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The dual-tree complex wavelet transform (DTCWT) solves the problems of shift variance and low directional selectivity in two and
higher dimensions foundwith the commonly used discrete wavelet transform (DWT). It has been proposed for applications such as
texture classification and content-based image retrieval. In this paper, the performance of the dual-tree complex wavelet transform
for fabric defect detection is evaluated. As experimental samples, the fabric images from TILDA, a textile texture database from the
Workgroup on Texture Analysis of the German Research Council (DFG), are used. The mean energies of real and imaginary parts
of complex wavelet coefficients taken separately are identified as effective features for the purpose of fabric defect detection. Then
it is shown that the use of the dual-tree complex wavelet transform yields greater performance as compared to the undecimated
wavelet transform (UDWT) with a detection rate of 4.5% to 15.8% higher depending on the fabric type.

1. Introduction

The discrete wavelet transform has been commonly used for
feature extraction in fabric defect detection research. For
example, Lambert and Bock [1] performed experiments using
several wavelet bases and compared the defect detection
performance in fabric images. Other related research results
have been published [2–5].

However, the discrete wavelet transform (DWT) in its
critically sampled form suffers from the problem of shift
variance that makes it unsuitable for pattern recognition
applications such as fabric defect detection [6]. The solution
that has been usually used is the undecimated discretewavelet
transform (UDWT) [7–9].

Even if the UDWT solves the problem of shift variance, it
has a high redundancy rate of 3𝐿+1 for image representation,
where 𝐿 is the number of wavelet decomposition levels.
That leads to increased computational requirements [10]. In
addition, it does not solve the shortcoming of poor direc-
tional selectivity for diagonal features in 2D. This weakness
of UDWT lowers the discrimination power of its texture
features.

The dual-tree complex wavelet transform (DTCWT), first
introduced by Kingsbury in 1998 [10, 11], is approximately
shift invariant and allows directional wavelets in 2 and
higher dimensions with only 2x redundancy in 1D (2𝑑 for
𝑑-dimensional signals, in general) [12]. It has been used in
several research papers especially for texture characterisation.
For example, Costin and Ignat [13] discussed the effectiveness
of the cosine similarity measure, the Pearson coefficient, and
the Frobenius norm applied to the magnitudes of DTCWT
coefficients of texture images in order to decide on their
similarities. Other applications include content-based image
retrieval [14, 15], image segmentation [16], and texture classi-
fication [17, 18].

Specific to textiles, Wang et al. used the 2D dual-tree
complex wavelet transform to separate the fabric texture
and the pilling information from the image of the pilled
nonwoven fabric.They then used that pilling information and
a supervised neural network classifier for objective pilling
evaluation [19].

However, there is limited literature on the application
of the dual-tree complex wavelet transform to fabric defect
detection. In this paper, the dual-tree complex wavelet to

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 9794723, 8 pages
http://dx.doi.org/10.1155/2016/9794723



2 Journal of Sensors

g

h

s g

h

g

h

cA1

cD1

cA2

cA3

cD2

cD3

↓2

↓2

↓2

↓2

↓2

↓2

Figure 1: Three-level DWT decomposition. ℎ and 𝑔 are low-pass and high-pass filters, respectively. 𝑠 denotes the original signal; cA1, cA2,
and cA3 denote the approximation coefficients at level 1, level 2, and level 3, respectively, while cD1, cD2, and cD3 denote the detail coefficients
at level 1, level 2, and level 3, respectively.

extract texture features and then a Euclidean distance clas-
sifier are used in order to detect defects in textile fabrics. The
objective is twofold: (i) to identify the best features for the
DTCWT and (ii) to show that the features extracted using
DTCWT are more powerful in discriminating the fabric
defects from the sound fabric than those extracted using
UDWT.

The remaining part of this paper is organised as fol-
lows. Section 2 describes the wavelet transform methods
with emphasis on the dual-tree complex wavelet transform.
Section 3 briefly describes the Euclidean distance classifier
while Section 4 describes the dataset and the experiments.
Section 5 presents the results as well as their interpretation
and, finally, Section 6 concludes the paper.

2. The Wavelet Transform Methods

This section briefly introduces the discrete wavelet transform,
the undecimated discrete wavelet transform, and the dual-
tree complex wavelet transform.

2.1. The Discrete Wavelet Transform. The one-dimensional
discrete wavelet transform allows one to decompose a digital
signal into a low-frequency component called “approxima-
tion” and a high-frequency component called “details.” The
low-frequency component can further be decomposed into
approximation and details, and so forth. This process is
illustrated by Figure 1 for a three-level decomposition. (ℎ, 𝑔)
form a system of specially designed filters called “quadrature
mirror filters.”

For two-dimensional signals (images) the decomposition
algorithm is applied in two phases. In phase 1, the filtering
(high-pass and low-pass) followed by downsampling is done
along the columns while in phase 2 the filtering (high-pass
and low-pass) followed by downsampling is applied to the
results of phase 1 along the rows [20].

2.2.The Undecimated Discrete Wavelet Transform. TheDWT
as described in the previous subsection is common but is
inappropriate in some applications because it is shift variant.
In such cases, the UDWT can be used. One-level UDWT
is similar to one-level DWT with the exception that the

results of filtering the original signal are not downsampled.
Therefore, one ends up with the wavelet approximation
coefficients with as many samples as the original signal and
the wavelet detail coefficients with as many coefficients as the
original leading to the overall results with twice as much data
as the original signal. Formultilevel decomposition, the filters
coefficients are upsampled from one level to the next one.
Figure 2 illustrates a two- level UDWT decomposition [20].

2.3. The Dual-Tree Complex Wavelet Transform. Figure 3
shows the implementation of 1D dual-tree complex wavelet
transform using Finite Impulse Response (FIR) real-
coefficient filters. ℎ0

(1), ℎ0, 𝑔0(1), and 𝑔0 are low-pass filters
while ℎ1

(1), ℎ1, 𝑔1(1), and 𝑔1 are high-pass filters. Those
filters are designed so that the corresponding wavelets 𝜓ℎ(𝑡)
and 𝜓𝑔(𝑡) form approximately a Hilbert pair. Similarly the
resulting scaling functions 𝜑ℎ(𝑡) and 𝜑𝑔(𝑡) should be such
that 𝜑𝑔(𝑡) is approximately the Hilbert transform of 𝜑ℎ(𝑡).
Therefore the complex wavelet 𝜓(𝑡) and complex scaling
function 𝜑(𝑡) described by the following equation would be
approximately analytic:

𝜓 (𝑡) = 𝜓ℎ (𝑡) + 𝑗𝜓𝑔 (𝑡) ,

𝜑 (𝑡) = 𝜑ℎ (𝑡) + 𝑗𝜑𝑔 (𝑡) .
(1)

Consequently referring to Figure 3, the output coefficients of
the top tree (tree ℎ) and those of the bottom tree (tree 𝑔) can
be considered, respectively, as real and imaginary parts of the
complex wavelet coefficients.

The conditions specified in the previous paragraph can be
met if the filters satisfy the following requirements [12]:

(i) They meet the perfect reconstruction conditions.
(ii) One of the two low-pass filters ℎ0 and 𝑔0 should be

approximately a half-sample shift of the other.

(iii) The first-stage filters ℎ0
(1) and ℎ1

(1) should be shifted
by one sample with respect to 𝑔0(1) and 𝑔1(1), respec-
tively.

One way to meet those requirements is to design orthogonal
Q-shift filters byminimizing energy in the frequency domain
as proposed byKingsbury [21].The extension to 2 dimensions
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Figure 2: Two-level UDWT decomposition. ℎup and 𝑔up are upsampled versions of ℎ and 𝑔, respectively. cA1, cA2, cD1, and cD2 are wavelet
coefficients as described in Figure 1.

h0
(1)

h1
(1)

g0
(1)

g1
(1)

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

h0

h1

g0

g1

h0

h1

g0

g1

Figure 3: Implementation of 1D dual-tree complex wavelet transform using FIR real-coefficient filters.

is achieved by 2Dcomplex separablewavelets described by (2)
and a 2D complex separable scaling function described by (3).
They are implemented by separable filters along columns and
then rows:

𝜓1 (𝑥, 𝑦) = 𝜑 (𝑥) 𝜓 (𝑦) ,

𝜓2 (𝑥, 𝑦) = 𝜓 (𝑥) 𝜑 (𝑦) ,

𝜓3 (𝑥, 𝑦) = 𝜓 (𝑥) 𝜓 (𝑦) ,

(2)

𝜑 (𝑥, 𝑦) = 𝜑 (𝑥) 𝜑 (𝑦) , (3)

where 𝜓(⋅) and 𝜑(⋅) are as shown in (1).
Therefore, the 2D DTCWT is implemented separably

by 2 trees used for the rows of the image and 2 trees
for the columns. The resulting wavelet coefficients are then
combined by simple sum and difference operations to give
real and imaginary wavelet coefficients. This gives 6 wavelets
approximately shift invariant and oriented at ±15∘, ±45∘, and
±75∘. The reader can find the details in [12].

3. Euclidean Distance Classifier

For a Euclidean distance classifier, each pattern class 𝜔𝑗 is
characterised by a vector m𝑗 which is the mean vector of

the features of the patterns of that class that are part of the
training set as described by the following equation:

m𝑗 =
1
𝑁𝑗

∑
x∈𝜔𝑗

x, (4)

where 𝑁𝑗 is the number of training pattern vectors for class
𝜔𝑗 and the summation is taken over these vectors.

Determining the class membership of an unknown pat-
tern with feature vector x consists in computing the distance
measures given by (5) and assigning x to the class𝜔𝑖 for which
𝐷𝑖 is the smallest distance:

𝐷𝑗 (x) = 󵄩󵄩󵄩󵄩󵄩x − m𝑗
󵄩󵄩󵄩󵄩󵄩 𝑗 = 1, 2, . . . ,𝑊, (5)

where 𝑊 is the number of classes.
The above procedure of training the Euclidean distance

classifier, whereby for each pattern class a characteristic
feature vector is themean vector of the corresponding feature
vectors in the training set, is called “maximum likelihood
training” (ML) training [9].

The “Minimum Classification Error” (MCE) training of
the classifier provides a better way of obtaining the classifier
characteristic feature vectors of different pattern classes [9].
The MCE training algorithm starts with the characteristic
feature vectors obtained by the ML method and then adjusts
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them adaptively in order to achieve the highest classification
rate of the feature vectors in the training set. The mentioned
process is illustrated by Figure 4 for the experiments of this
paper.

The fabric images of the training set are submitted to
a feature extraction operation using a wavelet transform
method.The features are extracted for each 32× 32window of
the fabric image. The features of each window are compared
to the reference feature vector (Λ) of the defective and defect-
free classes and the window is classified as defective or defect-
free. The detection results are then compared to the true
training sample labels and the value of the detection loss
function is evaluated. Using that loss value, the reference
vectors (Λ) are adjusted in order to decrease the value of the
loss function. New detection results are computed using the
adjusted reference vectors and the new loss value of detection
is evaluated. That process continues until the loss value of
detection is minimized or is below a predefined threshold.

4. Experiments

4.1. Experimental Samples. The experiments were performed
using the fabric images from the TILDA dataset [22]. That
dataset contains images of four different classes of fabrics:

Class 1: very fine fabrics with or without visible
internal structure;
Class 2: fabrics with a low variance stochastic struc-
ture. The surface of this case contains no imprints;
Class 3: fabrics with a clearly visible periodic struc-
ture;
Class 4: printed materials with no apparent periodic-
ity.

For each of the 4 fabric classes, the dataset contains two
representatives named R1, R2, or R3. Figure 5 shows samples
of the four fabric classes contained in the dataset.

Fabric images with four types of defects were considered:
holes and cuts, oil stains and colour fading, thread errors, and
finally foreign body on the fabric. Figure 6 shows examples of
those defect types for the fabric of class 2.

Table 1 shows the detailed numbers of images from the
TILDA dataset considered in this paper. In total 1600 images
of different fabric classes and containing different types of
defects were used. Each image had a size of 512 × 768 pixels.

Each fabric image was divided into nonoverlapping win-
dows of size 32× 32 pixels.That gave a total number of 614,400
windows from all the 1,600 images. Among those 614,400
windows, 37,546 were defective while the rest were defect-
free.

All the 37,546 defective windows as well as 37,546 defect-
free windows chosen randomly were selected to make up
the experimental dataset. The selection of the defect-free
samples was done in such a way to get from each image
an equal number of defective and defect-free samples. The
experimental dataset was then divided into two parts of the
same size: the training set and the testing set, each containing
the same number of defective and defect-free samples.

Table 1: The TILDA images used in this paper.

Fabric class Representative Error type Number of images

C1

R1

E1 50
E2 50
E3 50
E4 50

R3

E1 50
E2 50
E3 50
E4 50

C2

R2

E1 50
E2 50
E3 50
E4 50

R3

E1 50
E2 50
E3 50
E4 50

C3

R1

E1 50
E2 50
E3 50
E4 50

R3

E1 50
E2 50
E3 50
E4 50

C4

R1

E1 50
E2 50
E3 50
E4 50

R3

E1 50
E2 50
E3 50
E4 50

Therefore the overall experimental dataset was as follows:

(i) training set: 37546 samples, 18773 defective and 18773
defect-free;

(ii) testing set: 37546 samples, 18773 defective and 18773
defect-free.

4.2. Experimental Procedures. The fabric defect detection
experiments were divided into 2 phases: (i) training the
classifier using the training set and (ii) classifying the samples
of the testing set as defective or not using the trained classifier.
The steps of training the classifier were as follows.

(i) A 5-level wavelet decomposition of each fabric image
in the dataset was performed using the dual-tree
complex wavelet transform.The filters used to imple-
ment the wavelet transformwere Q-shift FIR filters of
length 14, designed according to themethodproposed
by Kingsbury [21]. The results of wavelet decomposi-
tion were six complex directional subbands for each
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Figure 5: Samples of the 4 fabric classes contained in the TILDA dataset.

of the five decomposition levels corresponding to six
orientations: −75∘, −45∘, −15∘, +15∘, +45∘, and +75∘.

(ii) For each sample of the training set, the corresponding
complex wavelet coefficients for each level of wavelet
decomposition and each of the directional subbands
were extracted. The complex wavelet coefficient from
the subband with decomposition level 𝑙 and orienta-
tion 𝑑 is denoted by 𝑤𝑙,𝑑.

(iii) From the complex wavelet coefficients extracted from
each subband as mentioned in step 2, the following
features were calculated:

(a) Mean energy of real parts of wavelet coefficients
is

𝐹1,𝑙,𝑑 =
1
𝑁

∑
𝑖

(𝑤𝑟𝑖,𝑙,𝑑)
2 . (6)

(b) Mean energy of imaginary parts of wavelet
coefficients is

𝐹2,𝑙,𝑑 =
1
𝑁

∑
𝑖

(𝑤𝑖𝑖,𝑙,𝑑)
2 . (7)

(c) Mean energy of wavelet coefficients taking into
account both real and imaginary parts is

𝐹3,𝑙,𝑑 =
1
𝑁

∑
𝑖

((𝑤𝑟𝑖,𝑙,𝑑)
2 + (𝑤𝑖𝑖,𝑙,𝑑)

2) . (8)

(d) Mean magnitude of wavelet coefficients is

𝐹4,𝑙,𝑑 =
1
𝑁

∑
𝑖

󵄨󵄨󵄨󵄨𝑤𝑖,𝑙,𝑑
󵄨󵄨󵄨󵄨 . (9)

(e) Variance ofmagnitudes of wavelet coefficients is

𝐹5,𝑙,𝑑 =
1
𝑁

∑
𝑖

(󵄨󵄨󵄨󵄨𝑤𝑖,𝑙,𝑑
󵄨󵄨󵄨󵄨 − 𝐹4,𝑙,𝑑)

2. (10)
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E1: hole or cut E2: oil stain E3: thread error E4: foreign body

Figure 6: Examples of the 4 types of defects considered in this paper.

For (6) through (10) 𝑤𝑖,𝑙,𝑑 denotes the 𝑖th complex wavelet
coefficient from the subband with decomposition level 𝑙
and orientation 𝑑 corresponding to the current sample,
while 𝑤𝑟𝑖,𝑙,𝑑 and 𝑤𝑖𝑖,𝑙,𝑑 denote its real and imaginary parts,
respectively. 𝑁 denotes the total number of complex wavelet
coefficients for the current sample for decomposition level 𝑙
and orientation 𝑑.

(iv) The features calculated for each subband were then
grouped into the following feature sets.

(a) Set 1.Themean energy of the real parts only is

Set 1 = {𝐹1,𝑙,𝑑} , 𝑙 = 1, 2, . . . , 5, 𝑑 = 1, 2, . . . , 6. (11)

(b) Set 2.Themean energy of the real parts only and
the mean energy of imaginary parts are

Set 2 = {𝐹1,𝑙,𝑑, 𝐹2,𝑙,𝑑} , 𝑙 = 1, 2, . . . , 5, 𝑑 = 1, 2, . . . , 6. (12)

(c) Set 3. The mean energy of complex wavelet
coefficients is

Set 3 = {𝐹3,𝑙,𝑑} , 𝑙 = 1, 2, . . . , 5, 𝑑 = 1, 2, . . . , 6. (13)

(d) Set 4.The mean and variance of magnitudes of
wavelet coefficients are

Set 4 = {𝐹4,𝑙,𝑑, 𝐹5,𝑙,𝑑} , 𝑙 = 1, 2, . . . , 5, 𝑑 = 1, 2, . . . , 6. (14)

Therefore for each sample in the training dataset Set 1
and Set 3 have 30 features each, while Set 2 and Set 4
have 60 features each.

(v) For each feature set, all the feature values were
normalized to fall into the range [0, 1] for the samples
of the training set using

𝐹𝑁 = 𝐹 − 𝐹min
𝐹max − 𝐹min

, (15)

where 𝐹𝑁 is the normalized feature value, 𝐹min is the
minimum feature value of all the feature vectors of the
training set, and𝐹max is themaximum feature value of
all the feature vectors of the training set.

(vi) For each feature set, the normalized features were
used to train a Euclidean distance classifier using the
Minimum Classification Error (MCE) algorithm [9].

For each of the four feature sets (Set 1, Set 2, Set 3, and Set 4)
a testing experiment was performed using all the samples of
the testing dataset.Thatwas done in order to identify themost
powerful feature set among the four. Each testing experiment
was performed as follows.

(i) The features for the current feature set for all the
samples of the testing dataset were calculated as
described in steps 1 through 4 of the classifier training
process.

(ii) The obtained feature values were normalized using
the same scaling parameters (𝐹min and 𝐹max) as those
used for normalizing the corresponding features of
the training set.

(iii) Those normalized features were fed into the trained
classifier to classify the testing samples as defective or
defect-free and then the correct classification rate was
recorded.

To compare the performance of DTCWT-based features
with UDWT-based features, similar experiments were per-
formed on the same dataset but using UDWT- (undecimated
wavelet transform-) based features instead of DTCWT-based
features. The filters used to implement the UDWT were
also of length 14 and were designed using a cascade-form
factorization procedure of the low-pass and high-pass filters
[𝐻(𝑧), 𝐺(𝑧)] as described by Yang [9]. The choice of the
UDWTwasmotivated by the fact that it is also shift invariant,
what makes it suitable for applications of fabric defect
detection.

As the wavelet coefficients obtained using the UDWT
wavelet decomposition are real, they can only lead to feature
sets Set 3 and Set 4 (as defined in step 4 of the training process
above). Set 2 is not applicable as it involves imaginary parts
of wavelet coefficients while Set 1 is the same as Set 3 in that
context.

5. Results and Interpretation

Figure 7 compares the fabric defect detection rates obtained
for four different DTCWT-based feature sets. That was done
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Figure 7: Comparison of detection rate of the 4 sets of theDTCWT-
based features for different fabric categories and different defect
types.

to make it possible to assess the relative discriminating power
of those different feature sets. Feature set Set 1 is made up of
mean energy of real part of wavelet coefficients for all the 6
directional subbands and for all the 5 levels of decomposition.
To get Set 2, the mean energy of imaginary parts of wavelet
coefficients for all the 6 directional subbands and for all the
5 levels of decomposition was added to Set 1. It can be seen
from Figure 7 that that addition improved significantly the
detection rate. The features of Set 3 are the mean energies of
complex wavelet coefficients. For each directional subband
and each level of decomposition, those features of Set 3 can
be obtained by summing together the two corresponding
features of Set 2. The defect detection rate drops with respect
to Set 2 (the mean energies of real and imaginary wavelet
coefficients taken separately) but generally remains higher
than that obtained using mean energy of real part of wavelet
coefficients alone (Set 1). The use of the mean and variance
of magnitudes of complex wavelet coefficients (Set 4) leads to
a slightly lower detection rate than the mean energies of real
and imaginary parts of wavelet coefficients taken separately
(Set 2) for most of the considered fabric categories and defect
types. The detection performance of Set 4 is higher than that
of Set 2 only for the fabric category C4, representative R1, and
for the defect type E3 of the TILDA dataset.

In the experiments, the use of the entropies of real parts,
imaginary parts, and magnitudes of DTCWT coefficients as
features was also tried, but they did not show significant
variation for most of the experimental samples. Therefore it
was decided not to consider them any further as it was clear
that they would not add any improvement to the detection
performance.

Therefore the use of the mean energies of the real and
imaginary parts of complex wavelet coefficients obtained
using the dual-tree complex wavelet decomposition as fea-
tures for fabric defect detection is recommended. If, for any

55

60

65

70

75

80

85

90

95

C1
R1

E1

C1
R1

E3

C2
R2

E4

C2
R3

E4

C3
R1

E2

C3
R3

E2

C4
R1

E3

C4
R3

E3

D
ef

ec
t d

et
ec

tio
n 

ra
te

 (%
)

Fabric class and defect type

Set 3—DTCWT
Set 3—UDWT

Set 4—DTCWT
Set 4—UDWT

Figure 8: Comparison of detection rate of DTCWT- and UDWT-
based features for different fabric categories and defect types.

reason, those features cannot be used, then the mean and
variance of magnitudes of the complex wavelet coefficients
would be used.

Figure 8 compares the fabric defect detection perfor-
mance of DTCWT- and UDWT-based features. The com-
parison is made for two different feature sets: Set 3 (mean
energy of wavelet coefficients) and Set 4 (mean and variance
ofmagnitudes of wavelet coefficients). To increase the validity
of the deduction from the comparison, samples from each
of the four fabric classes and the two representatives of
each fabric category were considered. Additionally, defective
samples were taken from different types of defects.

It can be seen clearly that for any fabric category and any
defect type, the DTCWT-based features outperformed the
UDWT-based features for each of the two considered feature
sets. The difference of fabric defect detection rate varies from
4.5% to 15.8%. One possible explanation of that difference of
performance is the analyticity of the complex wavelet imple-
mented by DTCWTwhich allows discriminating texture in 6
different directions. UDWT on the other hand implements a
real wavelet and thus can discriminate texture in only three
directions (horizontal, vertical, and diagonal). Furthermore,
for the diagonal orientation, UDWT cannot distinguish the
texture features oriented at +45∘ from those oriented at −45∘.

6. Conclusions

In this paper, the fabric defect detection performance of
features extracted using the dual-tree complex wavelet trans-
form (DTCWT) was investigated. One of the advantages
of that method is its approximate shift invariance, property
that is important in pattern recognition applications such as
fabric defect detection. It was shown that the mean energies
of real and imaginary parts of complex wavelet coefficients
taken separately are effective features for the purpose of fabric
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defect detection, outperforming the mean and variance of
magnitudes of the coefficients as well as the mean energies of
real parts alone or the mean total energies of the coefficients.
The undecimated discrete wavelet transform (UDWT) also
has the shift invariance property. However, it was shown
that the defect detection performance of features obtained by
DTCWT is much higher than that obtained using UDWT.
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