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Abstract

Tone reservation (TR) is an attractive and widely used method for peak-to-average power ra-

tio (PAPR) reduction of orthogonal frequency division multiplexing (OFDM) signals, where

both transmitter and receiver agree upon a number of subcarriers or tones to be reserved to

generate a peak canceling signal that can reduce the peak power of the transmitted signals.

The tones are selected to be mutually exclusive with the tones used for data transmission,

which allows the receiver to extract the data symbols without distortions.

This thesis presents two novel PAPR reduction algorithms for OFDM signals based on

the TR principle, which do not distort the transmitted signals. The first proposed algorithm

is performed in the time domain, whereas the second algorithm is a new clipping-and-filtering

method. Both algorithms consist of two stages. The first stage, which is done off-line, cre-

ates a set of canceling signals based on the settings of the OFDM system. In particular,

these signals are constructed to cancel signals at different levels of maximum instantaneous

power that are above a predefined threshold. The second stage, which is online and itera-

tive, reduces the signal peaks by using the canceling signals constructed in the first stage.

The precalculated canceling signals can be updated when different tone sets are selected

for data transmission, accommodating many practical applications. Simulation results show

that the proposed algorithms achieve slightly better PAPR reduction performance than the

conventional algorithms. Moreover, such performance is achieved with much lower com-

putational complexity in terms of numbers of multiplications and additions per iteration.

Among the two proposed algorithms, the time-domain algorithm gives the best peak reduc-

tion performance but the clipping-and-filtering algorithm requires considerably less number

of multiplications per iteration and can be efficiently implemented using the fast Fourier

transform (FFT)/inverse fast Fourier transform (IFFT) structure.
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1. Introduction

The CATV systems that we have today originated as a well-placed “Community An-

tenna” connected to a few televisions that could not get reception of a commercial broadcast-

ing station with a roof-mounted antenna. In fact, CATV is a legacy acronym for Community

Antenna TeleVision network.

Over time, there were changes that increased the number of TV channels delivered over

the network. The changes continued, but took a turn in the late 1990’s when service providers

started to develop a new type of set-top box that could be uniquely addressed and remotely

monitored. This transformed the broadcast cable network into a network that handled two-

way communication. Advancements in digital communication technology provided the means

to put several channels over the bandwidth used for a single TV signal. Further improvement

allowed data to be transmitted over the system designed for TV signals. Data transmission

give rise to interactive TV guides, news, weather, and later on, Internet services.

The revenue that came from the rapid expansion of the CATV network was shared

between service providers and equipment manufacturers. However, service providers found

themselves held hostage by the equipment manufacturers as their equipment was proprietary

and had to be sourced by them. The manufacturers overpriced their equipment to capture

revenue that should have gone to the service providers. The CATV service providers remedied

this by banding together and forming a not-for-profit organization, called CableLabs [3].

CableLabs redefined the CATV systems as a set of well-defined subsystems of sufficiently

small sizes that each could be manufactured by small companies. They provided a functional

description of these components in a document referred to as “Data-over-cable service inter-

face specification”, or DOCSIS. This document, while technically not an official standard,

1



has been adopted by virtually every CATV service provider, so is a de-facto standard [4,5].

1.1 DOCSIS

A simplified infrastructure of a typical CATV network is shown in Figure 1.1. There

are two main components in a DOCSIS network: cable modems (CMs) located at the user’s

premises, and a cable modem termination system (CMTS) resided at the cable company’s

head-end. The CMTS is responsible to communicate with multiple CMs installed at sub-

scribers’ households. The two-way communication between CMTS and CMs is realized by

downstream and upstream traffics. The downstream direction refers to the distribution of

data streams from the CMTS to cable modems. Upstream communication is used by CMs

to upload their data contents to the company’s head-end. In order to accommodate multiple

users, the CMTS allocates channel resources to different CMs and schedules times to send

and receive data packets. At the head-end, the CMTS connects with an Internet Service

Provider via its Internet interface. Thereby, the Internet data can be streamed through the

coaxial cable networks and reach the subscribers’ CMs.

Cable Modem

 (CM)

CM

CM

Wifi Access Point

IP Phone

HDTV

Tap

H
ar

d
li

n
e 

co
ax

Tap

Tap
Drop coax

Drop coax

Drop coax

Customer’s Premises

Downstream
Cable 

Plant
Upstream

Internet Service 

Provider

Cable Modem 

Termination System 

(CMTS)

Cable company’s 

distribution hub

Figure 1.1 General structure of a DOCSIS network.

The first DOCSIS standards, referred to as DOCSIS 1.0, was released in 1997. The sub-

2



Table 1.1 Different DOCSIS versions.

DOCSIS

version

Release

date

Modulation Downstream

throughput

Upstream

throughput

1.0 03/1997

Single-carrier QAM

42.88 Mbps 10.24 Mbps

2.0 12/2001 42.88 Mbps 30.72 Mbps

3.0 08/2006 1372.16 Mbps 245.76 Mbps

3.1 10/2013 Multi-carrier OFDM 10 Gbps 1 Gbps

3.1 FDX 05/2018 Multi-carrier OFDM

with FDX

10 Gbps 4 Gbps

sequent versions were 1.1, 2.0, 3.0, 3.1 and 3.1 FDX. The latest version was released in May

2018, which is version 3.1 expanded with the full duplex (FDX) feature. Table 1.1 shows

different versions of DOCSIS standards with different capacities for upstream and down-

stream traffics. The original DOCSIS 1.0 standard supported only a single channel with

42.88 mega bits per second (Mbps) in downstream and 10.24 Mbps in upstream. DOCSIS

2.0 extended the upstream bandwidth by 3 times 4 years later in responding to a higher

demand in upstream traffic. DOCSIS 3.0 was introduced in 2006 as a substantial update for

CATV network to make it comparable to other competitive services using digital subscriber

line (DSL) and fiber optics technology. This version of DOCSIS was able to support simul-

taneously multiple single-carrier quadrature amplitude modulation (SC-QAM) channels and

combine them together to provide 1372.16 Mbps downstream and 245.76 Mbps upstream

traffics. After 7 years, in 2013, DOCSIS 3.1 was released with an adoption of multi-carrier

modulation schemes, which were orthogonal frequency division modulation (OFDM) in the

downstream direction, and orthogonal division multiple access (OFDMA) in the reverse di-

rection. In addition, DOCSIS 3.1 substantially increases the performance of the coaxial

networks via downstream and upstream spectrum expansion incorporation of modern for-

ward error coding (FEC) with low density parity check (LDPC) codes, high modulation

orders of quadrature amplitude modulation (QAM) with OFDM and multiple downstream

modulation profiles [4].
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Frequency
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subcarriersN
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Figure 1.2 OFDM channel with nulled subcarriers to accommodate legacy chan-

nels.

The multi-carrier modulation utilizes a number of orthogonal subcarriers which can be

efficiently implemented using the fast Fourier transform (FFT). The change from single-

carrier QAM modulation to multi-carrier modulation provides a number of benefits. The

multi-carrier scheme produces a longer symbol time duration, which has better immunity to

impulse noise present in the channel. By the nature of using multiple subcarriers, the system

can flexibly null individual subcarriers to accommodate legacy channels as well as avoiding

ingress noise (see illustration in Figure 1.2). With OFDM, impulse noise and narrowband

interference can also be effectively mitigated by using time and frequency interleaving [4].

Moreover, the multi-carrier modulation allows the use of high-order QAM constellations

as high as 16, 384-QAM on downstream and 4, 096-QAM on upstream. More details on

SC-QAM and OFDM systems will be presented later in Chapter 2.

The recently released version 3.1 of DOCSIS includes full-duplex (FDX) capability, which

allows the upstream and downstream transmissions to concurrently use the same spectrum.

Thereby, the FDX-enabled DOCSIS technology has the potential of doubling the spectral

efficiency. However, in order to be backward compatible with the previous versions of DOC-

SIS, the FDX band is specified in portions of the available spectrum. Figure 1.3 illustrates

4
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Figure 1.3 The augmentation in spectrum from (a) DOCSIS 3.1 to (b) DOCSIS

3.1 with FDX.

the augmentation in the standard. Previous DOCSIS standards use a split-spectrum ar-

chitecture between downstream and upstream traffic, in which there is a cross-over region

between the upstream spectrum and downstream spectrum and the bandwidth available for

downstream made up most of the total frequency spectrum. Full-duplex DOCSIS expands

the upstream spectrum by a factor of 8 when compared to the 2013 standard and allows

it to overlap with the downstream spectral region. The configurable allocated spectrum

bandwidths for an FDX node can be 96 MHz, 192 MHz, 288 MHz, 384 MHz and 576 MHz,

which can occupy the frequency range from 108 MHz up to 684 MHz. The expected media

access control (MAC) data rates for the FDX node is 4 − 5 giga bits per second (Gbps) in

upstream and 9 − 10 Gbps in downstream operation [4]. The significant expansion of the
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upstream spectrum would allow customers to share more interactive high-resolution videos

and media content, and help the CATV network to gain advantages over its competitive

networks which use the fiber to home (FTTH) technology.

1.2 DOCSIS 3.1 with FDX

The addition of full-duplex operation adds management complexity and introduces chal-

lenges in designing transceivers over a coaxial cable to meet the demand for higher speeds

of downstream and upstream traffics as well as to maintain backward compatibility with

transceivers of previous DOCSIS versions.

One of the biggest challenges in designing a full-duplex transceiver is to suppress the

downstream signal leakage from the receiving upstream signal due to the spectral overlap.

In the FDX DOCSIS 3.1 network, the CM still operates in frequency division duplex mode

in which on any FDX channel, the CM is either transmitting in the upstream or receiving

in the downstream [4]. Thus, the full-duplex transceiver is the one residing at the CMTS.

To illustrate, the structure of a half-duplex DOCSIS transceiver node which is placed at

the CMTS head-end is shown in Figure 1.4. Transforming this node into a full-duplex one

would require a number of modifications which are discussed next.

In the downstream path, the transceiver takes broadcasting data packets from the upper

layers of the CMTS, converts into radio frequency signals, and couples them into the coaxial

cable. The upstream path is the same as the downstream path but in a reversed order,

in which the transceiver gets radio frequency signals from the coaxial cable, processes and

extracts data traffic and transports them to the upper layers for further processing tasks.

The downstream path begins with a downstream medium access control (DS MAC) block

which converts data packets into appropriate symbol sequences. The downstream physical

layer (DS PHY) block digitally modulates those symbols onto some carrier frequencies, and

then converts them into analog signals using a digital-to-analog converter (DAC). A low

pass filter (LPF) is applied after the DAC, which is a reconstruction filter that suppresses

frequency components caused by digital sampling. A crucial component, namely a high power
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packets

Diplexer
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Figure 1.4 General structure of a half-duplex DOCSIS node.

amplifier (HPA) is then used to amplify the power of the RF signal to some level, which

conforms with the specifications in DOCSIS 3.1. The final component in the downstream

path is a diplexer, which performs the final spectral shaping of the signal before it goes

through the coax to subscribers’ modems. It is the diplexer which enables the half-duplex

operations of the transceiver.

The diplexer is basically a combination of two RF filters, a low-pass filter (LPF) and

a high-pass filter (HPF). The LPF and HPF have responses such that they allow only one

type of streaming signal, either downstream signal or upstream signal, transporting through

while effectively removing the other. Figure 1.5 illustrates the frequency responses of these

filters. The filters would have a high attenuation in the stop-band region so as to suppress

most of the high-power downstream and prevent it from leaking into the upstream signal.

This means that only one type of signal can be transmitted over a specified spectrum at a

time.

Frequency (MHz)
5 42

85

54

108

1218

DownstreamUpstream

Low pass filter High pass filter

Figure 1.5 Filter responses of a diplexer used in a half-duplex DOCSIS

transceiver.
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Regarding the upstream path, the low-pass filtered upstream signal first goes to the low

noise amplifier (LNA) to boost its signal level, and is converted into digital samples by an

analog-to-digital converter (ADC). The next blocks are upstream physical layer (US PHY)

and upstream medium access control (US MAC), which process the digital samples further to

bring the upstream traffic to higher processing levels in the CMTS. Intuitively, a half-duplex

node can be viewed as a pair of a downstream transmitter and an upstream receiver that

operate on a split spectrum and are combined by the diplexer.

To allow simultaneous operation of the upstream receiver and the downstream transmitter

on the same frequencies, the diplexer must be replaced by a hybrid coupler (HC). This device

has three ports , namely TX, RX and T/R, in which, two of them (TX and RX) are single

direction ports used to transmit or receive radio frequency signals, respectively. A remaining

port (T/R) is bidirectional and utilized to couple with the coaxial cable. The principle of a

HC is shown in Figure 1.6.

DOCSIS FDX node at CMs 

Ground

Transmitting signal TX

RX

T/R

Receiving signal

Hybrid

Coupler

(HC)

Coaxial cable Tap Tap
Downstream/

Upstream 

PHY/MAC 

and 

Amplifiers

DOCSIS FDX node at CMTS

T/R

TX RX

DS/US 

PHY/MAC/HPA

T/R

TX RX

DS/US 

PHY/MAC/HPA

S
I

Figure 1.6 A FDX node with a hybrid coupler where RX, TX, T/R represents

the receiving port, transmitting port and bidirectional port, respec-

tively.

The downstream signal which comes into the HC’s TX port would appear on the bidirec-

tional port with a small degradation in power. Because of the imperfection of an isolation

between the TX port and the RX port, some portion of the transmit signal leaks into the

receiving port. This leakage is referred to as a self interference (SI).
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On the other hand, the upstream signal from subcribers’ CMs traverses through the

coaxial cable, comes into the bidirectional port and appears at the receiving port, which

is the so-called signal of interest (SOI). Due to the HC’s imperfection, the TX port also

experiences some fraction of the receiving upstream signal. However, since the upstream

signal has been transmitted from the subscriber’s CM with a lower power than the power of

the CMTS passed through a number of taps along the coaxial cable, the receive signal which

appears at the head-end’s T/R port would be considerably smaller in power when compared

to the downstream signal coming in the head-end’s TX port.

Besides, due to the mismatch between the input impedance of the HC and the channel’s

characteristic impedance, there are multiple copies of the downstream transmit signal that

has reached taps along the coaxial channel and reflected back to the source, which are often

referred to as echoes [4].

Overall, the received signal coming out from the HC’s RX port consists of three compo-

nents: SOI, SI and echoes, which is illustrated in Figure 1.6. Comparing the power levels

of these three components, the SI signal is the strongest component. The second largest

component is made up of echoes. The challenging part of the FDX operation is to be able

to suppress as much as possible the SI and the echoes from the signal of interest, i.e., the

upstream signal. SI suppression and echo cancellation therefore become the most important

tasks in enabling the FDX technology, which is also a very active research area in wireless

communications [6].

1.3 Motivation

Adding full-duplex capability into a half-duplex DOCSIS 3.1 system will increase the

amount of power needed in the nodes. The main reason for this has to do with the 4-wire to

2-wire interface that connects the nodes to the coaxial cables. As explained before, the full-

duplex capable system uses a hybrid in place of the diplexer and unfortunately the insertion

loss of the hybrid, which is approximately 3.5 dB, is about 3 dB more than that of the
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diplexer1. To compensate for the increased insertion loss, the output of the HPA must be

about 3 dB higher.

The power supplied to the transceiver nodes in a DOCSIS system is limited by the existing

HFC infrastructure. Since incorporating FDX into the node requires extra power, either the

infrastructure could be upgraded to supply more power or the signal power delivered to

the cable plant could be reduced. Changing the infrastructure is impractical and reducing

the signal power would come at a cost since more nodes would be needed. Unfortunately,

reducing the signal power is not an option as it would not maintain backward compatibility

with the half-duplex version. This is to say that the only practical alternative is to somehow

reduce the power consumption in the node. This could possibly be done by making the HPA

more efficient.

The minimum voltage level that can be used to supply the HPA is determined by the

maximum value of the output signal. Therefore, reducing the maximum value of the output

signal will allow the voltage supply to be reduced and thereby increase the efficiency of the

HPA.

The objective of this thesis is to explore the possibility of reducing the maximum value

of signals transmitted in the downstream of DOCSIS 3.1 systems by at least 3 dB. In other

words, the objective of this thesis is to reduce the peak-to-average power ratio (i.e., the

maximum-to-average ratio) of DOCSIS 3.1 downstream signals by at least 3 dB.

1.4 Scope of the Thesis

The transmit signals in multi-carrier OFDM systems exhibit higher peak values in the

time domain when compared to the transmit signals in single-carrier systems since many

subcarrier components are combined (added) simultaneously. Therefore, OFDM signals are

known to have a high peak to average power ratio (PAPR) [2]. High peaks encountered in

the time domain signal cause detrimental effects to the performance of the power amplifier

1Macom’s hybrid coupler MAPD-009918-C209C0 [7] and Macom’s diplexer MAEL-007988-CD0550 [8]

have insertion losses of 3.5 dB and 0.5 dB, respectively.
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in the OFDM system. This is due to the limited linear working region of the PA where

any peaks present in the signal can drive it into saturation. Forcing the amplifier to work

in its saturation condition causes nonlinear distortions and spectral spreading. In order to

amplify the signal with less distortions, the PA is required to have some input back off (IBO)

which shifts the operating point towards the linear region where the PA creates the output

signal with less power. Ideally, the IBO is chosen to be equal to the PAPR of the OFDM

signal. However, this negatively affects the power efficiency of the whole system. Moreover,

the magnitude of the signal peaks can grow proportionally to the number of subcarriers,

making the dynamic range of the OFDM signal theoretically much higher than the practical

limitation of the PA. Various techniques, therefore, have been proposed to reduce the PAPR

of OFDM signals [2].

The objective of this thesis is to investigate possible approaches to carry out PAPR re-

duction for the downstream OFDM signals in a DOCSIS 3.1 system. The downstream signal

is generated from the CMTS resided at the cable company’s head-end and is broadcasted via

coaxial cables to subscribers’ CMs. The signal at the output of the downstream power am-

plifier consists of a number of different OFDM channels, of which the subcarriers’ locations

have been clearly defined in DOCSIS 3.1. The standard specifies each downstream OFDM

channel must use a FFT size of 4096 (4K mode) or 8192 (8K mode). In other words, if

operating in the 4K mode, each OFDM channel consists of 4096 subcarriers with a spacing

between adjacent subcarriers being 50 kHz. In the 8K mode, 8192 subcarriers can be used

and the spacing between adjacent subcarriers is 25 kHz.

Although different PAPR reduction algorithms are available, they cannot be easily ap-

plied to DOCSIS systems due to a number of reasons. First, the PAPR reduction can only

be applied to the CMTS side and not at the CM side. This is to say that the selected

methods need to satisfy the property called downward compatibility where the changes in

the transmitter’s side need not to be propagated to the receivers of the network. The de-

modulation operation at the OFDM receivers must be kept unchanged, which disqualifies

those techniques involving changing the order of data sequences or adding more informa-

tion to the receiver’s side. Second, the chosen PAPR reduction algorithms must have small
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computational cost. It is required that the proposed techniques should be suitable to field

programmable gate arrays (FPGAs). The reconfigurability of FPGA devices provides an

economical solution in system design since they can be easily updated to meet changes in

standards. However, they do have a limited number of logic resources, such as a number

of multipliers used or the amount of random memory access (RAM) can be utilized. As a

consequence, sophisticated algorithms requiring off-line processing techniques with a large

amount of memory or optimization assistance from other third-parties will be impractical

especially for real-time applications. This is to say that the processing time for each instance

of the signal should be limited to some constant time duration. Most of the available PAPR

reduction algorithms work in an iterative manner [2]. However, with upper bounded pro-

cessing time, techniques which reduce the signal’s PAPR for some undetermined number of

iterations will not be permitted. Third, DOCSIS 3.1 has clearly defined spectral masks for

each OFDM channel that must be conformed to in order to make the system compatible

with both legacy channels and new channels released in the recent standards. This puts

another constraint on the PAPR reduction techniques to be applied. The constraint is that

the PAPR reduction techniques are not allowed to severely distort the transmit signal or

create spectral spreading.

It is pointed out that the techniques investigated and proposed in this thesis serve as

proof-of-concept rather than fully hardware implemented techniques. MATLAB is therefore

used as a simulation platform to evaluate the feasibility and compare the performance of

different techniques with the proposed ones.

1.5 Organization of the Thesis

This thesis has five chapters. The first chapter introduces the CATV networks and

its evolutionary development from an analog transmission network into a multi-user data

transmission network. The chapter then discusses DOCSIS as a de-facto standard that

governs the operability of CATV network using coaxial cables and its different versions

introduced over the years. The latter part of the chapter explains the challenges in data

communication over coaxial cables which motivates the objective of this research.
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Chapter 2 starts with some background on SC-QAM and OFDM systems. It reviews the

implementation of an OFDM system using DFT/IDFT blocks and modeling the downstream

OFDM signal path in the discrete time domain. Also introduced in Chapter 2 are the

definition of PAPR of an OFDM signal and a complimentary cumulative distributive function

(CCDF) curve as a tool to quantify the PAPR reduction performance. The last section of

the chapter discusses the property of an HPA and its theoretical models to illustrate the

effect of its limited linear range in amplifying OFDM signals.

A taxonomy of different PAPR reduction techniques is briefly overviewed in Chapter

3, in which the two main classes of PAPR reduction techniques, namely signal distortion

techniques and signal distortion-less techniques, are categorized. The subsequent sections in

Chapter 3 describe principles of some well-known candidates of PAPR reduction techniques

for OFDM signals that have been proposed in literature.

Chapter 4 proposes two novel PAPR reduction techniques based on the principle of tone

reservation (TR). The chapter first discusses in detail conventional TR-based PAPR reduc-

tion techniques. The last two sections of the chapter present two novel algorithms for peak

reduction of OFDM signals, a time-domain algorithm and clipping-and-filtering algorithm.

The performance and computational cost of the proposed techniques and the conventional

techniques are compared by simulating in different scenarios. The implementation complex-

ity in terms of numbers of multipliers and additions required per each application of the

proposed algorithms and the conventional algorithms are also given.

Finally, Chapter 5 summarizes the main contributions, discusses some further research

issues and concludes the thesis.
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2. OFDM Signals

As discussed in Chapter 1, OFDM has been adopted in DOCSIS 3.1 to greatly improve

the overall systems’ throughput. The objective of this thesis is to find techniques for reducing

the dynamic range of OFDM signals presented at the output of the downstream amplifiers.

Therefore, this chapter will discuss a general OFDM-based communication system. Because

OFDM is an extension of SC-QAM (single carrier QAM), the first section reviews the basics

of QAM theory.

2.1 Single-Carrier Quadrature Amplitude Modulation (SC-QAM)

Figure 2.1 shows the major components in a transmitter and a receiver of a SC-QAM

system. For simplicity, some components such as timing, frequency and phase recovery are

not shown.

First, data bits are grouped into blocks where each block has λ bits and is mapped to

a QAM symbol by the QAM mapping module. The number of QAM symbols is therefore

M = 2λ, which is also known as the modulation order. Each QAM symbol is represented by

a complex value consisting of an in-phase (I) component and a quadrature (Q) component,

denoted by vI[n] and vQ[n], respectively. The collection ofM−QAM symbols s0, s1, . . . , sM−1,

can be visualized on a 2−dimensional complex plane, resulting in a diagram normally referred

to as a constellation diagram. Figure 2.2 shows constellation diagrams of a binary phase

shift keying (BPSK), quadrature phase shift keying (i.e., 4−QAM), 8−QAM and 16−QAM,

corresponding to M = 2,M = 4,M = 8 and M = 16, respectively.

The discrete sequences of I, Q symbols (i.e., vI[n] and vQ[n]) are converted into trains of
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Figure 2.1 A simplified SC-QAM system.

impulses by the impulse modulators. That is:

vI(t) =
∞∑

n=−∞

vI[n]δ(t− nT )

vQ(t) =
∞∑

n=−∞

vQ[n]δ(t− nT )

(2.1)

where T is the time duration of each symbol.

Next, the impulse trains are passed through a pulse shaping filter, hTX(t), which is a

low-pass filter that limits the bandwidth of the transmit signal to meet the spectrum mask

required by transmission standards. Thus, the resulting signals are called baseband signals
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Figure 2.2 QAM symbol constellations with M = 2 for binary phase shift keying

(BPSK), M = 4 for quadrature phase shift keying (QPSK), M = 8 for

8-QAM and M = 16 for 16-QAM.

and given by:

xI(t) = vI(t) ∗ hTX(t) =
∞∑

n=−∞

vI[n]hTX(t− nT )

xQ(t) = vQ(t) ∗ hTX(t) =
∞∑

n=−∞

vQ[n]hTX(t− nT )

(2.2)

The baseband signals are then up converted to radio frequency Fc with a pair of sinusoidal

16



carriers whose phases differ by π/2 radians (i.e., quadrature carriers). The modulated signals

are added together to form a passband signal xa(t), which is:

xa(t) = xI(t) cos(2πFct)− xQ(t) sin(2πFct) (2.3)

The RF signal xa(t) is then sent over a channel, whose impulse response is hC(t). The

received signal is:

ya(t) = xa(t) ∗ hC(t) + w(t) (2.4)

where w(t) represents additive white Gaussian noise (AWGN).

In the simplest case, the channel is assumed to be hC(t) ≡ δ(t), resulting in ya(t) =

xa(t) + w(t), which is known as an AWGN channel.

At the receiver, the received RF signal is first down-converted to baseband signals using

quadrate down-conversion with frequency F̂c. Again, it is assumed that a perfect synchro-

nization can be established at the receiver, making F̂c = Fc. Ignoring AWGN w(t), the

down-conversion process produces:

yI(t) = xa(t)2 cos(2πFc(t))

= (xI(t) cos(2πFct)− xQ(t) sin(2πFct)) 2 cos(2πFc(t))

= xI(t) (1 + cos(4πFct))− xQ(t) sin(4πFct)

= xI(t) + (cos(4πFct)xI(t)− sin(4πFct)xQ(t))︸ ︷︷ ︸
filtered by hRX(t)

(2.5)

and

yQ(t) = −xa(t)2 sin(2πFc(t))

= − (xI(t) cos(2πFct)− xQ(t) sin(2πFct)) 2 sin(2πFc(t))

= −xI(t) sin(4πFct) + xQ(t) (1− cos(4πFct))

= xQ(t)− (cos(4πFct)xI(t) + sin(4πFct)xQ(t))︸ ︷︷ ︸
filtered by hRX(t)

(2.6)

In equations (2.5) and (2.6), there are low frequency components and high frequency

components. A low-pass filter hRX(t) is applied to remove the high frequency components.
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In practice, this filter is often chosen to be a matched filter, which is identical to the pulse

shaping filter used at the transmitter, but in a reverse order, that is, hRX(t) = hTX(−t).

This filter also serves to mitigate distortions occurring in the communication channel and to

maximize the signal-to-noise ratio (SNR) at the correct sample points [9].

Outputs of the receiving filters are baseband quadrature signals:

uI(t) = xI(t) ∗ hRX(t) =
∞∑

n=−∞

vI[n]hTX(t− nT ) ∗ hRX(t)

=
∞∑

n=−∞

vI[n] (hTX(t− nT ) ∗ hRX(t))

=
∞∑

n=−∞

vI[n]hTR(t− nT )

where hTR(t) = hTX(t) ∗ hRX(t) is the impulse response of a linear system obtained by

cascading hTX(t) and hRX(t), and:

uQ(t) =
∞∑

n=−∞

vQ[n]hTR(t− nT )

When no timing delay and noise are introduced in the signal path from the transmitter

to the receiver, the sampler captures data samples after every symbol duration T . At the

sampling time t = mT the samplers’ outputs are:

v̂I[m] = uI(t)|t=mT =
∞∑

n=−∞

vI[n]hTR(mT − nT )

= vI[m]hTR(0) +
∞∑

n=−∞,n 6=m

vI[n]hTR((m− n)T )︸ ︷︷ ︸
ISI term

(2.7)

and

v̂Q[m] = uQ(t)|t=mT = vQ[m]hTR(0) +
∞∑

n=−∞,n 6=m

vQ[n]hTR((m− n)T )︸ ︷︷ ︸
ISI term

(2.8)

The second terms in Equations (2.7) and (2.8) represent inter-symbol interference (ISI)

since the value of the current transmitting symbol is interfered by the value of symbols
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transmitted in other time slots. Ideally, if the overall impulse response satisfies the condition

of:

hTR(t) =


1, if t = 0

0, if t = kT

(2.9)

then the system will experience no ISI. The condition stated in (2.9) is therefore called a zero-

ISI criterion [9]. In order to meet this criterion, the pulse shaping filter and its matched filter

can be chosen as square-root raised-cosine (SRRC) filters. An SRRC filter has a frequency

response equal to square root of the raised cosine spectrum. In other words, this means:

HTX(F ) = HRX(F ) =
√
HRC(F ) (2.10)

where HTX(F ), HRX(F ) are the frequency responses of hTX(t), hRX(t), respectively, and

HRC(F ) is the frequency response of a raised cosine filter (or a Nyquist filter) defined as [9]:

HRC(F ) =



1, if |F | ≤ 1−β
2T

1
2

[
1 + cos

(
πT
β

(
|F | − 1−β

2T

))]
, if 1−β

2T
< |F | ≤ 1+β

2T

0, otherwise

(2.11)

In (2.11), β is a roll-off factor and T is the symbol period. As in (2.10) cascading two

SRRC filters forms an RC filter, whose impulse response is zero at every sampling instance

t = mT . The frequency responses and time responses of RC filters with different roll-off

factors are shown in Figure 2.3 to illustrate how they meet the zero-ISI criterion.

Figure 2.4 shows an example of symbol recovery for an in-phase (I) channel using the

BPSK modulation where vI[n] = +1,−1. Since no channel impairment is introduced, the

sampler’s output exhibits a perfect recovery of the transmit symbols.

In practice, the channel is not ideal and its imperfections cause the received signal to be

distorted. The major impairments of the channel are noise, timing and frequency offsets,

as well as multi-path effects. A discussion of the details of these impairments is outside the

scope of this thesis, but can be found in [9] or other references on digital communication

theory.
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Figure 2.3 Frequency responses of RC filters with different roll-off factors and

their time-domain responses that show the zero-ISI condition at sam-

pling instances t = mT for m = . . . ,−1, 0, 1, . . ..

To illustrate, Figure 2.5 shows scatter plots of QAM constellations at the receiver’s side

being affected by different levels of noise power. Each transmit symbol is represented by

a dot in the scatter plot, where the blue and red points denote the transmit and receive

signal points, respectively. The dash lines in the plot show decision boundaries for each

constellation point, which specify the regions used by the QAM de-mapper to recover the

transmit symbols. It can be seen that while the transmit signal points are exactly located

at the positions of the 16−QAM constellation, the receive points are made deviated from

those constellations points because of the noise. In general, there are 16 clusters of points

centered around the transmit points. When the noise power is high (or the signal to noise

ratio (SNR) is low), there are more points that cross the decision boundaries when compared

to the case with the lower noise power (or with the higher SNR). Thus, the resulting bit-

error-rate (BER) of the system under higher noise power is higher than the BER of the

system corrupted with less noise power.
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factor β = 0.5 using the BPSK modulation.
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Figure 2.5 Scatter plot of 16−QAM signals under different signal-to-noise ratios,

where blue and red points represent the transmit and receive signal

points, respectively.
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2.2 Orthogonal Frequency-Division Multiplexing (OFDM) Mod-

ulation

OFDM provides a better use of the allocated frequency bandwidth by utilizing multiple

subcarriers. An OFDM system can be viewed as a combination of N SC-QAM subchannels,

each centered around its own carrier frequency. The power spectrum of OFDM signals is

illustrated in Figure 2.6 and a general structure of an OFDM transmitter and an OFDM

receiver is shown in Figure 2.7.

1/F T∆ =

Bandwidth 
N

W N F
T

= ∆ =

(Hz)F

| ( ) | (dB)X F

...

Figure 2.6 Spectrum of theoretical OFDM signals.

Let T be the duration of each OFDM symbol and Xm[k] = Im[k] + jQm[k] denote the

QAM symbol transmitted over the kth subcarrier during the mth OFDM symbol. Then the

time waveform of the mth OFDM symbol can be expressed as:

xm(t) =
N−1∑
k=0

<{Xm[k]p(t)ej2πFkt}

= p(t)
N−1∑
k=0

[Im[k] cos(2πFkt)−Qm[k] sin(2πFkt)]

(2.12)

where m is the symbol index, p(t) is a pulse shaping filter defined within 0 ≤ t ≤ T , and

F0, F1, . . . , FN−1 are the subcarrier frequencies. To ensure the orthogonality between the

subcarriers over the duration of T , the subcarriers are selected to be equally spaced with a
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Figure 2.7 An OFDM system viewed as multiple SC-QAM modula-

tors/demodulators [1].

spacing of ∆F = 1
T

, that is Fk = F0 + k/T, 0 ≤ k ≤ N − 1. If the bandwidth of each

subchannel is approximated as 1/T , the bandwidth of an OFDM signal in (2.12) is:

W = (N − 1)∆F +
1

T
= (N − 1)

1

T
+

1

T
=
N

T
. (2.13)

When a pulse shaping filter is a rectangular window of unit height over the duration

[0, T ], the spectrum of OFDM signals is a combination of the QAM signals spectra having

a sinc-function shape shifted at different subcarriers as shown in Figure 2.6. Note that

adjacent QAM signals overlap in frequency but are still orthogonal under the condition that

their carrier frequency spacing satisfies ∆F = 1
T

. The sum of these signals produces a signal
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with a much wider bandwidth, approximately from F0 − 1
2T

to FN−1 + 1
2T

.

The OFDM signal is sent over a wide band channel hC(t) having a frequency response

of HC(F ). The frequency response of a wide band channel is typically frequency-selective as

it varies over different frequency bands. The frequency selectivity of the channel is charac-

terized by a coherence bandwidth of the channel, denoted by Bc [1]. In other words, Bc is

the frequency bandwidth over which the channel exhibits approximately constant frequency

response. The reciprocal of Bc is the delay spread of the channel, given by Tm = 1/Bc.

This means, if a short pulse of duration Tp is sent over a channel with a delay spread Tm,

then the received signal will have its duration roughly of Tp + Tm. As a consequence, if

Tm is large compared to Tp, a symbol sent in a previous time duration interferes with the

current symbol, which results in ISI. The bandwidth of each QAM subchannel in OFDM is

WN = 1/T . If this bandwidth is made smaller than the coherence bandwidth, i.e., WN < Bc

or Tm < T , then each subchannel experiences approximately flat frequency response over its

bandwidth, resulting in T > Tm. When this happens, the effect of ISI can be completely

avoided by introducing a guard interval which is often in the form of a cyclic prefix (CP) [1].

The CP extension shall be discussed in the following section.

With the simplest additive white Gaussian noise (AWGN) channel model, the transmit

signals are disturbed by noise, which is modelled as a random process w(t) in Figure 2.7.

The signal is then down converted to baseband, passed through a matched filter, the sampler

and QAM de-mapper.

The next section elaborates on a DFT/IDFT based implementation of an OFDM system,

which can effectively produce multicarrier signals using just one oscillator at the transmitter

and one at the receiver. The section that comes after analyzes the signal path in the OFDM

transmitter, which is the main focus of the thesis.

OFDM Implementation Using DFT/IDFT

A more effective implementation of OFDM transmitter and receiver is given in Figure

2.8. The input information bit stream is organized into N blocks using a serial-to-parallel

converter (S/P). Each block is then input to a QAM modulator of order Mk, which pro-
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duces a set of complex QAM symbols Xm[0], Xm[1], . . . , Xm[N − 1]. These symbols form a

complex vector Xm = [Xm[0], Xm[1], . . . , Xm[N − 1]]T , which represents discrete frequency

components of the mth OFDM symbol. As such, Xm is also referred to as the mth frequency

symbol.
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Figure 2.8 OFDM implementation using DFT/IDFT [1].

The conversion from the frequency-domain symbol into N time-domain samples is per-

formed by an IDFT block (or IFFT if N is a power of 2). The IDFT/IFFT yields an OFDM

time-domain symbol represented as a complex-valued vector xm = [xm[0], . . . , xm[N − 1]]T ,
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where:

xm[n] =
1√
N

N−1∑
k=0

Xm[k]ej2πkn/N , n = 0, 1, . . . , N − 1 (2.14)

Next, a cylic prefix (CP) extension is performed on the symbol by duplicating the last

µ samples and appending those samples to the beginning of xm. This yields a prolonged

vector of time samples:

x(CP)
m =

xm[N − µ], . . . , xm[N − 1]︸ ︷︷ ︸
CP extension

, xm[0], . . . , xm[N − 1]

T (2.15)

This extension is illustrated in Figure 2.9.
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x N µ− [ 1]
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m
x

(CP)
m

x

Appending the last samples to the frontµ

Figure 2.9 CP extension prolongs the mth OFDM symbol xm into x
(CP)
m .

Note that the duration between two adjacent time samples is Ts = T/N . So the length

of CP in its continuous-time domain is TCP = µTs = µT/N . The purpose of this extension

is to mitigate the delay spread causing ISI when receiving the data signal from a wide-band

channel as discussed in the previous section.

After having extended with a CP, the complex sequence x
(CP)
m is converted into a pair

of analog signals using digital-to-analog converters (DACs), and then passed through pulse

shaping filters. Since OFDM time samples are transmitted sequentially, the output of the

P/S and CP block in Figure 2.8 is a discrete-time signal:

x(CP)[n] =
∞∑

m=−∞

x(CP)
m [n] ∗ δ[n−m(N + µ)] =

∞∑
m=−∞

x(CP)
m [n−m(N + µ)] (2.16)

where for any integer m: x
(CP)
m [n] = 0 if n /∈ [−µ,N − 1].
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Two identical filters are applied to the complex signals to produce a pair of baseband

quadrature OFDM signals.

xI(t) =

[
∞∑

n=−∞

<{x(CP)[n]}hDAC (t− nTs)

]
∗ p(t)

xQ(t) =

[
∞∑

n=−∞

={x(CP)[n]}hDAC (t− nTs)

]
∗ p(t)

(2.17)

where hDAC(t) represents the DAC response and its reconstruction filter, and p(t) is the pulse

shaping filter. The baseband signals are then upconverted to a carrier frequency Fc as:

xa(t) = xI(t) cos(2πFct)− xQ(t) sin(2πFct) (2.18)

The transmit signal is filtered by the channel impulse response hC(t) and corrupted by

additive white Gaussian noise w(t), forming a received analog signal as ya(t) = xa(t)∗hC(t)+

w(t). The next steps in the receiver are down-conversion, matched filtering, and sampling

at Ts to produce a complex sequence

y(CP)
m = [ym[−µ], . . . , ym[−1], ym[0], . . . , ym[N − 1]]T .

The sequence then has its µ prefix samples removed and is converted back to the frequency

domain using a DFT or FFT block. The obtained frequency symbols are input to the

corresponding QAM demodulator to recover the transmitted data.

This section discussed an efficient OFDM implementation which decomposes the wide-

band channel HC(F ) into a set of narrowband orthogonal subchannels with different QAM

modulation over each subchannel. The following section elaborates on a practical implemen-

tation of the OFDM transmitter, which is relevant to the PAPR problem.

Practical Implementation of an OFDM Transmitter

In practical OFDM applications, baseband OFDM signals are typically generated in the

discrete-time domain, whereas the upconversion to a carrier frequency Fc can then be done

either before or after the DAC. The block diagram of an OFDM transmitter to generate

baseband signals is shown in Figure 2.10.
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Figure 2.10 Block diagram of an OFDM transmitter.

The time samples of the mth OFDM symbol after the IDFT/IFFT block in (2.14) can

be rewritten as:

xm[n] =
1√
N

N−1∑
k=0

Xm[k]ej2πkn/NwN [n] (2.19)

where wN [n] is a discrete-time rectangular window of unit height over the interval [0, N −1].

With the introduction of wN [n] and thanks to the cyclic property of the exponential sum,

the symbol with a CP extension given in (2.15) can be expressed in formula as:

x(CP)
m [n] =

1√
N

N−1∑
k=0

Xm[k]ej2πkn/Nw
(CP)
N+µ[n] (2.20)

where w
(CP)
N+µ[n] is a unit-height rectangular window defined over [−µ,N − 1]. If these time

samples are transmitted sequentially, the infinite length sequence of time samples can be

described by:

x(CP)[n] =
∞∑

m=−∞

x(CP)
m [n−m(N + µ)] (2.21)

It can be easily seen that x(CP)[n] is not band-limited due to the sinc-shape spectrum intro-

duced by the windowing operation of w
(CP)
N+µ[n].

Oversampling by a factor of J is normally required in a practical OFDM transmitter. The

notation x
(J)
m [`] is then used to denote an oversampled sequence of xm[n] as shown in Figure
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2.11. If the original sequence xm[n] has a length of N , the J-times oversampled sequence

x
(J)
m [`] has a length of JN .

J↑[ ]
m

x n
( )

[ ]
J

m
x ℓ

Figure 2.11 Illustration of a J-times up-sampler.

There might be different approaches to obtain an oversampled version of x[n]. One

approach is to pad (J−1)N zero values in the middle of its frequency symbol Xm to obtain:

X(0)
m =

[
X(0)
m [0], . . . , X(0)

m [JN − 1]
]T

=

Xm[0], . . . , Xm[
N

2
− 1], 0, . . . , 0︸ ︷︷ ︸

(J−1)N

, Xm[
N

2
], . . . , Xm[N − 1]

T (2.22)

Then performing a length-JN IDFT/IFFT operation on the padded frequency symbol X(0)
m

produces x
(J)
m [`] for 0 ≤ ` ≤ JN − 1. An example of an up-sampler with J = 2 is shown in

Figure 2.12.

The oversampled signal x
(J)
m =

[
x

(J)
m [0], . . . , x

(J)
m [NJ − 1]

]
is thus:

x(J)
m [`] =

1√
JN

JN−1∑
k=0

X(0)
m [k]ej2πk`/JNwJN [`]

=
wJN [`]√
JN

N
2
−1∑

k=0

Xm[k]ej2πk`/JN +
JN−1∑

k=JN−N
2

Xm[k − J(N − 1)]ej2πk`/JN


=
wJN [`]√
JN

N
2
−1∑

k=−N
2

Xm[k]ej2πk`/JN

(2.23)

where wJN [`] is a window of unit height over [0, JN − 1]. The signal is then CP extended,

x(J,CP)
m [`] =

w
(CP)
JN+Jµ[`]
√
JN

N
2
−1∑

k=−N
2

Xm[k]ej2πk`/JN (2.24)

with w
(CP)
JN+Jµ[`] a unit-height window over [−Jµ, JN − 1]. The resulting infinite-length

sequence of time samples is then:

x(J,CP)[`] =
+∞∑

m=−∞

x(J,CP)
m [`−m(NJ + Jµ)] . (2.25)
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Figure 2.12 A 2-times (i.e., J = 2) upsample sequence obtained by zero padding a

frequency symbol and perform IDFT: N = 32 subcarriers.

Windowing and Tapering OFDM Symbols

It is very common that communication standards, such as DOCSIS 3.1 [4], require that

the transmit signals conform to some spectral masks, in which the out-of-band spectral emis-

sions are not allowed to be above some threshold. This is mandatory for OFDM applications

to share the broadband spectrum with other modulation schemes or to allow multiple OFDM

transmitters/receivers simultaneously operate. This is why pulse-shaping filters are applied

to help sharpen the edges of the spectrum of the transmitting signal. However the applica-

tion of pulse shaping filters can cause the OFDM signal to lose the orthogonality between

subcarriers if care is not taken. In DOCSIS 3.1, the shaping is implemented by appending

x
(J,CP)
m [`] with Jβ samples at the beginning and tapering on its start and end with a shaping

function w
(T)
JN+Jβ+Jµ[`]. The tapered signal is given by:

x(J,T)
m [`] =

w
(T)
JN+Jβ+Jµ[`]
√
JN

N
2
−1∑

k=−N
2

Xm[k]ej2πk`/JN (2.26)
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where w
(T)
JN+Jβ+Jµ[`] is the taper window of length (NJ +Jβ+Jµ) defined over [−Jµ, JN +

Jβ]. A pulse shaping window function is also called a taper window since it tapers off the two

endings of length Jβ/2 samples of the symbol. The CP extending and tapering operations

are illustrated in Figure 2.13.
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Figure 2.13 Cylic prefix extension and tapering of the mth OFDM symbol.

The infinite time-domain tapered signal is then:

x(J,T)[`] =
+∞∑

m=−∞

x(J,T)
m [`−m(NJ + Jµ+ Jβ/2)] . (2.27)

With the tapered endings, each symbol is overlapped by Jβ/2 samples and added with the

tapered beginning samples of the next symbol, which is illustrated in Figure 2.14.

The tapering window can be implemented using a raised cosine (RC) window. Let p[n],
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Figure 2.14 Continuous stream of OFDM symbols (a) Without cyclic prefix (b)

With cyclic prefix (c) With cyclic prefix and tapering.

0 ≤ n ≤ N + β + µ− 1, be the RC window coefficients, specified as [4]:

p

[
i+

N + µ+ β

2

]
=


1, i = 0, 1, . . . , N+µ−β

2
− 1

1
2

[
1− sin

(
π
β

(
i− N+µ

2
+ 1

2

))]
i = N+µ−β

2
, . . . , N+µ+β

2
− 1

(2.28)

Then the corresponding tapering window before oversampling is

w
(T)
N+µ+β[n] = p[n+ µ], −µ ≤ n ≤ N + β − 1 (2.29)

From (2.29), the oversampled w
(T)
JN+Jβ+Jµ[`], −Jµ ≤ ` ≤ JN+Jβ−1 can be obtained, which

results in CP length of Jµ and a tapering extension of Jβ. The roll-off parameter of the RC

window is defined as:

α =
Jβ

JN + Jµ
=

β

N + µ
(2.30)

As seen in (2.30), α does not depend on the value of J . In addition, different values of

α affect the sharpness of the output spectra. This is illustrated in Figure 2.15 where the

power spectral density (PSD) of the OFDM signals becomes sharper with larger values of

the roll-off factor.

The upconversion in (2.18) is realized in the discrete-time domain by multiplying the

complex sequence x(J,T)[`] with a complex sinusoid ej2πfc` and then taking the real component
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Figure 2.15 Power spectral density of OFDM signals with N = 64,M = 16, J =

4, µ = 16 and a raised cosine window of different roll-off factors: α =

0, 0.025, 0.05, 0.1.

of the result. Note that fc is connected to the carrier frequency Fc in (2.18) by

fc =
Fc
Fs

where Fs is the sampling frequency. Because of oversampling, the duration between two

adjacent time samples is

T (J)
s =

Ts
J

=
T

NJ
,

which results in

Fs =
1

T
(J)
s

=
NJ

T
.

The passband discrete-time signal is thus:

x(J,R)[`] = <{x(J,T)[`]ej2πfc`}

= <{x(J,T)[`]} cos (2πfc`)−={x(J,T)[`]} sin (2πfc`)

= x
(J,T)
I [`] cos (2πfc`)− x(J,T)

Q [`] sin (2πfc`)

(2.31)
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where x
(J,T)
I [`] = <{x(J,T)[`]} and x

(J,T)
Q [`] = ={x(J,T)[`]}.

The real discrete-time signal is then fed into a DAC to produce the continuous time signal

x(t)

x(t) =
∞∑

`=−∞

x(J,R)[`] hDAC

(
t− `T (J)

s

)
(2.32)

where hDAC(t) represents the DAC response which incorporates a sample-and-hold filter and

a reconstruction filter.

The final stage in Figure 2.10 is denoted by a HPA block, which is a high power amplifier

that amplifies the OFDM signal before it is sent over the physical channel. The characteristics

and effects of HPA will be discussed in more detail in Section 2.4.

2.3 Peak-to-Average Power Ratio (PAPR)

The dynamic range of OFDM signals poses a major concern in the system design. Due

to the nature of multicarrier signals, the resulting time waveform can have a very high peak

in the instantaneous power with respect to the average power. This high ratio between the

peak power and the average power, called the peak-to-average power ratio (PAPR), causes

significant in-band distortion and out-of-band radiation when the signal passes through a

nonlinear device such as a power amplifier.

The PAPR of the analog OFDM signal x(t) is evaluated over a symbol interval T as

PAPRC(x(t)) =
max0≤t≤T |x(t)|2

E{|x(t)|2}
(2.33)

where max0≤t≤T |x(t)|2 denotes the maximum symbol-wise instantaneous power, andE{|x(t)|2}

is the average power of the OFDM signal x(t).

The definition given in (2.33) is difficult to use in a practical system. Instead, the

measurement is typically done using discrete time samples. The PAPR defined using discrete

time samples of x(t) is given by:

PAPRD(x[`]) =
max0≤`≤NJ−1|x[`]|2

E{|x[`]|2}
(2.34)

The discrete time signal x[`] in (2.34) can be x(J,CP)[`], x(J,T)[`] or x(J,R)[`] as described in

Figure 2.10.
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There is a well-known result established in [10], which states that the minimum value of

J should be at least 4 so that the observed PAPR of the discrete-time signal approximates

that of the analog signal.

In the literature, it is customary to use the complimentary cumulative distribution func-

tion (CCDF) of the PAPR as a performance criterion. It is defined as:

CCDF(ψ) = Pr{PAPRD(x) ≥ ψ} (2.35)

In essence CCDF(ψ) is the probability of an OFDM symbol having its PAPR exceeding ψ.

As an example, the CCDFs of PAPR for different oversampling factors are shown in Figure

2.16. The results show that J = 4 can provide good enough approximation of the PAPR

distribution of the continuous-time signal.
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Figure 2.16 CCDF of PAPRD(x(J,T)[`]) for different oversampling factors.

If the number of subcarriers N is large enough (N ≥ 64 is practically good), then based on

the central limit theorem, the real and imaginary parts of x[n] have Gaussian distributions,

hence the envelope of x[n] follows a Rayleigh distribution [2]. Also, in theory, PAPR can

be proportional to the number of active subcarriers, which happens when all the subcarriers
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align in phase. The CCDF curves of OFDM symbols corresponding to different numbers of

subcarriers and J = 4 are plotted in Figure 2.17.
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Figure 2.17 CCDF of PAPRD(x(4,T)[`]) for different numbers of subcarriers.

The PAPR measured with the real signal x(J,R)[`] is slightly different from that measured

with the complex signal x(J,T)[`]. Given the modulation in (2.31) and assuming the carrier

frequency is much larger than the bandwidth of the OFDM symbol, i.e. fc >> W = N/T ,

the peak instantaneous magnitude of the real signal is the same as the peak instantaneous

envelope of the complex signal:

max
0≤`≤NJ−1

|x(J,R)[`]| ≈ max
0≤`≤NJ−1

|x(J,T)[`]| (2.36)

For square QAM modulation, the I and Q channels are made up from the same set of signals.

It follows that:

E{|x(J,T)
I [`]|2} = E{|x(J,T)

Q [`]|2} =
1

2
E{|x(J,R)[`]|2} (2.37)

Furthermore, because of (2.31), one has:

E{|x(J,R)[`]|2} =
1

2
E{|x(J,T)

I [`]|2}+
1

2
E{|x(J,T)

Q [`]|2} =
1

2
E{|x(J,T)[`]|2}, (2.38)
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which results in:

PAPRD(x(J,R)[`]) =
max

0≤`≤NJ−1
|x(J,R)[`]|2

E{|x(J,R)[`]|2}

=
max

0≤`≤NJ−1
|x(J,T)[`]|2

E{|x(J,T)[`]|2}/2
= 2PAPRD(x(J,T)[`])

(2.39)

Hence, the PAPR of the real passband signal is 3 dB higher than the PAPR of the baseband

signal.

2.4 Models of a Power Amplifier

OFDM signals are more sensitive to the nonlinearities encountered in the transmitting

path than constant-envelope signals. Common sources of nonlinearities are: nonlinearity in

the FFT/IFFT blocks due to the limited word lengths; quantization noise introduced in the

DAC and analog-to-digital conversion (ADC); the nonlinearity due to the amplifying charac-

teristic of a HPA. Due to the high PAPR nature of multicarrier signals, the nonlinearities of

a HPA have the dominant effect. Therefore, a model of a HPA is needed to fully understand

the impact of high PAPR.

HPAs are commonly characterized as memory-less amplifiers with frequency-non-selective

response [11]. Provided that the input signal is

x(t) = |x(t)|ejφ(t) (2.40)

where |x(t)| and φ(t) are the amplitude and phase of the signal, the output of the HPA is

represented by [2]:

y(t) = G (|x(t)|) ej{φ(t)+Φ(|x(t)|)} (2.41)

where G (·) and Φ (·) are, respectively, the amplitude/amplitude (AM/AM) and the am-

plitude/phase (AM/PM) distortion functions. In particular, G (·) captures the effect of

nonlinearity on the amplitude |x(t)|, whereas Φ (·) accounts for the effect of nonlinearity on

the phase φ(t).

There are three HPA models that are commonly used in literature: the soft limiter (SL)

model, the solid state power amplifier (SSPA) model, and the traveling wave tube amplifier

(TWTA) model [2]. The following subsections discuss them briefly.
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Soft Limiter

The soft limiter (SL) is the simplest model of the power amplifiers. It’s AM/AM response

is a constant and AM/PM response is ideally zero. Therefore, the output of the SL HPA is

given by:

y(t) =


Aejφ(t), |x(t)| ≥ A,

x(t), otherwise,

(2.42)

where A is the limiting threshold of the SL HPA.

Solid State Power Amplifier

The solid state power amplifier (SSPA) model is expressed as [12] :

G (|x(t)|) =
g0|x(t)|[

1 +
(
|x(t)|
A

)2p
]1/2p

, (2.43)

and

Φ (|x(t)|) = 0, (2.44)

where g0 is the amplifier gain; A is the threshold or the saturation level of the HPA; p

is a parameter that controls the AM/AM sharpness of the saturation region. This model

is widely used in wireless communications [2]. It can be seen from (2.44) that the SSPA

introduces no distortion in the signal phase. Note also that when p→∞, the SSPA model

becomes the SL model.

Traveling Wave Tube Amplifier

The traveling wave tube amplifier (TWTA) model is given by [13] :

G (|x(t)|) =
α1|x(t)|

1 + β1|x(t)|2
, (2.45)

and

Φ (|x(t)|) =
α2|x(t)|

1 + β2|x(t)|2
, (2.46)

where α1, β1, α2, β2 are parameters that control the characteristics of the AM/AM and

AM/PM responses. Common choices of these parameters are [2]:

α1 = 2A, β1 =
1

A2
, α2 =

π

12
, β2 = 0.25. (2.47)
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As a comparison, the AM/AM distortion functions of the SL model, SSPA model for

p = 1, 2, 4, 10 and the TWTA model with the suggested parameter values in (2.47) are

shown in Figure 2.18. Note that, due to the non-zero phase response, the TWTA model

exhibits stronger nonlinearity when compared to the SSPA and SL models.
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Figure 2.18 Simulations of AM/AM distortion functions of SL model in (2.42),

SSPA model with p = 1, 2, 4, 10 in (2.43) and TWTA model in (2.45)

with suggested values in (2.47).

Input Back-Off

The most efficient working point of a PA is at its saturation level. However, the high

peaks encountered in OFDM signals can drive the PA into saturation. Therefore some input

back-off (IBO) is required to shift the operating point towards the lower input power, which

is illustrated in Figure 2.20. The IBO factor is defined as the ratio between the input

saturation power level of the HPA and the average power of the input signal:

IBO = 10 log10

(
Psat

Pavg

)
= [Psat]dB − [Pavg]dB (2.48)

where Psat, Pavg are the input saturation power and the average power of the input signal,
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Figure 2.19 Simulation of AM/PM distortion function of TWTA model in (2.46)

with suggested values in (2.47).

respectively.

The amplified peaks in OFDM signals are clipped in the saturation region of the HPA,

which causes spectral spreading and distortions. To limit this effect, the IBO should be at

least equal to the PAPR of the input signal. However, such solution forces the HPA to work

at a reduced efficiency. Figure 2.21 shows the spectral spreading effect for different values of

IBO.

2.5 Summary

In this chapter, a review of single-carrier QAM systems is first given. Then the concept

of OFDM as a combination of multiple SC-QAM subchannels is presented, in which the

effect of a wide-band channel causing ISI at the receiver is also discussed. After that, the

implementation of an OFDM system utilizing DFT/IDFT is reviewed. As the objective of

the thesis is on the problem of PAPR reduction for OFDM signals, a definition of PAPR to
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Figure 2.20 Typical input power versus output power characteristics curve for a

HPA [2].

quantify the dynamic range of OFDM signals is introduced. The last section discussed the

property of an HPA and its theoretical models to illustrate the affect of limited linear range

in amplifying OFDM signals. As the PAPR of OFDM signals is theoretically unlimited,

PAPR reduction is crucial to obtain signals with a smaller dynamic range so that they can

be amplified more effectively and less distorted. The next chapter gives an overview of

different techniques in literature to reduce PAPR and discusses some of their principles.
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Figure 2.21 Simulation of spectral spreading effect of SSPA model with p = 2

for PAPR− IBO = 10, 6 and 0 dB on the OFDM signal spectrum

(N = 64, NCP = 16,M = 16).
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3. PAPR Reduction Techniques

There are numerous techniques proposed to reduce the PAPR of OFDM signals in the

literature. These techniques can be classified into two categories: (i) distortion techniques,

and (ii) distortion-less techniques. A categorized view of PAPR reduction techniques is given

in Figure 3.1 and an example of PAPR reduction is shown in Figure 3.2.

PAPR Reduction Techniques

Clipping and 

Filtering

Peak Windowing

Peak Companding

Selective Mapping

Partial Transmit 

Sequence

Interleaved 

OFDM

Tone 

Reservation

Tone Injection

Constellation 

Shaping

Linear Block 

Coding

Golay Sequences

Turbo Coding

Distortion Distortionless

Multiple Signaling Coding 

Figure 3.1 Categories of PAPR reduction algorithms [2].
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Figure 3.2 Example of PAPR reduction of an OFDM symbol using a TR tech-

nique.

The distortion techniques reduce the PAPR by distorting the OFDM signal before it

passes through the HPA. Some well-known techniques in this category are clipping-and-

filtering [14–16], peak windowing [17–22] and peak companding [23–25]. These techniques

provide good PAPR reduction, but introduce both in-band and out-of-band distortions,

which increases the bit-error-rate (BER). Because the probability of having a high peak in

OFDM signals is quite small [2], most of the signal power is contributed by low magnitude

samples. At the expense of some tolerable increase in the BER, some level of PAPR reduction

can be achieved by distorting the OFDM signals.

The distortion-less techniques are more attractive since they do not increase the BER.

They can be further categorized into two sub-categories: multiple signaling techniques and

coding techniques. The multiple signaling techniques reduce the PAPR of the transmit

signals by generating multiple permutations of the original OFDM signal, then choosing

the one with the minimum PAPR. On the other hand, the coding techniques modify the

redundancy part of the data block, which is used for error detection and correction purpose,
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to obtain the resulting signal having the minimum PAPR. Consequently, all the distortion-

less techniques requires side-information that must be made known to the receiver in order

to demodulate the transmitted data correctly.

The multiple signaling sub-category includes selective mapping [26–28], partial transmit

sequence [29–32], interleaved OFDM [33–35], tone reservation [36], tone rejection [37], and

constellation shaping techniques [38–40] . The coding techniques make use of linear block

coding [41–43], Golay sequences [44–46], and turbo coding [47–49].

The following subsections elaborate further on the clipping-and-filtering, selective map-

ping, partial transmit sequences, interleaved OFDM and tone reservation techniques.

As discussed in Section 2.3, the oversampled discrete-time signal provides a good ap-

proximation of the PAPR of the continuous-time signal. So from this point onwards, all the

mathematical derivations will consider only oversampled discrete-time OFDM symbols. In

addition, because the major cause of the high dynamic range of OFDM signals is due to the

combination of subcarriers, not the extensions of symbol durations such as CP or roll-off

intervals, it is reasonable to analyze OFDM symbols that are generated without any cyclic

prefix or roll-off interval extensions.

3.1 Clipping-and-Filtering Technique

Reducing PAPR by clipping is the simplest approach, which limits the high peaks of

OFDM signals to a pre-specified level prior to passing it to the HPA. There are different

ways to clip the signal. The classical method [14] employs a clipping function given by:

gT (ξ) =


ξ, if |ξ| ≤ T

T ej∠ξ, if |ξ| > T
(3.1)

where ξ is a complex variable; T is a predefined threshold. This means that any sample

having its magnitude exceed T is clipped in magnitude but its phase is unchanged; otherwise,

it is passed to the HPA without change.

Deep clipping is another method which is proposed in [50]. This method modifies the
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classical clipping function in order to deeply clip the high magnitude samples. A parameter

called a clipping depth factor is then used to control the clipping depth. The deep clipping

function is defined by:

dT (ξ) =



ξ, if |ξ| ≤ T

[T − β(|ξ| − T )] ej∠ξ, if T < |ξ| < 1+β
β
T

0, if |ξ| > 1+β
β
T

(3.2)

where β is a clipping depth factor.

Another clipping operation, called smooth clipping is reported in [51]. In this paper, the

smooth clipping function is defined as:

mT (ξ) =


(
|ξ| − 1

κ
|ξ|3
)

ej∠ξ, if |ξ| ≤ 3
2
T

T ej∠ξ, if |ξ| > 3
2
T

(3.3)

where κ = 27
4
T 2.

For comparison, the magnitude responses of the three clipping functions discussed above

are plotted in Figure 3.3.

The clipping operations cause in-band signal distortion, resulting in BER degradation.

Because of the probability of large peaks is small, the in-band distortion is not severe under

the condition that the clipping threshold is sufficiently large. Therefore a small increase

in in-band distortion can be tolerated when a low-order QAM modulation, for instance a

4-QAM modulation, is used. For high-order QAM modulation, even a small increase in

in-band distortion is not acceptable. To illustrate this, the effects of 6 dB clipping with

the clipping function in (3.1) for OFDM signals using 16-QAM and 64-QAM are shown in

Figure 3.4. It is obvious that the distortion caused by clipping leads to a higher error rate

for 64-QAM as compared to 16-QAM.

In addition, clipping also creates out-of-band radiation, which causes out-of-band inter-

ference signals to the neighboring frequency bands. This is why the filtering operations are

needed. Filtering out-of-band radiation can be done in the time domain by using a low-pass
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Figure 3.4 Clipping at 6 dB causes more severe distortions for 64-QAM than for

16-QAM.

filter [52] or in the frequency domain utilizing a pair of DFT and IDFT [14]. Filtering in

the frequency domain is simpler than in the time domain since the DFT/IDFT operations

can be effectively implemented using the FFT algorithms. The clipped signal is transformed
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Figure 3.5 Peak regrowth (N = 1024, J = 16,M = 64; clipping at 6 dB).

into the frequency domain, where all the out-of-band terms are set to zero. After that, an

inverse FFT (IFFT) is used to convert the filtered signal back to the time domain. Nonethe-

less, a side-effect of filtering is peak regrowth. The peaks appear again after filtering but

having lower magnitudes than that of the original peaks. The peak regrowth phenomenon

is illustrated in Figure 3.5.

3.2 Selective Mapping Technique

Figure 3.6 shows the general scheme of PAPR reduction using the selective mapping

(SLM) technique. The general idea is to generate a set of M−different OFDM symbols

{x(0), . . . ,x(M−1)}, that are all generated from the same block of input data sequence X =

[X0, . . . , XN−1]. The transmit signal is selected to be the one having the minimal PAPR.

Mathematically, the transmitted OFDM symbol is expressed as:

x̃ = arg min
0≤m≤M−1

{
PAPR(x(0)), . . . ,PAPR(x(M−1))

}
(3.4)

The M OFDM symbol sets can be generated by multiplying X by M different length-N
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Figure 3.6 PAPR reduction using the SLM technique.

phase sequences, element-by-element, prior to performing IDFT. The phase sequences are

denoted by:

pi =
[
ejφi,0 , . . . , ejφi,N−1

]T
, 0 ≤ i ≤M − 1 (3.5)

where φi,k ∈ [0, 2π) for 0 ≤ i ≤ M − 1; 0 ≤ k ≤ N − 1. The modified OFDM symbols are

then formed by taking the IDFT on the phase-altered data, which is:

x(i) = IDFT
{
X0ejφi,0 , . . . , XN−1ejφi,N−1

}
, 0 ≤ i ≤M − 1 (3.6)

The multiplication with the phase sequence causes the data symbols to rotate within

the QAM constellation. As an example, a phase sequence can consist of 0◦ or 180◦ phase

rotation, i.e., φi,k ∈ {0, π}. In such a case, the phase shifting can be done without the need

of multiplications. Different phase sequences can give different amounts of PAPR reduction

and designing good phase sequences is an important task.

In order for the receiver to detect the correct data, information of a selected phase

sequence must be transmitted along with the OFDM symbol. This in turn reduces the data

transmission rate. Moreover this side information also needs to be protected since a corrupted

phase sequence results in an erroneous recovery of a whole OFDM symbol. Thus numerous

schemes, called blind-SLM schemes, have been proposed to avoid the need of transmitting

side information over the channel [2].

The optimization process of choosing the minimal PAPR signal among M generated

signals can become prohibitively complicated when the number of carriers becomes large,
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and more importantly, when the number of phase sequences is increased. Note that as

higher PAPR reduction is required, a larger number of phase sequences needs to be gen-

erated. Besides, the implementation of the SLM technique requires M blocks of IFFT for

the frequency-to-time domain conversion. All of these factors translate to high computation

cost.

The authors in [28] suggest using multiple all-pass filters to rotate the OFDM symbol se-

quence instead of performing complex multiplication along with IFFT as in the conventional

SLM approach. This technique helps to significantly reduce the work load in the transmitter

thanks to IFFT operations. However the performance of PAPR reduction is slightly de-

graded when compared to the conventional SLM scheme. The authors provide an example

of using 8 first-order all-pass filters for an OFDM system with N = 2048 subcarriers. The

proposed scheme is able to reduce the number of required multiplications by 69.2% and the

number of additions by 63.1% at a sacrifice of 0.25 dB PAPR increase when compared to

the conventional SLM scheme using 8 IFFT blocks [2].

3.3 Partial Transmit Sequence Technique

In the partial transmit sequence (PTS) technique, the input data block X is partitioned

into M disjoint subblocks as X = [X0, . . . ,XM−1]T . The IDFT is then operated on each

subblock. The IDFT’s outputs are weighted with complex phase factors b0, . . . , bM−1. The

block diagram is shown in Figure 3.7.

The transmit signal is formed by summing all scaled outputs of IDFT blocks, which

yields:

x̃ =
M−1∑
i=0

biIDFT{X i} =
M−1∑
i=0

bixi (3.7)

where xi is the ith partial sequence; bi = ejφi with φi ∈ [0, 2π) is the ith scaling factor. The

phase vector is chosen so that the PAPR of x̃ can be minimized, which can be expressed as:

[b0, . . . , bM−1] = arg min
[b0,...,bM−1]∈CM

(
max

0≤n≤N−1

∣∣∣∣∣
M−1∑
i=0

bixi[n]

∣∣∣∣∣
)

(3.8)

where CM is the M -dimensional complex number space.
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Figure 3.7 PAPR reduction using the PTS technique.

In general, the search space for the optimal length-M phase vector is too large to have an

effective search. As such, searching in a subspace with a finite number of elements is usually

conducted. Specifically, the phase factors are chosen to be in the set {bi = ej
2πi
Q , 0 ≤ i ≤

Q− 1} where Q is the number of allowed phase values. Since the first factor is 1, the search

objective is to find M − 1 phase factors, which is equivalent to search for an element in the

set of QM−1 elements. This means the search complexity still increases exponentially with

the number of subblocks.

The performance of PAPR reduction depends on the values of M and Q. Higher PAPR

reduction can be obtained for a larger number of subblocks. However, the PTS operations

requireQ IDFT operations for each data block and blog2Q
M−1c additional bits of information

to be transmitted to the receiver. Therefore, having a larger number of subblocks increase

considerably the resources required and the complexity. In addition, the partitioning scheme

is an important factor determining how well the PAPR reduction scheme performs. There

are three prevalent methods to partition the input block: adjacent partitioning, interleaved

partitioning and pseduo-random partitioning [2], in which the pseudo-random partitioning

has been found to provide the best performance.

Due to the high complexity of searching for a suitable transmitting sequence, various

schemes are proposed to reduce this complexity. One particular example is a suboptimal

combinational algorithm, which uses the binary phase factors of {1,−1} instead of general
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complex phase factors as in [30].

3.4 Interleaved OFDM Technique

Instead of using different phase sequences as in the SLM method, different OFDM symbols

can be generated by using an interleaver. Given the same input block of data, different

interleavers generate different permutations of data over different subcarriers, which creates

different symbols with different PAPR values. To achieve a substantial PAPR reduction,

multiple interleavers are exploited to generate a set of sufficiently large permutations from

the original data block. The reordered data is then put onto IDFT blocks and the resulting

signal having the smallest value of PAPR is chosen. This technique is illustrated in Figure

3.8.
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Figure 3.8 PAPR reduction using the interleaved OFDM technique.

The permutations can be conducted on the data bits or the data symbols. Moreover the

interleaving operations can also be applied for the case of multiple channel OFDM signal as

in orthogonal frequency-division multiple access (OFDMA) system [53], which is also known

as the DFT-spreading technique.

The interleaved OFDM symbols are selected amongst M candidate symbols, which re-

quires M − 1 interleavers and M IDFT blocks. Additionally, blog2Mc side information bits

have to be transmitted to the receiver since the receiver must know which interleaver was

used for the transmitted symbols in order to detect the data correctly. These bits are used

to store the index of the interleaver used, which must be stored in both the transmitter and

receiver.
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3.5 Tone Reservation Technique

In the tone reservation (TR) method, the transmitter and receiver must agree to reserve

a set of G subcarriers for peak reduction, while the remaining (N −G) subcarriers are used

for data transmission. An oversampled peak canceling signal c = [c[0], . . . , c[NJ − 1]] is

constructed from the reserved tones. The peak-reduced signal y = [y[0], . . . , y[NJ − 1]] is

given by:

y[n] = x[n] + c[n] =
1√
JN

N−1∑
k=0

(Xk + Ck)e
j2π nk

NJ , (3.9)

where 0 ≤ n ≤ NJ − 1 and

C =
[
C0, . . . , CN/2−1, 0, . . . , 0, CN/2, . . . , CN−1

]T
is the frequency symbol used to construct c. The principle of this method is illustrated in

Figure 3.9.
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Figure 3.9 PAPR reduction using the TR technique.

The set of subcarriers used is referred to as a peak reservation tone set (PRT), denoted

as R = {i0, i1, . . . , iG−1}. The frequency vector C is restricted to have non-zero elements

only at the reserved tones. That is:

Xk + Ck =


Xk, k ∈ D

Ck, k ∈ R
(3.10)
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where D is the set of data tones, and D ∩R = ∅.

The PAPR of the peak-reduced OFDM signal is then computed as [37]

PAPR(y) =
max0≤n≤NJ−1 |x[n] + c[n]|2

E {|x[n]|2}
(3.11)

Since the denominator of (3.11) does not depend on C, the optimal peak canceling signal

is chosen to minimize the peak power of y[n]:

C = arg min
C∈CN

{
max0≤n≤NJ−1 |x[n] + c[n]|2

}
subject to: H(C) ≤ G

(3.12)

where CN is the N -dimensional complex number space and H(v) denotes the Hamming

weight of vector v, which is the number of non-zero elements in v. Methods to find the

solution to the optimization problem in (3.12) are discussed next.

Finding the Optimal Peak Canceling Signal in the TR Method

The time-domain signal of an J−times oversampled OFDM symbol can be written as:

x[n] =
1√
JN

N
2
−1∑

k=−N
2

Xke
j2πkn/JN , 0 ≤ n ≤ NJ − 1 (3.13)

The oversampled time vector x =
[
x[0], x[1], . . . , x[NJ − 1]

]T
can also be represented using

a matrix multiplication

x = QX (3.14)

where Q is a NJ ×NJ IDFT matrix, given as:

Q =
1√
JN
×



1 1 . . . 1 . . . 1

1 ej2π
1
NJ . . . ej2π

k
NJ . . . ej2π

(NJ−1)
NJ

...
...

. . .
...

. . .
...

1 ej2π
(NJ−1)
NJ . . . ej2π

(NJ−1)k
NJ . . . ej2π

(NJ−1)2

NJ


NJ×NJ

(3.15)

In addition, the frequency symbol vector X has only N non-zero elements out of NJ total

elements, due to the oversampling operation.
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Using (3.14), one has:

c = QC, or c[n] = qnC, 0 ≤ n ≤ NJ − 1. (3.16)

where qn = 1√
NJ

[
1, ej2π

n
NJ , . . . , ej2π

n (NJ−1)
NJ

]
is the nth row of matrix Q.

Therefore, Equation (3.12) can be reformulated as:

min
C

p

subject to: max
0≤n≤NJ−1

|x[n] + qnC|2 ≤ p
(3.17)

The above optimization problem is equivalent to:

min
C

p

subject to:
∣∣∣x[0] + q0C

∣∣∣2 ≤ p∣∣∣x[1] + q1C
∣∣∣2 ≤ p

...∣∣∣x[NJ − 1] + qNJ−1C
∣∣∣2 ≤ p

(3.18)

Expanding the square of the absolute value using the identity |α|2 = α α∗, where α∗ is a

complex conjugate of α, results in:

min
C

p

subject to: (x[0] + q0C) (x[0] + q0C)∗ ≤ p

(x[1] + q1C) (x[1] + q1C)∗ ≤ p

...(
x[NJ − 1] + qNJ−1C

) (
x[NJ − 1] + qNJ−1C

)∗ ≤ p

(3.19)

The constraints in (3.19) are quadratic so they are convex constraints. Hence, this is an

optimization problem which minimizes a linear constraint over an intersection of convex

constraints on the variable C, which falls into a class of convex optimization called quadrat-

ically constrained quadratic program (QCQP) [54].

In a simplified case when the transmit signal is a real signal, the QCQP problem simplifies

to a linear program (LP) problem. Since x[n] is real, the additive signal c[n] must be real,
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which meansC must satisfy the Hermitian symmetry property (Ck = C∗NJ−k). For simplicity,

N and G can be assumed to be even without any loss of generality. It means that the reserved

tones should be chosen to provide a symmetry property, so only a half number of the reserved

tones are actually selected. If R 1
2

= {i0, i1, . . . , iG/2−1} denotes the set of the first G
2

elements

in R, the canceling signal can be written as:

c[n] =
1

JN

G/2−1∑
r=0

(
Cmej2π

irn
JN + C∗me−j2π

irn
JN

)
=

1

JN

G/2−1∑
r=0

(
Cmej2π

irn
JN +

(
Cmej2π

irn
JN

)∗)
=

2

JN

G/2−1∑
r=0

(
<{Cm} cos

(
2π

irn

JN

)
−={Cm} sin

(
2π

irn

JN

))
,

(3.20)

which can be compactly expressed as:

c = Q̂ Ĉ

where Ĉ =
[
<{C0}, . . . ,<{CG/2−1},={C0}, . . . ,={CG/2−1}

]T
is a length-G column vector,

and Q̂ is a NJ ×G matrix that includes all the sinusoidal terms in (3.20).

With this notation, the problem in (3.19) for a real baseband signal is equivalently trans-

formed into:

min
C

p

subject to:
∣∣∣x[0] + q̂0Ĉ

∣∣∣ ≤ p∣∣∣x[1] + q̂1Ĉ
∣∣∣ ≤ p

...∣∣∣x[NJ − 1] + q̂NJ−1Ĉ
∣∣∣ ≤ p

(3.21)

where q̂i is the ith row of matrix Q̂. The NJ scalar constraints in (3.21) can be rewritten

in a vector form as:

min
C

p

subject to: x+ Q̂Ĉ ≤ p 1JN

x+ Q̂Ĉ ≥ −p 1JN

(3.22)

where 1JN is a length-JN vector of all ones.
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By grouping the constraints, the optimization problem in (3.22) is equivalent to:

min
C

p

subject to:

Q̂ −1NJ

Q̂ −1NJ

Ĉ
p

 ≤
−x
x

 (3.23)

Let y =

Ĉ
p

; α = [0, . . . , 0︸ ︷︷ ︸
JN zeros

, 1]; A =

Q̂ −1NJ

Q̂ −1NJ

 and b =

−x
x

, then (3.23) is

formulated in a standard LP form as [54]:

min
y

α y

subject to: Ay ≤ b
(3.24)

The LP problem in (3.24) has (G+ 1) unknown variables {Ĉ, p} and 2NJ inequalities.

The simplification to the LP problem is only effective in the case of real baseband OFDM

signals. In a more general case, the authors in [55] propose a method to formulate the TR

problem in (3.12) to a second-order-cone program (SOCP), which can be solved efficiently

using the interior-point (IP) method.

3.6 Active Constellation Extension Technique

In active constellation extension (ACE) or active set extension (ASE) approaches, the

modulation constellation over active subcarriers are modified so that the PAPR of the signal

formed from the data block is reduced without significantly degrading the BER performance

[38,39]. The constellation is extended in a way that the minimum Euclidian distance between

any two constellation points does not increase. For example, the shaded areas in Figure 3.10

are the feasible extension regions for the case of QPSK and 16−QAM constellations.

In the extension process, the outer constellation points are dynamically relocated toward

the outside of the original constellation. For QPSK, all four constellation points can be

freely chosen in the shaded areas, which guarantees that the minimum Euclidian distance

of the original constellation does not increase. Because the increase of average power due

to modification of the constellation points is fairly small [38], the BER degradation is not
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Figure 3.10 Feasible extension regions for QPSK constellation (left) and 16-QAM

constellation (right).

significant. In the 16−QAM case, the exterior corner points have their corresponding shaded

regions, while the exterior non-corner points are only allowed to move along the dashed

lines (as depicted in Figure 3.10). While this approach reduces PAPR without considerable

degradation in BER, it’s application is limited for the case of using large constellations since

the interior points cannot be relocated [2].

3.7 Summary

This chapter reviews different techniques that can be used for PAPR reduction. They can

be categorized into two classes, namely signal distortion techniques and signal distortion-less

techniques. The signal distortion techniques exploit a number of methods of distorting the

signal to fit its dynamic range within some predetermined range with a sacrifice of some

distortion in both in-band and out-band spectrum. Although most of the techniques in this

category are very efficient in computational cost, their direct application in a complicated

OFDM system with high-order QAM constellations becomes impractical due to restrictive re-

quirements of spectral masks imposed by the standards. Because of this, techniques that can

reduce PAPR without distorting the signals are of more interest in our research. However, al-

most all of the distortion-less PAPR reduction techniques require to solve some combinatorial

optimization problems, which are not practically solvable because of the exponential-growth
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order of the search space for optimum solutions. Thus there is active research to combine the

principles of distortion-less techniques with the distortion techniques to create algorithms to

reduce PAPR effectively with less computation efforts. The following chapter elaborates on

one of the distortion-less techniques, the TR technique, and explores the possibility of com-

bining the TR technique with clipping-and-filtering. It then proposes more efficient PAPR

reduction algorithms for OFDM signals built from large QAM constellations.
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4. Novel PAPR Reduction Techniques based on

Tone Reservation

Tone reservation (TR) is an attractive and widely used method for PAPR reduction of

OFDM signals because it does not require transmission of extra side information. This allows

changes in the transmitter to be made independently of the receivers. This chapter discusses

in more detail TR-based PAPR reduction techniques.

In the previous chapter, the TR problem is discussed in Section 3.5. Its optimal solution

can be obtained by solving the quadratic constraints quadratic program (QCQP) for the

complex baseband OFDM signal or the linear program for the real baseband OFDM signal.

In this chapter, an approach to find peak-reduction signals in an iterative manner, called

a gradient-based TR algorithm [36], is first discussed. Then, a clipping-and-filtering TR

algorithm, which is a combination of the gradient-based TR algorithm and the clipping-and-

filtering principle considered in Section 3.1, is presented.

The last two sections of this chapter propose two new algorithms. The first algorithm is

performed in the time domain, whereas the second algorithm is a new clipping-and-filtering

method. Both algorithms consist of two stages. The first stage, which is done off-line,

creates a set of canceling signals based on the settings of the OFDM system. In particular,

these signals are constructed to cancel signals at different levels of maximum instantaneous

power that are above a predefined threshold. The second stage, which is online and iterative,

reduces the signal peaks by using the canceling signals constructed in the first stage. When

the reserved tones are distributed among the data tones, analysis and simulation results

show that the proposed algorithms achieve slightly better PAPR reduction performance

with significantly less complexity when compared to the conventional algorithms.
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4.1 Conventional Gradient-Based TR (GTR) Algorithm

Recall that the optimal peak cancelling signal c[n] is chosen to minimize the peak power

of y[n] = x[n] + c[n]:

C = arg min
C∈CNJ

{
max0≤n≤NJ−1 |x[n] + c[n]|2

}
subject to: H(C) ≤ G,

(4.1)

where CNJ is the NJ-dimensional complex number space and H(v) denotes the Hamming

weight of vector v, which is the number of non-zero elements in v.

As shown in Section 3.5, the optimization problem in (4.1) can be solved for the optimal

solution using quadratic programming [54] but with high computational cost, which is not

suitable for online processing. Instead of solving for the optimal canceling signal, one could

find a canceling signal to bring the peak of y[n] to be very close to some predefined threshold,

T . This is explained further below.

Given a threshold T , introduce a clipping function [36]:

gT (ξ) =


ξ, if |ξ| ≤ T

T ej∠ξ, if |ξ| > T
(4.2)

where ξ is a complex variable. By applying the clipping function to y[n], the problem in

(4.1) is transformed into the following problem:

C = arg min
C∈CNJ

{∑NJ−1
n=0 |x[n] + c[n]− gT (x[n] + c[n])|2

}
subject to: H(C) ≤ G.

(4.3)

Let f = [f [0], . . . , f [NJ − 1]] be the residual signal after applying the clipping operation

on y[n]. That is,

f [n] = y[n]− gT (y[n]) = x[n] + c[n]− gT (x[n] + c[n]) . (4.4)

The optimization problem in (4.3) tries to find C to minimize the power of f . For this

reason, f is also called the clipping noise associated with the signal y, and the optimum C

helps to create a signal with minimal level of this noise.
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Note that C has only G non-zero elements with indices i0, . . . , iG−1, which are also indices

of reservation tones in R. Define Ĉ = [C[i0], . . . , C[iG−1]] as a coefficient vector of a selected

R. One has:

c = QC = QRĈ; c[n] = qnC = q̂nĈ, (4.5)

where 0 ≤ n ≤ NJ − 1; QR is a submatrix obtained from Q by keeping only columns that

are defined in R, and q̂n is the nth row of QR. The matrix QR has dimensions NJ ×G and

it is given by:

QR =
1√
JN
×



1 1 . . . 1

ej2π
i0
NJ ej2π

i1
NJ . . . ej2π

iG−1
NJ

...
...

. . .
...

ej2π
(NJ−1)i0

NJ ej2π
(NJ−1)i1

NJ . . . ej2π
(NJ−1)iG−1

NJ


NJ×G

. (4.6)

Using (4.2), the objective function in (4.3) can be written as:

N (Ĉ) =
∑
n∈S

|x[n] + c[n]− T ej∠(x[n]+c[n])|2 =
∑
n∈S

|x[n] + q̂nĈ − T ej∠(x[n]+q̂nĈ)|2, (4.7)

where qn is the nth row of matrix Q as defined in (3.16) and S is the set of indices of those

samples in x+ c having their magnitudes larger than T . That is:

S = {n : |x[n] + c[n]| ≥ T }.

The optimization problem in (4.3) thus can be rewritten as:

C ≡ (R, Ĉ) = arg min
R∈ΦG

{
min
Ĉ∈CG

{
N
(
Ĉ
)}}

, (4.8)

where ΦG = {0, . . . , NJ − 1}G is a G−dimensional integer number space. Equation (4.8)

means that the solution to the problem in (4.3) can be derived in two steps [37]. The first

step finds the best reservation tone set R. Finding the reservation tone set which could

provide the best peak reduction performance belongs to a class of combinatorial NP-hard

optimization problems [37]. As such, only heuristic search for a near optimal solution is

practical. Some well known techniques shall be discussed after the next subsection which

discusses the second step. This step searches for the best coefficient vector Ĉ with a given

set R to obtain the best peak reduction performance.
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4.1.1 Gradient Search for the Coefficient Vector

The coefficient vector Ĉ that minimizes the objective function in (4.8) can be found using

a gradient or steepest-decent method. Taking the gradient of N (Ĉ) with respect to Ĉ leads

to [37]:

∇Ĉ(N ) = 2
∑
n∈S

(
x[n] + q̂nĈ − T ej∠(x[n]+q̂nĈ)

)
(q̂∗n) (4.9)

where q̂∗n is a complex conjugate vector of q̂n.

The quadratic form of N (Ĉ) makes it a complex multivariate function. The gradient

at a specific point indicates the direction that the function would increase. Hence, based

on the steepest-decent principle [54], the optimum Ĉ can be approximately found by an

iterative process. The process initializes with an initial value of Ĉ0 = 0G, where 0G is an

length-G vector of all zeros. The frequency vector of the canceling vector is then constructed

iteratively by:

Ĉk+1 = Ĉk −
λ

2
∇Ĉk

(N )

= Ĉk − λ
∑
n∈Sk

(
x[n] + ck[n]− T ej∠(x[n]+ck[n])

)
(q̂∗n)

(4.10)

where λ is a step-size [36]; ck[n] = q̂nĈ and

Sk = {n : |x[n] + ck[n] ≥ T } (4.11)

is a set of indices of those samples in (x+ ck) having their magnitudes larger than T .

Multiplying both sides of (4.10) with QR gives:

QRĈk+1 = QRĈk − λ
∑
n∈Sk

(
x[n] + ck[n]− T ej∠(x[n]+ck[n])

)
(QRq̂

∗
n) . (4.12)

Let ck = QRĈk+1 = [ck[0], . . . , ck[NJ − 1]] be the length-NJ vector representing the peak

canceling signal in the time domain at the kth iteration. Then (4.12) is equivalent to:

ck+1 = ck − λ
∑
n∈Sk

(
x[n] + ck[n]− T ej∠(x[n]+ck[n])

)
(QRq̂

∗
n) (4.13)

The term QRq̂
∗
n in (4.13) is a length-NJ vector which depends on the reservation tone set

R and the sample index n.
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From Equation (4.13), one has:

QRq̂
∗
n =

1

JN
×



1 1 . . . 1

ej
2πi0
NJ ej

2πi1
NJ . . . ej

2πiG−1
NJ

...
...

. . .
...

ej
2π(NJ−1)i0

NJ ej
2π(NJ−1)i1

NJ . . . ej
2π(NJ−1)iG−1

NJ


NJ×G



e−j2π
ni0
NJ

e−j2π
ni1
NJ

...

e−j2π
niG−1
NJ


G×1

=
1

JN
×



∑
i∈R

ej2π
i(0−n)
NJ∑

i∈R
ej2π

i(1−n)
NJ∑

i∈R
ej2π

i(2−n)
NJ

...∑
i∈R

ej2π
i[(NJ−1)−n]

NJ


NJ×1

(4.14)

It can be seen easily that:

QRq̂
∗
n = �−n (QRq̂

∗
0) (4.15)

where the operation �i (v) represents a circular shift of a time vector v by i samples to the

right.

Define an length-NJ vector k = [k[0], . . . , k[NJ − 1]]T as:

k =
JN

|R|
QRq̂

∗
0 (4.16)

where |R| is the cardinality of set R. The vector k is called a kernel [36], whose values only

depend on the tone reservation set R. It can be shown that k can be obtained by setting

the magnitudes of the reserved tones to 1 and then performing an inverse discrete Fourier

transform (IDFT) [36]. That is:

k[n] =
1

|R|

NJ−1∑
`=0

p[`]ej2π
n`
NJ , 0 ≤ n ≤ NJ − 1, (4.17)

where

p[`] =


1, if ` ∈ R

0, otherwise

. (4.18)
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The kernel has its peak magnitude sample at 0 index, which means k[0] = 1 and

|k[n]| = 1

|R|

∣∣∣∣∣
NJ−1∑
`=0

p[`]ej2π
n`
NJ

∣∣∣∣∣ ≤ 1

|R|

∣∣∣∣∣
NJ−1∑
`=0

p[`]

∣∣∣∣∣ =
|R|
|R|

= 1 (4.19)

where 0 ≤ n ≤ NJ − 1. Examples of kernel signals for different values of G, i.e., different

numbers of reservation tones, are given in Figures 4.1 and 4.2.

It is important to note that the magnitudes of the kernel signal only depend on the

relative locations of its tones. The relative locations are defined by the differences between

the tone indices. If two sets have the same relative locations, the values of tone indices

in any set can be obtained from the values of tone indices in the other set by a circular

shift. As an example, two sets having the same relative locations can be represented as

R1 = {i0, i1, . . . , iG−1} and R2 = {(ζ + i0), (ζ + i1), . . . , (ζ + iG−1)}, where ζ represents the

number of shifted locations. Then their corresponding kernel signals, k1 and k2, respectively

have the same magnitude for every sample. That is:

k2[n] =
1

G

∑
i∈R2

ej2π
ni
NJ =

1

G

∑
i∈R1

ej2π
n(i+ζ)
NJ = ej2π

nζ
NJ

1

G

∑
i∈R2

ej2π
ni
NJ = ej2π

nζ
NJ k1[n]

or |k1[n]| = |k2[n]| for 0 ≤ n ≤ NJ − 1.

Next, define αk,i as:

αk,i = (|x[i] + ck[i]| − T ) ej∠(x[i]+ck[i]) (4.20)

Equation (4.13) hence can be rewritten as:

ck+1 = ck − γ
∑
n∈Sk

αk,n�n (k) (4.21)

where γ = λJN
|R| . The peak reduced signal after performing k iterations is therefore:

yk = x+ ck (4.22)

For illustration, a single step of peak reduction using a peak cancelling signal generated

from a kernel signal is shown in Figure 4.3. To reduce a signal peak, all samples neighbouring

the peak with magnitudes exceeding threshold T are determined. For each of these samples,
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Figure 4.1 An example of a kernel signal with N = 16, J = 4, G = 4.
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Figure 4.2 An example of a kernel signal with N = 16, J = 4, G = 10.

a sub-canceling signal is formed by cyclically shifting the kernel to align with the sample

index and scaled with some appropriate factor. The peak cancelling signal is then made by
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adding all these sub-canceling signals in the time domain. Since this process only cares about

the samples around the peak, it can suppress the selected peak as well as its surrounding

samples but does not guarantee that other samples of the signal after this addition have

their magnitudes below T . It is possible that after adding with the canceling signal, the

resulting signal has new peaks. This is often referred to as peak regrowth [2], which requires

extra steps of the peak reduction algorithm.

signal envelope

∑ 
[ ]x n

[ ]c n

[ ]y n

T

iα

jα

γ

i j

( )i↻ k

( )j↻ k

Figure 4.3 Peak reduction using kernel signals.

The number of iterations required for peak reduction is therefore determined by the

amount of peak regrowth occurs after each step of the algorithm. If the peaks regrow more

often after each iteration, the algorithm would diverge. In a diverged state, the complexity

of the GTR algorithm grows after each iteration due to the increase in the number of peaks

and accordingly the number of samples above the threshold. On the contrary, the algorithm

is in a converged state when the amount of peak regrowth is reduced after each application

of the algorithm.

There are two factors that affect the convergence rate of the GTR algorithm, which are

the kernel signal and the scaling factors [2]. A number of proposals thus have been suggested

in the literature to either optimize the kernel signal for better peak reduction performance,

or adaptively change the scaling factors so that the peak regrowth would be less likely to

occur [56–60]. The following discussions are dedicated to some well known methods to
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construct the kernel signal, whereas Section 4.2 presents a conventional approach that finds

the optimal value of the scaling factors after each iteration of the peak reduction algorithm.

Ideally, if the kernel signal is an impulse, the addition with the kernel signal only affects

the sample that it aligns to without modifying the neighbouring samples. This results in

no peak regrowth after each iteration of the algorithm. However this type of kernel signal

occupies the whole spectrum, which is not acceptable. Therefore, a more practical choice is

to select kernel signals whose secondary peaks or side-lobes are minimized.

4.1.2 Search for the Kernel Signal

Since the kernel signal is defined by the set of reservation tones, a search for a suitable

kernel signal is thus equivalent to a search for a suitable set R. The objective of finding an

optimal set R can be expressed as [37]:

Ropt = arg min
R∈ΦG

{
|k[J ]|, |k[J + 1]|, . . . , |k[J(N − 1)]|

}
(4.23)

where R = {i0, i1, . . . , iG−1} and ΦG is a G-dimensional integer number space.

The problem in (4.23) is an NP-hard optimization problem [37, 54], which is practically

unsolvable. The total number of possible outcomes for R is GNJ , and is extremely large

for an exhaustive search, even for a small number of reserved tones. Because of this, a

number of different heuristical search techniques have been proposed to find a near optimal

set R. Some well known techniques are: using kernel signal variance [61], using a genetic

algorithm [62], using a probabilistic search [63], or generating tone sets from sequences with

good correlation properties [2].

Simple Selection Methods [37]

Before discussing some heuristically generated kernels or reservation sets R, it is worth-

while to mention some simple selection methods. The easiest way is to pick a set of con-

secutive tones, which occupy a contiguous region in the spectrum. By adding a number of

consecutive frequency tones, the kernel signal has a shape of a sinc function, whose main

lobe’s width is determined by the width of the selected region. To make the main lobe

sharper in the time domain, a bigger region of tones is required, which is usually prohibited
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by the standards.

Another method is to select equally-spaced tones, which is equivalent to zero-padding a

set of consecutive tones. A kernel constructed from an equally spaced tones has a sharper

lobe when compared to the kernel built from consecutive tones. However, multiple peaks are

generated in the time domain. Thus, such a kernel is not recommended since the addition of

the kernel with the original OFDM signal affects not only the peak-magnitude sample but

also those samples located at secondary peaks.

The most widely-used method is to select G reserved tones in a random manner. By ran-

domly spreading the reservation tones amongst the data tones, the obtained kernel generally

does not exhibit high secondary peaks and has a smaller main lobe width when compared

to the case of using consecutive tones.

Some example kernels developed from three sets of reservation tones namely, a set of

randomly selected tones, a set of equally spaced tones, and a set of contiguous tones, are

shown in Figure 4.4. Notice that the kernel generated using equally-spaced tones has multiple

peaks. Figure 4.5 shows a comparison of PAPR reduction using these reservation tones with

the conventional GTR algorithm. It can be seen that using randomized reservation tones

provides the best peak reduction performance.
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Figure 4.4 Comparison of kernel signals generated from different reservation tone

sets with N = 1024, J = 8, G = 20: (a) randomized tones, (b) equally

spaced tones, (c) contiguous tones.

Kernel Variance Based Search [61]

The authors in [61] propose a simple heuristical search method to find a near optimum

kernel based on the relationship between the secondary peaks and variance of the kernel.

Numerical results in [61] reveal that the time-domain kernels having the same variance can

have various secondary peaks and the values of the secondary peaks statistically tend to

decrease as the variance decreases. For completeness, a detailed derivation of this method

can be found in Appendix 5.2.

In summary, the kernel variance is given by:

σ2 =
8

NJG2

N−1∑
τ=1

R2
τ (4.24)

where Rτ denotes the aperiodic autocorrelation function (APCF) of the sequence p[`] defined
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Figure 4.5 Comparison of PAPR reduction using the conventional GTR algo-

rithm with N = 1024, J = 8, T = 8dB for different sets of reservation

tones: (a) randomized tones, (b) equally-spaced tones, (c) contiguous

tones, (d) variance-based search tones, (e) genetic search tones.

in (4.18). It is given as:

Rτ =
NJ−1−τ∑
m=0

p[m]p[m+ τ ] (4.25)

where 0 ≤ τ ≤ NJ − 1.

Note from (4.25) that Rτ is calculated by multiplying two binary sequences. Therefore,

the kernel variance given in (4.24) can be effectively implemented using logical ANDs.

A kernel variance based search algorithm to find a near optimal setR is outlined next [61].

71



Kernel Variance Based Search

1. Population generation: Generate a sufficient large number of sets with G tones,

calculate the corresponding kernel variances of them using (4.24), and sort them in an

increasing order.

2. Extraction of good candidates: Select a small percentage (around 1% [61]) of

the generated sets having smallest variance values, which is denoted as Φσ.

3. Search for minimal secondary peaks: Choose a set from those selected sets that

gives the kernel with the smallest level of secondary peaks, that is:

Rσ = arg min
R∈Φσ

{
|k[J ]|, |k[J + 1]|, . . . , |k[J(N − 1)]|

}
. (4.26)

Genetic Based Kernel Search [62]

The idea basically is to create a search scheme resembling the principles of biological

evolution observed in nature. The algorithm, so called a genetic algorithm, is proposed

in [62]. Its detailed description is given in Appendix 5.2. In summary, the search procedure

consists of four steps as outlined next.

Genetic Based Kernel Search

1. Parent population generation: A small number of sequences p[`] is randomly

generated to make a set of parent sequences.

2. Ranking parent sequences: Corresponding kernels are generated from the par-

ent sequences, and ranked by their merit factors, which measure levels of secondary

magnitude peaks.

3. Crossover and mutate: There are two processes in this step. The first process,

called a crossover, makes every two parent sequences exchange parts of their bodies

to make two new sequences, which are then called offspring sequences. The second

process is to mutate the offsping sequences by randomly adding, inserting, deleting,

switching some locations in the offspring sequences.
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4. Ranking offspring sequences: After the third step, the population grows bigger

as more offsping sequences are generated. Their corresponding kernels are generated,

and ranked based on their merit factors. Only the sequences having the highest merit

factors are kept to become the next parent sequences. The search then continues again

with Step 3 until the maximum number of iterations Nit is reached.

It is shown in [62] that the genetic based search provides the same kernel performance as

the kernel from variance-based search while being simpler in implementation.

Figure 4.6 shows a comparison in the time domain between the kernel generated using

the same randomized tone set as in Figure 4.4 and the kernels generated from two sets of

tones found with the variance-based and genetic approaches. In the variance-based search,

104 random sets with G = 20 tones are generated and ranked. Of which, only 20 sets with

the highest ranking factors are selected to search for the lowest side-lobe level (see (4.26)).

On the other hand, for the genetic search, the initial population size of parent sequences was

selected to be N℘ = 30, the number of revolutions (i.e., iterations) was Nit = 10, and the

crossing rate was ε = 0.8 (see Appendix 5.2 for explanations of these numbers).

CCDF curves of PAPR reduction performance obtained using variance-based search and

genetic-based search kernels are also plotted in Figure 4.5. It can be seen that an improve-

ment of 0.5 dB of PAPR reduction can be achieved at the probability of 10−4 by using

a kernel from the variance-based search when compared to the performance of using only

a randomized kernel. Note that the kernel selection is performed offline. So a complicated

search for a good kernel can be conducted without affecting the processing costs of the online

peak reduction algorithms.

4.1.3 Conventional GTR Algorithm

In summary, the so-called gradient-based tone reservation (GTR) algorithm outlined next

consists of two parts. The first part is initialization, which is typically executed once. The

second part, which is a run-time part, is executed online that uses the signal constructed from

the first part to iteratively reduce the signal peaks. The process stops when either a maximum
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Figure 4.6 Comparison of kernel signals generated from different reservation tone

sets with N = 1024, J = 8, G = 20: (a) randomized tones, (d)

variance-based search tones, (e) genetic search tones.

number of iterations is reached or no peak above T in yk is found, i.e., max |yk| < T .

GTR Initialization Phase

(i) Threshold Selection: Select the target PAPR level or equivalently the desired

magnitude threshold T . The target PAPR is largely dependent on the required trans-

mit power [2].

(ii) R Selection: Choose the set of reserved tones R in accordance with data transmis-

sion tones D.

(iii) Kernel Generation: Generate a kernel vector k using (4.17).

GTR Run-Time Phase

(i) Input: Symbol vector x; Kernel vector k; Threshold T ; Number of iterations Nit.
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(ii) Initialization:

• Loop variable k = 1; ck = 0.

• Fix a constant γ.

(iii) Loop Begin:

• Determine the set of all samples whose magnitudes are larger than T as defined

in (4.11).

• Update ck+1 using (4.20) and (4.21).

(iv) Loop End:

• If (k > Nit) return yk+1 = ck+1 + x

• Elseif max |yk+1| ≤ T return yk+1

• Else k = k + 1, jump Loop Begin
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Figure 4.7 A time-domain view of an OFDM symbol (N = 1024, J = 8) with

different levels of threshold: T = 6, 8 and 10 dB.
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Complexity Analysis

The GTR algorithm works with time-domain samples and utilizes a large number of

multiplications and additions per iteration. The calculation of αk,i needs 2|Sk| real multipli-

cations (see (4.11)). The scaling with αk,i and γ in (4.13) requires additional 4|Sk|JN+4JN

complex multiplications. So in total, the number of multiplications per iteration of the GTR

algorithm is 4|Sk|JN+2|Sk|+4JN . The number of additions required by the GTR algorithm

is |Sk|JN + 1 for each iteration, which is in the same order as the number of multiplications.

Moreover, it should be pointed out that γ is defined as a constant in [36, 37] and how to

properly choose its value is not thoroughly studied in the literature. A large value of γ could

cause the algorithm not to converge as the set Sk grows larger after each iteration, whereas

a small value of γ makes the algorithm to converge slowly.

CCDF curves showing the PAPR reduction performance of the GTR algorithm using ran-

domized sets of reservation tones for different target PAPR levels are shown in Figures 4.8 to

4.13. In each simulation, 106 OFDM symbols are generated using 1024-QAM constellation,

1024-point IFFT block (N = 1024), and an oversampling factor J = 8. Two different num-

bers of reserved tones are simulated and all of them are generated randomly for simplicity.

The first case considers G = 50 tones, which are approximately 5% of the available tones,

making the number of data tones to be N−G = 1024−50 = 974. The second case considers

G = 100 tones and the corresponding number of data tones is N −G = 1024− 100 = 924.

The sharpness of CCDF curves is strongly affected by the target PAPR level, the value

of γ and the number of reservation tones used. A lower threshold of the target PAPR causes

the algorithm to run significantly slower as the number of samples crossing T is considerably

larger1. Figure 4.7 shows the time-domain plot of an example OFDM symbol with different

levels of T measured in dB with respect to the average symbol power. It can be seen that

with a lower threshold, more peaks have crossed the threshold as well as there is a larger

number of over-threshold samples, resulting in a bigger set Sk at the kth iteration of the

PAPR reduction loop in the conventional GTR algorithm. This slows down the processing

1This can be shown by the level-crossing theory, whose explanation is out of the scope of this thesis.

Interested readers can refer to [64] and [65] for more information.
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since more cyclic shifting needs to be performed and a larger number of kernels are used to

cancel peaks crossing the threshold. This also means that larger numbers of multiplications

and additions are required.

With a target PAPR of 6 dB and G = 50 tones, the best peak performance is at γ = 0.15.

On the other hand, with G = 100, the best performance corresponds to γ = 0.2 or γ = 0.25.

In addition, in both cases, using the largest values of γ, that is γ = 0.5 and γ = 1, leads to

the poorest reduction performance. Moreover, although targeting at a clipping level of 6 dB,

at the probability of 10−4, the PAPR level can only be reduced to around 9 dB and 8.3 dB

by using 5% and 10% of available tones, respectively. This is almost the same performance

by setting the target threshold at 8 dB as shown in Figures 4.10 and 4.11. As the target

threshold increases, using a bigger value of γ provides a better peak reduction performance

after 2 iterations. At T = 10 dB, γ = 1 appears to be the best scaling factor. Moreover,

Figures 4.12 and 4.13 reveal that at this high level of T , using a larger number of reserved

tones shows no significant increase in PAPR reduction performance.
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Figure 4.8 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 50 tones (G/N ≈ 5%) with a target PAPR of

T = 6 dB.
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Figure 4.9 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 100 tones (G/N ≈ 10%) with a target PAPR of

T = 6 dB.
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Figure 4.10 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 50 tones (G/N ≈ 5%) with a target PAPR of

T = 8 dB.
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Figure 4.11 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 100 tones (G/N ≈ 10%) with a target PAPR of

T = 8 dB.
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Figure 4.12 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 50 tones (G/N ≈ 5%) with a target PAPR of

T = 10 dB.
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Figure 4.13 Comparison of PAPR reduction of the GTR algorithm using a ran-

domized set of G = 100 tones (G/N ≈ 10%) with a target PAPR of

T = 10 dB.
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4.2 Conventional Clipping-And-Filtering TR (CFTR) Algorithms

The high complexity of the GTR algorithm could be reduced by applying clipping-and-

filtering the clipping noise defined in (4.4). Filtering the clipping noise, however, might

cause distortions to the data tones. Thus, filtering is implemented so that only the frequency

portion of the clipping noise that corresponds to locations of the reserved tones is kept. That

is, the filter is defined as:

H(ejω) =


1, if ω ∈ R

0, otherwise.

(4.27)

In other words, the filtering operation in (4.27) is simply a projection on the reserved tone

set. Hence, a signal obtained after filtering the clipping noise is:

c = F−1 {H (F{f})} , (4.28)

where F denotes the discrete Fourier transform (DFT) and F−1 is the inverse DFT (IDFT).

The canceling vector c is then scaled by a factor β to further suppress the peak of the

resulting signal [51,62]. That is,

y = x− βc. (4.29)

The factor β is chosen to minimize the mean squared error between the canceling signal and

clipping noise:

β = arg min
β

∑
n∈S

|f [n]− βc[n]|2 (4.30)

where S represents the set of the peak samples. Two methods of selecting this set which are

proposed in [51] and [62] are:

S [51] = {n : |x[n]| > T },

S [62] = {n : (|x[n]| > |x[n− 1]); (|x[n]| > x[n+ 1]|},
(4.31)

where 0 ≤ n ≤ NJ − 1. In other words, S [51] defines the set of over-threshold samples,

whereas S [62] denotes the set of all local peak magnitude samples. In this thesis, S [51] is

used since it resembles the set Sk used in the GTR algorithm discussed previously in (4.11).
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A solution to the problem in (4.30) is given by [51]:

β =

<
[∑
n∈S

f [n]c∗[n]

]
∑
n∈S
|c[n]|2

, (4.32)

where c∗[n] is a complex conjugate of c[n]. It is pointed out that, due to the effect of the

filter H(ejω), the peak of the signal after the filter regrows significantly. As a consequence,

multiple iterations of the clipping-and-filtering are required to obtain satisfactory PAPR

reduction. The algorithm is illustrated in Figure 4.14.

)(e
j

H
ω( )g ⋅T

[ ]x n
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+
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th iterationk
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JN −

DFT

JN −

β

Figure 4.14 Conventional clipping-and-filtering TR algorithm.

For completeness, the CFTR algorithm in run-time is described in the following.

CFTR Run-Time

(i) Input: Symbol vector x; Kernel vector k; Threshold T ; Number of iterations Nit.

(ii) Initialization:

• Loop variable k = 1; ck = 0.

• Fix a constant γ.

(iii) Loop Begin:

• Find the clipping noise by

fk = yk − gT (yk) (4.33)

where gT (·) is defined in (4.2).
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• Construct the canceling signal

ck = F−1 {H (F{fk})} (4.34)

using H(·) in (4.27).

• Construct the set Sk as in (4.11).

• Calculate the scaling factor

βk =

<

[ ∑
n∈Sk

fk[n]c∗k[n]

]
∑
n∈Sk
|ck[n]|2

• Update the peak reduced signal

yk+1 = x− βkck (4.35)

(iv) Loop End:

• If (k > Nit) return yk+1

• Elseif max |yk+1| ≤ T return yk+1

• Else k = k + 1, jump Loop Begin

Complexity Analysis

The complexity of the CFTR algorithm depends mainly on the JN−point DFT/IDFT

pair and weighting the canceling signal in (4.29). The former can be efficiently implemented

by FFT/IFFT, which has a complexity of O(JN log(JN)). The latter needs 4|S| real multi-

plications, one real division for the calculation of β in (4.32) and 2JN real multiplications to

scale the time vector c. In total, per iteration, the CFTR algorithm requires 1 real division

and (MDFT +MIDFT + 4|S|+ 2JN) multiplications, withMDFT,MIDFT multiplications are

used in the DFT/IDFT blocks.

The CFTR algorithm can be equivalently transformed into the conventional GTR al-

gorithm. The derivation in Appendix 5.2 shows that βk (in (4.35) acts equivalently as an

adaptive scaling factor γ as in (4.21) of the conventional GTR algorithm. Utilizing a pair
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of DFT/IDFT, the CFTR algorithm helps to reduce the complexity of the GTR algorithm.

However, its complexity is still too high and can be further reduced.

The simulation results that compare the performance of the conventional CFTR with the

conventional GTR algorithm are provided in Section 4.5.

The following two sections propose two new PAPR reduction algorithms. The first algo-

rithm works in the time domain, aiming to improve the performance of the GTR algorithm.

The second algorithm is performed in the frequency domain to reduce the complexity of the

CFTR algorithm.

4.3 Proposed Time-Domain Algorithm

The main idea of the proposed time-domain algorithm is to create a database of canceling

signals for different levels of peak magnitudes, then reuse them to reduce the peaks of symbols

having similar magnitudes. This is done in two stages. The first stage is called a learning

stage, which initializes a set of peak-reduction signals corresponding to clipping noise of

different maximum magnitudes. The second stage is an online process, which combines the

conventional TR and some pre-processing steps using the canceling signals developed in the

first stage.

Provided that T is large enough, the authors in [64] show that the clipping noise defined

in (4.4) can be approximated by a sum of constant-phase parabolic pulses and each pulse

has one local minimum or maximum. As an example, Figure 4.15 plots a symbol having one

dominant peak above T and its corresponding clipping noise. In order to effectively reduce

this peak, the most effective signal c should be the one that closely resembles the inverse of

the clipping pulse. Due to the property of having a constant phase around over-threshold

samples, the signal c can be reused to cancel other clipping pulses with similar levels by

cyclic-shifting it to align with the pulse location and phase shifting with an appropriate

amount. Since cyclic-shifting a signal in the time domain does not change its frequency

components, the newly shifted time signal still contains only those tones which are reserved

for peak reduction.
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Figure 4.15 Example of a single clipping pulse.

Stage 1 – Learning

Given T , a set of possible levels of peak magnitude is formed as:

LT =
{
Ti = T + iδT , 1 ≤ i ≤ q, δT > 0

}
, (4.36)

where δT is the step size and Tq is the maximum peak amplitude. A large number of

randomized OFDM symbols is then generated and their peak amplitudes are recorded and

classified into q sets:

Bi = {x : Ti ≤ max |x| ≤ Ti+1} , i = 1, . . . , q. (4.37)

For each set in (4.37), a reference signal is constructed as:

x̂i =
1

|Bi|
∑
x∈Bi

�−n̂
(
x e−j∠x[n̂]

)
, (4.38)

where x[n̂] is the sample of x having the maximum magnitude, and |Bi| is the number of

elements in the set Bi.

The reference signal in (4.38) is obtained in three steps. The first step cancels the phase

of the highest peak sample. Second, the time samples are cyclically shifted to the original

time index. After this, the OFDM symbols in Bi are all aligned at 0 index, with roughly zero

phase for samples around the zero index, and uncorrelated phases for other samples. This

makes their sum in the third step to have a high ratio between its major lobe and side lobes.

Moreover, the reference signal still has the same frequency tones as the OFDM symbols since

averaging and phase shifting do not introduce any new frequency.
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For each reference signal, the corresponding peak canceling signal is found to reduce its

peak below T . This can be achieved by applying the conventional TR technique to produce:

ĉT ,i ← TR (x̂i,k, T ) . (4.39)

The first stage finishes by finding a set of peak canceling signals

CT = {ĉT ,1, . . . , ĉT ,q} . (4.40)

Theoretically, the value of q can be very large depending on peak magnitudes of OFDM

symbols. Recall (see Figure 2.17) that the probability of an OFDM symbol having a higher

value of peak magnitude gets smaller. This means that it likely requires a long time to

generate symbols with magnitudes near the peak. Therefore, in practice q can be chosen as

some reasonable value so that the set CT of peak canceling signals is created when a maximum

number of randomly-generated OFDM symbols is reached (for example, 106 symbols). In

the second stage discussed below, when an OFDM symbol having a magnitude higher than

Tq is found, the set CT is updated accordingly. This explains the reason that the first stage

is called a “learning” stage.

Stage 2 – Peak-Reduction Loop

The second stage reduces the peak for each OFDM symbol iteratively. At the kth step

of the algorithm, the residual signal vector fk = x+ ck − gT (x+ ck) is approximated by Pk

clipping pulses:

fk ≈
Pk∑
i=1

fk,i, (4.41)

where fk,i is the ith pulse.

Each clipping pulse has a maximum peak magnitude sample, which is the set of peak

samples in fk (as illustrated in Figure 4.16):

Pk = {n̂ : |fk[n̂]| ≥ max (|fk[n̂− 1]|, |fk[n̂+ 1]|)} . (4.42)

The number of clipping pulses is equal to the number of elements in this set, that is |Pk| =

Pk. For each clipping pulse fk,i, which has the peak magnitude sample at n̂i ∈ Pk, a
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corresponding level index of the ith pulse is found by:

`k,i = min

(⌊
max |fk,i|

δT

⌋
, q

)
. (4.43)

Since

max |fk,i| = |fk,i[n̂i]| = |fk[n̂i]|,

equation (4.43) can be simplified to:

`k,i = min

(⌊
|fk[n̂i]|
δT

⌋
, q

)
. (4.44)

Then, a canceling signal for fk,i is obtained by:

f̂k,i = �n̂i
(
ĉT ,`k,i e+j∠fk,i[n̂i]

)
≈ fk,i. (4.45)

The canceling signal is then constructed by:

ck+1 = ck −
Pk∑
i=1

f̂k,i. (4.46)

The process repeats until either a maximum number of iterations is reached or all the

samples in the peak-reduced signal vector are below the threshold T . The proposed time-

domain algorithm is illustrated in Figure 4.17.
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Figure 4.17 Proposed time-domain algorithm.

In summary, the proposed algorithm is outlined below.

Learning Stage

(i) Input: Kernel vector k; threshold T ; set D; set R

(ii) Initialization:

• Initialize q, resolution δT , set LT as in (4.36)

• Initialize q sets B1 = . . . = Bq = ∅

• Randomly generate a large number of OFDM symbols with data tones D.

(iii) Learning:

(a) Classify OFDM symbols into q sets as in (4.37)

(b) Generate reference signals, and their canceling signals using (4.38), (4.39).
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(c) After all symbols are tried, Return CT

Peak-Reduction Stage

(i) Input: Symbol vector x; Kernel vector k; Threshold T ; Number of iterations Nit;

Canceling signal set CT

(ii) Initialization: Loop variable k = 1; ck = 0;

(iii) Loop Begin:

• Determine the set of peak samples in clipping noise using (4.42)

• Calculate ck+1 using (4.44), (4.45) and (4.46)

(iv) Loop End:

• If (k > Nit) return yk+1 = ck+1 + x

• Else k = k + 1, jump Loop Begin

Complexity Analysis

A single iteration of the proposed algorithm requires 4PkJN real multiplications and

2PkJN additions. Since Pk � |Sk| (see (4.11)), the number of multiplications and additions

per iteration of the proposed algorithm are significantly less than the corresponding numbers

of the GTR algorithm as discussed in Section 4.1. Moreover, the proposed algorithm does

not need to try different values of γ to obtain the optimal amount of peak reduction.

Note that the system complexity grows with the number of iterations. Therefore reducing

the number of iterations helps to reduce the cost of the PAPR reduction process. The

proposed algorithm helps to transfer most of the computational cost to offline processing

steps, which can be regularly updated upon changes in the frequency settings. As can be

seen in Section 4.5, the additional step of precalculating the canceling signals makes the

proposed algorithm converge in a smaller number of iterations than the conventional GTR

algorithm, thereby further reducing the computational cost.
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4.4 Proposed Clipping-and-Filtering Algorithm

This section proposes a new clipping-and-filtering algorithm, which uses precalculated

canceling signals described in the previous section to establish different gains for reserved

tones other than the equal gain for H(ejω) in (4.27) as in the conventional CFTR algorithm.

This algorithm also has two stages. The first stage calculates the gain coefficients. The

second stage is an online process, which iteratively reduces the peak using the precomputed

gains.

Recall that the clipping noise f in (4.4) can be approximated by a sum of Pk clipping

pulses as f =
∑Pk

i=1 f i, where f i is the ith clipping pulse with its maximum magnitude at

n̂i. Then the peak canceling signal can be constructed as a combination of different single

canceling pulses:

c =

Pk∑
i=1

ci (4.47)

where ci is the ith canceling pulse, such that ci ≈ −f i in order to make c ≈ −f .

Consider two clipping pulses, f i and f j, having the same peak magnitude at some level,

denoted as

` = max |f i| ≈ max |f j|. (4.48)

Because of the property of constant-phase near their maximum, the clipping pulses can be

approximated by a cyclic shift with an appropriate amount of phase rotation:

f j ≈ ej(∠fj [nj ]−∠fi[ni]) �nj−ni (f i), (4.49)

where fi[ni] and fj[nj] are the samples of f i, and f j having the maximum magnitudes,

respectively. Equation (4.49) suggests that the canceling pulse for f j can also be derived

from the one used to cancel f i, that is:

cj ≈ ej(∠fj [nj ]−∠fi[ni]) �nj−ni (ci). (4.50)

Let Ci = [Ci[0], . . . , Ci[NJ − 1]] and F i = [Fi[0], . . . , Fi[NJ − 1]], respectively, be the

corresponding frequency vectors of ci and f i obtained from DFT operations. Then it follows

90



from (4.49) that:

Fj[k] = F{f j}|k; 0 ≤ k ≤ NJ − 1

≈ ej(∠fj [nj ]−∠fi[ni])F{�nj−ni (f i)}|k

≈ ej(∠fj [nj ]−∠fi[ni])e−j2π(nj−ni)k/NJF{f i}|k

≈ ej(∠fj [nj ]−∠fi[ni])e−j2π(nj−ni)k/NJFi[k];

(4.51)

Similarly, it follows from (4.50) that:

Cj[k] ≈ ej(∠fj [nj ]−∠fi[ni])e−j2π(nj−ni)k/NJCi[k], (4.52)

where 0 ≤ k ≤ NJ − 1. Thus, comparing (4.51) and (4.52) yields:

g`[k] =
Cj[k]

Fj[k]
≈ Ci[k]

Fi[k]
; 0 ≤ k ≤ NJ − 1. (4.53)

Equation (4.53) infers that the ratios of the frequency components between the clipping

pulses of the same peak magnitudes and their canceling pulses are approximately constant.

For each level `, these ratios are defined as a coefficient vector g` = [g`[0], . . . , g`[NJ −

1]]. Using such a coefficient vector, the canceling pulse of a clipping pulse f̃ whose peak

magnitude is at level ` can be obtained by:

c̃ = F−1{g`F{f̃}}. (4.54)

Equation (4.54) helps to construct a canceling pulse from the frequency vector of a clip-

ping pulse and the corresponding coefficients. Based on the above analysis, the proposed

clipping-and-filtering algorithm is performed in two stages. The first stage, also called a

learning stage, initializes a set of coefficient vectors corresponding to different levels of clip-

ping pulses. This stage can be done offline and updated regularly when needed. The second

stage is an online process that processes the clipping noise in the frequency domain with the

suitable coefficients developed from the first stage to iteratively construct a peak canceling

signal.
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Learning Stage

This stage has the same steps discussed in Section 4.3. Specifically, the reference signals

constructed as in (4.38) are clipped:

f̂T ,i = x̂i − gT (x̂i) (4.55)

Then q coefficient vectors are calculated as:

gT ,i =
F{ĉT ,i}
F{f̂T ,i}

(4.56)

where ĉT ,i is given by (4.39).

The stage finishes by finding a set of coefficient vectors

GT = {gT ,0, . . . , gT ,q} (4.57)

Peak-Reduction Stage

The second stage reduces the peak of each symbol iteratively. At the kth iteration, the

clipping noise vector fk = x + ck − gT (x + ck) is also approximated by Pk clipping pulses

as in (4.41). For simplicity, only the clipping pulse of highest peak magnitude is selected

f̃k = arg max
1≤i≤Pk

|fk,i| (4.58)

The corresponding level of f̃k is obtained as in (4.43). Then the canceling signal for the next

iteration is:

ck+1 = F−1{g`k F{f̃k}} (4.59)

The peak-reduction loop is illustrated in Figure 4.18. The leveler block in the figure is

to conduct the operation in (4.43). All of the coefficient vectors calculated from the learning

stage can be stored in a memory, and a multiplexer (MUX) structure is used to fetch a

corresponding coefficient vector at run-time.

Complexity Analysis

The proposed clipping-and-filtering algorithm reduces the computational complexity of

the CFTR algorithm. Thanks to the coefficients found in the learning stage, the online
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Figure 4.18 Proposed algorithm.

processing stage removes the need for calculating β and scaling the time-domain vector as

in the conventional approach. In addition, the division operations are removed from the

proposed scheme, and the number of multiplications per iteration is:

Mp =MDFT +MIDFT + 4|R| (4.60)

where 2|R| multiplications are used to generate the canceling signal in (4.59). Since |R| �

JN , the complexity of the new clipping-and-filtering algorithm is much smaller than that

of the conventional CFTR algorithm (see Section 4.2). Simulation results also reveal that

the performance of the proposed algorithm is comparable to that of the conventional CFTR

algorithm.

Complexity Comparison of Different PAPR Reduction Algorithms

For ease of reference, Table 4.1 compares the complexity among the two conventional

algorithms and the two propose algorithms. Here, the proposed time-domain algorithm and

the proposed clipping-and-filtering algorithm are is listed as “Proposed (a)” and “Proposed

(b)”, respectively. As can be seen, among these algorithms, the conventional GTR algorithm

has the highest computational cost in terms of the number of multipliers and additions
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Table 4.1 Complexity comparison of different PAPR reduction algorithms.

Algorithms # Multipliers # Additions # Divisions

GTR 4|Sk|JN + 2|Sk|+ 4JN |Sk|JN + 1 0

CFTR MDFT +MIDFT + 4|Sk|+ 2JN O(JN) 1

Proposed (a) 4PkJN 2PkJN 0

Proposed (b) MDFT +MIDFT + 4|R| O(JN) 0

required per iteration. The conventional CFTR algorithm has a considerably smaller number

of multiplications when compared to the conventional GTR algorithm in each iteration,

however, one extra division must be performed.

In contrast, the two proposed algorithms do not require any division and use much

fewer multiplications per iteration than the conventional algorithms. Such reduction in the

complexity is achieved by transferring most of the calculation tasks of calculating canceling

signals to the off-line stage. In addition, the DFT/IDFT operations can be very efficiently

implemented using FFT/IFFT algorithms. Therefore the proposed CFTR algorithm is very

attractive for practical applications.

4.5 Simulation Results of the Proposed Algorithms

In each simulation, 106 OFDM symbols are generated using a 1024−QAM constellation,

1024-point IFFT block (N = 1024), and an oversampling factor J = 8. Two different sets

of reserved tones are simulated in this paper. In the first case, G = 50 tones, which is

approximately 5% of the available tones, are selected randomly. Hence the number of data

tones is N −G = 1024− 50 = 974. The second case considers G = 100 tones, which are also

randomly selected, and the corresponding number of data tones is G = 1024 − 100 = 924.

It should be pointed out that practical implementations of PAPR reduction typically select

the number of reservation tones to be less than 15% of the available tones [2, 37, 60].

For each of these two cases, two different target PAPR levels and corresponding thresholds

T are tested, namely 8 dB and 10 dB. The learning stage was run over 5×105 OFDM symbols.
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The quantization level δT was set to provide a resolution of 0.1 dB. This means, for example,

in the case of a threshold at 8 dB, B0 consists of signals with PAPR in the range [8 dB, 8.1

dB], B1 for the signals with PAPR in [8.1 dB, 8.2 dB] and so on. Extensive testing indicates

that this value of δT provides fine enough resolution for the reference signals.
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Figure 4.19 Example of reference signals with G = 100 reserved tones, and target

PAPR of 8 dB (centered at index 4096).

Figure 4.19 shows examples of reference signals of different peak levels. The levels are

measured in dB with respect to the average magnitude of OFDM symbols. It is interesting

to see that the main lobes of all reference signals have essentially the same width, while the

side lobe levels are much smaller when compared to side-lobes of random OFDM signals.

Figure 4.20 presents an example of a reference signal with a maximum magnitude of 10.9

dB, its clipping noise, the corresponding canceling signal and the canceled signal obtained

by subtracting the canceling signal from the reference signal.

Figures 4.21 and 4.22 compare the PAPR reduction performance of different algorithms

with a target PAPR of 8 dB using 50 and 100 reserved tones, respectively. Similarly,
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Figure 4.20 Example of a reference signal and its canceling signal with G = 100

reserved tones, and target PAPR of 8 dB (centered at index 4096).

Figs. 4.23 and 4.24 report results for a target PAPR of 10 dB. In all cases, the CCDF

curves with 1 iteration and 2 iterations of the proposed algorithms are compared against

those of the conventional GTR and CFTR algorithms having the same number of itera-

tions. For the conventional GTR algorithm, different values of scaling factor γ are tested:

0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5 and 1. The scaling factor yielding the best peak reduction

performance after 2 iterations was selected and indicated in the figure’s legend.

Figures 4.21 to 4.24 show that for both T = 8 dB and T = 10 dB, the proposed algorithms

generally provide slightly better peak reduction than the conventional algorithms.

In particular, at T = 8 dB and probability of 10−4, the proposed algorithms deliver a

PAPR reduction amount of roughly 3.5 dB (12.5 dB when no peak reduction methods are

applied down to less than 9 dB), which is similar to that achieved with the conventional

algorithms. For the higher threshold of T = 10 dB, the proposed algorithms can provide

the same performance with one iteration as the conventional algorithms achieve in two

iterations, which is approximately 0.6 dB better than the conventional CFTR achieves in
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Figure 4.21 Comparison of PAPR reduction for different methods: G = 50 ran-

dom reserved tones with target PAPR, T = 8 dB. “Proposed (a)”

is for the proposed time-domain algorithm, “Proposed (b)” is for the

proposed clipping and filtering algorithm.

one iteration. Moreover, it should be pointed out that the computational complexity of the

proposed algorithms, even when two iterations are used, is still much lower than that of the

conventional GTR and CFTR algorithms.

4.6 Summary

The last two sections of the chapter present two novel algorithms for peak reduction

of OFDM signals: a time-domain algorithm and a clipping-and-filtering algorithm. Both

algorithms efficiently reuse precalculated canceling signals to reduce the computational com-

plexity of the conventional peak reduction algorithms based on the TR principle. The pre-

calculated canceling signals can be updated when different tone sets are selected for data

transmission, accommodating many practical applications. Simulation results show that the

proposed algorithms achieve slightly better performance than the conventional CFTR and
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Figure 4.22 Comparison of PAPR reduction for different methods: G = 100 ran-

dom reserved tones with target PAPR, T = 8 dB. “Proposed (a)”

is for the proposed time-domain algorithm, “Proposed (b)” is for the

proposed clipping and filtering algorithm.

GTR algorithms. Moreover, such performance is achieved with much lower computational

complexity when compared to the conventional GTR and CFTR algorithms. Among the

algorithms considered, the proposed time-domain GTR algorithm gives the best peak reduc-

tion performance but the proposed clipping-and-filtering algorithm requires considerably less

number of multiplications per iteration and can be efficiently implemented using FFT/IFFT

structure.
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Figure 4.23 Comparison of PAPR reduction for different methods: G = 50 ran-

dom reserved tones with target PAPR, T = 10 dB. “Proposed (a)”

is for the proposed time-domain algorithm, “Proposed (b)” is for the

proposed clipping and filtering algorithm
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Figure 4.24 Comparison of PAPR reduction for different methods: G = 100 ran-

dom reserved tones with target PAPR, T = 10 dB. “Proposed (a)”

is for the proposed time-domain algorithm, “Proposed (b)” is for the

proposed clipping and filtering algorithm

100



5. Summary and Suggestions for Further Studies

5.1 Summary

This thesis has investigated techniques to reduce the PAPR of DOCSIS OFDM down-

stream signals. To ensure the downward compatibility property of the network where changes

in the transmitter’s side do not affect the operation at the receivers, the peak reduction is

achieved by adding canceling signals, which are constructed by using only reserved subcar-

riers or tones in the OFDM signal spectrum. As the subcarriers’ locations are known in

the DOCSIS standards, receivers can agree a priori on reserving some specific tones for the

purpose of peak reduction.

The thesis proposes two efficient algorithms based on the TR principle, which do not

distort the transmitted data. The first algorithm is performed in the time domain, whereas

the second algorithm is a new clipping-and-filtering method. Both techniques use some pre-

calculated canceling signals in order to reduce the peak of OFDM signals and are performed

in two stages. The first stage creates a set of canceling signals based on the settings of the

OFDM system. In particular, these signals are constructed to cancel signals at different

levels of maximum instantaneous power that are above a predefined threshold. The second

stage is done online and in an iterative manner, which reduces the signal peaks by adding

with the canceling signals constructed in the first stage.

From extensive simulation results, the proposed algorithms can reduce peaks of OFDM

signals effectively after two iterations, while the numbers of hardware resources required in

terms of multiplications and additions are significantly less than that of the conventional

algorithms. Specifically, the two proposed algorithms can provide approximately 3.5 dB
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of PAPR reduction with a target PAPR of 8 dB at the probability of 10−4, which meets

the objective discussed in Section 1.3. Regarding the complexity comparisons, the number

of real multipliers in the kth iteration of the proposed time-domain algorithm is 4Pk per

sample, and the number of additions is 2Pk per sample (as discussed in Section 4.3) where

Pk is the number of clipping pulses of the OFDM signal from the previous iteration. As a

reference, the required number of multipliers in the conventional gradient-based TR (GTR)

algorithm is 4(|Sk|+1)+(2|Sk|/JN) per sample, where |Sk| is the number of samples in those

clipping pulses occurred in the OFDM signal from the previous iteration. Since Pk << |Sk|,

especially when the high value of oversampling factor J is used, the conventional approach

is certainly much more complicated. Additionally, the conventional GTR must use a scaling

factor whose optimal value is not well defined theoretically at run-time which affects the

peak reduction performance and might cause the algorithm to diverge. This phenomenon

does not happen with the proposed time-domain algorithm where no scaling factor is needed

in the online processing stage.

The frequency-domain algorithm offers even a smaller number of multiplications by uti-

lizing a pair of DFT/IDFT blocks. The number of real multipliers required in each iteration

of the algorithm is 4G/NJ +
(
MDFT/IDFT/NJ

)
(see Equation (4.60)) per sample, where

G/NJ is actually the ratio between number of reservation tones and the total number of

tones available, and MDFT/IDFT denotes the number of multipliers used by the DFT/IDFT

block. These figures are much smaller than those required in the conventional clipping-and-

filtering algorithm which also makes use of DFT/IDFT blocks. As the number of reservation

tones is pre-selected in the off-line stage, the number of multipliers for the on-line stage is

bounded and does not depend on the time-domain OFDM signals. This feature benefits the

real-time processing of the signal where the processing time for each OFDM symbol must

be limited.

5.2 Suggestions for Further Studies

The thesis has successfully demonstrated proof-of-concept techniques for PAPR reduction

of OFDM signals. While conducting the research works, there is a number of issues that are
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worthwhile to investigate further. These issues are elaborated below.

Given the significant reduction of hardware resources, the proposed algorithms are promis-

ing to be realized in FPGA devices. Both algorithms are performed in two separate stages,

namely an offline stage and online stage. The offline stage can be implemented in a com-

puter to generate all the reference signals, peak cancelling signals and coefficient vectors.

Such data then can then be loaded onto a FPGA device in the online stage. A number of

implementation techniques can be applied when realizing the peak reduction algorithms in

an FPGA, which is worthwhile to investigate further.

The thesis reports extensive simulation results for the case of using a randomized tone set

for PAPR reduction. Since the locations of the tones are clearly specified in the standard [4],

they can be made known to all the receivers on the network so that they do not use these tones

for data transmission. However, it would be more preferable in practice if the reserved tones

are limited to be within some frequency regions. The DOCSIS network originally consists of

multiple video broadcasting channels where each of them is modulated using SC-QAM with

a bandwidth of 6 MHz each. Consequently, the 6 MHz bandwidth is typically considered as

a region of one single video channel in DOCSIS standards [4], whereas an OFDM channel is

often referred to as a region of a number of video channels resided side-by-side. Therefore

more research work is needed to find out if the reserved tones can be limited to be within

one or multiple 6 MHz regions.

The TR principle is followed in the proposed techniques as the way to generate peak

cancelling signals which use tones totally separated from the data transmission tones. The

reason for this is to facilitate the receiver to easily remove the added signal before recovering

the original transmit signal. Another possibility of enabling the separation between the

peak cancelling signals and the original signals is by power level. That is to say the peak

cancelling signals can be generated from the same spectrum region as the data tones but

with much lower powers when compared to the original signals. The peak cancelling signals

are not confined to only tones specified by the system. Instead, they can make use of any

frequency within the spectrum used for data transmission as long as the power allocated for

these frequencies are well under the power of the data tones. This makes the original signal
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slightly distorted where the distortion level is kept minimal in such a way that it would not

affect the detection performance of data tones. It would be an interesting research problem

to see if it is possible to generate this type of peak canceling signals and how well they

perform.

In practical scenarios of DOCSIS 3.1, there are multiple OFDM channels modulated at

different carrier frequencies as well as a number of SC-QAM channels located in the lower

frequency regions, which in combination occupy the whole spectrum from 108 MHz to 1218

MHz [4]. These OFDM channels can have the same number of IFFT bins, however with

different lengths of cyclic prefixes and roll-off periods. This makes their symbol alignments

asynchronous in the time domain. Since the PAPR in (3.11) is defined in a symbol-wise

manner, it is not applicable to the case of a composite signal that is a combination of asyn-

chronous OFDM symbols. The composite signal would exhibit peaks at different sample

times not being constrained to any specific OFDM symbol duration. Therefore, the defini-

tion of instantaneous power to average power ratio (IAPR) is more appropriate [66–68] to

measure the dynamic range of the composite signal. As a number of OFDM channels are

combined together, the oversampling factor required is considerably larger than 4, making

the realization of the dynamic reduction techniques more difficult due to a large number of

samples involved in the calculation. Due to the asynchronous alignment among symbols from

different OFDM channels, the PAPR reduction techniques that reduce peaks in a symbol-

wise manner would need to be modified or adapted. As such, more investigation should be

conducted to obtain effective dynamic range reduction techniques for the case of multiple

asynchronous OFDM channels.

Finally, regarding the PAPR reduced OFDM signal, more peaks will appear near the

predefined target PAPR. When this signal is amplified, the HPA’s IBO can be released by

the amount of PAPR reduction achieved. This means that the HPA is forced to operate at the

saturation point more often. Consequently, this would produce more non-linear distortion

when compared to the case of amplifying the original OFDM signal. Signal pre-distortion

methods can be applied to address the increase in non-linear distortion. Before the signal

gets amplified, pre-distortion methods try to distort the signal in a way that when the
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signal gets amplified, the combination of amplification and pre-distortion results in a more

linear amplification when compared to the amplification alone. It is an interesting research

problem to find signals that serve as peak cancelling signals of the OFDM signals as well as

pre-distorting signals to decrease the HPA nonlinearity.
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Appendix A. Derivation of Kernel Signal Variance

The power sequence of the kernel signal has a special relationship to the correlation of

the set R, which is shown as follows:

|k[n]|2 = k[n]k∗[n]

=
1

|R|2
NJ−1∑
m=0

p[m]e+j 2π
NJ

nm

NJ−1∑
`=0

p[`]e−j
2π
NJ

n`

=
1

|R|2


NJ−1∑
m=0

p[m]︸ ︷︷ ︸
|R|

+
NJ−1∑
m 6=`
m,`=0

p[m]p[`]e+j 2π
NJ

n(m−`)


=

1

|R|
+

1

|R|2
NJ−1∑
m>`
m,`=0

p[m]p[`]
(

e+j 2π
NJ

n(m−`) + e+j 2π
NJ

n(`−m)
)

=
1

|R|
+

2

|R|2
NJ−1∑
m>`
m,`=0

p[m]p[`] cos

[
2π

NJ
n(m− `)

]

=
1

|R|
+

2

|R|2
NJ−1∑
τ=1

cos

[
2πnτ

NJ

]NJ−1−τ∑
m=0

p[m]p[m+ τ ]︸ ︷︷ ︸
Rτ

=
1

|R|
+

2

|R|2
NJ−1∑
τ=1

Rτ cos

[
2πnτ

NJ

]
,

(A.1)

where x∗ denotes the complex conjugate of x and 1 ≤ n ≤ NJ − 1. The aperiodic autocor-

relation function (APCF) of sequence p[m] is

Rτ =
NJ−1−τ∑
m=0

p[m]p[m+ τ ], (A.2)

where 0 ≤ τ ≤ NJ − 1. Since R is a subset of Φ = {0, . . . , N − 1}, so Rτ = 0 for τ ≥ N and

Equation (A.1) can be rewritten as:

|k[n]|2 =
1

|R|
+

2

|R|2
N−1∑
τ=1

Rτ cos

[
2πnτ

NJ

]
, 1 ≤ n ≤ NJ − 1. (A.3)
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From (4.17), k[n] can be calculated by performing the IDFT on sequence p = [p[0], . . . , p[NJ−

1]]. That is:

k[n] =

√
NJ

|R|

(
1√
NJ

NJ−1∑
m=0

p[m]ej2π
nm
NJ

)
=

√
NJ

|R|
F−1{p}|n. (A.4)

Using the Parseval’s theorem, the average power of |k[n]| is given by:

µ = E
{
|k[n]|2

}
=

1

NJ

NJ−1∑
n=0

|k[n]|2 =
1

|R|2
NJ−1∑
m=0

p[m]2 =
1

|R|
. (A.5)

Thus the variance of k[n] is:

σ2 = E
{

(|k[n]|2 − µ)2
}

= E

{(
|k[n]|2 − 1

|R|

)2
}

= E


(

2

|R|2
N−1∑
τ=1

Rτ cos

[
2πnτ

NJ

])2
 =

4

NJ |R|2
E


(
N−1∑
τ=1

Rτ cos

[
2πnτ

NJ

])2
 .

(A.6)

Because(
N−1∑
τ=1

Rτ cos

[
2πnτ

NJ

])2

=
N−1∑
τ=1

R2
τ cos

[
2πnτ

NJ

]2

+ 2
NJ−1∑
`,k=1
` 6=k

R`Rk cos

[
2πn`

NJ

]
cos

[
2πnk

NJ

]

= 2
N−1∑
τ=1

R2
τ

(
1 + cos

[
2π2nτ

NJ

])
+

N−1∑
`,k=1
` 6=k

R`Rk

{
cos

[
2πn(`+ k)

NJ

]
+ cos

[
2πn(`− k)

NJ

]}
,

it follows that:

σ2 =
8

NJ |R|2
N−1∑
τ=1

R2
τE

{
1 + cos

[
2π2nτ

NJ

]}
+

4

NJ |R|2
N−1∑
`,k=1
` 6=k

R`RkE

{
cos

[
2πn(`+ k)

NJ

]
+ cos

[
2πn(`− k)

NJ

]}
.

It is easily seen that, for any 0 < k ≤ NJ − 1, one has:

E

{
cos

[
2π

kn

NJ

]}
=

1

NJ

NJ−1∑
n=0

cos

[
2π

kn

NJ

]
=

1

2NJ

NJ−1∑
n=0

[
e+j2π kn

NJ + e−j2π
kn
NJ

]
= 0.
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In the same manner,

E

{
cos

[
2πn(`+ k)

NJ

]}
= 0 for `+ k 6= NJ ; `, k < NJ

E

{
cos

[
2πn(`− k)

NJ

]}
= 0 for ` 6= k; `, k < NJ

Using the above results, Equation (A.6) can be simplified as:

σ2 =
8

NJ |R|2
N−1∑
τ=1

R2
τ . (A.7)

.
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Appendix B. Genetic-Based Kernel Search

1. Parent population generation: An initial set of binary sequences of length

N is randomly generated. They are called parent sequences, and denoted by ℘ =

{℘0℘1 . . . ℘N−1}. Each parent sequence has exactly G non-zero elements at indices

i0, i1, . . . , iG−1 which correspond to reserved tones in the set R. The population size

or the number of parent sequences is a constant N℘.

2. Ranking parent sequences: Generate a kernel corresponding to each parent se-

quence using (4.17). For each of the kernel constructed, its merit factor is defined

by:

MFk = max
J≤n≤(N−1)J

|k[n]| (B.1)

which is the secondary peak magnitude of the kernel signal. The ranking is then done

to order the parent sequences by their merit factors.

3. Crossover and mutate: This step consists of two consecutive processes. The first

process is called crossover since it is inspired from the similar process in the biological

evolution, in which two genomes crossover to create two new offspring genomes by

switching some portions of their bodies. This operation helps the offspring inherit the

characteristics from their parents. The second process, named as a mutation, takes

the responsibility to create some new characteristics for the offspring generations. It is

made by probabilistically changing some random values in their sequences. After these

two processes, a new population, which includes both the parent population formed in

the previous step and a number of new offspring sequences, is created. An illustration

of these two processes is provided in Figure 1.

Not all the sequences in the parent population cross over, but a portion of them

does. The percentage of crossover, or the crossover rate, is preset by some constant

probability of ξ. When two parent sequences cross over, a random point is selected to

make the reference boundary to exchange elements, which is called a crossover point.

All the elements from the reference point towards the end of the two sequences are
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Figure 1 Illustration of crossover and mutation processes for N = 16, G = 7.

exchanged. After exchanging parts of the parent bodies, two new offspring sequences

are generated, ending the crossover process.

The mutation process actually contains two sub-processes which are mutating and

correcting. The mutating sub-process aims to introduce some randomly new tone

locations in the offspring sequences, whereas the correcting sub-process ensures all the

mutated sequences have the same number of tones, or equivalently the same number

of non-zero elements, as the rest of the population, that is G.

There are two ways to mutate an offspring sequence, namely switching tones and

toggling tones. The former randomly selects a pair of random tone locations in the

sequence, and switches their positions. This does not cause the number of tones in the

sequence to change. The latter is done by randomly choosing some locations in the

sequence and toggling their values, that is from 0 to 1 and vice versa. This, however,

might change the number of tones.

The correcting sub-process comes after to fix any unregulated offsprings. If an offspring
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sequence has less number of ones than required, then a random tone is added, otherwise,

one of its random tones is removed (see Figure 1).

After this step, the population is more crowded since the total number of its member

sequences is N℘ +
(
N℘
2

)
ξ = N℘ + ξN℘(N℘−1)

2

4. Ranking offspring sequences: For each generated offspring sequence, a corre-

sponding kernel is constructed and its merit factor is computed. The whole population

is then sorted by their merit factors in an increasing order, and only N℘ sequences

having smallest merit factors are chosen to make the next generation parents. The

search then continues again with Step 3) until the number of iterations Nit is reached.
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Appendix C. CFTR to GTR transformation

This appendix proves that the CFTR algorithm can be transformed into the GTR algo-

rithm with an adaptive scaling factor βk instead of a constant γ as in (4.21). At the kth

iteration of the CFTR algorithm, the clipping noise is formed in (4.33). Taking the DFT on

both sides leads to:

F{fk} = F{yk} − F{gT (yk)}

= F{x+ βk−1ck−1} − F{gT (yk)}

= F{x}+ βk−1F{ck−1} − F{gT (yk)}.

(C.1)

Applying H(·) on both sides of (C.1) gives:

H(F{fk}) = H(F{x}) +H(F{βk−1ck−1})−H(F{gT (yk)}). (C.2)

Since the frequency filter only keeps reserved frequencies unchanged while suppresses other

frequencies, it is easily seen that

H(F{x}) = 0;

H(F{ck−1}) = Ck−1.
(C.3)

Therefore, the canceling signal which is formed in (4.34) as a consequence of (C.3) can be

simplified into:

ck = F−1{βk−1Ck−1} − F−1{H(F{gT (yk)})}

= βk−1ck−1 −F−1{H(F{gT (yk)})}.
(C.4)

Equation (C.4) means that the new canceling signal is made by adding the canceling signal

constructed in the previous iteration with a correction term. The correction term can be

derived explicitly using the definition of the DFT operation. Denote Y k = F{gT (yk)},

which is a length-NJ frequency vector of the clipped signal. Its frequency component at
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some tone location 0 ≤ ` ≤ NJ − 1 can be found by:

Y k[`] =
1√
NJ

NJ−1∑
n=0

gT (yk[n]) ej2π
n`
NJ

=
1√
NJ

∑
n/∈Sk

yk[n] ej2π
n`
NJ +

∑
n∈Sk

(
T ej∠yk[n]

)
ej2π

n`
NJ


=

1√
NJ

(
NJ−1∑
n=0

yk[n] ej2π
n`
NJ −

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
ej2π

n`
NJ

)

= Yk[`]−
1√
NJ

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
ej2π

n`
NJ .

(C.5)

Since

Yk[`] =



X[`], if ` ∈ D

βk−1Ck−1[`], if ` ∈ R

0, otherwise

one has, for 0 ≤ m ≤ NJ − 1:

F−1{H(F{gT (yk)})}|m = F−1{H(Y k)}|m

=
1√
NJ

∑
`∈R

(
Yk[`]−

1√
NJ

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
ej2π

n`
NJ

)
e−j2π

`m
NJ

=
1√
NJ

∑
`∈R

βk−1Ck−1[`]e−j2π
`m
NJ

− 1

NJ

∑
`∈R

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
ej2π

n`
NJ e−j2π

`m
NJ

= βk−1ck−1[m]− 1

NJ

∑
`∈R

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
ej2π

`(n−m)
NJ

= βk−1ck−1[m]− 1

NJ

∑
n∈Sk

[(
yk[n]− T ej∠yk[n]

)∑
`∈R

ej2π
`(n−m)
NJ

]
.

(C.6)

On the other hand, from (4.17), one also has:∑
`∈R

ej2π
`(n−m)
NJ = |R|km[n],
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where km[n] is the nth sample of the cyclically shifted kernel by m positions to the right,

i.e., �m (k). As a result, the correction term in (C.4) is:

F−1{H(F{gT (yk)})} = βk−1ck−1 −
|R|
NJ

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
�m (k) , (C.7)

which transforms Equation (C.4) into:

ck =
|R|
NJ

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
�m (k) . (C.8)

Therefore, the equivalent form of Equation (4.35) is:

yk+1 = x− βk
|R|
NJ

∑
n∈Sk

(
yk[n]− T ej∠yk[n]

)
�m (k) . (C.9)
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