16 research outputs found

    Using the Dual-Tree Complex Wavelet Transform for Improved Fabric Defect Detection

    Get PDF
    Published ArticleThe dual-tree complex wavelet transform (DTCWT) solves the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly used discrete wavelet transform (DWT). It has been proposed for applications such as texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the Workgroup on Texture Analysis of the German Research Council (DFG), are used. The mean energies of real and imaginary parts of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated wavelet transform (UDWT) with a detection rate of 4.5% to 15.8% higher depending on the fabric type

    Using the Dual-Tree Complex Wavelet Transform for Improved Fabric Defect Detection

    Get PDF
    The dual-tree complex wavelet transform (DTCWT) solves the problems of shift variance and low directional selectivity in two and higher dimensions found with the commonly used discrete wavelet transform (DWT). It has been proposed for applications such as texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the Workgroup on Texture Analysis of the German Research Council (DFG), are used. The mean energies of real and imaginary parts of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated wavelet transform (UDWT) with a detection rate of 4.5% to 15.8% higher depending on the fabric type

    Modelling of Hysteresis in Vibration Control Systems by means of the Bouc-Wen Model

    Get PDF
    The review presents developments concerning the modelling of vibration control systems with hysteresis. In particular, the review focuses on applications of the Bouc-Wen model that describes accurate hysteretic behaviour in vibration control devices. The review consists of theoretical aspects of the Bouc-Wen model, identification procedures, and applications in vibration control

    Intelligent System for Vehicles Number Plate Detection and Recognition Using Convolutional Neural Networks

    Get PDF
    Vehicles on the road are rising in extensive numbers, particularly in proportion to the industrial revolution and growing economy. The significant use of vehicles has increased the probability of traffic rules violation, causing unexpected accidents, and triggering traffic crimes. In order to overcome these problems, an intelligent traffic monitoring system is required. The intelligent system can play a vital role in traffic control through the number plate detection of the vehicles. In this research work, a system is developed for detecting and recognizing of vehicle number plates using a convolutional neural network (CNN), a deep learning technique. This system comprises of two parts: number plate detection and number plate recognition. In the detection part, a vehicle’s image is captured through a digital camera. Then the system segments the number plate region from the image frame. After extracting the number plate region, a super resolution method is applied to convert the low-resolution image into a high-resolution image. The super resolution technique is used with the convolutional layer of CNN to reconstruct the pixel quality of the input image. Each character of the number plate is segmented using a bounding box method. In the recognition part, features are extracted and classified using the CNN technique. The novelty of this research is the development of an intelligent system employing CNN to recognize number plates, which have less resolution, and are written in the Bengali language.</jats:p

    Sector-Based Water Demand Forecasting: Commercial Greenhouses

    Get PDF
    With rising electricity prices, forecasting water demand has become an essential part of the success of any water utility. Numerous forecasting methods have been suggested, but none have been able to characterize the unique consumer mixes that exist for every utility. This work focuses on a water utility located in Essex County, Ontario, Canada. Examination of the utilities consumer breakdown showed that almost 80% of their capacity was being consumed by commercial greenhouse operations. Current forecasting practices in this region for this sector are almost non-existent, assuming fixed demand for all greenhouse operations. This study presents three papers that focus on evaluation and simplification of forecasting techniques for commercial greenhouse operations. The first paper examines influential factors which drive greenhouse water consumption, with an emphasis on practicality. The second paper evaluates several forecasting model architectures ranging from elementary to complex in order to determine the most suitable method(s). The third paper compares water usage between two crops (tomatoes and bell peppers) in an effort to evaluate a crop to crop forecast technique that relies on one crops watering data in order to produce forecasts for another crop

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    Road Surface State Recognition Based on SVM Optimization and Image Segmentation Processing

    Get PDF

    A Multi-Contextual Approach to Modeling the Impact of Critical Highway Work Zones in Large Urban Corridors

    Get PDF
    Accurate Construction Work Zone (CWZ) impact assessments of unprecedented travel inconvenience to the general public are required for all federally-funded highway infrastructure improvement projects. These assessments are critical, but they are also very difficult to perform. Most existing prediction approaches are project-specific, shortterm, and univariate, thus incapable of benchmarking the potential traffic impact of CWZs for highway construction projects. This study fills these gaps by creating a big-data-based decision-support framework and testing if it can reliably predict the potential impact of a CWZ under arbitrary lane closure scenarios. This study proposes a big-data-based decision-support analytical framework, “Multi-contextual learning for the Impact of Critical Urban highway work Zones” (MICUZ). MICUZ is unique as it models the impact of CWZ operations through a multi-contextual quantitative method utilizing sensored big transportation data. MICUZ was developed through a three-phase modeling process. First, robustness of the collected sensored data was examined through a Wheeler’s repeatability and reproducibility analysis, for the purpose of verifying the homogeneity of the variability of traffic flow data. The analysis results led to a notable conclusion that the proposed framework is feasible due to the relative simplicity and periodicity of highway traffic profiles. Second, a machine-learning algorithm using a Feedforward Neural Networks (FNN) technique was applied to model the multi-contextual aspects of iii long-term traffic flow predictions. The validation study showed that the proposed multi-contextual FNN yields an accurate prediction rate of traffic flow rates and truck percentages. Third, employing these predicted traffic parameters, a curve-fitting modeling technique was implemented to quantify the impact of what-if lane closures on the overall traffic flow. The robustness of the proposed curve-fitting models was then scientifically verified and validated by measuring forecast accuracy. The results of this study convey the fact that MICUZ would recognize how stereotypical regional traffic patterns react to existing CWZs and lane closure tactics, and quantify the probable but reliable travel time delays at CWZs in heavily trafficked urban cores. The proposed framework provides a rigorous theoretical basis for comparatively analyzing what-if construction scenarios, enabling engineers and planners to choose the most efficient transportation management plans much more quickly and accurately

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions
    corecore