3,136 research outputs found

    PD disease state assessment in naturalistic environments using deep learning

    Get PDF
    Management of Parkinson's Disease (PD) could be improved significantly if reliable, objective information about fluctuations in disease severity can be obtained in ecologically valid surroundings such as the private home. Although automatic assessment in PD has been studied extensively, so far no approach has been devised that is useful for clinical practice. Analysis approaches common for the field lack the capability of exploiting data from realistic environments, which represents a major barrier towards practical assessment systems. The very unreliable and infrequent labelling of ambiguous, low resolution movement data collected in such environments represents a very challenging analysis setting, where advances would have significant societal impact in our ageing population. In this work we propose an assessment system that abides practical usability constraints and applies deep learning to differentiate disease state in data collected in naturalistic settings. Based on a large data-set collected from 34 people with PD we illustrate that deep learning outperforms other approaches in generalisation performance, despite the unreliable labelling characteristic for this problem setting, and how such systems could improve current clinical practice

    Multimodal Classification of Parkinson's Disease in Home Environments with Resiliency to Missing Modalities

    Get PDF
    Parkinsonā€™s disease (PD) is a chronic neurodegenerative condition that affects a patientā€™s everyday life. Authors have proposed that a machine learning and sensor-based approach that continuously monitors patients in naturalistic settings can provide constant evaluation of PD and objectively analyse its progression. In this paper, we make progress toward such PD evaluation by presenting a multimodal deep learning approach for discriminating between people with PD and without PD. Specifically, our proposed architecture, named MCPD-Net, uses two data modalities, acquired from vision and accelerometer sensors in a home environment to train variational autoencoder (VAE) models. These are modality-specific VAEs that predict effective representations of human movements to be fused and given to a classification module. During our end-to-end training, we minimise the difference between the latent spaces corresponding to the two data modalities. This makes our method capable of dealing with missing modalities during inference. We show that our proposed multimodal method outperforms unimodal and other multimodal approaches by an average increase in F1-score of 0.25 and 0.09, respectively, on a data set with real patients. We also show that our method still outperforms other approaches by an average increase in F1-score of 0.17 when a modality is missing during inference, demonstrating the benefit of training on multiple modalities

    Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention

    Full text link
    Deep neural networks, including recurrent networks, have been successfully applied to human activity recognition. Unfortunately, the final representation learned by recurrent networks might encode some noise (irrelevant signal components, unimportant sensor modalities, etc.). Besides, it is difficult to interpret the recurrent networks to gain insight into the models' behavior. To address these issues, we propose two attention models for human activity recognition: temporal attention and sensor attention. These two mechanisms adaptively focus on important signals and sensor modalities. To further improve the understandability and mean F1 score, we add continuity constraints, considering that continuous sensor signals are more robust than discrete ones. We evaluate the approaches on three datasets and obtain state-of-the-art results. Furthermore, qualitative analysis shows that the attention learned by the models agree well with human intuition.Comment: 8 pages. published in The International Symposium on Wearable Computers (ISWC) 201

    The effectiveness of traditional methods and altered auditory feedback in improving speech rate and intelligibility in speakers with Parkinson's disease

    Get PDF
    Communication problems are a frequent symptom for people with Parkinson's disease (PD) which can have a significant impact on their quality-of-life. Deciding on the right management approach can be problematic though, as, with the exception of LSVT (R), very few studies have been published demonstrating the effectiveness of treatment techniques. The aim of this study was to compare traditional rate reduction methods with altered auditory feedback (AAF) with respect to their effectiveness to reduce speech rate and improve intelligibility in speakers with PD. Ten participants underwent both types of treatments in once weekly sessions for 6 weeks. Outcomes measures were speech rate for passage reading as well as intelligibility on both a passage reading and a monologue task. The results showed that, as a group, there was no significant change in either speech rate or intelligibility resulting from either treatment type. However, individual speakers showed improvements in speech performance as a result of each therapy technique. In most cases, these benefits persisted for at least 6 months post-treatment. Possible reasons for the variable response to treatment, as well as issues to consider when planning to use AAF devices in treatment are discussed

    Free-living monitoring of Parkinsonā€™s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinsonā€™s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise
    • ā€¦
    corecore