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The review presents developments concerning the modelling of vibration control systems with hysteresis. In particular, the review
focuses on applications of the Bouc-Wenmodel that describes accurate hysteretic behaviour in vibration control devices.The review
consists of theoretical aspects of the Bouc-Wen model, identification procedures, and applications in vibration control.

1. Introduction

Vibration control systems are adopted for the suppression
or, at least, the attenuation of undesirable vibrations that
can affect systems and structures, such as buildings, vehicles,
aircraft, and bridges. These systems often show nonlinear
behaviour due to variable material properties, changeable
geometry, and additional nonlinear devices, resulting in
hysteresis phenomena. To predict system responses, many
hysteretic models have been developed.

Hysteresis is a nonlinear behaviour encountered in a wide
variety of processes in which the relation between input
and output variables involves memory effects. The detailed
physical modelling of these systems is an arduous task, and
the models obtained are often too complex to be used in real-
world applications [1]. For this reason, alternative models of
systems with hysteresis have been proposed. These models
combine some physical understanding of the hysteretic sys-
tem with some black-box modelling, named “semiphysical”
models.

Over the years, various semiphysical models of hysteresis
have been proposed. One of the most widely adopted ones is
the Bouc-Wen hysteresis model [2, 3]. The best feature of this
model is its versatility; that is, through appropriate choices of
model parameters, it can represent a wide variety of softening
or hardening smoothly varying or nearly bilinear hysteretic
behaviours.

The Bouc-Wen model has been extensively used in the
current literature to mathematically describe components
and devices with hysteretic behaviours.Thus, the objective of
this literature review is to provide engineers and researchers
with an overview of the work that addresses the modelling
of vibration control systems by means of the Bouc-Wen
model.This review is divided into threemajor parts: Section 2
focuses on the mathematical and physical properties of the
Bouc-Wen model, whereas Section 3 focuses on identifica-
tion of the Bouc-Wen model parameters. Section 4 provides
results concerning several vibration control case studies in
which the effectiveness of the Bouc-Wen model, for the
accurate description of hysteresis, is verified.

2. Mathematical Properties of
the Bouc-Wen Model

In this section, a description of themathematical formulation
of the Bouc-Wen model is presented.

Consider, as an example, the equation of motion of a
single-degree-of-freedom (SDOF) mechanical system:

𝑚𝑢̈ (𝑡) + 𝑐𝑢̇ (𝑡) + 𝐹 (𝑡) = 𝑓 (𝑡) , (1)

where 𝑚 is the mass, 𝑢(𝑡) is the displacement, 𝑐 is the linear
viscous coefficient, 𝐹(𝑡) is the restoring force, and 𝑓(𝑡) is the
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Figure 1: Bouc-Wen model [4].

excitation force; the overdot indicates derivative with respect
to time.

The restoring force 𝐹(𝑡), based on the Bouc-Wen model,
is

𝐹 (𝑡) = 𝑎

𝐹𝑦

𝑢𝑦

𝑢 (𝑡) + (1 − 𝑎) 𝐹𝑦𝑧 (𝑡) , (2)

where 𝑎 := 𝑘𝑓/𝑘𝑖 is the ratio of postyield stiffness 𝑘𝑓

to preyield stiffness 𝑘𝑖 := 𝐹𝑦/𝑢𝑦, 𝐹𝑦 is the yield force,
𝑢𝑦 is the yield displacement, and 𝑧(𝑡) is a nonobservable
dimensionless hysteretic variable that obeys the following
nonlinear differential equation with zero initial condition
(𝑧(0) = 0):

𝑧̇ (𝑡) = 𝑢̇ (𝑡) {𝐴 − [𝛾 + 𝛽 sgn (𝑢̇ (𝑡) 𝑧 (𝑡))] |𝑧 (𝑡)|
𝑛
} . (3)

The coefficients 𝐴, 𝛽, 𝛾, and 𝑛 are dimensionless quantities
that control the behaviour of the model and sgn(⋅) is the
signum function. For small values of the positive exponential
parameter 𝑛 the transition from elastic to postelastic branch
is smooth, whereas for large values the transition becomes
abrupt, approaching that of a bilinear model. The parameters
𝛽 and 𝛾 control the size and shape of the hysteretic loop. The
notation varies from paper to paper and very often the places
of 𝛽 and 𝛾 are exchanged.

From (2) it follows that the restoring force 𝐹(𝑡) can be
divided into an elastic and a hysteretic part as follows:

𝐹
el
(𝑡) = 𝑎

𝐹𝑦

𝑢𝑦

𝑢 (𝑡) = 𝑎𝑘𝑖𝑢 (𝑡) = 𝑘𝑓𝑢 (𝑡) ,

𝐹
ℎ
(𝑡) = (1 − 𝑎) 𝑘𝑖𝑧 (𝑡) .

(4)

Thus, the model can be visualized as two springs connected
in parallel [4] (Figure 1).

The parameters of the Bouc-Wen model have the follow-
ing criteria:

𝑎 ∈ [0, 1] ,

𝑘𝑖 > 0,

𝑘𝑓 > 0,

𝑐 > 0,

𝐴 > 0,

𝑛 > 1,

𝛽 > 0,

𝛾 ∈ [−𝛽, 𝛽] .

(5)

In [23], it has been proved that the parameters of the Bouc-
Wen model are functionally redundant, and indeed multiple
parameter vectors can produce an identical response under
a given excitation. This redundancy can be then removed by
fixing parameter 𝐴 to unity [23].

Constantinou and Adnane [24] suggested the constraint
𝐴/(𝛽+𝛾) = 1 in order to reduce the total number of unknown
parameters to six: 𝛾, 𝑛, 𝑎, 𝐹𝑦, 𝑢𝑦, and 𝑐.

In [25], an asymmetrical Bouc-Wen model has been
obtained adjusting the velocity as

𝑢̇ (𝑡) ←󳨀 (𝑢̇ (𝑡) − sgn (𝑢 (𝑡))) , (6)

where 𝜇 is the scale factor for the adjustment.
Modification of the Bouc-Wen model presented in [26–

28] included strength, stiffness, and pinching degradation
effects, by means of suitable degradation functions:

𝑧̇ (𝑡) =

ℎ (𝑧 (𝑡))

𝜂 (𝜀)

𝑢̇ (𝑡) {𝐴 (𝜀)

− ] (𝜀) [𝛽 sgn (𝑢̇ (𝑡)) |𝑧 (𝑡)|
𝑛−1

𝑧 (𝑡) + 𝛾 |𝑧 (𝑡)|
𝑛
]} ,

(7)

where 𝜀 is the absorbed hysteretic energy and the functions
](𝜀), 𝜂(𝜀), and ℎ(𝑧) are associated with strength, stiffness, and
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pinching degradation effects, respectively. ](𝜀),𝐴(𝜀), and 𝜂(𝜀)

are linearly increasing functions defined as

] (𝜀) = ]0 + 𝛿]𝜀 (𝑡) ,

𝐴 (𝜀) = 𝐴0 − 𝛿𝐴𝜀 (𝑡) ,

𝜂 (𝜀) = 𝜂0 + 𝛿𝜂𝜀 (𝑡) .

(8)

The pinching function ℎ(𝑧) is

ℎ (𝑧) = 1 − 𝜍1 (𝜀) exp(−

(𝑧 (𝑡) sgn (𝑢̇) − 𝑞𝑧𝑢)
2

(𝜍2 (𝜀))
2

) , (9)

where

𝜍1 (𝜀) = (1 − exp (−𝑝𝜀 (𝑡))) 𝜍,

𝜍2 (𝜀) = (𝜓0 + 𝛿𝜓𝜀 (𝑡)) (𝜆 + 𝜍1 (𝜀)) ,

(10)

and 𝑧𝑢 is the ultimate value of 𝑧, given by

𝑧𝑢 =
𝑛

√

1

] (𝛽 + 𝛾)

. (11)

The additional model parameters are 𝛿] > 0, 𝛿𝐴 > 0, 𝛿𝜂 >

0, ]0, 𝐴0, 𝜂0, 𝜓0, 𝛿𝜓, 𝜆, 𝑝, and 𝜍. When 𝛿] = 0, 𝛿𝜂 =

0, or ℎ(𝑧) = 1, respectively, no strength degradation, stiffness
degradation, or pinching effect is considered in the model.

It is important to note that a Bouc-Wen model could
present a good match with the real data for a specific
input, while it could not necessarily keep significant physical
properties for different exciting inputs. On the basis of this
consideration, the physical and mathematical properties of
the Bouc-Wen model are comprehensively discussed in [1]
and it has been found that if the system parameters respect
the constraints

𝑛 ≥ 1,

𝑢𝑦 > 0,

𝐴 > 0,

𝛽 + 𝛾 > 0,

𝛽 − 𝛾 ≥ 0,

(12)

then the model is valid independently of the exciting input.
When (12) are satisfied, (3) can be expressed in a normalized
form.

Defining the parameters

𝜌 =

𝐴

𝑢𝑦𝑧0

> 0,

𝜎 =

𝛽

𝛽 + 𝛾

≥

1

2

,

𝑧0 =
𝑛

√

𝐴

𝛽 + 𝛾

,

(13)

it follows

𝑤̇ (𝑡)

= 𝜌𝑢̇ (𝑡) {1 + |𝑤 (𝑡)|
𝑛
𝜎 [1 − sgn (𝑢̇ (𝑡) 𝑤 (𝑡)) −

1

𝜎

]}

(14)

with

𝑤 (𝑡) =

𝑧 (𝑡)

𝑧0

. (15)

In [29], it is demonstrated that 𝑤(𝑡) is bounded in the range
[−1, 1].

Substituting (14) and (15) in (2), it follows

𝐹 (𝑡) = 𝑘𝑓𝑢 (𝑡) + 𝑘𝑤𝑤 (𝑡) , (16)

where

𝑘𝑤 = (1 − 𝑎) 𝐹𝑦𝑧0 > 0. (17)

Consequently, the unknown parameters of the normalized
form of the Bouc-Wen model are 𝜌, 𝜎, 𝑛, 𝑘𝑓, and 𝑘𝑤 with the
following constraints:

𝜌 > 0,

𝜎 ≥

1

2

,

𝑛 ≥ 1,

𝑘𝑓 > 0,

𝑘𝑤 > 0.

(18)

The model parameters can be determined by system identifi-
cation techniques, using experimental input and output data.

3. Bouc-Wen Model Parameter Identification

The identification of the Bouc-Wen model parameters is
performed by adopting an identification algorithm that
compares model output signals and those measured, for the
same input signals, in order to determine the unknownmodel
parameters. Nonlinearity of the Bouc-Wen model introduces
the complexity for parameter identification. Severalmethods,
based on different approaches, have been then proposed. In
this section, an overview of different identification algorithms
is presented.

An iterative least-squares procedure, based on amodified
Gauss-Newton approach, was presented in [5]. Identification
was carried out to estimate the parameters of an extended
Bouc-Wen model that accounts for strength and stiffness
degradation in accordance with [26]. The system identifica-
tion procedure is shown in Figure 2.

In [30], a vibration control system composed of a mag-
netorheological damper in series with a magnetorheolog-
ical elastomer was presented. The Bouc-Wen model was
adopted to reproduce the hysteresis of the magnetorheologi-
cal damper, and the parameters were identified using a least-
squares method.
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Figure 2: Flow diagram for complete identification process [5].

On-line parameter identification of the Bouc-Wen model
has also drawn a lot of attention to researchers. Studies in
[31, 32] presented an on-line identification method using a
least-squares adaptive law. Another study in [33] employed an
adaptive on-line identification methodology with a variable
trace method to adjust the adaptation gain matrix. In [34], a
linear parameterized estimatorwas established for the on-line
estimation of the hysteretic Bouc-Wen model with unknown
coefficients (including the parameter 𝑛). In [35], an adaptive
on-line identification algorithmwas proposed for parametric
and nonparametric identification of structural models and
was applied to a generalized Bouc-Wen model. The proposed
identification methodology was a recursive least-squares
algorithm that required only acceleration measurements.

In addition to the least-squares regression method, a
genetic based identification algorithm was proposed in [36].
The reproduction procedure adopts the roulette wheel selec-
tion and themethod of crossover and uniformmutation [37].

To account for asymmetric behaviour, a modified Bouc-
Wen model [6] was adopted for modelling a PZT actuator.
A modified particle swarm optimization algorithm [38]
was proposed in order to identify and optimize the model
parameters (see Figure 3). The fitness function in Figure 3 is
evaluated as the root-mean-square error between the actual
measured displacement and the model output.
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Figure 3: Flowchart of the identification hysteretic model parame-
ters [6].

The particle swarm optimization was also adopted in [39]
to identify the parameters of Bouc-Wen model. In this study,
the identified model was used to describe the dynamics of
a large-scale magnetorheological damper for seismic hazard
mitigation.

Gauss-Newton iterations were used as a method of
estimating the parameters of hysteretic system with slip on
the basis of input-output data [40]. Reference [41] proposed
a frequency domain parametric identification method of
nonlinear hysteretic isolators. In [42, 43], an identification
method for the normalized Bouc-Wen model was devel-
oped. Using the analytical description of the hysteresis loop
developed in [29], an algorithm was proposed along with
its analytical proof. It consisted in exciting the Bouc-Wen
model with two periodic signals with a loading-unloading
shape (wave periodic) which gives rise asymptotically to a
hysteretic periodic response. The obtained two limit cycles
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Figure 4: Flowchart of the parameter identification algorithm
presented in [7].

were then used as an input to exactly determine the unknown
parameters.

The limit cycle approach was also adopted in [10] to
identify the parameters of the Bouc-Wen model adopted to
reproduce the hysteresis of a wire-cable vibration isolator. In
[44], the limit cycle approach was adopted to identify the
parameters of a large-scale magnetorheological fluid damper
model.

Another optimization method based on artificial bee
colony algorithm [7, 45] was developed to determine the
optimum parameters of Bouc-Wen hysteretic systems. The
proposed flowchart is shown in Figure 4.

In [46, 47], a constrained nonlinear optimization was
exploited in parametric identification. In [48], the Bouc-
Wen nonlinear hysteresis term was approximated by a power
series expansion of suitable basis functions, and then the
coefficients of the functions were determined using the
standard least-squares method.

Bouc-Wen model parameters could be also identified
with procedures based on nonlinear filtering, using, for
example, the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF). Yang and Ma [49] proposed a con-
strained EKF with a global weighted iteration strategy, which
was effective in estimating all the parameters of the Bouc-
Wen model of hysteresis. Zhang et al. [50] also applied the
EKF for the identification of hysteretic systems that exhibit

degradation and pinching; all the parameters of the BW-
model were identified without problem.

In [51–53], the UKF was used for the identification of
nondegrading and degrading hysteretic systems. The iden-
tification results show that the UKF is well suited for the
identification of complicated nonlinear systems and that this
methodology can yield accurate estimates of the parameters
of the Bouc-Wen models. The results also show that the UKF
outperforms the EKF with regard to computational efficiency
and robustness to measurement noise levels.

4. Vibration Control System Modelling Using
the Bouc-Wen Model

The main scope of the vibration control is the suppression
or, at least, the attenuation of undesirable vibrations that
can affect systems and structures, such as buildings, vehicles,
aircraft, and bridges. Vibration control is typically realized
using passive, semiactive, or active [54–58] systems, and
considerable hysteretic behaviours can be found in each of
these.

Passive vibration control, such as the passive base isola-
tion, is one solution that has proven effective for enhancing
structural performance against seismic events. The main
concept behind passive base isolation is to increase the struc-
ture flexibility, thus avoiding potentially dangerous seismic
ground motions [59–62]. Base isolation bearings have been
installed in many buildings for seismic protection [63]; how-
ever, large base displacements resulting from the increased
flexibility of the passive isolation system can potentially
exceed the prescribed limit of structural designs under severe
seismic excitations [64–66].

Semiactive vibration control consists of a passive isolation
system combined with a controllable semiactive device [67–
71]. Semiactive vibration control is one control technique
that consumes less power to change the features of the
isolation system, but no mechanical energy is introduced
into the structural system. Differently from passive control
techniques, semiactive control systems have higher variability
due to the different capabilities of energy dissipation from the
control devices when the power levels are changed, such as
variable stiffness and/or damping values.

Active vibration control is another control technique
which uses the energy generated from the active control
devices, supplied by means of an external power source, to
improve the vibrational system performance. The mitigation
of the vibration phenomena is based on the employment
of suitable actuators that transmit mechanical energy to the
structure and, in recent years, a great number of studies
have been accomplished on active vibration control of flexible
structures using piezoelectric actuators. Among the several
kinds of actuation systems, piezoelectric ceramic materials
have received much diffusion in the active vibration control
because of their mechanical simplicity, small volume, light
weight, large useful bandwidth, efficient conversion between
electrical energy andmechanical energy, and easy integration
with various metallic and composite structures [72].
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Figure 5: Isolator prototype [8].

4.1. Passive Systems. The Bouc-Wen model has been widely
adopted for the numerical modelling of passive hysteretic
control devices. In this section, an overview of various
components for different applications is presented.

Passive seismic isolators aim to reduce the earthquake
input energy to the structure to keep linear structural vibra-
tion. Many devices are strongly nonlinear, showing different
hysteretic behaviours. In this context, the Bouc-Wen model
has been used extensively for its intrinsic ability in describing
the behaviour of a wide range of real-world passive seismic
isolators.

In [8], a prototype seismic isolator, composed of a wire
rope spring and a ball transfer unit, was proposed as shown in
Figure 5. The nonlinear behaviour of the restoring force was
represented by the Bouc-Wen model.

The Bouc-Wen model was used in [73] to model the
dissipated energy by the wire rope isolators for seismic
protection of equipment in buildings. In [9, 10], modified
Bouc-Wen models were adopted to numerically reproduce
hardening behaviours [9] (see Figure 6) or asymmetrical
hysteresis cycles [10] (see Figure 7) of wire rope isolators.

A combined energy dissipation system was presented in
[11]. As shown in Figure 8, a lead rubber damper (LRD)
and its parallel connection with an oil damper (OD) were
used in the braces of a structural frame. The restoring force
characteristic of the LRD was then simulated by the Bouc-
Wen hysteretic model.

In [12], the Bouc-Wen model was employed to mathe-
matically represent two different elastomeric seismic isola-
tors (see Figure 9), characterized by different characteristics
because of the elastomeric layers and reinforcements (in
the following indicated with “IUT a” and “IUT b,” resp.).
The experimental and simulated hysteresis cycles for IUT a
and IUT b were demonstrated in Figures 10(a) and 10(b),
respectively.

In [74], the Bouc-Wen model was utilized to mathemati-
cally model a frictional behaviour of Teflon sliding bearings
for a base isolation application. The study in [13] facilitated
the Bouc-Wen model to describe the behaviour of hysteretic
dampers that interconnect two adjacent structures subjected
to seismic excitation as shown in Figure 11.

Effectiveness of dissipative passive devices used as con-
nections between two structures was investigated [75]. An
analytical model for the response of a reinforced concrete
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panel with friction energy dampers was presented. The
modelling of the hysteretic device was developed using an
extended Bouc-Wenmodel. In [14], the study verified that the
Bouc-Wen model well predicted the responses of suspension
seats of the off-road machines to transient inputs as shown
in Figure 12. The Bouc-Wen model used in [14] is shown
schematically in Figure 13. The Bouc-Wen coefficients were
obtained by minimizing the difference between the predicted
andmeasured acceleration of a load supported in the seat.The
measured hysteresis force-deflection cycles for the bottom
buffers are shown in Figure 14. The study in [14] concluded
that the Bouc-Wen model can provide a useful simulation of
an existing seat.

4.2. Semiactive Systems. Themagnetorheological (MR) fluids
consist of suspensions of micron-sized ferrous particles
immersed in a carrier fluid; their rheological behaviour
can be changed by means of an applied magnetic field.

Top end-stop buffer

Suspension spring

Suspension damper

Cushion

Bottom end-stop buffer

Seat base

Figure 12: Schematic of the industrial truck seat [14].

Researchers have used the controllable variation in yield
stress to develop various smart devices [76–79]. In recent
years, magnetorheological dampers have been widely studied
as a controllable engineering component because of their
continuously controllable mechanical properties and rapid
response [80]. As shown in Figure 15, MR dampers can
operate under three different fluid working modes [15]: shear
[81, 82], flow [83–85], and squeeze [86–89]. The shear mode
occurs when one wall of a gap translates or rotates relative to
the other wall. In the shear mode, the fluid is sheared parallel
to thewalls.The flowmode occurswhen twowalls of a gap are
fixed, as in a valve system, and the fluid flows through the gap
and along the longitudinal axis of thewalls.The squeezemode
occurs when the walls move toward each other, squeezing out
the fluid.The fluid in the squeeze mode flows orthogonally to
the direction of wall motion. According to the motion of the
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constitutive elements, MR dampers can be categorized as lin-
earMR dampers [16] (see Figure 16) and rotaryMR dampers.

The modelling of MR dampers represents an important
role to accurately describe their behaviours. A validated
dynamic model allows executing several fundamental steps
such as performance prediction, design, numerical simula-
tions, and control synthesis. To this end, it is important to
highlight the hysteretic phenomenon that occurs in these
devices. Indeed, as it can be observed from experimental data
in Figure 17, a hysteretic loop appears in the force-velocity
diagram.

Several approaches have been established to model the
MR dampers, and among these, the parametric approach
drew considerable attention to researchers. The parametric
models were developed using the schematization of the
device as a combination of different physical elements, and

a typical example was constituted by the Bouc-Wen hysteresis
operator-based dynamic model [20, 90–93].

The Bouc-Wen model has been extensively applied
to simulate the hysteresis loops since it possesses the
force-displacement and force-velocity behaviour of the
MR dampers. In the following, the most widely adopted
approaches will be presented. Spencer Jr. et al. [15, 17]
employed the Bouc-Wen hysteretic operator to represent the
hysteretic behaviour ofMRdampers, and the schematic of the
proposed simple Bouc-Wenmodel for MR dampers is shown
in Figure 18 [15, 17].The damping force in this system is given
by

𝐹 = 𝑐0𝑥̇ + 𝑘0 (𝑥 − 𝑥0) + 𝛼𝑧, (19)

where 𝑐0 and 𝑘0 are the viscous damping and stiffness,
respectively; 𝑥0 represents an initial displacement due to the
presence of an accumulator; 𝑧 is the evolutionary variable
governed by (3). By adjusting the parameter values 𝛼, 𝛽, 𝛾,
and 𝑛, the force-velocity relationship is characterized.

Later, Spencer Jr. et al. [15, 17] proposed a modified Bouc-
Wen model to predict the behaviour of MR dampers over a
wide range of inputs as shown in Figure 19.Themodel is given
by the following equations:

𝐹 = 𝑐1𝑦̇ + 𝑘1 (𝑥 − 𝑥0) , (20)

where

𝑦̇ =

1

𝑐0 + 𝑐1

[𝛼𝑧 + 𝑐0𝑥̇ + 𝑘0 (𝑥 − 𝑦)] ,

𝑧̇ = −𝛾
󵄨
󵄨
󵄨
󵄨
𝑥̇ − 𝑦̇

󵄨
󵄨
󵄨
󵄨
|𝑧|
𝑛−1

𝑧 − 𝛽 (𝑥̇ − 𝑦̇) |𝑧|
𝑛
+ 𝐴 (𝑥̇ − 𝑦̇) ,

(21)

and 𝑘1 is the accumulator stiffness; 𝑐0 and 𝑐1 are the viscous
damping observed at large and low velocities, respectively; 𝑘0
is the stiffness at large velocities; 𝑥0 is the term that accounts
for the presence of an accumulator.The scale and shape of the
hysteresis loop can be adjusted by 𝛾, 𝛽, 𝐴, and 𝑛.

To model the behaviour of the shear mode MR damper
(see Figure 20(a)), a Bouc-Wen hysteresis operator-based
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Figure 16: Typical scheme of a linear MR damper [16].

dynamic model, as shown in Figure 20(b), was proposed
[18, 19]. The equation governing the damping force is given
by

𝐹 = 𝑐0𝑥̇ + 𝛼𝑧, (22)
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Figure 17: The damping force versus velocity [16].

where 𝑧 is the evolutionary variable given by (3). The Bouc-
Wen model in Figure 21 was developed for large-scale MR
dampers [20], and the damper force is given by

𝐹 = 𝑚𝑥̈ + 𝑐0 (𝑥̇) 𝑥̇ + 𝑘0𝑥 + 𝛼𝑧 + 𝑓0. (23)

In (23), 𝑚 is the equivalent mass; 𝑘0 is the accumulator
stiffness; 𝑓0 is the damper friction force; 𝑧 is the evolutionary
variable governed by (3). 𝑐0(𝑥̇) is given by

𝑐0 (𝑥̇) = 𝑎1𝑒
−(𝑎
2
|𝑥̇|)
𝑝

, (24)

where 𝑎1, 𝑎2, and 𝑝 are positive constants.
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4.3. Active Systems. Piezoelectric actuators (PEAs) represent
a functional tool in the field of the active vibration control
and, in the recent years, extensive researches have been
conducted for modelling and control. PEAs utilize the con-
verse piezoelectric effect of piezoelectricmaterials to generate
displacement and force. Indeed, a piece of piezoelectric
material will be mechanically strained if subject to an electric
field (by placing it into the electric field or applying voltages
to its surfaces).

The hysteresis nonlinearity constitutes one of the princi-
pal key issues to be solved in PEAs and its modelling is of
fundamental importance for their control. In PEAs, hysteresis
exists in both the electric field- (voltage-) polarization rela-
tionship and the electric field- (voltage-) strain (deformation
or displacement) relationship (Figure 22), with the latter
being mostly of concern in micro- and nanopositioning
systems, and it is caused by the nonlinearities in the converse
piezoelectric effect of the unit cells and the switching and
movement of domain walls [21, 94].

The hysteresis trajectory of a PEA can be treated as
being composed of three types of components: (1) the major
loop which is the hysteresis loop that spans the whole input
(voltage) range, (2) the minor loops which are the hysteresis

loops that only span portions of the input range, and (3) the
initial ascending curve.As hysteresis is themajor nonlinearity
of PEAs and possesses detrimental effects on the positioning
accuracy and stability margins of feedback control systems
[95], compensation of hysteresis has always been a major
concern in modelling and control of PEAs.

In [96], a PEA was modelled by means of the Bouc-
Wen model and a PID control was applied. The dynamic
relationship governing the actuator is given by

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑎𝑥 = 𝑘𝑏𝑘𝑥𝑢 + 𝑘𝑏𝑘𝑤𝑤, (25)

where 𝑤 is the evolutionary variable governed by (14); 𝑚 is
the equivalent mass; 𝑐 is the damping coefficient; 𝑘𝑎 and 𝑘𝑏

are elastic constants; 𝑥 is the actuator displacement; 𝑘𝑥 and
𝑘𝑤 are constant gains; 𝑛, 𝜌, and 𝜎 are the Bouc-Wen model
parameters.

A Bouc-Wen based approach was introduced in [22]
to compensate the hysteresis of piezoelectric actuators (see
Figure 23) via a feedforward control. Indeed, feedback con-
trollers for small systems, such as micro/nanoactuators, are
strongly limited by the difficulty integrating the sensor.
According to the multiplicative-inverse structure, the pro-
posed compensator scheme was adapted to hysteresis with
an advantage that no more computation was required for the
compensator.

The hysteresis compensation is established using the
following relationship:

𝑈 =

1

𝑑𝑝

(𝑦𝑟 + 𝐻 (𝑈)) (26)

𝑈 being the applied electrical voltage; 𝑑𝑝 the piezoelectric
coefficient; 𝑦𝑟 the target displacement of the actuator; 𝐻(𝑈)

a nonlinear operator due to the Bouc-Wen model. Equation
(26) is used as a compensator that employs 𝑦𝑟 as an input and
𝑈 as an output with respect to the scheme in Figure 24.

To linearize the hysteresis behaviour of stack piezoelectric
ceramic actuators, the feedforward linearization method,
based on the Bouc-Wen model, and the hybrid linearization
method, combining the feedforwardmethod and PI feedback
loop, were proposed and explored in [97]. The rapid control
prototypes of the linearization controllers were established
and tested, and the results showed that both the feedforward
and hybrid linearization methods can linearize the hysteresis
behaviour. Meanwhile, PEAs can exhibit an asymmetric
hysteretic behaviour so that a modified Bouc-Wen model
was proposed in [6] by introducing an input bias and an
asymmetric factor into the standard Bouc-Wen hysteresis
model.

5. Conclusion

This review reported the literature related to the utilization of
the Bouc-Wen model for modelling hysterical behaviours of
several vibration control systems. The review was organized
into three sections that address specific issues: mathematical
property of the Bouc-Wen model, identification of the model
parameters, and applications of the Bouc-Wen model for
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the dynamical description of different types of vibration
control systems. Section 2 described the theoretical basis of
the Bouc-Wen model, its first formulation, and its successive

Displacement sensor Cantilevered piezoelectric
actuator

Figure 23: Photography of the piezoelectric actuator [22].

modifications. Section 3 presented different approaches used
for the identification of the Bouc-Wen model parameters.
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Figure 24: Bouc-Wen based compensator [22].

Section 4 provided several applications of the Bouc-Wen
model for the modelling of devices extensively used in
vibration control. Each section has presented what, from the
authors’ point of view, are the main contributions for the
specific issue.
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