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Abstract

The inherent problem of solar-powered base stations (BSs) will be tackled in this

thesis, i.e., the problem that the energy generation of the photovoltaic (PV) cells

does not match the energy consumption of the BS in time, which results in energy

being wasted.

In Chapter 1, a comprehensive literature review is given.

In Chapter 2, the orientation angles of N PV cells powering one BS are jointly

optimized to improve the match between the two profiles on a daily timescale. The

energy generation profiles of randomly inclined and oriented PV cells are analytically

derived based on the Reindl model. The energy drawn per day from the main grid

by the BS given its energy consumption profile is used as the performance metric to

determine the optimal set of orientation angels. The main results are that deploying

one PV cell (or several PV cells) with the (same) optimized orientation angle is

recommended for BSs with an energy consumption profile that has one significant

local maximum between sunrise and sunset. Deploying two PV cells (or two equal-

sized groups of PV cells) where the two orientation angles (of the two groups) are

jointly optimized is recommended for BSs with an energy consumption profile that

has significant local maxima in the morning as well as in the afternoon or with a

constant energy consumption profile.

In Chapter 3, a battery model is added to the system model. The battery model is

based on a Markov chain. The effects of different battery capacities on the optimal

PV cell orientation angle are investigated. It is shown that PV cell orientation angle

optimization should be done for BSs deployed with small batteries.

In Chapter 4, the system model is extended to a multi-cell cellular network and a

mixed-integer linear programming problem is developed to determine how energy

harvesters with anti-correlated energy generation profiles should be deployed to ev-

ery BS.

In Chapter 5, the thesis is concluded.
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R Set of real numbers
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Z Set of integer numbers

P(X = x) Probability that the random variable X is equal to x

P(X ≥ x) Probability that the random variable X is not less than the value

x

X := PD(λ) X is a Poisson distributed random variable with density parameter

λ

G << C Energy generation of PV cell/cells is significantly smaller than

energy consumption of BS

G < C Energy generation of PV cell/cells is slightly smaller than energy

consumption of BS

G > C Energy generation of PV cell/cells is slightly greater than energy

consumption of BS

G >> C Energy generation of PV cell/cells is significantly greater than

energy consumption of BS

||BSi −BSj|| Euclidean distance between BSi and BSj

(i, j) Directed edge from BSi to BSj

Acronyms / Abbreviations

A*STAR Agency for Science, Technology and Research in Singapore

AC Alternating current

BS Base station

DC Direct current

GIS Geographic information system

MILPP Mixed-integer linear programming problem
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PV Photovoltaic

PVGIS Photovoltaic geographic information system

SINR Signal-to-interference-plus-noise ratio

UE User equipment



Chapter 1

Introduction

1.1 Background

The information and communications industry accounts for 3% of the global elec-

tricity costs with an annual increase rate of 15 - 20% [12]. Base stations are respon-

sible for more than half of the energy costs in the cellular network infrastructure

[13], indicating a huge demand to take advantage of renewable energy generation.

Many countries have set green taxation and incentive schemes to achieve ambitious

CO2 emission reduction targets, making renewable energy harvesting technologies

attractive for cellular network operators. Experts estimated that energy harvesting

technology can reduce 20% of the CO2 emissions in the information and communi-

cations industry [14].

Data traffic in cellular networks is growing rapidly [15]. Recently, the traffic is grow-

ing 70 – 200% per year [16]. As a result, base station (BS) densification is necessary

for the implementation of 5G cellular networks and future generations of cellular

networks [17]. Dense deployment of BSs can meet the increasing traffic demand of

new applications, such as ultra high definition video streaming, autonomous driv-

ing, and virtual reality based applications [18]. As a consequence, the accumulated

BS energy consumption is rising considerably. To alleviate the impact on the envi-

1
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ronment and the cost burden on cellular network operators, photovoltaic (PV) cell

powered BSs have been considered for future cellular networks [13,14,19]. PV cells

have been used for considerable time to power stand-alone BSs, which have no main

grid connectivity [20]. Compared with other renewable energy technologies, PV

cells are often chosen to power a BS due to their small physical footprint in dense

built environments, technology maturity, low maintenance cost, and production cost

reduction in recent years [14].

Main grid energy is always on demand. In contrast, profiles of renewable energy

harvesters have significant spatial [21] and temporal variations [22]. In addition, the

energy consumption profile of a BS is linked to the traffic load profile of the deploy-

ment area. For example, if the BS is located in a residential area, and in a business

area, the energy consumption peak of the BS is at 23:00, and 11:30, respectively

[23]. Consequently, the energy generation profile of a PV cell does not match the

energy consumption profile of a BS in general [24]. The most common solutions to

this problem reported in the literature are either energy storage technologies, such

as batteries, supply side management, or demand side management [25].

This paragraph will highlight why demand side management is extremely difficult

in a cellular network context. Demand side management at a BS is challenging,

because it would imply to change the behavior of the users in terms of that they use

their UEs at different times of the day or night. Users value cellular network services

because of their convenience and always on demand property. A cellular network

which is not always on demand would negatively affect the quality of service that

the users expect from it. In more detail, that a BS needs less energy at a specific

time of the day, fewer UEs have to request service, or less energy demanding jobs

have to be requested by the UEs. This would mean in practice that users should use

their UEs not during the day but rather at 3 am in the night or that users should

not live screen ultra high definition videos but rather download videos in advance

at 3 am in the night. Such a behavioral change is unlikely to happen due to the

nature of the circadian rhythm of the human being. In addition, using a UE is often
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an impulse decision rather than a several hours in advanced planned decision.

Since demand side management is not an effective solution in a cellular network

context, this thesis will focus on supply side management by deriving a new method-

ology based on orientation angle optimization to adjust the solar energy supply to

meet the energy demand of the BS in the time domain. In addition, energy storage

technologies, such as batteries, will also be evaluated in Chapter 3 in this thesis.

1.2 PV Cell Angles

Section 1.2 will define the two PV cell angels that are commonly used in the solar

industry, which are denoted by orientation angle and inclination angle in this thesis.

All angles in this thesis are in degrees. Hence, all derived formulas, expressions, and

statements in this thesis are given with respect to degrees and not radians.

As shown in Figure 1.1, the inclination angle of a PV cell, denoted by γ, is defined

as the angle between the horizontal plane and the PV cell plane. The orientation

angle of a PV cell, denoted by θ, is defined with respect to the southern direction.

Orientating the PV cell to the east (west) is indicated by a negative (positive)

algebraic sign added to the orientation angle. For instance, the orientation angles

of a PV cell orientated towards the east, south, and west are θ = −90o, θ = 0o, and

θ = 90o, respectively.
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Figure 1.1: Depiction of a PV cell installed with the orientation angle θ = −30o and inclination
angle γ = 20o

The daily energy generation profile of a PV cell depends on the day of the year, the

deployment location, the orientation angle θ, and the inclination angle γ of the PV

cell.

The orientation and inclination angles of PV cells are usually fixed after the initial

installation. Therefore, it is necessary to optimize the orientation and inclination

angles of PV cells prior to the deployment. Without considering the energy con-

sumption profile of the appliance, PV cells are deployed with default angles that

are derived from the PV cell’s geographic location as summarized in Table 1.1. The

default inclination angle is set at a value similar to the latitude of the deployment

area, and the default orientation angle is 0o, and 180o in the northern, and southern

hemispheres, respectively [9]. Deploying PV cells with the default angles from Ta-

ble 1.1 guarantees that the PV cells harvest the most energy on a yearly timescale

among all possible orientation and inclination angles.
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Table 1.1:
Default optimal orientation angle θ and inclination angle γ for different locations [9]

Location θ γ

Northern hemisphere 0o similar to the location’s
latitude

Southern hemisphere 180o similar to the location’s
latitude

Equator any orientation angle 0o

This paragraph will investigate how the shape of the energy generation profile

changes for different orientation angles on a daily timescale. Figure 1.2 shows the

daily energy generation profiles of southeast-oriented, south-oriented, and southwest-

oriented PV cells, which are denoted by G−45o,1(t), G0o,1(t), and G45o,1(t), respec-

tively, for Greenwich (London, UK) during the summer. Orientating a PV cell

eastwards (westwards) shifts the energy generation profile towards the morning (af-

ternoon) hours in the northern hemisphere. The farther a PV cell is oriented away

from the southern direction the less energy it harvests throughout the day. In other

words, the more the energy generation profile peak is shifted away from noon the

less energy is produced by the PV cell throughout the day. This tradeoff will be

addressed in this thesis to determine the optimal orientation angle.

Figure 1.2: Effects of the orientation angle θ on the energy generation profile of the PV cell

Optimizing the PV cell orientation angle is done on a daily timescale because it

is a method to shift the energy generation peak from a surplus time (e.g. noon)
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to a deficit time (e.g. morning or afternoon), as seen in Figure 1.2. In contrast,

optimizing the PV cell inclination angle is done on a yearly timescale because it is

a method to shift the energy generation peak from a surplus season (e.g. summer)

to a deficit season (e.g. winter). The focus of this thesis is to match the daily

energy consumption profile of a BS with the daily energy generation profile of several

PV cells. Hence, the orientation angles will be optimized in this thesis because

the orientation angles affect the shape of the energy generation profile on a daily

timescale.

1.3 Types of PV Cells

PV cells can be classified into fixed, sun tracking, and adjustable PV cells (cf.

Figure 1.3). A fixed PV cell (cf. Figure 1.3(a)) has fixed orientation and inclination

angles which cannot be changed anymore after the initial installation. A single-axis

sun tracking PV cell (cf. Figure 1.3(b)) can mechanically track the sun throughout

the day via adjusting the orientation angle. The single-axis sun tracking PV cell

improves herein its daily energy yield compared with a fixed PV cell. A dual-axis

sun tracking PV cell (cf. Figure 1.3(c)) can mechanically track the sun throughout

the day and the season, e.g., winter and summer, via adjusting both the orientation

and inclination angles. The dual-axis sun tracking PV cell improves herein its yearly

energy yield compared with a single-axis sun tracking PV cell.

Despite the potentially higher energy yield of sun tracking PV cells than fixed PV

cells, they are currently not widely deployed. The reasons are mainly the additional

parts needed (e.g. axis motor), the higher maintenance (e.g. mechanical parts like

the axis and the motor break more often than static parts), and the energy needed

to operate the axis motor, which can be higher than the additional energy generated

due to the sun tracking for some locations [26].

An adjustable PV cell (cf. Figure 1.3(d)) requires an engineer to visit the site several
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times throughout the year to adjust the angles manually. Frequent (infrequent)

adjustments of the angles will result in higher (lower) operational expenditure in

combination with a higher (lower) energy yield of the PV cell. Due to the high

wages in many countries, the increasing number of BSs in future cellular networks,

and the problem that many BSs are difficult to access (e.g. on top of buildings or

mountains), fixed PV cells are more suitable for powering BSs than adjustable PV

cells. Hence, this thesis will focus on orientation angle optimization of fixed PV

cells. Nonetheless, the derived optimization process in this thesis can equivalently

be used to optimize the orientation angles of adjustable PV cells. For example, if

the optimization method in this thesis is done on two days throughout the year (e.g.

one day in winter, and one day in summer), the two derived optimal orientation

angles can be altered every 6 months. The engineer should change the orientation

angles of the adjustable PV cells during spring equinox and autumn equinox every

year for this example. In general, fixed PV cells can be seen as a special case of an

adjustable PV cell that does not require additional visits of engineers after its initial

installation.

(a) (b) (c) (d)

Figure 1.3: Depiction of a fixed PV cell (a), a single-axis sun tracking PV cell (b), a dual-axis sun
tracking PV cell (c), and an adjustable PV cell (d)
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1.4 Motivation and Main Objective

In general, there is a mismatch between the daily energy generation profile of PV

cells and the daily energy consumption profile of a BS, as seen in Figure 1.4. The

profiles in Figure 1.4 are given as an example in this paragraph. Many different

types of energy generation profiles, and energy consumption profiles typical for PV

cells, and typical for BSs will be evaluated in the following chapters, respectively.

The objective of this thesis is to develop a method to shift the surplus energy (green

color area in Figure 1.4) to the deficit period (gray color area in Figure 1.4). This

thesis will derive a new methodology based on orientation angle optimization to

adjust the solar energy supply to meet the energy demand of the BS in the time

domain (black arrow in Figure 1.4). This is the main objective of this thesis and

will be presented in Chapter 2.

Figure 1.4: Example of an energy generation profile of a PV cell and an energy consumption profile
of a BS to illustrate their mismatch
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1.5 Contributions

This section will summarize the main contributions of Chapter 2, Chapter 3, and

Chapter 4.

Contributions of Chapter 2:

• Developing an algorithm to jointly optimize the orientation angles of several

PV cells powering one BS. The algorithm achieves the best possible match

between the energy generation profiles of the PV cells and the energy con-

sumption profile of the BS. The proposed optimization algorithm only needs

to be run a single time offline and the obtained optimal angles can be used for

all solar-powered BSs with similar geographic locations and energy consump-

tion profiles.

• Deriving analytically the irradiance values on any randomly inclined and ori-

ented PV cell. A horizontally-mounted PV cell is used as a baseline and its

irradiance values have to be given to derive the irradiance values on any ran-

domly inclined and oriented PV cell at the same location.

• Identifying and discussing analytically to what extent the orientation angle θ

shifts the energy generation profile away from noon if the PV cells are not

south-oriented (θ 6= 0o).

• Evaluating the effectiveness of the proposed orientation angle optimization

on three different types of BS energy consumption profiles: constant traffic

load profiles, business-area traffic load profiles, and residential-area traffic load

profiles. The energy drawn from the main grid by the BS per day is used as

the performance metric.

• Giving recommendations on how many differently oriented PV cells should be

deployed for a given energy consumption profile. To the best of my knowledge,

this has never been investigated in the literature before.
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Contributions of Chapter 3:

• Developing a PV cell’s orientation angle optimization algorithm with Markov

chain based battery model of a solar-powered BS with battery. The algorithm

takes into account the battery capacity and the energy consumption profile of

the BS. The number of user equipments (UEs) served by the BS throughout

the day SUE(θ) is used as the performance metric to identify the optimal

orientation angle.

• Verifying the accuracy of the proposed algorithm by showing that simulation

trials converge based on the law of large numbers to the output SUE(θ) of the

proposed algorithm.

• Showing that the proposed algorithm (depends on the number of battery

states) requires a shorter running time than the simulation trials (depends

on the number of trials) for moderate battery state resolutions.

• Investigating the dependency of the optimal PV cell orientation angle on the

given battery capacity.

Contributions of Chapter 4:

• Developing an optimization algorithm that can be run once during the cellu-

lar network planning to determine what type of energy harvesters should be

deployed to every BS in a cellular network. There are two different types of

energy harvesters available for deployment which have anti-correlated energy

generation profiles.

• Taking into account the topology of the cellular network as well as the distance-

dependent power loss in the distribution lines during the optimization.

• Developing an optimization objective that maximizes the power that can be

transmitted from surplus BSs to deficit BSs in the cellular network.
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• Comparing the proposed optimization algorithm with randomly deploying

anti-correlated energy harvesters to the BSs. The effects of different numbers

of BSs, different distribution line existence probabilities, different distribution

line power loss coefficients, and different power surplus values are investigated.
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1.6 Organization

This section will present the organization of the thesis in detail. Section 1.1 gives

a general overview of the developments and emerging problems in future cellular

networks and how solar-powered BSs can alleviate these emerging issues. Section

1.2 defines the orientation and inclination angles of the PV cells and provides a

basic rule of thumb how these angles should be chosen based on the geographical

location of the PV cell. This rule of thumb only maximizes the yearly energy output

of the PV cell but it cannot take into account the energy consumption profile of the

appliance. Section 1.3 justifies the focus on fixed PV cells with respect to other

types of PV cells in this thesis. Section 1.4, Section 1.5, and Section 1.6 present the

main objectives, the contributions, and the organization of this thesis, respectively.

Chapter 2, Chapter 3, and Chapter 4 are the main parts of this thesis and are based

on my published papers. Each of the three chapters develops a system model to

address and to evaluate a specific problem explained in more detail later. Guidelines

and key findings are summarized at the end of each chapter.

Chapter 2 addresses the main objective of this thesis. It develops a methodology

to jointly optimize the orientation angles of several PV cells at one BS so that the

energy generation profile of the PV cells matches the energy consumption profile of

the BS. The system model of this chapter is presented in Section 2.3 and consists

of an energy generation model, a ground-reflected irradiance model, a direct-beam

irradiance model, a sky-diffuse irradiance model, an energy consumption model,

and an objective function. Section 2.4 evaluates analytically to what extent the

orientation angle θ determines the position of the peak of the energy generation

profile in the time domain. The numerical results and the key findings are presented

in Section 2.5. Finally, the chapter is summarized in Section 2.6.

Chapter 3 extends the system model from Chapter 2 by adding a battery to the

BS. The battery is modeled by a Markov chain. Section 3.3 presents the system

model of this chapter. Section 3.4 derives the PV cell’s orientation angle optimiza-
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tion algorithm with Markov chain based battery model of a solar-powered BS with

battery. Section 3.5 introduces a simulation algorithm as a baseline for the compar-

ison and evaluation of the proposed algorithm. Section 3.6 discusses and presents

numerical results. In more detail, Section 3.6.1 investigates the running time of

both algorithms. Section 3.6.2 verifies the accuracy of the proposed algorithm with

simulation results. Section 3.6.3 shows the strong dependency of the optimal PV

cell orientation angle on the battery capacity. Finally, the chapter is summarized in

Section 3.7.

Chapter 4 extends the previous system model to a multi-cell cellular network. There

are now several BSs distributed in an area and some of them are connected by distri-

bution lines to share the renewable energy among them. The problem investigated

in this chapter is how energy harvesters with anti-correlated energy generation pro-

files should be deployed to every BS so that the renewable energy can be shared

most efficiently in the multi-cell cellular network. Two PV cells that have signifi-

cantly different orientation angles, such as east-oriented and west-oriented PV cells,

are an example for energy harvesters with anti-correlated energy generation profiles.

Section 4.5 presents the system model of this chapter, which consists of the defi-

nition of the power surplus/deficit values, the derivation of the distance-dependent

power loss in the distribution lines, and the definition of the topology of the cellular

network. The objective function of this chapter is derived in Section 4.6 and based

on a mixed-integer linear programming problem (MILPP). Section 4.7 presents the

system performance improvements achieved by optimizing the deployment of the

energy-harvesters with the MILPP in comparison with randomly deploying the en-

ergy harvesters. Finally, the chapter is summarized in Section 4.8.

Chapter 5 concludes the thesis by summarizing its achievements, highlighting future

application areas, and outlining future work in this area. An appendix and a list of

references are attached at the end of this thesis.



Chapter 2

PV Cell Orientation Angles

Optimization for a Base Station

Equipped with Several PV Cells

2.1 Literature Review: Orientation Angle Opti-

mization

Many papers in the literature map for a given PV cell its performance in a wide

geographical area. The average yearly or daily energy output of the PV cell is used

as the performance metric. For each geographical location in the investigated area,

the latitude, the longitude, the altitude, the ambient temperature, the wind speed,

the solar spectrum, and site-specific weather conditions are often used to determine

the performance of the PV cell. Nonetheless, these papers do not optimize any of

the parameters of the PV cell, such as the orientation angle, instead they derive

a guideline for the best deployment area for the given PV cell type. For example,

[27], [28] and [29] derive comprehensive guides for PV cell deployment areas in

South Africa, Europe, and Eurasia, respectively. In addition, geographic information

14
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systems (GISs) provide such guides for various geographical areas online, such as

for the USA [30], for Europe [10], and worldwide [31,32].

Most papers investigating differently oriented PV cells, such as [33], have not actu-

ally optimized the PV cell angles but considered some deployment constraints, e.g.,

that the PV cells are mounted on residential rooftops, which predefine the PV cell

angles.

Other papers, such as [34], optimize the orientation of objects to increase or decrease

the sun irradiance on the object. These objects do not have to be PV cells. For

example, [34] determines the optimal orientation of a building (no PV cells are

deployed) so that less sun irradiance can enter the building through the windows.

In climates with abundant sun irradiance, orientating the buildings so that less

irradiance can enter the buildings through the windows reduces the need for cooling

the buildings with air conditioning.

PV cell angle optimization for maximizing the total energy output of the PV cells

has been done for Singapore in [35], however, without considering the potential

mismatch between the energy generation profile of the PV cells and the energy

consumption profile of the appliance. This may result in service outage if the PV

cells are the only energy source or additional expenditures if the energy deficit has

to be compensated by using alternative energy sources. Different from [35], the

optimal PV cell orientation angles are derived in this thesis to match a given energy

consumption profile rather than maximizing the total energy output of the PV cells.

In [36], the PV cell angle optimization considered the energy demand of the Ontario

province of Canada, where the authors investigated orientation angles from 15o east

of due south to 15o west of due south, i.e., θ ∈ [−15o, 15o]. But propagation losses

along the power lines among the widely-distributed PV cell installations were not

included, which are significant factors when operating on a provincial scale [1, 4].

Different from [36], the optimal PV cell orientation angles are derived in the range

from east (θ = −90o) to west (θ = 90o) in this thesis.
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The authors of [37] investigated five orientation angle settings (east, southeast,

south, southwest, and west) and concluded that in some scenarios a mix of east-

oriented and west-oriented PV cells and in other scenarios south-oriented PV cells

reduce the needs for storage and backup from dispatchable energy sources in a fully

renewable European power system. Because they adjusted the installed capacity of

the PV cells for each angle configuration, such that the average power production of

each PV cell remains the same, it is difficult to fairly judge if the reduced needs for

storage and backup are a good trade-off for the increased installed capacity of PV

cells. Different from [37], the installed capacity of the PV cells is kept unchanged

in this thesis. Hence, it is possible to fairly present the improvements caused by

different PV cell orientation angles in this thesis.

Optimizing the PV cell inclination angle to power an isolated island was studied

in [38], where the PV cell inclination angle was optimized on a yearly timescale.

Because the PV cell inclination angle was optimized, the energy can be shifted on

a yearly timescale, i.e., from a surplus season (e.g. summer) to a deficit season (e.g.

winter), but the energy cannot be shifted on a daily timescale, i.e., from a surplus

time (e.g. noon) to a deficit time (e.g. morning or afternoon) with the proposed

method in [38].

In my papers [2, 5, 6], I have been optimizing the PV cell orientation angle of one

PV cell deployed at the BS to match the energy generation of this single PV cell

with the energy consumption of a BS. Optimizing the PV cell orientation angle of

several PV cells deployed at the BS to match the energy generation of the PV cells

with the energy consumption of a BS has been studied in my paper [7]. Hence, my

paper [7] is an extension to my previous papers [2, 5, 6]. Chapter 2 of this thesis is

based on [7]. In contrast to [2, 5, 6], [7] can investigate how the number of PV cells

and the composition of differently oriented PV cells improve the match between the

energy generation profile of the PV cells and the energy consumption profile of the

BS.



17 2.2. Contributions of Chapter 2

2.2 Contributions of Chapter 2

The contributions of Chapter 2 are summarized as follows:

• Developing an algorithm to jointly optimize the orientation angles of several

PV cells powering one BS. The algorithm achieves the best possible match

between the energy generation profiles of the PV cells and the energy con-

sumption profile of the BS. The proposed optimization algorithm only needs

to be run a single time offline and the obtained optimal angles can be used for

all solar-powered BSs with similar geographic locations and energy consump-

tion profiles.

• Deriving analytically the irradiance values on any randomly inclined and ori-

ented PV cell. A horizontally-mounted PV cell is used as a baseline and its

irradiance values have to be given to derive the irradiance values on any ran-

domly inclined and oriented PV cell at the same location.

• Identifying and discussing analytically to what extent the orientation angle θ

shifts the energy generation profile away from noon if the PV cells are not

south-oriented (θ 6= 0o).

• Evaluating the effectiveness of the proposed orientation angle optimization

on three different types of BS energy consumption profiles: constant traffic

load profiles, business-area traffic load profiles, and residential-area traffic load

profiles. The energy drawn from the main grid by the BS per day is used as

the performance metric.

• Giving recommendations on how many differently oriented PV cells should be

deployed for a given energy consumption profile. To the best of my knowledge,

this has never been investigated in the literature before.
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2.3 System Model 1 - Several PV Cells Powering

One BS

Figure 2.1 depicts the system model 1 considered in Chapter 2. The energy gener-

ation part consists of N identical PV cells, denoted by PV cell 1, PV cell 2, ..., and

PV cell N , N ∈ N. The energy consumption part consists of a BS. The total surface

area of all N PV cells is A. Each PV cell has a surface area of A
N

. The day is divided

into T time steps, T ∈ N. The index of a time step is denoted by t, t ∈ {1, ..., T}.

The BS uses the energy generated by the N PV cells, denoted by G(t), to support

its energy consumption C(t) at every time step t. If there is an energy deficit, i.e.,

C(t)−G(t) > 0, the BS draws the remaining energy from the main grid at time step

t. If there is an energy surplus, i.e., C(t) − G(t) < 0, the surplus energy is wasted

at time step t or fed to the grid1

The optimization object in the system model 1 is to minimize the amount of energy

that has to be drawn from the main grid by the BS on a daily time scale. The energy

drawn from the main grid can only be altered by choosing different orientation

angles θ1, ..., and θN for PV cell 1, ..., and PV cell N , respectively. All the other

parameters of the system, including the inclination angles of all N PV cells, are

fixed. In this thesis, the system is located in Greenwich (London, UK) as example,

i.e., the Latitude lat, and the Longitude lon are fixed to 51.4767o North, and 0.0003o

West, respectively, but the analysis can be applied to other locations as well. Hence,

1There are no feed-in tariffs considered in this thesis because I want to incentify that the
generated energy is used locally. Large amounts of intermittent generated energy which is fed into
the grid often causes unbalancing issues, and voltage drops in the grid or in the worst-case scenario
a black out. Matching the energy generation profile with the energy consumption profile on-site at a
BS reduces therefore the stress on the power grid. This assumption is justified because most power
grids nowadays are still designed for one-directional energy flow from a few large-scale centralized
energy generators, such as coal power plants or nuclear power plants, to many small-scale energy
consumers, such as domestic households or BSs. Current power grid infrastructure is often not
assigned to accommodate huge amounts of energy flow in opposite direction and to redistribute
such intermittent generated energy sufficiently without causing grid instability or jeopardizing the
reliability of the power grid. Even if surplus energy can be sold to the grid, the system model 1
aims to match the energy generation profile with the energy consumption profile on-site at a BS,
which is more cost-effective for the BS/ PV cells owner than wasting the surplus energy or selling
the surplus energy to the grid for redistribution. Grid operators always sell energy at a higher
price than they buy it.
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all formulas in this thesis are given for a location in the northern hemisphere.

Figure 2.1: Illustration of system model 1

2.3.1 Energy Generation of a PV Cell

A horizontally-mounted PV cell in Greenwich (London, UK) is used as the baseline.

From this baseline, a method will be developed to calculate the energy generated by a

PV cell at the same location but installed with any orientation angle θ ∈ [−90o, 90o]

and any inclination angle γ ∈ [0, 90o]. The time is modeled in discrete time steps

denoted by the time step index t, t ∈ {1, ..., T}, hence all variables dependent on t

are discrete. The global horizontal irradiance GHIt, the diffuse horizontal irradiance

DHIt, and the direct normal irradiance DNIt for a horizontally-mounted PV cell

in Greenwich (London, UK) are obtained from the PVGIS database (cf. Figure 2.2)

for every time step t. Hence, GHIt, DHIt, and DNIt, are considered given values

for every time step t and can be used throughout the thesis.
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Figure 2.2: PVGIS data sheet from [10]

The energy generated by one PV cell installed with orientation angle θ and surface

area A
N

is denote by Goriginal
θ,N (t) and can be calculated by [39]2 as follows:

Goriginal
θ,N (t) = Iθ(t) · η ·

A

N
· τ, (2.1)

where Iθ(t) is the irradiance received by the PV cell, η is the energy conversion

efficiency, A
N

is the surface area of the PV cell, and τ is the duration of one time

step.

To facilitate a fair comparison in Section 2.5, all energy generation values are nor-

malized with respect to a south-orientated PV cell in Greenwich at noon with sur-

2The total irradiance received by the PV cell Iθ(t) adjusted for angle of incidence losses inside
of the PV cell module, for soiling, e.g., dust or snow, for temporal losses, and for spectral mismatch
is called the effective irradiance (irradiance that is “available” to the PV cell for power conversion).
The material covering a cell in a PV module, e.g., glass, and encapsulate, causes due to reflection
and absorption different losses at different angles of incidence. It is out of the scope of this thesis to
calculate any internal energy losses of the PV cell due to its structure or composition. Therefore,
it is assumed for simplicity that the total irradiance received by the PV cell Iθ(t) is the effective
irradiance available by the PV cell for conversion in this thesis.
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face area A, and inclination angle γ = 36o (optimal inclination angle for Greenwich

(London, UK) in summer). Among all orientation angle settings and among all time

steps throughout the day, the peak energy generation occurs during noon when all

available PV cells are south-oriented in Greenwich. This is because Greenwich is

located on the reference meridian of its time zone. The time step t = T
2

is noon.

Because a south-orientated PV cell in Greenwich has its peak energy generation at

noon, i.e., I0o

(
T
2

)
≥ I0o

(
t
)
∀t ∈ {1, ..., T}, the peak irradiance value at noon, i.e,

614[ W
m2 ] = I0o

(
T
2

)
, is used as normalization factor in this thesis. The peak irradiance

value is derived from [10] by downloading the data sheet for a south-oriented PV cell

in Greenwhich with inclination angle γ = 36o. The normalization factor 614 has the

effect that exactly 1 unit of normalized energy is generated by the south-oriented

PV cell at noon after normalization. This normalization is done for convenience.

Any normalization factor can be used but normalization the peak energy generation

to 1 unit of energy is convenient when representing the results in graphs. Other

locations than Greenwich (London, UK) will have to use their respective normaliza-

tion factor and their respective optimal inclination angle. Appendix A will do the

normalization process step by step for a better understanding.

Hence, Gθ,N(t) is the normalized energy generated by one PV cell out of the N PV

cells installed with orientation angle θ and can be calculated by

Gθ,N(t) =
Goriginal
θ,N (t)

Goriginal
0o,1

(
T
2

) =
Iθ(t)

I0o

(
T
2

)
·N

=
Iθ(t)

614 ·N
. (2.2)

The normalized energy generated by N PV cells, denoted by G(θ1,...,θN )(t), is calcu-

lated as follows:

G(θ1,...,θN )(t) =
N∑
i=1

Gθi,N(t). (2.3)

As a result, if all N PV cells are oriented to the south, they generate exactly 1 unit

of energy at noon, i.e., G(θ1,...,θN )

(
T
2

)
= G(0o,...,0o)

(
T
2

)
= 1.
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The irradiance Iθ(t) received by one PV cell installed with orientation angle θ at

time step t can be calculated by [40] as follows:

Iθ(t) = Ibθ(t) + Idθ(t) + Ig(t), (2.4)

where Ibθ(t) is the direct-beam component, Idθ(t) is the sky-diffuse component, and

Ig(t) is the ground-reflected component. Figure 2.3 shows the three components

graphically. The three irradiance components are investigated in the next three

sections separately.

Figure 2.3: Irradiance model

2.3.2 Ground-reflected Irradiance Ig(t)

The ground-reflected irradiance Ig(t) is independent of the orientation angle θ and

can be calculated by [41] as follows:

Ig(t) = GHIt · α ·
1− cos(γ)

2
, (2.5)

where α ∈ [0, 1] is the albedo of the ground. The albedo is dimensionless and

measures the amount of sunlight that a surface reflects. A black body that absorbs

all sunlight has an albedo value of 0. A body that reflects all sunlight has an albedo
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value of 1. For example, snow has a high albedo and hence, appears bright. Trees

have a low albedo and hence, appear dark.

2.3.3 Direct-beam Irradiance Ibθ(t)

The direct-beam irradiance Ibθ(t) depends on the orientation angle θ and can be

calculated by [40] as follows:

Ibθ(t) = DNIt ·max(0, cos(AOIθ(t))), (2.6)

where AOIθ(t) is the angle of incidence at time step t.

It is important to include the max in (2.6) to model that no energy can be harvest

if the PV cell is illuminated from the back, i.e., AOIθ(t) > 90o. For example, if the

PV cell is oriented to the east then AOIθ(t) will be greater than 90o in the evening.

Hence, cos(AOIθ(t)) will be smaller than 0. This will result in a negative irradiance

value Ibθ(t) during the evening, which makes no sense. As a result, the max in (2.6)

is necessary.

The angle of incidence AOIθ(t) is the angle between the line that points to the

sun and the normal vector to the PV cell panel (cf. Figure 2.4). AOIθ(t) can be

calculated by [11] as follows:

cos(AOIθ(t)) = + sin(δd) sin(lat) cos(γ)

+ cos(δd) cos(lat) cos(γ) cos(ωt)

+ cos(δd) sin(γ) sin(ωt) sin(θ)

− sin(δd) cos(lat) sin(γ) cos(θ)

+ cos(δd) sin(lat) sin(γ) cos(ωt) cos(θ) (2.7)

= at + btsin(θ) + ctcos(θ), with
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at = + sin(δd) sin(lat) cos(γ)

+ cos(δd) cos(lat) cos(γ) cos(ωt), (2.8)

bt = + cos(δd) sin(γ) sin(ωt), (2.9)

ct = − sin(δd) cos(lat) sin(γ)

+ cos(δd) sin(lat) sin(γ) cos(ωt), (2.10)

where lat is the latitude of the deployment area, δd is the declination angle, and ωt

is the hour angle at time step t. at, bt, and ct include the parts that are independent

of θ, are multiplied by sin(θ), and are multiplied by cos(θ), respectively.

Figure 2.4: Definition of the angle of incidence AOIθ(t)

The declination angle δd can be calculated by [42] as follows:

δd = 23.45o · sin
(

360

365
(d+ 284)

)
, (2.11)

where d is the day of the year with 1st of January as d = 1.

The declination angle models the different seasons (cf. Figure 2.5). 23.45o is the

axial tilt of the earth.
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Figure 2.5: Declination angle δd throughout the year

The hour angle ωt is defined as the angle between the meridian that intersects with

the line that points to the sun and the meridian containing the observer (cf. Figure

2.6). The hour angle ωt is depicted for Greenwich (London, UK) in Figure 2.7.

Because Greenwich (London, UK) is located on the reference meridian of its time

zone, the straight line in Figure 2.7 intersects the x-axis at noon3. ωt has a period

of 24 hours and ranges from −180o to 180o.

Figure 2.6: Definition of the hour angle ωt

Figure 2.7: Hour angle ωt throughout the day of a PV cell located on the reference meridian of its
time zone

3The hour angles ωt of locations that are not on their reference meridian of their time zone can
be depicted by a straight line as well which is shifted along the x-axis. The formula to calculate
the x-axis shift is given in [43].
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2.3.4 Sky-diffuse Irradiance Idθ(t)

The sky-diffuse irradiance Idθ(t) is derived from the Reindl model4 [48,49] as follows:

Idθ (t) =DHIt ·At ·
max(0, cos(AOIθ(t)))

cos(ζt)︸ ︷︷ ︸
Circumsolar Component

+DHIt · (1−At) ·
1 + cos(γ)

2︸ ︷︷ ︸
Isotropic Component

+

DHIt · (1−At) ·
1 + cos(γ)

2
·

√
DNIt · cos(ζt)

GHIt
sin3

(
γ

2

)
︸ ︷︷ ︸

Horizon Brightening Component

=

DHIt

[
At ·

max(0, cos(AOIθ(t)))

cos(ζt)
+ (1−At) ·

1 + cos(γ)

2
·
(

1 +

√
DNIt · cos(ζt)

GHIt
sin3

(
γ

2

))]
,

(2.12)

where At is the anisotropy index, and ζt is the solar zenith angle. The Reindl model

breaks the diffuse-sky irradiance into three separate parts: the isotropic component,

the circumsolar component, and the horizon brightening component (cf. (2.12)).

The circumsolar component depends on the orientation angle θ. The isotropic com-

ponent, and the horizon brightening component do not depend on the orientation

angle θ.

The solar zenith angle ζt can be calculated by [50] as follows:

cos(ζt) = sin(lat) sin(δd) + cos(lat) cos(δd) cos(ωt). (2.13)

The anisotropy index At of time step t can be calculated by [48] as follows:

4The difference between different irradiance models are usually in the way they model the sky-
diffuse irradiance [44–46]. The simplest and most commonly used model is the Liu and Jordan
model, which assumes an isotropic diffuse sky [35]. In other words, the diffuse-sky irradiance
is uniform across the sky and hence, the diffuse-sky irradiance is independent of the orientation
angle θ. The more advanced Reindl model is used in this thesis [47], which breaks the diffuse-sky
irradiance into three separate parts: the isotropic component, the circumsolar component, and the
horizon brightening component. The first component is the same as the Liu and Jordan model,
while the other components are small correction terms. The circumsolar component dependents
on the orientation angle θ.
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At =
DNIt
Ed

, (2.14)

where Ed is the extraterrestrial radiation. It can be calculated by [51] as follows:

Ed = Econ ·
(
r

rd

)2

= Econ ·
(

1 + 0.033 · cos

(
360 · d

365

))
, (2.15)

where Econ is the solar constant set at 1367 W
m2 [11], r is the mean sun-earth distance

also called 1 astronomical unit (1 AU), rd is the actual sun-earth distance, which

depends on the day of the year, and d is the day of the year with 1st of January as

d = 1.

2.3.5 Energy Consumption of a BS

Coriginal(t) is the original energy consumption by the BS during time step t (τ is the

duration of one time step) and C(t) is the normalized energy consumption by the

BS at time step t and can be calculated by

C(t) =
Coriginal(t)

Goriginal
0o,1

(
T
2

) , (2.16)

where Goriginal
0o,1

(
T
2

)
is the peak energy generation of the PV cells if they are all south-

oriented at noon. A practical example is given in Appendix A to show step by step

the process of normalization.

C(t) consists of a load-dependent part and a load-independent part. Three different

load scenarios are investigated: a BS deployed with constant traffic load Ccon(t),

with business-area traffic load Cbus(t), and with residential-area traffic load Cres(t)

(cf. Figure 2.8). Three different example energy consumption profiles are given to

show the composition of C(t) into a load-dependent part and a load-independent

part as follows:
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C(t) = Ccon(t)︸ ︷︷ ︸
load-dependent part

+ 1︸︷︷︸
load-independent part

(2.17)

C(t) = Cbus(t)︸ ︷︷ ︸
load-dependent part

+ 0.2︸︷︷︸
load-independent part

(2.18)

C(t) = Cres(t)︸ ︷︷ ︸
load-dependent part

+ 0.7︸︷︷︸
load-independent part

. (2.19)

The load-dependent part of the energy consumption profile determines the shape

of the energy consumption profile, i.e., whether there is one significant peak in the

profile, or several significant peaks in the profile or a very flat profile without any

peaks.

The exact values for Ccon(t), Cbus(t), and Cres(t) are given in Appendix B ”Input

File (Load Profiles)” for all time steps t ∈ {1, ..., T} as well as in Figure 2.8. It

can be observed that the traffic load in a business area (Cbus(t)) is significantly

higher during business hours than the rest of the day, while it drops a bit during

lunch hours. Hence, there is one significant peak in the business area traffic load

profile during afternoon hours. The traffic load in a residential area (Cres(t)) is anti-

correlated to the traffic load in a business area because it is higher during times

when people are usually not working with its peak during late evening. This profile

has peaks in the morning as well as in the evening.

Figure 2.8: Constant traffic load profile, business traffic load profile, and residential traffic load
profile throughout the day. Data source: [52]
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For each of the three different load scenarios, I want to investigate how the rela-

tionship between the energy generation profile and the energy consumption profile

affects the outcome of the orientation angles optimization. Therefore, I choose dif-

ferent values for the load-independent part of the energy consumption so that I

have a case study in which the energy generation is significantly greater than the

energy consumption (G >> C), the energy generation is slightly greater than the

energy consumption (G > C), the energy generation is slightly smaller than the

energy consumption (G < C), and the energy generation is significantly smaller

than the energy consumption (G << C). Figures 2.9 - 2.11 show all energy con-

sumption profiles C(t) which will be numerically investigated in section 2.5. The

energy consumption profiles with the highest load-independent part in each figure

belongs to the category G << C. The energy consumption profiles with the lowest

load-independent part in each figure belongs to the category G >> C.

To see the relationships between the energy consumption profiles C(t) and the en-

ergy generation profiles G(t), the combined energy generation profile of two south-

oriented PV cells G(0o,0o)(t) as well as the combined energy generation profile of an

east-oriented PV cell with a west-oriented PV cell G(−90o,90o)(t) are shown.

Figure 2.9: Energy consumption profiles with constant traffic load and energy generation profiles
of 2 PV cells
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Figure 2.10: Energy consumption profiles with business-area traffic load and energy generation
profiles of 2 PV cells

Figure 2.11: Energy consumption profiles with residential-area traffic load and energy generation
profiles of 2 PV cells

2.3.6 Problem Formulation

The optimization objective is to minimize the normalized energy drawn from the

main grid f(θ1, ..., θN) by the BS throughout the day which is defined in (2.20). The

optimization problem is formulated as follows:

f(θ1, ..., θN) =
T∑
t=1

max{0, C(t)−G(θ1,...,θN )(t)} (2.20)

(θ∗1, ..., θ
∗
N) = arg min

(θ1,...,θN )
f(θ1, ..., θN), (2.21)

where (θ∗1, ..., θ
∗
N) are the optimal orientation angles for the N PV cells.
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Because surplus energy is wasted or fed to the grid with no feed-in tariff in the system

model 1, the maximum out of 0 and C(t) − G(θ1,...,θN )(t) has to be taken in (2.20).

It is assumed that energy can be bought from the grid at a fixed price throughout

the day (flat rates). Hence, the objective function is to minimize the accumulated

energy deficit throughout the day in (2.20)-(2.21). f(θ1, ..., θN) is transformed in

(2.22) - (2.24). Eq. (2.24) is used in Appendix B.

f(θ1, ..., θN) =
T∑
t=1

max

{
0, C(t)−

N∑
n=1

Gθn,N(t)

}
(2.22)

=
T∑
t=1

max

{
0, C(t)− Ig(t)

614︸ ︷︷ ︸
Ifix(t)

−
N∑
n=1

Ibθn (t) + Idθn (t)

614 ·N

}
(2.23)

=
T∑
t=1

max

{
0, Ifix(t)−

N∑
n=1

Ibθn (t) + Idθn (t)

614 ·N

}
(2.24)

The gain ∆n of adding the nth PV cell with optimal orientation angle θ∗n to the

system model 1 is defined as follows:

∆n = f(θ∗1, ..., θ
∗
n−1)− f(θ∗1, ..., θ

∗
n), n ∈ {2, ..., N}. (2.25)

The gain of adding the first PV cell with optimal orientation angle θ∗1 to the system

model 1 is defined as follows:

∆1 = f(0o)− f(θ∗1). (2.26)

A positive (negative) ∆n value represents an improvement (deterioration) in perfor-

mance of the system if the nth PV cell is added, n ∈ {1, ..., N}.
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2.4 Analytical Insights obtained from Section 2.3

This section identifies and discusses analytically to what extent the orientation angle

θ shifts the energy generation profile away from noon if the PV cells are not south-

oriented (θ 6= 0o). The direct-beam irradiance Ibθ(t) and the sky-diffuse irradiance

Idθ(t) depend on θ. Nonetheless, because the main component of the sky-diffuse

irradiance is independent of θ (isotropic component), while the other two compo-

nents, which are dependent on θ, are small correction terms, the focus will be on

the direct-beam irradiance in this section.

Figure 2.12 shows the values of at, bt, and ct throughout one day for the spring

equinox (d = 81), summer solstice (d = 172), autumn equinox (d = 264), and winter

solstice (d = 355). γ is fixed to 36o, and the location to Greenwich (lat = 51.4767o

North, lon = 0.0003o West) to calculated the at, bt, and ct values. Only the hour

angle ωt changes throughout the day, whereas all other parameters are constant

throughout the day in (2.8) - (2.10). Therefore, at, bt, and ct have a sine or cosine

behavior with the y-axis shifts and amplitudes are summarized in (2.27) - (2.29).

Because wt has a period of 24 hours, at, bt, and ct have a period of 24 hours as well.

The only angle that changes for different seasons is δd because it depends on the

day of the year d. Therefore, the differences between the four at curves, the four

bt curves as well as the four ct curves are caused only by δd. The curves for the

spring equinox and autumn equinox are identical, i.e., at (d = 81) = at (d = 264),

bt (d = 81) = bt (d = 264), and ct (d = 81) = ct (d = 264).
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at = + sin(δd) sin(lat) cos(γ)︸ ︷︷ ︸
y-axis shift

+ cos(δd) cos(lat) cos(γ)︸ ︷︷ ︸
amplitude

cos(ωt) (2.27)

bt = + cos(δd) sin(γ)︸ ︷︷ ︸
amplitude

sin(ωt) (2.28)

ct = − sin(δd) cos(lat) sin(γ)︸ ︷︷ ︸
y-axis shift

+ cos(δd) sin(lat) sin(γ)︸ ︷︷ ︸
amplitude

cos(ωt) (2.29)

Figure 2.12: Values of at, bt, and ct throughout one day for the spring equinox (d = 81), summer
solstice (d = 172), autumn equinox (d = 264), and winter solstice (d = 355). γ is set at 36o, and
the location is Greenwich (lat = 51.4767o North, lon = 0.0003o West) for all scenarios.

The following insights are obtained from (2.27) to (2.29):

• at and ct are symmetrical to noon. Hence, if θ 6= 0o, i.e., sin(θ) 6= 0, bt is

solely responsible for shifting the energy generation peak towards the morning

or afternoon hours. If θ is orientated eastwards (westwards), then θ < 0o
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(θ > 0o), and sin(θ) < 0 (sin(θ) > 0), and hence the energy generation peak is

shifted toward the morning (afternoon) hours.

• Also (2.6) causes an asymmetric energy generation profile if θ 6= 0o. The

max in (2.6) removes the direct-beam irradiance if the PV cell is illuminated

from the back. The more the PV cell is orientated eastwards (westwards), the

longer the PV cell is illuminated from the back in the evening (morning) and

the more energy is lost in the evening (morning).

• If the location of the PV cell is on the equator, the PV cell should be installed

with the default inclination angle γ = 0o (cf. Table 1.1). As a consequence,

sin(γ) = 0, and bt = ct = 0. As a result, any orientation angle can be chosen

for a PV cell on the equator because the orientation angle does not affect the

energy generation profile of a PV cell on the equator. Figure 2.13 provides

graphically the proof by using the data from PVGIS [10]. Hence, orientation

angle optimization should be done for PV cells a bit farther away from the

equator, where PV cells are not horizontally mounted. Alternatively, PV cells

on the equator can be inclined (γ 6= 0o) a bit to facilitate orientation angle

optimization at the cost of reducing the average daily energy yield of the PV

cells.
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Figure 2.13: Irradiance values of differently orientated PV cell installations in Greenwich (temper-
ate zone on northern hemisphere) and Singapore (close to equator) in June. An inclination angle
of 38o (0o) was chosen for Greenwich (Singapore).
Data source: [10]

• The amplitude of bt is equal to the amplitude of ct at the north and south

poles, whereas the amplitude of bt is greater than the amplitude of ct at any

other location.

2.5 Results and Discussion

Table 2.1 summarizes all parameters and their values. The total surface area of the

N PV cells, denoted by A, the duration of one time step, denoted by τ , and the

energy conversion efficiency of the PV cells, denoted by η, do not appear in (2.2)

anymore due to the normalization of the energy generation in (2.2). As a result,

there is no value assigned to these parameters in Table 2.1.

The derived Iθ(t) values in this thesis were compared with the modeled irradiance

values from the PVGIS database (daily data profiles [53]). Both values were the
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same. This proves that our derivation and implementation of the irradiance model

is correct. The irradiance model implemented in PVGIS [10] is the Muneer model

[54], but it is mentioned on the PVGIS website [55] that the Muneer model performs

very similar to the Reindl model. The Reindl model was used in this thesis.

Table 2.1:
Input parameters of system model 1

Parameter Description Value

α Albedo of ground 0.2 (Grassland)

γ Inclination angle 36o

δd Declination angle Eq. (2.11)

ζt Zenith angle Eq. (2.13)

η Energy conversion efficiency of the PV cells

θ Orientation angle ∈ [−90o, 90o]

θ1, ..., θN Orientation angles of PV cells 1, ..., N ∈ [−90o, 90o]

θ∗1, ..., θ
∗
N Optimal orientation angles θ1, ..., θN ∈ [−90o, 90o]

τ Duration of one time step

ωt Hour angle Figure 2.7

∆1 Gain of adding the 1st PV cell Eq. (2.26)

∆n Gain of adding the nth PV cell, n ∈ {2, ..., N} Eq. (2.25)

A Total surface area of N PV cells

At Anisotropy index at time step t Eq. (2.14)

AOIθ(t) Angle of incidence Eq. (2.7)

C(t) Energy consumption of BS at time step t Figures 2.9 - 2.11

Cbus(t) Business-area traffic load profile at time step t Figure 2.8

Ccon(t) Constant traffic load profile at time step t Figure 2.8

Cres(t) Residential-area traffic load profile at time step t Figure 2.8

DHIt Diffuse horizontal irradiance at time step t PVGIS [10]

DNIt Direct normal irradiance at time step t PVGIS [10]

Ed Extraterrestrial radiation Eq. (2.15)
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Econ Solar constant 1367 W
m2 [11]

G(t) Energy generation of PV cell/cells at time step t

Goriginal
θ,N (t) Energy generated by one

PV cell installed with θ at time step t

(N is the total number of PV cells) Eq. (2.1)

Gθ,N(t) Normalized energy generated by

one PV cell installed with θ at time step t

(N is the total number of PV cells) Eq. (2.2)

G(θ1,...,θN )(t) Normalized total energy

generated by N PV cells at time step t

installed with θ1, ...., θN Eq. (2.3)

GHIt Global horizontal irradiance at time step t PVGIS [10]

Iθ(t) Irradiance on PV cell installed

with θ at time step t Eq. (2.4)

Ibθ(t) Direct-beam irradiance at time step t Eq. (2.6)

Idθ(t) Sky-diffuse irradiance at time step t Eq. (2.12)

Ig(t) Ground-reflected irradiance at time step t Eq. (2.5)

N Number of PV cells ∈ {1, 2, 3}

T Number of time steps 96

at Independent of θ Eq. (2.8)

bt Multiplied by sin(θ) Eq. (2.9)

ct Multiplied by cos(θ) Eq. (2.10)

d Day of the year 165 (June)

f(θ1, ..., θN) Optimization objective Eq. (2.20)

lat Latitude 51.4767o North

(Greenwich)

lon Longitude 0.0003o West

(Greenwich)
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2.5.1 Remarks on the Presentation of the Results

The optimal orientation angle(s) will be investigated for 1, 2, and 3 PV cell(s) in

Subsections 2.5.1.1, 2.5.1.2, and 2.5.1.3, respectively. The optimal orientation angle

will be obtained for each PV cell in the complete range from −90o to 90o with an

angular resolution of 1o.

The graphs in the Table 2.2, Table 2.4, and Table 2.6 are generated with MATLAB.

The source code of Chapter 2 is given in the Appendix B of this thesis and is available

on GitHub [56].

Normalized energy generation and consumption profiles are used in this thesis. That

means the given recommendations in this section can be scaled up for the intended

application in the real world. For example, if the derived recommendation for the

normalized consumption profile C(t) is to deploy one PV cell with optimal orien-

tation angel θ∗1, that means to deploy several PV cells with the same orientation

angle θ∗1 in the real world if C(t) was the consumption profile of a large-scale BS.

Another example, if the derived recommendation for the normalized consumption

profile C(t) is to deploy two PV cells with jointly optimized orientation angles θ∗1

and θ∗2, that means to deploy several PV cells where half of them are deployed with

θ∗1 and the other half with θ∗2 in the real world if C(t) was the consumption profile

of a large-scale BS.

2.5.1.1 Results for 1 PV Cell (N=1)

Table 2.2 and Table 2.3 show the results for 1 PV cell.

The orientation angle is optimized for three different types of load profiles: the

constant load profile Ccon(t), the business load profile Cbus(t), and the residential

load profile Cres(t) (cf. Figure 2.8). The left, middle, and right columns in Table

2.2 represent the constant, business, and residential load profiles, respectively. Each

row in Table 2.2 represents the relative relationship between the energy generation
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profile and energy consumption profile. In other words, the first, second, third,

and fourth rows in Table 2.2 represent the scenario that the energy generation is

significantly smaller, is slightly smaller, is slightly greater, is significantly greater

than the energy consumption, denoted by G << C, G < C, G > C, and G >> C,

respectively. The red lines in Table 2.2 are the optimal orientation angles.
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Table 2.2:
Orientation angles optimization for 1 PV cell with different load profiles

Constant Load Profile Business Load Profile Residential Load Profile

Table cell (a): Table cell (b): Table cell (c):

G << C

C(t) = 1 C(t) = Cbus(t) + 1 C(t) = Cres(t) + 1
(Figure 2.9 yellow line) (Figure 2.10 yellow line) (Figure 2.11 yellow line)

Table cell (d): Table cell (e): Table cell (f):

G < C

C(t) = 0.8 C(t) = Cbus(t) + 0.3 C(t) = Cres(t) + 0.8
(Figure 2.9 gray line) (Figure 2.10 green line) (Figure 2.11 green line)

Table cell (g): Table cell (h): Table cell (i):

G > C

C(t) = 0.6 C(t) = Cbus(t) C(t) = Cres(t) + 0.5
(Figure 2.9 light blue line) (Figure 2.10 gray line) (Figure 2.11 gray line)

Table cell (j): Table cell (k): Table cell (l):

G >> C

C(t) = 0.3 C(t) = 1
2
Cbus(t) C(t) = Cres(t)

(Figure 2.9 black line) (Figure 2.10 light blue line) (Figure 2.11 light blue line)
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2.5.1.2 Results for 2 PV Cells (N=2)

Table 2.4 and Table 2.5 show the results for 2 PV cells.

The orientation angles are optimized for three different types of load profiles: the

constant load profile Ccon(t), the business load profile Cbus(t), and the residential

load profile Cres(t) (cf. Figure 2.8). The left, middle, and right columns in Table

2.4 represent the constant, business, and residential load profiles, respectively. Each

row in Table 2.4 represents the relative relationship between the energy generation

profile and energy consumption profile. In other words, the first, second, third,

and fourth rows in Table 2.4 represent the scenario that the energy generation is

significantly smaller, is slightly smaller, is slightly greater, is significantly greater

than the energy consumption, denoted by G << C, G < C, G > C, and G >> C,

respectively. The red points in Table 2.4 are the optimal orientation angles. Each

square in Table 2.4 has one line of symmetry L:= {(θ1, θ2) ∈ [−90o, 90o]2 |θ1 = θ2}.
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Table 2.4:
Orientation angles optimization for 2 PV cells with different load profiles

Constant Load Profile Business Load Profile Residential Load Profile

Table cell (a): Table cell (b): Table cell (c):

G << C

C(t) = 1 C(t) = Cbus(t) + 1 C(t) = Cres(t) + 1
(Figure 2.9 yellow line) (Figure 2.10 yellow line) (Figure 2.11 yellow line)

Table cell (d): Table cell (e): Table cell (f):

G < C

C(t) = 0.9 C(t) = Cbus(t) + 0.3 C(t) = Cres(t) + 0.8
(Figure 2.9 green line) (Figure 2.10 green line) (Figure 2.11 green line)

Table cell (g): Table cell (h): Table cell (i):

G > C

C(t) = 0.8 C(t) = Cbus(t) C(t) = Cres(t) + 0.5
(Figure 2.9 gray line) (Figure 2.10 gray line) (Figure 2.11 gray line)

Table cell (j): Table cell (k): Table cell (l):

G >> C

C(t) = 0.6 C(t) = 1
2
Cbus(t) C(t) = Cres(t)

(Figure 2.9 light blue line) (Figure 2.10 light blue line) (Figure 2.11 light blue line)
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2.5.1.3 Results for 3 PV Cells (N=3)

Table 2.6 and Table 2.7 show the results for 3 PV cells.

The orientation angles are optimized for three different types of load profiles: the

constant load profile Ccon(t), the business load profile Cbus(t), and the residential

load profile Cres(t) (cf. Figure 2.8). The left, middle, and right columns in Table

2.6 represent the constant, business, and residential load profiles, respectively. Each

row in Table 2.6 represents the relative relationship between the energy generation

profile and energy consumption profile. In other words, the first, second, third,

and fourth rows in Table 2.6 represent the scenario that the energy generation is

significantly smaller, is slightly smaller, is slightly greater, is significantly greater

than the energy consumption, denoted by G << C, G < C, G > C, and G >> C,

respectively. The red points in each cube in Table 2.6 are the optimal orientation

angles. Each cube in Table 2.6 has three planes of symmetry as follows:

P1 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ2 = θ3}, (2.30)

P2 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ1 = θ3}, and (2.31)

P3 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ1 = θ2}. (2.32)

The y-axis (θ2-axis) is reversed in all business load profile scenarios (second column

of Table 2.6) so that the optimal points (red points) are visible. Because it is not

possible to show all values from a solid 3D cube on a 2D paper, every solid cube in

Table 2.6 is visualized by 6 planes slicing through the cube. The six planes are
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S1 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ3 = 90o}, (2.33)

S2 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ3 = 45o}, (2.34)

S3 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ3 = 0o}, (2.35)

S4 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ3 = −45o}, (2.36)

S5 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ3 = −90o}, and (2.37)

S6 := {(θ1, θ2, θ3) ∈ [−90o, 90o]3 |θ2 = 0o}. (2.38)

The optimal orientation angles (red points in Table 2.6) might float between the six

slicing planes. Table 2.7 presents the exact values of the optimal orientation angles,

hence the exact position of the red points in the cube.
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Table 2.6:
Orientation angles optimization for 3 PV cells with different load profiles

Constant Load Profile Business Load Profile Residential Load Profile

Table cell (a): Table cell (b): Table cell (c):

G << C

C(t) = 1 C(t) = Cbus(t) + 1 C(t) = Cres(t) + 1
(Figure 2.9 yellow line) (Figure 2.10 yellow line) (Figure 2.11 yellow line)

Table cell (d): Table cell (e): Table cell (f):

G < C

C(t) = 0.9 C(t) = Cbus(t) + 0.3 C(t) = Cres(t) + 0.8
(Figure 2.9 green line) (Figure 2.10 green line) (Figure 2.11 green line)

Table cell (g): Table cell (h): Table cell (i):

G > C

C(t) = 0.8 C(t) = Cbus(t) C(t) = Cres(t) + 0.5
(Figure 2.9 gray line) (Figure 2.10 gray line) (Figure 2.11 gray line)

Table cell (j): Table cell (k): Table cell (l):

G >> C

C(t) = 0.6 C(t) = 1
2
Cbus(t) C(t) = Cres(t)

(Figure 2.9 light blue line) (Figure 2.10 light blue line) (Figure 2.11 light blue line)
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2.5.2 Summary of the Key Findings and Discussions of the

Results

To evaluate the effects of different numbers of PV cells, the same consumption profile

C(t) is used among corresponding table cells in different tables whenever possible.

For example, the table cell (a) of Table 2.2 corresponds to the table cell (a) of Table

2.4 and to the table cell (a) of Table 2.6. The comparisons between the different

tables are fair because the total surface area A is constant. In other words, there

will be no more surface area added by adding another PV cell, instead the total

surface area A is divided among N PV cells in each scenario. The only exception

is that the table cells (d), (g), and (j) of Table 2.2 cannot be compared directly to

Table 2.4 or Table 2.6 because their energy consumption profile C(t) is different.

From a practical point of view, the optimization algorithm is faster for only a few

PV cells (1 or 2 PV cells) than for several PV cells (more than 2 PV cells). In

addition, if there are several PV cells with different optimal orientation angles, the

spacing between the differently oriented PV cells has to be sufficient enough to avoid

shadowing effects on the panels. This increases the area needed for deployment of the

PV cells. Furthermore, it is not possible to mount PV cells with different orientation

angles on the same array or support structure which increases the material cost for

buying several arrays or support structures. Hence, it is recommended to use as less

differently oriented PV cells as possible.

If G << C (first rows in Table 2.3, Table 2.5, and Table 2.7), all PV cells should be

oriented towards the south, i.e., the optimal orientation angles are θ∗1 = θ∗2 = ... =

θ∗N = 0o. If G << C, the optimal orientation angles are independent of the shape

of the energy consumption profile.

The optimal orientation angles change from south orientation in the G << C sce-

narios towards the east and/or west orientation in the G >> C scenarios in every

column of the Table 2.2, Table 2.4, and Table 2.6. The optimal orientation angles
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in the G < C scenarios are closer to the south orientation than the east and/or

west orientation, whereas the optimal orientation angles in the G > C scenarios are

closer to the east and/or west orientation than the south orientation.

The gains of adding the first, second, and third PV cell with optimized orientation

angle to the system model 1 are evaluated in the following paragraphs.

2.5.2.1 PV Cells with Default Orientation Angles

The centers of the stripes, squares, and cubes in Table 2.2, Table 2.4, and Table

2.6 are the normalized energy drawn from the main grid, i.e, f(0o), f(0o, 0o), and

f(0o, 0o, 0o), if no orientation angle optimization is performed, respectively. PV cells

are oriented towards the south in the northern hemisphere by default (cf. Table 1.1).

f(0o) = f(0o, 0o) = f(0o, ..., 0o) if the same consumption profile C(t) is used because

the total surface area A in the system model 1 is constant. For example, f(0o) in

Table 2.2(a) equals to f(0o, 0o) in Table 2.4(a) and f(0o, 0o, 0o) in Table 2.6(a).

2.5.2.2 Adding the First PV Cell with Optimized Orientation Angle

A positive (negative) ∆1 value represents an improvement (deterioration) in perfor-

mance of the system if the first PV cell is added. ∆1 > 0 for the table cells (d)-(l)

and ∆1 = 0 for the table cells (a)-(c) in Table 2.3. The greatest ∆1 values for the

constant, business, and residential load profiles in Table 2.3 are 0.3829 (table cell

(j)), 2.3318 (table cell (h)), and 1.5493 (table cell (l)), respectively. The optimized

values f(θ∗1) (red lines in Table 2.2) are usually significantly greater than the default

values f(0o) (centers of the stripes in Table 2.2). In other words, orientation an-

gle optimization improves the system performance in most scenarios. ∆1 is always

greater or equal to 0 because f(0o) ≥ f(θ∗1). That means the system performance

can only be improved and will never worsen by adding the first PV cell. It should

be pointed out that a load profile type can have an optimal orientation angle on
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the east side (θ∗ < 0o), on the west side (θ∗ > 0o), as well as oriented southwards

(θ∗ = 0o) in different scenarios as it can be seen for the residential load profiles

(third column) in Table 2.2.

2.5.2.3 Adding the Second PV Cell with Optimized Orientation Angle

∆2 > 0 for all table cells in Table 2.5 with two optimal points, i.e., (d), (f)-(g),

and (i)-(j). ∆2 = 0 for all table cells in Table 2.5 with only one optimal point, i.e.,

(a)-(c), (e), (h), and (k)-(l). The greatest ∆2 values for the constant, business, and

residential load profiles in Table 2.5 are 2.0891 (table cell (j)), 0 (table cells (b), (e),

(h), and (k)), and 0.5424 (table cell (i)), respectively. The ∆2 values are usually

smaller than the ∆1 values for the business and residential load profiles, whereas

the ∆2 values are usually greater than the ∆1 values for the constant load profiles.

Consumption profiles which are similar to the constant profile, e.g., the scenarios in

the first column, can often improve their performance (∆2 > 0) by choosing orienta-

tion angles with opposite algebraic signs, e.g., θ∗1 > 0o and θ∗2 < 0o, as seen in table

cells (d), (g), and (j) in Table 2.5. Consumption profiles which have significant local

maxima in the morning as well as in the afternoon, e.g., the residential load profile

scenarios in the third column, can often improve their performance (∆2 > 0) by

choosing orientation angles with opposite algebraic signs, e.g., θ∗1 > 0o and θ∗2 < 0o,

as seen in table cells (f), and (i) in Table 2.5. Consumption profiles which have

only one significant maximum, e.g., the business load profile scenarios in the second

column, cannot improve their performance (∆2 = 0) by adding a second PV cell.

2.5.2.4 Adding the Third PV Cell with Optimized Orientation Angle

∆3 > 0 for the table cell (l) in Table 2.7. ∆3 = 0 for all table cells in Table 2.7 with

only one optimal point, i.e., (a)-(c), (e), (h), and (k). ∆3 < 0 for the table cells (d),

(f)-(g), and (i)-(j) in Table 2.7. The greatest and lowest ∆3 values for the constant,

business, and residential load profiles in Table 2.7 are 0 and −0.3361, 0 and 0, and
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0.1494 and −0.0296, respectively. The ∆3 values are usually smaller than the ∆2

values and sometimes even negative. That means that adding the third PV cell

only improves the system performance slightly in some rare scenarios, whereas the

system performance worsens in most other scenarios. Consumption profiles which

are similar to the constant profile worsen their performance (∆3 < 0) in most sce-

narios because 3 PV cells cannot equally shift the energy generation peak towards

the morning and afternoon hours. Either two PV cells have positive algebraic signs

and one PV cell has a negative algebraic sign or the other way around, as seen

in table cells (d), (g), and (j) in Table 2.7. Consumption profiles which have two

significant local maxima in the morning as well as in the afternoon, e.g., the res-

idential load profile scenarios in the third column, can slightly improve (∆3 > 0)

or slightly worsen (∆3 < 0) their performance, as seen in table cells (l), and (i) in

Table 2.7. Consumption profiles which have only one significant maximum, e.g., the

business load profile scenarios in the second column, cannot improve their perfor-

mance (∆3 = 0) by adding a third PV cell. In general, consumption profiles which

have three significant local maxima between sunrise and sunset or consumption pro-

files which have two significant local maxima (with one maxima significantly greater

than the other one) might benefit in some scenarios from 3 PV cells. But it becomes

more and more difficult to find such specific consumption profiles and scenarios to

justify that 3 or more PV cells are necessary to improve the system performance

significantly.

2.6 Summary of Chapter 2

In Chapter 2, the orientation angles of N PV cells powering one BS were jointly

optimized to improve the match between the two profiles on a daily timescale. The

energy generation profiles of randomly inclined and oriented PV cells were analyti-

cally derived by the irradiance values received at a horizontally-mounted PV cell at

the same location. The energy drawn per day from the main grid by the BS given
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its energy consumption profile was used as the performance metric to determine the

optimal set of orientation angels. The main results are that the system performance

(∆1 > 0) can be increased significantly by deploying one PV cell with optimal orien-

tation angel θ∗1 (or several PV cells with the same orientation angle θ∗1) if the energy

generation of the PV cell is slightly smaller (G < C), is slightly greater (G > C), or

is significantly greater (G >> C) than the energy consumption of the BS. This is

caused by the ability to shift the energy generation peak from noon towards the most

significant local maximum between sunrise and sunset of the energy consumption

profile. Furthermore, the system performance (∆2 > 0) can be further increased

by deploying two PV cells with jointly optimized orientation angles θ∗1 and θ∗2 (or

several PV cells where half of them are deployed with θ∗1 and the other half with θ∗2)

if a constant energy consumption profile or a consumption profile with significant

local maxima in the morning as well as in the afternoon are given. This is caused

by the ability to shift the energy generation peak from noon towards the morning

with east-oriented PV cells, while the other west-oriented PV cells shift the energy

generation peak towards the afternoon in the northern hemisphere. Because there

are only two directions (morning and afternoon) that the energy can be shifted to,

the system performance can not be further increased significantly by deploying more

than 2 differently oriented PV cells. More than 2 differently oriented PV cells may

even degrade the system performance (∆3 < 0) in some scenarios.



Chapter 3

Impact of the Battery Capacity on

the Optimal Orientation Angle of

a PV Cell

Chapter 3 will extend the system model in Chapter 2 by adding a battery to the

BS. The battery is modeled by a Markov chain in this chapter. The system model

in Chapter 2 has no batteries deployed at the BS. Nonetheless, Chapter 2 can be

seen as special case of Chapter 3 because the batteries can have a battery capacity

of 0 in the system model of Chapter 3.

3.1 Literature Review: Batteries at BSs

It has been shown that the resiliency of cellular networks in disaster events, such

as earthquakes and hurricanes, is higher if the energy mix of the cellular networks

includes harvest renewable energy instead of relying solely on the power from the

main grid [57]. The service of the cellular network usually breaks down during a

disaster event because power lines are damaged and the BSs run out of energy. In

addition, back-up generators rely on petrol, which has to be transported to the

54
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sites of the BSs via roads, which are often damaged as well in disaster events.

Because the cellular network service is so vital during a disaster event to coordinate

rescue missions, police operations, and military operations, the cellular network is

required to be operational 99.999% of the time during a year, whereas the power

grid is required to be operational only 99.9% in the U.S. [13]. In other words,

the total yearly outage time of the power grid is less than nine hours, whereas the

requirements for cellular networks is much higher than that. Because power grids

have lower reliability requirements than that of cellular networks, BSs are typically

equipped with batteries that last for a few hours. The capacity of the batteries is

usually around four hours but can be higher for some BSs as well [13].

PV cells have a very strong diurnal cycle. [37, 58] showed that a storage capacity

of six hours of the average consumption of the appliance is sufficient to smoothen

the diurnal cycle of the PV cells. In scenarios where only solar energy is harvested

and no other energy sources are available, a storage capacity of twelve hours was

recommended by [37,58].

A life cycle energy cost assessment at a stand-alone PV system was conducted in

[59] to evaluate the long term benefits of shifting the energy consumption profile

towards the energy generation profile. A better match of both profiles led to a longer

battery lifetime due to less battery charging-discharging cycles and the opportunities

to downsize the battery capacity and PV cell surface area.

A good match between the energy generation profile of the PV cell and the energy

consumption profile of the BS can be achieved by either installing a small battery (or

no battery) with orientation angle optimization or installing a large battery with-

out orientation angle optimization. Nonetheless, batteries are expensive (25 - 250e,

220e and 1500e per kWh for the battery types Lead-Acid, NaS and Li-Ion, respec-

tively [60]) and have a short lifetime (3 - 9 years [61]) compared with the warranty

lifetimes of PV cells (PV cell manufacturers guarantee a 80% system performance

warranty for around 20 years [62]). Therefore, battery replacements significantly
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contribute to the system lifetime cost [61]. Small batteries with orientation an-

gle optimization are practically the more cost-effective option compared with large

batteries without orientation angle optimization.

Markov chain models have been used in the literature to model batteries, as seen in

[63–65].

3.2 Contributions of Chapter 3

The contributions of Chapter 3 are summarized as follows:

• Developing a PV cell’s orientation angle optimization algorithm with Markov

chain based battery model of a solar-powered BS with battery. The algorithm

takes into account the battery capacity and the energy consumption profile of

the BS. The number of user equipments (UEs) served by the BS throughout

the day SUE(θ) is used as the performance metric to identify the optimal

orientation angle.

• Verifying the accuracy of the proposed algorithm by showing that simulation

trials converge based on the law of large numbers to the output SUE(θ) of the

proposed algorithm.

• Showing that the proposed algorithm (depends on the number of battery

states) requires a shorter running time than the simulation trials (depends

on the number of trials) for moderate battery state resolutions.

• Investigating the dependency of the optimal PV cell orientation angle on the

given battery capacity.
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3.3 System Model 2 - One PV Cell Powering a

BS with Battery

Figure 3.1 depicts the system model 2 considered in this chapter. It consists of an

energy generation part with one PV cell, an energy storage part made of a battery,

and an energy consumption part composed of a BS. The energy flow follows the

arrows in Figure 3.1 and can only be altered by choosing different orientation angles

for the PV cell. All other parameters will be fixed. The energy generation flow is

denoted by Gθ,1(t) in Figure 3.1. The energy consumption flow is divided in a load-

independent part, denoted by ccon, and a load-dependent part, denoted by cθ(t), in

Figure 3.1.

Figure 3.1: Illustration of system model 2

3.3.1 Solar Energy Storage Model

The BS is only powered by a PV cell. The only controllable parameter in the

system model 2 is the PV cell orientation angle. The day is divided into T time

steps. The index of a time step is denoted by t ∈ {1, ..., T}. Each time step has
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three distinguish flows, first the energy generation flow will be executed followed by

the load-independent energy consumption flow and then the load-dependent energy

consumption flow (cf. Figure 3.1). During the energy generation flow, the amount of

generated energy in this time step is calculated and stored in the battery. During the

energy consumption flows, the amount of consumed energy by the BS in this time

step is subtracted from the battery. In reality all three periods occur simultaneously.

For applications that require a simultaneous energy generation and consumption, the

length of the time steps can be chosen small enough to achieve a nearly simultaneous

energy generation and consumption.

3.3.2 Energy Generation Flow and Load-independent En-

ergy Consumption Flow

The formula for the normalized energy generated by one PV cell deployed with

orientation angle θ at time step t, denoted by Gθ,1(t), has been derived in Chapter

2 and can be calculated by (2.2).

The battery has an upper bound and a lower bound that determine how much of

the generated energy Gθ,1(t) can be stored in the battery. In addition, the load-

independent energy consumption of the BS, denoted by ccon, has to be subtracted

from the battery at the beginning of each time step.

The available energy, denoted by aθ(t), in the battery at time step t is as follows:

aθ(t) = max{0,min{bθ(t− 1) +Gθ,1(t)− ccon, bmax}}, (3.1)

where bθ(t − 1) is the stored energy in the battery in time step t − 1, ccon is the

load-independent energy consumption of the BS during one time step, and bmax is

the maximum battery capacity. The min in (3.1) ensures that the stored energy in

the battery is less or equal the maximum battery capacity. The max in (3.1) ensures
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that the stored energy in the battery is greater or equal 0.

The amount of energy stored in the battery at time step 0 is bbegin as follows:

bθ(0) = bbegin. (3.2)

3.3.3 Load-dependent Energy Consumption Flow

To model the temporal fluctuation of the BS’s energy consumption, the number of

user equipments (UEs) connected to the BS at time step t is modeled by a random

variable l(t), which follows a Poisson distribution (PD) with density parameter λ(t).

The number of UEs in the coverage area of a BS is commonly modeled as a Poisson

point process in the literature [66–68]. Hence, l(t) is as follows:

l(t) := PD(λ(t)). (3.3)

Without loss of generality, it is assumed that the BS is located in a business-area.

The traffic load profile of a BS in a business-area, denoted by Cbus(t), has been

derived in Chapter 2 and is given in Figure 2.8. Nonetheless, the analysis can be

applied to any other location and traffic load profile as well. Hence, the density

parameter λ(t) is as follows:

λ(t) = Cbus(t). (3.4)

The number of served UEs1 by the BS at time step t, denoted by sθ(t), is limited

either by the number of UEs connected to the BS or the available energy as follows:

1UEs that cannot be served by the BS due to a lack of renewable stored energy in the battery
might be off-loaded to other BSs or the BS uses main grid energy to serve these UEs. Only UEs
which are served by the available renewable energy will be counted by sθ(t).
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sθ(t) = min
{
l(t),

⌊aθ(t)
cUE

⌋}
, (3.5)

where aθ(t) is the available energy at time step t, and cUE is the average amount of

energy needed to serve one UE.

The load-dependent energy consumption cθ(t) of the BS in time step t is given by

cθ(t) = sθ(t) · cUE. (3.6)

The residual energy in the battery at the end of time step t can be calculated by

bθ(t) = aθ(t)− cθ(t). (3.7)

3.3.4 Determination of the Average Number of Served UEs

Eq. (3.5) ensures that the consumed energy by the BS is less than or equal to the

stored energy in the battery. As a result, it is possible that some UEs cannot be

served2 by the BS due to a lack of renewable stored energy. Therefore, the number

of served UEs SUE(θ) throughout the day by a PV cell with orientation angle θ is

used as the performance metric, where SUE(θ) is as follows:

SUE(θ) =
T∑
t=1

sθ(t). (3.8)

Because the l(t) values are random variables, SUE(θ) denotes the average value of

SUE(θ).

2UEs that cannot be served by the BS due to a lack of renewable stored energy might be off-
loaded to other BSs or the BS uses main grid energy to serve these UEs. Only UEs which are
served by the available renewable stored energy will be counted by sθ(t).
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The orientation angle θ which achieves the highest SUE(θ) value is considered as

optimal orientation angle θ∗ as follows:

θ∗ = arg maxθ SUE(θ). (3.9)

3.4 Orientation Angle Optimization Algorithm with

Markov Chain Based Battery

The following PV cell’s orientation angle optimization algorithm with Markov chain

based battery model (Algorithm 1) can efficiently determine the optimal orientation

angle of the PV cell at a BS with battery. To show the effectiveness of the proposed

algorithm, a simulation algorithm (Algorithm 2) will be developed in the Section

3.5 as well. The advantages of the proposed algorithm in comparison with the

simulation algorithm (Algorithm 2) with respect to accuracy and running time will

be evaluated in Section 3.6.

All energy values are discretized with a precision of µ, i.e., G̃θ,1(t) will be the closest

multiple of µ from Gθ,1(t). For example, if µ = 1
1000

, and Gθ,1(t) = 1.2756, then

G̃θ,1(t) = 1.276.

There are Smax = bmax

µ
+1 battery energy states. The battery energy states 0, 1, 2, 3, ...,

and bmax

µ
represent 0, µ, 2·µ, 3·µ, ..., and bmax units of normalized energy, respectively.

Without loss of generality, bbegin, bmax, cUE, and ccon are multiple of µ.

The expression P(aθ(t) = i) = x means that the probability of having i units of

normalized energy available in the battery at the beginning of time step t is x. The

expression P(bθ(t) = i) = x means that the probability of the battery having stored

i units of normalized energy at the end of time step t is x.

The following subsections will go through the Algorithm 1 line by line. The expres-
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sion bxc means that the variable x is rounded down to the nearest integer value.

3.4.1 Markov Chain Initialization

Because l(t) is a Poisson distributed random variable, P(l(t) = r), and P(l(t) ≥ r)

are λ(t)r·e−λ(t)

r!
, and 1−

∑r−1
w=0

λ(t)w·e−λ(t)

w!
, respectively [69] (Algorithm 1 line: 1 - 2).

Smax is initialized (Algorithm 1 line: 5). The initial battery state bθ(0) is equal to

bbegin at the beginning of Algorithm 1. Therefore, the probability of the battery

state being bbegin at time step 0 is 1, whereas all the other battery states have a

probability of 0 (Algorithm 1 line: 6 - 7). There are no UEs served at the beginning

of Algorithm 1 (Algorithm 1 line: 8). Eq. (3.4) is used to calculate the UE density

parameters λ(t) for all time steps (Algorithm 1 line: 10).

3.4.2 Energy Generation Flow and Load-independent En-

ergy Consumption Flow of Algorithm 1

All P(aθ(t) = i) values are set at 0 at the beginning (Algorithm 1 line: 14). If

the battery is in state i, SShift calculates the new battery state after the generated

energy G̃θ,1(t) is added to the battery and the load-independent energy consumption

of the BS ccon is subtracted from the battery (Algorithm 1 line: 16). SShift takes

into account the upper bound and the lower bound of the battery (Algorithm 1 line:

16). If G̃θ,1(t) > ccon, then every battery state increases by
G̃θ,1(t)−ccon

µ
battery states

or reaches the maximum battery state Smax − 1 if it comes to a battery overflow.

This is depicted in Figure 3.2. If G̃θ,1(t) < ccon, then every battery state decreases

by
ccon−G̃θ,1(t)

µ
battery states or reaches the minimum battery state 0 if the battery

depletes. This is depicted in Figure 3.3. If G̃θ,1(t) = ccon, there is no energy added or

subtracted from the battery. Each transition occurs with a probability of 1, which

is depicted on top of each arrow in Figures 3.2 - 3.3.
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The probability of the battery state being i at the time step t−1, i.e., P(bθ(t−1) = i),

is added to the probability of the new battery state, i.e., P(aθ(t) = SShift) (Algorithm

1 line: 17).

Figure 3.2: Energy generation flow and load-independent energy consumption flow if G̃θ,1(t) > ccon

Figure 3.3: Energy generation flow and load-independent energy consumption flow if G̃θ,1(t) < ccon

3.4.3 Load-dependent Energy Consumption Flow of Algo-

rithm 1

The number of UEs in the coverage area of the BS, denoted by l(t), is Poisson

distributed with density parameter λ(t), i.e., l(t) := PD(λ(t)). The probability of

l(t) to be equal to an integer value r, denoted by P(l(t) = r), is given for a Poisson

distribution by λ(t)r·e−λ(t)

r!
[69] (Algorithm 1 line: 1). The expression P(l(t) ≥ r) is

given for a Poisson distribution by 1−
∑r−1

w=0
λ(t)w·e−λ(t)

w!
[69] (Algorithm 1 line: 2).

Each served UE consumes cUE units of normalized energy in each time step. There-

fore, every battery state has to be decreased by cUE

µ
battery states for every served

UE in each time step.

This paragraph derives the update formulas for the battery states from cUE

µ
to Smax−
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1 (Algorithm 1 line: 29 - 30). Figure 3.4 shows only the incoming arrows for the

battery state cUE

µ
as an example. The battery state i ∈ { cUE

µ
, ..., Smax − 1} has⌊

(Smax−1−i)·µ
cUE

⌋
+1 incoming arrows. r ∈

{
0, ...,

⌊
(Smax−1−i)·µ

cUE

⌋}
describes the transition

from battery state i+ r · cUE

µ
to battery state i when exactly r UEs are served. The

transition probability is P(l(t) = r) for this transition which is depicted next to the

transition arrow in Figure 3.4.

This paragraph derives the update formulas for the battery states from 0 to cUE

µ
− 1

(Algorithm 1 line: 27 - 28). Figure 3.5 shows only the incoming arrows for the bat-

tery state 0 as an example. The battery state i ∈ {0, ..., cUE

µ
−1} has

⌊
(Smax−1−i)·µ

cUE

⌋
+1

incoming arrows. r ∈
{

0, ...,
⌊

(Smax−1−i)·µ
cUE

⌋}
describes the transition from battery

state i + r · cUE

µ
to battery state i when more than r − 1 UEs are in the coverage

area of the BS, which means the BS can only serve r UEs and the remaining UEs

cannot be served due to the lack of available renewable stored energy. The transition

probability is P(l(t) ≥ r) for this transition which is depicted next to the transition

arrow in Figure 3.5.

Figure 3.4: Energy consumption flow for the battery state cUE

µ

Figure 3.5: Energy consumption flow for the battery state 0
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3.4.4 Determination of the Average Number of Served UEs

of Algorithm 1

When the battery is in state i, it can serve r ∈ {0, ...,
⌊
i·µ
cUE

⌋
} UEs. When r ∈

{0, ...,
⌊
i·µ
cUE

⌋
− 1}, the energy in the battery is decreased from battery state i with

the transition probability of P(l(t) = r). Exactly r UEs were served, that is why the

expression in Algorithm 1 line: 22 is multiplied by r. When r =
⌊
i·µ
cUE

⌋
, the energy

in the battery is decreased from battery state i with the transition probability of

P(l(t) ≥
⌊
i·µ
cUE

⌋
). Exactly

⌊
i·µ
cUE

⌋
UEs were served, that is why the expression in

Algorithm 1 line: 24 is multiplied by
⌊
i·µ
cUE

⌋
.

The PV cell’s orientation angle optimization algorithm with Markov chain based

battery model is summarized as follows:

Algorithm 1: PV cell’s orientation angle optimization algorithm with Markov

chain based battery model

Input: γ, µ, T , bbegin, bmax, ccon, cUE, G̃θ,1(t) ∀t ∀θ, and Cbus(t) ∀t
Output: θ∗

1: % P(l(t) = r) = λ(t)r·e−λ(t)

r!

2: % P(l(t) ≥ r) = 1−
∑r−1

w=0
λ(t)w·e−λ(t)

w!

3: for all θ ∈ {−40o,−35o, ..., 90o} do

4: % Initialization
5: Smax = bmax

µ
+ 1

6: P(bθ(0) =
bbegin

µ
) = 1

7: P(bθ(0) = i) = 0 ∀i ∈ {0, ..., Smax − 1} \ (
bbegin

µ
)

8: SUE(θ) = 0
9: for t = 1 : T do

10: λ(t) = Cbus(t)
11: end for

12: for t = 1 : T do
13: % Energy generation flow and load-independent energy consumption flow
14: P(aθ(t) = i) = 0 ∀i ∈ {0, ..., Smax − 1} % Initialization
15: for i ∈ {0, ..., Smax − 1} do

16: SShift = max{0,min{i+
G̃θ,1(t)−ccon

µ
, bmax

µ
}}

17: P(aθ(t) = SShift) = P(aθ(t) = SShift) + P(bθ(t− 1) = i)
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18: end for

19: % Adding the average number of UEs served at time step t to SUE(θ)
20: for i = 0 : Smax − 1 do
21: for r = 0 : b i·µ

cUE
c − 1 do

22: SUE(θ) = SUE(θ) + r · P(l(t) = r) · P(aθ(t) = i)
23: end for
24: SUE(θ) = SUE(θ) + b i·µ

cUE
c · P(l(t) ≥ b i·µ

cUE
c) · P(aθ(t) = i)

25: end for

26: % Load-dependent energy consumption flow

27: P(bθ(t) = i) =
∑⌊ (Smax−1−i)·µ

cUE

⌋
r=0

(
P(l(t) ≥ r) · P(aθ(t) = i+ r · cUE

µ
)
)

28: ∀i ∈ {0, ..., cUE

µ
− 1}

29: P(bθ(t) = i) =
∑⌊ (Smax−1−i)·µ

cUE

⌋
r=0

(
P(l(t) = r) · P(aθ(t) = i+ r · cUE

µ
)
)

30: ∀i ∈ { cUE

µ
, ..., Smax − 1}

31: end for
32: end for
33: return θ∗ = arg max

θ∈[−90o,90o]
SUE(θ)

3.5 Derivation of a Simulation Algorithm as Base-

line

Eqs. (3.1) - (3.9) are used to derive the following simulation algorithm (Algorithm

2). Algorithm 2 is the baseline for the performance comparison with the shown

proposed algorithm (Algorithm 1).
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Algorithm 2 Simulation algorithm

Input: γ, L, T , bbegin, bmax, ccon, cUE, Gθ,1(t) ∀t ∀θ, and Cbus(t) ∀t
Output: θ∗

1: for all θ ∈ {−40o,−35o, ..., 90o} do

2: SUE(θ) = 0
3: for l = 1 : L do

4: % Initialization
5: bθ(0) = bbegin

6: for t = 1 : T do
7: % Energy generation flow
8: aθ(t) = max{0,min{bθ(t− 1) +Gθ,1(t)− ccon, bmax}}

9: % Energy consumption flow
10: λ(t) = Cbus(t)

11: sθ(t) = min{PD(λ(t)), baθ(t)
cUE
c},

12: bθ(t) = aθ(t)− sθ(t) · cUE

13: end for
14: SUE(θ) = SUE(θ) +

∑T
t=1 sθ(t)

15: end for
16: SUE(θ) = SUE(θ)/L
17: end for
18: return θ∗ = arg max

θ∈[−90o,90o]
SUE(θ)

The simulation algorithm (Algorithm 2) has to be run for a large number L until

the average of the SUE(θ) value converges to a fixed value, denoted by SUE(θ).

3.6 Results and Discussion

3.6.1 Running Time of the proposed Algorithm and the

Simulation Algorithm

The simulation algorithm has a running time of O(L · T ), whereas the proposed

algorithm has a running time of O(S2
max · T ). Therefore, the proposed algorithm

outperforms the simulation algorithm when the battery is not divided into too many

battery states Smax. Especially for small BSs with small battery capacities, the
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proposed algorithm is an effective tool to determine the optimal PV cell orientation.

3.6.2 Accuracy of the Proposed Algorithm and the Simula-

tion Algorithm

The proposed algorithm has the advantage that it can generate the exact SUE(θ)

value, whereas the simulation algorithm only converges to the SUE(θ) value. The

parameters in Table 3.1 are used for the simulation algorithm and the proposed algo-

rithm. Both algorithms are run for every orientation angle θ ∈ {−40o,−35o, ..., 85o, 90o}

with constant inclination angle γ = 36o (optimal inclination angle for Greenwich

(London, UK) in summer). The simulation algorithm is run L = 100000 times to

achieve a good convergence.

Table 3.1:
Input parameters of system model 2

Parameter Description Value

θ Orientation angle of PV cell ∈ {−40o,−35o, ..., 90o}

θ∗ Optimal orientation angle of PV cell ∈ {−40o,−35o, ..., 90o}

γ Inclination angle of PV cell 36o

λ(t) Density parameter of Poisson

distributed random variable at time step t Eq. (3.4)

µ Precision of the discretization

of the energy values/ battery states 1
1000

Cbus(t) Business-area traffic load profile at time step t Figure 2.8

Gθ,1(t) Normalized energy generated by

one PV cell installed with θ at time step t Eq. (2.2)

G̃θ,1(t) Closest multiple of µ from Gθ,1(t)

L Number of loops in simulation algorithm 100000

SShift New battery state after G̃θ,1(t) is added

and ccon is subtracted (Algorithm 1 line: 16)
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Smax Number of battery energy states bmax

µ
+ 1

SUE(θ) Number of served

UEs throughout the day Eq. (3.8)

SUE(θ) Average number of served

UEs throughout the day Eq. (3.8)

T Number of time steps 96

aθ(t) Available energy in the battery

at the beginning of time step t Eq. (3.1)

bθ(t) Stored energy in the battery

at the end of time step t Eq. (3.7)

bbegin Amount of energy stored

in the battery at time step 0 0

bmax Battery capacity ∈ {1, 3, 10}

cθ(t) Load-dependent energy consumption

of the BS at time step t Eq. (3.6)

ccon Load-independent energy consumption

of the BS in one time step 0.5

cUE Average amount of energy

needed to serve one UE 0.2

d Day of the year 165 (June)

lat Latitude 51.4767o North

(Greenwich)

lon Longitude 0.0003o West

(Greenwich)

l(t) Number of UEs connected

to the BS at time step t Eq. (3.3)

sθ(t) Number of served UEs at time step t Eq. (3.5)

Figure 3.6 compares the simulation algorithm and the proposed algorithm. It shows
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that the simulation algorithm and the proposed algorithm calculate the same SUE(θ)

value for each orientation angle θ (L = 100000). Therefore, the proposed algorithm

accurate describes the limit of the simulation algorithm convergence.

Figure 3.6: Comparison between the proposed algorithm and the simulation algorithm. bmax was
set at 3.

3.6.3 Dependency of the Optimal PV Cell Orientation An-

gle on the Given Battery Capacity

Figure 3.7 plots the average number of served UEs SUE(θ) versus the PV cell orien-

tation angle θ for the three battery capacities: bmax = 1, 3, and 10. Figure 3.7 shows

that not only the given energy generation and consumption profile is important for

the outcome of the optimization but also the battery capacity.

If the battery capacity is small, i.e., bmax = 1, a lot of energy is wasted in the morning

and midday hours, whereas UEs cannot be served in the afternoon due to a lack

of available renewable stored energy in the battery. Therefore, PV cells orientated

to the west between 25o to 40o outperform the other orientation angles because

west-orientated PV cells shift the energy generation towards the load profile.
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If the battery capacity is large, i.e., bmax = 10, less energy is wasted in the morn-

ing and midday hours due to the larger battery capacity. Therefore, the optimal

orientation angle is θ∗ = 0o and the PV cell should be oriented towards the south.

South-oriented PV cells generate the most energy throughout the day among all

possible orientation angles.

If the battery capacity is moderate, i.e., bmax = 3, the optimal orientation angle is

between the optimal orientation angles of the other two cases.

Figure 3.7: Average number of served UEs per day SUE(θ) vs. PV cell orientation angle θ for
different battery capacities bmax

3.7 Summary of Chapter 3

In Chapter 3, a battery model was added to the system model. The battery model

is based on a Markov chain. The proposed PV cell’s orientation angle optimization

algorithm with Markov chain based battery model has a running time dependent

on the squared number of energy states of the battery Smax and the time resolu-

tion T . The number of UEs served by the BS throughout the day SUE(θ) was used

as the performance metric to identify the optimal orientation angle. The accuracy
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of the proposed algorithm was verified by showing that simulation trials converge

based on the law of large numbers to the output SUE(θ) of the proposed algorithm.

The effects of different battery capacities on the optimal PV cell orientation angle

were investigated. Whereas BSs with small battery capacities significantly improved

their performance by orientation angle optimization, BSs with large battery capac-

ities should orient the PV cells towards the south. The importance of the PV cell

orientation angle optimization was verified for a BS with small battery capacity

bmax = 1 located in a business-area in Greenwich (London, UK) in summer. Also

PV cells are normally orientated to the south in Greenwich (London, UK), the al-

gorithm revealed that the optimal orientation angle is between 25o to 40o to the

west.



Chapter 4

Optimal Deployment of Energy

Harvesters with Anti-correlated

Energy Generation Profiles at

Base Stations

Chapter 4 will extend the previous system model to a multi-cell cellular network.

There are now several BSs distributed in an area and some of them are connected

by distribution lines to share the renewable energy among them. The problem

investigated in this chapter is how renewable energy harvesters (e.g., a PV cell

or a small wind turbine) with anti-correlated energy generation profiles should be

deployed to every BS so that the renewable energy can be shared most efficiently

in the multi-cell cellular network. Two PV cells that have significantly different

orientation angles, such as east-oriented and west-oriented PV cells, are an example

for energy harvesters with anti-correlated energy generation profiles.

73
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4.1 Background: Different Power Sharing Meth-

ods

The amount of harvested power as well as the power consumption of the BSs vary

over time and space resulting in power surpluses or power deficits at the BSs. To

avoid wasting precious harvested power, power can be transmitted from surplus

BSs to deficit BSs via distribution lines. Other options for power sharing are wire-

less power transfer, traffic offloading, smart grid/ main grid trading and batteries.

These options are discussed separately and are compared with power sharing via

distribution lines in the following sections.

4.1.1 Wireless Power Transfer

Power can be shared through wireless power transfer. Nonetheless, this is limited

to very short distances due to the high power losses associated with long wireless

power transmission [70].

4.1.2 Traffic Offloading

The authors in [71] proposed to offload UEs at the cell edge of BSs with power

deficit to neighboring BSs with power surplus. The authors in [72, 73] proposed to

offload UEs from tiers with power deficit to tiers with power surplus, e.g., between

macro BSs and small BSs, in a heterogeneous cellular network. The authors in

[74–76] proposed to offload UEs from BSs with power deficit to BSs with power

surplus by switching BSs with power deficit into a sleep mode. Nonetheless, traffic

offloading causes a deterioration in the signal-to-interference-plus-noise ratio (SINR)

of the offloaded UEs, whereas power sharing via distribution lines does not affect

the SINR.
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4.1.3 Smart Grid/ Main Grid Trading

The authors in [77,78] proposed to sell and buy power from the grid and use the grid

to conduct virtual power transfer in addition to power sharing via distribution lines.

Power sharing via distribution lines requires high capital expenditure for deploying

physical distribution lines, whereas grid trading implies operational expenditure in

the form of a price that has to be paid to the grid operator. To evaluate if the initial

investment for deploying physical distribution lines is justified in the long-term or

each BS should rather sell and buy its power from the grid, the local price structure

has to be evaluated. BSs can buy power from the grid at a price pb and sell it to

the grid at a price ps (feed-in tariff), where the grid operator typically requires that

pb > ps [79]. The difference in price, denoted by ∆p, is as follows: ∆p = pb − ps

[80]. If ∆p is great, it is more cost-efficient to share power via distribution lines. If

∆p is small, it is more cost-efficient to sell and buy power from the grid. Even if

∆p is small, cellular network operators may prefer to rely on their own local power

sharing infrastructure to avoid reliance on the grid and to avoid the risk of future

power price changes beyond their control. In general, power sharing via distribution

lines is usually cost-efficient in dense cellular networks with small to medium inter-

site distances, where the power losses in the distribution lines are low, expensive

step-up and step-down transformers are not needed, and direct current (DC) to

alternating current (AC) conversion losses are negligible or DC distribution lines

are deployed between DC energy harvesters, such as PV cells. In contrast, sparse

cellular networks with long inter-site distances are not suitable for power sharing

via distribution lines due to the high power losses in the distribution lines, the high

capital expenditures, and the right-of-way clearances needed for the transmission

corridors. In the latter case, power will be more likely bought and sold to the grid.
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4.1.4 Batteries

Since batteries are expensive and have a short lifetime (3 - 9 years), battery replace-

ments significantly contribute to the system lifetime cost [61]. Employing both,

distribution lines for power sharing and batteries to balance the mismatch between

the power generation and consumption at the BSs, would greatly increase the capital

expenditures. Hence, only distribution lines are considered in the system model of

Chapter 4 to reduce the capital expenditures. Nonetheless, if batteries are deployed

as well, efficient power sharing algorithm can reduce the required battery capacities,

as seen in [81].

4.2 Literature Review: Benefits of Anti-correlated

Energy Generation

BSs powered by renewable energy face the problem of temporal variations in the

energy supply. These variations have to be managed properly to make efficient use

of the harvested renewable energy. Energy harvesters with anti-correlated energy

generation can mitigate the temporal variations in the energy supply. Thus, the

energy deficit in one profile can be compensated by an energy surplus of another

profile. For instance, 80% of energy was saved in [82] between a pair of energy-

sharing BSs with anti-correlated sinusoidal energy profiles.

Instead of relying on only one energy source with one only characteristic energy

generation profile, it is recommended to rely on a mix of different energy sources

with anti-correlated energy generation profiles. The benefits of relying on a mix

of different energy sources have been comprehensively studied in smart grids and

conventional power grids [83–86]. Relying on a mix of different renewable energy

sources to power cellular networks has been mainly studied in literature by com-

bining wind energy and solar energy [13, 14]. The anti-correlation between solar
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and wind energy generation profiles is justified on a daily timescale by the fact that

high pressure (low pressure) areas tend to be sunny (cloudy) with low (high) surface

wind, and on a seasonal timescale by the fact that solar (wind) energy is higher in

summer (winter) than in winter (summer) for many locations [14].

It is especially promising to connect nearby BSs with power distribution lines [1,4,87]

and to deploy energy harvesters with anti-correlated energy generation profiles at

nearby BSs that are connected by power distribution lines. As a result, power can

be transmitted from surplus BSs to deficit BSs via short distribution lines and the

distance-dependent power losses in the distribution lines are small. Most papers

in the literature do not consider the distance-dependent power loss in the distribu-

tion lines. For example, [88] introduced an energy hub for power sharing in cellular

networks but assumed that the resistive power loss in the distribution lines is inde-

pendent of the power propagation distance.

On the one hand, the greater the distance between two PV cells, the more anti-

correlated are their energy generation profiles and the more power can be transmitted

from the surplus BS to the deficit BS [89, 90]. On the other hand, the greater the

distance between two PV cells, the more power is lost in the distribution line.

4.3 Proof of Concept

To demonstrate the concept of energy harvesters with anti-correlated energy gen-

eration profiles, a southeast-orientated PV cell (energy harvester type 0) and a

southwest-orientated PV cell (energy harvester type 1) in Greenwich (London, UK)

in June are used as an example. Southeast-, and southwest-orientated PV cells

have an orientation angle of −45o, and 45o with respect to the southern direction,

respectively (cf. Figure 1.1). While energy harvester type 0 has a high power gen-

eration during time step 1 (potential surplus), energy harvester type 1 suffers from

a low power generation (potential deficit), as seen in Figure 4.1. Vice versa in time
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step 2, while energy harvester type 0 has a low power generation (potential deficit),

energy harvester type 1 has a high power generation (potential surplus). Each BS

is deployed with one of the two energy harvester types and all BSs have the same

constant energy consumption profile for simplicity in this example, as seen in Figure

4.1. To make efficient use of the renewable power, power should be transmitted via

distribution lines from BSs equipped with energy harvester type 0 to BSs equipped

with energy harvester type 1 in time step 1. Vice versa in time step 2, power should

be transmitted via distribution lines from BSs equipped with energy harvester type

1 to BSs equipped with energy harvester type 0.

Figure 4.1: A southeast-orientated PV cell and a southwest-orientated PV cell in Greenwich (Lon-
don, UK) in June are used to demonstrate the concept of energy harvesters with anti-correlated
energy generation profiles. The historical average time series data of the PV cells were derived
from PVGIS [10].
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4.4 Contributions of Chapter 4

The contributions of Chapter 4 are summarized as follows:

• Developing an optimization algorithm that can be run once during the cellu-

lar network planning to determine what type of energy harvesters should be

deployed to every BS in a cellular network. There are two different types of

energy harvesters available for deployment which have anti-correlated energy

generation profiles.

• Taking into account the topology of the cellular network as well as the distance-

dependent power loss in the distribution lines during the optimization.

• Developing an optimization objective that maximizes the power that can be

transmitted from surplus BSs to deficit BSs in the cellular network.

• Comparing the proposed optimization algorithm with randomly deploying

anti-correlated energy harvesters to the BSs. The effects of different numbers

of BSs, different distribution line existence probabilities, different distribution

line power loss coefficients, and different power surplus values are investigated.

4.5 System Model 3 - Deployment of Anti-correlated

Energy Harvesters to Every BS in a Cellular

Network

There are B ∈ N uniformly distributed BSs in a square area of l2 square meters,

l ∈ N, which are denoted by BSi, i ∈ {1, ..., B} (cf. Figure 4.2). The parameter

ci ∈ {0, 1} denotes if BSi is equipped with the energy harvesting device type 0 or

the energy harvesting device type 1, e.g., either with a solar cell or a wind turbine.

A BSi with energy harvesting device type 0, i.e., ci = 0, belongs to cluster 0 and is
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depicted with a black node in Figure 4.3. A BSi with energy harvesting device type

1, i.e., ci = 1, belongs to cluster 1 and is depicted with a red node in Figure 4.3.

The BS clustering optimization algorithm will be run once during the cellular net-

work planning to determine for every BS its cluster and the corresponding energy

harvesting device type.

4.5.1 Power Surplus/Deficit Values

The difference between the power generation and consumption of BSi is denoted by

the power surplus/deficit value pti[W ] in watts for time step t ∈ {1, 2}. A surplus

in power, and a deficit in power at BSi are indicated by a positive value pti, and a

negative value pti, respectively. The power surplus/deficit values of BSs in the same

cluster at a given time step are similar because they are equipped with the same

energy harvesting device type and have a similar BS load. As a result, all BSs in the

same cluster are assumed to have the same power surplus/deficit value at a given

time step.

The energy generation profile of BSs in cluster 0 is anti-correlated to the energy

generation profile of BSs in cluster 1. In other words, BSs of cluster 0, and cluster

1 have a power surplus of b0 ∈ R+, and a power deficit of b1 ∈ R− in time step 1,

respectively. Vice versa in time step 2, BSs of cluster 0, and cluster 1 have a power

deficit of b1, and a power surplus of b0, respectively. The power surplus/deficit values

pti
1 are summarized as follows:

1It is assumed that every BS has a similar total daily energy consumption. Therefore, the energy
harvesting device types should have similar capacities. The capacity of an energy harvesting device
should not be oversized or undersized for powering one BS, that means it can be assumed that
every BS will experience power surpluses and power deficits throughout the day. The time during
a day where energy harvesting device 0 produces more power than the energy harvesting device
1 is represented by time step 1, whereas the time during a day where energy harvesting device 1
produces more power than the energy harvesting device 0 is represented by time step 2. Hence, it
is justified to use only two time steps t ∈ {1, 2} in the system model 3 to represent a 24-hour day.
Because the optimization is done only once in a BS’s lifetime, pti represents the average daily power
surplus/deficit value at the BS throughout the lifetime of the BS. Thus, it can be assumed that
throughout the lifetimes of the BSs, the power surplus/deficit values at the BSs in the same cluster
at a given time step are the same because they are equipped with the same energy harvesting
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pti =



b0 ci = 0 and t = 1

b1 ci = 1 and t = 1

b1 ci = 0 and t = 2

b0 ci = 1 and t = 2.

(4.1)

Figure 4.2: Illustration of the considered cellular network with B = 5 BSs uniformly distributed
in a square area of l2 square meters.

Figure 4.3: The graph representation of the cellular network with example BS cluster allocation
values ci, surplus/deficit power values p1i in time step 1 and surplus/deficit power values p2i in time
step 2 given for the BSs.

device type and have a similar BS load. Because the energy harvesting device types have similar
capacities, it can be assumed that p10 = p21 = b0 and p11 = p20 = b1.
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4.5.2 Distance-dependent Power Loss in the Distribution

Lines

The normalized Euclidean distance d
(
(i, j)

)
between BSi and BSj with respect to

l meters is as follows:

d
(
(i, j)

)
=
||BSi −BSj||

l
, (4.2)

where ||BSi − BSj||[m] in meters is the Euclidean distance between BSi and BSj,

and l[m] in meters is the side length of the square in Figure 4.3.

Power can be transmitted from a surplus BS in one cluster to a deficit BS in the

other cluster at each time step if the two BSs are connected by a distribution line.

The power flow in the distribution line is subject to power loss due to resistive

heating. The power loss Ploss

(
(i, j)

)
[W] in watts in the distribution line from BSi

to BSj can be calculated by Ohm’s law and the formula for the distribution line

resistance [91] as follows:

Ploss

(
(i, j)

)
= I2

ele · ρ ·
l · d
(
(i, j)

)
Ac

= I2
ele · C · d

(
(i, j)

)
, (4.3)

where Iele[A] in amperes is the electric current traveling through the distribution

line, ρ[Ωm] in ohm-meters is the resistivity of the distribution line, l[m] in meters

is the side length of the square in Figure 4.3, d
(
(i, j)

)
is defined in (4.2), Ac[m

2] in

square meters is the cross-sectional area of the distribution line, and C[Ω] in ohms

is the power loss coefficient per l meters of distribution line, i.e., C = ρ·l
Ac

.

4.5.3 Topology of the Cellular Network

The topology of the cellular network is represented by a graph (cf. Figure 4.3),

where V is the set of vertices which denotes the BSs, and E is the set of directed
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edges which denotes the distribution lines as follows:

V ={1, 2, ..., B},

E ={(i, j), (j, i)|i ∈ V, j ∈ V,BSi and BSj are

connected by a distribution line},

(4.4)

where (i, j) denotes the directed edge from BSi to BSj.

The power flow on the edge (i, j) is denoted by f t
(
(i, j)

)
in time step t ∈ {1, 2}.

All power values are normalized with respect to the constant value of max{b0, |b1|}

as follows:

f̂ t
(
(i, j)

)
=

f t
(
(i, j)

)
max{b0, |b1|}

b̂0 =
b0

max{b0, |b1|}

b̂1 =
b1

max{b0, |b1|}.

(4.5)

The power values f̂ t
(
(i, j)

)
, b̂0, b̂1 are the normalized power values of f t

(
(i, j)

)
, b0,

b1, respectively.

4.5.4 Justification of Assumptions

The following two assumptions in the system model 3 are justified in this section.

• Assumption 1: The power flow is equivalent to the second power of the electric

current flow in the distribution line.

The electric power P in the distribution line can be calculated as follows:

P = Vele · Iele, (4.6)
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where Vele is the electric potential, and Iele is the electric current. The power

loss Ploss

(
(i, j)

)
in the distribution line is caused by the electric current and not

the electric potential of the power, as seen in (4.3). Nonetheless, it is outside

of the scope of this thesis to model the relationship between the power flow

and the electric current flow in the distribution line. Hence, it is assumed for

simplicity and in accordance with (4.6) that if the power increases/decreases in

the distribution line, the electric current and the electric potential increase/de-

crease equally. In other words, a power flow in the distribution line of x watts

is equivalent to a flow of Iele =
√
x amperes and Vele =

√
x voltages in the

system model 3. Hence, the parameter f t
(
(i, j)

)
[W/A2] can be interpreted as

the power flow on the edge (i, j) in watts or the second power of the current

flow I2
ele on the edge (i, j) in square amperes.

• Assumption 2: C ∈
[
0, 1√

2

]
.

The maximum normalized distance d
(
(i, j)

)
in a square is

√
2. If C were

greater than 1√
2
, then C · d

(
(i, j)

)
could be greater than 1. That would imply

that more power is lost in the distribution line than was sent through the

distribution line.

4.6 Mixed-Integer Linear Programming Problem

The objective is to find the optimal BS cluster allocation values cn for all BSn, n ∈ V ,

i.e., deploying either an energy harvesting device type 0 or an energy harvesting

device type 1 at every BS, so that the renewable power in the cellular network

can be used most efficiently. cn, f̂ 1
(
(i, j)

)
, and f̂ 2

(
(i, j)

)
are the parameters to be

determined for all n ∈ V and (i, j) ∈ E. Because the parameters cn are integers,

whereas the power flow values f̂ t
(
(i, j)

)
are real numbers, a mixed-integer linear

programming solver is needed for this problem.

The optimization objective is to maximize the total normalized renewable power M
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received at the deficit BSs during the two time steps as follows:

M = max
cn, f̂1((i,j)), f̂2((i,j))
∀n∈V, ∀(i,j)∈E

{ ∑
(i,j)∈E

f̂ 1
(
(i, j)

)(
1− C · d

(
(i, j)

))
︸ ︷︷ ︸

time step 1

+
∑

(i,j)∈E

f̂ 2
(
(i, j)

)(
1− C · d

(
(i, j)

))
︸ ︷︷ ︸

time step 2

} (4.7)

subject to

Lower bounds and upper bounds for the parameters to be determined:

0 ≤ cn ≤ 1, cn ∈ Z, ∀n ∈ V

0 ≤ f̂ 1
(
(i, j)

)
≤ 1 ∀(i, j) ∈ E

}
time step 1

0 ≤ f̂ 2
(
(i, j)

)
≤ 1 ∀(i, j) ∈ E

}
time step 2

(4.8)

Power flow only on edges from surplus BSs to deficit BSs:

f̂ 1
(
(i, j)

)
+ ci ≤ 1 ∀(i, j) ∈ E

f̂ 1
(
(i, j)

)
− cj ≤ 0 ∀(i, j) ∈ E

 time step 1

f̂ 2
(
(i, j)

)
+ cj ≤ 1 ∀(i, j) ∈ E

f̂ 2
(
(i, j)

)
− ci ≤ 0 ∀(i, j) ∈ E

 time step 2

(4.9)

Power flow out of the surplus BSs:
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∑
(i,j)∈E
j∈V

f̂ 1
(
(i, j)

)
≤ b̂0 ∀i ∈ V

 time step 1

∑
(i,j)∈E
j∈V

f̂ 2
(
(i, j)

)
≤ b̂0 ∀i ∈ V

 time step 2

(4.10)

Power flow into the deficit BSs:

∑
(i,j)∈E
i∈V

f̂ 1
(
(i, j)

)(
1− C · d

(
(i, j)

))
≤ |b̂1| ∀j ∈ V

︸ ︷︷ ︸
time step 1∑

(i,j)∈E
i∈V

f̂ 2
(
(i, j)

)(
1− C · d

(
(i, j)

))
≤ |b̂1| ∀j ∈ V

︸ ︷︷ ︸
time step 2

(4.11)

The optimization objective (4.7) adds the normalized power flows on all edges and

subtracts the normalized power losses (cf. (4.3)) on all edges.

The inequalities (4.8) represent the lower bounds and the upper bounds for the

parameters to be determined, i.e., for the parameters cn, f̂ 1
(
(i, j)

)
and f̂ 2

(
(i, j)

)
for

all n ∈ V and (i, j) ∈ E. In addition, the inequalities (4.8) state that the parameters

cn are integers for all n ∈ V .

The inequalities (4.9) ensure that power only flows on edges from surplus BSs to

deficit BSs. Power can only flow on an edge (i, j) in time step 1 if BSi belongs to

cluster 0, i.e., ci = 0, and BSj belongs to cluster 1, i.e., cj = 1. f̂ 1
(
(i, j)

)
+ ci ≤ 1

implies that the power flow f̂ 1
(
(i, j)

)
is 0 if ci is not 0 and f̂ 1

(
(i, j)

)
−cj ≤ 0 implies

that the power flow f̂ 1
(
(i, j)

)
is 0 if cj is not 1 in time step 1. Vice versa in time

step 2, power can only flow on an edge (i, j) if BSi belongs to cluster 1, i.e., ci = 1,

and BSj belongs to cluster 0, i.e., cj = 0. f̂ 2
(
(i, j)

)
+ cj ≤ 1 implies that the power

flow f̂ 2
(
(i, j)

)
is 0 if cj is not 0 and f̂ 2

(
(i, j)

)
− ci ≤ 0 implies that the power flow
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f̂ 2
(
(i, j)

)
is 0 if ci is not 1 in time step 2.

The inequalities (4.10) ensure that the normalized power flow out of a surplus BS is

not greater than b̂0. If i ∈ V is a deficit BS in time step t, then
∑

(i,j)∈E
j∈V

f̂ t
(
(i, j)

)
≤ b̂0

is already fulfilled because all power flows out of the deficit BSi are 0 due to the

inequalities (4.9).

The inequalities (4.11) ensure that the normalized power flow into a deficit BS is

not greater than |b̂1|. The power received at the deficit BSs is subject to power

losses in the distribution lines. If j ∈ V is a surplus BS in time step t, then∑
(i,j)∈E
i∈V

f̂ t
(
(i, j)

)(
1−C · d

(
(i, j)

))
≤ |b̂1| is already fulfilled because all power flows

into the surplus BSj are 0 due to the inequalities (4.9).

4.7 Numerical Results

The intlinprog(f, intcon, A, b) function implemented in MATLAB is used to solve

the mixed-integer linear programming problem (MILPP) defined in (4.7) - (4.11).

Unless otherwise stated, the values2 from Table 4.1 are used for the parameters to

evaluate the performance of the proposed MILPP.

1000 random graphs are generated to determine the average normalized renewable

power M received at the deficit BSs during the two time steps. The random graphs

are generated by placing the B BSs uniformly in the square and connecting any two

BSs with a probability of q ∈ [0, 1] with a distribution line.

Table 4.1:
Input parameters of system model 3

Parameter Description Value

B ∈ N Number of BSs 8

q ∈ [0, 1] Distribution line existence probability 0.3

2Without loss of generality, b0 is set at 1 and b1 is set at −1 because the energy harvesting
device types should have similar capacities and all power values will be normalized in (4.5) anyway.
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C ∈ [0, 1√
2
] Power loss coefficient per l meters of distribution line 0.6

b0 ∈ R+ Power surplus value 1

b1 ∈ R− Power deficit value -1

The performance of the proposed MILPP is investigated in comparison with ran-

domly allocating BSs into clusters, i.e., without considering the topology of the

cellular network or the power losses in the distribution lines by setting the cluster

allocation values ci at 0, and 1 with a probability of 50%, and 50%, respectively. In

other words, P(ci = 0) = P(ci = 1) = 0.5 ∀i for the random cluster allocation.

Figure 4.4 shows the performance of the proposed MILPP and of random BS cluster

allocation for different numbers of BSs B. The performance gap between the two

BS cluster allocations increases with the number of BSs. This is because a denser

cellular network offers more opportunities for BS clustering optimization, and hence

the superiority of the MILPP over the random BS cluster allocation increases with

the cellular network density.

Figure 4.4: Average normalized renewable power received at the deficit BSs M of the proposed
MILPP and of random BS cluster allocation vs. number of BSs B.
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Figure 4.5 shows the performance of the proposed MILPP and of random BS cluster

allocation for different distribution line existence probabilities q. The performance

gap between the two BS cluster allocations increases with the distribution line exis-

tence probability in the range of 0 to 0.3, whereas it is nearly constant in the range

of 0.3 to 1.

Figure 4.5: Average normalized renewable power received at the deficit BSs M of the proposed
MILPP and of random BS cluster allocation vs. distribution line existence probability q.

Figure 4.6 shows the performance of the proposed MILPP and of random BS cluster

allocation for different power loss coefficients per l meters of distribution line C3.

The performance gap between the two BS cluster allocations decreases slightly with

the power loss coefficient per l meters of distribution line.

3The normalized Euclidean distance d
(
(i, j)

)
=
||BSi−BSj ||

l is used in all formulas, derived
parameters and the proposed MILPP. Hence, the results in Figure 4.6 do not change with different
values of l, only the scale of the x-axis changes. If the BSs are deployed in an area of, e.g., 1000 m
x 1000 m, Figure 4.6 should be read with the x-axis label “Power loss coefficient per 1000 meters.”
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Figure 4.6: Average normalized renewable power received at the deficit BSs M of the proposed
MILPP and of random BS cluster allocation vs. power loss coefficient per l meters of distribution
line C.

Figure 4.7 shows the performance of the proposed MILPP and of random BS cluster

allocation for different power surplus values b0. b1 was fixed to −1. The performance

gap between the two BS cluster allocations increases with the power surplus value

in the range of 0 to 1, whereas it decreases in the range of 1 to 2. This is because

the power was normalized with respect to max{b0, |b1|}. If b0 6= 1, either b̂0 or |b̂1| is

smaller than 1 because a mismatch exists between the power surplus value and the

power deficit value. Only if b0 = 1, b̂0 and |b̂1| are both 1 because the power surplus

value and the power deficit value have the same absolute value.
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Figure 4.7: Average normalized renewable power received at the deficit BSs M of the proposed
MILPP and of random BS cluster allocation vs. power surplus value b0. b1 was fixed to −1.

Figures 4.4 - 4.7 show that the proposed MILPP always outperforms the random BS

cluster allocation because the MILPP considers the topology of the cellular network

and the power losses in the distribution lines. Because the proposed MILPP takes

into account the topology of the cellular network, it increases the probability that

a BS is deployed with an energy harvester type that is anti-correlated to those

deployed at its connected neighboring BSs. In addition, the shorter the distribution

line between a pair of BSs, the more likely that these two BSs are deployed with

anti-correlated energy harvesters, because the proposed MILPP takes into account

the distance-dependent power loss in the distribution lines. The MILPP has an

average system performance improvement of around 40% in comparison with the

random BS cluster allocation.
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4.8 Summary of Chapter 4

In Chapter 4, the system model was extended to a multi-cell cellular network.

The system model consisted of several BSs that were distributed in an area and

some of them were connected by distribution lines to share the renewable energy

among them. There were two different types of energy harvesters, which have

anti-correlated energy generation profiles, available for deployment in the system

model. Two PV cells that have significantly different orientation angles, such as east-

oriented and west-oriented PV cells, are an example for energy harvesters with anti-

correlated energy generation profiles. A mixed-integer linear programming problem

(MILPP) was developed to determine what type of energy harvester should be de-

ployed to every BS to share the renewable power most efficiently in the cellular

network. The MILPP can be run once during the cellular network planning and it

maximizes the power that can be transmitted from surplus BSs to deficit BSs in the

cellular network. The algorithm takes into account the topology of the cellular net-

work, i.e., whether or not a distribution line exists between a pair of BSs. Hence, the

proposed algorithm increases the probability that a BS is deployed with an energy

harvester type that is anti-correlated to those deployed at its connected neighboring

BSs. In addition, the shorter the distribution line between a pair of BSs, the more

likely that these two BSs are deployed with anti-correlated energy harvesters, be-

cause the proposed algorithm takes into account the distance-dependent power loss

in the distribution lines. The renewable power that can be transmitted from the sur-

plus BSs to the deficit BSs in the cellular network is on average around 40% higher

with the proposed MILPP in comparison with randomly deploying anti-correlated

energy harvesters to the BSs.



Chapter 5

Conclusion and Future Work

5.1 Summary of Thesis Achievements

Chapter 2 focused on matching the energy generation profile of PV cells with the

energy consumption profile of a BS in time. The orientation angles of N PV cells

powering one BS were jointly optimized to improve the match between the two pro-

files. The proposed optimization algorithm only needs to be run a single time offline

and the obtained optimal angles can be used for all solar-powered BSs with similar

geographic locations and energy consumption profiles. The energy generation profile

of any randomly inclined and oriented PV cell were analytically derived from the

irradiance values received at a horizontally-mounted PV cell at the same location.

The thesis identified and discussed analytically to what extent the orientation angle

θ shifts the energy generation profile away from noon if the PV cells are not south-

oriented (θ∗ = 0o). The energy drawn per day from the main grid by the BS given

its energy consumption profile was used as the performance metric to determine the

optimal set of orientation angels. To evaluate the effectiveness of the proposed ori-

entation angle optimization, three different types of BS energy consumption profiles

were investigated: constant traffic load profiles, business-area traffic load profiles,

and residential-area traffic load profiles.

93
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The main results are that the system performance (∆1 > 0) can be increased sig-

nificantly by deploying one PV cell with optimal orientation angel θ∗1 (or several

PV cells with the same orientation angle θ∗1) if the energy generation of the PV cell

is slightly smaller (G < C), is slightly greater (G > C), or is significantly greater

(G >> C) than the energy consumption of the BS. This is caused by the ability to

shift the energy generation peak from noon towards the most significant local max-

imum between sunrise and sunset of the energy consumption profile. Furthermore,

the system performance (∆2 > 0) can be further increased by deploying two PV cells

with jointly optimized orientation angles θ∗1 and θ∗2 (or several PV cells where half of

them are deployed with θ∗1 and the other half with θ∗2) if a constant energy consump-

tion profile or a consumption profile with significant local maxima in the morning as

well as in the afternoon are given. This is caused by the ability to shift the energy

generation peak from noon towards the morning with east-oriented PV cells, while

the other west-oriented PV cells shift the energy generation peak towards the after-

noon in the northern hemisphere. Because there are only two directions (morning

and afternoon) that the energy can be shifted to, the system performance can not

be further increased significantly by deploying more than 2 differently oriented PV

cells. More than 2 differently oriented PV cells may even deteriorate the system

performance (∆3 < 0) in some scenarios.

Chapter 3 added a battery model to the system model. The battery model is based

on a Markov chain. The PV cell’s orientation angle optimization algorithm with

Markov chain based battery model has a running time dependent on the squared

number of energy states of the battery Smax and the time resolution T . The number

of UEs served by the BS throughout the day SUE(θ) was used as the performance

metric to identify the optimal orientation angle. The accuracy of the proposed al-

gorithm was verified by showing that simulation trials converge based on the law of

large numbers to the output SUE(θ) of the proposed algorithm. The effects of dif-

ferent battery capacities on the optimal PV cell orientation angle were investigated.

Whereas BSs with small battery capacities significantly improved their performance
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by orientation angle optimization, BSs with large battery capacities should orient

the PV cells towards the south. The importance of the PV cell orientation angle

optimization was verified for a BS with small battery capacity (bmax = 1) located

in a business-area in Greenwich (London, UK) in summer. Also PV cells are nor-

mally orientated to the south in Greenwich (London, UK), the proposed algorithm

revealed that the optimal orientation angle is between 25o to 40o to the west.

In the last chapter, the system model was extended to a multi-cell cellular net-

work. The system model consisted of several BSs that were distributed in an area

and some of them were connected by distribution lines to share the renewable en-

ergy among them. There were two different types of energy harvesters, which have

anti-correlated energy generation profiles, available for deployment in the system

model. Two PV cells that have significantly different orientation angles, such as

east-oriented and west-oriented PV cells, are an example for energy harvesters with

anti-correlated energy generation profiles. If energy harvesters with anti-correlated

energy generation profiles are deployed at BSs that are connected by distribution

lines, the power can be transmitted from surplus BSs to deficit BSs via the distri-

bution lines. A mixed-integer linear programming problem (MILPP) was developed

to determine how energy harvesters with anti-correlated energy generation profiles

should be deployed to every BS to share the renewable power most efficiently in the

cellular network. The MILPP can be run once during the cellular network planning.

The MILPP takes into account the topology of the cellular network, i.e., whether or

not a distribution line exists between a pair of BSs. Hence, the proposed algorithm

increases the probability that a BS is deployed with an energy harvester type that is

anti-correlated to those deployed at its connected neighboring BSs. In addition, the

shorter the distribution line between a pair of BSs, the more likely that these two

BSs are deployed with anti-correlated energy harvesters, because the proposed algo-

rithm takes into account the distance-dependent power loss in the distribution lines.

The renewable power that can be transmitted from the surplus BSs to the deficit

BSs in the cellular network was on average around 40% higher with the proposed op-
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timization algorithm in comparison with randomly deploying anti-correlated energy

harvesters to the BSs.

5.2 Future Work and Applications

In the age of internet, online tools, and publicly available data, future applications

and optimization tools on basis of this thesis are likely to be implemented. There

are already an increasing amount of geographic information systems (GISs) online

available, which provide PV cell performance guides for various geographical areas

free of charge, such as for the USA [30], for Europe [10], and worldwide [31,32]. An

online tool for PV cell orientation angle optimization can be easily implemented on

basis of this thesis. Such an online tool would greatly increase the impact of this

thesis and will be beneficial for mankind and the environment. For that purpose,

the source code of Chapter 2 is given in the Appendix B of this thesis and is publicly

available on GitHub [56].

This thesis derived the optimization methods necessary to optimize PV cells’ ori-

entation angles and their deployment at BSs for many different scenarios. For that

purpose, the methods presented in this thesis are kept general and normalized energy

generation values and normalized energy consumption values are used. The advan-

tage of generalization and normalization is that the derived optimization methods

presented in this thesis can be applied to nearly any scenario in the real world. If

the input parameters for a specific scenario in the real world, such as PV cell types,

energy profiles, and cellular network topology, are given, the optimal orientation

angles and deployment strategy can be derived with the methods presented in this

thesis. The disadvantage of generalization and normalization is that the thesis did

not focus on deriving a comprehensive practical worldwide guide for a specific input

parameter set. Future extension to this work can be done by evaluation typical

specific input parameter sets and deriving for each set a comprehensive practical
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worldwide guide. In addition, if the specific input parameter set is derived from a

real world system, future work can be done by evaluating the performance of the real

world system deployed with the optimal PV cells’ orientation angles and deployment

strategy.

An interesting future extension is to increase the optimization horizon to an entire

year. Optimizing the inclination angle of a PV cell is done on a yearly timescale.

As a result, it is a method to shift the energy generation peak from a surplus

season (e.g. summer) to a deficit season (e.g. winter). In contrast, optimizing

the PV cell orientation angle is done on a daily timescale. As a result, it is a

method to shift the energy generation peak from a surplus time (e.g. noon) to a

deficit time (e.g. morning or afternoon). Nonetheless, most geographical locations

have different seasonal energy generation profiles. Hence, the optimal PV cells’

orientation angles and deployment strategies are different in different seasons. Our

derived optimization method can be applied to several days distributed throughout

the year (e.g. one day in winter, one day in spring, one day in summer, and one

day in autumn) and the average derived PV cells’ orientation angles and deployment

strategy can be used for deployment. In spite of that strategy, many locations in the

northern hemisphere might emphasis on improving the performance of the system

during the winter season since this is usually the most energy sparse season. A higher

weight can be given on the optimal PV cells’ orientation angles and deployment

strategy in winter compared with the other seasons. Increasing the optimization

horizon to an entire year and weighting the different seasons are an interesting

extension to this thesis.

Furthermore, future work can jointly optimize the orientation and inclination angles

of PV cells.

Some of the models in this thesis can be extended to model the real world more

accurately in the future. For example, the battery model could include input/output

efficiency coefficients since there is always a leakage when charging/discharging a
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battery. Another example, since the energy needed to serve one UE at the BS

during one time step varies considerably dependent on the UEs distance to the

BS, the requested service, and priority or interference issues with other UEs, the

average amount of energy needed to serve an UE could be modeled more realistically

in future extensions of this work.
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Appendix A

Normalization Example

A practical example will be used in this appendix to show step by step the pro-

cess of normalization and the derived recommendations for the orientation angles

optimization from Chapter 2.

An area of 5m2 is given for PV cell deployment in Greenwich. There are N PV

cells to deploy. The energy conversion efficiency of all PV cells η is set at 0.2 and

the inclination angle of all PV cells γ is set at 36o (optimal inclination angle for

Greenwich (London, UK) in summer). The time step duration τ is set at 15min =

15 ·60s = 900s and the total number of time steps T is set at 96. We assume that the

BS is located near a school. Hence, the energy consumption Coriginal(t) of the BS is

600000J=0.6MJ per 15 minutes during school hours, i.e., 8am-1pm (t ∈ {32, ..., 52}),

and 300000J=0.3MJ per 15 minutes during the rest of the day, i.e., t ∈ {1, ..., 31}

or t ∈ {53, ..., 96}.

Among all orientation angle settings and among all time steps throughout the day,

the peak energy generation occurs during noon when all PV cells are south-oriented

in Greenwich. This is because Greenwich is located on the reference meridian of its

time zone. This peak energy generation value PEG is used to normalize the energy

generation profiles of the PV cells as well as the energy consumption profile of the

BS for convenience. This has the convenient effect that the normalized peak energy

generation is exactly 1 unit of normalized energy as seen in Figure 2. The time step

t = T
2

is noon. The peak energy generation value of all PV cells (south-oriented) at

noon in this example is 552600J as follows:
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PEG =Goriginal
0o,1

(T
2

)
=

N∑
n=1

Goriginal
0o
n,N

(T
2

)
=

N∑
n=1

I0o
n

(T
2

)
· η · A

N
· τ = (1)

N∑
n=1

614 · 0.2 · 5

N
· 900 = 614 · 0.2 · 5 · 900 = 552600. (2)

614 W
m2 is obtained from the PVGIS database as seen in Figure 1.

Figure 1: PVGIS data sheet from [10]. γ is set at 36o, θ is set at 0o, month is set at June, and the
location is Greenwich (lat = 51.4767o North, lon = 0.0003o West).

Hence, Gθ,N(t) is the normalized energy generated by one PV cell (out of the N PV

cells) installed with orientation angle θ at time step t and can be calculated by

Gθ,N(t) =
Goriginal
θ,N (t)

Goriginal
0o,1

(
T
2

) =
Goriginal
θ,N (t)

552600
=

Iθ(t)

I0o

(
T
2

)
·N

=
Iθ(t)

614 ·N
. (3)
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Figure 2: Normalized energy generation profiles of a southeast-oriented, south-oriented, and
southwest-oriented PV cell. Each of the PV cells is covering the total surface area A = 5m2.
The south-oriented PV cell generates at noon the most energy among all orientation angle settings
and among all time steps throughout the day. This normalized peak energy generation is exactly
1 unit of normalized energy.

Hence, C(t) is the normalized energy consumption by the BS at time step t and can

be calculated by

C(t) =
Coriginal(t)

Goriginal
0o,1

(
T
2

) =
Coriginal(t)

552600
. (4)

I want to point out, that the energy generation profiles as well as the energy con-

sumption profile are normalized by the same value 552600J. But because the ir-

radiance Iθ(t) value was calculated in Chapter 2, the irradiance Iθ(t) has to be

normalized by 614 W
m2 ·N to achieve the same normalization, cf. (3)-(4).

I want to point out, that the energy generation profiles as well as the energy con-

sumption profile are normalized by the same value 552600J. This is because I want to

keep the same relationship between the two types of profiles after the normalization.

That means if the energy consumption at time step t is double the amount of the

energy generated by the PV cells at time step t before the normalization, the same

should be true after the normalization, i.e., the normalized energy consumption at

time step t is double the amount of the normalized energy generated by the PV cells

at time step t. This can be proven mathematically by
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C(t)

Gθ,N(t)
=

Coriginal(t)
552600

Goriginal
θ,N (t)

552600

=
Coriginal(t)

Goriginal
θ,N (t)

. (5)

Figure 3, and Figure 4 show the energy generation profile of one PV cell and the

energy consumption profile of the BS before normalization, and after normalization

for the given example, respectively. The energy generation profile of a south-oriented

PV cell covering the total surface area (A = 5m2) is depicted. The shapes of the

two profiles are the same in both figures. The relationship between the energy

generation profile and the energy consumption profile is the same in both figures.

Only the description of the primary y-axis and secondary y-axis changes between

the two figures.

Figure 3: Energy generation profile Goriginal
0o,1 (t) and energy consumption profile Coriginal(t) before

normalization.
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Figure 4: Energy generation profile G0o,1(t) and energy consumption profile C(t) after normaliza-
tion.

Figure 4 reveals that the energy consumption profile is similar to the business-area

traffic load profile from Chapter 2 (one significant peak during sunrise and sunset).

In addition, Figure 4 reveals that the energy generation is slightly smaller than the

energy consumption, i.e., G < C. That means, the orientation angle optimization

for this example will show a similar behavior as that of table cell (e) in Table 2.2,

Table 2.4, and Table 2.6, if 1 PV cell, 2 PV cells, and 3 PV cells are deployed on

the total surface area of 5m2, respectively. The optimal solution in this example is

to deploy one PV cell (or several PV cells) with the (same) optimized orientation

angle on the total surface area of 5m2. The optimal orientation angle will be slightly

to the east because the energy consumption peak is slightly shifted to the morning

hours. The exact value of the optimal orientation can be calculate with the method

presented in Chapter 2.
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Appendix B

MATLAB Source Code of Chapter 2 [56]

Main File:

1 % Al l ang l e s are in degree meassures .

2 close a l l

3 clear ( )

4

5 albedo = 0 . 2 ; % grass l and

6 theta = 0 ; % or i en t a t i on angle , degree measure , south=0, west=90, ea s t=−90

7 gamma angle = 36 ; % in c l i n a t i o n angle , degree measure , h o r i z o n t a l l y mounted :

gamma angle=0

8 Norm = 614 ; % normal i za t ion o f energy va lues , 614 W/mˆ2 because t h i s i s h i g h e s t

va lue f o r gamma angle=36 and the t a=0 at noon in Jun in Greenwich

9 range o f opt imum points = 100000; %i f t h i s parameter i s very b i g then some of the

optimum po in t s / s t r i p e s are not v i s i b l e in the output graph , i f t h i s parameter

i s very smal l then the red po in t s ( red s t r i p e s ) are too t h i c k in the graph ( too

many po in t s are marked as optimum po in t s / s t r i p e s )

10

11 N = 2 ; %Number o f PV c e l l s

12 T = 96 ; %Number o f time s t e p s

13 d = 165 ; %Day of the year (d=165 i s day in June ) ( 1ˆ s t o f January i s d=1)

14

15 l on = 0 . 0 0 0 3 ; %Longitude o f Greenwich , degree measure

16 l a t = 51 . 4767 ; %Lat i tude o f Greenwich , degree measure

17

18 l o a d p r o f i l e = 1 ; % 1==Constant Load Pro f i l e , 2==Business Load Pro f i l e , 3==

Res i d en t i a l Load Pr o f i l e

19 o f f s e t = 0 . 9 ; %o f f s e t ( l o a d p r o f i l e ) : C( t )=o f f s e t ( Constant Load P ro f i l e ) ,C(

t )=s ca l e ∗C bis+o f f s e t ( Business Load Pro f i l e ) , C( t )=s ca l e ∗C res+o f f s e t (

Re s i d en t i a l Load Pr o f i l e )

20 s c a l e = 1 ; %sca l e ( l o a d p r o f i l e ) : C( t )=o f f s e t ( Constant Load P ro f i l e ) ,C( t )

=s ca l e ∗C bis+o f f s e t ( Business Load Pro f i l e ) , C( t )=s ca l e ∗C res+o f f s e t (

Re s i d en t i a l Load Pr o f i l e )

21 t i me s t e p w he n d a t a s t a r t s = 17 ; %to read in the data from t e x t f i l e (17 fo r June

in Greenwich )

22 t ime step when data ends = T − t im e s t e p w he n d a t a s t a r t s + 2 ; %+2 for Greenwich

23

24 Input t GHI DHI DNI Load = zeros (T, 5 ) ;

25 a t b t c t = zeros (T, 3 ) ;
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26 Output t I Ib Re ind l Id Ig At omega cosZeta = zeros (T, 8 ) ;

27

28 f i l e I D = fopen ( ’ jun dai lyrad512836N 000001W 0deg 0deg . txt ’ , ’ r ’ ) ; %ho r i z o n t i a l l y

mounted PV c e l l in June at Greenwich as b a s e l i n e to ge t GHI, DHI, DNI

29 for i = 1 :7 % removes header from input data f i l e

30 handle = fget l ( f i l e I D ) ;

31 end

32

33 for t = t im e s t e p w he n d a t a s t a r t s : t ime step when data ends

34 handle = fget l ( f i l e I D ) ;

35 handle = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

36 GHI = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

37 DHI = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

38 DNI = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

39

40 Input t GHI DHI DNI Load ( t , 2 ) = str2num(GHI) ;

41 Input t GHI DHI DNI Load ( t , 3 ) = str2num(DHI) ;

42 Input t GHI DHI DNI Load ( t , 4 ) = str2num(DNI) ;

43 end

44

45 handle = fc lose ( f i l e I D ) ;

46 % symmetrisat ion o f data

47 for t =1:T/2

48 Input t GHI DHI DNI Load ( t , 2 ) = ( Input t GHI DHI DNI Load ( t , 2 )+

Input t GHI DHI DNI Load (T−t +1 ,2) ) /2 ;

49 Input t GHI DHI DNI Load (T−t +1 ,2) = Input t GHI DHI DNI Load ( t , 2 ) ;

50 Input t GHI DHI DNI Load ( t , 3 ) = ( Input t GHI DHI DNI Load ( t , 3 )+

Input t GHI DHI DNI Load (T−t +1 ,3) ) /2 ;

51 Input t GHI DHI DNI Load (T−t +1 ,3) = Input t GHI DHI DNI Load ( t , 3 ) ;

52 Input t GHI DHI DNI Load ( t , 4 ) = ( Input t GHI DHI DNI Load ( t , 4 )+

Input t GHI DHI DNI Load (T−t +1 ,4) ) /2 ;

53 Input t GHI DHI DNI Load (T−t +1 ,4) = Input t GHI DHI DNI Load ( t , 4 ) ;

54 end

55

56 for t = 1 :T

57 Input t GHI DHI DNI Load ( t , 1 ) = t ;

58 end

59

60 f i l e I D = fopen ( ’ l o a d p r o f i l e s . txt ’ , ’ r ’ ) ;

61 handle = fget l ( f i l e I D ) ; %removes header o f t a b l e

62

63 for t = 1 :T

64 handle = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

65 C con = fscanf ( f i l e I D , ’%s ’ ,1 ) ;
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66 C bis = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

67 C res = fscanf ( f i l e I D , ’%s ’ ,1 ) ;

68

69 i f ( l o a d p r o f i l e ==1)

70 Input t GHI DHI DNI Load ( t , 5 ) = str2num( C con ) ∗ s c a l e+o f f s e t ;

71 else i f l o a d p r o f i l e==2

72 Input t GHI DHI DNI Load ( t , 5 ) = str2num( C bis ) ∗ s c a l e+o f f s e t ;

73 else i f l o a d p r o f i l e==3

74 Input t GHI DHI DNI Load ( t , 5 ) = str2num( C res ) ∗ s c a l e+o f f s e t ;

75 else

76 disp ( ’ Error l o a d p r o f i l e i n d e x ’ ) ;

77 end

78 end

79 end

80 end

81

82 handle = fc lose ( f i l e I D ) ;

83

84 E con = 1367 ;

85 %Calcu la t i on o f e x t r a t e r r e s t r i a l r ad i a t i on ( depends on the day o f the year ) , in

degree measure

86 E d = E con ∗(1+0.033∗ cosd ((360/365) ∗d) ) ;

87 %Calcu la t i on o f d e c l i n a t i on ang le ( depends on the day o f the year ) , in degree

measure

88 d e l t a = 23.45∗ s ind (360/365∗(284+d) ) ;

89

90 %the f o l l ow i n g for−l oop c a l c u l a t e s the the energy genera t ion p r o f i l e o f 1 PV c e l l

out o f the N PV c e l l s

91

92 for t = 1 :T

93 % time s t ep index

94 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 1 ) = t ;

95

96 % Calcu la t i on o f an i so t ropy index A t

97 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 6 ) = Input t GHI DHI DNI Load ( t , 4 ) /

E d ;

98

99 % Calcu la t i on o f omega at Greenwich

100 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 7 ) = −180+1.875+(t−1)/T∗360 ;

101

102 % Calcu la t i on o f cos ( z e ta ) , z e ta i s s o l a r z en i t h ang le

103 omega = Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 7 ) ;

104 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 8 )=s ind ( l a t ) ∗ s ind ( d e l t a )+cosd ( l a t ) ∗

cosd ( de l t a ) ∗ cosd ( omega ) ;
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105

106 % Calcu la t i on o f a t , b t , and c t

107 a t b t c t ( t , 1 ) = s ind ( de l t a ) ∗ s ind ( l a t ) ∗ cosd ( gamma angle )+cosd ( de l t a ) ∗ cosd ( l a t ) ∗

cosd ( gamma angle ) ∗ cosd ( omega ) ;

108 a t b t c t ( t , 2 ) = cosd ( d e l t a ) ∗ s ind ( gamma angle ) ∗ s ind ( omega ) ;

109 a t b t c t ( t , 3 ) = −s ind ( d e l t a ) ∗ cosd ( l a t ) ∗ s ind ( gamma angle )+cosd ( de l t a ) ∗ s ind ( l a t ) ∗

s ind ( gamma angle ) ∗ cosd ( omega ) ;

110

111 % Calcu la t i on o f the d i r e c t−beam ir rad iance I b = DNI∗max(0 , cos (AOI) )

112 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 3 ) = I beam ( theta , t , Norm,N,

Input t GHI DHI DNI Load , a t b t c t ) ;

113

114 % Calcu la t i on o f the sky−d i f f u s e i r rad iance I d ( Reindl model )

115 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 4 ) = I d i f f u s e ( theta , gamma angle , t ,

Norm,N, Input t GHI DHI DNI Load , Output t I Ib Re ind l Id Ig At omega cosZeta ,

a t b t c t ) ;

116

117 % Calcu la t i on o f the ground−r e f l e c t e d i r rad iance I g = GHI∗ a lbedo ∗(1−cosd (

gamma angle ) ) /2

118 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 5 ) = I ground ( gamma angle , albedo , t ,

Norm,N, Input t GHI DHI DNI Load ) ;

119

120 % Calcu la t i on o f t o t a l i r rad iance I=I b+I d+I g ;

121 Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 2 ) =

Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 3 ) +

Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 4 ) +

Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 5 ) ;

122

123 % Remove ground−r e f l e c t e d i r rad iance ( i t i s independent o f the o r i en t a t i on ang le

t h e t a ) from load p r o f i l e

124 Input t GHI DHI DNI Load ( t , 5 ) = Input t GHI DHI DNI Load ( t , 5 ) − N∗

Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 5 ) ;

125 end

126

127

128 % Creation o f output graph fo r 1 PV c e l l / 2 PV c e l l s or 3 PV c e l l s ,

129 % Ground−r e f l e c t e d i r rad iance i s a l ready removed from load p r o f i l e

130

131 i f (N==1)

132 [ f , minimum , maximum, optimum angles ] = pr int 1D graph ( gamma angle ,N,T, Norm,

Input t GHI DHI DNI Load , Output t I Ib Re ind l Id Ig At omega cosZeta , a t b t c t

, range o f opt imum points ) ;

133 else i f (N==2)

134 [ f , minimum , maximum, optimum angles ] = pr int 2D graph ( gamma angle ,N,T, Norm,
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Input t GHI DHI DNI Load , Output t I Ib Re ind l Id Ig At omega cosZeta ,

a t b t c t , range o f opt imum points ) ;

135 else i f (N==3)

136 [ f , minimum , maximum, optimum angles ] = pr int 3D graph ( gamma angle ,N,T, Norm,

Input t GHI DHI DNI Load , Output t I Ib Re ind l Id Ig At omega cosZeta ,

a t b t c t , range o f opt imum points ) ;

137 else

138 disp ( ’ Error : N i s not 1 , 2 , or 3 ’ )

139 end

140 end

141 end

Ground-reflected Irradiance:

1 function [ I g ] = I ground ( gamma angle , albedo , t , Norm,N, Input t GHI DHI DNI Load )

2 % Calcu la t i on o f the ground−r e f l e c t e d i r rad iance I g = GHI∗ a lbedo ∗(1−cosd (

gamma angle ) ) /2

3 GHI = Input t GHI DHI DNI Load ( t , 2 ) ;

4

5 I g = (GHI/(Norm∗N) ) ∗ albedo∗(1− cosd ( gamma angle ) ) /2 ;

6 end

Direct-beam Irradiance:

1 function [ I b ] = I beam ( theta , t , Norm,N, Input t GHI DHI DNI Load , a t b t c t )

2 % Calcu la t i on o f the d i r ec t−beam ir rad iance I b = DNI∗max(0 , cos (AOI) )

3 cos of AOI = a t b t c t ( t , 1 ) + a t b t c t ( t , 2 ) ∗ s ind ( theta ) + a t b t c t ( t , 3 ) ∗ cosd ( theta )

; %AOI i s ang le o f inc idence

4 DNI = Input t GHI DHI DNI Load ( t , 4 ) ;

5

6 I b = (DNI/(Norm∗N) ) ∗max(0 , cos of AOI ) ;

7 end

Sky-diffuse Irradiance:

1 function [ I d ] = I d i f f u s e ( theta , gamma angle , t , Norm,N, Input t GHI DHI DNI Load ,

Output t I Ib Re ind l Id Ig At omega cosZeta , a t b t c t )

2 % Calcu la t i on o f the sky−d i f f u s e i r rad iance I d ( Reindl model )

3

4 smal l = 0 .000001 ;

5 i f Input t GHI DHI DNI Load ( t , 2 ) < smal l
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6 % prevent d i v i s i o n by zero

7 Input t GHI DHI DNI Load ( t , 2 ) = smal l ;

8 end

9

10 A t = Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 6 ) ; %A t i s an i so t ropy index

11 c o s o f z e t a = Output t I Ib Re ind l Id Ig At omega cosZeta ( t , 8 ) ; %ze ta i s s o l a r

z en i t h ang le

12 cos of AOI = a t b t c t ( t , 1 ) + a t b t c t ( t , 2 ) ∗ s ind ( theta ) + a t b t c t ( t , 3 ) ∗ cosd ( theta )

; %AOI i s ang le o f inc idence

13 GHI = Input t GHI DHI DNI Load ( t , 2 ) ;

14 DHI = Input t GHI DHI DNI Load ( t , 3 ) ;

15 DNI = Input t GHI DHI DNI Load ( t , 4 ) ;

16

17 I d = (DHI/(Norm∗N) ) ∗ ( ( A t∗max(0 , cos of AOI ) /max(0 . 000001 , c o s o f z e t a ) )+(1−A t )

∗((1+ cosd ( gamma angle ) ) /2)∗(1+sqrt (max(0 ,DNI∗ c o s o f z e t a ) /GHI) ∗( s ind (

gamma angle /2) ˆ3) ) ) ;

18 end

Normalized Energy Drawn from the Main Grid:

1 function [ normal i zed energy ] = normal i zed energy drawn f rom the main gr id (

gamma angle ,N,T, Norm, Input t GHI DHI DNI Load ,

Output t I Ib Re ind l Id Ig At omega cosZeta , theta , a t b t c t )

2 normal i zed energy = 0 ;

3

4 for t = 1 :T

5 Load = Input t GHI DHI DNI Load ( t , 5 ) ;

6 for n = 1 :N

7 Load = Load − I beam ( theta (n) , t , Norm,N, Input t GHI DHI DNI Load ,

a t b t c t ) − I d i f f u s e ( theta (n) , gamma angle , t , Norm,N,

Input t GHI DHI DNI Load , Output t I Ib Re ind l Id Ig At omega cosZeta

, a t b t c t ) ;

8 end

9 normal i zed energy = normal i zed energy + max( Load ,0 ) ;

10 end

11 end

Output (1 PV Cell):

1 function [ f , minimum , maximum, optimum angles ] = pr int 1D graph ( gamma angle ,N,T, Norm,

Input t GHI DHI DNI Load , Output t I Ib Reindl Id Ig cosAOI omega , a t b t c t ,

range o f opt imum points )
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2

3 f = figure ;

4 set ( f , ’ p o s i t i o n ’ , [ 5 0 50 700 70 0 ] )

5

6 theta = zeros ( 1 , 1 ) ;

7 V( 1 : 1 8 1 , 1 : 1 8 1 ) = 100000;

8 [X,Y] = meshgrid (−90:90) ;

9 optimum angles = zeros ( 1 , 1 ) ;

10

11 for the ta 1 = −90:90

12 theta (1 ) = the ta 1 ;

13 for i = 1 :181

14 V( the ta 1 +91, i ) = normal i zed energy drawn f rom the main gr id (

gamma angle ,N,T, Norm, Input t GHI DHI DNI Load ,

Output t I Ib Reindl Id Ig cosAOI omega , theta , a t b t c t ) ;

15 end

16 end

17

18 minimum = min(min(V) ) ;

19 maximum = max(max(V) ) ;

20

21 axis ([−90 90 −90 90 minimum maximum ] ) ;

22 x t i c k s (−90:45 :90) ;

23 y t i c k s ( [ ] ) ;

24 set (gca , ’ FontSize ’ ,16) ;

25 xlabel ( ’ Or i enta t i on Angle o f PV Ce l l 1 (\ the ta 1 ) ’ ) ;

26

27 % mark a l l optimum po in t s with red s t r i p e s

28 hold on

29 minimum = round(minimum∗ range o f opt imum points ) / range o f opt imum points ;

30 j = 1 ;

31 for the ta 1 = −90:90

32 for the ta 2 = −90:90

33 va l = round(V( the ta 1 +91, the ta 2 +91)∗ range o f opt imum points ) /

range o f opt imum points ;

34 i f va l <= minimum

35 view (0 , 90) ;

36 set (gca , ’ p o s i t i o n ’ , [ 0 . 5 0 . 5 0 .4 0 . 0 5 ] ) ;

37 plot3 (Y( the ta 1 +91, the ta 2 +91) ,X( the ta 1 +91, the ta 2 +91) ,V( the ta 1

+91, the ta 2 +91) , ’ . r ’ , ’ markers i ze ’ , 20) ;

38 i f the ta 2 == 0

39 optimum angles ( j , 1 ) = the ta 1 ;

40 j = j +1;

41 end
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42 end

43 end

44 end

45

46 set ( surf (Y,X,V) , ’ edgeco l o r ’ , ’ none ’ ) ;

47 co lorBar = colorbar ( ’ s outhout s ide ’ ) ;

48 colormap ( colorBar , flipud (colormap ) ) ;

49 colormap ( flipud (colormap ) ) ;

50 set ( colorBar , ’ p o s i t i o n ’ , [ 0 . 5 0 .35 0 .4 0 . 0 3 ] ) ;

51 co lorBar . Label . S t r ing = ’ Normalized Energy drawn from the Grid ’ ;

52 co lorBar . Label . FontSize = 1 6 . 5 ;

53 end

Output (2 PV Cells):

1 function [ f , minimum , maximum, optimum angles ] = pr int 2D graph ( gamma angle ,N,T, Norm,

Input t GHI DHI DNI Load , Output t I Ib Reindl Id Ig cosAOI omega , a t b t c t ,

range o f opt imum points )

2

3 f = figure ;

4 set ( f , ’ p o s i t i o n ’ , [ 100 100 550 4 50 ] )

5

6 theta = zeros ( 1 , 2 ) ;

7 V( 1 : 1 8 1 , 1 : 1 8 1 ) = 100000;

8 [X,Y] = meshgrid (−90:1 :90) ;

9 optimum angles = zeros ( 1 , 2 ) ;

10

11 for the ta 1 = −90:90

12 for the ta 2 = −90:90

13 theta (1 ) = the ta 1 ;

14 theta (2 ) = the ta 2 ;

15 V( the ta 1 +91, the ta 2 +91) = normal i zed energy drawn f rom the main gr id (

gamma angle ,N,T, Norm, Input t GHI DHI DNI Load ,

Output t I Ib Reindl Id Ig cosAOI omega , theta , a t b t c t ) ;

16 end

17 end

18

19 minimum = min(min(V) ) ;

20 maximum = max(max(V) ) ;

21

22 set ( surf (X,Y,V) , ’ edgeco l o r ’ , ’ none ’ ) ;

23 set (gca , ’ p o s i t i o n ’ , [ 0 . 2 0 . 2 0 .6 0 . 6 ] ) ;

24 axis ([−90 90 −90 90 minimum maximum ] ) ;

25 x t i c k s (−90:45 :90) ;
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26 y t i c k s (−90:45 :90) ;

27 set (gca , ’ FontSize ’ ,14) ;

28

29 colormap ( flipud (colormap ) ) ;

30 co lorBar = colorbar ;

31 co lorBar . Label . S t r ing =’ Normalized Energy drawn from the Grid ’ ;

32 co lorBar . Label . FontSize = 14 ;

33 set (gca , ’ FontSize ’ ,14)

34

35 xlabel ( ’ Or i enta t i on Angle o f PV Ce l l 1 (\ the ta 1 ) ’ ) ;

36 ylabel ( ’ Or i enta t i on Angle o f PV Ce l l 2 (\ the ta 2 ) ’ ) ;

37 zlabel ( ’ Normalized Energy drawn from the Grid ’ ) ;

38

39 % mark a l l optimum po in t s with red po in t s

40 hold on

41 minimum = round(minimum∗ range o f opt imum points ) / range o f opt imum points ;

42 j = 1 ;

43 for the ta 1 = −90:90

44 for the ta 2 = −90:90

45 va l=round(V( the ta 1 +91, the ta 2 +91)∗ range o f opt imum points ) /

range o f opt imum points ;

46 i f va l <= minimum

47 view (0 , 90) ;

48 plot3 (X( the ta 1 +91, the ta 2 +91) ,Y( the ta 1 +91, the ta 2 +91) ,V( the ta 1

+91, the ta 2 +91) , ’ . r ’ , ’ markers i ze ’ , 20) ;

49 optimum angles ( j , 1 ) = the ta 1 ;

50 optimum angles ( j , 2 ) = the ta 2 ;

51 j = j +1;

52 end

53 end

54 end

55 end

Output (3 PV Cells):

1 function [ f , minimum , maximum, optimum angles ] = pr int 3D graph ( gamma angle ,N,T, Norm,

Input t GHI DHI DNI Load , Output t I Ib Reindl Id Ig cosAOI omega , a t b t c t ,

range o f opt imum points )

2

3 f = figure ;

4 set ( f , ’ p o s i t i o n ’ , [ 5 0 50 900 80 0 ] )

5

6 theta = zeros ( 1 , 3 ) ;

7 V( 1 : 1 8 1 , 1 : 1 8 1 , 1 : 1 8 1 ) = 100000;
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8 [X,Y, Z ] = meshgrid (−90:1 :90) ;

9 optimum angles = zeros ( 1 , 3 ) ;

10 maximum = 0 ;

11

12 %Generates s e v e r a l l a y e r s

13 for the ta 1 = −90:1:90

14 for the ta 2 = −90:1:90

15 for the ta 3 = −90:1:90

16 theta (1 ) = the ta 1 ;

17 theta (2 ) = the ta 2 ;

18 theta (3 ) = the ta 3 ;

19 V( the ta 1 +91, the ta 2 +91, the ta 3 +91) =

normal i zed energy drawn f rom the main gr id ( gamma angle ,N,T, Norm

, Input t GHI DHI DNI Load ,

Output t I Ib Reindl Id Ig cosAOI omega , theta , a t b t c t ) ;

20 end

21 end

22 end

23

24 minimum = min(min(min(V) ) ) ;

25 maximum = max(max(max(V) ) ) ;

26

27 for i = 1 :2

28 i f i == 1

29 subplot ( 3 , 2 , [ 1 , 3 ] ) ;

30 end

31 i f i== 2

32 subplot ( 3 , 2 , [ 2 , 4 ] ) ;

33 end

34

35 x s l i c e = [ ] ;

36 y s l i c e = 0 ;

37 z s l i c e = [−90 ,−45 ,0 ,45 ,90 ] ;

38

39 set ( s l i ce (X,Y, Z ,V, x s l i c e , y s l i c e , z s l i c e ) , ’ edgeco l o r ’ , ’ none ’ )

40 axis ([−90 90 −90 90 −90 90 minimum maximum ] )

41 x t i c k s (−90:45 :90)

42 y t i c k s (−90:45 :90)

43 z t i c k s (−90:45 :90)

44 % se t ( gca , ’ Ydir ’ , ’ reverse ’ ) % This shou ld be a c t i v e f o r the second column

in Table V ( see re f e r ence in t h e s i s )

45

46 % mark a l l optimum po in t s with red po in t s

47 hold on
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48 minimum = round(minimum∗ range o f opt imum points ) / range o f opt imum points ;

49 j = 1 ;

50 for the ta 1 = −90:90

51 for the ta 2 = −90:90

52 for the ta 3 = −90:90

53 va l = round(V( the ta 1 +91, the ta 2 +91, the ta 3 +91)∗

range o f opt imum points ) / range o f opt imum points ;

54 i f va l <= minimum

55 plot3 ( theta 2 , theta 1 , theta 3 , ’ . r ’ , ’ markers i ze ’ , 20)

56 i f i == 1

57 optimum angles ( j , 1 ) = the ta 1 ;

58 optimum angles ( j , 2 ) = the ta 2 ;

59 optimum angles ( j , 3 ) = the ta 3 ;

60 j = j +1;

61 end

62 end

63 end

64 end

65 end

66

67 i f i == 1

68 view (10 ,20)

69 else

70 i f i == 2

71 view(10 ,−20)

72 end

73 end

74

75 handle = get (gca , ’ x l a b e l ’ ) ;

76 pos = get ( handle , ’ p o s i t i o n ’ ) ;

77 pos (2 ) = 1.1∗ pos (2 ) ;

78 set ( handle , ’ p o s i t i o n ’ , pos ) ;

79

80 handle = get (gca , ’ y l a b e l ’ ) ;

81 pos = get ( handle , ’ p o s i t i o n ’ ) ;

82 pos (3 ) = −95 ;

83 pos (1 ) = pos (1 ) ∗1 .05 ;

84 set ( handle , ’ p o s i t i o n ’ , pos ) ;

85

86 handle = get (gca , ’ z l a b e l ’ ) ;

87 pos = get ( handle , ’ p o s i t i o n ’ ) ;

88 pos (2 ) = 0.5∗ pos (2 ) ;

89 set ( handle , ’ p o s i t i o n ’ , pos ) ;

90
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91 set (gca , ’ FontSize ’ ,17)

92 xlabel ( ’ \ the ta 1 ’ ) ;

93 ylabel ( ’ \ the ta 2 ’ ) ;

94 zlabel ( ’ \ the ta 3 ’ ) ;

95 end

96

97 set (gca , ’ FontSize ’ ,17)

98 co lorBar = colorbar ( ’ s outhout s ide ’ ) ;

99 co lorBar . Label . FontSize = 22 ;

100 colormap ( colorBar , flipud (colormap ) ) ;

101 colormap ( flipud (colormap ) ) ;

102 set ( colorBar , ’ Po s i t i on ’ , [ 0 . 1 0 .3 0 .85 0 . 0 2 ] )

103 co lorBar . Label . S t r ing = ’ Normalized Energy drawn from the Grid ’ ;

104 end

Input File (Load Profiles):

1 Time o f the Day / Constant Load / Bus iness Load / R e s i d e n t i a l Load

2 00 :00 0 0 0 .76

3 00 :15 0 0 0 .76

4 00 :30 0 0 0 .76

5 00 :45 0 0 0 .76

6 01 :00 0 0 0 .62

7 01 :15 0 0 0 .62

8 01 :30 0 0 0 .62

9 01 :45 0 0 0 .62

10 02 :00 0 0 0 .49

11 02 :15 0 0 0 .49

12 02 :30 0 0 0 .49

13 02 :45 0 0 0 .49

14 03 :00 0 0 0 .38

15 03 :15 0 0 0 .38

16 03 :30 0 0 0 .38

17 03 :45 0 0 0 .38

18 04 :00 0 0 0 .33

19 04 :15 0 0 0 .33

20 04 :30 0 0 0 .33

21 04 :45 0 0 0 .33

22 05 :00 0 0 0 .36

23 05 :15 0 0 0 .36

24 05 :30 0 0 0 .36

25 05 :45 0 0 0 .36

26 06 :00 0 0 0 .4

27 06 :15 0 0 0 .4
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28 06 :30 0 0 0 .4

29 06 :45 0 0 0 .4

30 07 :00 0 0 .1136 0 .51

31 07 :15 0 0 .1136 0 .51

32 07 :30 0 0 .1136 0 .51

33 07 :45 0 0 .1136 0 .51

34 08 :00 0 0 .2273 0 .6

35 08 :15 0 0 .2273 0 .6

36 08 :30 0 0 .2273 0 .6

37 08 :45 0 0 .2273 0 .6

38 09 :00 0 0 .8636 0 .13

39 09 :15 0 0 .8636 0 .13

40 09 :30 0 0 .8636 0 .13

41 09 :45 0 0 .8636 0 .13

42 10 :00 0 0 .8863 0 .13

43 10 :15 0 0 .8863 0 .13

44 10 :30 0 0 .8863 0 .13

45 10 :45 0 0 .8863 0 .13

46 11 :00 0 0 .9091 0 .13

47 11 :15 0 0 .9091 0 .13

48 11 :30 0 0 .9091 0 .13

49 11 :45 0 0 .9091 0 .13

50 12 :00 0 0 .7727 0 .22

51 12 :15 0 0 .7727 0 .22

52 12 :30 0 0 .7727 0 .22

53 12 :45 0 0 .7727 0 .22

54 13 :00 0 0 .9205 0 .13

55 13 :15 0 0 .9205 0 .13

56 13 :30 0 0 .9205 0 .13

57 13 :45 0 0 .9205 0 .13

58 14 :00 0 0 .9432 0 .13

59 14 :15 0 0 .9432 0 .13

60 14 :30 0 0 .9432 0 .13

61 14 :45 0 0 .9432 0 .13

62 15 :00 0 0 .9659 0 .13

63 15 :15 0 0 .9659 0 .13

64 15 :30 0 0 .9659 0 .13

65 15 :45 0 0 .9659 0 .13

66 16 :00 0 1 0 .13

67 16 :15 0 1 0 .13

68 16 :30 0 1 0 .13

69 16 :45 0 1 0 .13

70 17 :00 0 1 0 .13

71 17 :15 0 1 0 .13
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72 17 :30 0 1 0 .13

73 17 :45 0 1 0 .13

74 18 :00 0 0 .8409 0 .24

75 18 :15 0 0 .8409 0 .24

76 18 :30 0 0 .8409 0 .24

77 18 :45 0 0 .8409 0 .24

78 19 :00 0 0 .6023 0 .47

79 19 :15 0 0 .6023 0 .47

80 19 :30 0 0 .6023 0 .47

81 19 :45 0 0 .6023 0 .47

82 20 :00 0 0 .1705 0 .82

83 20 :15 0 0 .1705 0 .82

84 20 :30 0 0 .1705 0 .82

85 20 :45 0 0 .1705 0 .82

86 21 :00 0 0 .0455 0 .98

87 21 :15 0 0 .0455 0 .98

88 21 :30 0 0 .0455 0 .98

89 21 :45 0 0 .0455 0 .98

90 22 :00 0 0 .0341 1

91 22 :15 0 0 .0341 1

92 22 :30 0 0 .0341 1

93 22 :45 0 0 .0341 1

94 23 :00 0 0 .0227 0 .82

95 23 :15 0 0 .0227 0 .82

96 23 :30 0 0 .0227 0 .82

97 23 :45 0 0 .0227 0 .82

Input File (PVGIS [10]):

1 Lat i tude : 51ˆ{o }28 ’36 ’ ’ North ,

2 Longitude : 0ˆ{o}0 ’ 1 ’ ’ West

3

4 Resu l t s f o r : June

5

6 I n c l i n a t i o n o f plane : 0 deg .

7 Orientat i on ( azimuth ) o f plane : 0 deg .

8 Time G Gd DNI

9 04 :07 30 29 31

10 04 :22 48 44 52

11 04 :37 67 59 76

12 04 :52 88 74 102

13 05 :07 111 88 127

14 05 :22 134 102 150

15 05 :37 159 116 172
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16 05 :52 184 129 191

17 06 :07 209 141 209

18 06 :22 234 152 226

19 06 :37 260 163 241

20 06 :52 285 173 255

21 07 :07 309 183 267

22 07 :22 333 191 279

23 07 :37 356 199 289

24 07 :52 378 206 299

25 08 :07 400 212 308

26 08 :22 420 218 316

27 08 :37 439 223 323

28 08 :52 457 227 330

29 09 :07 474 230 335

30 09 :22 489 234 341

31 09 :37 503 236 345

32 09 :52 516 238 350

33 10 :07 527 240 353

34 10 :22 537 241 356

35 10 :37 545 242 359

36 10 :52 552 243 361

37 11 :07 558 244 363

38 11 :22 562 244 364

39 11 :37 565 245 365

40 11 :52 566 245 366

41 12 :07 566 245 366

42 12 :22 565 245 365

43 12 :37 562 244 364

44 12 :52 558 244 363

45 13 :07 552 243 361

46 13 :22 545 242 359

47 13 :37 537 241 356

48 13 :52 527 240 353

49 14 :07 516 238 350

50 14 :22 503 236 345

51 14 :37 489 234 341

52 14 :52 474 230 335

53 15 :07 457 227 330

54 15 :22 439 223 323

55 15 :37 420 218 316

56 15 :52 400 212 308

57 16 :07 378 206 299

58 16 :22 356 199 289

59 16 :37 333 191 279
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60 16 :52 309 183 267

61 17 :07 285 173 255

62 17 :22 260 163 241

63 17 :37 234 152 226

64 17 :52 209 141 209

65 18 :07 184 129 191

66 18 :22 159 116 172

67 18 :37 134 102 150

68 18 :52 111 88 127

69 19 :07 88 74 102

70 19 :22 67 59 76

71 19 :37 48 44 52

72 19 :52 30 29 31

73 20 :07 14 14 16

74

75 G: Global i r r a d i a n c e on a f i x e d plane (W/m2)

76 Gd: D i f f u s e i r r a d i a n c e on a f i x e d plane (W/m2)

77 DNI : Di rec t normal i r r a d i a n c e (W/m2)

78

79 PVGIS ( c ) European Communities , 2001−2012
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[51] E. Akarslan, F. O. Hocaoğlu, and R. Edizkan, “A novel M-D (multi-

dimensional) linear prediction filter approach for hourly solar radiation fore-

casting,” Energy, vol. 73, pp. 978 – 986, Aug 2014.

[52] CelPlan. (2014) White paper - customer experience optimization in

wireless networks. [Online]. Available: http://www.celplan.com/resources/

whitepapers/Customer Experience Optimization rev3.pdf

[53] European Commission. (2019) Photovoltaic geographical information system

(PVGIS). [Online]. Available: http://re.jrc.ec.europa.eu/pvg tools/en/tools.

html#PVP

[54] T. Muneer, “Solar radiation model for Europe,” Building Services Engineering

Research and Technology, vol. 11, no. 4, pp. 153–163, Nov 1990.

[55] European Commission. (2019) Photovoltaic geographical information system

(PVGIS). [Online]. Available: http://re.jrc.ec.europa.eu/pvg static/methods.

html

[56] D. Benda - GitHub repository. (2019) PV cell orientation angle optimization.

[Online]. Available: https://github.com/DOBEN/PV cell orientation angle

optimization

[57] A. Kwasinski, “Lessons from field damage assessments about communication

networks power supply and infrastructure performance during natural disasters

with a focus on hurricane sandy,” in Proc. FCC workshop on network resiliency,

New York, USA, Feb 2013.

[58] M. G. Rasmussen, G. B. Andresen, and M. Greiner, “Storage and balancing

synergies in a fully or highly renewable pan-European power system,” Energy

Policy, vol. 51, pp. 642 – 651, Dec 2012.

http://www.celplan.com/resources/whitepapers/Customer Experience Optimization rev3.pdf
http://www.celplan.com/resources/whitepapers/Customer Experience Optimization rev3.pdf
http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP
http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP
http://re.jrc.ec.europa.eu/pvg_static/methods.html
http://re.jrc.ec.europa.eu/pvg_static/methods.html
https://github.com/DOBEN/PV_cell_orientation_angle_optimization
https://github.com/DOBEN/PV_cell_orientation_angle_optimization


127 References

[59] Y. Thiaux, J. Seigneurbieux, B. Multon, and H. B. Ahmed, “Load profile im-

pact on the gross energy requirement of stand-alone photovoltaic systems,”

Renewable Energy, vol. 35, no. 3, pp. 602 – 613, Mar 2010.

[60] V. Rudolf and K. D. Papastergiou, “Financial analysis of utility scale photo-

voltaic plants with battery energy storage,” Energy Policy, vol. 63, pp. 139 –

146, Dec 2013.

[61] A. F. Crossland, O. H. Anuta, and N. S. Wade, “A socio-technical approach

to increasing the battery lifetime of off-grid photovoltaic systems applied to a

case study in Rwanda,” Renewable Energy, vol. 83, pp. 30 – 40, Nov 2015.

[62] M. A. S. Alshushan and I. M. Saleh, “Power degradation and performance eval-

uation of pv modules after 31 years of work,” in Proc. IEEE 39th Photovoltaic

Specialists Conference (PVSC), Tampa, USA, June 2013, pp. 2977 – 2982.

[63] F. Parzysz, M. Di Renzo, and C. Verikoukis, “Power-availability-aware cell

association for energy-harvesting small-cell base stations,” IEEE Transactions

on Wireless Communications, vol. 16, no. 4, pp. 2409 – 2422, Apr 2017.

[64] A. H. Sakr and E. Hossain, “Analysis of k-tier uplink cellular networks with

ambient RF energy harvesting,” IEEE Journal on Selected Areas in Commu-

nications, vol. 33, no. 10, pp. 2226 – 2238, Oct 2015.

[65] T. Wang, J. Wang, C. Jiang, J. Wang, and Y. Ren, “Access strategy in su-

per WiFi network powered by solar energy harvesting: A POMDP method,”

in Proc. IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing,

China, May 2016.

[66] M. Haenggi, “Stochastic geometry for the analysis and design of 5G cellular

networks,” in Proc. IEEE GLOBECOM, Austin, TX USA, Dec 2014.

[67] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks,

Volume I - Theory. Paris, France: Now Publishers, 2009, pp. 1–164.



References 128

[68] M. Haenggi and R. K. Ganti, Interference in Large Wireless Networks. Boston,

USA: Now Publishers, 2009, pp. 127–248.

[69] W. Thompson, “Poisson distributions,” Computing in Science & Engineering,

vol. 3, no. 3, pp. 78 – 82, May 2001.

[70] M. Sheng, L. Wang, X. Wang, Y. Zhang, C. Xu, and J. Li, “Energy efficient

beamforming in MISO heterogeneous cellular networks with wireless informa-

tion and power transfer,” IEEE Journal on Selected Areas in Communications,

vol. 34, no. 4, pp. 954 – 968, Apr 2016.

[71] Y. Guo, L. Duan, and R. Zhang, “Optimal pricing and load sharing for en-

ergy saving with cooperative communications,” IEEE Transactions on Wireless

Communications, vol. 15, no. 2, pp. 951 – 964, Feb 2016.

[72] M. Wildemeersch, T. Q. S. Quek, C. H. Slump, and A. Rabbachin, “Cognitive

small cell networks: Energy efficiency and trade-offs,” IEEE Transactions on

Communications, vol. 61, no. 9, pp. 4016 – 4029, Sep 2013.

[73] P.-S. Yu, J. Lee, T. Q. S. Quek, and Y.-W. P. Hong, “Traffic offloading in

heterogeneous networks with energy harvesting personal cells-network through-

put and energy efficiency,” IEEE Transactions on Wireless Communications,

vol. 15, no. 2, pp. 1146 – 1161, Feb 2016.

[74] J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-

stations sleep-mode techniques in green cellular networks: A survey,” IEEE

Communications Surveys & Tutorials, vol. 17, no. 2, pp. 803 – 826, 2015.

[75] D. Huang, W. Wei, Y. Gao, M. Hou, Y. Li, and H. Song, “Energy efficient dy-

namic optimal control of LTE base stations: solution and trade-off,” Telecom-

munication Systems, vol. 66, no. 4, pp. 701 – 712, Dec 2017.

[76] M. W. Kang and Y. W. Chung, “An efficient energy saving scheme for base

stations in 5G networks with separated data and control planes using particle

swarm optimization,” Energies, vol. 10, no. 9, Sep 2017.



129 References

[77] M. J. Farooq, H. Ghazzai, A. Kadri, H. ElSawy, and M. S. Alouini, “A hybrid

energy sharing framework for green cellular networks,” IEEE Transactions on

Communications, vol. 65, no. 2, pp. 918 – 934, Feb 2017.

[78] M. J. Farooq, H. Ghazzai, A. Kadri, H. ElSawy, and M. S. Alouini, “Energy

sharing framework for microgrid-powered cellular base stations,” in Proc. IEEE

GLOBECOM, Washington, DC USA, Dec 2016, pp. 1–7.

[79] J. Xu and R. Zhang, “Cooperative energy trading in comp systems powered by

smart grids,” IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp.

2142 – 2153, Apr 2016.

[80] J. Xu, L. Duan, and R. Zhang, “Cost-aware green cellular networks with energy

and communication cooperation,” IEEE Communications Magazine, vol. 53,

no. 5, pp. 257 – 263, May 2015.

[81] B. Xu, Y. Chen, J. Requena Carrion, J. Loo, and A. Vinel, “Energy-aware

power control in energy cooperation aided millimeter wave cellular networks

with renewable energy resources,” IEEE Access, vol. 5, pp. 432 – 442, Dec

2017.

[82] Y. K. Chia, S. Sun, and R. Zhang, “Energy cooperation in cellular networks

with renewable powered base stations,” IEEE Transactions on Wireless Com-

munications, vol. 13, no. 12, pp. 6996 – 7010, Dec 2014.

[83] J. N. V. Lucas, G. E. Francés, and E. S. M. González, “Energy security and
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