90 research outputs found

    Active Constellation Extension for Peak Power Reduction Based on Positive and Negative Iterations in OFDM Systems

    Get PDF
    Traditional active constellation extension (ACE) techniques iterate under a further and further away from decision boundary constraint to find distortions for peak-to-average power ratio (PAPR) reduction, which may stop the solution on suboptimal points because it's not permitted to go back when running into a suboptimum direction. In this paper, we present a novel ACE technique by iterating in both positive and negative directions, referring to distortions found in the last iteration. During iterations, optimization variations are changed from normally used extra distortions on the last estimates to the primitive OFDM signal, which can eliminate correlations between magnitudes and phases of complex distortions and finally give an analytic solution based on orthogonal projection. By making iterations run in positive and negative directions, this algorithm can find distortions to reduce PAPR more, compared with existing methods. Simulation results show that significant improvement can be achieved either for pure ACE or TR assisted ACE method, especially under higher-order modulation schemes

    PAPR Analysis in OFDM-IQ-IM Systems

    Get PDF
    One of the key disadvantages of OFDM system, implemented already in 4G and 5G is high PAPR. For this reason, it is very important to evaluate the PAPR performance of any potential multiplexing technique candidate for upcoming generations. Due to the superior performance over OFDM considering BER performance, spectral efficiency, energy efficiency, OFDM-IQ-IM is one of the promising multiplexing techniques for upcoming generations of wireless technology. Therefore, the PAPR performance of OFDM-IQ-IM system has been analysed here. In deterministic approach, subcarriers are considered to be modulated by symbols with highest power and the upper limit of the PAPR of OFDM-IQ-IM system has been formulated. Using statistical distribution, a probabilistic approach has been taken to determine the PAPR performance of the OFDM-IQ-IM and OFDM-IM systems. The distribution of PAPR of OFDM-IQ-IM and OFDM-IM systems has been evaluated considering the discrete time baseband signals for both in-phase and quadrature components as independent Gaussian random variables. A comparative analysis of the PAPR of OFDM, OFDM-IM and OFDM-IQ-IM systems has been made in both deterministic and probabilistic approach. Thus improved PAPR performance has been noticed in OFDM-IQ-IM system compared to OFDM-IM and OFDM systems for same spectral efficiency

    Analysis and Implementation of PAPR reduction algorithms for C-OFDM signals

    Get PDF
    Nowadays multicarrier modulation has become a key technology for communication systems; for example C-OFDM schemes are used in wireless LAN (802.11a/g/n), terrestrial digital television (DVB-T) and audio broadcaster (DAB) in Europe, and discrete multitone (DMT) in x.DSL systems. The principal difficulty with OFDM is the occurrence of the coherent alignment of the time domain parallel signals at the transmitted side which forces system designer to introduce either additional hard computationally device or a suitable power back-off at the high power amplifier in order to cope with the large magnitude signal fluctuation. This leads to a significant increment in computational cost in the former case whereas in a worse allowable power utilization in the latter case with respect to the original system. However since both allowable power and computational cost are subject to a design as well as regulatory limit others solution must be accomplished. Peak reduction techniques reduce maximum-to-mean amplitude fluctuations nominating as a feasible solution. Peak-to-average power ratio is the key metric to measure this amplitude fluctuations at transmitter and to give a clear figure of merit for comparison among different techniques

    Nonlinear effects in OFDM signal transmission over radio over fibre links

    Get PDF
    The dynamic range limitations that arise from nonlinearity in low-cost and low complexity directly modulated radio over fibre (RoF) links are examined. Statistical non linear models are presented and applied to the case of a RoF link with a low biased laser diode. The effects of distortion on the Error Vector Magnitude (EVM) performance of Orthogonal Frequency-Division Multiplexing (OFDM) signals with different numbers of subcarriers and the connection to the Peak-ta-Average Power Ratio (PAPR) of the signals are investigated. Statistical distributions of the EVM over a large number of transmitted OFDM frames are gained from experimental measurements and analyses of idealized processes. The measurement results show that as the number of subcarriers is reduced the distribution means are not dependent in the expected way on the statistical PAPR of the transmitted OFDM signals. Instead, it is shown that in regions of moderate distortion the median of the EVM is more closely related to the statistical PAPR and to the required back-off for signals with different numbers of subcarriers. Through the employed statistical analysis, the asymptotic convergence of the EVM result to that expected in the idealized case is observed. The results of this analysis also show, how, including the EVM variance in estimations for back-off might be useful, how, in a measurement, the number of transmitted OFDM frames affects the estimated mean EVM. Differing EVM results for subcarriers at the edge and middle of the signal band show that distortion affects the subcarriers at the middle of the band to a stronger degree and that their behaviour is correlated "to the statistical PAPR of the individual signals. Then, a laser model validated against measured performance is designed arid used for simulating the performance of a subcarrier multiplexed 4th generation mobile/wireless RoF transmission system. Predictions indicate that the architecture provides adequate performance in terms of EVM, for different IFFT sizes and modulation levels of up to 256 QAM (at leastL and a combined raw data rate of up to 3.2 Gbps. Based on a 1.5% EVM transmitter requirement with 256 QAM, a system dynamic range of approximately 5.1 dB is predicted. Finally, the use of companding in a directly modulated RaF link, with the aim of reducing the amplification (and isolation) requirements in the remote antenna unit, is demonstrated, quantified through EVM measurements. The resulting improvements in output power are approximately 4.7 dB at an EVM transmitter requirement of 5.6 %, while in terms of the point of onset of distortion-induced EVM increase, the improvement is approximately 7.6 dB

    Peak-to-Average Power Ratio Reduction of DOCSIS 3.1 Downstream Signals

    Get PDF
    Tone reservation (TR) is an attractive and widely used method for peak-to-average power ratio (PAPR) reduction of orthogonal frequency division multiplexing (OFDM) signals, where both transmitter and receiver agree upon a number of subcarriers or tones to be reserved to generate a peak canceling signal that can reduce the peak power of the transmitted signals. The tones are selected to be mutually exclusive with the tones used for data transmission, which allows the receiver to extract the data symbols without distortions. This thesis presents two novel PAPR reduction algorithms for OFDM signals based on the TR principle, which do not distort the transmitted signals. The first proposed algorithm is performed in the time domain, whereas the second algorithm is a new clipping-and-filtering method. Both algorithms consist of two stages. The first stage, which is done off-line, creates a set of canceling signals based on the settings of the OFDM system. In particular, these signals are constructed to cancel signals at different levels of maximum instantaneous power that are above a predefined threshold. The second stage, which is online and iterative, reduces the signal peaks by using the canceling signals constructed in the first stage. The precalculated canceling signals can be updated when different tone sets are selected for data transmission, accommodating many practical applications. Simulation results show that the proposed algorithms achieve slightly better PAPR reduction performance than the conventional algorithms. Moreover, such performance is achieved with much lower computational complexity in terms of numbers of multiplications and additions per iteration. Among the two proposed algorithms, the time-domain algorithm gives the best peak reduction performance but the clipping-and-filtering algorithm requires considerably less number of multiplications per iteration and can be efficiently implemented using the fast Fourier transform (FFT)/inverse fast Fourier transform (IFFT) structure

    Resource Allocation-Based PAPR Analysis in Uplink SCMA-OFDM Systems

    Get PDF
    Sparse code multiple access (SCMA) is a non-orthogonal multiple access (NOMA) uplink solution that overloads resource elements (RE's) with more than one user. Given the success of orthogonal frequency division multiplexing (OFDM) systems, SCMA will likely be deployed as a multiple access scheme over OFDM, called an SCMA-OFDM system. One of the major challenges with OFDM systems is the high peak-to-average power ratio (PAPR) problem, which is typically studied through the PAPR statistics for a system with a large number of independently modulated sub-carriers (SCs). In the context of SCMA systems, the PAPR problem has been studied before through the SCMA codebook design for certain narrowband scenarios, applicable more for low-rate users. However, we show that for high-rate users in wideband systems, it is more meaningful to study the PAPR statistics. In this paper, we highlight some novel aspects to the PAPR statistics for SCMA-OFDM systems that is different from the vast body of existing PAPR literature in the context of traditional OFDM systems. The main difference lies in the fact that the SCs are not independently modulated in SCMA-OFDM systems. Instead, the SCMA codebook uses multi-dimensional constellations, leading to a statistical dependency between the data carrying SCs. Further, the SCMA codebook dictates that an UL user can only transmit on a subset of the available SCs. We highlight the joint effect of the two major factors that influence the PAPR statistics-the phase bias in the multi-dimensional constellation design along with the resource allocation strategy. The choice of modulation scheme and SC allocation strategy are static configuration options, thus allowing for PAPR reduction opportunities in SCMA-OFDM systems through the setting of static configuration parameters. Compared to the class of PAPR reduction techniques in the OFDM literature that rely on multiple signalling and probabilistic techniques, these gains come with no computational overhead. In this paper, we also examine these PAPR reduction techniques and their applicability to SCMA-OFDM systems

    Practical Guidelines for Approaching the Implementation of Neural Networks on FPGA for PAPR Reduction in Vehicular Networks

    Get PDF
    Nowadays, the sensor community has become wireless, increasing their potential and applications. In particular, these emerging technologies are promising for vehicles' communications (V2V) to dramatically reduce the number of fatal roadway accidents by providing early warnings. The ECMA-368 wireless communication standard has been developed and used in wireless sensor networks and it is also proposed to be used in vehicular networks. It adopts Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) technology to transmit data. However, the large power envelope fluctuation of OFDM signals limits the power efficiency of the High Power Amplifier (HPA) due to nonlinear distortion. This is especially important for mobile broadband wireless and sensors in vehicular networks. Many algorithms have been proposed for solving this drawback. However, complexity and implementations are usually an issue in real developments. In this paper, the implementation of a novel architecture based on multilayer perceptron artificial neural networks on a Field Programmable Gate Array (FPGA) chip is evaluated and some guidelines are drawn suitable for vehicular communications. The proposed implementation improves performance in terms of Peak to Average Power Ratio (PAPR) reduction, distortion and Bit Error Rate (BER) with much lower complexity. Two different chips have been used, namely, Xilinx and Altera and a comparison is also provided. As a conclusion, the proposed implementation allows a minimal consumption of the resources jointly with a higher maximum frequency, higher performance and lower complexity.This work has been partly funded by projects TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE) and ELISA (TEC2014-59255-C3-3-R)
    corecore