethacrylat (PMMA), Polycarbonat (PC), und Fluorethylen-Propylen (FEP) wird mit Hilfe des entwickelten Replikationsverfahrens eine hervorragende Strukturtreue über mehrere Längenskalen hinweg, vom sub-Mikrometer Bereich bis hin zu makroskopischen Merkmalen, mit gleichzeitig nahezu durchgängiger Strukturierung bei einer gesamten Strukturfläche von bis zu 12.5 cm×10.0 cm pro Replikat erzielt. Als vorderseitige Beschichtung für Kupfer-Indium-Gallium-Diselenid (CIGS) Solarzellen erweisen sich heißgeprägten Rosenreplikate als effektive Antireflex- und Light-Trapping-Maßnahme für einen breiten Spektralbereich und besonders für Lichteinfallswinkel >50°. Mit heißgeprägten Rosenreplikaten aus PMMA lässt sich sogar bei senkrechtem Lichteinfall eine gegenüber einer optimierten Magnesiumfluorid (MgF2) Antireflexbeschichtung verbesserte Antireflexwirkung feststellen. Optoelektronische Messungen bestätigen, dass sich diese Reflexionsverminderung auch entsprechend auf die Nennleistung der Solarzellen auswirkt, mit einer um im Mittel um 5.7%±0.6% gesteigerten Umwandlungseffizienz (verglichen mit den jeweiligen Solarzellen vor Aufbringung der Antireflexschichten) im Falle von PMMA Rosenreplikaten und 4.5%±1.6% für MgF2 Dünnschicht-Antireflexbeschichtungen. Weiter wird gezeigt, dass heißgeprägte Rosenreplikate auch mit wasserabweisenden Eigenschaften (mit einem statischer Kontaktwinkel von 134.4°±4.3°) erzeugt werden können, sogar ohne dabei auf zusätzliche Schritte zur Oberflächenmodifikation zurückgreifen zu müssen. Dazu wird als Ausgangsmaterial für den Heißprägeprozess ein Polymermaterial mit geringer freier Oberflächenenergie benötigt, was beispielsweise bei FEP gegeben ist. Wassertropfen, die auf geneigte FEP Rosenreplikate fallen, perlen von diesen sofort und restlos ab, was auf eine potentielle Eignung von FEP Rosenreplikaten zur Produktion selbstreinigender Solarmodule hindeutet. Der Leistungszuwachs, der durch die Anwendung der hochskalierten PMMA Rosenreplikate bewirkt wird, wird des Weiteren auch unter realistischen Betriebsbedingungen über neun Monaten Betrieb unter Außenbedingungen in Karlsruhe (Deutschland) untersucht, und zwar für 10 cm×10 cm CIGS und siliziumbasierte Solarmodule unter verschiedenen Modulneigungswinkeln und Modulorientierungen. Besonders hohe Steigerungen der täglichen Energieausbeute verglichen mit einem Referenzmodul ohne strukturierte Polymerfolie von bis zu deutlich über 10% werden dabei vor allem unter Aufstellbedingungen gemessen, die mit viel direkter Sonneneinstrahlung unter schrägem Lichteinfall einhergehen. Mit Hilfe beschleunigter Alterungs- und Abnutzungstests, welche standardisierten Testprotokollen aus der PV Industrie nachempfunden sind, wird außerdem auf die potentielle Langzeiteignung solch strukturierter Folien auf Solarmoduloberflächen hingewiesen. Außerdem werden die optischen Eigenschaften typischer Blütenblattstrukturen auf Solarzellen mit Hilfe einer speziell entwickelten 3D Mikrostruktur-Modellierungs- und Simulationsroutine, basierend auf Monte-Carlo-Raytracing und der Transfer-Matrix-Methode, hinsichtlich des Einflusses ungeordneter Strukturbausteine auf die Lichteinkopplungseigenschaften im Detail diskutiert. Durch Variation der Stärke der strukturellen Unordnung sowohl in der Höhe, der Anordnung, als auch der Neigung der Strukturbausteine der betrachteten, Blütenblattepidermis-inspirierten Mikrostrukturen lässt sich zeigen, dass ihre winkelabhängigen Reflexionseigenschaften nur schwach von Unordnung abhängen und in erster Linie vom mittleren Aspektverhältnis und der mittleren Packungsdichte der Strukturbausteine bestimmt werden. Schließlich werden die Polarisationseigenschaften von an Solarmodulen reflektiertem Licht hinsichtlich der möglichen schädlichen Auswirkungen auf polarotaktische Insektenarten diskutiert. Die vorderseitige Glasabdeckung herkömmlicher Solarmodule reflektiert aufgrund ihrer glatten Oberfläche linear polarisiertes Licht, wobei der Polarisationsgrad vom Einfallswinkel/ Betrachtungswinkel abhängt (vollständige lineare Polarisation bei Betrachtung unter dem Brewster-Winkel). Unbeabsichtigt wird dadurch der Insektenfauna geschadet, da polarotaktische Insekten Solarmodule als solche nicht erkennen und diese fälschlicherweise oft als Gewässer identifizieren, was dann beispielsweise eine Eierablage an einem ungeeigneten Ort und damit den Verlust der Nachkommen zur Folge haben kann. Experimente im Freifeld zeigen jedoch erstmals, dass keinerlei derartige schädliche Anziehungswirkung auf polarotaktische Eintagsfliegen (Ephemeroptera: Ephemera danica) und Bremsen (Diptera: Tabanidae) im Falle von PMMA Rosenreplikaten auf Solarmodulen zu befürchten ist. Basierend auf bildgebender Polarimetrie und Monte-Carlo-Raytracing-Simulationen werden diese Resultate auf die optischen Eigenschaften mikrostrukturierter Oberflächen zurückgeführt
    corecore