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Abstract

For the last decade it has become commonplace to evaluate machine learning techniques for network based
intrusion detection on the KDD Cup ’99 data set. This data set has served well to demonstrate that machine
learning can be useful in intrusion detection. However, it has undergone some criticism in the literature,
and it is out of date. Therefore, some researchers question the validity of the findings reported based on
this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in
the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current
body of research to determine the value in the findings.

This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies.
Several methodological factors, such as choice of data subset, validation method and data preprocessing,
are identified and are found to affect the results significantly. These findings have also enabled a better
interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and
future use of the data set is discussed, which is important since researchers continue to use it due to a lack
of better publicly available alternatives.

Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes
in the KDD Cup ’99 data set, which poses a significant challenge to machine learning. In other domains,
researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs)
and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this
has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical
investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes
of intrusion reported in the literature.

An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to
evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing
evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding
a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained
whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from
imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN
is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by
ANNs.

One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This
is identified as a general issue with current approaches to creating classifiers. Striving to create a single
best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is
demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective
GA (MOGA), which treats the classification rate on each class as a separate objective. This approach
produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from
which the user can select one with the desired properties.

The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved
Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated,
demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why
some classifier combinations fail to give fruitful solutions.
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CHAPTER 1

Introduction

This thesis considers the application of machine learning to network based intrusion detection. Section 1.1
outlines the background and motivation for the work presented in this thesis. The research questions are
discussed in Section 1.2. The contributions and novelty of the work are discussed in Section 1.3, followed
by an outline of the structure of the remainder of the thesis in Section 1.4.

1.1 Background and motivation

Computer security is important in our society, which has an ever growing use of computer technology, both
for work and personal use. As of 2008, 65% of all households in the U.K. were connected to the Internet,
which is approximately 16 million households (National Statistics 2008). Furthermore, the amount of
computer malware1 has increased rapidly in recent years; “from about 333,000 in 2005 to 972,000 in 2006,

and 5,490,000 in 2007” (Marx 2008).

Anybody using a computer is at some risk of intrusion, even if the computer is not connected to the
Internet or any other network (i.e. through physical access). If the computer is left unattended, any person
can attempt to access and misuse the system. The problem is, however, far greater if the computer is
connected to a network, particularly the Internet. Any user from around the world can reach the computer
remotely (to some capacity) and may attempt to access private/confidential information or to launch some
form of attack to bring the system to a halt or cease to function effectively.

An intrusion to a computer system does not need to be executed manually by a person. It may be ex-
ecuted automatically with engineered software. A well known example of this is the Slammer worm (also
known as Sapphire), which performed a global Denial of Service (DoS) attack in 2003. The worm ex-
ploited a vulnerability in Microsoft’s SQL Server, which allowed it to disable database servers and overload
networks (Moore et al. 2003). Moore et al. refer to Slammer as “the fastest computer worm in history”,
which infected approximately 75,000 computer systems around the world within 10 minutes. Not only
did the Slammer worm restrict the the general Internet traffic, it “caused network outages and unforeseen

consequences such as canceled airline flights, interference with elections, and ATM failures” (Moore et al.

2003).
1Malware is a term for malicious software; i.e., software that is intentionally harmful to a computer or computer system.
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A private person may not have much at stake if s/he is targeted by a ‘cyber attack’, but it is a serious
threat to professional companies and government organisations. A survey by the Web Application Security
Consortium (2008) revealed that 67% of attacks in 2007 were profit motivated. There are many examples in
recent news of cyber attacks. For example, early in 2009, it was revealed that the US power grid had been
infiltrated by an intruder, leaving malware that was capable of shutting down the entire grid (BBC 2009c).
Later that year, a major spy network (GhostNet) was discovered (BBC 2009b). GhostNet was said to be
mainly located in China, which is claimed to have infiltrated more than 1000 computers around the world,
with victims such as foreign ministers and embassies. Another government related incident was reported in
2008, when the Russian military was accused of launching DoS attacks against Georgia during the war over
South Ossetia (CNet news 2008). From these examples, it is clear that cyber attacks can threaten national
security, prompting President Barack Obama to initiate a national cyber security body in the USA in May
2009 (BBC 2009d), followed shortly by the UK (BBC 2009a).

There are several mechanisms that can be adopted to increase the security in computer systems. Kruegel
et al. (2004, pp. 11–17) consider three levels protection:

Attack prevention: Firewalls, user names and passwords, and user rights.

Attack avoidance: Encryption.

Attack detection: Intrusion detection systems.

Despite adopting mechanisms such as cryptography and protocols to control the communication between
computers (and users), it is impossible to prevent all intrusions (Gollmann 2006, pp. 251–252). Firewalls
serve to block and filter certain types of data or services from users on a host computer or a network of
computers, aiming to stop some potential misuse by enforcing restrictions. However, firewalls are unable to
handle any form of misuse occurring within the network or on a host computer. Furthermore, intrusions can
occur in traffic that appears normal (Kruegel et al. 2004, Gollmann 2006, pp. 251–252). Intrusion Detection
Systems (IDSs) do not replace the other security mechanisms, but compliment them by attempting to detect
when malicious behaviour occurs.

The purpose of an Intrusion Detection Systems (IDS), in general terms, is to detect when the behaviour
of a user conflicts with the intended use of the computer, or computer network, e.g., committing fraud,
hacking into the system to steal information, conducting an attack to prevent the system from functioning
properly or even break down. Before the 1990s, the intrusion detection was performed by system adminis-
trators, manually analysing logs of user behaviour and system messages, with poor chances of being able to
detect intrusions in progress (Kemmerer and Vigna 2002). This has gradually changed, with early works of
Anderson (1980) and Denning (1987), by developing software to automatically analyse the data for the sys-
tem administrators. The first IDS to achieve this in real-time was developed in the early 1990s (Kemmerer
and Vigna 2002). However, due to the increased used of computers, the magnitude of data in contemporary
computer networks still renders this a significant challenge.

A wide range of Artificial Intelligence (AI) techniques have been adopted in IDSs, as reviewed in
Chapter 3. Initially, Rule Based Systems (RBSs) were the first to be employed successfully, and are still
at the core of many IDSs. This allows for IDSs that automatically filter network traffic and/or analyse user
data to identify patterns of known intrusions. Suspected intrusions can be reported to an administrator in a
detailed, informative way, explaining the rules that lead to the intrusion alert. A general drawback of RBSs
is that they are inflexible (due to the rigid rules), and, thus, cannot detect new intrusions, or variations of
known intrusions (Lewis 1993, Owens and Levary 2006).

Another area of AI, machine learning / data mining, with techniques such as artificial neural networks
and clustering, offers some desired flexibility, which has been of focus of much research in the past decade.
These techniques are often employed as classifiers that learn to perform intrusion detection automatically
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from a training set with examples of user behaviour or network traffic. Hence, there is no need to extract
knowledge from a human expert and formulate this knowledge into a rules that can represent attacks. A ben-
efit of machine learning is that the techniques are capable of generalising from known attacks to variations
thereof, or even detecting entirely new types of intrusion.

The type of intrusion detection referred to thus far is misuse detection, in which the IDS scans for known
(or learned) attacks. Alternatively, machine learning allows for another method of detection, anomaly de-

tection. The machine learning techniques can learn what constitutes normal behaviour, from which all
unknown behaviour is considered a potential intrusion. Hence, such systems are capable of detecting en-
tirely new types of attack. The trade-off, however, is an increased number of false alerts (false positives)
(Dokas et al. 2002, Kruegel et al. 2004), as discussed further in Section 2.3.

Recent research focuses more on the hybridisation of techniques to improve the detection rates of ma-
chine learning classifiers. For example, Sabhnani and Serpen (2003) examine the performance of 9 machine
learning algorithms on a commonly used data set, the KDD Cup ’99 data set (The UCI KDD Archive 1999).
First, they found that different techniques performed better on different classes of intrusion. Second, they
found that combining the best techniques for each class improved the overall performance of the detector.
However, there are discrepancies in the findings reported in the literature as to how well different techniques
perform on the different classes of intrusion.

The KDD Cup ’99 data set has been widely used to evaluate intrusion detection prototypes in the last
decade. Although many researchers apply the same machine learning techniques to the data set, contra-
dictory findings have been reported in the literature. Furthermore, some researchers have published criti-
cisms of the data set2, questioning the validity of the results obtained with this data (Bouzida and Cuppens
2006a;b, Brugger 2007a, Mahoney and Chan 2003, McHugh 2000, Sabhnani and Serpen 2004). Despite the
criticisms, researchers continue to use the data due to a lack of better publicly available alternatives. Hence,
it is important to identify the value of the data set and the findings from the extensive body of research
based on it, which has largely been ignored by the existing critiques. This is the focus of the first part of
this thesis, along with determining the underlying causes of the discrepancies, considered in Chapter 4.

Although there are discrepancies in the findings in the literature, all studies indicate that there is a
significant problem in detecting two particular classes of intrusion: User to Root (U2R) and Remote to

Local (R2L)3. There are methodological factors that affect these findings, which are uncovered in the first
part of this thesis. However, the attacks remain challenging to detect, which is investigated further in the
second part of this thesis. It is hypothesised that the class imbalance in the data set causes poor detection
of these minor classes, which is a challenge to machine learning that has not been considered for intrusion
detection previously.

Class imbalance is a problem in many real life applications, and has been considered in, for example,
medical diagnosis (Cohen et al. 2006, Mazurowski et al. 2008, Mena and Gonzalez 2006), credit scoring
(Huang et al. 2006), customer churn (Burez and van den Poel 2009, Xie et al. 2009), natural language
processing (Kobyliński and Przepiórkowski 2008), lexical acquisition (Kermanidis et al. 2004) and text
recognition (Stamatatos 2008). The general problem that has been observed in the cited literature, is that
the minor class(es) are not classified well when there is a significant imbalance among the classes. Artificial
Neural Networks (ANNs) and Decision Trees (DTs) have been popularly applied to intrusion detection, but
both have been shown to be biased towards the major class(es) (Chawla 2003, Jo and Japkowicz 2004),
which, in some cases, can lead to the minor class(es) even being ‘ignored’. This corresponds with the ob-
servations in the literature on intrusion detection, in which ANNs have been reported to be unable to detect
the minor class U2R (Bouzida and Cuppens 2006a;b). To verify this observation, an empirical investiga-

2The criticisms are mainly of the DARPA data (Lippmann et al. 2000a;b) from which the KDD Cup ’99 data has been derived.
These criticisms are discussed further in Section 4.2 on page 57.

3A description of these attacks is given in Section 2.2 on page 8.
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tion has been conducted for the second part of this thesis. Furthermore, an alternative approach to training
ANNs is proposed to better learn from imbalanced data.

It is hypothesised here that ANNs are capable of learning from imbalanced data, given more appropriate
training. This thesis focuses specifically on Multi Layer Perceptrons, which are commonly trained by the
backpropagation algorithm. This training algorithm aims to minimise the error of the classifier. Conse-
quently, the algorithm can achieve a very low error by only correctly classifying the major class(es), which
is why the minor class(es) can simply be ignored. The approach proposed in the second part of this thesis
trains MLPs by evolving their weights with a Genetic Algorithm (GA), referred to as an Evolutionary Neu-
ral Network (ENN). Several fitness functions are examined, some of which are employed to demonstrate the
issues related to learning by minimising the classification errors, which is essentially what the commonly
used backpropagation algorithm does, and others that avoid this bias towards the major class.

The ENN successfully learns from imbalanced data, which demonstrates that MLPs are capable of
detecting the minor classes with more appropriate training. A third part of this thesis extends the work in
part two, proposing a new approach that has two pragmatic aims: (1) to improve on the performance of
the ENN, and (2) to offer the user a range of solutions with different classification trade-offs. The latter
is desirable since the ENN only offers one solution that may have an inadequate trade-off in performance,
e.g., too many false positives, although a high true positive rate is achieved. This is identified as a general
problem with existing machine learning algorithms that only produce a single solution. Different solutions
may be obtained by changing the training data or configuration parameters, or assigning weights to the
classes a priori. However, this is generally an ad hoc process, which, unless optimal weights are known, is
not likely to offer the user the ideal trade-off. The approach taken here is to train the MLPs with a Multi-
Objective Genetic Algorithm (MOGA), treating the classification rates of each class as a separate objective.
The MOGA is capable of evolving a set of MLPs that exhibit different classification trade-offs, offering the
user several solutions that are non-inferior with respect to each other.

Extending the ENN to perform multi-objective optimisation does not necessarily improve the perfor-
mance of the MLPs. However, since we obtain a population of MLPs with different classification trade-offs,
this can be exploited to perform classifier combination. The rationale for a combination is that the aggre-
gated knowledge in the pool of base classifiers is important, which can lead to better results compared to the
single best classifier (Kuncheva 2004, Quinlan 1996, Yao and Liu 1996). Contrary to current methods of
creating classifier ensembles, which generate only a single ensemble, the approach taken here evolves a set
of ensembles with different classification trade-offs. A single ensemble may improve on the performance
of a small set of base classifiers, but is likely to be inferior to a large number of other base classifiers that
exhibit a better classification trade-off for a given application. A MOGA is employed in this phase, which
optimises the selection of base classifiers to form ensembles. This gives a new set of solutions (classifier
ensembles), which improve on the performance of the base classifiers. Furthermore, the approach taken
here gives a novel perspective on the analysis of the selection process for classifier ensembles.

1.2 Research questions and constraints

As the research presented in this thesis developed, it naturally formed three main parts: analysis of the
KDD cup ’99 data set, ENNs for improved performance on imbalanced data, and multi-objective evolution
of ANN classifiers and classifier combinations. Specific aims and objectives related to each of these parts
of the thesis are presents in their respective chapters, whilst general research questions are presented here
at a high level.

• What has caused the contradictory findings with the KDD Cup ’99 data set reported in the literature?
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• In light of criticisms of the KDD Cup ’99 data set in the literature, can it be used in the future to give
valuable contributions to the intrusion detection and machine learning domains?

• Is the poor detection of some classes of intrusion due to issues with learning from imbalanced data?

• How can one utilise machine learning to better learn from imbalanced data?

• Can classifier combination be adopted to better learn from imbalanced data?

• How does the selection of base classifiers affect the performance of the resultant ensemble?

The scope of this thesis has been determined by a number of pragmatic constraints, which have been applied
to ensure a focused investigation without compromising the ability to answer the research questions. This is
necessary since the thesis considers several large research domains. The majority of the constraints apply to
intrusion detection. First, the empirical work in this thesis only considers network based misuse detection.
However, the review of the domain considers all the main methods of intrusion detection. Although some
challenges and concepts apply to fraud detection and fault localisation, these applications are excluded.
Furthermore, since the focus of this investigation is on machine learning, other, conventional, techniques
applied to intrusion detection are not considered. However, the review does consider a broad range of other
AI techniques applied to intrusion detection.

There are several aspects of intrusion detection that are not considered here, although they would require
attention when developing an IDS to be deployed in real life, such as:

Architecture: the focus here is on what could be referred to as a detection module that would exist in
a larger IDS framework. Especially in wireless and mobile ad hoc networks, the architecture is
very important. This includes determining where to deploy the IDS, which is considered a general
challenge (Kruegel et al. 2004, p. 27).

Data collection: since the KDD Cup ’99 data set is adopted in this work, data collection is not required. It
would, however, be necessary to collect data from the environment in which an IDS is to be employed.
This also includes a process of labeling data for supervised learning.

Data preprocessing: some data preprocessing is necessary in this work, mainly for the MLPs that are
adopted, enumerating and scaling feature values. However, the KDD Cup ’99 data set has already
undergone an initial preprocessing task by transforming the raw tcpdump from the DARPA data into a
feature set suitable for machine learning. Although the availability of this data set is very convenient
for researchers, criticism in the literature indicates that the transformation was not ideal (Bouzida and
Cuppens 2006a, Bouzida 2006).

Performance: there are several mechanisms that can be adopted to help achieve a better performing IDS, in
terms of detection rates, speed and memory usage, e.g., feature selection and data sampling. Related
to the data transformation discussed above, different transformations and feature sets may facilitate
improved intrusion detection. There are also different ways of preprocessing the data for the MLPs
adopted in this study, which may be considered better and could yield improved performance. How-
ever, the focus of this thesis is on the issues and challenges posed by the research questions, not to
develop an optimal IDS prototype.

Other pragmatic considerations: detecting new intrusions will always be a challenge; there will always
be new software, which inevitably have vulnerabilities that can be exploited. Therefore, re-training
is necessary once new data is available. When and how this is done is not considered here. Neither is
online training or unsupervised learning.
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1.3 Contribution and novelty

As introduced above, there are three empirical parts to this thesis. These parts have made contributions
to both the intrusion detection and machine learning domains. Although the focus of this thesis is on the
application of machine learning to intrusion detection, several contributions have been made to the general
machine learning domain.

The first part of the thesis makes the greatest contribution to the intrusion detection domain. First, iden-
tifying discrepancies in the findings reported in the literature. This has led to an empirical investigation of
the KDD Cup ’99 data set, which has uncovered several underlying causes of the discrepancies. Further-
more, an important contribution of this part of the thesis is a discussion of, and recommendations for, future
research using this data set.

Learning from imbalanced data has been identified as one of the reasons for poor detection of certain
classes of intrusion. This has not been considered an issue in this domain previously, and the empirical
research conducted in the second part of the thesis demonstrates how commonly adopted techniques such
as ANNs and DTs perform poorly for this reason. An alternative approach to training ANNs has been
proposed, which demonstrates that the issues with learning from imbalanced data are due to using accu-
racy or a general measure of error as a performance metric in the training process. Offering a different
approach to training, this research demonstrates that ANNs are capable of learning from imbalanced data,
and, therefore, detecting more intrusions.

The proposed method of training ANNs is useful in any domain for which there is a class imbalance.
However, a limitation to the approach has been identified. Although the approach is unbiased to the class
balance, there is no control of the classification trade-off the resultant ANN obtains. This trade-off problem
has not been considered previously in the literature in the current classifier and classifier combination ap-
proaches. Addressing this is, therefore, an important contribution to classification research. Furthermore,
a novel approach to evolving ANNs and classifier ensembles has been proposed, which successfully learns
from imbalanced data and offers the user a wide range of solutions that exhibit different classification trade-
offs. From this, the user can select the solution that gives the best trade-off for the particular application.

1.4 Structure

The remainder of this thesis is organised as follows. Chapter 2 provides an introduction to the domain
of intrusion detection, which is followed by a review of applications of artificial intelligence to intrusion
detection systems in Chapter 3. This review uncovered discrepancies in the findings reported in the liter-
ature, which forms the focus of Chapter 4. Among the causes of the discrepancies, class imbalance was
found to be an issue not previously considered in this domain, which forms the focus of the two consecutive
investigations reported in this thesis. First, Chapter 5 seeks to demonstrate empirically that imbalance is a
reason for poor detection of some intrusions, and proposes a novel approach to learning from imbalanced
data. Thereafter, Chapter 6 improves upon this approach, considering some pragmatic limitations of the
single-objective approach proposed in Chapter 5. Chapter 6 also considers classifier combination, which
is widely employed in recent literature to improve upon the performance of single classifiers. Chapter 7
concludes and offers suggestions for further work.
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CHAPTER 2

Intrusion detection

This chapter provides an introduction to intrusion detection. Related terminology and definitions that are
used in this thesis are presented in Section 2.1. Section 2.2 presents an overview of potential intrusions
to computers and computer networks. A taxonomy of intrusion detection systems is provided in Section
2.3, which includes a discussion of the main approaches to detecting intrusions. As an emerging area of
research, intrusion detection in wireless and ad hoc mobile and sensor networks is discussed in Section 2.4.
The main areas of research in intrusion detection are discussed in Section 2.5.

2.1 Definitions and terminology

Intrusion detection is the process of monitoring and analysing events that occur in a computer or networked
computer system to detect behaviour of users that conflict with the intended use of the system. An Intru-
sion Detection System (IDS) employs techniques for modelling and recognising intrusive behaviour in a
computer system. The term ‘intrusive behaviour’ is discussed further in Section 2.2.

When referring to the performance of IDSs, the following terms are often used when discussing their
capabilities:

True positive (TP): classifying an intrusion as an intrusion. The true positive rate is synonymous with
detection rate, sensitivity and recall, which are other terms often used in the literature.

False positive (FP): incorrectly classifying normal data as an intrusion. Also known as a false alarm.

True negative (TN): correctly classifying normal data as normal. The true negative rate is also referred to
as specificity.

False negative (FN): incorrectly classifying an intrusion as normal.

The performance metrics calculated from these are:

True positiverate(T PR) =
T P

T P+FN
=

#correct intrusions
#intrusions

(2.1)

False positiverate(FPR) =
FP

T N +FP
=

#normal as intrusions
#normal

(2.2)
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Truenegativerate(T NR) =
T N

T N +FP
=

#correct normal
#normal

(2.3)

Falsenegativerate(FNR) =
FN

T P+FN
=

#intrusionsasnormal
#intrusions

(2.4)

Two additional performance metrics are also commonly used, referred to as accuracy and precision:

Accuracy =
T P+T N

T P+FP+T N +FN
=

#correct classi f ications
#all instances

(2.5)

Precision =
T P

T P+FP
=

#correct intrusions
#instancesclassi f ied as intrusion

(2.6)

Accuracy is also referred to as an overall classification rate, and according to Wu and Yen (2009),
precision is also referred to as recall. Due to the direct nature of many intrusions, the terms ‘intrusion’ and
‘attack’ are used interchangeably.

2.2 Intrusions

In general terms, intrusive behaviour can be considered as any behaviour that deviates from normal, ex-
pected, use of the system. Intrusion detection shares many of the challenges of fraud detection and fault
management/localisation. Although, these are not considered here, there is a natural overlap between these
domains, especially for event correlation (Section 2.3.3.1 on page 12).

There are many types of intrusion, which makes it difficult to give a single definition of the term. Asaka
et al. (1999) and Kruegel et al. (2004, p. 4) offer the following breakdown of a successful intrusion:

Surveillance/probing stage: The intruder attempts to gather information about potential target computers
by scanning for vulnerabilities in software and configurations that can be exploited. This includes
password cracking.

Activity (exploitation) stage: Once weaknesses have been identified in the previous stage, they can be
exploited to obtain administrator rights to the selected host(s). This will give the intruder free access
to violate the system. This stage may also include Denial of Service (DoS) attacks, as detailed further
below.

Mark stage: After the exploitation stage, the attacker may be free to steal information from the system,
destroy data (including logs that may reveal that the attack took place), plant a virus or spyware
software, or use the host as a medium for conducting further attacks. After which, this marks the
stage where the attacker has achieved his or her goal(s) of the attack (Asaka et al. 1999).

Masquerading stage: In this final stage, the intruder will attempt to remove traces of the attack by, for
example, deleting log entries that reveal the intrusion.

The two first stages are further refined into an attack taxonomy that is widely adopted in the literature to
classify attacks when evaluating IDSs, which considers four categories of intrusion (Kendall 1999, Lipp-
mann et al. 2000a):

Probing (surveillance): Same as the first stage above.

Denial of Service (DoS): The general purpose of DoS attacks is to interrupt some service on a host to
prevent it from dealing with certain requests. This may be a step in a multi-stage attack, such as
the Mitnick attack which is described below, or to be destructive to ‘crash’ a host or prevent it from
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functioning properly, which is the purpose of the Slammer worm previously discussed in Section 1.1.
Kendall (1999) describes three types of DoS attacks, those that (1) “abuse legitimate features”, (2)
“create malformed packets that confuse the TCP/IP stack of the machine that is trying to reconstruct

the packet”, or (3) “take advantage of bugs in a particular network daemon”.

User to Root (U2R): These attacks exploit vulnerabilities in operating systems and software to obtain root
(administrator) access to the system. For example, Kendall (1999) describes the buffer overflow
attack: “Buffer overflows occur when a program copies too much data into a static buffer without

checking to make sure that the data will fit. For example, if a program expects the user to input

the user’s first name, the programmer must decide how many characters that first name buffer will

require. Assume the program allocates 20 characters for the first name buffer. Now, suppose the

user’s first name has 35 characters. The last 15 characters will overflow the name buffer. When this

overflow occurs, the last 15 characters are placed on the stack, overwriting the next set of instructions

that was to be executed. By carefully manipulating the data that overflows onto the stack, an attacker

can cause arbitrary commands to be executed by the operating system.”

Remote to Local (R2L): There are some similarities between this class of intrusion and U2R, as similar
attacks may be carried out. However, in this case, the intruder does not have an account on the host
and attempts to obtain local access across a network connection. To achieve this, the intruder can
execute buffer overflow attacks, exploit misconfigurations in security policies or engage in social
engineering (i.e., obtaining data by tricking a human operator, rather than targeting software flaws)
(Kendall 1999).

The four classes above may be used in an IDS for classifying intrusions, rather than only differentiating
between ‘normal’ and ‘intrusion’. This gives more information about the type of intrusion, which may
affect the chosen method of reporting and acting on the suspected detection (see Section 2.3.4).

Single events can signify an intrusion, whilst other events are not considered an intrusion before they
are observed in the context of one or more other events. This could be a repetition of the same event, as
would be typical for Probing or DoS attacks, or a completely different event. An IDS should be able to
recognise simple, single event, attacks as well as complex, multiple event, attacks (Benferhat et al. 2003).
As an example of the former Benferhat et al. (2003) mention ping of death, which is a DoS attack where
the attacker sends a too large ping package to a host, which may cause it to crash. As an example of the
latter, they describe the Mitnick attack, which consists of the following steps:

1. An intruder floods the login port a host computer H so that it cannot respond to any other requests.

2. The intruder uses H’s IP address to send spoofed messages to a server S. S returns messages to H, and
normally H would return messages to close the connection. However, since H is unable to respond,
the connection remains open.

3. After being able to open the connection to S, the intruder can attempt further ingress to exploit the
system.

Performing intrusion detection in wireless, mobile ad hoc and sensor networks have become more in focus
in recent years. These networks pose additional challenges to IDSs, due to their distributed nature and ad

hoc infrastructure (Ahmed et al. 2006, Brutch and Ko 2003, Zhang and Lee 2000). Additional security
threats and operational considerations are necessary to take into account when deploying an IDS in such
networks, which are discussed in Section 2.4 on page 14.
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2.3 Intrusion detection systems

The specific architectures of IDSs are not discussed here, as these are diverse and continue to evolve with
time. In general terms, Verwoerd and Hunt (2002) have identified the following common building blocks
of an IDS:

Sensor probes: gather data from the system under inspection.

Monitor: receives events from a number of sensors and forwards suspicious content to a ‘resolver’.

Resolver: determines a suitable response to suspicious content.

Controller: provides administrative functions.

This section focuses on characteristics of IDSs, which elaborate on the first three points above. An IDS may
be described according to four characteristics, according to the taxonomy adopted in (Kruegel et al. 2004,
pp. 20–21):

Audit source location: host based or network based.

Detection method: misuse or anomaly detection.

Behaviour on detection: passive or active.

Usage frequency: real-time or off-line.

Also considered here is ‘detection approach’, which describes, at a lower level, the strategies used to detect
intrusions. This is related to ‘detection method’, and is discussed to some degree in (Kruegel et al. 2004,
pp. 20–21) within misuse detection systems. However, the detection approach is not constrained to misuse
detection, and, thus, is treated as a separate characteristic here. The five characteristics are discussed in
their respective sections below.

2.3.1 Audit source location

IDSs typically operate on one of two levels: on a host or a network (Debar et al. 1999, Kachirski and Guba
2003). A host based IDS monitors the local behaviour on a single host (computer), generally by analysing
system status/performance and logs to determine inter alia access violations and system file modifications.
Host based systems may monitor user and/or program/process behaviour, which is discussed further in
Section 2.3.2 in the context of anomaly detection. This overlaps with a third level, application based
IDSs, included in the taxonomy of Kruegel et al. (2004, pp. 26–27), which detect attacks against specific
applications.

There has been a trend towards network based IDSs over the last decade (Kemmerer and Vigna 2002,
Kim and Bentley 2001; 2002), which analyse network traffic. However, there are IDSs that support both
host based and network based intrusion detection, which is promoted by Lindqvist and Porras (2001) as they
see the two complimenting each other. Lindqvist and Porras identified some limitations (and challenges) of
network based IDSs, which include:

• Not being able to catch all forms of intrusion, since some may not generate network traffic.

• Dealing with encrypted data via SSL (Secure Socket Layer) connections and SSH (Secure Shell).

• Must take into account different attacks on different operating system platforms.

Lindqvist and Porras also identified the following limitations of host based IDSs:
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• Can fail to observe network activity that may be a part of an attack process on the host.

• If an attacker obtains root/administrator access, the system is particularly vulnerable, especially due
to the possibility to turn off the IDS.

From the points above is it clear how the two types of IDS can complement each other, mainly with respect
to achieving a broader coverage for detection.

2.3.2 Detection method

There are two main detection methods, referred to as misuse detection and anomaly detection (Endler
1998, Gollmann 2006, Kemmerer and Vigna 2002, Lee and Xiang 2001). These terms are also known as
knowledge based and behaviour based intrusion detection (Debar et al. 1999, Debar 2000). The former
attempts to encode knowledge of known intrusions (misuses), typically as rules, and use this to screen
events (also known as a signature based IDS). The latter attempts to ‘learn’ the features of event patterns that
constitute normal behaviour, and, by observing patterns that deviate from established norms, detect when
an intrusion has occurred (Denning 1987). Some IDSs offer both capabilities, typically via a hybridisation
of techniques, see for example (Depren et al. 2005, Endler 1998). However, a system may also be modelled
according to both normal and intrusive data, which has become a common approach in recent research
adopting machine learning techniques (Bouzida and Cuppens 2006a;b, Depren et al. 2005, Panda and Patra
2007; 2009, Sabhnani and Serpen 2003, Xiang et al. 2008, Zhang and Zulkernine 2006).

Misuse detection is successful in commercial intrusion detection, according to Gollman (2006, pp. 252–
253), who states that “at the time of writing [2005], all commercial IDS products were based on misuse

detection”. However, this approach cannot detect attacks for which it has not been programmed, and, thus,
it is prone to issue false negatives if the system is not kept up to date with the latest intrusions (Gollmann
2006, pp. 251–252, Lewis 1993). On the other hand, misuse detection systems generally produce few false
positives (Kruegel et al. 2004).

The general perception about misuse detection, as presented above, is no longer entirely accurate. In
recent years, researchers have incorporated techniques that allow misuse detection systems to be more
flexible, being capable of detecting more variations of attacks. This has been made possible with machine
learning techniques such as Artificial Neural Networks, which are built to be able to generalise their models
of known attacks to classify unseen cases. This is also the case for rule based systems, which were deemed
in the past to be unable to detect even slight variations of attacks due to rigid rules (Esmaili et al. 1996,
Lewis 1993, Owens and Levary 2006). Rule based systems are now also capable of detecting variations of
attacks, and may even be employed for anomaly detection, largely due to researchers incorporating fuzzy
logic to define the rules (see Section 3.2 on page 19 for more details).

One of the benefits of anomaly detection is the ability to detect new attacks, since the system is modelled
according to normal behaviour. The term ‘behaviour’ implies a host based IDS that analyses user behaviour,
but it can also be an IDS analysing network traffic. In either case, modelling normal behaviour/traffic is an
intensive task, which makes this approach prone to issuing false positives (Dokas et al. 2002, Kruegel et al.

2004).
Host based anomaly detection may be focused on user behaviour or process/program behaviour. With

respect to the former, this relies on the belief that a user uses the system in a predictable way; that there is
a pattern in the behaviour that is determined by habit. Therefore, it is assumed that it is possible to identify
a user based on data, and if the system is used in a way that deviates from the habits of the respective user,
then it is considered a potential intrusion (Debar et al. 1992, Ryan et al. 1998).

Debar et al. (1992) consider several levels of data sources to model anomaly detection on, which they
classify as follows:
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Keyboard level: which key that is hit, time since the last hit, etc.

Command level: which commands are used and the sequences of them. Researchers now also consider
output parameters and arguments of system calls (Micarelli and Sansonetti 2007).

Session level: monitoring end-of-session events, which can produce data such as “length of session, overall

CPU, memory and input-output usage, name of terminal used, time of login, day of week...” (Debar
et al. 1992). However, as Debar et al. state, this approach is not likely to be able to perform real-time
intrusion detection since the data is obtained only after the user has completed a session, by which
time, the user may have completed the intrusion.

Group level: aggregating users into groups.

Based on any of these levels, an anomaly detection system may build up several profiles of users (hence, also
known as user profiling). This can be implemented as either considering one profile per user, or as in the
latter level, groups of users that may have particular rights in the system, e.g., administrators, programmers,
secretaries, etc. For further details, refer to Mutz et al. (2006).

A challenge of host based anomaly detection systems is keeping up to date with environmental changes.
Retraining or continuous updating is required to avoid an increase in false alarms, referred to as behavioural
drift (Balajinath and Raghavan 2001). It is possible to model/train an anomaly system over time, however,
there is one particular issue with this: there is a danger of learning intrusive behaviour as well (Kruegel et al.

2004). If a user is aware that training of an anomaly detection system is commencing, s/he may gradually
change her/his behaviour in such a way that a planned attack will not be detected (Gollmann 2006, p. 253).

2.3.3 Detection approaches

Two main approaches to detecting intrusions are considered here: stateful and stateless. Stateful approaches
consider an attack as being composed of several events (stages), whilst stateless approaches attempt to
classify single events as being an intrusion or not.

Event correlation is considered synonymous with stateful approaches here for simplicity, which has
been subject to extensive research and is commonly adopted in commercial IDSs, e.g., HP OpenView
(Sheers 1996), Snort (Sourcefire Inc 1999), EMERALD eXpert and eXpert-BSM (Lindqvist and Porras
1999; 2001), and a well known open source IDS known as Snort (Sourcefire Inc 1999). Event correlation
and stateless intrusion detection are discussed further in their respective sections below, followed by a
discussion of the pros and cons of the two approaches.

2.3.3.1 Event correlation (stateful)

Event correlation, in a broad sense, refers to processing sequences of (typically low level) events, subject,
possibly, to temporal constraints, in order to identify significant patterns that can be aggregated into a single
higher level event. The purpose is typically to reduce the number of events and/or raise their semantic level,
i.e., aggregated events have more meaning than individual low level events. In the context of intrusion
detection, event correlation is the process of identifying events as forming part of an attack pattern, in
which the produced higher level event states (or suggests) which attack has been identified.

Event correlation systems may analyse data both spatially and temporally, building deterministic and/or
probabilistic models of intrusions (Jiang and Cybenko 2004). Spatial systems analyse events from different
sources simultaneously, whilst temporal systems consider not only the order of events to be significant, but
also the time between them. For example, event B must occur within 150 milliseconds after event A has
occurred to qualify as intrusion X.
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Rule based systems are commonly used for event correlation (Jiang and Cybenko 2004, Lindqvist and
Porras 1999), which is reviewed in more detail in Chapter 3. This is referred to as a signature based

approach, since the system will filter events according to a set of rules (signatures) that determine the
pattern of intrusions. Another approach is model based systems, such as Bayesian networks which are also
reviewed in Chapter 3. There are several non-AI techniques that have been adopted in the literature to
perform event correlation, such as the Codebook approach (Yemini et al. 1996) and finite-state machines
(FSM) and other state based approaches (Ilgun et al. 1995). In related domains, i.e., network management
and fault management/localisation, other model based approaches have been adopted, such as Petri nets
(Fabre et al. 2004), dependency graphs (Kätker and Geihs 1997, Katzela and Schwartz 1995), and hyper-
bipartite networks (Kumar and Venkataram 1995).

2.3.3.2 Stateless intrusion detection

Although Jiang and Cybenko (2004) argue that rule based systems are stateless, there is a significant differ-
ence between this and the stateless approaches discussed here. In short, a stateless IDS attempts to classify
single events (e.g., network connections) as being intrusive or normal. Thus, not taking account of how this
event may relate to any previous events as event correlation / stateful approaches would.

Stateless intrusion detection is popularly adopted in the data mining / machine learning communities,
treating the intrusion detection problem as a classification task. The raw data, such as tcpdump for network
based IDSs, needs to be transformed into suitable feature vectors such as those in MADAM/ID (Lee and
Stolfo 2000). The feature vectors may also include some a priori knowledge, such as the count feature in
the KDD Cup’99 data set (The UCI KDD Archive 1999), which contains information about the number of
connections from a particular user within the last two seconds.

A challenge is to obtain a feature set that is comprehensive enough to separate normal data from intrusive
data, but also keep the size of this set as small as possible. Typically, the more features, the more difficult
the problem is to solve. For many machine learning algorithms, increasing the number of features (the
dimension of the problem), significantly increases the training time required to learn the intrusion task (also
the run-time will slow down and memory requirements increase with more features), commonly referred to
as ‘the curse of dimensionality’ (Bellman 1961, Duda 2001). Hence, much research has been devoted to
developing efficient techniques to perform feature selection, as further discussed in Section 2.5.

2.3.3.3 Discussion

The greatest drawback of stateless intrusion detection is that multi-stage attacks, such as the Mitnick attack
described in Section 2.2, cannot be detected (Kruegel et al. 2004, p. 22). Stateful/event correlation sys-
tems can detect multi-stage attacks, provided that the attack is known already and is sufficiently described.
Despite this drawback of stateless intrusion detection, a significant benefit is that such systems are quicker
and require less memory (Kruegel et al. 2004, p. 22), and, thus, are more likely to succeed in offering
real-time intrusion detection. Furthermore, the event correlation can be complicated by the existence of
many possible attack scenarios, and, thus, it is difficult to determine which, if any, attacks are in progress
(Benferhat et al. 2003). Similarly for state transition approaches, the computational requirements are high
as it is necessary to keep track of many events concurrently.

A benefit of many stateless approaches, if implemented with machine learning, is that intrusions are
automatically learned from a data set (training), instead of conducting knowledge engineering to produce a
rule base for event correlation. Moreover, many techniques, such as Artificial Neural Networks also offer
some flexibility so that variations of an attack may be detected. Conventional rule based approaches need a
rule for every single intrusion and variation thereof. Not only does this require a large knowledge base, but
variations of known attacks may go by undetected (Kruegel et al. 2004, p. 22). However, as Kruegel (2004,
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p. 23) notes, such systems are able to give accurate information when detecting an intrusion, contrary to
many machine learning techniques, which are, for practical purposes, black boxes. Another benefit of state
based systems is that they can execute responses for potential intrusions before they are completed.

A challenge to either approach is updating the system. For rule based systems, this involves adding new
rules and potentially updating old rules. The drawback of rule based systems is that the knowledge base of
rules may grow very large with time and does not scale well (Jiang and Cybenko 2004). For some machine
learning techniques, updating may involve complete re-training, which may involve a process of having to
gather data concerning new intrusions. Some techniques are able to learn continuously online. However,
the danger is that intrusive behaviour is also learned, as discussed previously in Section 2.3.2.

Event correlation is effectively employed to perform misuse detection, whilst stateless approaches offer
a broader opportunity to perform misuse and anomaly detection. However, due to the focus on classifying
single events in stateless IDSs, such systems are prone to producing alert storms (Kruegel et al. 2004, p. 22).
For example, with ping of death (pod), as described in Section 2.2, an attacker may send many attack packets
to a host (or many hosts), all of which would produce an individual alert. State based systems are less prone
to doing so as the focus may be on detecting the attacker. However, as Kruegel et al. (2004, p. 28) observe,
there is a trend to correlate the alerts from different IDSs to give higher level intrusion alerts or aggregate
alert storms into a single intrusion event.

It is clear that either approach exhibits certain pros and cons, and that neither approach can be said to be
‘better’ than the other. As with network based and host based intrusion detection, state based and stateless
implementations compliment each other. Currently, no research has demonstrated that it is possible to com-
bine the two by learning event correlation for intrusion detection. Evolutionary programming (Fogel 1964;
1999, Fogel et al. 1966) attempts to achieve this, but has been mainly applied to grammatical inference, see,
for example, Zomorodian (1996) and Lankhorst (1995a, 1995b). However, Vincent et al. (2007) propose a
notation for evolving trees with genetic programming, which can be mapped to finite state machines, where
each tree represents a (possibly complex) correlation pattern. As yet, there are no empirical findings that
demonstrate this working in practice.

2.3.4 Behaviour on detection and usage frequency

IDSs commonly report suspected intrusions to a system administrator. Some systems may, however, take
action against the suspected intruder (Kemmerer and Vigna 2002). For a state based system, which is
able to notify about (potential) attacks in early stages, this may give an opportunity to stop the attack before
substantial damage has been caused. However, as Kemmerer and Vigna (2002) stress, this can be dangerous
since a counter action may mistakenly be directed at an innocent user. Alternatively, a defensive mechanism
may be implemented by making the resources under threat temporarily unavailable to the potential attacker.
For more information, refer to Kabiri and Ghorbani (2005) for a survey on report mechanisms.

Usage frequency refers to when the IDS is active, i.e., performing real-time intrusion detection or off-
line, analysing batches of historical data. Researchers strive to achieve the former, which is a challenge
in large networks. The consequence of the latter is that it is not possible to detect and prevent intrusions
that are in progress. Furthermore, such IDSs may fail to recognise attacks that did take place if they were
masqueraded well.

2.4 Intrusion detection in wireless and mobile ad hoc networks

IDSs in wireless and mobile ad hoc and sensor networks can largely be characterised by the taxonomy
discussed in previous sections. However, compared with wired networks, there are additional challenges
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that need to be taking into account due to their distributed nature and ad hoc infrastructure. Brutch and Ko
(2003) discuss several challenges and necessary considerations for intrusion detection in ad hoc networks:

• The intrusion detection cannot rely on a centralised module to analyse the network data.

• Unlike in wired networks, where the traffic can be monitored at routers, switches and firewalls, there
is a lack of key concentration points in ad hoc networks where detectors can be deployed.

• Mobile hosts (nodes) can be compromised by an intruder and rejoin the network as a Byzantine node.
Han et al. (2007) offer the following definition of a Byzantine node: “In a decentralized network

system, an authenticated node is referred to as a Byzantine node, if it is fully controlled by a traitor

or an adversary, and can perform destructive behavior to disrupt the system”.

• Overhead considerations must be taken into account as there are battery, CPU and memory constraints
on the nodes. This has an impact on the architecture chosen to perform intrusion detection, which is
discussed further below.

• There are constraints on the wireless links, regarding transmission range and bandwidth.

Most of the points above raise a need for different IDS architectures than those employed in wired networks.
Zhang and Lee (2000) conclude that the IDS should be distributed and cooperative, and that detectors should
be deployed on each node. In practice, the constraints on battery life, CPU and memory power of the nodes
may not allow for such a solution. Brutch and Ko (2003) refine this suggestion to only employ detectors
on nodes that are capable of facilitating detectors. They also discuss a hierarchical architecture that takes
into consideration such constraints, in which nodes in the networks can become heads of clusters of nodes.
Such cluster heads may then perform intrusion detection for all nodes in the cluster. Ahmed et al. (2006)
and Samad et al. (2005) employ such a model, in which the cluster heads cooperate in performing intrusion
detection, largely influenced by the battery and power constraints of the nodes. Furthermore, the cluster
heads can include detection procedures to locate and determine Byzantine nodes (Madhavi and Kim 2008).

Other architectures include stand-alone and cooperative systems. In the former, each node runs an
independent IDS. These can only detect intrusions based on the information present at the node, which
has the same general drawbacks of host-based intrusion detection. In a cooperative system, each node
makes local decisions, but also cooperate globally. However, such an architecture can be at a higher risk of
intrusion caused by Byzantine nodes. Recent research focuses on trust schemes to limit this risk (Madhavi
and Kim 2008).

Anomaly detection is preferred for intrusion detection in ad hoc networks, since regularly updating
nodes with new signatures induces more overhead (Brutch and Ko 2003, Zhang and Lee 2000). An addi-
tional challenge is that the IDS is required to detect attacks directed at the ad hoc routing infrastructure as
well as the mobile nodes. Moreover, there is a greater risk compared to wired networks, that the intruder
does not need to obtain physical access to execute an attack. Brutch and Ko (2003) discusses three types of
intrusion in such systems:

Passive attacks: intercepting transmissions (eavesdropping).

Active attacks against nodes: manipulating transmissions, by, for example, deleting, modifying or insert-
ing messages to a node.

Active attacks against wireless links: denial of service by jamming or draining the battery of a node. The
latter is referred to as a sleep deprivation attack, in which a node is flooded with malicious packets
(Ahmed et al. 2006).
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Refer to Ahmed et al. (2006) and Djenouri et al. (2005) for a description of several specific attacks.
This section has addressed the main challenges and consideration necessary for intrusion detection in

wireless/mobile ad hoc networks. For more information, refer to Brutch and Ko (2003), Djenouri et al.

(2005), Zhang and Lee (2000) for general treatments of the domain, and (Ahmed et al. 2006, Elhdhili et al.

2008, Huang and Lee 2003, Liu et al. 2005, Madhavi and Kim 2008, Wang et al. 2009) for examples of
applications.

2.5 Areas of research

There are several research niches in the domain of intrusion detection, all of which help move the field
towards a set of ideal requirements for IDSs, as described by Debar et al. (1999):

Accuracy: no false positives.

Completeness: no false negatives.

Performance: real time detection.

Fault tolerance: the IDS not becoming a security vulnerability itself.

Timeliness: handle large amounts of data. Concerned with how quickly the IDS can propagate the infor-
mation through the network to react to potential intrusions. Also referred to as scalability.

A large proportion of research on intrusion detection focuses on developing new system architectures and
detectors to improve on the accuracy and completeness of the IDS. Event correlation is a very substantial
research area, which has been established well for misuse detection. Related to system architectures, an
emerging research area is intrusion detection in wireless/mobile ad hoc and sensor networks, as discussed
above in Section 2.4.

As reviewed in Chapter 3, there is a trend in applying machine learning to intrusion detection, which
offers flexible detectors and lends itself conveniently to anomaly detection. Moreover, it is now common to
develop hybrid systems, which may combine misuse and anomaly detectors, host based and network based
modules, and event correlation and stateless detectors. Consequently, concurrent with increasing research
on hybrid IDSs, much recent research focuses on correlating effectively alerts between the different modules
(Kruegel et al. 2004, pp. 28–33).

Related to alert correlation, alert aggregation is also the focus of recent research, which attempts to
group similar alerts/events into a single generalized event. This can significantly reduce the false positive
rates and the amount of alerts a system administrator is required to investigate (Al-Mamory and Zhang
2009). See Sadoddin and Ghorbani (2006) for a survey on alert correlation, and Al-Mamory and Zhang
(2009), Corona et al. (2009), Maggi et al. (2009), Morin et al. (2009) and Zhou et al. (2007) for a selection
of recent research papers on alert correlation and alert aggregating.

Much research addresses scalability by distributing/decentralising the IDS. This can be done with event
correlation (Burroughs et al. 2002, Kruegel et al. 2001, Kruegel and Toth 2002) as well as with other
detectors based on, for example, mobile agents and artificial immune systems. The latter are discussed
in greater depth in Sections 3.8 and 3.9. Whilst event correlation is largely a passive process, researchers
have proposed active probing as an alternative approach (Rish et al. 2005, Tang et al. 2005). Probes are
issued to gather information about the performance of the distributed system. In active probing, Rish et al.

(2005) utilise Bayesian reasoning to determine how many probes should be issued and the tests they should
perform. The motivation for such a scheme is to reduce the computational costs, in order to achieve real-
time diagnosis of the system.
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Although there is value in discovering intrusions in hindsight, researchers strive to obtain real-time
intrusion detection. Despite the drawbacks of stateless approaches, as discussed in Section 2.3.3.3, they can
more readily achieve real-time intrusion detection. In conjunction with other state based intrusion detection
modules, which is becoming more common, the stateless detectors may be great assets by detecting some
share of intrusions in real time.

Related to achieving real-time intrusion detection, researchers have investigated several methods of per-
forming feature selection. The primary benefit of feature selection is that the amount of data required to
process is reduced, ideally without compromising the performance of the detector. In some cases, feature
selection may improve the performance of the detector as it simplifies the complexity problem by reducing
its dimensionality. See Chen et al. (2006) for a survey and taxonomy of feature selection algorithms, and
Chebrolu et al. (2005), Fries (2008), Mukkamala and Sung (2002), Makkithaya et al. (2008), Sivagami-
nathan and Ramakrishnan (2007), Sung and Mukkamala (2003), Tsang and Kwong (2005a;b) and Tsang
et al. (2007) for a selection of studies adopting AI-based feature selection techniques for intrusion detection.

A paradox with intrusion detection is that the IDS itself may become a security vulnerability. Kruegel
et al. (2004, pp. 22–23) argue that state based IDSs are more prone to attacks than stateless approaches, as
they can be flooded with events that prevent them from functioning efficiently enough. However, security is
compromised for stateless machine learning approaches as well, which is subject to recent research referred
to as adversarial learning/classification. It is applications of machine learning algorithms that learn over
time that are particularly vulnerable to adversarial attacks. As previously discussed in Section 2.3.2, there
is a danger that an adversary may manipulate the training process, by gradually changing his/her behaviour
over time so that a planned attack will not be detected (Gollmann 2006, p. 253). Barreno et al. (2006)
give an overview of threats to learning algorithms, and discusses ways to protect against, and detect, an
adversary. See Biggio et al. (2008; 2009), Dalvi et al. (2004), Lowd and Meek (2005) and proceedings
of the NIPS workshop on adversarial learning (Laskov and Lippmann 2007) for more information on this
topic.

Other research topics include detecting masquerades (Kim and Cha 2004, Schonlau et al. 2001, Seo and
Cha 2007, Yung 2004), and developing correlation languages for event correlation (Albaghdadi et al. 2001,
Cuppens and Ortalo 2000, Eckmann et al. 2002, Michel and Mé 2001, Sánches et al. 2003, Vaarandi 2002,
Vincent et al. 2007, Zhu and Sethi 2001).
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Artificial intelligence in intrusion detection systems

This chapter offers a broad review of applications of Artificial Intelligence (AI) to intrusion detection. A
general awareness of AI techniques is assumed. Section 3.1 provides references for texts on the techniques
discussed, and considers briefly other methods applied to intrusion detection. The most widely applied AI
techniques are then discussed, with consideration of hybridisation. Section 3.13 concludes with a summary
of the field.

3.1 Background reading and related research

For further information on the AI techniques discussed in this chapter, readers are referred to the following
texts: Russell and Norvig (1995) and Luger (2002) for a general treatment of AI; Mitchell (1997) for a
general treatment of Machine Learning; Giarratano and Riley (1998) and Nikolopoulos (1997) on Expert
Systems; Riesbeck and Schank (1989) on Case Based Reasoning; Haykin (1998) on Artificial Neural Net-
works; Burges (1998) and Cortes and Vapnik (1995) on Support Vector Machines; Dasgupta (1998) and
de Castro and Timmis (2002) on Artificial Immune Systems; Quinlan (1993) on Decision Trees; Korb and
Nicholson (2003) on Bayesian networks; Rabiner (1989) on Hidden Markov Models; Mirkin (1996), Everitt
(1993), Kaufman and Rousseeuw (1990) and Jajuga et al. (2002) on clustering and classification; Cockayne
and Zyda (1998) and Pierre and Glitho (2001) on Mobile Agents; Goldberg (1989) and Mitchell (1998) on
Genetic Algorithms; Banks et al. (2008a, 2008b) on Particle Swarm Optimisation; and Dorigo and Stutzle
(2004) on Ant Colony Optimisation.

Due to the scope of this review, there are techniques and approaches that are not considered here. How-
ever, that does not imply that they are not used in modern IDSs. Statistical techniques have been widely
used (Biermann et al. 2001), particularly for anomaly detection, and still form parts of many hybrid IDSs.
Applications of Bayesian networks are included here, but other model based approaches, and state based
applications such as STATL and USTAT (Ilgun 1993), are not. Pattern matching, particularly string match-
ing, has also been successfully applied to this domain, with proposed algorithms such as ExB (Markatos
et al. 2002), E2xB (Anagnostakis et al. 2003), and Piranha (Antonatos et al. 2005).

The following texts are suggested as complementary reading: Kabiri and Ghorbani (2005) for a survey
of intrusion detection and response, Sadoddin and Ghorbani (2006) for a survey of alert correlation, Zhou
et al. (2010) for a survey of coordinated attacks and collaborative intrusion detection, Patcha and Park
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(2007) for a survey of anomaly detection techniques, Gagnon and Esfandiari (2007) and Wu and Yen (2009)
on AI applied to intrusion detection, in which the former focuses on knowledge representation and the latter
on computational intelligence.

3.2 Rule based systems

One of the most common forms of Rule Based Systems (RBSs) that have been applied to intrusion detection
are expert systems (Cannady 1998). The strength of this technique is in performing event correlation for
misuse detection, as discussed in Section 2.3.3.1 on page 12. Existing event correlation tools are discussed
in Section 3.2.1.

In the last decade, fuzzy logic and rule induction has increasingly been applied to intrusion detection,
which is discussed in Section 3.2.2. Although most RBSs do not facilitate effective anomaly detection, there
are examples of this in the literature, as considered in Section 3.2.3. Finally, hybrid systems incorporating
RBSs are discussed in Section 3.2.4.

3.2.1 Event correlation tools

There is a range of event correlation tools created with rule based systems, all of which operate similarly.
The different tools have been somewhat specialised for different environments, allowing different types of
rules.

One tool that has been around for approximately two decades is the Production-Based Expert System
Toolset (P-BEST), which has been integrated into several IDSs with a focus on handling SYN flooding
and buffer overruns (Lindqvist and Porras 1999). Lindqvist and Porras (1999) briefly describe four IDSs
that P-BEST have been used in: MIDAS, IDES, NIDES and EMERALD eXpert, and in (Lindqvist and
Porras 2001), a fifth, eXpert-BSM; all systems being suitable for real-time misuse detection. The first three
systems are host based, whilst the latter two have achieved support for distributed networks. Although
eXpert-BSM was developed to analyse Sun Solaris audit trials on a host, it can be distributed by employing
an alert collection application referred to as an eftunnel, which will produce a single event stream. Lindqvist
and Porras (1999) highlight some drawbacks of P-BEST, such as being poor at dealing with uncertainty and
missing data due to being strictly forward chaining.

Motivated by existing event correlation tools being platform dependent, complex to operate and spe-
cialised for specific event correlation tasks, Vaarandi (2002) presents a platform independent, open source,
tool for rule based event correlation called the Simple Event Correlator (SEC). This tool is designed to be
lightweight so that it is better able to deal with the complexity, size and cost issues typical of event cor-
relators. Furthermore, SEC is intended to be usable in many domains, with existing applications such as:
network fault management, intrusion detection, log file monitoring and fraud detection.

3.2.2 Fuzzy logic and rule induction

Tillapart et al. (2002) propose a fuzzy rule based system for network based intrusion detection. Fuzzy logic
(Zadeh 1965) is one approach to obtaining more flexible rules compared with traditional expert systems
(which operate with crisp threshold boundaries to classify network traffic or user behaviour). Fuzzy rules
allow the IDS to quantify some degree of belonging to either intrusion or normal. Hence, this information
may be incorporated in the alert reports, instead of only reporting intrusion alerts for traffic/behaviour that
exceed a crisp threshold. Bridges and Vaughn (2000) contend that the very nature of intrusion detection is
fuzzy; not always being clear whether events are a misuse or not. Furthermore, they also promote fuzzy
logic because events may have membership in several categories, instead of just one or none.
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Owens and Levary (2006) utilize fuzzy set theory to develop an adaptive expert system for network
based intrusion detection. Fuzzy rules can be created to perform both misuse and anomaly detection. The
system architecture includes a control mechanism, which may be independent of the system outputs (open
loop) or dependent on it (closed loop). Owens and Levary have implemented a closed loop system, in which
a system administrator is involved in the decision process. Events are mapped to fuzzy sets, which are then
classified by an expert system that determines an alert with a suspicion level of either ‘low’, ‘medium’ or
‘high’. The system administrator is able to respond to the alerts and modify the reporting sensitivity.

Rule based systems such as expert systems typically include a comprehensive task of knowledge engi-
neering to formulate the knowledge experts have of known intrusions into rules. As an alternative approach,
there are rule induction techniques that can mine data sets to determine such rules automatically. Rules can
be mined to represent both intrusive and normal behaviour, thus, allowing for rule based anomaly detection
(discussed further in the following section). RIPPER (Cohen 1995) is a popular rule mining algorithm that
can be used to create a classifier, which is considered in several studies discussed in this review, e.g., (He
et al. 2007, Lee and Stolfo 2000, Warrender et al. 1999).

Bridges and Vaughn (2000) examined a combination of a RBS and fuzzy association rule mining to
monitor network traffic and system audit trails. The RBS facilitates misuse detection, and the latter anomaly
detection. They find that fuzzy logic can help to extract more general patterns of intrusions. In their
experiments, incorporating fuzzy logic into the rule mining reduced the number of false positives.

Florez et al. (2002) extended the research of Bridges and Vaughn (2000), making various improvements.
In particular, they identified an issue with the previous approach in dealing with multiple occurrences of
an item set (of events). The more occurrences of an item set, the less confidence the potential intrusion
scenario would obtain. This contradicted their observations, where larger item sets gave better information.
Consequently, they penalised item sets with few items, and improved the accuracy of the system. They
also employed a faster data mining algorithm, adapting prefix trees to mine fuzzy association rules, which
improved the general performance of the system.

In both studies above, a Genetic Algorithm (GA) has been used for feature selection and to optimise
the fuzzy membership functions. GAs have also been applied to rule learning in other studies, e.g., Jeya
and Ramar (2007), Selvakani and Rajesh (2007), Shafi et al. (2009), Banković et al. (2007) and Orfila et al.

(2009). For more information, see Section 3.12.2 on page 49.

3.2.3 Anomaly detection

Most RBSs do not facilitate effective anomaly detection. Commonly, researchers seek to compliment a
RBS (for misuse detection) with other techniques for anomaly detection. However, there are examples of
fuzzy rule based approaches for anomaly detection in the literature.

Dickerson et al. (2000, 2001) propose using a RBS for network based anomaly detection by creating a
set of general fuzzy rules to deal with common intrusion scenarios. Their IDS architecture consists of three
modules: first, network data is collected by a sniffer module, which is then organised and preprocessed by
a second module to give fuzzy inputs to a fuzzy detector module. The second module includes data mining
and feature selection to process the data before being input to the fuzzy detector. This was found to be very
successful as the amount of input data is reduced and anomalies could be more easily detected. Dickerson
et al. (2001) extend the approach to operate as a multi agent system, which is discussed in Section 3.9.

Tajbakhsh et al. (2009) propose an IDS based on fuzzy association rule mining, which is similar to
that of Bridges and Vaughn (2000) and Florez et al. (2002). The main difference is that the approach of
Tajbakhsh et al. allows for anomaly detection, in which fuzzy association rules are used to build stateless
classifiers. They compare the performance of their IDS, used for misuse detection and anomaly detection
on the KDD Cup ’99 data set (The UCI KDD Archive 1999). For anomaly detection, the IDS obtains
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80.6% TPR and 2.95% FPR, compared with 91% TPR and 3.34% FPR for misuse detection. As a misuse
detection system, the approach is not as successful as other machine learning techniques. However, as an
anomaly detection module the approach is more successful. In comparison, an artificial neural network for
anomaly detection, employed by Ghosh and Schwartzbard (1999), obtained best results of 77.3% TPR and
3.6% FPR.

3.2.4 Hybrid systems

Hybridisations that include RBSs appear in different forms in IDSs, which may be described as follows:

Algorithmic: techniques/algorithms are hybridised to perform a single task together. For example, using
genetic algorithms to evolve rules for a RBS (Jeya and Ramar 2007, Selvakani and Rajesh 2007).

Cooperative: different techniques are employed to perform different, independent, tasks, which then are
combined in a some manner to form a holistic system. For example, one technique for misuse de-
tection and another for anomaly detection (Aydin et al. 2009, Goss et al. 2007, Yuan and Guanzhong
2007).

Hierarchical: there is a hierarchy in the architecture of the IDS, which includes different techniques per-
forming different tasks at each level. For example, a RBS may be utilised at the top-level, correlating
alerts from several detectors at a lower level (Depren et al. 2005).

Many systems include some combination of all three categories, and several examples of the two first
categories have been discussed previously. For example, the IDS proposed by Bridges and Vaughn (2000)
and Florez et al. (2002) incorporates hybridisation at two levels. The IDS comprises a RBS for misuse
detection and fuzzy association rule mining for anomaly detection. Additionally, the anomaly detection
is made possible by a hybridisation of association rule mining and a GA to optimise fuzzy membership
functions. Furthermore, a GA is used to perform feature selection.

Another example of a cooperative hybrid system is a host based IDS developed by Yuan and Guanzhong
(2007), which performs misuse detection and anomaly detection. An expert system is employed to perform
misuse detection and anomaly detection is achieved by building statistical profiles of users described by
rules of normal behaviour. A natural necessity of such hybrid systems is a ‘decision’ module, which can
filter the alerts from the detectors and determine whether an alert should be raised to the user. Depren
et al. (2005) propose a hybrid system comprising a Self Organising Map (SOM) for anomaly detection,
a Decision Tree (DT) for misuse detection, and a RBS as a decision module. The RBS consists of three
simple rules that are used to determine whether an intrusion alert should be raised and by which module
(the SOM or the DT). For example, the first rule is:

“If anomaly module detects an attack and misuse module detects an attack then it is an attack

and misuse module classifies this attack” (Depren et al. 2005)

Hybrid systems are becoming more common, and consequently, so is alert correlation (Kruegel et al. 2004,
pp. 28–33). Alert correlation may involve correlating alerts from different IDSs to give a higher level in-
trusion alert, or aggregate alert storms into a single intrusion alert. Zhou et al. (2007) have developed a
comprehensive IDS prototype, which is an example of a system that is hybridized across all levels men-
tioned above. The IDS consists of three main components: a capability model (abstracted intrusions),
inference rules and alert correlation algorithms.

Important to the IDS of Zhou et al. (2007) is the utilisation of a concept they refer to as ‘capability’,
which is used to make abstract models of intrusions, allowing the system to correlate alerts belonging to the
same intrusion. They focus on detecting multi-stage intrusions, adopting the ‘requires/provides’ model of
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Templeton and Levitt (2000). Similarly to the intrusion model discussed in Section 2.2 on page 8, this takes
into account that an attack may involve several phases, e.g., first probing/scanning to identify vulnerable
hosts and then exploiting those. Hence, the focus is more on detecting the attacker, rather than flagging an
alert for every malicious event that is a part of an ongoing attack. Moreover, from a practical point of view,
the abstraction groups events that are logically similar (have the same effect) but may have dissimilar event
details. This reduces the amount of rules and details that the IDS needs to process.

From the capability model, Zhou et al. (2007) derive inference rules to describe the logical relation-
ships between the different capabilities. One rule defines the relationship between two capabilities. Since
the inference rules are defined independent of the capability model, different inference strategies can be
employed without changing the capability model. The final part of the IDS is the alert correlation. Abstract
alerts are correlated based on the capabilities and relationships determined in the two previous modules.

3.3 Instance based learning

Many researchers employ Instance Based Learning (IBL) techniques in intrusion detection and event corre-
lation/fault management as a means of obtaining a more flexible system compared with most expert systems,
particularly for dynamic networks. The general drawbacks of expert systems highlighted in the literature
(Esmaili et al. 1996, Gürer et al. 1996, Jakobson et al. 2004, Lewis 1993, Owens and Levary 2006) include:

• Knowledge engineering is time consuming and difficult (extracting expert knowledge of intrusions
and coding this in rules).

• Difficult to manage and update the rule base.

• Many specific rules, which generally (unless fuzzy) cannot detect slight variations of know attacks.

IBL operates by solving problems based on previously solved instances/cases, and, thus, unlike expert sys-
tems, does not require knowledge engineering to determine specific rules. Furthermore, the knowledge base
of instances/cases can be updated automatically and the system may learn from its own experience during
operation. However, IBL is not as efficient as expert systems in performing event correlation (Hanemann
2006), and has high memory requirements as it is necessary to store a large number of cases (Lane and
Brodley 1999).

Esmali et al. (1996) were the first to consider IBL for intrusion detection (misuse detection). They
propose using Case Based Reasoning (CBR) to alleviate some of the issues other IDSs at the time faced
in acquiring and representing knowledge. The proposed system is designed to analyse command records
from audit trails of the C2 BSM (Basic Security Module) on Sun computers. An ‘Action Class’ module is
employed to group (abstract) commands that have a similar action, which helps alleviate issues with slight
variations of attacks going by undetected.

Lane and Brodley (1999) have developed an IDS to perform anomaly detection by means of IBL. Their
system builds up user profiles based on UNIX commands, which are used to catch long term, ‘unconven-
tional’, misuse, such as data theft. Other types of ‘instant’ misuse are not handled as they consider these
well covered by existing systems. Their research has a focus on data reduction techniques, addressing the
general issue of high memory requirements of IBL. They examine two data reduction models: one based on
instance selection and the other on clustering. Their results indicate that instance selection yields higher de-
tection rates and and takes a shorter time to generate false alarms, as well as detecting anomalies. However,
instance selection was not able to maintain the characteristics of the users, whilst clustering did. Hence, the
authors consider clustering as the better alternative. A few years later, Lane and Brodley (2003) compared
IBL with Hidden Markov Models, which is considered in Section 3.11 on page 45.
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Similarly to Lane and Brodley, Micarelli and Sansonetti (2007) propose an approach to host based
anomaly detection with CBR. Their system analyses audit trails from a C2 BSM of a Solaris computer,
taking into account output parameters and arguments of system calls. However, the behaviour of users
and the network configuration is represented graphically, which may be analysed by image processing
algorithms. Initially, a case base is populated with images of normal interaction with different applications.
During runtime of the system, input data is first subject to feature extraction and clustering to compare
system call sequences. This gives a feature distribution that is represented graphically, which is compared to
the case base using Earth Mover’s Distance (Rubner et al. 2000). Micarelli and Sansonetti (2007) evaluated
their system on a small subset of the DARPA99 data set (Lippmann et al. 2000b), on four U2R attacks,
eject, fdformat, ffbconfig and ps. The case base was populated with 117 instances of normal application
behaviour. The system was capable of detecting all attacks with no false positives.

CBR has also been used for alert correlation (Long 2006, Long and Schwartz 2008). Similarly to other
applications of IBL to intrusion detection, Long and Scwartz (2008) apply CBR to alert correlation to avoid
issues other techniques have in acquiring and representing knowledge. A case base is populated automat-
ically from a training set with examples of correlated alerts. The IDS based on CBR was demonstrated to
be successful, being able to operate with limited training data and was able to detect multi-stage intrusions
(as well as single attacks).

Long and Scwartz (2008) consider alert correlation as a matching problem, i.e., how to match current
input scenarios (alerts) with cases in the case base. They compare the performance of a commonly used
maximal matching approach, with a new approach they propose; order preserving matching. The former
iterates through the all cases in the case base and locates a subset of the run-time alerts that closely match
the respective case. The latter takes into account the temporal relationship between the alerts, considering
the order of the alerts as important when matching. They found order preserving matching to be more
efficient.

3.4 Bayesian reasoning

Bayesian reasoning is considered here a general phrase for a range of techniques that exploit Bayes theorem
to deal with uncertainty. In short, Mitchell (1997, p. 154) provides the following definition:

“Bayesian reasoning provides a probabilistic approach to inference. It is based on the

assumption that the quantities of interest are governed by probability distributions and that

optimal decisions can be made by reasoning about these probabilities together with observed

data.”

There is a diverse range of implementations of Bayesian reasoning in IDSs. The two main Bayesian ap-
proaches are discussed below in Sections 3.4.1 and 3.4.2. Applications related to event correlation are
considered in Section 3.4.3, and other Bayesian applications are discussed in Section 3.4.4.

3.4.1 Bayesian networks

In recent years, Bayesian networks have been utilized in the decision process of hybrid systems (Kruegel
et al. 2003, Mutz et al. 2006, Scott 2004). Bayesian networks offer a more sophisticated way of dealing
with this compared with a RBS. Kruegel et al. (2003) argue that most hybrid systems obtain high false alarm
rates due to simplistic approaches to combining the outputs of the techniques in the decision phase. They
propose a hybrid host based anomaly detection system consisting of four detection techniques: analysing
string length, character distribution, and structure, and identifying learned tokens, in which a Bayesian
network is employed to decide the final output classification. The system was validated on the DARPA99
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data set (Lippmann et al. 2000b), compared with a simple threshold based approach. Both approaches
(Bayesian and threshold) were given the same outputs from the detection techniques. With 100% true
positives, the threshold based approach lead to twice as many false positives as the Bayesian network.

Mutz et al. (2006) extended the work of Kruegel et al. (2003), proposing an application based IDS that
also considers system call arguments when analysing user commands. Most IDSs exclude this information,
which they argue is a reason for false negatives, as it is possible to execute intrusions with valid system
calls. In their IDS, normal profiles are created for each application in the system that is being protected.
The same detection techniques as in (Kruegel et al. 2003) are adopted, and they obtain improved detection
rates. Mutz et al. also focus on CPU load, since the IDS should not take up too many resources because it
might prevent the user from using the computer efficiently. In their experiments, the the CPU load remained
relatively low. During stress tests, the increase in CPU load was within 20% on average.

3.4.2 Naïve Bayes

Naïve Bayes (NB) is a simplified version of Bayesian networks, which offer machine learning capabilities.
According to Mitchell (1997, p. 155), there are two particular drawbacks of Bayesian networks, namely
the requirement of a priori knowledge about the problem to determine probabilities, and that the method is
computationally expensive. For the former, it is possible to extract probabilities from training data, if avail-
able (Korb and Nicholson 2003), which is achieved with NB. However, NB does assume that all the features
in the data are independent of each other (Mitchell 1997, p. 177), which is the reason An et al. (2006) apply
Bayesian networks to database intrusion detection instead of NB. Nevertheless, NB (utilized as a classifier)
has been successfully applied to network based intrusion detection by several researchers.

Ben Amor et al. (2004) conducted an empirical investigation on the KDD Cup ’99 data set, comparing
the performance of NB and a Decision Tree (DT). The DT obtains a higher accuracy (92.28% compared
with 91.47%), but NB obtains better detection rates on the three minor classes1, namely Probing, U2R and
R2L intrusions. Most significantly, the DT detects merely 0.52% R2L intrusions whilst NB detects 7.11%.
Similar observations are made by Panda and Patra (2007), as they compare NB with an ANN. ANNs and
DTs are biased towards the major class(es) (Chawla 2003, Jo and Japkowicz 2004), and, therefore, are
prone to perform worse on the minor class(es). Therefore, this can be seen as a benefit of the NB, provided
that the FPR does not become too high.

NB has also been found to be more robust than some other machine learning techniques. Gharibian and
Ghorbani (2007) compare the performance of two probabilistic techniques, NB and a Gaussian classifier,
and two predictive techniques, a DT and Random Forest (RF, an ensemble of DTs). They analyse the
performance of the techniques on three different training sets of the 10% KDD Cup ’99 data set (all tested on
the original test set). Each training set consists of 90,000 instances, but with different proportions of normal
and intrusive data. For each set, 10 randomly created versions were selected to examine the sensitivity of
the techniques. In the best cases, NB and the Gaussian classifier performed significantly better on the minor
classes, U2R and R2L, but NB performed worst on DoS. However, the DT and RF were very sensitive to
the training data selected, and the mean performance was lower than the probabilistic classifiers.

Bosin et al. (2005) compare the performance of NB with an Adaptive Bayesian Network (ABN). They
use a different subset of the KDD Cup ’99 data set than Ben Amor et al. (2004), which led to significantly
different results. Hence, direct comparisons are not made across these studies. However, the behaviour of
the algorithms is similar, i.e., NB obtains higher detection rates on the minor classes. The greatest difference
is clear from the detection of U2R and R2L intrusions; the ABN detecting 0% U2R and merely 4.8% R2L,

1The minor classes is a reference to the classes with the fewest instances to learn from. The discussion here on classification of
the major and minor classes strongly relates to Chapter 5, which focuses on learning from imbalanced data. For more information on
learning from imbalanced data, refer to Section 5.1 on page 77.
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whilst NB detects 52.4% U2R and 94% R2L. Due to the low proportion of instances of these two classes,
the ABN does obtain the highest accuracy by correctly classifying more Normal and DoS instances, which
are the major classes.

The findings of Liu et al. (2008a) suggests that NB with Kernel Estimation (NBKE) is advantageous.
They compare the performance of NB with and without kernel estimation on data gathered at Wuhan Uni-
versity in June/July 2008, with a focus on detecting flooding attacks and port scans. NBKE obtains 98.80%
accuracy compared with 94.40% for the basic NB algorithm. Furthermore, the authors propose using an
additional feature, a Hurst exponential, which is a measure of the traffic rate and port dispersion (how many
ports were used in a specific time window). Experiments on detecting UDP flooding gave a 6% higher
accuracy with Hurst.

Valdes and Skinner (2000) have integrated NB as a module to EMERALD (Porras and Neumann 1997,
Neumann and Porras 1999), which they refer to as eBayes TCP. This module analyzes TCP session data pro-
vided by EMERALD, which offers both anomaly and misuse detection. eBayes TCP is hypothesis driven,
initially consisting of 5 normal user modes and 7 intrusive modes. The system is unsupervised and can learn
new modes. In this context, observations on real data led to an additional mode being added, HTTP_F,
which consists of long HTTP sessions being terminated abnormally, but not being intrusive. Valdes and
Skinner validated eBayes TCP on the TCP data in the DARPA99 data set, which gave promising results.
The system detected all but one visible portsweeps from week 4, and all portsweeps from week 5. Further, it
detected all mailbomb and process table intrusions, though it detected some satan intrusions as portsweeps.

Observations such as those made by Ben Amor et al. (2004) and Panda and Patra (2007), as discussed
above, motivate potential hybridisations of techniques. For example, Benferhat and Taiba (2005), similarly
to Ben Amor et al. (2004), also observe that NB is better at detecting some intrusions than a DT. They
emphasise an issue with false negative rates, which lead them to prose a hybrid system of anomaly detec-
tion and misuse detection, allowing the anomaly detection module to deal with normal traffic. Thames et

al. (2006) implemented a similar hybrid model, training a Self Organising Map (SOM) on normal instances,
which functions as a first level intrusion detector. At the second level NB appends its classification to that
of the SOM. This hybrid system led to better classification rates than using NB alone.

3.4.3 Event and alert correlation

Burroughs et al. (2002) apply a Bayesian Multiple Hypothesis Tracking (BMHT) algorithm to correlate
events from distributed network based IDSs. This allows event correlation on a higher level by collecting
data from multiple isolated sources in the network, which they argue leads to a more complete view of
the network. Data is gathered from the isolated IDSs, which is then refined by five steps: (1) preliminary
analysis and noise removal, (2) normalising the data and presenting it in a common format, (3) using the
BMHT algorithm to aggregate similar events, (4) analysing and predicting future behaviour based on the
information gathered and processed thus far, and (5) refining the knowledge base according to the findings.
Burroughs et al. validated this system on a network with 5 subnets monitored by Snort and SHADOW,
which lead to 89% true positives and 20% false positives.

As an alternative to event correlation, Rish et al. (2005) propose using dynamic Bayesian networks for
active probing in distributed networks. According to Rish et al., “probes are end-to-end test transactions

that collect information about the performance of a distributed system”. They utilise this approach to obtain
real-time intrusion detection. Periodically, a set of probes are sent out in the system to gather information,
which also establishes a current belief about the system state. If a potential problem is detected, more
probes are sent to gather more information, which will update the system belief.
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3.4.4 Other Bayesian applications

Previous sections discussed the main applications of Bayesian reasoning, but it has been used in a diverse
range of other applications. For example, Barbara et al. (2001) use Bayesian estimation for smoothing
of values in a system referred to as ADAM, to help improve its ability to detect new intrusions. With this
approach, they take into account the frequencies impact on the estimation values, i.e., “it may be misleading

to report both 0/5 and 0/500 as being equal to zero”. Chebrolu et al. (2005) used a Bayesian belief network
for feature selection in a hybrid system with a Classification and Regression Tree (CART). The feature set
extracted with the Bayesian belief network led to better performance than a feature set extracted by the
CART.

Xiang et al. (2008) propose a hierarchical hybridisation of Bayesian clustering (AutoClass) (Cheeseman
and Stutz 1996) and a DT. AutoClass is an unsupervised machine learning algorithm, which they use in the
second stage of the detection process to separate normal data from U2R and R2L intrusions, since the DT
was unsuitable for detecting these classes of intrusion. Liu et al. (2006) use a Bayesian game approach to
perform intrusion detection in ad hoc mobile networks. They aim to avoid installing an IDS on every node
in the network and improve the monitoring efficiency. By using Bayesian game theory, they analyse the
intrusion detection scenario as a game with pairs of attacking and defending nodes.

3.5 Decision trees

Decision trees (DTs) are popular in misuse detection systems, as they yield good performance and offers
some benefits over other machine learning techniques. For example, they learn quickly compared with
Artificial Neural Networks (ANNs), and DTs are not black boxes. Furthermore, as Bouzida and Cuppens
(2006b) highlight, the tree structure that is automatically built from the training data can be used to produce
rules for expert systems.

DTs do, however, suffer from a number of drawbacks. One, similar to that of RBSs, is that they can-
not generalise to new attacks in the same manner as certain other machine learning approaches. They are
not suitable for anomaly detection (for which there are no applications reported in the literature). Empir-
ical findings also demonstrate that DTs are very sensitive to the training data and do not learn well from
imbalanced data (Chawla 2003, Gharibian and Ghorbani 2007).

Section 3.5.1 discusses applications of DTs as classifiers to perform misuse detection. Hybridisation and
classifier combinations incorporating DTs are discussed in Section 3.5.2, followed by other DT applications
in Section 3.5.3.

3.5.1 Classifier performance

DTs have been successfully applied to intrusion detection both as a stand alone misuse detector (Bouzida
and Cuppens 2006a;b, Chebrolu et al. 2005, Sabhnani and Serpen 2003) or as a part of hybrid systems
(Chebrolu et al. 2005, Depren et al. 2005, Pan et al. 2003, Peddabachigari et al. 2007, Sinclair et al. 1999).
A good example of the success of DTs is an application of a C5.0 DT by Pfahringer (2000), which won the
KDD Cup ’99 competition (although with bagging and boosting).

Sabhnani and Serpen (2003) have examined the performance of several machine learning techniques on
the KDD Cup ’99 data set, including a C4.5 DT. The DT obtained good accuracy, but does not perform
as well as other techniques on some classes of intrusion, particularly U2R and R2L attacks, both of which
are minor classes and include a large proportion of new attack types. An ANN and k-means clustering
obtained higher detection rates on these classes, which are two techniques that are better able to generalise
from learned data to new, unseen, data. Similar observations have been made by Gharibian and Ghorbani
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(2007), as discussed in Section 3.4.2. Furthermore, Gharibian and Ghorbani found that DTs and Random
Forests (ensemble of DTs) are very sensitive to the data selected for training, i.e., the performance varied
significantly on different folds (subsets) of the data. The probabilistic techniques they examined (NB and
Gaussian) were more robust and obtained higher detection rates on the minor classes.

As stated above, DTs do suffer from the drawback of not being able to deal well with unseen data. New
attacks may be classified as some default class, such as ‘normal’, as for the C4.5 DT employed in an inves-
tigation by Bouzida and Cuppens (2006b). Consequently this causes false negatives. Therefore, Bouzida
and Cuppens developed a modified C4.5 DT, which classifies new/unseen data as a new ‘unknown’ class.
By doing this, they avoid a significant amount of misclassifications of new attacks as normal connections,
particularly U2R attacks.

Ohta et al. (2008) also propose a modification to the C4.5 DT classifier, aimed at reducing the false
positive rate. They change the way in which the trees are built, by taking into account the type of errors
that may be produced, choosing attributes that are less likely to produce false positives. The modified
DT is evaluated on subsets of the KDD Cup ’99 data set, and is compared with the original C4.5 DT.
As an alternative approach to reducing the false positives, they also examine random oversampling and
undersampling of the training data. The modified C4.5 DT outperformed the original DT and the sampling
approach. Over/undersampling led to similar detection rates, but obtained a much higher false negative rate.

3.5.2 Hybrids and classifier combination

Several researchers have benchmarked a range of machine learning algorithms, observing that different
techniques appear better at detecting different classes of intrusion (Anuar et al. 2008, Gharibian and Ghor-
bani 2007, Pan et al. 2003, Peddabachigari et al. 2007). However, as discussed in Chapter 4 on page 54,
some of these observations are contradictory due to differences in methods. Nonetheless, creating classifier
ensembles of different techniques has been shown to outperform the individual classifiers (Pan et al. 2003,
Peddabachigari et al. 2007).

Although some researchers experience the instability of DTs as a drawback, that their performance
is sensitive to the training data (Gharibian and Ghorbani 2007), others exploit this as a beneficial trait
to construct successful ensembles of DTs (classifier combination) (Breiman 1996). One commonly used
ensemble approach, Random Forest (RF) (Breiman 2001), was first applied to intrusion detection by Zhang
and Zulkernine (2006) to perform network based misuse and anomaly detection. Their system makes use
of a hierarchical hybridisation, in which the misuse detection module operates at the first level, employing
a RF to classify attacks in real time. Anomaly detection is then employed at a second level, utilizing RF
to perform outlier detection on data that is not classified as intrusive by the misuse detection module. On a
small subset of the KDD Cup ’99 data set, the hybrid systems obtains a 94.7% TPR and 2% FPR.

Panda and Patra (2009) examined other types of ensemble methods, including bagging (Breiman 1996),
boosting (Schapire 1990, Freund 1995) and MultiBoosting (Webb 2000). The ensemble methods use REP
trees as their base classifiers. REP (Reduced Error Pruning) utilises a validation set in the pruning process
to help prevent overfitting. In comparison, they include NB, and two DTs: a J.482 and ID3. They evaluated
the techniques on a subset of the KDD Cup ’99 data set. The overall error rate is significantly lower for all
ensemble methods compared with the other techniques. Bagging performed the best of the ensemble tech-
niques. However, in concurrence with previous observations in the literature, the DT classifiers (including
ensembles) perform worse on the minor classes compared with NB.

Depren et al. (2005) examined a hybrid of a J.48 DT and Self Organising Map (SOM), in which the
former is applied to misuse detection and the latter to anomaly detection. A rule based system was also

2The J.48 algorithm is a Java implementation of the C4.5 algorithm (Quinlan 1993), which is included in Weka (Witten and Frank
2005).
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employed as a decision support module, to decide which classification output of the two techniques should
be chosen. Their experiments on the 10% version of the KDD Cup ’99 data set shows the DT unable to
detect an attack (ftp_write), which the SOM does detect, however, obtaining higher false positives overall.
As with the results of ensemble approaches discussed above, this hybrid is also more successful than the
DT and SOM alone. Other applications of SOMs to IDSs are discussed further in Section 3.6.3.

3.5.3 Other decision tree applications

Decision trees have not only been applied to intrusion detection as detectors. For example, they have been
used as a means of feature selection (Chebrolu et al. 2005) and generating rules for expert systems (Sinclair
et al. 1999).

Kruegel and Toth (2003) utilized DTs to speed up the matching process of rules in signature based
systems. They argue that rule bases are becoming so large that common sequential matching approaches
are inadequate, i.e., do not scale well enough with the number of rules. Kruegel and Toth propose changing
the matching approach from a rule-to-rule process to feature-to-feature, to avoid dealing with each rule
individually. All the rules are considered as one set, on which a partitioning process is initiated that groups
the rules into smaller sets (clusters) according to their feature specifications. They map these partitions to
a DT, in which the complete (initial) set of rules represents the tree’s root node, and the subsets become its
children. The tree is built so that each leaf node represents a single rule, or “a number of rules that can not

be distinguished by any feature” (Kruegel and Toth 2003).
Kruegel and Toth implement the proposed matching approach in Snort 1.8.7, and compare the perfor-

mance with Snort 2.0, which includes a new matching algorithm that is more similar to theirs. They adopt
the DARPA99 data set to evaluate the two systems. Their approach obtains a speedup of 40.3% on average,
compared with Snort 2.0, with no loss of accuracy. Furthermore, the speedup becomes more significant with
an increasing number of rules. Another significant benefit of the approach is that it can perform parallel
matching of the features.

3.6 Artificial neural networks

Here, the term Artificial Neural Network (ANN) encompasses a range of models, including Multi Layer Per-
ceptrons (MLPs) (Haykin 1998, pp. 156–255) and Self Organising Maps (SOMs) (Kohonen 1989), which
are the main models applied to intrusion detection. First, some general pros and cons of ANNs are discussed
in Section 3.6.1. The majority of the misuse detection applications of ANNs are implemented as feed for-
ward MLPs (Cannady 1998, Endler 1998, Jing-Xin et al. 2004, Moradi and Zulkernine 2004, Mukkamala
et al. 2002, Mukkamala and Sung 2003, Pan et al. 2003), which are considered in Section 3.6.2. Most of the
misuse detection applications are network based, whilst host based applications are typically emplemented
as anomaly detection systems. There are examples of MLPs being applied to anomaly detection, but SOMs
have been more widely used (Section 3.6.3). Section 3.6.4 discusses other ANN models applied to intrusion
detection.

3.6.1 Pros and cons

ANNs have several desirable properties for intrusion detection. Their ability to learn complex patterns in
data sets and generalise from known patterns to new (Haykin 1998) makes them successful for both misuse
and anomaly detection. Other benefits include their flexibility with respect to noisy/missing data (Cannady
1998) and that some networks are capable of continuously learning during run-time (Cannady 1998, Jing-
Xin et al. 2004). Initially, statistical techniques were used to perform anomaly detection. However, ANNs
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now provide a good alternative (Cannady 1998). Debar et al. (1992) state that a drawback of a statistical
component is that assumptions needs to be made on the distribution of the data, which is not the case
with ANNs. Furthermore, Debar et al. also state that ANNs are less sensitive to the selected input data
(features), i.e., if a feature is irrelevant, the ANN is capable of learning to ignore it. However, Cannady
(1998) highlights two drawbacks of using ANNs: (1) the training requirements (large amounts of training
data are necessary, and the performance of the network is directly dependent on this), and (2) they are black
boxes. Furthermore, a third drawback is determining the topology of the ANN, which is difficult and time
consuming; mostly done ad hoc or optimised with an evolutionary algorithm (Debar et al. 1992, Lacerda
et al. 2001, Öztürk 2003, Yao 1993).

3.6.2 Multi layer perceptrons

The topology of MLPs impacts significantly on the performance, which is therefore discussed in a separate
section below. Thereafter, the applications to misuse and anomaly detection are discussed in their respective
sections that follow.

3.6.2.1 Topology

The topology of the MLP is important, not only to the performance of the network, but also for how the
intrusion detection is achieved. For example, there are many different ways in which an MLP can output
its classification, which gives different properties to the intrusion detection. One approach is to use a
single output neuron that gives a binary classification to signify whether an attack has been identified or not
(Cannady 1998). Ghosh and Schwartzbard (1999) used one neuron to classify intrusive behaviour, but as a
real valued output in the range [0,1] to signify the likelihood of an attack.

Bouzida and Cuppens (2006b) also consider the range of the output given, and only accepts the classi-
fication if the value of the output exceeds a certain threshold. This can be used to adjust the ability of the
MLP to detect new attacks. Jing-Xin et al. (2004) employ a different strategy to classify new attacks, by
adopting an MLP with three output neurons, each of which is responsible for one of three classifications:
normal, attack or unknown. The two former are self explanatory, but the latter is assumed to be an intrusion
(one that is unknown to the system). This ‘unknown’ category is used to extract new attacks that will be
used for future training of the ANN (at which point it becomes a known attack).

MLPs are capable of detecting specific attacks, as explored by Endler (1998) and Moradi and Zulkernine
(2004). Endler achieves this by making use of multiple networks, whilst Moradi and Zulkernine use a single
network for which each attack type was represented by one neuron in the output layer. The latter approach
has become more common in recent years, but instead of classifying each individual attack, the 5-class
taxonomy presented in Section 2.2 on page 8 is adopted. See, for example, Bouzida and Cuppens (2006a;b),
Faraoun and Boukelif (2007), Mukkamala et al. (2002), Peddabachigari et al. (2007) and Sabhnani and
Serpen (2003).

Most studies adopt three layered MLPs (Cannady 1998, Jing-Xin et al. 2004, Moradi and Zulkernine
2004, Pan et al. 2003, Shum and Malki 2008), which have been mathematically proven to be capable of
approximating any continuous function given an infinite number of neurons in the hidden layer (Hornik
et al. 1989). However, four layers are necessary to approximate discontinuous functions (Sontag 1992),
and are generally considered more promising for more complex problems (Pinkus 1999). Some studies
have examined more than three layers, but the difference in results are insignificant (Bouzida and Cuppens
2006b, Moradi and Zulkernine 2004, Mukkamala et al. 2002, Mukkamala and Sung 2003).

29



CHAPTER 3. ARTIFICIAL INTELLIGENCE IN INTRUSION DETECTION SYSTEMS

3.6.2.2 Misuse detection

MLPs have been widely employed as classifiers to perform network based misuse detection, and most
studies in the last decade have evaluated the performance on the KDD Cup ’99 data set. However, as noted
in Section 3.5.2, there are some discrepancies in the findings reported in the literature due to methodological
differences in the studies; more specifically, different subsets of the data have made a significant impact on
the results. Hence, direct comparisons across the studies discussed here cannot be made, as discussed
further in Chapter 4 on page 54.

MLPs obtain very similar results to DTs, which is reflected in studies that compare the two (Bouzida and
Cuppens 2006b, Sabhnani and Serpen 2003). Therefore, as with the DT, other techniques such as NB and
clustering detect more U2R and R2L attacks. However, Sabhnani and Serpen (2003) found that the MLP
obtained the best performance on Probing attacks compared with 8 other machine learning techniques. The
MLP detected 88.70% Probing with a false alarm rate of 0.4%. In comparison, a C4.5 DT detected 80.80%
with a false alarm rate of 0.7%, and k-means clustering detected 87.60% with a 2.6% false alarm rate.
Probing and DoS intrusions were the focus of an investigation conducted by Moradi and Zulkernine (2004),
examining learning of Neptune (SYN flood, DoS) and Satan (Probing) attacks (plus normal traffic). They
obtained detection rates of approximately 90% with a four layered feed forward MLP.

Bouzida and Cuppens (2006a, 2006b) include a threshold parameter to the classification process of an
MLP to determine whether predicted classifications should be accepted or not. This was implemented by
checking if the value of the firing neuron exceeds this threshold. If not, the instance is classified as a ‘new’
class, and is considered an anomaly that requires further investigation. They observed that the accuracy
increased when implementing this threshold, however, at the expense of more intrusions being detected
as the ‘new’ class. This had an insignificant effect on U2R and R2L, however, which were still largely
classified as normal traffic.

One of the first applications of MLPs to intrusion detection was to perform host based misuse detection.
Instead of treating the task as a classification problem, Debar et al. (1992, 1992) employ a recurrent MLP to
perform time series forecasting. The MLP is given sequences of commands and attempts to predict the next
command. When the next command is obtained, this prediction is evaluated and the network is adjusted
with a backpropagation algorithm if the prediction was wrong. Testing was conducted on sequences of
UNIX commands gathered from an anonymous user. An interesting observation is that they obtain higher
error rates on predicting some commands than on others, and there was a trend to confuse similar commands
such as sh and csh. However, the approach showed promise, particularly since the system was able to adapt
to new users, which Debar et al. emphasise as a benefit over statistical approaches that need to be configured
for each new user.

Endler (1998) also employ a MLP to perform host based misuse detection, analysing the Solaris Basic
Security Module (BSM) to monitor user behaviour as described by the system signals. One focus of this
study was to explore the generalisation ability of the ANN. As Endler trained different networks for specific
attack types, they were then tested on data from all types of attacks. The data was gathered from four
simulated users during six weeks. Sequences of signals from this data were then grouped into events, which
were labelled as ‘normal’ or ‘intrusive’. Based on this data, all networks were first trained with the same
normal data. Thereafter, each network was trained to detect specific attack types. No single network was
able to successfully classify all other attacks, but Endler identified three combinations of attack types that
provided sufficient coverage. The results indicate that the best network missed approximately 25% of the
attacks during testing (the worst one nearly 60%), but with no false negatives. To obtain a broader coverage
of intrusions, Endler hybridised the ANN with a histogram classifier3 to perform anomaly detection. By
doing so, all attacks were detected, but a the expense of a significant amount of false negatives.

3The histogram classifier is a statistical likelihood classifier, which Endler implemented according to Duda and Hart (1973).
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3.6.2.3 Anomaly detection

Although MLPs are capable of performing anomaly detection, there are few examples of this in the litera-
ture. Ryan et al. (1998) propose using an MLP for host based anomaly detection, to analyse user behaviour
based on UNIX commands. Their approach is to build daily profiles of each user based on the commands
that are executed; more specifically, the number of times a user executes the respective commands. The
100 most commonly used commands were chosen, thus, giving a 100-dimensional vector of command
frequency intervals for each user, which is used as input to the MLP.

Ryan et al. gathered normal data from 10 users on a NetBSD system during 12 days. They validated the
MLP with 4-fold cross validation, using 65 randomly chosen vectors (from 8 days) to train the MLP, and
testing on the remaining. To simulate anomalous behaviour, they randomly generated 100 vectors that were
also used for testing. On average, the system correctly identified the legitimate users 93% of the time and
63% of the randomly generated vectors were classified as intrusive.

Ghosh and Schwartzbard (1999) report on an investigation of an MLP used for application based
anomaly and misuse detection. In addition to the MLP, they employ a leaky bucket algorithm to facili-
tate some form of a memory mechanism since it is necessary to classify sequences of events. One network
was trained for each process/program. They evaluated the MLPs on the DARPA98 data, on which the
anomaly detection obtained best results of 77.3% true positives and 3.6% false positives. The misuse de-
tection obtained nearly 20% false positives at approximately the same true positive rate. This, they argue,
is due to limited intrusive data to learn from.

Although Ryan et al. (1998) and Ghosh and Schwartzbard (1999) demonstrate that the MLP is capa-
ble of performing anomaly detection, the approaches are obsolete. First, it is not sufficient to perform
offline intrusion detection once a day, which was considered by Ryan et al. Second, other algorithms have
been shown to be more successful in performing anomaly detection. As an alternative to using a MLP
with a leaky bucket to facilitate a memory function, Ghosh et al. (1999) extend the work in (Ghosh and
Schwartzbard 1999) by employing an Elman network (a recurrent ANN). This network gave significant
performance gains, and in (Ghosh et al. 2000) was considered for real-time intrusion detection. Another
ANN that lends itself better to anomaly detection is the self organising map, which is discussed further in
Section 3.6.3.

3.6.3 Self organising maps

Differing from those ANN models discussed above, the SOM is an unsupervised model, i.e., it does not
need labelled training data to build its model. This is a desirable trait for intrusion detection, since labelling
thousands, or even millions, of records is a laborious task and mislabelleing can occur. Furthermore, the
SOM is more commonly applied to anomaly detection than any of the other ANN models.

The SOM can be referred to as a clustering technique, which has the particular benefit of being capable
of producing lower dimensional representations of multi-dimensional data, in what is referred to as a map.
Höglund and Hätönen (1998) implemented a SOM as a visualisation tool for user profiling to help detect
intruders. The SOM is trained on normal user data, which forms clusters of common behaviour of the
user(s). Deviations from the main cluster(s) signify possible intrusions. In their system, if an intrusion is
suspected, further, detailed, data can be examined more clearly, such as CPU usage and which commands
have been executed. In one example that Höglund and Hätönen provide, one deviation showed more heavy
CPU usage and the use of the finger command, which was never used before in the ‘normal’ behaviour of
that particular user. They also observe that some users have more than one cluster of normal behaviour,
which they explain as the user working on different projects or possibly an observation of professional and
private use of the computer.
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A SOM was applied to network based anomaly detection by Depren (2005), as a component of a hybrid
IDS in addition to a DT and a RBS. The DT performs misuse detection and the RBS determines the final
output based on individual outputs from the two former techniques, as discussed previously in Section 3.2.4
on page 21. The system was tested on the 10% version of the KDD Cup ’99 data set, in which normal data
was extracted to train the SOM. Three different SOMs were trained for the three different types of network
protocols: TCP, UDP and ICMP. If both the SOMs and DT detect an attack (or just the DT), the attack is
classified by the RBS. If only the SOM detects an attack, the RBS still defines the output as an attack, but
as an unclassified attack. In line with the findings of Pan (2003), the DT does not detect the ftpwrite (R2L)
attack, but the SOM does. However, with more false positives overall.

As briefly discussed in Section 3.4.2 on page 24, Thames et al. (2006) propose a hierarchical hybrid
IDS for network based intrusion detection, comprised of a SOM and NB. The two techniques are more
integrated than typical hybridisations where each would give an independent classification. The SOM can
be considered an anomaly module, as it is mainly trained on normal data. However, Thames et al. adopt a
SOM algorithm for supervised learning, so that it can learn and classify a proportion of intrusive data, which
they implement as follows: “...an ‘attribute’ variable was assigned to each node in the SOM grid. This

attribute was set as either ‘normal’ for data labeled as normal and ‘abnormal’ for all other data vectors

regardless of the associated attack type”. During testing, the ‘winning’ neuron will thus be able to give a
classification of normal or intrusion.

Thames et al. (2006) first train the SOM on a selection of data consisting of approximately 90% normal
data and a selection of instances from each type of attack. The SOM appends its classification output to
each training instance, which is used to train the NB classifier. Thus, NB learns the classification behaviour
of the SOM as well. After this training phase, the system is employed in the same manner, i.e., the SOM
first filters the data and appends its classification to the analysed network data, which is then passed on
to the NB classifier. Experiments on a subset of the KDD Cup ’99 data set demonstrated that the Hybrid
model improved the accuracy by approximately 3% compared to only using NB.

3.6.4 Other ANN models and Hybridisations

Differing from the other ANN applications discussed in this section, Cannady (2000) proposes an IDS with
an adaptive ANN, a Cerebellar Model Articulation Controller (CMAC) (Albus 1975), which is capable of
learning new intrusive behaviour at run time. The CMAC was employed to recognise different types of DoS

attacks, giving an output value in the range [0,1] to signify the likelihood of an attack. The experiments were
conducted in several phases to examine inter alia learning specific attacks, learning to detect new attacks,
and detecting previously learned (old) attacks. First, the CMAC learned a Ping Flood attack. After the
first presentation of this attack, the network had a very high error rate. However, this decreased immensely
after the second presentation, to ~2.2%. Thereafter, the CMACs generalisation ability was tested, in an
attempt to recognise a UDP packet storm attack. After the initial weights, the error percentage was very
high, ~93.3%, but, again, this decreased significantly after the second presentation of the attack, to ~2.2%.
After the the CMAC had learned the UDP packet storm attack (in addition to the Ping Flood attack from
the beginning), another Ping Flood attack was introduced to determine whether the previous knowledge of
the Ping Flood attack remained. Indeed, the error rate was as low as 0.038% after the first presentation of
the new Ping Flood attack.

Several researchers have examined the use of evolutionary algorithms to optimise ANNs for intrusion
detection. Such algorithms have been applied in different ways, e.g., as a training algorithm for an MLP
(Michailidis et al. 2008), to train and perform feature selection for a radial basis function network (Hofmann
and Sick 2003), or to optimise the entire structure of the ANN (Han and Cho 2006). These applications are
discussed further in Section 3.12.4 on page 51.
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3.7 Support vector machines

Similar to the MLP, Support Vector Machines (SVMs) (Burges 1998, Cortes and Vapnik 1995) are super-
vised learning algorithms, which have been applied increasingly to misuse detection in the last decade.
One of the primary benefits of SVMs is that they learn very effectively from high dimensional data (Boser
et al. 1992). Furthermore, they are trained very quickly compared with MLPs. For example, Mukkamala
et al. (2002, 2003) conducted a comparative study of feed forward MLPs and SVMs for misuse detection.
Almost identical detection rates were obtained, and the SVM was trained in 17.77 seconds compared with
18 minutes for the MLP (Mukkamala et al. 2002).

Applications of SVMs to misuse detection and anomaly detection are discussed in their respective sec-
tions below.

3.7.1 Misuse detection

Most SVM algorithms are binary classifiers, which is sufficient when only distinguishing between normal
and intrusive data, as in (Mukkamala et al. 2002). Although more recent SVM algorithms have been
proposed that directly support multi-class learning, e.g., (Crammer and Singer 2002), a common approach
is to combine several two-class SVMs (Duan and Keerthi 2005). For example, Mukkamala and Sung (2003)
applied SVMs to network based intrusion detection, adopting the five class taxonomy presented in Section
2.2 on page 8, thus requiring five SVMs. For each SVM, the training data is partitioned into two classes
so that one represents an original class and the other class represents the remaining, e.g., Normal and all

intrusions, or Probing and Normal and the other attacks, etc. The combination technique adopted is a
winner-takes-all strategy (Duan and Keerthi 2005), in which the SVM with the highest output value is taken
as the final output.

Peddabachigari et al. (2007) conducted an empirical investigation of SVMs and DTs, in which they
analysed their performance as stand alone detectors and as hybrids. Two hybrid models were examined, a
hierarchical model (DT-SVM), with the DT as the first layer to produce node information for the SVM in
the second layer, and an ensemble model comprising the standalone techniques and the hierarchical hybrid.
For the ensemble approach, each technique is given a weight according to detection rate of each particular
attack type during training. Thereafter, when the system is tested, only the technique with the largest weight
for the respective attack prediction is chosen to output the classification. The approaches were tested on
the KDD Cup ’99 data set. Their results indicate that the ensemble performs better on two attack classes,
Probing and R2L, and equally as good as the other techniques on the the other attack types. The hybrid DT-
SVM performs better, or equally as good as the SVM alone. However, the DT performs better on Probing,
U2R and R2L. SVM and DT-SVM perform poorly on U2R and R2L compared with the DT and ensemble.

Due to the magnitude of data involved in network based intrusion detection, Khan et al. (Khan et al.

2007) propose a hybrid of SVM and clustering to shorten the training time. A hierarchical clustering (tree)
algorithm is employed to locate boundary points in the data that best separate the two classes, which are
then used to train the SVM. This is an iterative process, in which the SVM is trained on every new level of
cluster nodes in the tree that is being built. In each iteration, support vectors are calculated and the SVM is
tested against a stopping criterion to determine if a desirable threshold of accuracy has been exceeded. If
not, the iterative process continues.

Khan et al. (Khan et al. 2007) evaluate their hybrid SVM / clustering algorithm on the DARPA98 data
set. Their algorithm was trained in 13.18 hours, which is approximately 5 hours shorter than a basic SVM
algorithm. They also improve the accuracy, mainly due to correctly classifying more DoS attacks. However,
the FPR increased by approximately 3%.

Another modified SVM was proposed by Song et al. (2002), referred to as a Robust SVM (RSVM),
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developed to better deal with noise. The RSVM was applied to host based intrusion detection by Hu et

al. (2003), analysing a subset of BSM audit data from the DARPA98 data set. They experiment with a clean
training set, consisting of 300 normal processes and 28 intrusive, and a noisy training set, consisting of 316
normal processes (16 mislabelled) and 12 intrusive. The same test set was employed in both experiments,
consisting of 5285 normal processes and 22 intrusive. The RSVM obtains the same true positive rate at
1% false positives as an SVM on the clean data. However, at 3% false positives, the RSVM obtains 100%
true positives, whilst the SVM only obtains this at 14.2% false positives. Furthermore, on the noisy data,
the SVM performs very poorly, obtaining merely 60% true positives at 10% false positives. The RSVM,
however, obtains 100% true positives at 8% false positives. Another benefit of the RSVM is that it produces
less support vectors, which makes it a quicker algorithm. For example, on the noisy data, RSVM required
15 support vectors, compared with 40 for the SVM. This resulted in a speedup of 58% on the test set.

3.7.2 Anomaly detection

Kim and Cha (2004) and Seo and Cha (2007) applied SVMs to host based anomaly detection of masquer-
ades. Both studies analyse sequences of UNIX commands executed by users on a host. Kim and Cha
applied a SVM with a Radial Basis Function (RBF) kernel, analysing commands over a sliding window.
They adopt the data set used in (Schonlau et al. 2001), which gave a detection rate of 80.1%. This was over
10% higher than other techniques applied to this data (Seo and Cha 2007), however, with the highest FPR
(9.7%). Seo and Chan examine two different kernels, K-gram and String kernel, which yield higher detec-
tion rates; 89.61% and 97.40%, respectively. The drawback is the same as with the RBF kernel employed
by Kim and Cha, that the FPR is even higher; above 20% for the String kernel. Seo and Chan also examine
a hybrid of the two kernel methods, which gave nearly identical results as Kim and Cha (2004) with a RBF
kernel.

The various methods that Schonlau et al. (2001) apply to perform masquerade detection can be seen to
obtain different performance trade-offs in detection rates and FPR. Of the results that Seo and Cha (2007)
synthesise, Maxion and Townsend (2002) appear to obtain a better trade-off with NB, obtaining a 61.5%
detection rate with 1.3% false positives. However, in practice, Maxion and Townsend argue that the false
positive rate still needs to be lower.

An unsupervised one-class SVM was proposed by Schölkopf et al. (2001), which has been adopted in
several studies, comparing its performance with clustering techniques. Details of these studies are discussed
in Section 3.10.1 on page 42.

3.8 Artificial immune systems

Artificial Immune Systems (AISs) have been extensively researched in the last decade, mainly for anomaly
detection. An overview of AIS models is provided in Section 3.8.1. Much research has been conducted on
using negative selection, as that model lends itself conveniently to anomaly detection. However, within a
decade of the proposition of negative selection, several researchers came to the conclusion that the model
has problems with scalability, limiting its application to real problems. Consequently, some researchers
considered alternative models, whilst others have, in recent years, proposed enhancements to negative se-
lection to address scalability. This is an interesting aspect of applications of AIS, which are reviewed in
Section 3.8.2. Another aspect of AIS is their capability of being distributed. This is a desirable trait in intru-
sion detection, which is discussed in Section 3.8.3. Finally, hybridisations incorporating AIS are discussed
in Section 3.8.4.

For a complimentary review of AISs applied to intrusion detection, refer to Kim et al. (2007), and
reviews by Dasgupta et al. (2003) and Timmis (2007) for a general treatment of AIS.
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3.8.1 AIS models

Four main AIS models can be extracted from the literature (Dasgupta et al. 2003, Galeano et al. 2005, Kim
et al. 2007, Timmis 2007):

• Immune/idiotypic networks,

• negative selection,

• clonal selection, and

• danger theory.

The majority of applications of AIS to intrusion detection employ negative selection (Kim et al. 2007),
which therefore forms a natural focus of this review.

Kim et al. (2007) offer a list of benefits of AIS that are desirable for intrusion detection:

Distributed: The very nature of AIS is distributed, as it is comprised of several processes. Failure of one
such process does not stop the AIS from conducting intrusion detection.

Self-organising: This is a trait that links AIS to machine learning. Not only does AISs have the ability to
learn data by means of a supervised training process, they can also adapt and learn over time.

Lightweight: It is not as memory and CPU dependent as techniques such as CBR, since intrusive behaviour
is not necessarily checked against a large data base of intrusion knowledge.

Multi-layered: An AIS can be designed with many layers, which can be assigned different tasks or run in
different locations.

Diverse: A range of intrusion detectors can be spread out across a network, giving a broad coverage, whilst
still remaining lightweight.

Disposable: The AIS is not dependent on a single process; if one is disposed of, it can automatically be
replaced by another.

AISs approach anomaly detection in a different way to Artificial Neural Networks (ANNs), though both
are trained to gain an understanding of what is considered normal. AISs typically obtain an understanding
of what normal behaviour is and refers to this as ‘self ’. Anything that deviates from this, ‘non-self ’, is
considered an intrusion. There are several alternatives ways to achieve this. Negative selection, as proposed
by Forrest et al. (1994), has been popularly adopted and applied to anomaly detection. In short, as the AIS
obtains an understanding of self, detectors (corresponding to T-cells in the human body) are generated in
such a way that they do not match self. The assumption is that the detectors will match intrusions. These
detectors are used to detect intrusions, in contrast to checking the entire model of normal (self), as would
be the case with ANNs.

3.8.2 Using negative selection

Negative selection was proposed by Forrest et al. (1994), and was popularly used in AISs applied to anomaly
detection until early 2000. Thereafter, researchers have started to analyse and question whether negative
selection is appropriate for real applications of anomaly detection and consider other alternatives. However,
negative selection has once again received more attention in recent years.

Dasgupta and Attoh-Okine (1997) surveyed applications of immune systems to computer security (virus
detection), anomaly detection, pattern recognition and fault diagnosis. At the time (1997), only negative
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selection had been applied to anomaly detection. Later, Dasgupta and González (2002) consider positive
and negative selection for network based anomaly detection. Positive selection creates an AIS system
similar to ANNs, in which the network traffic is compared to the database of self. Due to the magnitude of
normal data, positive selection is a memory intensive task that may be infeasible in real applications to large
networks. Experiments on the DARPA99 data set indicate that positive selection obtains better results, but
is slow and requires a large amount of memory. Negative selection obtains good results, detecting 4/5 of the
intrusions detected with positive selection, but requires merely 10% of the resources required by positive
selection.

Balthrop et al. (2002) apply an AIS with negative selection to network intrusion detection, introducing
a new matching technique for detectors, r-chunks, as an alternative to full length detectors. With r-chunks,
detectors do not contain a full string of information, but only specific chunks of it. The remaining, not
defined, information is considered as wild cards. This saves memory and Balthrop et al. (2002) claim
it is an easier model to analyse. Results on a small data set show promise, but there were uncertainties
concerning how well this scales.

Related to the uncertainties of Balthrop et al. (2002), recent research has uncovered issues with negative
selection with respect to scalability and coverage of the problem space (Kim et al. 2007, Stibor et al. 2005,
Timmis 2007). Stibor et al. (2005) question the feasibility of employing negative selection in a real scenario
for anomaly detection. They investigate empirically the performance of an AIS with negative selection,
which includes an analysis of the use of hamming distance (binary representation) and Euclidean distance
(real valued parameter representation) as affinity metrics. They found that negative selection, using a binary
representation and the Hamming distance as an affinity metric, is infeasible for real intrusion detection
applications because of scalability issues related to generating detectors. However, as Timmis (2007) state,
it is unclear whether the scalability issues are related to the negative selection, as they see it being directly
linked to the representation and affinity metric used. Furthermore, although the AIS is capable of detecting
all non-self, Stibor et al. (2005) argue that the AIS requires both positive and negative data to achieve
high classification rates. They compare their approach with a SVM, which obtains good results with just
knowledge of either positive or negative data.

Kim and Bentley (2001) also considered negative selection when applying an AIS to network anomaly
detection, drawing the same conclusions as Stibor et al. (2005) regarding scalability. They state that too
much computational effort is required to generate enough detectors for a practical scenario, but do suggest
that it can be used to filter invalid detectors. Ma et al. (2008) argue that the scalability issue of negative
selection can be alleviated, as they propose a new, quicker, method of generating detectors using an antigen
feedback mechanism. This approach obtains good detection rates, however, they do not present theoretical
proof or empirical findings to support their argument concerning improved scalability.

Due to the drawbacks of negative selection, more research efforts have been directed at using danger
theory (Kim et al. 2007). Whilst most AISs adopt the notions of the adaptive immune system in the human
body, which can be compared with anomaly detection, danger theory adopts this as well as the innate part
of human immune systems, which can be considered as misuse detection. Zhang and Liang (2008) stress
the importance of this since it is difficult to properly define self in practice, and that self can change over
time, leading to increased error rates. Creating non-self from self does not imply that it is an intrusion,
and, as Kim et al. (2007) state, such a system is prone to raising false positives. However, this is a general
drawback of anomaly detection.

There have been several successful applications of danger theory to intrusion detection, e.g., (Aickelin
et al. 2003, Aickelin and Cayzer 2002, Burgess 1998; 2000), as reviewed in (Kim et al. 2007), and, more
recently, (Amer 2008, Ou and Ou 2009, Xu et al. 2007). As another alternative to negative selection,
idiotypic networks have been demonstrated to be successful in detecting DoS attacks (Ostaszewski et al.
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2008). Although researchers started exploring alternatives to negative selection, recent research offers
alternative ways of generating detectors to address the scalability issues. For example, Ma et al. (2008), as
discussed above, and several applications of Genetic Algorithms, discussed in Section 3.8.4.

3.8.3 Distributed AIS

The distributed nature of AISs is one of the benefits emphasised by Kim et al. (2007). Hofmeyr and Forrest
(1999) propose a distributed model for network based intrusion detection based on TCP/IP traffic. Normal
traffic is treated as self, and immature non-self detectors are randomly generated asynchronously. These
detectors are grouped into sets, which can exist on a host or in a Local Area Network (LAN). As the imma-
ture detectors are created, they are allowed to match any network traffic. If they match a connection, they
are deleted according to negative selection, with the assumption that they have connected to normal traffic
(self ). It is assumed that only normal traffic occurs during this immature phase, which can be considered
as an additional test for the detector. If it does not match any TCP/IP connections during this immature
period, it becomes mature, and is considered a match for non-self (an intrusion). These detectors can be
distributed across the LAN, one set of detectors per host, which comes with the benefit of obtaining near
linear speedups (Hofmeyr and Forrest 1999). However, Hofmeyr and Forrest distribute the detectors accord-
ing to the behaviour of a protein that, in the body, has the role of transporting protein fragments (peptides)
from within a cell to its surface (without breaching the cell membrane). These proteins can bind to a set
of peptides, and in a similar fashion, Hofmeyr and Forrest incorporate this into their model by introducing
randomly generated permutation masks to the detectors.

The model of Hofmeyr and Forrest (1999) has shown some success and has since been adopted by
several authors. For example, Hou et al. (2002) only propose a change from binary string detectors to
numerical detectors, and Kim and Bentley (2002) introduce dynamic clonal selection instead of negative
selection. Dynamic clonal selection is proposed as a means of enhancing the adaptability of the AIS. Kim
and Bentley (2002) demonstrate that this new selection technique is capable of performing incremental
learning and adapting to novel data during run-time. They also examined some properties of the algorithm,
namely the tolerisation period (the period for allowing immature detectors to remain if they do not match any
data), the activation threshold and the life span of detectors. Their results indicate that a large toleristaion
period is necessary to lower false positives. The two other parameters were shown to be epistatic and
dependent on the environment.

Another distributed solution was proposed by Hall and Frincke (2003), applying an AIS to a multi-
enterprise misuse management system. Their AIS model consists of two layers, one that is central and
creates detectors, and another that is responsible for data gathering, reduction, detection and response, and
to forward successful detections to the first layer. Other distributed applications have been achieved by
hybridising AIS with Mobile Agents, e.g., (Dasgupta 1999, Machado et al. 2005, Ou and Ou 2009, Ping
et al. 2004, Wang et al. 2008a, Yang et al. 2009), which are discussed further in Section 3.9.4 on page 40.

3.8.4 Hybrids

Powers and He (2008) propose a network based hybrid IDS comprising an AIS and a SOM. The AIS is
employed to perform anomaly detection, whilst the SOM is utilised to extract more information about the
attacks that the AIS detects. This they achieve by first training the SOM on intrusive data (unsupervised).
After this phase, the neurons (cluster centres) of the SOM are labelled according to their respective attack
classes. Clustering has also been incorporated in an AIS, by Sifei and Jiayi (2007), who propose using an
unsupervised graph clustering algorithm to generate detectors.

The AIS implementation of Powers and He (2008) includes some modifications of the negative selection
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approach. First, they altered the representation from binary strings to real valued detectors, as in (Dasgupta
and González 2002, González and Dasgupta 2002). Second, they adopt a Genetic Algorithm (GA) to
generate detectors instead of random generation. The GA attempts to generate detectors with two objectives:
(1) “to maximise the generality of the detector”, and (2) “to minimise the number of self samples in the

training data matched by the detector” (negative selection). They do not, however, perform multi-objective
optimisation. Instead, they calculate the fitness as the sum of weighted ratios of each objective, for which
the weights need to be set ad hoc. Other researchers have also investigated using GAs to generate detectors,
e.g., (Haag et al. 2007, Ostaszewski et al. 2006).

Dal et al. (2008) propose a different system architecture comprising an AIS and a GA, which includes
a secondary immune response. The secondary immune response is achieved by incorporating a memory
cell mechanism into their system, which allows it to more quickly detect previously classified attacks. They
adopt negative selection and randomly generate detectors using the r-Contiguous bits algorithm. In addition
to each detector, they evolve sister detectors, which are utilised in the detection process to determine whether
the system should classify a suspected anomaly or not. At least three sister detectors need to be activated for
this to occur, and if they do, they are all considered in a process to create a memory cell. A number of sister
detectors that exceed a fitness threshold are selected to contribute towards a new evolutionary process. At
the end of the process, a detector with a higher fitness than the previously selected sister detectors is selected
as a memory cell. Dal et al. (2008) claim that the approach yields superior performance, but only present
an analysis of the memory cell mechanism, as they report on an empirical investigation of the DARPA98
data set.

3.9 Mobile agents

Mobile Agents (MAs) are distributed by nature. They are typically written in a scripting language and roam
around a system to perform designated tasks. Several agents may be present in the same system but perform
different tasks, which are generally correlated by a higher level monitor.

3.9.1 Pros and cons

In 1994, Chess et al. (1994) published a report for IBM about the use of MAs, to determine whether there
are any benefits of using them compared with other techniques that can perform the same tasks. They con-
clude that the tasks that MAs can perform are (generally) possible with other techniques as well, however,
there are many technical benefits of using MAs, including “high bandwidth remote interaction, ease of dis-

tributing individual service clients, scalability, lower overhead for secure transactions and robust remote

interaction”. Although these points are good as independent advantages, Chess et al. (1994) emphasise the
combined advantages that MAs offer, which cannot be achieved with other techniques. Jansen et al. (1999,
2000) state other benefits of MAs, such as autonomous execution, overcoming network latency, offering
robustness and fault tolerance.

There are drawbacks of MAs, however. Chess et al. (1994) state that they need particular consideration
with respect to security. Jansen et al. (1999, 2000) also emphasise this point, but from another perspective,
that the can MAs become security threats themselves as they may need to execute with admin rights to
perform their tasks. Furthermore, as Chess et al. (1994) discuss, the behaviour of the MAs can be similar to
that of a virus, and it is not straight forward to deal with this in order to authenticate a MA. Other drawbacks
that Jansen et al. (1999, 2000) highlight are the volume of code that is required to implement a MA, the
speed at which they detect intrusions (due to using scripting languages), and limited methods and tools.
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3.9.2 Early work and hierarchical structures

Many applications of MAs adopt a hierarchical architecture. Helmer et al. (1998) propose an architecture
consisting of three levels of agents, listed here from the lowest:

Data gathering agents: extract information from system calls, the network, authentication events and
other functions.

Low-level agents: responsible for classifying recent activities, sharing this information amongst other low
level agents and high-level agents. To perform classification, different machine learning techniques
can be used, depending on the task of the agents.

High-level agents: maintain a data warehouse of all the information and apply data mining.

The same model has been adopted and improved in a later study by Helmer et al. (2003), specifically aimed
at making the agents lightweight. This addresses one of the drawbacks that Jansen et al. (1999, 2000)
highlight, concerning the volume of code that agents often require. The agents in (Helmer et al. 2003)
implement minimal functionality, to be as lightweight as possible, but the model includes a new feature that
allows communication and collaboration between the low level agents. This extension did not compromise
the intrusion detection capabilities. Instead there are additional benefits such as reducing the system load
when the system is not experiencing any intrusions.

Another hierarchical model has been developed by Zhicai et al. (2004), which also consists of three
levels of agents. In their architecture, the layers and responsibilities of agents are closely connected to the
topology of the network environment, which is somewhat different to Helmer et al. (1998, 2003). Starting
from the top, agents reside on network level, subnet level and node level. The agents on each level perform
nearly identical tasks; the main difference is which other agents they communicate with and report to. The
agents on each level will have an awareness of other agents on the same level and agents on the level below
and/or above. That is, a network agent communicates only with subnet level agents, whilst subnet level
agents can communicate with one another, network agents and detectors at the node level.

All agents in the model proposed by Zhicai et al. (2004) have an information and knowledge base,
a communication module, an analysis module and a response module. The agents at node level have two
additional modules, a sensor and a collector, to allow them to detect and gather data, process this information
and forward it to the analysis module. Due to the sharing of information between the agents in the different
layers, autonomy is readily achieved with this model. This is possible because higher level agents can detect
anomalies in agents in the layer below. If an agent is identified as anomalous, it is replaced by a clone of a
normal agent on the same level.

3.9.3 Recent research

The majority of applications of MAs utilise a hierarchical structure of agents, as discussed above, although
different researchers propose variations tailored to their application. For example, Krmíček et al. (2007)
propose an IDS that considers a three level architecture comprising: (1) data collection and preprocessing,
(2) intrusion analysis, and (3) administrator interface. To achieve real time intrusion detection, the detection
agents do not gather data; instead, they receive preprocessed data from probes in the first layer. These agents
collaboratively perform anomaly detection, from which alerts, along with DNS (Domain Name Server)
records and other history leading to the alerts, are passed on to user interface agents in the top layer.

Another hierarchical model was proposed for wireless sensor networks (Kachirski and Guba 2003),
which employs three main types of agent, namely action agents, decision agents and monitoring agents.
The latter can spawn three different monitoring agents, which can exist at different levels: packet, user
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and system. Data gathered from all of these agents are merged to analyse the entire network for potential
intrusions.

Rehak et al. (2008) applied MAs to perform real time intrusion detection in high speed (gigabit) back-
bone networks. They employ collective trust modelling within groups of collaborative detection agents,
in which each of the agents contribute to the model of aggregated anomalies (potential intrusions). The
result of this process is obtaining ranked clusters of data flows, which helps to focus analysis necessary by
a human operator, and reduces the number of alerts.

Deeter et al. (2004) propose a different application of MAs, in which the agents function as middleware
between different IDSs. The purpose is to be able to combine network based and host based systems, as
well as anomaly and misuse detection. This is achieved by distributing agents to network monitors, web
servers (and other service providers), and hosts that execute other IDSs. Liu and Li (2008) apply MAs to
intrusion detection in a similar manner, to enable decentralised data collection from host and network based
IDSs.

Motivated primarily by enhancing the security of the IDS itself, Ramachandran and Hart (2004) were
the first to propose a peer-to-peer (P2P) architecture for mobile agents. This decreases the risk of the
IDS becoming targeted for intrusion, which is more likely with a central coordinator/manager module.
Furthermore, such centralised modules may become overloaded with client requests (Ye et al. 2008). In
the model proposed by Ramachandran and Hart (2004), the agents monitor virtual neighbourhoods. There
is regular, direct communication amongst all agents within each neighbourhood, which allows them to
monitor each other. When one agent detects a potential intrusion, it issues a voting process between all
neighbours to determine appropriate action. A similar model was proposed by Wang et al. (2005), although
they exclude the regular communication between neighbours to decrease the computational overhead.

Ye et al. (2008) contend that the regular communication between the neighbours is a drawback of the
original model of Ramachandran and Hart (2004). Furthermore, they argue that the model is unable to
facilitate detection of multiple hosts in a network. Thus, the constraints on information gathering only
within neighbourhoods may lead to false negatives. Hence, they propose a migration scheme, in which
agents are allowed to collect data from other hosts in the network. Ye et al. (2008) compare results from
their model with that of Wang et al. (2005), and not only does the detection rate improve, the network
latency and network loads are lower.

3.9.4 Hybrid systems

There are many examples of hybridisations of AISs and MAs in the literature, which form effective network
based IDSs. One of the first models was proposed by Dasgupta (1999), and allows immunity based agents
to roam around nodes and routers in a system to monitor the network status. These agents are not restricted
in the network and interact dynamically with each other and the network. This freedom does not imply
that the agents are considered as independent entities; there is a hierarchy and the agents communicate
with each other to collectively detect intrusions. The hierarchy consists of three main types of agents,
namely, monitoring agents, communication agents, and decision agents. The monitoring agents reside in
the network nodes to gather information on several levels: user, system, process, and packet. Thus, such
a system is not restricted to intrusion detection, but can perform general network management and fault
localisation. It is suggested that these agents may implement negative selection, as discussed in Section 3.8
on page 34.

The communicator agents are responsible for communication between the other agents, and the decision
agents are responsible for deciding which action should be taken depending on the information gathered
from the other agents. Decision agents can spawn three different types of agents via communicator agents,
depending on the situation: helper agents, killer agents or suppressor agents. Helper agents report infor-
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mation to an administrator, who should then take action accordingly. Killer agents are spawned to take
aggressive action against potential intruders, e.g., shutting down a machine or disconnecting a node, killing
processes or disabling sessions. The role of suppressor agents is to suppress further action from the action
agents to help prevent false positives.

Ping et al. (2004) propose a similar MA architecture to that of Dasgupta (1999), consisting of three
types of agents that simulate functions of the human immune system. These are monitor agents, decision
agents and killer agents. Monitor agents reside on nodes and collect information, which is then filtered and
coded for decision agents to reason about. The decision agents are distributed to zones of monitor agents,
and collect this information from them to determine whether an intrusion is being executed or not. This is
done according to security policies and immune memory. To ensure robustness, an intrusion is only alerted
if anomalous behaviour exceeds a certain threshold. Anomalous behaviour can be triggered by failures in
the network, so this mechanism helps prevent false negatives. When a potential intrusion is identified, an
aggressive response is initiated by producing a killer agent that should stop the intruder by isolating it. This
is done by cutting off routing requests and dropping packets from the intruder.

The two models discussed above were not implemented and evaluated empirically, but recent prototype
systems have been implemented that incorporate many of the proposed concepts, e.g., Machado et al. (2005)
and Boukerche et al. (2007). In the latter study, the authors strive to obtain real-time intrusion detection by
monitoring distributed host based systems with various types of agent. They adopt four main types: monitor
agents, delivery agents, reacting agents, and persistence agents. There are three different types of monitor
agents, each responsible for monitoring different files of the Logcheck tool (available for Linux and Solaris
(Anon 2010)), namely attack, event, and security violations. The persistence agent is a new asset to this
model, which is employed to ensure data persistence to guarantee data distribution, and to be able to deal
with network instability.

Similar hierarchical models have also been adopted in other studies, to allow distributed monitoring of
hosts (Wang et al. 2008a, Yang et al. 2009). Wang et al. (2008a) employ immune agents on the hosts to
detect intrusions. These communicate with local monitor agents, which analyse the state of the LAN. At the
highest level, a central monitor agent supervises the entire network. An empirical investigation at Sichuan
University indicates that this system obtains significantly better true and false positive rates compared to an
older AIS based IDS called LISYS (Hofmeyr and Forrest 2000). However, they do not provide any details
about their experiments. Similarly, although Yang et al. (2009) include a section on empirical findings,
there are no details about the experiments they have conducted. Therefore, it is not possible to evaluate
the significance of their findings. However, an interesting observation is that the recent applications have
excluded killer agents, which both Dasgupta (1999) and Ping et al. (2004) proposed in their models. Instead,
the applications make use of passive responses, by alerting system administrators of potential intrusions.

There are several other hybrid systems that incorporate other techniques or even entire detection systems
into a multi-agent framework. For example, Herrero et al. (2008) incorporate ANNs to perform intrusion
detection in dynamic networks, Wasniowski (2005) utilize Fuzzy agents, Wang et al. (2009) propose a
hybridisation of MA and clustering for intrusion detection in wireless sensor networks, and Mosqueira-Rey
et al. (2007; 2009) employ rule-based agents (from SNORT) for network based misuse detection.

3.10 Clustering

One of the main benefits of clustering is unsupervised learning. Labelling of data is not necessary and
natural patterns in the data are extracted. Most clustering approaches are unsupervised and are commonly
applied to anomaly detection, which is reviewed in Section 3.10.1. It is possible, however, to perform
supervised clustering if labelled data is available. This generally obtains better results on benchmark data
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as they can be employed for misuse detection, as seen in Section 3.10.2. Hybrid approaches involving
clustering are discussed in Section 3.10.3.

3.10.1 Unsupervised clustering

There are several applications of clustering techniques to network based anomaly detection, e.g., Portnoy et

al. (2001), Eskin et al. (2002), Guan et al. (2003), Leung and Leckie (2005), and Song et al. (2008). These
studies make two common assumptions about the data: (1) that the vast majority of the data is normal
(Portnoy et al. 2001) and (2) that the intrusions are statistically different from normal data (Denning 1987).
More concretely, Portnoy et al. (2001) assume that the normal data makes up more than 98% of the total
amount of data. However, there is no data set publicly available that fulfils this assumption, although it may
be realistic in a practical scenario. Therefore, these researchers have adopted altered/filtered version of the
KDD Cup ’99 data set to fit their assumptions. It should be noted, however, that they have done this filtering
process differently, and, consequently, their results are not directly comparable.

Portnoy et al. (2001) propose a version of single linkage clustering4, which only takes one pass of the
data to create the clusters. The algorithms starts with no clusters. For each instance in the training set,
the Eculidean distance to existing clusters is calculated to determine the closest cluster (if any). If this
distance is within a predefined threshold, the instance is assigned to that cluster. Otherwise, a new cluster
is created with the instance as its centroid. Thereafter, according to assumption one, above, the largest
clusters are labelled as ‘normal’. The remaining, small, clusters are labelled as ‘intrusion’. This obtained
true positive rates of approximately 50% with 2% false positives. A modified version of this algorithm
was used in a comparative study by Eskin et al. (2002), comparing this clustering technique with k-nearest
neighbour (k-NN) and a one class SVM modified to handle unlabelled data (Schölkopf et al. 2001). The
modification of the clustering algorithm allows instances to belong to more than one cluster. For this
comparative investigation, only the training set of the KDD Cup ’99 data set was used, filtered so that only
1–1.5% intrusions remained5. All three techniques obtained above 90% true positive rates at less than or
equal to 10% false positives. The SVM obtains the highest true positive rates with 10% false positives,
however, it is the technique that has the greatest decrease in true positive rates with lower false positives.
The clustering technique proposed by Eskin et al. (2002) obtains a consistently higher true positive rate
as the false positive rate is decreased below 4%. At 2% false positives, their technique obtains 66% true
positives, whilst k-NN obtains 5%, and SVM obtains 5% true positives at 3% false positives (results are not
provided for the SVM below 3%).

A more comprehensive approach than those above has been proposed by Leung and Leckie (2005),
to perform network based anomaly detection, although they also follow the same underlying assumptions
regarding data. Somewhat differently, clusters for intrusions are not produced or labelled during training,
as their aim is to build clusters to cover 95% of the data, which, according to their assumptions, should only
cover the normal data. During testing, any instance that does not fall within any of the clusters is considered
an intrusion. Their approach is a grid and density based clustering technique, similar to pMAFIA (Nagesh
et al. 2000), which includes a Frequency Pattern Tree (FP-Tree), which they refer to as fpMAFIA. Their
algorithm has several phases to build and refine the clusters:

1. Identify frequent instances using the grid and density based clustering algorithm.

2. Build a FP-Tree based on the transformed data from phase 1.

3. Use a count back method to extract candidate clusters.
4Single linkage clustering is also known as nearest neighbour clustering.
5Neither Portnoy et al. (2001) nor Eskin et al. (2002) offer any details on how this filtering process was conducted, what intrusive

data remains, nor how the training and test partitions were selected.
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4. Remove duplicate clusters.

Leung and Leckie (2005) tested this approach on the KDD Cup ’99 data set, using filtered versions of
the full training set and test set. To fulfil assumption one, the training set was filtered so that only a
quarter of the instances remained. Furthermore, Smurf and Neptune intrusions were removed from the
test set, which leaves normal with 85% of the total number of instances. They obtain significantly worse
results than Portnoy et al. (2001) and Eskin et al. (2002), only achieving near 100% true positive rate with
approximately 40% false positives. With false positive rates below 10%, the true positive rate is below
30%, whilst all the clustering techniques that Eskin et al. (2002) implemented obtained more than 90% true
positives. However, it is important to stress that lower detection rates are to be expected when the test set is
used (Sabhnani and Serpen 2004), which Portnoy et al. (2001) and Eskin et al. (2002) did not do.

Guan et al. (2003) propose a clustering algorithm based on k-means, which they call Y-means. One
of their main contributions is to make the algorithm less sensitive to the chosen value of k (the number
of clusters). The algorithm does, however, include an additional parameter to determine the threshold
for labelling. They report positive results on a subset of the KDD Cup ’99 data set, obtaining a 82.32%
detection rate with merely 2.5% false positives. However, the performance is strongly dependent on the
particular data used. Detection rates with a different subset, as reported by Song et al. (2008), are lower, at
approximately 60% with 2.5% false positives.

Similar to Guan et al. (2003), Song et al. (2008) propose a new clustering algorithm based on k-means.
They have been able to exclude the need to determine the number of clusters, but introduce two new param-
eters. Based on a selected range of parameter values, Song et al. (2008) demonstrate that their approach is
more robust than the Y-means algorithm. Furthermore, it obtained higher detection rates than Y-means, as
well as the clustering algorithm proposed by Portnoy et al. (2001). They also compared their results with
a one class SVM (Schölkopf et al. 2001), which gave nearly identical detection rates above a 2.37% false
positive rate.

The applications of clustering discussed thus far have performed stateless anomaly detection of network
connections. Lee et al. (2008b) apply clustering to detect distributed DoS (DDoS) attacks, aiming to identify
the different phases of such attacks. After an initial phase of parameter selection, they perform a hierarchical
cluster analysis to generate groups of traffic corresponding to normal data and the different phases of the
DDoS attacks. They evaluate the approach on the DARPA2000 data set, and are able to identify 6 clusters,
which were manually labelled based on the data they represented. Two of the clusters represented groups of
normal traffic, one cluster for phase one and one for phase two of the DDoS attack6, one cluster representing
the actual attack, and one for post attack. Phases three and four of a DDoS attack were not detectable
because they are local intrusions that do not generate network traffic.

Al-Mamory and Zhang (2009) applied clustering to perform alert aggregation/reduction. They proposed
a semi-automated system based on nearest neighbour clustering, aimed at reducing the workload on the
system administrators caused by multiple alerts related to the same intrusion(s). To validate the approach,
they conducted experiments on the DARPA98, DARPA99 and a ‘real’ data set. Alerts were gathered from
Snort for two months. The data from the first month was used to generate filtering rules, which then were
used to classify the alarms from the second month. On average, the clustering reduced the number of alerts
by 74%.

3.10.2 Supervised misuse detection

A supervised clustering and classification technique has been proposed by Ye and Li (2001), which aims to
learn both normal and intrusive behaviour. Initially, two clusters are created, one for normal data and one

6Phase one involves the attacker performing an IPsweep of the hosts, and phase two is to Probe valid IPs to locate hosts running
the sadmind daemon which is to be exploited in consecutive phases.
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for intrusive data. The centroids of these clusters are calculated as the mean of all the normal and intrusive
data respectively. Thereafter, an incremental learning process commences, repeating the following for each
instance: find the nearest cluster, which is calculated using correlation coefficients for each dimension; if
the label of this instance coincides with that cluster, assign it to the cluster; otherwise, create a new cluster
with that instance as the centroid. Ye and Li consider two approaches to classifying data: (1) the nearest of
k clusters, or (2) the weighted sum of the distances to the k nearest clusters, giving an output in the range
[0,1].

Ye and Li (2001) tested their clustering algorithm on a data set composed of a small subset of normal
instances from the DARPA98 data set and intrusions gathered from private simulations. On this data set,
their clustering algorithm outperforms two decision trees (CHAID7 and CART). Li and Ye (2005) present
a new, more robust, version of their clustering algorithm, which includes support for incremental updating
of the clusters. They evaluate the new clustering algorithm on the DARPA2000 and KDD Cup ’99 data
sets. All seven attack sessions of the DARPA2000 data set were detected with no false positives, however,
they do not provide details on how they analyse the classification of the individual events to determine the
classification rates for the attack sessions.

The results Li and Ye (2005) present on the KDD Cup ’99 data set are not as positive. At approx-
imately 1% false positives, they are able to detect 72.8% Probing, 97% DoS, 9.2% U2R and 6.3% R2L

attacks. These results are not competitive with the results obtained with other supervised machine learning
algorithms. However, the particular benefit of this approach is that incremental and continuous learning is
possible.

Another study presents some more positive findings for clustering applied to the KDD Cup ’99 data
set. Sabhnani and Serpen (2003) benchmark 9 machine learning techniques, including k-means clustering.
Different techniques were found to excel at detecting different types of attacks, and k-means performed best
on two out of the four attack classes: DoS and U2R.

3.10.3 Hybrid approaches

Spinosa et al. (2008) propose utilising both supervised and unsupervised clustering for network based in-
trusion detection. First, they perform supervised learning of normal traffic. Thereafter, the system enters a
second phase comprising unsupervised continuous learning, employed to detect novel intrusions. For this,
they adopt a k-means algorithm, but include a mechanism to dynamically set the value of k, as this may
change with time. They validate the approach on the 10% version of the KDD Cup ’99 data set, which, at
19% false positives, detected 56% Probing, 99% DoS, 92.1% R2L and 71% U2R attacks.

Leon et al. (2004a) employ a Genetic Algorithm (GA) to perform clustering, which they achieve by
incorporating a niching mechanism. After an initial run of the GA, the clusters are refined using a Maximal
Density Estimator (MDE) (Nasraoui and Krishnapuram 1999) to optimise the centres of the clusters. A
final step involves fuzzy logic to transform the crisp cluster boundaries to degrees of membership. That is,
every sample will belong to every cluster to a certain degree. This approach is used to perform anomaly
detection, in which all clusters are made up of normal data. Hence, it is not important which cluster a
normal instance is assigned to, as long as it is within a certain distance. If an instance’s distance does not
fall within a defined threshold of a cluster, it is assumed to be an intrusion. Leon et al. tested their approach
on a subset of the KDD Cup ’99 data set, using only the 10% training set. Training was performed on 5000
normal samples, and 40% of the data set was used for testing. They only use the numerical features in the
data set, which gives 33 features. Furthermore, they investigate the effects of applying Principal Component
Analysis (PCA) to the data set, which reduced the features to 21. The true positive and false positive rates
are 99.20% and 2.20% with PCA, respectively, and 94.09% and 7.84% without.

7CHAID is an abbreviation for Chi-squared Automatic Interaction Detector (Kass 1980).
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The true positive rates Leon et al. (2004a) obtain are higher than those of Portnoy et al. (2001) and
Eskin et al. (2002). However, neither of these three studies give sufficient information about the data that
they use for training and testing. Furthermore, even though the definition of the detection rate metric that
Leon et al. (2004a) adopt is the same as true positives, their figures do not add up, as they do give individual
detection rates for each of the intrusion classes. According to those figures, the true positive rate would be
94.83% with PCA, not 99.20%.

Other population based search/optimisation techniques have been used for clustering, see e.g., (Tsang
and Kwong 2005a;b, Ramos and Abraham 2004, Feng et al. 2006), which are further discussed in Section
3.12.3 on page 50.

As previously discussed in this review, several researchers have incorporated Fuzzy logic into their
algorithms. This is also the case for clustering. For example, Shah et al. (2003) consider fuzzy clustering
for network based detection, taking an outlier detection approach similar to the unsupervised clustering
applications discussed above. Chimphlee et al. (2006) apply Fuzzy Rough Clustering to unsupervised
anomaly detection, which utilises fuzzy logic and rough set logic. This algorithm is based on a C-means
algorithm, which assigns crisp, binary, values to cluster memberships. The extension to Fuzzy C-means
allows memberships across ranges, in which each data instance belongs to each cluster to a certain (fuzzy)
degree. The final extension to a rough C-means, uses a three part classification to determine membership:
a lower approximation, boundary, and a negative region. Fuzzy clustering has also been employed to build
DTs Makkithaya et al. (2008). In principle, this is done in a similar manner to the non-Fuzzy approach
to building DTs based on clustering, as per Kruegel and Toth (2003), which is described in Section 3.5.3
on page 28. Makkithaya et al. (2008) argues the benefits of using clustering to build DTs as: “In contrast

to C4.5-like trees, all features are used once at a time, and such a development approach promotes more

compact trees and a versatile geometry of the partition of the feature space.”

Other hybridisations include distributed systems including AIS (Sifei and Jiayi 2007) and MAs (Zhang
et al. 2005, Wang et al. 2009). The two latter studies focus on intrusion detection in wireless ad hoc

networks. Other studies using clustering for ad hoc networks include Ahmed et al. (2006) and Elhdhili
et al. (2008), as discussed in Section 2.4 on page 14.

3.11 Hidden markov models

The Hidden Markov Model (HMM) is the only machine learning technique that explicitly learns state based
classification (sequential modelling), and, thus, is not limited to conducting stateless intrusion detection.
This enables HMMs to perform more comprehensive intrusion detection and detect multi-stage intrusions
(Lee et al. 2008a, Ourston et al. 2003). Despite this advantage, HMMs have not been as extensively applied
to intrusion detection as the other machine learning techniques reviewed here.

Section 3.11.1 highlights aspects of the implementation of HMMs, followed by a discussion of the
performance results reported in the literature, in Section 3.11.2. A diverse range of applications and recent
research are discussed in Section 3.11.3.

3.11.1 Implementation considerations

Researchers typically train HMMs on sequences of events recorded over a ‘sliding window’ of typically
3-10 events (Al-Subaie and Zulkernine 2006, Hoang et al. 2009, Wang et al. 2008b). Consequently, HMMs
cannot offer comprehensive, temporal, event correlation. Furthermore, Rabiner (1989) mention some lim-
itations of HMM in the context of speech recognition, which are important for intrusion detection as well:
HMM assumes that “successive observations are independent [and that] the probability of being in a given

state at time t only depends on the state at time t-1”.
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As with most other machine learning algorithms, there are parameters of HMMs that need to be de-
termined empirically. HMMs cannot derive the number of states from the learning process; it needs to be
defined a priori and remain static, and, in this domain, it is not straightforward to determine the number of
states (Lane and Brodley 2003). Lane and Brodley (2003) found that the performance of HMM is strongly
affected by the number of states, being very poor with few states (they examined as few as 1 state) as well as
many (50+). Furthermore, in the context of user profiling for host based intrusion detection, Lane and Brod-
ley found that the ideal number of states varied depending on the user. However, states in the mid-range
generally led to good detection rates.

3.11.2 Performance

Although HMMs can yield high classification rates, they are found to be very computationally heavy, both
for training and classification (Lane and Brodley 2003, Wang et al. 2008b, Warrender et al. 1999). Warren-
der et al. (1999) studied the performance of a HMM compared with a selection of more simple techniques,
namely an enumeration based algorithm, a frequency based algorithm and a rule induction technique (RIP-
PER (Cohen 1995)). These techniques were tested on a selection of system call data sets, on which the
HMM gave the best overall performance. However, the HMM was found to be significantly more compu-
tationally heavy, whilst the simple enumeration based algorithm performed sufficiently well in comparison.
Wang et al. (2008b) compare the performance of HMM with PCA, finding that the HMM provides higher
detection rates, but is infeasible for real-time intrusion detection.

Lane and Brodley (2003) compare HMMs with IBL, also finding that HMM yields better accuracy on
detecting intrusions. However, there was no gain in classifying normal behaviour. Therefore, they put their
results in the context of a hierarchical combination of classifiers, in which a ‘light’ classifier (such as IBL
in this case) can serve as a filter of more obvious data (normal behaviour in this case) at a lower level, then
at a higher level, a more comprehensive technique (such as HMM in this case) can be employed to classify
the remaining data. Despite the longer training time necessary, Ourston et al. (2003) found that HMM was
able to obtain higher classification rates than an ANN and DT with few training instances. However, once
the number of training examples were increased, the DT started to outperform the HMM.

Similarly to recent research efforts that address the scalability issues of AISs, researchers have proposed
training algorithms for HMMs that are significantly quicker. For example, Hoang et al. (2009) propose a
training algorithm that reduced the training time four times, and also reduced the memory requirements
of the HMM. This algorithm was a modified version of the algorithm proposed by Davis et al. (2002) for
learning from different observation spaces, which Hoang et al. (2009) modified for incremental learning.
Although they obtain significant speedups, they conclude that HMMs are still not fast enough for real-time
intrusion detection.

3.11.3 Applications and recent research

HMMs have very diverse applications in intrusion detection compared with other machine learning tech-
niques that only offer stateless intrusion detection. There are straightforward applications, such as that of
Joshi and Phoha (2005), applying HMM to network based anomaly detection of TCP traffic. In contrast,
Khanna and Liu (2006) employ a HMM to correlate events from several sources, including CPU activity,
system call and process activity, and network and session activity. As mentioned previously, HMMs have
been used to perform multi-stage intrusion detection (Ourston et al. 2003, Lee et al. 2008a), and Lee et al.

(2008a) propose an agent based architecture with detection agents that employ HMMs.
Wright et al. (2004) demonstrate that HMMs can perform intrusion detection of encrypted traffic. They

base the detection on packet size and arrival time of packets. The exact packet size is unavailable in en-
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crypted traffic, but, as they state, “payload sizes rounded to the next whole number multiple of the cipher’s

block size will be observed”. They simulate encrypted data based on the DARPA98 data set and data gath-
ered at George Mason University (GMU). The results based on the DARPA98 data indicate that packet
based classification is better than time based, leading to ~95% accuracy on ftp, smtp and http data. The
detection rates of smtp was even 10% higher than a comparative study using a DT on the original data.
However, the detection of telnet was poor; 21.7% based on packets and 14.2% based on time. Similar ob-
servations were made on the GMU data, however, obtaining lower classification rates. It is unclear whether
this is due to an increased number of protocols in that data set.

As discussed above, one aspect of the IDS proposed by Hoang et al. (2009) is the significant speedup
obtained with their new training algorithm. Additionally, they obtain significant performance improvements
by incorporating HMMs into a hybrid IDS to perform application based anomaly detection. The HMM is an
additional detection module to a database of unique normal sequences, extracted from a training phase. The
outputs from this module are taken as inputs to a fuzzy inference module, describing frequency, probability
of intrusion (from the HMM), and distance to known sequences (from the normal database).

Hoang et al. (2009) evaluate the hybrid approach on a synthetic sendmail data set (University of New
Mexico 1996), and compare the results with using the normal database only, and a two layer scheme from
their previous work (Hoang et al. 2003). In the two layer scheme, HMM is utilised in a second step to
provide further analysis of sendmail traces if they do not exist in the database of normal traces, or if the
frequency of occurrence of the traces is low. All approaches are reported with less than 0.3% false positives,
and the hybrid system consistently obtains the lowest false positive rates of the three. More significantly,
the hybrid system obtains approximately 10–20% higher detection rates than the two layer scheme on all
test sets.

3.12 Population based search and optimisation techniques

The techniques referred to here are methods typically used to solve search and optimisation problems, such
as Genetic Algorithms (GAs) (Holland 1992, Goldberg 1989), Genetic Programming (GP) (Koza 1992;
1994), Particle Swarm Optimisation (PSO) (Kennedy and Eberhart 1995, Banks et al. 2008a;b), and Ant
Colony Optimisation (ACO) (Dorigo et al. 1999, Dorigo and Stutzle 2004). One of the strengths of these
techniques is their parallel nature, and that their application is very diverse, provided that the problem can be
quantified into some form of fitness measure, as discussed in Section 3.12.1. All the techniques discussed
here naturally form part of hybrid systems, such as rule induction, as discussed in Section 3.12.2. However,
they have also been used successfully as stand alone detectors, as discussed in Section 3.12.3. Section
3.12.4 considers Evolutionary Neural Network (ENN) applications, in which GAs and PSO have been used
to optimise the weights and topology of ANNs. Section 3.12.5 discusses other applications.

3.12.1 Background and problem representation

GAs and PSO are commonly associated with the optimisation of continuous numerical functions, and ACO
with combinatorial optimisation. Some of the benefits of adopting such techniques are flexibility in retrain-
ing, online/continuous learning and the potential for parallelism in the algorithms, which can be exploited
both in the training and detection process. However, the challenge is to represent the intrusion detection
problem in a form that can be processed and evaluated by these algorithms. For example, for evolving
the weights of ANNs, each weight becomes a gene value of a chromosome or individual8 (solution) in a
population that is evolved (optimised) by a GA. A set of weights can be applied to an ANN and evaluated

8In GAs, a potential solution to a problem is referred to as a chromosome or individual. In PSO, it is referred to as a particle.
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on a training or estimation data set, from which the mean of squared errors (MSE) is typically used as a
fitness measure. The lower this value, the fitter the solution, which is what drives the evolutionary process.
Refer to Section 5.2 on page 81 for more information on GAs and ENNs.

As mentioned above, the techniques considered here have also been applied to intrusion detection
as detectors. For example, Balajinath and Raghavan (2001) have applied a GA to perform intrusion
detection based on UNIX commands. First, they encode the commands with numeric values. This is
done in an ascending order according to the frequency of use. They then use user behaviour entropy
indices as a measure of the randomness of the command history of each user, represented as a 3-tuple
(matchindex, entropy index, newness index). The match index is “a measure of regularity in user be-

haviour”, the entropy index is “a measure of the distribution of commands in the command sample”, and
the newness index is “a measure of the number of new commands which have not occurred earlier”. A
fitness function is defined that measures the user behaviour entrophy compared to average user behaviour
entrophy. This is also used in the classification process, in which a difference between these entropy values
would signify an intrusion if it exceeds a defined threshold.

GP was employed in this domain only a few years after the approach was first proposed. GP is an
evolutionary algorithm with similar operators to GAs, but is different in that it evolves programs (generally
as a tree structure) from a higher level description language. Crosbie and Spafford (1995) used GP to evolve
autonomous agents for network based intrusion detection. One focus of their paper is on dealing with
fitness evaluation and different feature information when evolving the trees. That is, network data contains
numeric, binary and nominal information. When evolving the trees, it is important to prohibit certain
combinations of operators, such as assigning a logic operator to an integer type (Crosbie and Spafford
1995). Their solution is to grow several trees, evolved with their own sets of primitives. Similarly to using
MSE as a fitness measure when evolving ENNs, as discussed above, Crosbie and Spafford calculate the
fitness as a measure of error in the prediction, but also penalise misclassifications.

As mentioned above, ACO is set apart from the other approaches, as it is primarily applied to combi-
natorial optimisation. There are recent ACO algorithms proposed for continuous numerical optimisation,
such as Dréo and Siarry (2004) and Socha and Dorigo (2006), however, they have not been applied to this
domain.

All the techniques discussed here have been applied to rule induction, as discussed in Section 3.12.2.
ACO represents the problem as a graph and treats it as combinatorial optimisation. For example, He et

al. (2007) proposes the following approach: “In the problem graph... each node represents a condition

that may be selected as part of the crisp rule antecedent being built by an ant. An ant goes round the

graph selecting nodes according to a constraint satisfaction method, building its rule antecedent. The rule

conclusion is assigned afterwards by a deterministic method”. They take an iterative approach to determine
the final rule set. Once one run of the ACO algorithm is completed, the ‘best’ rule is added to a rule base.
The instances in the training set covered by this rule are deleted, and the process is repeated until the number
of uncovered instances in the training set is below a predefined threshold.

The fitness function used in these population based search/optimisation techniques is very important.
General error (such as MSE) or performance based measures may suffice to obtain solutions with a ac-
ceptable quality. However, such measures may not be ideal. Moreover, one of the benefits of using these
techniques is to be able to incorporate domain knowledge into a measure of what constitutes a good so-
lution. For example, He et al. (2007) initially consider a general performance-based fitness function to
evaluate the accuracy of a rule:

Fitness =
T P

T P+FN
· T N

FP+T N
(3.1)

This function, however, gave poor performance in preliminary experiments. Hence, they propose a new
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fitness function that takes into account the coverage of a rule as well as its accuracy. Furthermore, the
accuracy and coverage are managed by two additional parameters, a and b, as below. These parameters
function as weights to adjust the balance between the two objectives.

Fitness =
(

T P
T P+T N

)a

·
(

T P
T P+FP+T N +FN

)b

(3.2)

3.12.2 Rule induction

It is over a decade ago that Sinclair et al. (1999) proposed using GAs and DTs to generate rules for an
expert system. Although they did not validate their approach empirically, many researchers have since
proposed several successful rule induction approaches. For example, Banković et al. (2007) use a GA to
evolve rules for detecting network based intrusions, demonstrating success on Probing and DoS intrusions
from the KDD Cup ’99 data set. Lu and Traore (2003) adopt GP to evolve existing rules to be able to detect
novel intrusions. They performed experiments with the DARPA99 data set, using data from the first day
(10,000 instances) for evolving the rules, then testing with data from the second day. The test data consisted
of 10,000 instances, containing two new types of intrusion, which they were able to detect.

In a recent application of GP for rule induction, Orfila et al. (2009) demonstrate two benefits of such an
approach: small and simple rules may be evolved. The GP algorithm was constrained to trees of maximum
20 nodes and a depth of 6 levels. They adopt the first 5 traces from the LBNL/ICSI Enterprise Tracing data
set from Lawrence Berkeley National Laboratory and ICSI (2005) to evaluate empirically their approach,
and compare the results with a C4.5 DT. In one experiment, using trace #5 for training and testing on the
remaining traces, they demonstrate the significant difference in tree size obtained with GP compared to a
C4.5 DT. The DT produced a tree with 63 nodes, compared to 7 nodes with GP. The GP tree in this case
obtained a 53.22% true positive rate (TPR) and a 4.1% false positive rate (FPR), compared with 42.31%
and 2.1% with the DT. On average, based on four sets of experiments9, GP obtains a TPR of 62.15% with
5.22% FPR, whilst the DT obtains a TPR of 48.82% with 2.18% FPR. Since there is a different trade-off
in the performance of the two approaches, it is difficult to conclude which is better. However, from a data
mining perspective, GP produces more comprehendible trees of rules.

Tsang et al. (2007) apply a multi-objective GA (MOGA) to evolve fuzzy rules, taking into account two
objectives: accuracy and interpretability. They implement this rule generation in a Mobile Agent system,
which uses a Fuzzy Set Agent (FSA) to generate fuzzy sets and offspring solutions based on this, and an
Arbitrary Agent (AA) that adopts a MOGA to evaluate the FSA and its offspring. The AA also controls the
population of FSAs, i.e., FSAs with poor fitness values do not prosper. Although their focus is on obtaining
interpretable rules, the performance results reported on the KDD Cup ’99 data set are very good. They
compare their findings with a C4.5 DT, NB, k-NN, and a SVM. Their approach outperformed all other
techniques, although the difference in performance compared with the SVM is negligible.

As introduced in the previous section, He et al. (2007) applied ACO to rule induction for intrusion de-
tection. Compared with a more established rule induction technique, RIPPER (Cohen 1995), ACO obtained
nearly identical TPR. As reviewed in Section 3.2.2 researchers have given more attention to fuzzy rules,
as they provide more flexible systems compared with crisp rules. Abadeh et al. (2007) demonstrate that
an ACO based algorithm for fuzzy rule induction obtained significantly better results on the KDD Cup ’99
data set compared with RIPPER. RIPPER obtained a 94.25% TPR with a 2.2% FPR, whilst the ACO based
system obtained a 95.5% TPR with less than 0.01% FPR.

Other researchers have also focused on fuzzy rule induction. For example, Bridges and Vaughn (2000)
and Florez et al. (2002) employ a GA to optimise fuzzy membership functions, as discussed in Section

9They excluded trace #3 from training due to its size (approximately 2.2 million instances).
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3.2 on page 19. Another example is González et al. (2003) who expand on previous research of Dasgupta
and González (2002), as discussed in Section 3.8.2 on page 35, by evolving fuzzy anomaly signatures.
As an additional step to improving on the detection rates, Abadeh et al. (2006) incorporate a PSO in the
evolutionary process of generating fuzzy rules. The PSO performs a local search around each individual
in the population, which includes a new operator for modifying the rules. By including the PSO, the
detection rates of DoS and Probing intrusions increased, although the false positive rate also increased.
They randomly select a small set of instances for training (650) and testing (9600), thus, direct comparisons
with other studies are not possible. Fries (2008) also report significantly improved results with fuzzy rule
induction compared to other GA based approaches to intrusion detection. However, Fries provides few
details concerning the experiments, and it is unclear what impact the feature selection that is performed has
on the results.

3.12.3 Clustering and stand alone detection applications

In an early study applying GAs to intrusion detection, Balajinath and Raghavan (2001) emphasise the benefit
of being able to continuously learn user behaviour, to keep track of user drift. Similarly to Balajinath and
Raghavan, Neri (2000) adopts a distributed GA, REGAL (Giordana and Neri 1995), to determine patterns of
normal network behaviour. As previously discussed in Section 3.10.3 on page 44, Leon et al. (2004a, 2004b)
demonstrate the potential of GAs to perform network based anomaly detection by means of clustering,
which they achieve by incorporating a niching mechanism.

Banković et al. (2008) have chosen a GA over other clustering algorithms, to obtain more robustness,
reduce the problem of ‘getting stuck’ in local optima and to exploit the parallel nature of the algorithm.
They utilize the clustering potential of the GA to perform unsupervised, network based, anomaly detection.
The approach does not require a predefined number of clusters, such as the popular k-means algorithm, and
new data that is introduced to the cluster model does not need to be assigned to existing clusters; instead,
new clusters may be created, thus, giving more flexibility. In a different application, by Lin and Wang
(2008), a GA is hybridised with k-means clustering, which allows for the value of k to be optimised.

There are several applications of ACO based clustering to intrusion detection. Ramos and Abraham
(2004) apply an unsupervised ant clustering model, referred to as ACLUSTER, to network based intrusion
detection. They argue that it is a desirable approach in this domain as the parallel and distributed nature
of the ant model offers real time online training, and there is no need for complete retraining. The same
benefits are argued by Feng et al. (2006), who propose ACO clustering as a part of an agent system. Other
benefits of their system include that it facilitates unsupervised and supervised learning, and that it is self
organising. Feng et al. (2007) later propose a new ACO based clustering system, hybridised with a SOM
for network based anomaly detection.

Tsang and Kwong (2005b) improve on an existing ant clustering model by Lumer and Faieta (1994),
to better deal with high dimensional data. They adopt the KDD Cup ’99 data to evaluate the performance
of their ant clustering model, and compare with k-means clustering, SOM, another ant based clustering
technique, and a multiple classifier (from other studies). Their algorithm obtained the highest detection
rates on R2L and DoS, and second best for U2R, Probing and Normal. The ACO clustering system proposed
by Feng et al. (2006), as mentioned above, was also validated on a small subset of the KDD Cup ’99 data
set, and outperformed a DT, SVM, LGP (Linear Genetic Programming), and k-NN.

There are several studies that demonstrate the success of GP for intrusion detection. Abraham et

al. (2007) and Hansen et al. (2007) have both obtained high detection rates on the KDD Cup ’99 data
set. However, both studies used small subsets of the data, which prevents direct comparisons with other
studies adopting the full data set. Abraham et al. (2007) examined three types of GP algorithms: Linear
Genetic Programming (LGP), Multi-Expression Programming (MEP), and Gene Expression Programming
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(GEP). They found that the different algorithms obtained better detection rates on certain classes. For ex-
ample, MEP obtained the highest detection rates on U2R and R2L, whilst LGP detected Probing and DoS

intrusions with higher accuracy. More interestingly, as few as 2–7 features (of the original 41 features) were
sufficient to detect certain intrusions with MEP.

3.12.4 Evolutionary neural networks

Michailidis et al. (2008) employ PSO to optimise the weights of MLPs. The principle is similar to that
of using GAs to evolve the weights, as discussed in Section 5.2.3 on page 83. Michailidis et al. evaluate
the approach on a small (undersampled) subset of the 10% KDD Cup ’99 data set. Their findings are
comparable to other applications of MLPs, as discussed in Section 3.6.2.2 on page 30. Their approach
detects more Probing and U2R attacks, but at a higher FPR (approximately 3%). However, it is unclear
whether this can be attributed to the use of PSO to train the MLPs, or due to the undersampling.

Tian and Gao (2009) propose a hybrid training algorithm comprised of a self adaptive GA10 and back-
propagation for anomaly detection. Their main motivations are to speed up the training process and prevent
the backpropagation training algorithm from ‘getting stuck’ in local optima. The GA continuously evolves
the initial weights of MLPs, which are then trained with backpropagation, using the MSE of these MLPs
as a fitness measure. If none of these MLPs have obtained a sufficiently low MSE, the process is repeated.
The authors do not, however, report on intrusion detection performance, the only MSE, which reaches lower
values than with backpropagation alone.

Similar to studies discussed in Section 3.6.2.3 on page 31, Han and Cho (2006) consider the application
of ANNs to application based anomaly detection; more specifically, learning system call sequences. Instead
of adopting a fixed network structure, which has been common for applications with MLPs (Ryan et al.

1998, Ghosh and Schwartzbard 1999, Ghosh et al. 1999) and Elman networks (Ghosh et al. 2000), they
optimise this with a GA. The GA evolves the number of neurons (maximum 15) and how they are connected.
Since the structure is more flexible, neurons in the input layer may be directly connected to neurons in
the output layer. They also adopt local search algorithms and the backpropagation algorithm to train the
networks during the continuous evolutionary process of the GA.

The ANNs of Han and Cho (2006) were applied to analyse sequences of 10 commands. Therefore,
the ANNs have 10 input neurons. One ANN is evolved for each program, which can process 45 common
BSM system call events (out of 280). They employ the DARPA99 data set to evaluate their approach, in
which training is conducted on normal data from weeks 1 and 3, and testing on data from weeks 4 and
5. Compared with the previous studies with MLPs and Elman networks (Ryan et al. 1998, Ghosh and
Schwartzbard 1999, Ghosh et al. 1999; 2000), they obtain better detection rates. Moreover, they conclude
that the training process is quicker compared to the systematic approaches adopted in the other studies to
determine the ideal network structure.

3.12.5 Other applications

Most applications of the population based techniques have been covered in the previous sections, however,
there are a few hybrid systems that are mentioned here. For example, Tsang and Kwong (2005a) incorpo-
rated ACO into an agent based system, which consists of six different agents. First, a monitor agent gathers
data and performs feature extraction. The data is then passed on to a decision agent, which performs un-
supervised anomaly detection based on ant clustering. The remaining agents deal with action, coordination
of higher level information, communication between the user and the coordination agents, and, finally, an
agent monitors the entire agent system. Banerjee et al. (2005) propose using ‘emotional’ ants as sensors

10The self adaptive GA evolves parameter values of the genetic operators during the optimisation process.
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to detect intrusions in the early stages. These ant agents monitor each other, as well as the network, for
intrusion. To avoid ants visiting repeatedly nodes in the network, they propose using a tabu list11 which
prohibits ants from revisiting nodes for a certain time. However, they do not report any empirical findings
to demonstrate that this works in practice.

There are several applications of GAs to feature selection, e.g., Fries (2008), Helmer et al. (2002), Stein
et al. (2005), Tsang et al. (2007). In addition to the general benefits of feature selection, as discussed
previously in Section 2.5 on page 16, Tsang et al. (2007) use feature selection to help their rule induction
algorithm obtain more comprehendible rules for human operators to analyse.

Finally, as previously discussed in Section 3.8.4 on page 37, GAs have been adopted in AIS to generate
detectors (Dasgupta and González 2002, González and Dasgupta 2002, Haag et al. 2007, Ostaszewski et al.

2006, Powers and He 2008).

3.13 Summary

Rule Based Systems (RBSs) are commonly used in commercial Intrusion Detection Systems (IDSs), and
are better established than the other Artificial Intelligence (AI) techniques reviewed here. RBSs are well
suited for event correlation to perform misuse detection. However, other techniques are better suited for
anomaly detection, such as statistical methods and clustering.

The ability to facilitate anomaly detection is one of the benefits that has motivated much research on
machine learning for intrusion detection. In the last decade, an increasing amount of research on machine
learning for misuse detection can also be observed in this review. The application of techniques such as
Artificial Neural Networks (ANNs) to misuse detection offers some desirable flexibility in the detection
process compared with conventional RBSs, i.e., variations of learned attacks can be detected. The in-
flexibility of RBSs, due to operating with ‘crisp’ rules, has been considered one of their main drawbacks
(Esmaili et al. 1996, Gürer et al. 1996, Jakobson et al. 2004, Lewis 1993, Owens and Levary 2006). How-
ever, this observation is no longer entirely accurate, since researchers have proposed several applications of
fuzzy RBSs, which have also been shown to be capable of performing anomaly detection (Dickerson and
Dickerson 2000, Dickerson et al. 2001, Owens and Levary 2006, Tillapart et al. 2002).

A general benefit of machine learning is that knowledge engineering/extraction/acquisition is avoidable.
Furthermore, for techniques that are not ‘black boxes’, such as Decision Trees (DTs) and rule mining/in-
duction (e.g., RIPPER (Cohen 1995)), knowledge of novel intrusions may be extracted. These techniques
can be employed as detectors in an IDS, or the extracted rules may be incorporated in a RBS. Rule induction
approaches are typically used for misuse detection, mining rules of intrusions. Fuzzy association rule min-
ing has been found to successfully determine patterns for anomaly detection (Bridges and Vaughn 2000,
Florez et al. 2002, Tajbakhsh et al. 2009). Optimisation techniques such as Genetic Algorithms (GAs),
Genetic Programming (GP) and Particle Swarm Optimisation (PSO) have also been applied successfully to
rule induction. Recent studies using such techniques focus on more pragmatic problems of obtaining rules
that are small and easy to interpret (Orfila et al. 2009, Tsang et al. 2007).

Hybridisation of techniques has become commonplace in IDSs, which allows researchers and practi-
tioners to exploit the benefits of individual techniques and approaches. For example, IDSs that employ one
technique to perform misuse detection, such as a RBS, and another to perform anomaly detection, such as
a statistical method, ANN or clustering (Aydin et al. 2009, Goss et al. 2007, Yuan and Guanzhong 2007).
In such hybrid systems, it is necessary to adopt a decision module that is able to correlate the alerts from
the individual detectors and determine whether an alert should be issued. For this, RBSs and Bayesian

11Although Banerjee et al. (2005) do not discuss the similarity of their tabu list with tabu search, these are related. For information
on tabu search, refer to Glover (1989; 1990).
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networks have been successfully applied (Depren et al. 2005, Kruegel et al. 2003).
Much research on machine learning treats the intrusion detection problem as a classification task, adopt-

ing techniques such as DTs, ANNs and naïve Bayes (NB). Combining classifiers is a popular approach to
improving the accuracy of an individual classifier (Bauer and Kohavi 1999, Brown et al. 2005, Dietterich
2000a, Tan and Gilbert 2003). Furthermore, classifier ensembles can provide additional security from an
adversary (Biggio et al. 2008; 2009). Popular classifier combination approaches such as AdaBoost and
Random Forests (RFs) have been applied to intrusion detection (Panda and Patra 2009, Zhang and Zulker-
nine 2006), as well as more specialised combinations based on observations in the literature that different
classifiers perform well on different classes of intrusion (Anuar et al. 2008, Gharibian and Ghorbani 2007,
Pan et al. 2003, Peddabachigari et al. 2007, Sabhnani and Serpen 2003). However, as identified in this
review, there are discrepancies in the results reported in the literature, which makes it difficult to determine
which classifiers are indeed best suited for detecting different classes of intrusion. These discrepancies are
investigated further in the following chapter.
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Discrepancies in findings reported in the literature

The KDD Cup ’99 data set (The UCI KDD Archive 1999) was created for the Knowledge Discovery and
Data Mining Tools competition and associated conference in 1999 (Elkan 2000), and has since been used
extensively to validate prototypes of network based intrusion detection systems. However, as observed in
the previous chapter, there are discrepancies in the findings reported in the literature with this data set,
which are investigated in this chapter.

The investigation into the discrepancies uncovered another issue related to the KDD Cup ’99 data set,
and the data from which is has been derived. It was created by transforming the raw tcpdump of the
DARPA98/99 data (Lippmann et al. 2000a;b) to a set of features considered suitable for machine learn-
ing techniques (Lee and Stolfo 2000). Shortly after the DARPA98 data set was created, with the pur-
pose of facilitating the evaluation of existing IDSs, McHugh (2000) published a critique of the evaluation
project. Other researchers have published further criticisms of both the DARPA and KDD Cup ’99 data sets
(Bouzida and Cuppens 2006a;b, Brugger 2007a, Mahoney and Chan 2003, Sabhnani and Serpen 2004),
which has led Brugger (2007b) to claim that the data sets are fundamentally flawed and that findings based
solely on this data are invalid.

Most of the existing criticisms are directed at the DARPA data (Brugger 2007a;b, Mahoney and Chan
2003, McHugh 2000), but Brugger (2007b) generalises to the KDD Cup ’99 data set as well, which is not
entirely appropriate. However, according to some studies (Bouzida and Cuppens 2006a;b, Sabhnani and
Serpen 2004), the KDD Cup ’99 data set exhibits ‘issues’ that are not present in the DARPA data. The word
‘issues’ is used carefully here since the existing studies have not provided sufficient analysis and discussion
to conclude that these methodological factors are indeed issues of the data set. Several methodological
factors have been identified in this thesis to significalty affect the results. Furthermore, this thesis considers
whether these are indeed problems with the data set, or whether they are simply challenges of intrusion
detection, for which common machine learning approaches may be unfruitful.

McHugh (2000) hoped that by criticising the current efforts and discussing issues openly, this would aid
similar initiatives in the future. However, a decade later, no such initiative has been undertaken. Although
Brugger (2007b) discourages researchers from using the KDD Cup ’99 data set, he does acknowledge
that researchers continue to use it due to a lack of better publicly available alternatives. The review in
the previous chapter demonstrates this clearly. Therefore, it is important to address the criticisms and
methodological issues to determine whether the KDD Cup ’99 data set can be used in future work to
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provide useful findings.
Section 4.1 includes a more specific discussion of the discrepancies in the findings reported in the

literature. Section 4.2 discusses the main criticisms from the literature, directed at both the DARPA and
KDD Cup ’99 data sets. The focus of this work, however, is on the KDD Cup ’99 data set. Details of this
data set are provided in Appendix A on page 196. Section 4.3 details the aims of the empirical investigation
and the research method. Results are presented in Section 4.4, followed by a discussion in Section 4.5.
Section 4.6 concludes with a discussion of the implications of the findings obtained here, addressing future
use of the KDD Cup ’99 data set.

4.1 Contradictory results

There are three publicly available subsets of the KDD Cup ’99 data set, a (full) training set, a 10% version of
this training set, and a test set. Some researchers adopt the full training set and test set, as in the competition,
whilst others adopt the 10% training set and the test set. However, some adopt only the training set, or even
smaller subsets.

One can expect that using different subsets of the data will lead to different results, particularly since the
original test set includes 17 new attacks. However, not only are the results different, they are in some cases
contradictory. For example, Pan et al. (2003) claim that Artificial Neural Networks (ANNs) are unable to
detect U2R and R2L intrusions, whilst Mukkamala and Sung (2003) report comparatively high detection
rates (48% U2R and 95% R2L). Similarly, for Decision Trees (DTs), Sabhnani and Serpen (2004) report
high detection of U2R (99.18%) and R2L (99.18%), whilst Benferhat and Tabia (2005) report very poor
detection, 10.09% and 0.56% respectively. Such discrepancies are an issue since recent research on ma-
chine learning for intrusion detection attempts to combine classifiers based on observations that different
classifiers perform well on different classes of intrusion (Anuar et al. 2008, Gharibian and Ghorbani 2007,
Pan et al. 2003, Peddabachigari et al. 2007, Sabhnani and Serpen 2003, Xiang et al. 2008). Due to these
observations, it is not possible to conclude that one technique is better suited for a particular class of in-
trusion. However, there are great methodological differences between these studies, which are uncovered
when delving deeper into the results they present. For example, Pan et al. only included one type of intru-
sion for U2R and R2L each, whilst Mukkamala and Sung employed a very small set of data (5092 instances
for training and 6890 for testing).

An analysis of the existing findings indicates that the choice of data subset is the main cause of the
discrepancies. The subsets used can be classified as one of the following:

1. Selecting only a few types of intrusions.

2. Compiling a new, small, version of the data set.

3. Using the original training set only.

4. Using the original training set and test set.

5. Merging the training and test sets to create a new data set.

6. Filtering data to fit assumptions about the distribution of normal and intrusive data.

The classification above is largely self explanatory, but to avoid ambiguity, it should be noted that studies
using the training set only (#3) do employ validation methods such as holdout or cross validation. Approach
#6 is not within the scope of this paper, as it has only been observed in studies using clustering techniques to
perform unsupervised anomaly detection (Eskin et al. 2002, Leung and Leckie 2005, Portnoy et al. 2001).
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Table 4.1: Overview of the detection rates of U2R and R2L intrusions for ANN, DT and NB classifiers, as reported in
the literature.

Study Technique U2R % R2L % Data subset

Pan et al. (2003) ANN 0 0 #1

Bosin et al. (2005) NB 52.40 94 #2

Chebrolu et al. (2005) DT 48 90.58 #2

Mukkamala and Sung (2003) ANN 48 95 #2

Peddabachigari et al. (2007) DT 68 84.19 #2

Depren et al. (2005) Hybrid 80 98.02 #3

Ben Amor et al. (2004) DT
NB

7.89
11.84

0.52
7.11

#4

Benferhat and Tabia (2005) DT
NB

10.09
11.40

0.56
8.66

#4

Bouzida and Cuppens (2006a;b) DT
ANN

7.02
0

2.58
~27

#4

Sabhnani and Serpen (2003) DT
ANN

1.80
13.20

4.60
5.60

#4

Shafi et al. (2009) DT
ANN
NB

33.33
44.00
60.00

0.31
35.34
8.89

#4

Sabhnani and Serpen (2004) DT
ANN

87.50
89.28

99.18
99.44

#5

However, it can be noted that these studies adopted the training set only, which was then filtered to meet
their assumptions regarding the proportion of intrusion compared to normal data.

Much research has been undertaken in this domain with ANNs (Haykin 1998), DTs and naïve Bayes
(NB), which allows for a comparison of results across most of the subsets used in the literature. Although
the methods in the literature are not identical, clear trends in results can be derived from the results, as seen
in Table 4.1. This table presents results on U2R and R2L intrusions, which best demonstrates the problem.
The detection rates for Normal, Probing and DoS intrusions are generally similar on all subsets.

With reference to Table 4.1, the following discussion will exclude the first study since no class per-
formance can be compared, although the authors make such a generalisation themselves. The small data
subset (#2) has led to higher true positive rates compared with most of the other subsets; 48–68% U2R and
84.19–95% R2L. Unfortunately, the selection process used to create this data set is not transparent, which
prevents further analysis. Depren et al. (2005) do not offer classification rates for the DT used in their
study, but results of their hybrid system are included to demonstrate the classification rates possible on the
training set alone (#3). The results obtained on the official test set (#4) are similar for U2R (0–13.20%),
but significantly lower for R2L (0.52–27%). The reasons for this performance decrease are discussed in the
next section. Finally, merging the training and test sets (#5) to produce a new data set leads to the highest
detection rates of all subsets; 87.50–89.28% U2R and 99.18–99.44% R2L. Merging the data sets changes
the intrusion detection challenge significantly since there are no longer new attacks in the test set, making
it similar to adopting only the training set.
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4.2 Criticisms

Both the KDD Cup ’99 and DARPA data sets have been criticised by several researchers. Although the
KDD Cup ’99 data stems from the DARPA data, not all criticisms apply to both data sets. However,
the transformation of the DARPA data has introduced further issues. Key points from the literature are
discussed below.

4.2.1 Not representative of real network traffic

McHugh (2000) argues that the data in the DARPA data sets is not representative of data in a real network;
the structure of the simulated network would not allow for particular intrusions to be executed properly and
the distribution of intrusions are unrealistic. First, the proportion of intrusions is very large compared to the
normal traffic. Second, McHugh argues that one would observe a significantly higher proportion of Probing
instances compared with other intrusions. This applies to both the DARPA and KDD Cup ’99 data sets.
Consequently, McHugh argues that if systems are tested and tuned according to the DARPA (or KDD Cup
’99), they may perform poorly in a ‘real’ intrusion detection scenario.

With respect to the proportion of intrusion compared with normal traffic, some researchers have found
it necessary filter out data to make it fit their definition of what ‘real’ network data looks like. Examples
of this can be seen in applications of clustering to anomaly detection (Eskin et al. 2002, Leung and Leckie
2005, Portnoy et al. 2001), which assume that intrusions are in the minority, so that they can be detected as
outliers.

4.2.2 TTL values

Mahoney and Chan (2003) discovered that only intrusions had ‘Time To Live’ (TTL) values of 126 and
253, whilst the majority of normal data had TTL values of 127 and 254. Consequently, it would be possible
to perform intrusion detection based on one feature. Based on those findings, Brugger (2007b) encourages
that papers based solely on the DARPA data set should not be accepted for publication. However, Brugger
extends this statement to the KDD Cup ’99 data set, which is inappropriate since it does not contain this
information in its feature set.

4.2.3 Training and test sets

Sabhnani and Serpen (2004) investigated why machine learning algorithms achieve poor detection of U2R

and R2L intrusions in the KDD Cup ’99 data set. Their conclusion is that the training and test sets are simply
too different for machine learning algorithms to be successful. The underlying reason(s) for this is unclear,
although their findings indicate that it is not due to the new attacks in the test set. They suggest merging the
training and test sets to produce a new data set, which gives significantly better results. However, they do
not discuss whether this is appropriate.

4.2.4 R2L intrusions

Another issue related only to the KDD Cup ’99 data, as pointed out by Bouzida and Cuppens (2006b), is
that many snmpgetattack (R2L intrusion) instances are identical to normal instances. Consequently, this
causes misclassifications between these two classes. Bouzida (2006) argues that this is caused by poor
transformation of the tcpdump data from the DARPA data set. However, it is unclear whether it is possible
to separate these attack instances from normal traffic with alternative transformation functions. Irreducible
error due to overlapping classes is a feature of many practical machine learning problems (Gadaras et al.
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2007, Liu 2008, Raudys 2002), so although resulting in misclassification, it is not necessarily indicative of a
defective data set, but of an unsolvable aspect of the problem given the information available to the machine
learning algorithms.

4.3 Method

The aims of this empirical investigation are presented in Section 4.3.1. One of the aims is to determine
methodological factors that may affect the results, which are discussed in Section 4.3.2. Specifications of
the classifiers adopted for the experiments are provided in Section 4.3.3. Details of the data subsets and
metrics that are adopted are provided in Sections 4.3.4 and 4.3.5 respectively. Section 4.3.6 provides an
overview of the empirical investigation.

4.3.1 Aims of the investigation

There are three mains of this empirical investigation, as specified below.

Aim 1.1: Determine causes of discrepancies in the literature

The ‘review’ of the published work, in Section 4.1, suggest that the discrepancies may be primarily caused
by researchers adopting different subsets of the KDD Cup ’99 data set. It is not surprising that researchers
that adopt small subsets obtain different results from those that adopt the original training and test sets, since
the latter includes 17 new attacks. However, as indicated by Sabhnani and Serpen (2004), the new attacks
are not the main cause of the poor performance on U2R and R2L when the test set is adopted. Therefore,
the underlying factors that affect the results are not known.

There are two facets to this aim. The first is to uncover potential methodological factors that affect the
results, which is considered in the subsequent section, dealing with the following issues observed in the
literature:

1. Data subsets.

2. Validation method.

3. New attacks in test set.

4. R2L instances:

(a) snmpgetattack instances identical to Normal instances.

(b) attacks not present in the test set.

5. Class imbalance.

6. Duplicates.

The second facet of this aim is to empirically demonstrate how these methodological factors affect the
results.

Aim 1.2: Provide a benchmark to assist in interpreting the findings reported in the literature

The results reported in Table 4.1 on page 56 do not yield a comprehensive insight into the findings. Since
there are methodological differences in the studies, such as data preprocessing (scaling, normalisation,
removal of duplicates, feature selection, etc.), classifier configurations, and choice of classification approach
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(binary, multi-class, etc.), a comprehensive and objective analysis of the results is not possible. Therefore,
benchmark results, produced using well understood machine learning classifiers and following a repeatable
method, are needed, in order to facilitate a better interpretation of the current body of research.

Aim 1.3: Determine whether the KDD Cup ’99 data set is useful to current and future research

The data set is outdated, in terms of the intrusions that are present, and it has been subject to criticism,
as discussed in Section 4.2 on page 57. Nevertheless, researchers continue to use it. Therefore, it is
important to determine if and how it can still be used to provide valid and useful findings in future research.
In addressing this aim, the usefulness of the data to both the intrusion detection and machine learning
communities must be considered.

4.3.2 Methodological factors

This section outlines methodological factors that are considered in this study. Additional factors that are
not included here are highlighted in Section 4.3.2.5.

4.3.2.1 Validation and taxonomy

The studies that do not adopt the original training and test sets may take a different approach to validation,
such as cross validation. This has been done, for example by Sabhnani and Serpen (2004), as they merge
the training and test sets to form a new data set. Whilst cross validation allows for more extensive use of
the data for training and testing, the results obtained with holdout validation may be significantly different
as it will be more sensitive to the selection of training and test data. Two particular factors in this case may
affect the results: (1) the magnitude of duplicates, which is discussed further, below, and (2) the taxonomy
that is adopted, which may affect the minor classes in particular.

Six attacks in the data set have less than 10 instances each, being as low as 2 in the training set. Even
when grouping the attacks, there are only 52 instances of U2R attacks in the official training set (whether
the full training set or the 10% version) and 70 in the test set. In this context, it is important to bear in mind
that the attacks in each of the intrusion classes (in the taxonomy of Kendall (1999)) may not be similar
in terms of the feature values, as discussed by McHugh (2000). Hence, if data is sampled randomly, the
majority of instances in the training set may be of significantly different attacks than those in the test set.

4.3.2.2 Difference between the training and test sets

The empirical investigation that Sabhnani and Serpen (2004) have conducted, which claims that the train-
ing and test sets are unacceptably different, is constrained. First, they only perform binary classification;
U2R versus non-U2R instances, and R2L versus non-R2L instances. It is not clear whether their findings
can be generalised to all classes, and how these would compare with other studies conducting multi-class
classification. Therefore, further analysis as a multi-class classification problem is desirable. Second, there
is no investigation of the data set itself, to indicate why the training and test sets are too different for more
successful classification. Their experiments indicate that the difference is not due to the new intrusions in
the test set, though they do not examine the effects of removing them. Third, they do not discuss whether
merging the data sets is actually appropriate, despite conducting such a significant modification to the clas-
sification problem. Although significantly better detection of U2R and R2L is achieved, this may not be a
realistic reflection of the intrusion detection challenge.
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4.3.2.3 Classification of the R2L class

The classification of R2L intrusions is likely to be poor for two reasons, when the original training and test
sets are used:

1. There are Normal instances that are identical to R2L intrusions.

2. Some R2L attacks are not represented in the test set, namely spy and warezclient.

As pointed out by Bouzida and Cuppens (2006b), many snmpgetattack instances are identical to Normal

instances. Statistics gathered in this study reveal that there are 8,054 Normal instances identical to sn-

mpgetattack instances; 7,273 of which are in the test set, the remaining in the training set (10% version).
There are also 21 Normal instances that are identical to DoS attacks; 12 ping of death and 9 teardrop.
Misclassifications are therefore inevitable, which still remains an issue when the training and test sets are
merged.

There are only 2 instances of spy attacks, but, more significantly, there are 1,020 instances of warez-

client, which is 90.59% of all R2L instances in the training set. Furthermore, there is a large increase in R2L

intrusions in the test set; from 1126 to 16347, and nearly doubling the number of attack types from 8 to 14.
Therefore, regardless of the introduction of new attacks in the test set, detection of R2L is likely to be poor.

4.3.2.4 Duplicates and class imbalance

Due to the lack of temporal information in the KDD Cup ’99 data set, there are many duplicate instances
in the data set. Duplicates may have a negative effect on on the training process of machine learning tech-
niques, because they affect the quality of the data. Haykin (1998, p. 179) and LeCun (1998) discuss the
importance of high quality training data (in the context of neural networks trained with backpropagation),
and argue that the training samples should be diverse. Duplicates compromise this diversity, but the effects
of this are not indicated by Haykin or LeCun. They are, however, examined by Kolcz et al. (2003), who
investigate empirically the effects of duplicates on naïve Bayes and a Perceptron with Margins, in an appli-
cation to spam detection. They observe that the amount of duplication has a negative effect on the accuracy
of the classifiers, and argue that duplicates should be removed.

The DoS and Probing classes exhibit the most duplicates, due to the nature of the intrusions. Table 4.2
provides an overview of the number of instances of each class before and after removing duplicates, which
illustrates the significant changes to the class balance.

Table 4.2: Number of instances of each class in the 10% training set and test set before and after removing duplicates.
Class proportion is given in brackets.

Training Test

Before After Before After

Normal 97,278 (19.69%) 87,832 (60.33%) 60,593 (19.48%) 47,913 (62.00%)

Probing 4,107 (0.83%) 2,131 (1.46%) 4,166 (1.34%) 2,682 (3.47%)

DoS 391,458 (79.24%) 54,572 (37.48%) 229,853 (73.90%) 23,568 (30.49%)

U2R 52 (0.01%) 52 (0.03%) 70 (0.02%) 70 (0.09%)

R2L 1,126 (0.23%) 999 (0.69%) 16,347 (5.26%) 3,058 (3.96%)

Class imbalance has not been considered previously in studies on intrusion detection. However, accord-
ing to the general literature on learning from imbalanced data, common machine learning techniques such

60



CHAPTER 4. DISCREPANCIES IN FINDINGS REPORTED IN THE LITERATURE

as ANNs and DTs are known to be biased towards the major class(es) (Chawla 2003, Jo and Japkowicz
2004). As a consequence, if the imbalance is extreme, the minor class(es) may simply be ‘ignored’. There-
fore, if the duplicates are removed, which causes the class balance to change significantly, the results are
likely to be different.

Another factor to consider is that duplicates may also lead to somewhat deceptive results during testing,
since the ability to detect one instance will be multiplied according to the number of duplicates. If an
instance with many duplicates in the test set is not classified correctly, this can cause a misleadingly poor
classification rate on that particular class. The converse is also true. It follows that two classifiers that obtain
a small difference in the number of unique instances correctly classified, may obtain significantly different
results.

4.3.2.5 Issues not considered here

There are methodological factors that are not considered here due to the scope of this work. For example,
although Bouzida (2006) argues that the transformation of the tcpdump data in the DARPA data set is
flawed, alternative approaches are not examined here. The focus is on the use of the existing KDD Cup ’99
data set.

Different studies have adopted different classification approaches, such as binary classification (nor-
mal/intrusion), the five class classification used in the DARPA evaluation and KDD Cup ’99 competition,
or individual attacks. Only the five class classification is used here, as it is the most widely used. However,
in some experiments, an analysis of individual attacks is conducted to confirm the underlying causes of
particular observations. For example, the classification of new attacks in the test set.

There are different ways of preprocessing the data, such as how to deal with nominal features, scal-
ing/normalisation of feature values, and feature selection. Some classifiers can deal directly with nominal
features, whilst others can not. Such preprocessing is not required for the classifiers adopted here, however,
and feature selection is not performed.

4.3.3 Classifiers

Much of the previous research that has motivated this study include Decision Trees (DTs), naïve Bayes (NB)
and Artificial Neural Networks (ANNs). However, ANNs are not adopted here since the training process is
too time consuming for the extensive experiments conducted for this investigation, given the constraints on
time and computing resources. NB is a probabilistic, frequency based technique, and the literature suggest
that NB does not have as strong a bias towards the major classes as DTs and ANNs (Ben Amor et al.

2004, Kolcz et al. 2003, Panda and Patra 2007). Therefore, NB is likely to produce different classification
behaviour/performance. Both the DT and NB algorithms are employed from Weka v. 3.4 (Witten and Frank
2005, Anon 2006), which supports replication of these experiments.

The aim of this study is not to develop new techniques, which might outperform those adopted here;
they were chosen because they are widely used and are well understood, making them ideal for the purpose
of this investigation. The specifications of the classifiers are provided in their respective sections below.

4.3.3.1 Decision tree

A J.48 DT is used, which is a Java implementation of the C4.5 algorithm (Quinlan 1993). This is the most
commonly used DT in this domain. Both pruning and reduced error pruning (REP) have been examined,
investigating confidence factors of {0.05, 0.25, 0.50} for the former. Reduced error pruning can prevent
over fitting of the data (Mitchell 1997, pp. 69–71), and is employed here with 5 folds, which leaves 80% of
the training set for building the tree, and 20% for pruning.
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Other settings include: minimum of 2 instances per leaf node, using sub tree raising, but not employ-
ing binary splits or LaPlace for smoothing counts at leaf nodes. These settings were determined during
preliminary experiments.

4.3.3.2 Naïve Bayes

The NB algorithm in Weka can use one of two configuration options for dealing with numeric parameters,
namely kernel estimation or supervised discretisation. Both options were investigated and it was observed
that no processing of numeric parameters and kernel estimation led to significantly worse performance than
supervised discretisation (in terms of true positive rates). Kernel estimation led to similar classification
rates as the DT, performing well on the major classes, but not the minor classes. No processing of numeric
parameters simply led to an overall decrease in classification rates. Therefore, results with supervised
discretisation are reported here.

4.3.4 Data set and validation

All subsets of the KDD Cup ’99 data set are adopted here, which are publicly available at the UCI KDD
Archive (1999). However, due to the memory requirements of the full training set (requires more than 3GB
RAM when Weka is used), only a version of the data set with no duplicates could be used. The 10% training
set and test set were merged to produce a new version of the data set, as in (Sabhnani and Serpen 2004).
The small subset used in some studies (Bosin et al. 2005, Chebrolu et al. 2005, Mukkamala and Sung
2003, Peddabachigari et al. 2007, Sung and Mukkamala 2003) is not adopted since there is not enough
information in the literature to recreate it.

At the time this investigation started, there was one bugged line in the training set (a Normal instance
with too many feature values), which was deleted. This instance has been removed in the data set that is
currently available to download. The detection is performed by the five classes presented in Section 2.2 on
page 8, with more details on specific attacks in Appendix A on page 196.

Two validation methods are adopted in this study: holdout and cross validation. Holdout validation was
used in the KDD competition, in which the data was split into a training and test set. In the experiments
conducted on the training set alone, or on the merged data, both holdout and cross validation is used.
According to the findings of Kearns (1996), for holdout validation, the data is partitioned so that 80% of
the instances are used for training and the remaining for testing. The selection of data for each partition
is performed chronologically1 based on individual attacks whilst ensuring that attacks with few instances,
even as low as two, will receive at least one instance in the test partition. Ten folds is chosen for cross
validation, which is supported by an empirical investigation with DTs and NB by Kohavi (1995), and is
considered common by Depren et al. (2005).

4.3.5 Metrics

Several metrics are adopted in this study to provide multiple perspectives on performance. Confusion
matrices present information about predicted and actual classifications. An example of a confusion matrix
can be seen in Table 4.3. Rows (predicted) show what the instances of each respective class have been
classified as. Take the first row, for example, 60,262 Normal instances were classified as Normal, whilst
243 Normal instances were classified as Probing, etc. The final column, %correct, indicates that 99.50% of
Normal instances were correctly classified (as Normal). These classification rates are used in performance
overviews presented throughout the thesis. Columns (actual) show everything classified as that respective

1The selection is performed chronologically so that these experiments can be repeated in other, independent, studies.
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class. For example, 14,527 instances of R2L attacks were classified as Normal. The last row, %correct,
indicates that 74.60% of all Normal classifications were actually Normal.

Table 4.3: Confusion matrix for the winning entry of the KDD Cup ’99 competition (Pfahringer 2000).

Actual\Predicted Normal Probing DoS U2R R2L %correct
Normal 60,262 243 78 4 6 99.50
Probing 511 3,471 184 0 0 83.30

DoS 5,299 1,328 223,262 0 0 97.10
U2R 168 20 0 30 10 13.20
R2L 14,527 294 0 8 1,360 8.40

%correct 74.60 64.80 99.9 71.40 98.8

From the confusion matrices, accuracy, true positive and false positive rates are calculated, as defined in
Section 2.1 on page 7. These provide a numerical measure of how well the classifiers perform overall, whilst
the confusion matrices allow the behaviour to be analysed. The different metrics can be biased and can give
very different impressions of the performance. For example, accuracy does not give any information about
behaviour of the classifiers and they can give the impression of excellent detection rates provided the major
class(es) are detected well. This is an issue here due to the significant class imbalance in the data set. For
example, if U2R intrusions are not detected at all, it will have an insignificant impact on the accuracy (and
the TPR).

Although Receiver Operator Curves (ROCs) are popularly used in the literature, to give a measure of
performance of IDSs in terms of trade-off between TPR and FPR, they are not used here as they do not add
any means of better understanding the results. For the same reason, the cost matrix used in the KDD Cup
’99 competition, to give a single performance metric, is not adopted here.

4.3.6 Outline of the empirical investigation

Many experiments are conducted in this study to demonstrate empirically the impact of the methodological
factors, as discussed above in Section 4.3.2 on page 59. The experiments can be summarised as follows:

General observations: exploring classifiers performance and validation methods.

Performance on original data sets: providing a benchmark that is used to compare the results obtained
from the subsequent experiments.

Removing new attacks from the test set: this is undertaken to determine whether these are the sole rea-
son for the performance difference when adopting the training and test sets, compared with only
adopting the training set or merging the training and test sets. There is a particular focus on the R2L

class for this set of experiments.

Removing normal instances identical to intrusions: this is conducted on the training and test sets, as
well as the merged data set. As above, there is a focus on the R2L class.

Removing duplicates: this is conducted on all data sets, with an emphasis on how it affects the class
balance.

The purpose of this study is to investigate empirically the factors that may affect the results, but this does not
imply that they are considered flaws of the data at this point. Some of the factors have indeed been addressed
as flaws of the data set in other studies, as previously discussed in Section 4.2 on page 57. However, some
factors may be considered practical challenges of intrusion detection, rather than flaws, which is discussed
further in Section 4.6.
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4.4 Results

General observations are discussed in Section 4.4.1, followed by results on the original data subsets (no
preprocessing) in Section 4.4.2. Section 4.4.3 discusses results obtained when removing new attacks from
the test set. Sections 4.4.4 and 4.4.5 discuss results obtained on the different data subsets when removing
duplicates and Normal instances identical to intrusions.

The following abbreviations are used in the tables of results:

• Data set: Tr = Training set only; Tr&T = training and test sets; M = merged data set.

• Data processing: [o] refers to original data; [d] no duplicate instances; [n] no Normal instances
identical to intrusions.

4.4.1 General observations

This section discusses observations of algorithm behaviour and the results obtained with the two validation
methods considered in this study. According to these observations, the results with reduced error prun-
ing and holdout validation are excluded from consecutive sections as they detract from the focus of the
investigation.

4.4.1.1 Algorithms

Of the two classifiers adopted in this study, NB obtains higher classification rates on the minor classes than
the DT, which was expected. The trade-off is a lower classification rate on the major classes, Normal and
DoS, which coincides with other observations in the literature (Ben Amor et al. 2004, Panda and Patra 2007).
Despite these differences, both techniques obtain similar changes in classification rates when different data
subsets are employed.

The results obtained with the DT using reduced error pruning (REP) differ from those using confidence
factors (CF). Since REP prunes according to a fold (partition) of the training set, the success depends on how
accurate an estimate this fold is of the data in the test set. Considering this in the context of the findings
of Sabhnani and Serpen (2004), demonstrating how machine learning techniques fail to detect U2R and
R2L intrusions due to significant differences between the training and test sets, it is not unexpected that the
performance is worse with REP.

For all experiments, the accuracy and true positives are worse with REP. Generally, the classification
rates on U2R and R2L are lower with REP, whilst the differences in the detection of the other classes are
negligible. The one exception to this observation is an increased classification rate with REP on Probing

and U2R when the original training and test sets are used. Further analysis of the data would be necessary to
shed more light on these observations. Nevertheless, it can be concluded that REP has an overall detrimental
effect on the results. An overview of the differences in classification rates obtained with REP compared with
CF is given in Table 4.4.
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Table 4.4: Difference in classification rates of DTs when REP is used compared with CF. A positive value signifies
improved performance with REP compared with CF.

Data set Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

Tr [o] −0.45 −0.01 +0.04 −0.08 −0.22 0 −5.77 −1.16

Tr [d] −0.04 −0.06 +0.02 −0.02 −0.33 −0.02 −19.23 −1.81

Tr&T [o] −0.06 −0.02 +0.07 −0.07 +9.22 −0.06 +5.71 −2.46

Tr&T [d] −1.85 −2.63 −0.22 +0.22 −0.79 −2.51 −5.72 −0.60

Tr&T [n] −0.37 −0.42 +0.05 −0.05 +0.48 −0.09 −4.29 −5.66

M [o] −0.02 −0.06 −0.05 +0.05 −0.45 0 −0.82 −11.85

M [d] −0.03 −0.11 −0.01 +0.01 −0.23 0 −4.92 −1.53

M [n] −0.03 −0.02 +0.03 −0.03 −0.40 0 −11.48 −0.41

4.4.1.2 Validation methods

The results obtained with the two validation methods, holdout and cross validation, are generally signifi-
cantly different. There are negligible differences in the true positive rates (TPR), though holdout validation
appears to give a more negative representation of the detection rates on the minor classes; U2R in particular.
With holdout validation, there are merely 10 U2R instances in the test partition when the training set is used,
which is a two fold issue. On the one hand, poor detection of this class will have an insignificant impact
on the accuracy and TPR. On the other hand, the actual detection rate of U2R is very sensitive to number
of instances correctly classified. Thus, the DT, detecting one U2R intrusion leads to 10% U2R detection,
which is merely 0.20% less TPR than when cross validation is used (even though cross validation leads to
46.15% U2R intrusions detected). Holdout validation on the training set leads to unpredictable results in
some cases too; for example, when duplicates are removed. This has no impact on the FPR for the DT
(compared with when duplicates are present), but this leads to an increase of ~15% in the FPR for NB. In
addition, DoS detection decreases to ~10%, but is mainly misclassified as Probing. Similarly, the majority
of false positives are detected as Probing. An overview of the classification rates obtained on the training
set with holdout and cross validation is provided in Table 4.5.

Table 4.5: Comparison of classification rates obtained with holdout and cross validation (CV) on the training set.

Tech., val. method Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

DT, holdout 99.61 99.78 0.24 99.76 99.51 99.63 10 80.97

DT, CV 99.97 99.98 0.04 99.96 99.37 99.99 46.15 96.36

NB, holdout 77.83 99.78 3.19 96.09 99.76 73 80 98.23

NB, CV 98.71 99.83 1.78 98.22 98.47 98.84 80.77 96.71

As will be discussed further in subsequent sections, the experiments on the merged data set are more
stable and yield more predictable and understandable results. Similarly to the results on the training set, the
TPR remains nearly identical regardless of validation approach. However, the FPR varies significantly. On
the original data, the FPR is higher for both the DT and NB with holdout validation, ~5% and ~11% respec-
tively. However, this difference is reduced when duplicates and Normal instances identical to intrusions are
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removed. In this case, for NB, the FPR is even ~2.5% lower than when cross validation is used.
Depren et al. (2005) state that cross validation is preferred when there is limited data available. From the

range of experiments conducted, the results obtained with holdout validation appear deceptive in some cases
compared with the results obtained with cross validation seeming to be very sensitive to the class balance
and duplicates. This also needs to be considered in context of the discussion in Section 4.3.2.1 on page 59,
that the individual attacks within the four classes of intrusion may be significantly different in terms of their
feature values. For example, when one split is selected, the training partition may contain many duplicates
of certain attacks, whilst the test partition may have a high proportion of other attacks that are significantly
different to those in the training partition. Then, in experiments where duplicates are removed, the results
will be biased by another training / test split. The effects of this are particularly prominent for the minor
classes, especially U2R, as observed in this study.

Generally, then, it is considered here that cross validation provides a more reliable evaluation, and,
where possible, only cross validation results are reported in the following sections. Results obtained with
holdout validation are, however, provided in Appendix B.1 on page 199. Note that, due to memory require-
ments, the run-time for cross validation on the full training set is infeasible. Therefore, for the full training
set, holdout validation is used.

4.4.1.3 Full training set

Due to the magnitude of data in the full training set, it was only possible to adopt a version with no duplicate
instances. Moreover, due to the memory requirements, the run time for cross validation became infeasible.
Therefore, results are reported only for holdout validation.

In most aspects, the results obtained with the full and 10% versions of the training set are similar. How-
ever, whereas the 10% training set led to a significant decrease in DoS classification rates when duplicates
are removed, they remain high when the full training set is used (holdout validation). The FPR is also
lower. Interestingly, the DT is able to detect 60% more U2R attacks (70% compared with 10%) with the
full training set, compared with the 10% version, achieving the same detection rate as NB. An overview of
the results is provided in Table 4.6.

Table 4.6: Overview of results obtained with the full and 10% training sets, using holdout validation.

Tech. - data Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB - 10% [o] 77.83 99.78 3.91 96.09 99.76 73.00 80.00 98.23

NB - 10% [d] 52.89 99.43 19.13 80.87 100 5.16 80.00 98.01

NB - Full [d] 95.29 99.91 5.60 94.40 99.82 97.93 70.00 97.01

DT - 10% [o] 99.61 99.78 0.24 99.76 99.51 99.63 10.00 80.97

DT - 10% [d] 65.96 99.70 0.31 99.69 99.53 9.85 10.00 97.01

DT - Full [d] 99.94 99.93 0.04 99.96 98.34 99.98 70.00 96.02

An overview of results when the original test set is employed is provided in Table 4.7. Contrary to the
results obtained with holdout validation on the training set, the results obtained with the DT deteriorate
when the full training set is used (compared with the 10% version); approximately 10% less U2R and 5%
less R2L intrusions are detected. The choice of training set has an insignificant effect on NB except for the
TPR, which is nearly 10% higher with the full training set when duplicates are removed. This is due to
more DoS intrusions being misclassified as Probing instead of being classified as Normal.
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Table 4.7: Overview of results obtained with the full and 10% training sets, using the original test set.

Tech. - data Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB - 10% [o] 91.14 91.76 1.10 98.90 83.61 94.98 64.29 10.44

NB - 10% [d] 39.48 78.59 1.02 98.98 84.13 25.04 64.29 10.42

NB - Full [d] 39.35 87.95 1.21 98.79 86.68 24.90 60.00 9.93

DT - 10% [o] 92.58 91.16 0.51 99.49 75.61 97.27 12.86 5.79

DT - 10% [d] 92.48 91.24 0.77 99.23 79.16 97.03 21.43 7.30

DT - Full [d] 92.18 91.03 0.55 99.45 80.44 96.87 10.00 2.71

4.4.2 Performance on original data

This section presents the results obtained on the data subsets without any preprocessing, such as removing
duplicates or Normal instances identical to intrusions. An overview of the classification rates is provided in
Table 4.8.

Table 4.8: Overview of results of the DT and NB on the different data subsets.

Data - Tech. Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

Tr - NB 98.71 99.83 1.78 98.22 98.47 98.84 80.77 96.71

Tr - DT 99.97 99.98 0.04 99.96 99.37 99.99 46.15 96.36

Tr&T - NB 91.14 91.76 1.10 98.90 83.61 94.98 64.29 10.44

Tr&T - DT 92.58 91.16 0.51 99.49 75.61 97.27 12.86 5.79

M -NB 95.37 99.03 14.17 85.83 98.79 97.72 83.61 96.11

M - DT 99.16 99.53 2.19 97.81 98.96 99.99 53.28 93.05

The TPR and individual classification rates on the intrusion classes are very similar for the training and
merged data sets. Furthermore, the classification rates on the intrusion classes are significantly higher on
these data sets compared to the original test set; particularly on Probing, U2R and R2L. However, there is
a significant difference in the FPR obtained on the training and merged data sets. The FPR is higher on
the merged data set, and, consequently, the TNR (correct classification of Normal) is lower. This has been
found to be related to the R2L class.

An analysis of confusion matrices reveal that the higher FPR on the merged data set is caused by
misclassifications of R2L and Normal instances. As discussed previously in Section 4.3.2.3 on page 60, this
is expected due to snmpgetattack instances identical to Normal instances. On the test set, R2L detection is
poor, and the majority of the misclassifications are as Normal, which is shown in Table 4.9. However, on
the merged data set, classification behaviour is changed, giving high detection of R2L, but with a significant
proportion of Normal instances misclassified as R2L. See Table 4.10 for a confusion matrix for NB on the
merged data set, illustrating this.
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Table 4.9: Confusion matrix for the DT on the training and test set.

Actual\Predicted Normal Probing DoS U2R R2L %correct
Normal 60,285 218 75 2 13 99.49
Probing 888 3,112 166 0 0 74.7

DoS 6,253 11 223,588 0 1 97.27
U2R 55 0 0 9 6 12.86
R2L 14,940 344 3 114 946 5.79

%correct 73.14 84.45 99.89 7.2 97.93

Table 4.10: Confusion matrix for NB on the merged data set.

Actual\Predicted Normal Probing DoS U2R R2L %correct
Normal 135,507 2,376 19 824 19,145 85.83
Probing 65 8,173 13 17 5 98.79

DoS 5,889 4,706 607,163 3237 316 97.72
U2R 18 0 0 102 2 83.61
R2L 303 148 0 228 16,794 96.11

%correct 95.57 53.06 99.99 2.31 46.31

The decreased detection rates on the original test set cannot be explained by the snmpgetattack instances,
as with the merged data set. The performance on Probing and U2R is also significantly worse. For both the
DT and NB, the majority of misclassifications are false negatives, as illustrated in Table 4.9, above. This
is influenced by the additional attacks in the test set. However, as will be demonstrated in Section 4.4.3,
removing the new attacks from the test set still leads to poor classification rates on U2R and R2L. Another
factor is that R2L validation is arguably very poor when using the original training and test sets, in which
the test set does not contain the intrusion (warezclient) that makes up 90.59% of the R2L intrusions in the
training set. In the merged data set, this is not an issue, since the data has been sampled proportionally for
each attack. The following sections discuss further these factors.

4.4.3 Removing new attacks from the test set

It is clear that the new attacks pose a greater challenge for the machine learning techniques, but are not the
sole reason for the low detection rates of U2R and R2L when the original training and test sets are used. As
seen in Table 4.11, removing the new attacks leads to an overall increase in detection rates except for U2R.
Probing and DoS are now detected with nearly 100% accuracy and there is a significant increase in R2L

detection. However, U2R and R2L detection remains very low compared with the results obtained with the
merged data set (which was more than 50% U2R and 90% R2L).

Table 4.11: Overview of results on the training and test set, before and after removing new intrusions from the test set.

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB [o] 91.14 91.76 1.10 98.90 83.61 94.98 64.29 10.44

NB [n] 96.57 98.13 1.10 98.90 99.66 97.74 64.10 28.40

DT [o] 92.58 91.16 0.51 99.49 75.61 97.27 12.86 5.79

DT [n] 98.13 97.98 0.51 99.49 98.65 99.98 10.26 15.77
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The high detection rates of Probing obtained here suggest that the decreased performance on the original
training and test sets is because the new attacks are too different to the existing Probing intrusions in the
training set. An additional experiment was conducted to verify this, by performing classification according
to the individual attacks in order to determine which attacks are being misclassified. Some differences in
the results are to be expected, since the classification approach is changed, but they are similar, as seen in
Table 4.12.

Table 4.12: Overview of predicted Probing classifications for the DT on the original training and test sets.

Classification approach Normal Probing DoS U2R R2L %correct

Five class 888 3,112 166 0 0 74.70

Individual attacks 656 3,283 227 0 0 78.80

Of the two new Probing intrusions, mscan and saint, it is the former that is responsible for the majority
of misclassifications (822 out of 883). The saint intrusions are generally classified as satan and ipsweep

(other Probing intrusions), whilst mscan is predominantly misclassified as Normal and neptune (DoS).
An analysis of the feature values for the Probing intrusions suggests some underlying causes of these
misclassifications. Most strikingly, of the services that mscan targets, no other Probing attacks target imap4,
but a large proportion of neptune attacks do. Further, of the other services mscan targets, very few of the
other Probing attacks target the same; only one instance of satan targets pm dump, five telnet and pop3, and
three sunrpc. Compared with the poor classification rates of mscan, all other Probing attacks contributed
with high detection rates, 98.04% ipsweep, 100% nmap, 91.24% portsweep, 99.45% satan, and 97.96%
saint.

These observations support the criticism and potential dangers of adopting the taxonomy employed in
the DARPA evaluation (McHugh 2000), as discussed in Section 4.3.2.1 on page 59. The saint intrusion is
evidently similar to the existing Probing attacks in the training set (particularly satan), but mscan is not.

4.4.4 Removing normal instances identical to intrusions

Removing the Normal instances that are identical to intrusions does not have a significant impact on the
classification rates on the test set. However, the difference is more clear on the merged data. The detection
rate of Normal instances has increased and the FPR has decreased due to not misclassifying as many Normal

instances as R2L, which coincides with expectations. Refer to Table 4.13 for an overview of these results.

Table 4.13: Results obtained on the merged data set with [o] and without [n] Normal instances identical to intrusions.

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB [o] 95.37 99.03 14.17 85.83 98.79 97.72 83.61 96.11

NB [n] 96.33 99.04 9.59 90.41 98.83 97.72 81.97 95.75

DT [o] 99.16 99.53 2.19 97.81 98.96 99.99 53.28 93.05

DT [n] 99.93 99.96 0.17 99.83 99.03 99.99 61.48 98.99
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4.4.5 Removing duplicates

There is generally a negligible difference in the results obtained when duplicates are removed from the
training set. The most significant difference is the detection of DoS intrusions for NB, decreasing from
98.84% to 95.50%. As discussed in the previous section, the results differ significantly depending on
the validation method used. It is worth mentioning that the detection of DoS intrusions decreased from
99.63% to 9.85% for the DT using holdout validation. However, the majority of DoS intrusions were
detected as Probing, and, thus, the true positive and false negative rates remained similar. Similarly, the
most significant difference when the test set is adopted is the detection rate on DoS for NB, detecting only
25.04%. The confusion matrix in Table 4.14 shows that the majority of misclassifications of DoS intrusions
are as Probing, which is why the TPR remains high. However, it does also lead to a large number of false
negatives.

Table 4.14: Confusion matrix of NB on the training and test sets, when duplicates were removed from the training set.

Actual\Predicted Normal Probing DoS U2R R2L %correct
Normal 59,972 363 7 67 184 98.98
Probing 396 3,505 125 112 28 84.13

DoS 38,817 132,078 57,561 1,288 109 25.04
U2R 16 0 0 45 9 64.29
R2L 14,391 141 0 112 1,703 10.42

%correct 52.8 2.58 99.77 2.77 83.77

The results obtained with the DT are more positive, leading to increased detection of the minor classes,
Probing, U2R and R2L, as seen in the overview in Table 4.15. The class imbalance is not as great when
removing duplicates, which is arguably why the DT is now better able to detect the minor classes, whilst
NB, being less biased towards the major classes, maintains an almost identical detection rate on these
classes.

Table 4.15: Classification rates on the test set when training on the original training set [o] compared to removing
duplicates [d] (from the training set only).

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB [o] 91.14 91.76 1.10 98.90 83.61 94.98 64.29 10.44

NB [d] 39.48 78.59 1.02 98.98 84.13 25.04 64.29 10.42

DT [o] 92.58 91.16 0.51 99.49 75.61 97.27 12.86 5.79

DT [d] 92.48 91.24 0.77 99.23 79.16 97.03 21.43 7.30

Overall, the effects of removing duplicates from the merged data set are more predictable and positive
for both techniques. The greatest change in the results is a reduction in misclassifications of Normal and
R2L, leading to significantly lower FPRs and increased detection of Normal instances. The main contributor
to this improvement is that most of the snmpgetattack instances identical to Normal instances are removed
since they are duplicates; only 86 instances remain. The class imbalance is also reduced, which, as discussed
above, is a likely cause of better detection of the minor class U2R for the DT. An overview of the results
on the merged data set is presented in Table 4.16. The results with NB are positive in the sense that true
negative rate (correct classification of Normal) is higher and the FPR is significantly lower. However, the
detection rates on DoS, U2R and R2L have decreased.
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Table 4.16: Overview of classification rates obtained with [o] and without [d] duplicates in the merged data set.

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

NB [o] 95.37 99.03 14.17 85.83 98.79 97.72 83.61 96.11

NB [d] 94.45 97.47 4.59 95.41 98.52 92.67 76.23 89.50

DT [o] 99.16 99.53 2.19 97.81 98.96 99.99 53.28 93.05

DT [d] 99.68 99.56 0.18 99.82 97.97 99.94 61.48 93.86

Experiments on the merged data set has the advantage of having duplicates removed from both the
training and test data. Further experiments on the training and test sets, removing duplicates from the test
partition also, led to significantly higher classification rates compared with removing duplicates only from
the training set. For example, NB, which achieved 25.04% correct detection of DoS intrusions, now detects
84.41%. Further, R2L detection increases by approximately 20% for both algorithms.

4.5 Summary and discussion

The first and primary aim of this investigation was to establish the underlying causes of the discrepancies in
the findings reported in the literature. The empirical findings obtained here demonstrate clearly that there is
a significant impact on results depending on the choice of data subset/partition, processing such as removing
duplicate instances, and validation method. This goes some way towards explaining the often substantial
differences and contradictions observed across the current body of empirical work. The importance of these
findings is two fold: first, the perils of comparing results and findings across different studies are evident;
second, it is clear that there is a need for deeper consideration of methodological factors in empirical studies.

The second aim of this study was to provide an empirical benchmark that can be used to help interpret
the findings of studies that adopt different data subsets. The findings here have demonstrated that it is im-
perative to know the details of the data and processing adopted. Otherwise, the classifiers may be attributed
credit for something that is actually due to manipulating the data. An overview of classification rates on
the three subsets examined here is presented in Table 4.17. The results presented here on the training and
merged data sets are with cross validation.

Table 4.17: Overview of results of the Decision Tree (DT) and naïve Bayes (NB) on the three subsets adopted in this
study.

Tech. - Data Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

DT - Tr 99.97 99.98 0.04 99.96 99.37 99.99 46.15 96.36

DT - Tr&T 92.58 91.16 0.51 99.49 75.61 97.27 12.86 5.79

DT - M 99.16 99.53 2.19 97.81 98.96 99.99 53.28 93.05

NB - Tr 98.71 99.83 1.78 98.22 98.47 98.84 80.77 96.71

NB - Tr&T 91.14 91.76 1.10 98.90 83.61 94.98 64.29 10.44

NB - M 95.37 99.03 14.17 85.83 98.79 97.72 83.61 96.11

Results obtained on the original test set are bound to be worse for machine learning techniques applied
to misuse detection, compared with results that can be obtained on the training set alone, or by merging the
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training and test sets. This is due to the new attacks in the test set and the selected training data for R2L; i.e.,
not testing the R2L intrusion that makes up 90.59% of the training set (warezclient), whilst also doubling
the number of R2L attacks in the test set. Therefore, the performance on this class remains poor even when
the new attacks are removed from the test set. Detection of Probing is approximately 20% lower on the test
set, compared with the other subsets, which is due to very poor detection of one of the new attacks, mscan.
This attack is accountable for the majority of misclassifications (822 out of 883 for the DT). The feature
values of these attacks are not similar to the other Probing attacks, with particular reference to the services
that are targeted.

It is inevitable that misclassifications will occur between Normal and R2L when the original test set is
adopted, due to snmpgetattack instances being identical to Normal instances. This remains a factor that
affects misclassifications on the merged data set. According to the findings obtained here, the misclassifi-
cations are mainly in the form of false positives on the merged data set, giving higher detection of R2L. On
the original test set, the misclassifications appear primarily as false negatives.

One form of preprocessing the data that was found to have a significant impact on the findings (gen-
erally) is removing duplicate instances. This has been done by, for example, Sabhnani and Serpen (2004)
on the merged data set. First, removing duplicates improves the general data quality, since the instances
become more diverse (LeCun et al. 1998, Haykin 1998, p. 179). Second, removing duplicates also removes
most of the snmpgetattack instances that are identical to Normal instances. Consequently, misclassifications
between Normal and R2L are reduced significantly. Third, the class balance changes significantly. As the
classes in the data set become more balanced, the DT is better able to detect the minor classes. This obser-
vation is in accordance with existing literature on class imbalance (Chawla 2003, Jo and Japkowicz 2004).
The probabilistic, frequency based, NB technique, however, is not as affected by the class imbalance. This
observation is also in accordance with existing literature indicating that NB is more robust in this respect
(Ben Amor et al. 2004, Kolcz et al. 2003, Panda and Patra 2007). An overview of the classification rates
obtained with the DT on the merged data set is provided in Table 4.18, which shows how the classification
rates improve when duplicates and Normal instances identical to intrusions are removed.

Table 4.18: Classification rates obtained with the DT on the merged data set when duplicates [d] and Normal instances
identical to intrusions [n] are removed, compared with original data [o].

Data Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

[o] 99.16 99.53 2.19 97.81 98.96 99.99 53.28 93.05

[d] 99.68 99.56 0.18 99.82 97.97 99.94 61.48 93.86

[n] 99.93 99.96 0.17 99.83 99.03 99.99 61.48 98.99

From the discussion and results presented above, it is more clear why Sabhnani and Serpen (2004) are
able to report significantly better findings than any other study in the literature. Furthermore, they perform
cross validation on the merged data set, whilst most other studies have performed holdout validation. Ac-
cording to the empirical findings obtained here, the results with cross validation appear more positive than
those obtained with holdout validation. This was found to be due to holdout validation being sensitive to the
training/test split, whilst cross validation is more robust since it provides an average from partitions (folds).
This split is influenced by duplicates and, consequently, also the class balance, which impact on the minor
classes; in particular U2R due to the relatively few instances of this class.

Depren et al. (2005) also perform cross validation, stating that this is preferred when there is limited
data available, which the empirical findings obtained here support. However, cross validation may not be
an appropriate validation method for intrusion detection since it is then not possible to explicitly evaluate
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the detection of new attacks. This is a factor that needs to be considered for each study, according to the
aims of the investigation.

4.6 Implications

The implications of the empirical findings are considered in Section 4.6.1, followed by a discussion of
future use of the KDD Cup ’99 data set in Section 4.6.2.

4.6.1 Considerations of methodological factors

Although it was not possible to recreate the small subset employed in several studies (Bosin et al. 2005,
Chebrolu et al. 2005, Mukkamala and Sung 2003, Peddabachigari et al. 2007), due to a lack of available
information, the findings in this study provide some indication as to why the reported U2R and R2L perfor-
mance on this subset is higher than on the original training and test sets (and the training set alone). First,
the magnitude of data is reduced significantly, whilst number of U2R instances remains (Peddabachigari
et al. 2007), which implies that the class imbalance is not as extreme. Hence, according to the findings in
this thesis and elsewhere in the literature (Chawla 2003, Jo and Japkowicz 2004), detection of the minor
classes (Probing, U2R and R2L) is likely to be higher for classifiers such as DTs and ANNs. Second, with
particular reference to R2L detection, the high detection rates may be influenced by avoiding the issues with
R2L evaluation in the original training and test sets, i.e., not testing the warezclient attack, and snmpgetat-

tack instances being identical to Normal instances. Third, duplicates may have been removed, which would
increase the quality of the data.

Merging the data set may be desirable for evaluating machine learning techniques for misuse detection,
however, it is not a straightforward solution. First, one element of testing is lost: detecting new intrusions
(discussed further below). Second, due to the negative effects of duplicates and Normal instances identical
to intrusions, it is beneficial for the performance of machine learning techniques to remove these. However,
to do this, it is necessary to establish that certain underlying assumptions hold.

With respect to Normal instances identical to intrusions, these were removed in some experiments in
this study to demonstrate empirically the impact this has on the results. The occurrence of identical in-
stances could be a result of several factors, such as flaws in the data collection for the DARPA evaluation,
limitations in tcpdump (not enough audit information to separate certain intrusions from normal behaviour),
mislabelling, limitations in the transformation of the DARPA tcpdump to the KDD Cup ’99 data, or some
snmpgetattacks may simply be identical to normal traffic regardless of the other potential factors. Bouzida
and Cuppens (2006a, 2006) assert that it is due to limitations in the transformation of the DARPA data.
According to this, one can justify the removal of these instances, as it would be avoidable when gather-
ing and preprocessing data for applied misuse detection. However, they do not demonstrate alternative
transformation functions that are capable of avoiding this problem.

Duplicates are intrinsic to the intrusion detection problem, due to the nature of some intrusions (mainly
DoS and Probing). Because of the negative impact of duplicates on the training process, these would
arguably be removed from the training data. However, it is not straightforward to determine whether du-
plicates should be removed from the test set or not. On the one hand, the existence of duplicates is more
representative of real traffic. On the other hand, duplicates in the test set can skew the results, and compli-
cate their interpretation. For example, if an attack with many duplicates is detected correctly, this leads to
high detection rates. If an attack with many duplicates is misclassified, this leads to a poor detection rate.
Such classification behaviour can result in misleading findings. Therefore, if duplicates remain in the test
set, it is important that this is a realistic representation of the data in the network environment the IDS is
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deployed in. This is, however, one of the main criticisms of McHugh (2000), as discussed in Section 4.2 on
page 57.

The decision to merge the data sets should not be motivated by simply obtaining higher classification
rates. As with the issues of removing duplicates, the purpose of the investigation should ultimately de-
termine which subset of the data to use. For certain studies, using the original training and test sets may
be appropriate. The results in this study (and in the cited literature) indicate that current misuse detection
approaches will not be able to detect a significant proportion of intrusions in the test set. It is, therefore,
inappropriate to rely on the generalisation ability of a classifier (trained for misuse detection) to detect
new attacks, particularly when adopting the popular five class taxonomy2. Anomaly detection or hybrid
approaches may, on the other hand, detect new attacks, and when exploring such techniques, it is essential
that novel attacks are present in the test data.

Compared with using single machine learning classifiers, Xiang et al. (2008) propose a hierarchical
hybrid system that appears more successful, as seen in Table 4.19. At the first level, a DT will classify an
instance as DoS, Probing or ‘others’. At the next level, ‘others’ are further refined to either ‘normal’ or
‘intrusion’ by an AutoClass (AC) classifier (Bayesian clustering) (Cheeseman and Stutz 1996). Finally, the
DT will refine ‘intrusion’ further to either U2R or R2L. When a classification has been made, according to
the five-class taxonomy of Kendall (1999), each class is further refined into the specific attacks.

Table 4.19: Results of the hierarchical hybrid approach of Xiang et al. (2008) compared with the DT in this study (on
the original test set).

FPR% Normal% Probing% DoS% U2R% R2L%

Hybrid 3.2 96.80 93.40 98.66 71.43 46.97

DT 0.77 99.23 79.16 97.03 21.43 7.30

Xiang et al. (2008) also sampled the training data to reduce the class imbalance; 10,000 random Normal

and all U2R and R2L instances for AC, and an undersampled subset for the DT, with only 3,000 Normal

instances, less than 10,000 Probing and DoS intrusions, and all U2R and R2L instances. The classification
rates on the original test set are significantly higher than those reported here, however, at the expense
of a higher FPR, as seen in Table 4.19. Xiang et al. (2008) notes that all snmpgetattack instances are
misclassified as Normal, which is the main reason that R2L detection is not higher. This implies that the
increase in FPR is not caused by this attack.

4.6.2 Using the KDD Cup ’99 data set in future research

With respect to the criticisms discussed in Section 4.2 on page 57, it is important to question whether the
KDD Cup ’99 data is still useful for research into machine learning and/or intrusion detection. Ultimately,
as Brugger (2007b) acknowledges, researchers continue to use this data due to a lack of better publicly
available alternatives.

With respect to the DARPA data, the issue with TTL values (Mahoney and Chan 2003) is indeed a
serious flaw, as it is possible to perform effective intrusion detection based on one feature, which would
not be possible in practice. This is one of the main reasons why the DARPA data set (and by association
the KDD Cup ’99 data set) are now not valued for publication of research findings by some researchers
in the intrusion detection community. However, the issue of TTL values does not apply to the KDD Cup

2One of the criticisms of McHugh (2000) is that the taxonomy is not appropriate, since attacks are not grouped into the four
intrusion classes according to similarity between their feature values. Some of the findings here support this, demonstrating how a
new Probing attack in the test set, mscan, is misclassified because it has different feature values to the other Probing attacks.
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’99 data, and, therefore, this generalisation is inappropriate. Nevertheless, the criticism of McHugh (2000)
and Brugger (2007b), regarding the data not being representative of ‘real’ network traffic, is important to
address.

Many papers discuss network based intrusion detection in a generic way, whilst the traffic in different
types of networks is arguably significantly different. Hence, satisfying a requirement for a general network
based data set to be representative of real environments from a machine learning / data mining point of view
is not possible. Research on machine learning applied to intrusion detection implies that the techniques will
be trained on data gathered from the specific environment they are deployed in. Therefore, if the data set
poses some generic, real, challenges for machine learning approaches when applied to intrusion detection,
there is still value in it. It is simply in the interpretation of the findings of such research that caution must
be observed, in evaluating the similarity of these challenges to those posed by any particular environment
in which the techniques may be considered for deployment.

Similarly to other authors (Brugger 2007b, McHugh 2000), it is not recommended here that the KDD
Cup ’99 data set is simply used as an evaluation benchmark. However, it can be used to address some
generic challenges for machine learning applied to intrusion detection, such as:

• Related to the learning process:

– Dealing with high dimensional data (curse of dimensionality (Bellman 1961, Duda 2001); mem-
ory requirements).

– Learning from a large data set (learning speed).

– Learning from imbalanced data.

• Feature selection (data reduction).

• Incremental/continuous learning.

• Detecting new intrusions.

Most of the challenges above are self explanatory, and have been discussed to some degree in this thesis.
For example, learning from imbalanced data is a challenge that has been shown here to be linked to poor
detection on some classes of intrusion. Learning from imbalanced data is a challenge of equal interest to
many other domains, such as medicine (Cohen et al. 2006, Mazurowski et al. 2008, Mena and Gonzalez
2006), credit scoring (Huang et al. 2006), customer churn (Burez and van den Poel 2009, Xie et al. 2009),
natural language processing (Kobyliński and Przepiórkowski 2008), lexical acquisition (Kermanidis et al.

2004) and text recognition (Stamatatos 2008). The findings obtained here provide strong indications of the
effect that class balance has on classifiers such as the DT. This is further investigated in Chapter 5, which
concretely demonstrates that the intrinsic class imbalance in intrusion detection causes poor true positive
rates for some machine learning techniques that are biased towards the major class(es). Therefore, it is
necessary to develop and apply appropriate training techniques and/or investigate methods of sampling the
training data.

Feature selection provides benefits for both the training and classification processes; it effectively re-
duces the amount of data required to process, reduces the dimensionality of the problem (which can be
beneficial to some classifiers), and saves memory. Several machine learning techniques have been applied
to this task, see, for example, Chebrolu et al. (2005), Mukkamala and Sung (2002), Ramos and Abraham
(2004) and Sung and Mukkamala (2003).

One particular challenge of interest in this domain is adapting over time. Some techniques require
complete retraining as an offline process once more data is gathered. Therefore, incremental/continuous
learning is a desirable trait as the data changes over time due to new applications and new types of intrusion.
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Several researchers propose methods that allow for this, for example, Cannady (2000) proposes an IDS with
an adaptive ANN, a Cerebellar Model Articulation Controller (CMAC) (Albus 1975), which is capable of
learning new intrusive behaviour during run time. Other studies include, for example, Kim and Bentley
(2002), using Artificial Immune Systems, and Ramos and Abraham (2004), using Ant Colony Optimisation.

Evaluating whether new attacks can be detected is of great interest to intrusion detection. If the merged
data set is used for this purpose, several approaches for misuse detection may be taken to test the detection
of new intrusions, such as: (1) the approach taken in the KDD Cup ’99 competition, splitting the data into a
training and test partition, in which the test partition should contain several new intrusions of each class of
intrusion; (2) train on all but one type of intrusion and test only the detection of the intrusion type excluded
from the training. The latter approach is more laborious, but avoids some complications. If the taxonomy of
Kendall (1999) is adopted for classification, the selection of new attacks for the test partition should not be
performed arbitrarily according to these four class of intrusion. This is because the selected attacks for each
partition may not be similar in terms of the feature values (McHugh 2000), which has been demonstrated
here. Instead, new attacks for the test set should be selected based on some degree of similarity with the
intrusions in the training set to allow for a fair test.

Whichever data subset/partition is adopted, there is a need for more clear documentation of the data and
experiment method, to support independent validation of the findings and comparison across studies. There
is also a need for a more thorough understanding of the nature of the data, in order to be able to interpret
effectively the results, and assess their implications in practical application.
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CHAPTER 5

Learning from imbalanced data

Researchers have applied machine learning to intrusion detection for several decades, however, with varying
degrees of success. This was the focus in the previous chapter, investigating discrepancies in the findings
obtained with the KDD Cup ’99 data set. That investigation indicated that the results are significantly
affected by the class balance in the various subsets adopted in the literature. More specifically, the findings
indicate that this is the reason U2R and R2L intrusions have been detected poorly, which has not been
considered previously in the literature.

Although applied popularly to intrusion detection, ANNs and DTs have been found to learn poorly from
imbalanced data as they are biased towards the major class(es) (Chawla 2003, Jo and Japkowicz 2004). The
reason for this is that the training methods used are based on a general measure of error of the classifier
(Weiss and Provost 2003, Weiss 2004). Therefore, if there is a significant imbalance, the major class(es)
will have more ‘weight’ in the calculation of error, to the extent that the classifier may simply ‘ignore’
the minor class(es) (Kotsiantis et al. 2006, Weiss and Provost 2003). An alternative training method is
examined here, using a Genetic Algorithm (GA) to evolve the weights of Multi Layer Perceptrons (MLPs).
The essential benefit of this is the ability to perform arbitrary transformations of individual classification
rates into a fitness measure, instead of using a general error based metric. However, such a metric can still
be adopted as an evaluation function, which allows demonstration of how the this affects the performance.

A review of research on class imbalance is provided in Section 5.1. Details of GAs and how they can
be used to evolve MLPs are discussed further in Section 5.2, followed by the experiment method in Section
5.3. The results from experiments are presented and discussed in Sections 5.4 and 5.5.

5.1 Class imbalance

Learning from imbalanced data is a significant challenge that has received much attention in the data mining
community in recent years. Class imbalance refers to unequal representation of classes in a data set, i.e.,
there are more instances of one/some class(es) than others. Japkowicz (2003) distinguishes between two
types of class imbalance: between classes and within class. The latter refers to imbalances between natural
clusters of data within one class. This is discussed further in Section 5.1.1, which reviews the background
to this research area and the challenges that class imbalance poses. Throughout this section, unless stated
otherwise, class imbalance refers to between classes.
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Sections 5.1.2 and 5.1.3 consider the main levels on which class imbalance can be addressed (Chawla
et al. 2004): (1) data level (sampling training data) and (2) algorithm level. It has become popular in recent
years to apply classifier combination techniques to learn from imbalanced data, which fall under both data
and algorithm levels. However, since classifier combination is a different concept, it is treated separately
in Section 5.1.4. There are also methods that consider feature selection, which fall under the data level.
However, this is not considered here; instead, refer to Kotsiantis et al. (2006).

5.1.1 The class imbalance problem

There are few real world problems for which it is possible to obtain an equal amount of data for each of the
classes. Furthermore, for some problems it is the minor class that it is imperative to classify correctly, such
as medical diagnosis (Mena and Gonzalez 2006), which typically operates with few malignant instances
compared with benign. This is a critical issue because some machine learning algorithms are biased towards
the major class(es) (Chawla 2003, Jo and Japkowicz 2004, Weiss and Provost 2003), and, therefore, obtain
poor classification rates on the minor class(es). The classifier may even simply ignore the minor class and
predict everything as the major class (Kotsiantis et al. 2006, Weiss and Provost 2003), whilst still achieving
a (misleadingly) high overall accuracy. Consequently, if the minor class represents cancer, this would never
be detected.

It is only in recent years that class imbalance has received widespread attention from the research com-
munity (Weiss 2004). Early work can be traced back to DeRouin et al. (1991), focusing on training ANNs
on imbalanced data. Approximately a decade later, two workshops were arranged for this topic (Holte et al.

2000, Chawla et al. 2003). Class imbalance is now considered a critical issue that has been addressed in
several domains, including inter alia medicine (Cohen et al. 2006, Mazurowski et al. 2008, Mena and Gon-
zalez 2006), chemistry and biology (Al-Shahib et al. 2005, Tan et al. 2003), natural language processing
(Kobyliński and Przepiórkowski 2008), lexical acquisition (Kermanidis et al. 2004), text recognition (Sta-
matatos 2008), customer churn (Burez and van den Poel 2009, Xie et al. 2009), credit scoring (Huang et al.

2006), intrusion and fraud detection (Cieslak et al. 2006, Phua et al. 2004).
As mentioned previously, Japkowicz (2003) refers to two types of class imbalance, between classes and

within a class. The class imbalance referred to above is between classes, which is the main focus of the
research on class imbalance. Class imbalance within a class is related to small disjuncts in data (Holte et al.

1989), which can be described as clusters of data within a class. Disjuncts are typically used in techniques
such as decision trees to perform their classification. However, the small disjuncts in data have been shown
to be more prone to producing errors (Weiss 1995) and may simply be ignored by the classifier, which may
build a more accurate model based on the larger disjuncts (Japkowicz 2003, Weiss 1995). Furthermore,
Japkowicz (2003) argues that small disjuncts may be the underlying reason for unsatisfactory classifier
performance. Therefore, applying methods for dealing with inbetween class imbalance may not have a
positive effect on the performance (Japkowicz 2003, Jo and Japkowicz 2004). Some research suggests that
studies should consider both class imbalance between classes and the problem of small disjuncts within
classes (Japkowicz 2003, Jo and Japkowicz 2004, Weiss 2004). A benefit of addressing the within class
imbalance is that it also reduces the imbalance between classes (Weiss 2004).

Most of the methods that have been proposed for dealing with class imbalance, which are discussed
in the following sections, address only class imbalance between classes, and generally do not consider the
issue with small disjuncts.
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5.1.2 Data level

One of the most common methods of dealing with class imbalance is to apply some form of sampling
to the training data. This may be in the form of undersampling the major class(es) or oversampling the
minor class(es), which can be conducted randomly, directed, or according to methods such as clustering

and evolutionary algorithms.
Undersampling techniques aim at removing instances from the major class(es) to obtain a balanced

data set. Oversampling aims at producing more instances of the minor class(es) to balance the data set.
Some studies suggest that one type of sampling is superior to the other (Drummond and Holte 2003), whilst
other researchers contend that it is problem dependent (van Hulse et al. 2007, Weiss 2004). Moreover,
Weiss (2004) suggests that both sampling techniques should be used in some cases for data sets with class
imbalance.

For both sampling approaches, random sampling can be conducted, which may produce satisfactory
results. The danger of random undersampling is that important data may be excluded since the data dis-
tribution is not considered Kotsiantis et al. (2006). Similarly, not considering the data distribution when
performing oversampling may induce unfruitful biases in the data. Furthermore, in this case, it is important
to consider the noise that may be present in the minor class (Weiss 1995). That is, random oversampling
may duplicate a significant amount of noise instead of the important data. Nevertheless, both sampling
approaches have been shown to help (Japkowicz 2000b;a, van Hulse et al. 2007).

There are more sophisticated sampling methods that take into account the class distribution. For ex-
ample, generation of synthetic training samples (An 1996, Chawla et al. 2002). However, as Weiss (2004)
contends, the true distribution of a ‘real’ problem is generally unknown. Therefore, this is found to be both
method and problem dependent (Burez and van den Poel 2009, Weiss 2004).

A sampling technique based on clustering has been proposed (Japkowicz 2001, Nickerson et al. 2001),
which aims at explicitly oversampling the small disjuncts of the minor classes. Empirical findings reported
in (Jo and Japkowicz 2004), with a C4.5 DT and a MLP trained with backpropagation, are encouraging.
The clustering approach outperformed four other methods that do not consider the small disjuncts: random
oversampling, random undersampling and generation of synthetic training samples. The approach also
outperformed a pruning method for DTs, which does consider the small disjuncts. However, it is interesting
to note that on synthetic data, random oversampling achieved the same performance as clustering.

García and Herrera (2009) propose using an evolutionary algorithm to perform undersampling, which
they evaluated on 28 data sets from the UCI machine learning database repository. The results are compared
with 10 other methods of dealing with class imbalance, including random undersampling and clustering.
They found that the evolutionary approach outperformed the other methods on the data sets with the greatest
imbalance. However, they did not include oversampling methods, and limited the investigation to binary
classification problems.

5.1.3 Algorithm level

According to Weiss (2004), one of the reasons many data mining and machine learning techniques learn
poorly from imbalanced data is the evaluation criteria they adopt. Most techniques evaluate the performance
of the classifier during training based on an overall accuracy/error. This biases the classifier towards the
major class, which in cases of extreme imbalance, can lead to the minor class being ignored (Weiss and
Provost 2003). ANNs and DTs are good examples of such classifiers (Chawla 2003, Jo and Japkowicz
2004).
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Weiss (2004) and Kotsiantis et al. (2006) discuss several alternative evaluation metrics, including AUC1,
F-measure, and weighted metrics (cost-sensitive learning). The latter has become a popular approach, in
which the error or classification rate for each objective is multiplied by a cost/weight. For example, Jo and
Japkowicz (2004) consider problems with a 1:9 ratio between two classes. To balance the evaluation of the
two classes, the error on the major class may be multiplied with a weight of 0.1, whilst the error on the
minor class is multiplied by a weight of 1.0.

Typically, cost sensitive learning uses a weight matrix, corresponding to the confusion matrix obtained
from the performance of the classifier, in which the diagonal (correct classification) has no penalty (Kot-
siantis et al. 2006). Further domain knowledge may be incorporated into such a weight matrix. See, for
example, the weight matrix used in the evaluation of the KDD Cup ’99 competition, in Table 5.1. Although
this weight matrix was only used to evaluate the results, and does not attempt to address class imbalance,
it is a good example of incorporating domain knowledge in which the matrix puts particular emphasis on
penalising misclassifications of U2R and R2L instances as Normal.

Table 5.1: Weight matrix for evaluating results for the KDD Cup ’99 competition.

Normal Probing DoS U2R R2L
Normal 0 1 2 2 2
Probing 1 0 2 2 2

DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Cost sensitive learning has been adopted in many recent techniques, such as the classifier combination
methods discussed in the following section, and weighted rough sets, as proposed by Liu et al. (2008c;b).
Other methods have been proposed for learning from imbalanced data, such as: modifying the decision
threshold (moving it after training) (Weiss 2004, Zhou and Liu 2006); one-class learning algorithms (Kot-
siantis et al. 2006) and learning only the rare class (Weiss 2004); active learning (Ertekin et al. 2007b;a);
and specifically for DTs, alternative pruning techniques (Jo and Japkowicz 2004, Kotsiantis et al. 2006).

5.1.4 Classifier combination

There are many recent applications of classifier combination that address class imbalance. For more infor-
mation on classifier combination, refer to Section 6.2 on page 105.

Several well known classifier combination techniques have been applied to problems with class im-
balance, such as mixture of experts (Estabrooks and Japkowicz 2001), random forest (Khoshgoftaar et al.

2007), and boosting (Guo and Viktor 2004). These applications still address the problem at the levels dis-
cussed above. For example, bagging and boosting algorithms primarily operate on the data level, perform-
ing sampling. Bagging performs random sampling (with replacement) to train different classifiers, whilst
boosting performs sampling based on a distribution that is continuously updated to increase the chances of
sampling instances that are often misclassified.

The sampling concepts and cost-sensitive learning have been incorporated more explicitly in some meth-
ods, e.g., balanced and weighted random forests (Chen et al. 2004, Kobyliński and Przepiórkowski 2008,
Xie et al. 2009), balanced bagging (Hido and Kashima 2008), and cost sensitive boosting (Sun et al. 2007).

1When analysing Receiver Operator Curve (ROC) graphs, the Area Under the Curve (AUC) can be computed as a metric (Bradley
1997).
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5.1.5 Discussion

Both sampling and cost sensitive approaches have been widely adopted in the literature. Initially, Jo and
Japkowicz (2004) stated that cost sensitive learning was considered more successful. However, they argue
that there is a significant limitation to the cost sensitive approaches since they address the imbalance at the
class level. Sampling techniques offer more flexibility, allowing sampling of different parts of the data set,
and can consider explicitly the problem of small disjuncts.

Kotsiantis et al. (2006) concurs with Jo and Japkowicz (2004), although the findings in the literature
indicate that practitioners still take an ad hoc approach to applying these techniques. Weiss (2004) has
provided several guidelines as to which methods can be recommended for dealing with specific problems
with imbalanced data sets. However, current research indicates that the choice of sampling approach, and
choice of distribution if not random sampling, depends on the method and problem at hand (Burez and van
den Poel 2009, Weiss 2004). Similarly, for weighted approaches, determining optimal weights is also an ad

hoc process, which becomes increasingly complex the more classes there are.
Multi-class problems have not been considered in much of the research on class imbalance. Zhou and

Liu (2006), however, conducted a comprehensive empirical investigation with cost sensitive ANNs, which
included 21 data sets from the UCI repository. They examined the effects of oversampling, undersampling,
SMOTE sampling (Chawla et al. 2002) (oversampling by creating synthetic training samples based on
existing samples), and threshold moving, for both single classifiers and ensembles. Although the techniques
were effective on the two class problems, they were not on the multi-class problems; some even had a
detrimental effect. One reason for this is that there are more classes that a sample can be misclassified as,
which increases the complexity of the problem. One potential solution they suggest is to convert the problem
to several binary classification tasks and combine classifiers based on each pair. This does not, however,
change the complexity of setting weights; it does, as Zhou and Liu (2006) contend, add complexity to the
task for the user.

5.2 Genetic algorithms

The Genetic Algorithm (GA) is a population based heuristic search/optimisation technique inspired by the
analogy of biological evolution, proposed by Holland (1992) in 1975. An overview of the general process
(evolutionary cycle) of the GA is provided in Section 5.2.1. Thereafter, the application of GAs is discussed
in Section 5.2.2, which discusses the type of problems GAs are useful for and implementation/configuration
considerations. Section 5.2.3 discusses the use of GAs for evolving ANNs.

5.2.1 Evolutionary cycle

Potential solutions to a given problem are represented as individuals (or chromosomes) in a population.
From a random starting point, the search towards good solutions is conducted by selecting fit individuals
(parents) from the population, which are recombined to create offspring solutions based on their genetic
material. These offspring are subject to some (small) probability of mutation, and are evaluated based on
some fitness measure. This fitness measure needs to be quantified in such a manner that the GA can attempt
to minimise or maximise this value.

The premise of the search is that offspring will occasionally be fitter (better) than their parents, that the
offspring of highly fit parents will tend to be better than those of poorly fit parents, and that by selecting
parents that are of above average fitness, the average fitness of the population will tend to increase. The
offspring are inserted into the (typically fixed size) population according to some replacement strategy, and
the cycle is continued until some stopping criterion has been met. This criterion may be based on solution
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quality, measure of population convergence, or a maximum number of iterations of the evolutionary cycle.
Once the stopping criterion is met, the ‘best’ individual is typically selected as the solution to the problem.
Refer to Figure 5.1 for an illustration of this process.

Figure 5.1: Evolutionary cycle of a genetic algorithm.

5.2.2 Application of genetic algorithms

One of the strengths of GAs is that they can be applied to complex domains for which there is insufficient
knowledge of the problem, or a lack of a theoretical framework to solve the problem. Furthermore, GAs
are well suited to find good solutions for problems that have a solution space that is too great for exhaustive
approaches to consider. Since the GA is a heuristic technique, it cannot guarantee that the best solution will
be found. It does, however, give near optimal solutions within reasonable time limits for complex problems
where other algorithms fail.

GAs can be configured to explore the search space (global search), or exploit potentially good regions
(local search). Exploration may be encouraged by increasing the population size and probability (and
strength) of mutation. The performance of the algorithm, on a particular problem, will depend on the bal-
ance between exploration and exploitation; too much emphasis either way will degrade the performance.
Some problems will require more exploration, whilst others exploitation. There are operators that attempt to
address both exploration and exploitation, such as the exponential creep mutation (Davis 1989), which per-
forms frequent small mutations with occasional large mutations. In this context, it is important to consider
the ‘no free lunch’ theorems (Wolpert and Macready 1997), which states that there is no ‘best’ algorithm
for all problems. Similarly, there is no optimal configuration that will be ideal for all problems. Although
there are theories on how to improve the genetic search (Booker 1987), the configuration parameters are
therefore typically determined for each particular problem in an ad hoc manner.

As discussed above, GAs can operate with minimal domain knowledge, given that a potential solu-
tion to a problem can be encoded in a chromosome representation. A chromosome can be divided into a
number of genes (typically fixed number), which correspond to the parameters of the problem that needs
to be optimised/solved. Originally, the genes were encoded as binary strings. However, there are other
representations that may be more intuitive for some problems, such as floating point numbers (Davis 1989,
Eshelman and Schaffer 1993, Wright 1991), permutations (Whitley 2000) (for combinatorial problems,
such as traveling salesman problems), and trees (Angeline 2000) (typical for genetic programming (Koza
1992)). For example, for the application considered here, a numerical representation is convenient since the
parameters that are optimised are numerical weights of an ANN.
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The evaluation function of a GA may incorporate domain knowledge, if it is available, to help guide
the search towards optimal solutions, as discussed previously in Section 3.12.1 on page 47. Moreover,
some problems may have multiple objectives, such as maximising the true positive rate of a classifier whilst
minimising the false positive rate. Conventional techniques convert the objectives of such a problem into
a single fitness value, using either a priori information or an ad hoc procedure of assigning weights to
each objective. However, GAs can be applied to evaluate multiple objectives, providing a set of solutions
that exhibit different trade-offs among the objectives. More details on this in Section 6.1 on page 97, as
multi-objective optimisation is considered in the following chapter of this thesis.

5.2.3 Evolutionary neural networks

Evolutionary Neural Network (ENN) is a general term for using GAs, or another evolutionary algorithm, to
optimise one or more parts of an ANN, such as (Yao 1999):

• Weights.

• Topology:

– Number of layers.

– Number of neurons in each layer.

– The connections between them.

• Input features.

To some researchers, the term ENN refers to evolving both the topology and weights of ANNs, since this
becomes a new, highly specialised, network for the problem at hand. In comparison, using a GA to optimise
the weights of a Multi Layer Perceptron (MLP) does not change the fact that the ANN is an MLP; the GA
merely becomes a different method of training.

Section 3.12.4 on page 51 reviewed several applications of ENNs to intrusion detection, reporting on
much improved performance when allowing the GA to optimise the weights and topology of the networks.
However, there are many potential benefits of using GAs to ‘only’ optimise the weights of MLPs compared
with other training algorithms, such as:

• The GA is robust to noise (Goldberg 1989, Goldberg et al. 1992),

• is not as prone to ‘getting stuck’ in local optima as backpropagation (Yao 1993; 1999),

• is independent to the number of layers, and

• can be readily parallelised.

Related to the second point, Tian and Gao (2009) utilise a GA to provide initial weights for backpropagation.
This gives the algorithm a better starting point, helping to prevent it from converging on a local optimum.
Furthermore, as Yao (1999) contends, GAs are beneficial because they do not rely on gradient information
of the error, which may not be available, or may be costly to calculate. The latter point, above, is a key
part of this research, in which bespoke fitness measures may be adopted to find better solutions to problems
where a global measure of error/accuracy is unfruitful.

When optimising the weights of MLPs, the chromosome of each individual in the population represents
weights of an MLP, with each gene of the chromosome representing the weight of a connection between two
neurons. Therefore, for large, fully connected MLPs, the number of weights, and, thus, the dimensionality
of the problem, can be very high. For example, adopting all of the features of the KDD Cup ’99 data set
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requires 41 input nodes, and 5 output nodes (one for each of the classes). If there is just one hidden layer
of 20 nodes, the total number of connection weights that the GA has to optimise is 920, plus up to 66 bias
weights depending on the configuration of the neurons in each layer.

To optimise the weights of MLPs, a real valued representation is a logical choice. A binary represen-
tation would require unnecessary transformation from binary to numerical values when the gene values are
applied to MLPs as weights. Furthermore, not only did Janikow and Michalewicz (1991) find the numerical
representation to be quicker, they found it to make the GA more robust and precise. However, if the topol-
ogy is to be optimised, then other representations are necessary. Representations reported in the literature to
optimise the topology, and weights, are tree structures (Stanley and Miikkulainen 2002) and, more recently,
matrices (Han and Cho 2006, Kim and Cho 2008).

5.3 Method

The aims and motivations of this investigation are discussed in Section 5.3.1. Details of the proposed ENN
method are provided in Section 5.3.2, followed by specifications of the MLP that is adopted for comparison,
in Section 5.3.3. Section 5.3.4 describes the data set and validation method, followed by the metrics in
Section 5.3.5. The empirical investigation is outlined in Section 5.3.6.

5.3.1 Aims and motivations

This second empirical investigation focuses on learning from imbalanced data, and has two main aims, as
discussed below.

Aim 2.1: Determine whether class imbalance is the cause of poor detection rates of MLPs reported
in the literature

As discussed in Section 4.1 on page 55, U2R and R2L intrusions have been particularly difficult to detect in
existing studies using machine learning. The empirical findings from the previous investigation, in Chapter
4, suggest that class imbalance is a significant factor. This has not been considered in the existing studies as
a reason for the poor performance on these classes. A few researchers have, however, touched on a related
factor, arguing that the poor performance on U2R is due to a lack of data (instances to learn from) (Bouzida
and Cuppens 2006a;b, Stein et al. 2005). This is what Weiss (2004) refers to as absolute rarity, which this
study also acknowledges. The extreme class imbalance in the KDD Cup ’99 data set also renders this a
problem of relative rarity.

Bouzida and Cuppens (2006a;b) report that ANNs, specifically MLPs trained with backpropagation, are
unable to detect the U2R class. This is a classifier that is known to be biased towards the major class (Jo
and Japkowicz 2004), and, therefore, is prone to perform poorly on this class since it is a minor class. The
first aim of this investigation is to determine whether it is indeed the class imbalance that has led to this
poor detection. More specifically, to determine whether this is caused by the training algorithm, or whether
it may be due to limitations of the classifier itself.

Aim 2.2: Develop an alternative method of training MLPs for imbalanced data

To explore class imbalance, Genetic Algorithms (GAs) are used here to optimise the weights of the MLPs.
The benefits of this are two fold:

1. Provides an approach that allows for arbitrary transformations of classification rates and/or errors into
fitness measures, which can be designed to be unbiased to any particular class. Therefore, giving a
training method that may learn better from imbalanced data.
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2. Aim 2.1 can be answered concretely, comparing the performance obtained with evaluation functions
that evaluate the MLPs in the same manner as backpropagation with evaluation functions that are not
biased towards the major class(es).

5.3.2 Evolutionary neural network

The ENN employs a real coded GA to optimise the connection weights of feed forward, fully connected,
MLPs. Implementation details are provided below.

5.3.2.1 MLP specifications

According to Hornik et al. (1989), a three layer MLP (i.e., having one hidden layer) can approximate any
continuous function, assuming an infinite number of neurons in the hidden layer. However, both three
and four layer MLPs are examined here since Pinkus (1999) suggests that two hidden layers are generally
more promising for more complex problems, and Sontag (1992) notes that this is necessary to approximate
arbitrary discontinuous functions.

The number of neurons in the hidden layer(s) is determined by a systematic investigation (enumeration
over a given set of values), whilst the input and output layers are determined by the features of the data set
and the classes (one output neuron per class). The range of neurons in the hidden layers was determined
according to preliminary experiments, since few researchers include this information; of the existing work,
as discussed in Section 4.1 on page 55, only Sabhnani and Serpen (2003) provide full details. They adopt
three layered MLPs, examining the number of neurons in the hidden layer in the range 40 to 80, in incre-
ments of 10. These ranges are expanded here, due to the observations during preliminary experiments: for
three layers, the following set of neurons in the hidden layer are investigated {30, 50, 70, 100, 120}, and
for four layers {5-5, 10-10, 15-15, 20-20, 25-25}.

The predicted classification is determined according to the output neuron with the highest value. Ac-
cording to the benefits discussed in (Kalman and Kwasny 1992), a hyperbolic tangent (tanh) activation
function is adopted, and the connection weights are in the range [-1, 1].

5.3.2.2 Genetic algorithm specifications

A binary and numerical chromosome representation is possible when evolving the weights of MLPs (Yao
1999). Floating point numbers are used here, in which each gene represents the real value of a connec-
tion weight in an MLP. The floating point representation has been found to be quicker, more robust and
precise compared with the binary representation (Janikow and Michalewicz 1991). The use of a numer-
ical representation requires different operators from the classical operators proposed for the GA as these
rely on a binary representation. Crossover is referred to as recombination, because it is no longer partic-
ularly useful to literally cross over genes. Examples of numerical crossover operators include inter alia

uniform crossover (Syswerda 1989), linear crossover (Wright 1991), blend crossover (BLX-α) (Eshelman
and Schaffer 1993) and uni-modal normal distribution crossover (UNDX) (Ono and Kobayash 1997).

Michalewicz (1999, pp. 105-106) states that the performance of GAs can be enhanced due to the nu-
merical operators, as they are capable of incorporating domain knowledge. For example, UNDX has been
shown to be beneficial for epistatic problems (Ono and Kobayash 1997), and BLX-α can produce offspring
within an extended region around the parent individuals, which removes bias towards the center of the
population (Eshelman and Schaffer 1993). BLX-α has been adopted here.

Mutation normally occurs as a perturbation of genes, typically adding or subtracting an arbitrary small
value. The perturbations may be uniformly distributed, or non-uniformly distributed, such as in Gaussian
mutation (Beyer and Schwefel 2002), which is adopted here. Gaussian mutation is parameterised with
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a per-gene mutation rate, and a mutation strength, which defines the standard deviation (spread) of the
Gaussian distribution. Note that a distribution with a mean of zero is used, and therefore mutations increase
or decrease a given gene value with equal probability.

Two main population structures exist: generational and steady-state (Syswerda 1989). A generation
refers to one reproduction cycle, which encompasses selection and replacement of individuals. In a genera-
tional GA, a reproduction cycle will replace a large block of individuals, or even the entire population. In a
steady-state GA, only a small number of individuals is replaced, or even just one in each cycle. Due to the
significant differences in the computational efforts of such iterations, dependent on the population structure,
the number of fitness evaluations is generally used as a metric to measure the progress of the genetic search
rather than the number of generations.

The GA implemented in this study has a steady state structure with binary tournament selection, due
to the observations in (Whitley 1989). Whitley made a comparison between two well known algorithms: a
steady-state GA, GENITOR (Whitley 1989), and a generational GA, GENESIS (Grefenstette 1990). Rank
based selection yielded better results for both algorithms. Furthermore, the steady-state GA outperformed
the generational GA. The combination of a steady-state population structure and tournament selection pro-
duces high growth rates, which is an element of controlling the convergence properties of the GA (Goldberg
and Deb 1991). One of the strengths of such a GA is that the selection pressure can be directly controlled
and is uniformly scaled across the population (Whitley 1989).

A steady-state GA requires a replacement strategy to determine how offspring are inserted into the pop-
ulation. There are several approaches to replacement, including inter alia random, probabilistic, replacing
the oldest individual, or replacing the worst. Syswerda (1991) demonstrates empirically that random re-
placement is the least successful of these strategies. Replacing the worst individual is commonly used,
which has the elitist benefits advocated in (De Jong 1975, Gordon and Whitley 1993). Elitism refers to
guaranteeing that the best individual in the population remains in the population after replacement. This
replacement scheme has therefore been adopted here; replacing the worst individual if the offspring is fitter.

The following configuration parameters were determined according to preliminary experiments: pop-
ulation size of 20; over-initialising with 100 additional, randomly generated, individuals (according to the
benefits demonstrated by Bramlette (1991)); mutation rate of 0.2; mutation strength of 0.05; and α set to
0.5 for the crossover operator. Training is conducted for 20,000 function evaluations.

5.3.2.3 Evaluation functions

The following evaluation functions are examined:

Eval1: Minimise the error; mean of the distance of each classification from the expected output pattern.

Eval2: Eval1 in combination with rewarding correct classification.

Eval3: Minimise the sum of rewards for correct classification; the reward for each class calculated propor-
tionally to the number of instances in the training set2.

Eval4: A combination of Eval1 and Eval3.

Eval5: Maximise the sum of individual classification rates.

The first evaluation function is similar to the error measure used when training an MLP with backpropaga-
tion, which is a typical evaluation function adopted in ENNs (Yao 1993). Let N be the number of instances
in the training set, then the mean error, e, is calculated as

2In practice, this is similar to the error measure proposed by Quinlan (1991), which takes into account the distribution of classes.
However, Quinlan only considers this on a proportion of the training set.
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e =
1
N

N

∑
i=1

|out putPredictedi −out putExpectedi| (5.1)

Eval2 is an extension of Eval1, which increases the selection pressure by subtracting a certain value
from the fitness for each correct classification during training. During preliminary studies, values in the
range [0.1,2] were examined, in which 1 was found to be the most beneficial, i.e., obtaining comparatively
good classification rates whilst training more quickly than Eval1. Too large a reward leads to a stronger bias
towards the major class, causing the the GA to converge on a local optimum.

The three latter evaluation functions were developed to be unbiased to the class balance. The propor-
tional classification reward r for class c in Eval3 is calculated by

rc = 1− (
#instancesc

#instancestot
) (5.2)

The combination of Eval1 and Eval3 is composed in the same way as Eval2, except that the reward
is given proportionally to the instances of each of the classes. Eval5 is similar to Eval3, though yielding
a different selection pressure. To clarify the difference between these two evaluation functions, consider
a three class problem for which Eval5 will give a maximum fitness value of 300 if all three classes are
detected 100%3. For example, if 99% Normal, 10% U2R and 95% R2L instances are correctly classified,
the fitness score is 204 (99+ 10+ 95). Eval5 can be used as a minimisation function by subtracting this
value from 300, giving a fitness score of 96 (300− 204). Consequently, the best solution will be one that
has a fitness score of 0.

5.3.3 MLP trained with backpropagation

Similarly to the machine learning software used in the previous investigation, an MLP implementation has
been adopted from Weka (Anon 2006, Witten and Frank 2005). The training process of this algorithm is
controlled by a learning rate and momentum, and it is stopped after a predefined number of epochs or by
means of early stopping. Each of these configurations is considered below.

5.3.3.1 Learning rate and momentum

Negnevitsky (2005, p. 185) suggests that a common momentum value is 0.95, but such a high value can
have a negative effect on the training process, as demonstrated by Haykin (1998, p. 194). Further, it appears
that the optimum value for the momentum is dependent on the learning rate (Haykin 1998, pp. 214–216).
Therefore, these parameters are examined systematically, with ranges capped at 0.5, following Haykin
(1998) and preliminary experiments. High momentum values caused the MLP to converge too quickly
during preliminary experiments, which led to very poor classification rates. Hence, the learning rate and
momentum values examined are {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and {0.1, 0.2, 0.3, 0.4, 0.5}, respectively.
Decay of the learning rate is enabled.

5.3.3.2 Epochs and early stopping

The number of epochs for the training process to run and the early stopping parameters are constant through-
out this investigation. The aim is to allow early stopping to terminate the training process when the error
increases on a validation set over a number of epochs (validation threshold).

Only three authors (of those discussed in Section 4.1 on page 55) provide information about the stopping
criterion adopted. Pan et al. (2003) trained for 1500 epochs. Sabhnani and Serpen (2003) examined 40-100

3For the empirical investigation conducted in this chapter, a three-class subset of the KDD Cup ’99 data set is used, comprised of
Normal, U2R and R2L. Further details are provided in Section 5.3.4.
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epochs, finding 60 to be optimal. Bouzida and Cuppens (2006, 2006a, 2006b) also examined a low number
of epochs, 10-90, finding 25 to be optimal. These large differences in the number of epochs can be seen
to relate to the size of the data set that is used for training. As shown by Haykin (1998, pp. 191–196) the
number of epochs required to reach nearly an identical error measure and classification rate during testing
decreased significantly with a larger training set (when using sequential training).

Experiments were conducted to determine the number of epochs and the validation threshold. For
the sake of brevity, the results of this investigation are summarised here, whilst full details are provided
in Appendix B.2.1 on page 204. According to that investigation, the following configurations are used:
training for 100 epochs, which may be terminated by early stopping if the error on a validation set increases
on 5 consecutive epochs. For the validation set, 20% of the training set is reserved.

5.3.4 Data set and preprocessing

The 10% version of the training set is used here, which avoids some of the methodological complexities
related to the R2L class when the test set is used. Refer to Section 4.5 on page 71 for details. Furthermore,
not adopting the test set focuses the study more on the class imbalance problem, avoiding unnecessary
complexities in the analysis related to the detection of entirely new attacks. To focus the investigation
further, a version of the data set has been produced that excludes Probing and DoS intrusions. As seen
in Table 5.2, this gives a class balance that is arguably more realistic, according to criticisms of McHugh
(2000) and Portnoy et al. (2001). Portnoy et al. (2001) assume that Normal traffic makes up 98% of the
total amount of data, and, in a related investigation, Eskin et al. (2002) assume that Normal traffic makes
up 98.50% – 99%.

Table 5.2: Proportions of attack classes in the 10% training set of the KDD Cup ’99 data set.

Class Instances (proportion)

Normal 97,278 (98.80%)

U2R 52 (0.05%)

R2L 1,126 (1.14%)

Regarding properties related to class imbalance, this data set has both absolute and relative rarity (Weiss
2004), and small disjuncts are likely for the U2R class in particular, which is composed of several attacks
that have few instances (as low as 2).

Since the MLP and ENN are very time consuming to train, and the systematic sampling of the configu-
ration space requires many trials, holdout validation is selected rather than cross validation. Similarly to the
previous investigation, the data set is partitioned (chronologically) so that 80% of the instances are used for
training and the remainder for testing, according to the findings of Kearns (1996). The partitioning is done
according to individual attacks, ensuring that each attack has at least one instance in the test set. The clas-
sification, however, is based on the three classes, Normal, U2R and R2L, rather than the individual attacks.
The nominal parameters are enumerated and all parameters are scaled within the range [0,1], according to
the benefits highlighted by Haykin (1998, p. 181) and LeCun (1998). The minimum and maximum values
used for this scaling process were based on the data in the training and test sets.
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5.3.5 Metrics

The same metrics are used as in the previous investigation Confusion matrices of classifications are pro-
duced, which present predicted and actual classifications. From this, trends in classification behaviour can
be identified, and accuracy, true and false positive and negative rates are derived.

Since the machine learning techniques considered here are stochastic, it is desirable to obtain a measure
of mean performance over several trials. However, due to the magnitude of the data and experiments
conducted here, the training times do not allow for this in practice. Therefore, the best out of three trials is
selected as an indication of the classifiers’ ‘best’ performance.

5.3.6 Outline of empirical investigation

Since DTs were adopted in the previous study, and have also has been reported to have the same issues
as MLPs with learning from imbalanced data, they are also included in this study to provide a consistent
benchmark. Refer to Section 4.3.3 on page 61 for implementation details.

In addition to training the MLPs with GAs, an MLP trained with backpropagation is also used to provide
a benchmark for conventional error based training, against which the performance of the evolved networks
with each of the evaluation functions described above can be evaluated.

The DT and MLP are known to be biased towards the major class(es), and, thus, are likely to perform
worse on U2R and R2L compared with Normal. The first two evaluation functions of the ENN exhibit the
same bias, and should, therefore, give similar classification behaviour. The latter three evaluation functions
do not exhibit the same bias. Eval3 and Eval5 are unbiased to the class balance, but induce different
selection pressures. Eval4 is a combination of a general error measure (Eval1), which is biased towards the
major class(es), and a proportional reward for correct classification according to Eval3. Therefore, these
three evaluation functions are expected to allow the MLPs learn better from imbalanced data, leading to
improved performance on U2R and R2L.

5.4 Results

Results for each of the classifiers are presented in their respective sections, below, followed by a summary
and comparison of results in Section 5.4.4. The following abbreviations are used here: 3L and 4L for three
and four layer MLPs respectively; HN for neurons in the hidden layer(s).

5.4.1 Decision tree

The confidence factor (for pruning) does not have much impact on the results. Confidence factors in the
range 0.05–0.10 gave identical results, as did confidence factors in the range 0.15–0.5. The former group led
to the best results, which are presented in Table 5.3. Some misclassifications of Normal and R2L intrusions
occur with confidence factors above 0.10, leading to higher false positives and false negatives. Only 1 U2R

intrusion was detected.
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Table 5.3: Confusion matrix for DT with confidence factors of 0.05 and 0.10.

Actual\Predicted Normal U2R R2L %correct
Normal 19,454 1 1 99.99

U2R 10 1 0 9.09
R2L 0 1 225 99.56

%correct 99.94 33.33 99.56
Accuracy = 99.93%

T PR = 95.78% FPR = 0.01%

5.4.2 MLP trained with backpropagation

The MLP trained with backpropagation is unable to detect U2R intrusions, which coincides with the findings
of Bouzida and Cuppens (2006a;b). However, the FPR remains low, which can be seen in Table 5.4, where
only 30 (out of 19,426) Normal instances are misclassified as R2L.

Table 5.4: Confusion matrix for best MLP in terms of true positive rate.

Actual\Predicted Normal U2R R2L %correct
Normal 19,426 0 30 99.85

U2R 11 0 0 0.00
R2L 5 0 221 97.79

%correct 99.92 0.00 88.05
Accuracy = 99.77%

T PR = 93.25% FPR = 0.15%

Table 5.5 provides an overview of classification rates of MLPs that performed well with respect to
different evaluation criteria. Note that the highest TPR (despite a high FPR) is not as high as the DT
obtains, which, at the same time, obtains the lowest FPR.

Table 5.5: Overview of results obtained with the MLP trained with backpropagation, compared with the DT.

Technique Accuracy% TPR% FPR% Normal% U2R% R2L%

MLP, highest TPR: 3L, 30HN 99.77 93.25 0.15 99.85 0.00 97.79

MLP, lowest FPR: 3L, 120HN 99.78 83.12 0.02 99.98 0.00 87.17

MLP, highest accuracy: 3L, 50HN 99.83 92.83 0.08 99.92 0.00 97.35

DT 99.93 95.78 0.01 99.99 9.09 99.56

No significant benefit was found using four layers compared with three; the same behaviour was ob-
served and the results are nearly identical. This coincides with the findings of Bouzida and Cuppens
(2006a;b). Some trends were observed regarding the values of the learning rate and momentum, details
of which, not being pertinent to the specific aims of this investigation, can be found in Appendix B.2.2 on
page 206.
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5.4.3 Evolutionary neural network

Results obtained with each of the five evaluation functions described in Section 5.3.2.3 are presented in
their respective sections below. Similarly to the MLP trained with backpropagation, no benefits in adopting
four layers were observed. Therefore, the results are listed mainly for three layer ENNs. A complete listing
of results is provided in Appendix B.2.3 on page 208.

5.4.3.1 Eval1 and Eval2

These evaluation functions are biased towards the major class, and therefore exhibit similar classification
behaviour as the MLPs trained with backpropagation. Most of the ENNs evolved with Eval1 classify
everything as Normal, as in the example seen in Table 5.6. Although obtaining a high accuracy (98.80%)
by doing so, this is obviously undesirable. The four layer ENNs generally classify everything as Normal,
with the exception of four cases. Only one of these were able to correctly detect an intrusion class, detecting
36.36% U2R.

Table 5.6: Classification rates obtained with the ENN evolved with Eval1 and Eval2.

Technique Accuracy% TPR% FPR% Normal% U2R% R2L%

Eval1; 3L, 30 & 100HN 98.80 0.00 0.00 100 0 0.00

Eval2; 3L, 70HN 98.82 2.11 0.00 100 36.36 0.00

Eval2; 3L, 120HN 99.77 81.86 0.01 99.99 0.00 85.84

MLP; 3L, 30HN 99.77 93.25 0.15 99.85 0.00 97.79

DT 99.93 95.78 0.01 99.99 9.09 99.56

Compared with Eval1, a greater proportion of the ENNs evolved with Eval2 classify everything as
Normal, i.e., obtaining no false positives. Therefore, it can be observed that Eval2 induces a greater bias
towards the major class. However, four ENNs were able to detect some intrusions; two of which are
included in Table 5.6, above.

The highest accuracy obtained with Eval2 is the same as that achieved with one of the MLPs trained
with backpropagation, which allows for a convenient comparison. As seen in Table 5.6, above, the MLP
detects more R2L instances, but obtains a higher FPR.

5.4.3.2 Eval3

Results obtained with this evaluation function are significantly different from those obtained with Eval1,
Eval2 and the MLP trained with backpropagation. With both three and four layers, all three classes are
detectable, with not a single case of everything being classified as Normal. The FPR does increase as a
trade-off for being able to detect the two classes of intrusions. However, it remains below 3% for all three
layer ENNs. This is true for the four layer ENNs except for three trials that obtain false positive rates of
3.87%, 7.75% and 22.34%.

The FPR should be small for an IDS to prevent system operators becoming flooded by false alarms,
which may prevent them from dealing with actual intrusions. Although a direct comparison is not possible
due to the differences in data partitions adopted, a trade-off similar to the one observed here can be seen in
Xiang et al. (2008), as they report better detection of U2R and R2L than previous studies, but obtain a FPR
of 3.2%. For more details on this study, refer to the discussion in Section 4.6.1 on page 73. An overview of

91



CHAPTER 5. LEARNING FROM IMBALANCED DATA

different trade-offs obtained with Eval3 is provided in Table 5.7. The two networks reported here with 50
HN are two different trials, exhibiting two different classification trade-offs.

Table 5.7: Classification rates obtained with a selection of ENNs evolved with Eval3.

Technique Accuracy% TPR% FPR% Normal% U2R% R2L%

Eval3; 3L, 50 HN 99.10 84.81 0.71 99.29 0.00 88.05

Eval3; 3L, 50 HN 97.87 99.16 2.10 97.90 0.00 100

Eval3; 3L, 100 HN 98.73 98.73 1.24 98.76 63.64 98.23

Two ENNs with 50HN demonstrate a typical trade-off observed here, one between FPR/accuracy and
TPR, as seen above in Table 5.7. One obtains a lower FPR, but detects less R2L instances. However, both
are unable to detect U2R intrusions. An ENN with 100HN was able to detect all three classes, but does
not achieve as high a TPR or as low a FPR as the two other ENNs. The confusion matrix for this ENN is
provided in Table 5.8.

Table 5.8: Confusion matrix for a three layer ENN with 100 neurons in the hidden layer, evolved with Eval3.

Actual\Predicted Normal U2R R2L %correct
Normal 19,214 17 225 98.76

U2R 1 7 3 63.64
R2L 2 2 222 98.23

%correct 99.98 26.92 49.33
Accuracy = 98.73%

T PR = 98.73% FPR = 1.24%

5.4.3.3 Eval4

This evaluation function is similar to Eval2, except that the reward is given proportionally according to
Eval3. Compared with Eval3, there are more cases of both intrusion classes being detected with three layer
ENNs. With four layers, however, there is no such obvious difference. The highest detection rates of U2R

(whilst still obtaining high detection rates on Normal and R2L) are obtained with this evaluation function,
reaching 81.82%. A confusion matrix for this ENN is provided in Table 5.9, below.

Table 5.9: Confusion matrix for a three layer ENN with 100 neurons in the hidden layer, evolved with Eval4.

Actual\Predicted Normal U2R R2L %correct
Normal 19,008 37 411 97.70

U2R 2 9 0 81.82
R2L 3 1 222 98.23

%correct 99.97 19.15 35.07
Accuracy = 97.69%

T PR = 97.89% FPR = 2.30%
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5.4.3.4 Eval5

As with Eval3 and Eval4, detecting both U2R and R2L is possible. In most cases, both intrusions are
detected; R2L intrusions generally around 90% and U2R between 60–80%. However, this function suffers
from an increase in false positives, which, in some cases, can lead to only ~70% of Normal instances being
classified correctly. The FPR is greater than 3% for 11 out of 15 trials with three layers and 8 out of 15 trials
with four layers. Although good performance is obtained in the other trials, this problem was not observed
with the previous evaluation functions.

This is the only evaluation function that made it possible to detect U2R with 100% accuracy. However,
this is one of the cases where Normal instances are not detected well; merely 76.86%, with the vast majority
of misclassifications as U2R. The trade-off between the classification rates, as observed previously, is more
prominent with this evaluation function. A selection of ENNs exhibiting different classification trade-offs
are presented in Table 5.10.

Table 5.10: An overview of results obtained with the ENN evolved with Eval5.

Topology Accuracy% TPR% FPR% Normal% U2R% R2L%

3L, 30HN 76.96 98.73 23.14 76.86 100 84.07

3L, 70HN 98.21 98.31 1.76 98.24 72.73 97.35

4L, 15HN 98.53 97.05 1.32 98.68 63.64 87.61

As observed above, there is negligible difference between the results obtained with three and four layers.
The highest TPR was obtained with a three layer network with 70 neurons in the hidden layer, whilst the
lowest FPR was obtained with a four layer network with 15 neurons in each of the hidden layers.

5.4.4 Summary and comparisons

An overview of results obtained with the three classifiers is presented in Table 5.11, which displays the best
results for each classifier according to the TPR.

Table 5.11: Overview of the best performing classifiers, selected based on true positive rates.

Technique Accuracy% TPR% FPR% Normal% U2R% R2L%

DT 99.93 95.78 0.01 99.99 9.09 99.56

MLP 99.77 93.25 0.15 99.85 0.00 97.79

ENN (Eval3) 98.73 98.73 1.24 98.76 63.64 98.23

In terms of accuracy and FPR, the DT offers the best performance, but suffers from poor classification
rates on U2R. The MLP trained with backpropagation exhibits a similar classification trade-off, but is
unable to detect any U2R intrusions. Similar classification rates were obtained with the ENNs evolved
with evaluation functions 1 and 2, which are biased towards the major class (as are the DT and MLP trained
with backpropagation). However, the ENNs evolved with evaluation functions 3–5 obtain the highest TPR,
detecting all classes with comparatively high accuracy. It can be observed that these ENNs provide a
different classification trade-off, resulting in a higher FPR. An overview of the performance of ENNs for
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each evaluation function is provided in Table 5.12, which were selected based on their TPR, with preference
to ENNs that detect both intrusion classes and obtain a low FPR.

Table 5.12: Overview of classification rates for the ENN for each evaluation function. The best classification rates are
highlighted in bold.

Function Accuracy% TPR% FPR% Normal% U2R% R2L% Topology

Eval1 98.80 0.00 0.00 100 0.0 0.0 3L, 30 & 100HN

Eval2 99.77 81.86 0.01 99.99 0.0 85.84 3L, 120HN

Eval3 98.73 98.73 1.24 98.76 63.64 98.23 3L, 100HN

Eval4 97.69 97.89 2.30 97.70 81.82 98.23 3L, 70HN

Eval5 98.21 98.31 1.76 98.24 72.73 97.35 3L, 70HN

5.5 Discussion

The results obtained in this study demonstrate clearly the benefit of evolving the MLPs, as up to 81.82%
U2R intrusions can be detected, compared with 9.09% for the DT and none with the MLP trained with
backpropagation. However, similar poor performance on the minor classes was obtained with the ENN
when using evaluation functions 1 and 2, which are also biased towards the major class(es).

In terms of accuracy, the DT and MLP trained with backpropagation do well, since this is what they are
trained for. Their bias towards the major class (Normal) leads to high TNRs and low FPRs. However, as
stated above, the detection of U2R is particularly poor, in line with the findings of Bouzida and Cuppens
(2006a;b). The findings with the ENN (specifically, the difference in behaviour between biased and unbi-
ased evaluation functions) demonstrate that this is indeed caused by an inability to learn effectively from
data with such extreme class imbalance. More specifically, the problem lies with the training algorithm,
rather than the classifier itself, since it has been shown that the ENN is indeed capable of obtaining high de-
tection rates on both U2R and R2L with evaluation functions 3–5, which do not have the same bias towards
the major class(es).

MLPs are often used for classification tasks as they are universal approximators (Hornik et al. 1989), and
the use of backpropagation (or variants thereof) for training is common. As the findings in this investigation
demonstrate, backpropagation (and other approaches based on biased error measures) is not appropriate
for problems with an extreme class imbalance, if the detection of minor classes is important, as would
reasonably be expected in many application domains, including intrusion detection. Using backpropagation
in conjunction with cost-sensitive learning may provide a successful method of learning from imbalanced
data. That is, the error on each class may be multiplied by a cost matrix that balances out the classes,
which is discussed further in Section 5.1 on page 77. However, there are two particular benefits of the
evolutionary approach: (1) the flexibility in the composition of the fitness measure, allowing for an arbitrary
transformation of classification rates and/or measures of error, which can operate on both class and instance
level, and (2) that an entire population of solutions may be created in a single run of the algorithm.

In this investigation, only a single solution from the evolved population of MLPs was selected from
each run, based on the best fitness score. However, since the fitness scores are calculated as an aggregate
of several separate objectives, two MLPs that obtain the same fitness score may exhibit different classifi-
cation properties. For example, with Eval5, one MLP may detect 90% Normal, 50% U2R and 50% R2L,
whilst another could obtain an identical fitness score by detecting 50% Normal, 90% U2R and 50% R2L.
Therefore, in theory, there may be several solutions that obtain high fitness scores that exhibit different clas-
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sification trade-offs, although GAs are known to converge eventually to a single solution without specific
mechanisms to promote diversity. This diversity may be useful in cases where the trade-off exhibited by
one MLP is unacceptable for a given application scenario.

In order to exploit the potential for producing diverse but effective classifiers, offering varying trade-
offs, a single objective approach is neither convenient nor predictable. Indeed, the results from individual
trials of a given network configuration show that the evolutionary process can lead to networks with signif-
icantly different properties, as the search is non-deterministic and the landscape is potentially complex and
deceptive. The problem that needs to be resolved is multi-objective in nature; hence, it is the transformation
to a single-objective problem that introduces complications. This is true for all classification problems that
cannot be solved trivially (i.e., those that are not readily separable, such that some misclassifications are
inevitable). Therefore, in the following chapter, a multi-objective extension of the ENN is proposed that is
able to provide the user with a set of solutions that exhibit different classification trade-offs. Furthermore,
the potential for classifier combination is investigated as a way to further improve on the performance of
the individual classifiers.
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Multi-objective evolution of classifier ensembles

Although able to address, to some degree, learning from imbalanced data, the utility of the ENN approach
proposed in the previous chapter is limited by converting a naturally multi-objective problem into a single-
objective problem. The consequence is that only a single solution is obtained for which we have no control
of the performance trade-off among the objectives (classification rates for each class). Eval5, which max-
imises the sum of the classification rates of each class, is a good example of this. Although high classifica-
tion rates were obtained on U2R and R2L, the trade-off is a poor classification rate on Normal, resulting in
a high FPR. Instead of converting individual classification rates into a single-objective problem, the MLPs
can be evolved with a Multi-Objective GA (MOGA) that treats the classification rates of each class as a
separate objective, yielding a set of solutions with different performance trade-offs. The extension of GAs
to multiple objectives is discussed in Section 6.1.

While an extension to multi-objective optimisation has pragmatic benefits, giving a user a choice be-
tween different MLPs that exhibit different classification trade-offs, there is further potential in the ap-
proach. MLPs evolved by a MOGA can be seen as a diverse pool of base classifiers that can be combined
to form classifier ensembles. Many researchers have demonstrated the success of classifier combination,
which has become increasingly popular over the last decade. Moreover, in recent years, evolutionary al-
gorithms have become more established in creating classifier ensembles. A general treatment of classifier
combination is given in Section 6.2, followed by a review of current approaches to evolving classifier en-
sembles in Section 6.3.

MOGAs have been used to create base classifiers, in which the final set of non-dominated1 solutions
are combined to form an ensemble (Abbass 2003a, Chandra and Yao 2004; 2006b, Ishibuchi and Nojima
2006). MOGAs have also been used for selection of ensemble members, however, the current approaches
share one particular drawback; the same drawback shared by the ENN proposed in the previous chapter:
only a single solution is created, for which there is no control of the classification trade-off it will exhibit.
This is a general problem with most existing machine learning approaches, which has not been considered
in the literature.

Although ensembles have been shown to be capable of outperforming the individual classifiers, they
are not guaranteed to do so (Kuncheva 2004, Quinlan 1996). The multi-objective approach taken here to
create MLPs, and ensembles thereof, offers a different perspective on this, using concepts of dominance and

1Non-dominated solutions refers to solutions with different trade-offs among the objectives, in which one cannot be deemed better
than another without domain knowledge. This is considered further in Section 6.1.
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Pareto optimality to demonstrate how the selection of base classifiers affects the performance of the resultant
ensemble(es). An empirical investigation in this chapter demonstrates how existing approaches that do not
consider the trade-off problem are prone to creating solutions with unfruitful performance trade-offs.

The research method is presented in Section 6.4, followed by results and discussion in Sections 6.5 and
6.6, respectively.

6.1 Multi-objective genetic algorithms

Since the first implementation by Schaffer (1985), Genetic Algorithms (GAs) have become well estab-
lished in the field of multi-objective optimisation, as demonstrated by their diverse application (Coello
Coello 1999, Deb 1999, Dimopoulos 2004, Fonseca and Fleming 1993b, Handl et al. 2006, Van Veldhuizen
and Lamont 2000). In recent years, they have also been used for creating classifier ensembles (reviewed
in Section 6.3 on page 110). Section 6.1.1 discusses the motivations for performing multi-objective opti-
misation. Section 6.1.2 discusses those modifications that need to be made to a GA in order to optimise
simultaneously multiple objectives. Several well established algorithms have been proposed in the liter-
ature, which are considered in Section 6.1.3. Due to the additional computational expense of MOGAs,
parallel implementations are discussed in Section 6.1.4.1.

6.1.1 Motivations for multi-objective optimisation

Early techniques dealt with multiple evaluation criteria by converting multiple objectives (a vector) into
one objective (a scalar) (Deb 2001, p. 7). This approach was taken with the ENN, which introduces some
complications since single-objective optimisation only produces one solution, whereas a multi-objective
problem often has a set of non-inferior solutions that represent different trade-offs between the objectives.
This trade-off problem was been recognised as early as 1896 by Vilfredo Pareto (1972), which is now
referred as to as the concept of a Pareto Optimum. The concept is illustrated in Figure 6.1, depicting
a maximisation problem with two objectives that does not have a single best solution. There exists an
optimum Pareto front (in blue), however, with a number of solutions that represent different trade-offs
between the objectives. Without domain knowledge, none of the solutions in the Pareto front can be deemed
better than another.

Conventional techniques transform multi-objective problems into single-objective optimisation prob-
lems, often by using a priori knowledge about the problem, or heuristics to guide the algorithm to a single
solution (Coello Coello 2000, Deb 2001). The algorithm is run once to find one solution in the Pareto front.
More solutions may be found by executing successive runs whilst changing the preference parameters, e.g.,
weights for each of the objectives. However, according to Deb (2001, p. 75), for some techniques, it is
not guaranteed that all solutions in the optimum Pareto front can be found in this manner, especially if the
Pareto front is non-convex. Furthermore, Deb (2001, p. 79) also states that most conventional techniques
are designed for specific problems. This demands considerable knowledge from the engineer, both about
techniques to use and specific knowledge about the problem that needs to be solved. In contrast, a MOGA
may sample the Pareto front in a single run without incorporating any domain knowledge about the problem.

6.1.2 Required modifications

Due to the population based approach to optimisation, MOGAs can find a set of solutions on a Pareto
front in a single run (Coello Coello 1999, Deb 2001, Fonseca and Fleming 1995). However, due to finite
populations, stochastic errors and genetic drift, a GA naturally converges to a single solution (Deb and
Goldberg 1989). Therefore, some modifications are necessary to sample an entire Pareto front. First, the
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Figure 6.1: An example of a multi-objective problem with two classes, in which the objectives are to maximise the
classification rates. From a set of solutions, the ones in blue signify the Pareto front.

selection process needs to consider multiple objectives, which may be achieved by transforming fitness
scores or modifying the selection algorithm. Second, additional mechanisms are required to distribute
samples across the Pareto front. A selection of commonly used techniques are described below.

6.1.2.1 Niching

Traditionally, niching methods encourage the formation of stable sub-populations on multiple optima in
multi-modal problems (Deb and Goldberg 1989). In multi-objective optimisation, niching methods are
utilised to distribute samples across the Pareto front by discouraging their aggregation. Two niching tech-
niques are described here: crowding and sharing. These two techniques are representative of fundamentally
different approaches: one directly modifies the selection method (crowding), whilst the other transforms the
fitness scores (sharing) prior to selection.

Crowding was proposed by Holland (1992), and aims to identify where several individuals dominate an
environmental niche. This situation results in lower life span and birth rates, and is mitigated by incorporat-
ing a replacement strategy. A commonly used strategy was suggested by DeJong, in which a new offspring
replaces the individual that is the most similar to itself (Coello Coello 2000). Crowding is closely related to
mating restrictions, which is discussed further below.

Goldberg and Richardson (1987) propose a niching technique called sharing, which modifies the fitness
of individuals in the niches according to the niche size; the larger the niche, the less fit the individuals will
appear. A parameter, σshare, signifies a distance threshold for determining if an individual is considered to
be a part of a particular niche. It is usually implemented such that, for a given individual, a fitness penalty
is applied for all others that are within σshare distance, with the penalty typically decreasing linearly with
increasing distance. Hence, tight clusters of samples are heavily penalised and representatives are not then
as likely to be selected for reproduction. Deb and Goldberg (1989) present empirical results that show
benefits of using sharing for multi-modal landscapes. It has also been a popular choice in MOGAs (Coello
Coello 1999; 2005).

Recombination of individuals between niches can lead to a high proportion of lethals. Goldberg and
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Richardson (1987) suggest a combination of sharing with mating restrictions, which was shown by Deb
and Goldberg (1989) to improve the performance of sharing. The mating restriction they suggest only
allow individuals to reproduce if their phenotypic distance is within a certain threshold. Eshelman and
Schaffer (1991) took the opposite approach by restricting mating to dissimilar individuals, suggesting that
this is beneficial to prevent premature convergence. However, this observation was made in the context
of single-objective optimisation. For multi-objective optimisation, it is predominately mating restrictions
between different niches that is of interest.

6.1.2.2 Dominance

Dominance is an evaluation concept introduced by Goldberg (1989, pp. 197–201) to handle multiple objec-
tives. Individuals need to be evaluated with equal weight to every objective, which is achieved by consider
dominance. Individual x dominates individual y if the following conditions are fulfilled:

1. x is no worse than y on all objectives, and

2. x is better than y on at least one objective

In the same way, individuals can be identified as non-dominated if the individual is not dominated by
other individuals. The evaluation process is illustrated with an example in Figure 6.2. The concept can
be applied in two ways, either by modifying the selection (e.g., dominance based tournament selection) or
fitness transformation by dominance ranking. Regarding the latter, all the individuals in a population may
be sorted into non-dominated sets, as in seen in Figure 6.2d. In a practical scenario, there may be hundreds
of such non-dominated sets, all of which can be assigned a rank. The rank is typically a whole number,
which is incremented for each set to reflect how many sets dominate it.

Both ranking and the dominance concept can be used directly in selection and replacement. For ex-
ample, for dominance based tournament selection, two individuals may be selected from the population
as a potential parent, and the dominant individual selected. Similarly, if ranks have been calculated, the
individual with the lowest rank value is selected.

The potential problem with these approaches is that two non-dominated individuals may be selected
(therefore with the same rank). This is a case in which niching, such as sharing, is useful, in which the
individual in the less crowded region can be selected to prevent the MOGA from converging on a single
solution.

6.1.2.3 Archive function

A mechanism that has been proposed in more recent MOGA algorithms is an archive of all non-dominated
solutions discovered since the start of the algorithm (Deb et al. 2000, Zitzler and Thiele 1999). An archive
may be necessary for some problems to be able to sufficiently sample the Pareto front when practical
population sizes are not large enough to do so. Furthermore, an archive may provide a mechanism to
reintroduce important genetic material that may become lost in a population as the search progresses in a
particular direction.

6.1.3 Algorithms

The most common MOGAs are described here in chronological order according to their development. For
further information, refer to surveys by Coello Coello (1999, 2000, 2005) and a more comprehensive text
by Deb (2001).
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(a) Two non-dominated individuals. (b) Three non-dominated individuals.

(c) Two individuals that dominate the previous three. (d) Two sets of non-dominated individuals.

Figure 6.2: An illustration of dominated and non-dominated sets of individuals. Relating this to the application here,
each individual represents the classification rates of MLPs on two objectives, intrusion and normal.

6.1.3.1 VEGA

The first MOGA was implemented by Schaffer (1985). This algorithm, called the Vector Evaluated Genetic
Algorithm (VEGA), incorporates a modified selection process to cope with multiple evaluation criteria. The
population is divided into n sets, equal to the number of objectives, where selection in each set is based on
a single objective. Mating restrictions are employed, constraining recombination to individuals within the
same set. By means of pair-wise comparison of all individuals, one can identify those that are dominated
and flag them as inferior. At the end of a reproduction cycle, the set of non-inferior individuals represents
the current best Pareto front.

There is, however, a drawback with this technique that can prevent the location of the Pareto front.
Due to the selection process, individuals that excel in one dimension are favoured over individuals with a
balanced performance across all dimensions. As a result, the VEGA tends to converge to individually best
solutions only (Deb 2001, p. 173).
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6.1.3.2 MOGA

Fonseca and Fleming (1993a) proposed the Multi-Objective GA (MOGA), which incorporates both niching
and the concept of dominance with rank based fitness assignment. Individuals that are non-dominated
with respect to each other are grouped into sets. All individuals in each set are assigned an identical rank,
starting at 1. Consecutive sets that are dominated by the prior set are assigned an incremented rank (2, 3,
etc.). Diversity is maintained within each set of non-dominated solutions by use of sharing. Another novelty
in this algorithm is a dynamic update mechanism for σshare. This approach has one major drawback: due
to large niche counts, the shared fitness may be small. This affects the selection pressure of all solutions
of higher rank, which leads to slow convergence. In turn, this can prevent the algorithm from finding the
optimum Pareto front (Deb 2001, p. 196).

6.1.3.3 NSGA

Srinivas and Deb (1994) proposed the Non-dominated Sorting GA (NSGA), which, like MOGA, incorpo-
rates both the concept of dominance and sharing. Before selection, the population is ranked by giving all
non-dominated solutions a fitness value proportional to the population size. All solutions in the highest
ranking set are given a fitness value equal to the population size, then progressively lower fitness is as-
signed to individuals in sets of lower rank. The NSGA then uses sharing to maintain diversity among the
individuals, by adjusting the fitness to make less crowded regions more fit. Unlike MOGA, NSGA does
not incorporate any dynamic niche updating strategy, which makes performance dependent on the value of
σshare.

6.1.3.4 NPGA

Horn et al. (1994) proposed a Niched Pareto GA (NPGA), which is also based on the dominance concept
and uses sharing. It differs from earlier algorithms in adopting a modified tournament selection rather than
proportional selection. The selection strategy works as follows: two individuals are selected together with a
random comparison set. The selected individuals are compared with those in the comparison set according
to dominance. If one individual is not dominated by the set, whilst the other is dominated, the former is
selected. If both are either dominated or non-dominated, then the individual with the lowest niche count
wins the tournament.

6.1.3.5 SPEA

Towards the end of the 1990s, NSGA was found to be the best performing algorithm, when compared
with VEGA, NPGA, NSGA, a weighted sum, and a random approach (Zitzler and Thiele 1998). Since
research at this point had established several GAs that were capable of performing multi-objective opti-
misation, efforts were then directed at developing algorithms with improved performance. Coello Coello
(2005) describes these as second generation algorithms. For example, Zitzler et al. (1999, 2000) proposed
one of the first elitist MOGAs, the Strength Pareto Evolutionary Algorithm (SPEA). Elitism was found to
improve significantly the convergence properties of the MOGAs, which was then also incorporated into a
new version of NSGA: NSGA-II, which is discussed further below.

SPEA is one of the first MOGAs to maintain an archive of non-dominated solutions from the start of
the algorithm, which was also incorporated in a multi-objective evolution strategy algorithm proposed by
Knowles and Corne (2000). The archive is external to the main population, but takes part in the fitness
calculation. Since the archive can grow very large for some problems, Zitzler and Thiele (1999) propose a
pruning mechanism to keep the size of the archive within a certain limit, to prevent the selection pressure
from dropping.
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6.1.3.6 NSGA-II

Deb et al. (2000) propose a fast, elitist, version of the NSGA, called NSGA-II, which they found to out-
perform SPEA on five difficult test problems. Unlike NSGA, NSGA-II preserves diversity among non-
dominated solutions by use of crowding (instead of sharing). Another major difference is that the NSGA-II
uses tournament selection.

NSGA-II is a generational algorithm that utilises the concept of dominance to determine the new pop-
ulation after each generation (at which point selection and recombination has taken place to produce an
offspring population of the same size as the old population). Before classifying individuals according to the
dominance concept, parent and offspring populations of size n are combined to form a global population
of size 2n. Non-dominated sorting is then applied to this global population, which identifies sets of non-
dominated individuals, as illustrated in Figure 6.2d on page 100. A new population of size n is then created
from the sets according to their ‘rank’. If all individuals of a set cannot fit into the population, niching is
used to select individuals in the least crowded region of the set. Consecutive sets, if any, are discarded.

6.1.3.7 SPEA2

As mentioned above, SPEA required a pruning mechanism to prevent the archive of non-dominated solu-
tions from growing too large. In an improved version of the algorithm, SPEA2, Zitzler et al. (2002) propose
a new pruning mechanism that ensures that boundary solutions are retained in the archive. SPEA2 also in-
corporates a more fine grained fitness function, which takes into account the number of individuals that
dominate a given individual, and how many it dominates. Furthermore, the fitness function includes density
information based on a k-NN algorithm.

Zitzler et al. (2002) found that SPEA2 performed well in comparison with NSGA-II, and their findings
indicate that SPEA2 performs better in high dimensional search spaces. However, their test suite was
limited.

6.1.4 Parallel MOGAs

The additional mechanisms in the MOGAs to deal with multiple objectives, such as non-dominated sorting,
are time consuming. Furthermore, since many real world problems are complex, with many objectives,
larger population sizes are required to sample the Pareto front, which can be computationally intensive (Deb
et al. 2003). In such cases, serial MOGAs may be unacceptably slow. Fortunately, GAs are well suited to
parallelising (Cantú-Paz 1998), and several successful models have been proposed in the literature. These
are presented in Section 6.1.4.1, followed by a discussion of specific parallel MOGA implementations in
Section 6.1.4.2.

The principles of parallel programming are not covered here. Readers are referred to texts by Andrews
(2000), Bal (1990), Foster (1995), Hwang and Briggs (1986), and Kumar et al. (1994). Further information
on parallel GAs can be found in Cantú-Paz (1998; 2001), Alba and Troya (1999), and Talbi et al. (2008).

6.1.4.1 Parallel models

Alba and Troya (1999) identified four classes of parallel implementation (as illustrated in Figure 6.3):

Global model: A global population is maintained on one node, whilst fitness evaluations are farmed out to
slave nodes. Hence, this is also known as a farming model (Kohlmorgen 1995) or master-slave model
(Cantú-Paz 1998). See Figure 6.3a.

Coarse-grained model: This model consists of multiple sub-populations, referred to as demes, which are
executed on different nodes. As illustrated in Figure 6.3b, demes communicate by migrating individ-
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uals between them, following various topologies. Hence, this is also referred to as an island model
(Gordon and Whitley 1993), migration model (Kohlmorgen 1995), or, more generally, a distributed
GA (Cantú-Paz 1998).

Fine-grained model: While the two models above function well with few nodes, this model exploits mas-
sively parallel hardware (Hart et al. 1996). The model sustains one population, where each individual
is assigned to a single node. Different selection and replacement mechanisms are implemented, oper-
ating within local neighbourhoods, as illustrated in Figure 6.3c. Hence, this approach is also known
as a diffusion model.

Hybrid model: Also known as hierarchical models, which are compositions of the three models discussed
above. For example, a coarse-grained model at the top level, and a global model at the lower level,
which is illustrated in Figure 6.3d. This is particularly desirable since Cantú-Paz and Goldberg (1997)
found that there was an optimum number of demes in a coarse-grained algorithm. Such a hybrid
model may allow better exploitation of some configurations of parallel hardware.

(a) Global model. (b) Coarse-grained model.

(c) Fine-grained model. (d) A hybrid model.

Figure 6.3: Parallel models.

The global model is considered the simplest parallel model, since the semantics of the GA remain
unchanged. Consequently, as Cohoon et al. (1987) state, it can only offer hardware acceleration, whereas
other models have been found to offer potential search benefits (Gordon and Whitley 1993). The global
model may provide near linear speedup if the fitness function is sufficiently computationally intensive in
relation to communication overheads. As the number of slave nodes increases, the communication overhead
reduces efficiency (Abramson and Abela 1993).
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Similarly to the global model, coarse-grained algorithms are widely applicable, because they can be
readily implemented on common hardware (Tomassini 1999). The coarse-grained implementation does,
however, introduce several additional parameters which need to be configured:

• The topology (Figure 6.3b illustrates the common ring topology).

• The number of demes.

• Connectivity between the demes.

• The migration interval.

• The number of migrants.

• Migrant policy (selection and replacement).

Despite the additional complexity in the model, it comes with a significant benefit: it is possible to obtain
better search performance compared with a serial GA (Doorly et al. 1996, Gordon and Whitley 1993).
Therefore, it may even be desirable to implement a coarse-grained model on a serial machine to solve
difficult problems.

Despite theoretical and empirical research into the properties of fine-grained PGAs, there are few practi-
cal applications reported in the literature. This may be due to limited availability of massively parallel hard-
ware and the rise in popularity of coarse-grained platforms such as clusters. However, Logar et al. (1992)
report success in parallelising a fine-grained algorithm onto a SIMD (Single Instructions, Multiple Data)
architecture, and Cantú-Paz (1998) discusses a few studies from the early 1990’s.

6.1.4.2 Implementations for multi-objective optimisation

Despite the success of parallelising single-objective GAs, there has been limited research on parallelising
MOGAs (Van Veldhuizen et al. 2002). Existing papers indicate that parallelising multi-objective GAs is
not as straightforward as parallelising single-objective GAs due to different evaluation and diversity mech-
anisms. Hence, the global model is the simplest to adopt, as it typically only distributes fitness evaluations,
and, therefore, avoids complications related to the other models. In a recent survey, Talbi et al. (2008)
contend that the global model is widely used and is very successful when the fitness evaluation is time
consuming.

According to Rowe et al. (1996), a fine-grained parallel structure is ideal for multi-objective optimisa-
tion as it has a natural niching behaviour due to the spatially distributed nature of the population. Since
non-dominated sorting of individuals is a local process, the overhead of calculating ranks for the entire
population is avoided. Their parallel implementation improved search performance compared with a serial
GA with sharing. One drawback of the fine-grained approach, however, is that individuals in the same niche
may never compete in the selection process if they are physically separated. This may, therefore, conflict
with mechanisms such as mating restrictions, and may lead to sustaining low fitness niches.

Hiroyasu et al. (1999) used a coarse-grained (island) model for multi-objective optimisation. To pre-
serve diversity, sharing is applied to the sets of Pareto solutions when they are too crowded. Sharing is
performed both locally, in each sub-population, and globally, to shorten calculation time. They reported
high accuracy of the search, but the algorithm is computationally intensive because of the sharing mecha-
nism. Moreover, Sastry et al. (2005) conducted experiments on additively separable problems and found
that failures in niching mechanisms lead to exponential scale-up in computation time. This failure occurs
when there is a large number of solutions in a Pareto front. A common island model has, however, been
applied more recently to generate classifier ensembles (Duell et al. 2006), which is considered further in
Section 6.3 on page 110.
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A few researchers have attempted to utilise the parallel structures by assigning parts of the search space
to different processors. Deb et al. (2003) implemented an allocation plan that assigns a particular part
of the Pareto front to each processor. All processors still cover the entire search space, but are guided
by the allocation plan. After a run, solutions from all processors are aggregated to form a diverse set of
solutions. It was observed that multiple processors helped to sample a diverse set of the optimum Pareto
front. Further work by Branke et al. (2004) included explicit constraints to allocate areas of the fitness space
to the processors. The results were promising for two dimensions, but were not when a third dimension
was added. Both studies restricted test problems to a maximum of three dimensions. Generalising such
techniques to arbitrary dimensions is non-trivial.

6.2 Classifier combination

Throughout this chapter, the terms ‘ensemble’, ‘classifier combination’ and ‘combination of classifiers’ can
be considered synonymous, and are used interchangeably. Section 6.2.1 introduces classifier combination,
and establishes the potential benefits over monolithic classifiers. A taxonomy of classifier combination
approaches is presented in Section 6.2.2. According to this taxonomy, Sections 6.2.3 to 6.2.6 further dis-
cuss the different approaches to classifier combination. Section 6.2.7 discusses the importance of diversity
among the classifiers comprising an ensemble.

6.2.1 Motivations

The main motivation for classifier combination is stated by (Kuncheva 2004, p. 295):

“If we have a perfect classifier that makes no errors, then we do not need an ensemble. If,

however, the classifier does make errors, then we seek to compliment it with another classifier,

which makes error on different objects.”

Further, Dietterich (2000b) offers three specific reasons why classifier combinations can be beneficial:

1. Statistical: if the amount of training data is insufficient to model the hypothesis space with one classi-
fier, then the combined knowledge of an ensemble of classifiers may reach more accurate predictions.

2. Computational: algorithms can become stuck in local optima and it may be computationally expen-
sive to find the global optimum. Instead, it may be better to execute several local search algorithms
from different starting points and combine these.

3. Representational: the optimal classifier may not be found, because the technique is incapable of
modelling the hypothesis space to fit the true function of the problem. Kuncheva (2004, p. 103)
offers a simple example to demonstrate this: a linear classifier cannot perform nonlinear classification,
however, a combination of linear classifiers can.

Garcia-Pedrajas et al. (2005) provide another specific example of the pragmatic benefit of performing clas-
sifier combination:

“Although theoretically, a single neural network with a sufficient number of neurons in the

hidden layer would suffice to solve any problem, in practice many real-world problems are too

hard to construct the appropriate network that solve them. In such problems, neural network

ensembles are a successful alternative.” Garcia-Pedrajas et al. (2005)

Several authors report that ensembles often outperform the individual best base classifier (Bauer and Kohavi
1999, Brown et al. 2005, Dietterich 2000a, Tan and Gilbert 2003). However, Kuncheva (2004, pp. 103–104)
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notes that classifier combinations are not guaranteed to do so. For example, Quinlan (1996) investigated
the performance of boosting (see Section 6.2.6) and observed that it did not improve the performance on all
data sets. However, this is the nature of this domain; there is no single best classifier/approach (Kuncheva
2004, p. 229) (as established for optimisation in the no free lunch theorems (Wolpert and Macready 1997)).

6.2.2 Taxonomy

Since research on classifier combination is evolving continuously, there is no existing taxonomy that covers
every aspect of the existing approaches. The taxonomy adopted and presented here stems from Kuncheva
(2004, p. 105), and additional aspects from Valetini and Masulli (2002) are discussed:

A) Combination level: considers how classifiers are combined.

B) Classifier level: determining which base classifiers to combine.

C) Feature level: using different feature subsets to train the base classifiers.

D) Data level: using different data subsets to train the base classifiers.

Kuncheva (2004, p. 106) further describes two approaches to developing ensembles.

1. Decision optimisation: “methods to choose and optimize the combiner for a fixed ensemble of base

classifiers” (corresponds to level A)

2. Coverage optimisation: “methods for creating diverse base classifiers assuming a fixed combiner”

(corresponds to levels B, C and D)

These are similar to the main approaches according to Valetini and Masulli (2002), which they refer to as
non-generative and generative methods. The non-generative methods are similar to decision optimisation,
in which the goal is to combine a set of existing base classifiers. Generative methods, on the other hand,
actively generate classifiers in an attempt to increase the accuracy and diversity of the ensemble.

Valetini and Masulli (2002) extend the coverage optimisation group to encompass mixture of experts

(discussed further below), output coding methods (Dietterich 2000b, Masulli and Valetini 2000), test and

select methods, and randomized ensemble methods. Output coding methods transform multi-class problems
into binary classification problems, which are then combined in the ensemble to solve the multi-class prob-
lem. In test and select methods, base classifiers are added to the ensemble successively. The most simple
approach for this is a greedy method (Perrone and Cooper 1993), in which a new classifier is added to the
ensemble only if the accuracy is improved. The randomised ensemble methods create a diverse set of base
classifiers by randomly initialising the configuration parameters of the classifiers before learning, e.g., for
ANNs, this may include the weights, learning rate and momentum.

Each of the levels in the taxonomy of Kuncheva are discussed further in their respective sections below.

6.2.3 Combination level

Kuncheva (2004, p. 106) considers two main approaches to combining classifiers, which can be considered
a subgroup of decision/coverage optimisation:

1. Fusion: also referred to as competitive classifiers, ensemble approach or multiple topology

• Each technique is trained on the complete feature set.

• Typically, voting or an average is used to determine the ensemble output.
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2. Selection: also referred to as cooperative classifiers, modular approach or hybrid topology

• Each classifier is trained on different feature sets.

• Usually one classifier is chosen to give the ensemble output.

Fusion approaches generally fall under coverage optimisation, whilst selection approaches fall under deci-
sion optimisation. In addition to the fusion and selection models, there exists a mixture of experts model
(Egmont-Peterson et al. 1999, Gama and Brazdil 2000), which trains both the base classifiers and the com-
bination method at the same time.

Two additional components are incorporated into a mixture of experts model: a gating network and
a selector. The gating network receives the same input vectors as the classifiers in the ensemble, but its
function is to calculate probabilities for each classifier as to how competent they are to classify the given
input. These probabilities, accompanied by the predictions of each of the classifiers, are passed on to the
selector, which then determines the final output. This final classification can be determined in three ways
(Kuncheva 2004, p 201):

1. Stochastic selection according to the distribution of the calculated probabilities.

2. Winner-takes-all; the maximum probability leads to selection.

3. Weights; used for soft output.

Fusion is the simpler approach, and, thus, is attractive. A simple, but effective, approach to deciding the
output label (classification) of an input vector is to choose the label that the majority of the classifiers in
the ensemble predict, referred to as a majority vote combiner. This approach assumes that all the classifiers
are equally important, which they may not be. In contrast, in the selection approach, generally only one
classifier is chosen to label an input vector. However, selection requires that the ensemble is further trained
to obtain mechanisms for deciding which classifier should be chosen to label a given input. In this sense,
the selection model is similar to the mixture of experts model.

6.2.4 Classifier level

Classifier combination on this level has been considered for intrusion detection due to observations in
the literature that different classifiers perform well on different classes of intrusion (Anuar et al. 2008,
Gharibian and Ghorbani 2007, Pan et al. 2003, Peddabachigari et al. 2007, Sabhnani and Serpen 2003). For
example, Sabhnani and Serpen (2003) combined three different machine learning techniques, namely an
ANN, k-means clustering and a Gaussian classifier, as these obtained the highest accuracies on the different
classes of intrusion. However, they do not provide further implementation details about how the classifiers
are trained, nor how the ensemble output is determined. According to their model, all classifiers process the
same input vectors, but it is not clear how an output is determined if, for example, two classifiers predict
that the input vector is an instance of the class of intrusion they have been assigned to detect. Nevertheless,
Sabhnani and Serpen (2003) report that the classifier combination approach improved the classification
rates.

The hierarchical hybrid system proposed by Xiang et al. (2008), as discussed in Section 4.6 on page 73,
can be categorised within this level. This system, comprised of a DT and an AutoClass classifier, was able
to achieve a higher true positive rate than previously reported in the literature on the original training and
test sets of the KDD Cup ’99 data set. However, this was at the expense of a higher false positive rate.

In the general literature on classifier combination, Kuncheva (2004, p. 105) states that there is no ev-
idence supporting the use of base classifiers of the same type or different types. As considered in the
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previous chapter of this thesis, there are discrepancies in the results reported in the literature on intrusion
detection. Although individual studies report improvements when specific classifiers are combined, the
same combination of classifiers may be poor in another application.

6.2.5 Feature level

The motivations for using different feature sets (level C) is to improve the computational efficiency of the
ensemble and to increase the accuracy (Kuncheva 2004, p 237). A particular benefit of this approach is
that it alleviates the curse of dimensionality (Friedman 1997). There are several approaches to feature
selection for ensemble creation; one popular approach is the random subspace method (Ho 1998b;a). Such
a random feature subspace method is also used to train DTs in Random Forests (RFs), which is a classifier
combination approach that is mainly associated with the data level, as discussed in the following section.
Other methods include Principal Component Analysis and Genetic Algorithms. Refer to (Valentini and
Masulli 2002) for further information on the different feature selection approaches.

6.2.6 Data level

Some of the most popular classifier combination methods utilise the data level. Three common approaches
are described here: bagging, boosting and random forest (RF).

Bagging (bootstrap aggregating), proposed by Breiman (1996), relies heavily on the instability (sen-
sitivity to configuration and/or training data) of the classifiers. Bagging follows a fusion approach, using
a majority vote combiner to determine the output of the ensemble. Each of the classifiers is trained on
different data. Ideally, the data should be randomly sampled from the original training set. However, this
is not always possible due to the size of the data set. Therefore, the different training subsets are sampled
with replacement (bootstrap replicates) from the original training set.

Another popular approach is boosting (Schapire 1990, Freund 1995, Freund and Schapire 1997), which
Kuncheva (2004, p. 221) believes is the most rapidly growing subarea of classifier combination research. In
boosting, the ensembles are populated one classifier at the time; each classifier is trained on selective data
from the original training set. For the first base classifier, the data is selected uniformly. For successive
classifiers, the sampling distribution is continuously updated so that instances that are more difficult to clas-
sify are selected more often than those that are easy to classify. The classification outputs of the ensemble
are determined according to weighted votes, which are based on the accuracy of the classifiers.

AdaBoost (Adaptive Boosting) is perhaps the most well known boosting algorithm, which, in its orig-
inal form, deals only with binary classification (Freund and Schapire 1997). However, AdaBoost.M1 and
AdaBoost.M2 are able to deal with multi-class classification (Freund and Schapire 1997), and AdaBoostR
has been developed for regression problems (Drucker 1997). AdaBoost can use two approaches to building
the ensemble. The first, resampling, is the approach described above. The second, reweighting, “...as-

sume[s] that the base classifiers can directly use the probabilities on [the data set] as weights. No sampling

is needed in this case, so the algorithm becomes completely deterministic” (Kuncheva 2004, p. 215). Nei-
ther approach has been shown to be more beneficial than the other (Breiman 1998, Freund and Schapire
1998). Quinlan (1996) has found that AdaBoost is largely successful due to overfitting the training data,
although it does not improve the performance for all data sets in that investigation.

Dietterich (2000a) compared empirically the performance of three methods of creating ensembles of
DTs: bagging, boosting and a simple randomisation method. The latter method introduces some random-
ness into the configuration of the DTs, intended to ensure diversity among the different base classifiers. The
results indicate that bagging is the most successful approach when the classification data is noisy. How-
ever, on noise-free data, boosting leads to the highest accuracy, and randomisation generally outperforms
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bagging.
Random Forest (RF) (Breiman 2001) is a version of bagging that has received recently much attention in

the research community. As the name suggests, RFs are comprised of DTs. Similarly to the basic principle
of bagging, each DT is trained on different data and they are combined by a majority vote. The DTs may
also be trained on different feature sets. The performance of RF is comparable to AdaBoost, but is more
robust to noise (Breiman 2001), which is the same observation Dietterich (2000a) made regarding bagging.

In a more recent study by García-Pedrajas et al. (2007), an approach based on the notions of boosting
and the random subspace method is proposed, which is less sensitive to noise. However, the approach is
still more sensitive to noise than bagging. Another benefit of both RF and bagging, is that they are parallel
in nature in both the training and classification stages, whilst the boosting algorithms are sequential.

6.2.7 Importance of diversity

The term ‘diversity’ in the context of classifier combination does not just imply that the base classifiers
should be different; it also implies that the base classifiers make errors on different instances (Brown et al.

2005, Hansen and Salamon 1990, Kuncheva 2004, p. 295). This may be referred to as negative correlation
(Yao and Islam 2008). In contrast, if the classifiers make errors on the same cases, they are positively
correlated, and their combination would not yield any improvement. As initially stated in Section 6.2.1,
the goal is to obtain a set of classifiers that complement each other. To obtain diversity, it is fruitful to use
unstable base classifiers, such as DTs and ANNs, which can produce significant differences in the models
when the training data and/or configuration parameters are changed. Interestingly, diversity is so important
that weakening the base classifiers can be a successful approach to building ensembles (Kuncheva 2004, p
295).

Two approaches can be considered for producing diverse base classifiers: explicit and implicit (Brown
et al. 2005, Tang et al. 2006). Implicit approaches do not use directly diversity as a measure in the process
of producing the ensemble (or the base classifiers), whilst explicit approaches do. Kuncheva (2004, p 295)
notes that “trying to measure diversity and use it explicitly in the process of building the ensemble does

not share the success of the implicit methodologies”. There are many metrics of diversity (Kuncheva and
Whitaker 2003) and approaches to producing a diverse set of base classifiers. However, they are still not
fully understood.

Kuncheva and Whitaker (2003) undertook a comprehensive empirical investigation attempting to an-
swer the following five questions:

1. How can diversity be defined and measured?

2. How do diversity measures relate to each other?

3. How do diversity measures relate to the ensemble accuracy?

4. Can one measure of diversity be determined as ‘best’ in terms of minimising the error of an ensemble?

5. How can diversity measures be used in designing a classifier ensemble?

They examined ten existing diversity measures (for binary classification), four of which were pairwise
measures and six non-pairwise. Most of their observations are inconsistent, making it difficult to draw any
accurate conclusions; “... the notion of diversity is not clear-cut” (Kuncheva and Whitaker 2003). With
respect to question four and five, Kuncheva and Whitaker state that any conclusions are speculative, and
even question the importance of measuring the diversity in the ensemble. They conclude that diversity is
important, but the use of direct measures in the process of building ensembles remains an open issue.
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Brown et al. (2005) propose a taxonomy of diversity creation methods, which considers three main
groups:

1. Starting point in hypothesis space: for ANNs, this would be randomly initialising the weights. This,
they state, is the least effective method.

2. Set of accessible hypotheses: this includes manipulation of training data and architectures (e.g.,
nodes in the hidden layer(s) of MLPs).

3. Traversal of hypothesis space: this relates to the training process, e.g., penalty methods (negative
correlation learning) and evolutionary methods, both of which are discussed in Section 6.3.

Brown et al. accept that the taxonomy may not be complete. For example, their taxonomy does not explic-
itly include approaches based on feature selection. Nevertheless, it gives a foundation for understanding
the different approaches to creating diverse ensembles. Further work on this aspect of classifier combina-
tion has been conducted by Tang et al. (2006), aiming to establish a better understanding of the diversity
mechanisms. They consider the combination of classifiers to be a more challenging task than producing
diverse base classifiers. Ruta and Gabrys (2001a, 2005) have conducted thorough empirical investigations
of diversity metrics used in fusion ensembles, using a majority vote combiner. They demonstrate that the
correlation between the diversity measures and the combiner are important. However, they also found that
using the error of the majority voting combiner as a selection criterion lead to the highest accuracy of the
ensembles.

As Brown et al. (2005) states, ensemble approaches to classification and regression problems have very
different theoretical foundations. The latter has a well established theoretical basis, which is not the case
for classification. This section has discussed several studies on diversity in classifier ensembles, but one
particular limitation of the investigations is that they have only considered binary classification problems.
Furthermore, there are uncertainties and inconsistencies in the empirical results reported in the studies
examining diversity mechanisms, which some of the authors accept (e.g., Kuncheva and Whitaker (2003)).
For example, Tang et al. (2006) promote using diversity measures directly when creating base classifiers,
since methods that utilise the data level may not produce sufficiently diverse classifiers. Moreover, they
argue that it is unimportant which diversity metric that is used. This, however, contradicts the observations
of Kuncheva (2004, p. 295), claiming that implicit methods are more effective. Nevertheless, the general
consent is that diversity is important in the classifiers ensembles, regardless of how it is achieved.

6.3 Evolving classifier ensembles

Evolving classifiers for an ensemble was first considered by Yao and Liu (1996), who found that the aggre-
gated knowledge of the population was important, leading to better results compared with the single best
individual. There are three ways in which evolutionary algorithms have been used in classifier combination:

1. Evolving the base classifiers for the ensemble.

2. Evolving the combination of a set of existing base classifiers.

3. Evolving the base classifiers and ensemble concurrently.

The first approach may assume a fixed combiner, such as majority vote, and the evolutionary process is
only used to produce a set of diverse base classifiers. Other methods may be used to determine which
base classifiers are used in the ensemble and how they are combined. The second approach assumes an
existing set of base classifiers and uses an evolutionary algorithm to optimise the combination of them.
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These two approaches can be seen as two independent operations, whilst the third approach performs both
concurrently. The three approaches are discussed further in Sections 6.3.1 to 6.3.3.

6.3.1 Evolving base classifiers

One notion that underpins the evolution of base classifiers is the reduction in the complexity of a problem
by breaking it down into several modules that specialise in solving particular parts of the problem. This is
referred to as modularisation (Yao and Islam 2008), which is at the heart of classifier combination. There
are several ways in which this can be achieved with evolutionary algorithms. For example, Darwen and
Yao (1997) propose using speciation to achieve automatic modularisation. Speciation is synonymous with
niching methods such as fitness sharing and crowding (Deb and Goldberg 1989, Section 6.1.2 on page 97),
which are modifications to the GA to help prevent the population from converging on a single solution.

Darwen and Yao (1997) apply speciation to evolve rule based systems (RBSs) for playing prisoner’s
dilemma games, in which each species in the population is a RBS representing a particular strategy. A
gating algorithm is then employed to make use of the species in an integrated system. Darwen and Yao
(1997) adopted the majority vote combiner, which performed well, giving a “versatile response against

unseen opponents”.
Although Darwen and Yao evolved RBS for game strategies, the approach can be used to evolve other

base classifiers for classifier combination (Yao and Islam 2008). Speciation has been adopted in recent
studies, which propose modifications to the approach of Darwen and Yao (1997). For example, in the
approach proposed by Ando (2007) (to evolve an ensemble of ANNs), the similarity measure that is used
to determine the species is changed. Ando (2007) argues that similarity measures such as Hamming and
Euclidean distances can be inappropriate as they may not represent properly the relationship between the
genotype and phenotype. However, they do contend that it is difficult to determine an appropriate measure
when the genotypes represent a structure, such as an ANN. They propose using probabilistic distributions
to define the species, based on minority detection (Ando and Suzuki 2006), which Ando (2007) describes
as “a method for identifying a small subset whose distribution has a significant divergence from that of the

rest of the data set”. In another recent application, using explicit fitness sharing, Kim and Cho (2008) adopt
two additional measures, Pearson correlation, and Kullback–Leibler entropy distance, which yielded more
diverse classifiers.

It has become common to adopt explicit diversity measures, although the literature is inconclusive
about their success. Negative Correlation Learning (NCL) (Liu and Yao 1998, Liu et al. 2000) is a popular
algorithm that incorporates explicit fitness sharing, and a correlation penalty in the fitness function. NCL
performs simultaneous evolution of the ensemble, and is, therefore, discussed further in Section 6.3.3.1.
The ADDEMUP algorithm (Opitz and Shavlik 1999) evolves ensembles in an iterative manner, and is only
briefly mentioned here as another example of a study that incorporates a direct measure of diversity. The
diversity is calculated for each individual (an ANN classifier) as the squared differences in outputs for the
current individual compared with the rest of the population.

Other approaches to evolving base classifiers are more focused on the feature and data levels in the
taxonomy described in Section 6.2.2 on page 106. For example, Chen and Yao (2006), Oliveira et al.

(2005) and Zio et al. (2008) apply multi-objective optimisation to select different feature sets for different
base classifiers. Ahmadian et al. (2007a;b) propose an approach to creating base classifiers by evolving the
training samples used to train them. Therefore, they compare their approach with boosting and bagging.
More details on this study in Section 6.4.1 on page 116.
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6.3.2 Evolving the combination of classifiers

Two approaches to evolving classifier ensembles may be identified:

1. Selecting ensemble members from a pool of base classifiers, assuming a fixed combiner such as
majority voting.

2. Optimising the combiner (e.g., weights of a weighted majority vote combination) of a static set of
base classifiers.

It is common for population based search/optimisation techniques, such as GAs, to produce a large pool
of base classifiers. Although it has been established that the combined knowledge of the classifiers in the
population can be important (Yao and Liu 1996), it may be too computationally expensive to combine
them all. Hence, it may be desirable to select a smaller subset of classifiers for the ensemble. This may
also have performance benefits, according to the findings of Zhou et al. (2002). This is referred to as
an overproduce and choose strategy (Roli et al. 2001), which is becoming more common for approaches
involving evolutionary algorithms.

In the literature, three types of metrics have been used in fitness functions to evaluate the ensembles:
diversity among the classifiers, error rate (prediction), and complexity (size) of the ensemble. Many studies
have adopted one or more of these objectives, demonstrating that they can be used successfully to generate
classifier ensembles with evolutionary algorithms (Abbass 2003a, Ahmadian et al. 2007a;b, Chandra and
Yao 2004; 2006a, Chen et al. 2005b, Ruta and Gabrys 2001b; 2005, Zhou et al. 2001; 2002). The most
recent studies have adopted multi-objective optimisation techniques, taking into account several objectives
at once (Abbass 2003a, Ahmadian et al. 2007a;b, Chandra and Yao 2004; 2006a, Chen et al. 2005b).
Differing from the diversity metrics typically adopted in the other studies, Chandra and Yao (2004) and
Chen et al. (2005a) measure this with negative correlation.

Dos Santos et al. (2006) investigate empirically the success of the three types of objectives, used in both
single and multi-objective optimisation. Twelve diversity metrics were examined: the ten from Kuncheva
and Whitaker (2003) (Section 6.2.7 on page 109), fault majority (Ruta and Gabrys 2005) and ambiguity
(Zenobi and Cunningham 2001). Ensembles were generated from a population of 100 k-NN base classifiers
created using the random subspace approach (Ho 1998b;a), assuming a fixed majority vote combiner. Their
results indicate that single optimisation of the error rate leads to the highest accuracy. A multi-objective
optimisation of the diversity and error rate was found to be best in terms of reducing the complexity of
the ensemble whilst maintaining a high accuracy. This was more beneficial than single optimisation of the
diversity alone.

Dos Santos et al. (2008) later extend their work by applying Pareto front spread quality measures to
analyse the relationship between the three objectives considered in (dos Santos et al. 2006). They argue
that it is important that the objectives are conflicting to ensure that the population is spread across the
Pareto front. Using this notion, they found that size and diversity do not produce conflicting objectives,
and, therefore, are not able to reduce the error rate of the ensemble. However, they do state that the smallest
ensembles are often found with this combination of objectives. They found that when the error rate is used
as an objective, regardless of whether it is paired with size or diversity, conflicting objectives are obtained.
Similarly to their previous findings, a combination of the error rate and diversity led to the best trade-off
solution in terms of accuracy and ensemble size.

A different complexity objective has been examined by Ishibuchi and Nojima (2006) to evolve ensem-
bles of fuzzy rule based classifiers. Their complexity metric is calculated as the number of fuzzy rules
and antecedent conditions. In addition, they measure the accuracy of the ensemble as a second objective.
Similarly to other recent studies adopting multi-objective optimisation algorithms (Abbass 2003a, Chandra
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and Yao 2004; 2006b), they create an ensemble by combining the set of non-dominated classifiers in the
Pareto front.

6.3.3 Evolving the classifiers and the ensemble

There are two approaches to evolving the classifiers and the ensembles in the same process (Ando 2007,
Garcia-Pedrajas et al. 2005):

1. Simultaneously: the base classifiers and the ensemble combination are evolved at the same time.

2. Iteratively/sequentially: the ensemble is populated iteratively whilst the base classifiers are evolved
specifically to cooperate with the current ensemble.

These two approaches are discussed further in their respective sections below.

6.3.3.1 Simultaneous learning

Arguably the best known algorithm proposed for simultaneous learning is Negative Correlation Learning
(NCL) (Liu and Yao 1998, Liu et al. 2000), which incorporates explicit fitness sharing and a correlation
penalty to the fitness function to ensure diversity. NCL does not optimise directly which individuals (clas-
sifiers) are used for the ensemble. Originally, all individuals in the population were used in the ensemble,
assuming a fixed combiner such as majority voting. In (Liu et al. 2000), an additional mechanism was
incorporated to automatically determine the number of classifiers for the ensemble. This was achieved by
choosing the best individual of each species, as determined after clustering with a k-means algorithm. More
recently, Chen and Yao (2007) propose using NCL in conjunction with bagging and random feature sub-
space selection. This outperformed bagging, random forest and boosting (with DTs), although the basic
NCL was not included in the investigation for comparison.

Liu et al. (2000) argue that NCL has an advantage over iterative approaches (or independently evolving
classifiers) since they do not allow the individual classifiers to interact with one another when they are
evolved. Duell et al. (2006) contend that NCL produces more diverse ensembles, but observes that this
does not imply a higher performance than implicit methods, such as (implicit) fitness sharing (speciation).
This corresponds with observations of Kuncheva (2004, p 295). Furthermore, simultaneous learning is not
the ideal approach for all applications, such as incremental learning, although Lin et al. (2008), Minku
et al. (2009) and Tang et al. (2009) propose incremental NCL algorithms, which are discussed further in
the following section.

As mentioned above, the NCL algorithm determines the final members of the ensemble with a k-means
clustering algorithm. Abbass (2003a) argues that this is an inconvenient approach, since it is not clear how
to determine the value of k. Instead, Abbas proposes creating an ensemble using a MOGA, referred to as
MPANN (Memetic Pareto Artificial Neural Network). In (Abbass 2003b), the MOGA is used to speed up
the learning process of ANNs trained with backpropagation. The final population provides a Pareto set
of non-dominated solutions, which, in (Abbass 2003a) is used to form an ensemble. Thus, no clustering
algorithm is required to determine the final set of base classifiers.

Chandra and Yao (2004) propose a multi-objective approach to ensemble generation referred to as DI-
VACE (DIVerse and ACcurate Ensemble learning algorithm), which incorporates elements of NCL and
MPANN. They consider diversity (negative correlation) and accuracy of the ensemble as separate objec-
tives, aiming to find an optimum trade-off between these. Similarly to Abbass (2003a), the final set of
non-dominated base classifiers are combined. Chandra and Yao (2004) consider three combiners: sim-
ple average, majority vote and winner-takes-all. Later, Chandra and Yao (2006b) propose a new diversity

113



CHAPTER 6. MULTI-OBJECTIVE EVOLUTION OF CLASSIFIER ENSEMBLES

objective for DIVACE, which they refer to as Pairwise Failure Crediting (PFC). Whilst NCL adopts a prob-
abilistic measure of the error of the classifiers, PFC measures the errors of each classifier on the training
set directly. PFC led to improved classification rates compared with the NCL measure of diversity, and also
outperformed MPANN (Chandra and Yao 2006b).

Chandra and Yao (2005; 2006a) propose a framework for evolving hybrid ensembles that incorporates
DIVACE. Hybrid ensembles refer to combinations of classifiers that have been trained/created using dif-
ferent algorithms. They implement the framework in a system referred to as DIVACE-II. This framework
includes several additional components, including bagging, boosting and clustering. Utilising DIVACE in
the proposed framework, led to significant performance improvements (Chandra and Yao 2006a). On the
two data sets adopted, the Australian credit card and Diabetes data sets from the UCI repository, DIVACE-
II obtains the lowest average error rates on the test sets compared with 28 other techniques, including
DIVACE, MPANN, the original NCL algorithm (Liu et al. 2000), bagging, AdaBoost, Arcing, and single
classifiers such as MLPs trained with backpropagation, C4.5 DT, NB and k-NN. Moreover, the results indi-
cate that the PFC diversity metric proposed in (Chandra and Yao 2006b) is not advantageous compared with
NCL. However, the results on these two data sets are not conclusive on this matter, since the performance
obtained with each metric varied significantly on the different data sets.

Differing from the other studies discussed thus far, Garcia-Pedrajas et al. (2005) apply cooperative
coevolution (Potter and De Jong 2000) to simultaneously evolve base classifiers and ensembles. This evo-
lutionary process includes a MOGA, as in other recent studies, to evaluate ANN classifiers. The classifiers
are evolved in different subpopulations, which provides an implicit method of obtaining diverse classifiers.
These subpopulations evolve independently, and one classifier from each population is selected to contribute
to an ensemble. The ensemble size is, therefore, controlled by the number of subpopulations. Findings on
10 data sets from the UCI repository demonstrate the success of this cooperative model over other ensemble
methods: bagging, arcing, AdaBoost, and the generalized ensemble method of Perrone and Cooper (1993).
According to their analysis, it appears that the cooperative method better performs modularisation, in which
each of the classifiers specialises on particular subsets of data. When combined in an ensemble, the clas-
sifiers collectively achieve a broader coverage of the data. It should be noted that they use a weighted
combiner, in which the weights of these individual expert classifiers are also optimised simultaneously.

6.3.3.2 Iterative

The first approach to explicitly obtain uncorrelated base classifiers was proposed by Rosen (1996), from
which NCL is an extension (Brown and Wyatt 2003). However, whereas NCL evolves the classifiers and
the ensemble simultaneously, Rosen (1996) evolves the classifiers in an iterative manner. As discussed
in Section 6.3.1, the ADDEMUP algorithm proposed by Opitz and Shavlik (1999) also creates ensembles
in an iterative manner. As ANNs are trained (using a modified backpropagation algorithm), examples
misclassified by the current ensemble are emphasized. In this respect, the principle is similar to boosting.
When a network has been trained and added to the ensemble, the whole population is scored on accuracy
and diversity. Additionally, a λ parameter is employed, which can be considered as a weight of the diversity
measure, and remains the same whilst the error is decreasing. However, if the population error is not
decreasing and the population diversity is decreasing, λ is updated to emphasise more strongly the diversity.

Speciation has been used in early studies to evolve diverse base classifiers. Ando (2007) adopts spe-
ciation in an iterative process to create a classifier ensemble. When a new species (of ANN classifiers) is
discovered, it is added to the ensemble if it enhances its performance. These species are evolved with a
single objective GA, which also includes algorithms to determine weights of the networks in the ensemble
at each generation of the GA, or at the discovery of a new species.

As mentioned above, NCL has also been applied to incremental learning problems. Minku et al. (2009)
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propose two algorithms based on NCL: Fixed Sized NCL (FSNCL) and Growing NCL (GNCL). In the
former, an entire ensemble is trained with NCL on initial training data. When new data is available, the
entire ensemble is copied and retrained on this data. That is, the weights of the ANNs in the previous
ensemble are used as initial weights of the new one, but it is trained with NCL only on the new data. In
GNCL, only one ANN is trained on the initial training data. When new data is available, a new ANN is
trained on this and is added to the previous ANN to form an ensemble. This iterative process is continued
with every new batch of data.

The study of Minku et al. (2009) served well to demonstrate that NCL can be used in incremental
learning. Moreover, the iterative GNCL algorithm was shown to be robust to catastrophic forgetting2, which
is an important issue in incremental learning. However, GNCL has worse generalisation than FSNCL, and
may be limited by few classifiers in the ensemble.

Lin et al. (2008) and Tang et al. (2009) propose a Selective NCL (SNCL) algorithm, which incorpo-
rates parts of both FSNCL and GNCL algorithms. SNCL addresses drawbacks of the previous approaches,
aiming to retain the benefits of generalisability of FSNCL and the robustness to catastrophic forgetting of
GNCL. An ensemble of ANNs is trained with NCL on initial data, as in FSNCL. Similarly, when new data
is available, the old ensemble is cloned and is trained on the new data with NCL. However, instead of dis-
carding the previous ensemble members, they are merged to form a larger ensemble. Based on the new pool
of classifiers, they use a GA to perform selection of ensemble members, according to a predefined ensemble
size. Although the SNCL algorithm alleviates the drawbacks of the FSNCL and GNCL algorithms, there is
a significant increase in training time due to the selection process.

6.3.4 Summary

Combining classifiers is a popular approach to improve on the performance of a single (monolithic) classi-
fier (Bauer and Kohavi 1999, Brown et al. 2005, Dietterich 2000a, Tan and Gilbert 2003). The premise of
classifier combination is that the individual classifiers that are combined are diverse, i.e., they make errors on
different instances (Brown et al. 2005, Hansen and Salamon 1990, Kuncheva 2004, p. 295). Some common
approaches such as bagging, Random Forests (RFs) and AdaBoost rely on the instability of the classifiers
to achieve diversity, i.e., classifiers trained on different data subsets, feature subsets or with different con-
figuration parameters should yield different classification performance. These approaches achieve diversity
in an implicit manner, since they do not adopt a measure of diversity when creating the classifiers. Other
approaches consider diversity explicitly, which Tang et al. (2006) argue is necessary when such approaches
are unable to produce sufficiently diverse classifiers. Many explicit diversity measures have been proposed,
ten of which were considered in (Kuncheva and Whitaker 2003). Their findings are inconclusive regarding
the success of the different diversity metrics, however, Tang et al. (2006) argue that it is unimportant which
diversity metric is used.

Genetic Algorithms (GAs) (and other evolutionary algorithms) have been used in different stages of
creating classifier ensembles: evolving the base classifiers for the ensemble; evolving the combination of a
set of existing base classifiers; evolving the base classifiers and ensemble concurrently. Explicit diversity
metrics are typically adopted when evolving base classifiers, but not necessarily when the combination
of base classifiers is evolved. Negative Correlation Learning (NCL) (Liu and Yao 1998, Liu et al. 2000)
is a popular evolutionary approach that aims explicitly to evolve diverse classifiers (that are negatively
correlated) by employing a correlation penalty in the fitness function of the GA. NCL evolves the classifiers
and ensemble concurrently; originally simultaneously, but recently also iteratively (Lin et al. 2008, Minku
et al. 2009, Tang et al. 2009).

2Catastrophic forgetting refers to a classifier experiencing a significant decrease in performance on older data after it has been
retrained on new data.
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In addition to obtaining diversity among the base classifiers, determining the size of the ensemble is one
of the challenges that needs to be addressed when employing evolutionary algorithms to create classifier
ensembles (Abbass 2006, Yao and Islam 2008). In the original NCL algorithm, all individuals (classifiers)
in the population were combined. However, due to computational costs, this may not be possible in practical
applications. Furthermore, according to the findings of Zhou et al. (2002), combining smaller subsets can
yield performance improvements. This has given rise to a strategy referred to as overproduce and choose

(Roli et al. 2001). According to Yao and Islam (2008), clustering is a simple approach to reducing the
size of an ensemble without significant loss in accuracy. However, this approach constrains the selection
to a uniform sample and assumes that a fusion combiner is used. Therefore, an evolutionary approach to
selection may be more fruitful. Furthermore, in recent years, multi-objective algorithms have been shown
to be very successful in this domain, which may take consideration of different objectives concurrently,
such as diversity, ensemble size and accuracy (Abbass 2003a; 2006, Chen et al. 2005a, Chen and Yao 2007,
dos Santos et al. 2006; 2008, Ishibuchi and Nojima 2006, Kondo et al. 2007).

Although specific benefits of combining classifiers have been discussed in the literature (Dietterich
2000b, Garcia-Pedrajas et al. 2005), this is not guaranteed to improve upon the performance of an indi-
vidual classifier (Quinlan 1996; Kuncheva 2004, pp. 103–104). However, these observations are based on
‘conventional’ combination approaches such as bagging and boosting. Although evolutionary algorithms
may determine better combinations of classifiers, all current approaches (including non-evolutionary ap-
proaches) are limited by the exclusive focus on the accuracy of the resultant ensemble (and ensemble size).
That is, none of the existing studies consider the classification trade-off discussed at the beginning of this
chapter. Selection of base classifiers is one of the main challenges in classifier combination (Abbass 2006,
Yao and Islam 2008), and is arguably a key factor in determining the classification trade-off. Consideration
of the classification trade-off and an analysis of the selection process may give significant insights into why
classifier combinations are not always successful. This is investigated further in the following sections.

6.4 Method

Related research is discussed in Section 6.4.1, followed by the aims of this investigation in Section 6.4.2.
The proposed method, MABLE (Multi-Objective Evolution of Artificial Neural Network Ensembles) is
discussed in Section 6.4.3, followed by implementation details in Section 6.4.4. Other classifiers (and
classifier ensemble approaches) that are adopted for comparison of results are discussed in Section 6.4.5.
Details of the data set and metrics are presented in Sections 6.4.6 and 6.4.7, respectively. An outline of the
empirical investigation is provided in Section 6.4.8.

6.4.1 Related work

Parrot et al. (2005) propose using an evaluation function (hereafter referred to as the Parrot function) for
multi-objective genetic programming, which considers the accuracy of each class as separate objectives.
The Parrot function is nearly identical to Eval5, except that the error for each class is calculated as the sum
of misclassified instances, whilst Eval5 uses a percentage measure.

The aim in the approach of Parrott et al. (2005) is to obtain a single classifier that should have a perfect
score on all objectives. If this does not occur, the individual with the lowest aggregated error is chosen.
In this sense, the algorithm shares the same weakness as backpropagation, being biased towards the major
class(es). Arguably, it is unlikely to obtain one solution that scores perfectly on all objectives; Coello Coello
and Christiansen (2000) state that this rarely occurs for multi-objective optimisation, and for classification,
implies clean and separable data. Although the Parrot function was not proposed for learning from imbal-
anced data, it is therefore, not well suited for such an application although the approach bears similarities
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with the one taken here.
The Parrot function has been adopted by Ahmadian et al. (2007a, 2007b) to evolve an ensemble of

classifiers. Both methods that Ahmadian et al. propose follow a two-phased approach to creating the final
ensemble using a modified version of NSGA-II (Deb et al. 2000) in both phases. The first phase generates
the classifiers and the second optimises the composition of the classifiers for a fusion ensemble, using a
majority vote combiner. The influence of the Parrot function is utilised in the first step of the method,
but the specific implementations differ between Ahmadian et al. (2007a) and Ahmadian et al. (2007b).
In the former study, the objectives for optimising the classifiers are to minimise the aggregated error of
each of the classes and to maximise the diversity amongst them. This is unclear in the paper, but was
clarified via correspondence with Ahmadian (2008). Since the error on each class is not treated as separate
objectives, this is similar to a general error measure such as MSE, which will have the same issues as the
implementation of Parrott et al. (2005), being biased towards the major class(es).

In the second phase of the approach proposed by Ahmadian et al. (2007a, 2007b), the objectives are
to minimise the size of the ensemble and maximise the accuracy. Consequently, the drawback of their
approach is similar to the rest of the current body of research in this area, to create a single best solution
based on general performance metrics.

6.4.2 Aims of the investigation

This final empirical investigation has five aims, as discussed below.

Aim 3.1: Develop a method that learns from imbalanced data and is capable of producing a set of
classifiers that exhibit different classification trade-offs

The ENN from the previous chapter provides a successful method for learning from imbalanced data, but
there is no control over the classification trade-off offered by the evolved MLPs. Occasionally, the ENN
would, therefore, produce solutions with unacceptable performance as a result of obtaining a trade-off ex-
hibiting too great a FPR. The first phase of MABLE extends the GA employed in the ENN to consider
multiple objectives, and evolve a population that exhibits different trade-offs among the objectives that are
adopted. Using the classification rate on each class as separate objectives, different trade-offs in classifica-
tion performance can be obtained.

Aim 3.2: Extend the approach developed for aim 3.1 to create classifier ensembles

It can be seen that the first phase of MABLE provides a pool of diverse base classifiers, which can be
exploited to form classifier ensembles. As discussed in Section 6.2.7 on page 110, the premise of classifier
combination is that the base classifiers are diverse. This is achieved implicitly in MABLE since the MLPs
are evolved to exhibit different classification trade-offs, which implies that they make errors on different
instances.

Similarly to phase one of MABLE, a multi-objective approach is proposed for the second phase to
evolve the ensembles so that these too exhibit different classification trade-offs. Although several re-
searchers have adopted multi-objective algorithms to create ensembles, they all strive to obtain a single
‘best’ ensemble, based on metrics such as accuracy, diversity and complexity (size). Consequently, there
is no control over the classification trade-offs offered by the resultant ensembles. The aim of phase two,
therefore, is to obtain a new Pareto front of solutions (classifier ensembles) that improve on the Pareto front
of the base classifiers.
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Aim 3.3: Investigate how to select base classifiers to obtain a desired trade-off for an ensemble

Similarly to the drawbacks of the ENN, the existing combination approaches based on combining an arbi-
trary, uniformly selected set of classifiers results in a single ensemble that may offer an unfruitful classifi-
cation trade-off. Therefore, a base classifier may provide a better solution if the trade-off is better. Since
MABLE evolves a Pareto front of ensembles that exhibit different classification trade-offs, this provides an
opportunity to determine whether there is a pattern to how one can select base classifiers to obtain a desired
trade-off. The Pareto analysis provides a new perspective on the selection problem, which has not been
considered previously in the literature.

Aim 3.4: Analyse the properties of the proposed approach

First, it is desirable to determine the extent to which MABLE is successful at evolving MLPs and ensembles
thereof for imbalanced data, producing a range of solutions with different classification trade-offs. There
are also practical considerations that are interesting to investigate, such as the performance of ensembles of
varying sizes and how well the MLPs and ensembles generalise.

Aim 3.5: Comparison with other classifier combination approaches

The final aim of this investigation is to determine how well the MLPs and ensembles evolved with MABLE
perform compared with other classifier combination methods.

6.4.3 Proposed method

The approach proposed here, MABLE, incorporates mechanisms for evolving classifiers (MLPs) and en-
sembles thereof in two separate phases. Both phases are multi-objective, offering the user a close ap-
proximation of the Pareto front of non-dominated solutions of both base classifiers and ensembles. The
classification rates on the classes are adopted as separate objectives in both phases.

There are three main challenges that need to be addressed when creating an ensemble with evolutionary
algorithms (Abbass 2006, Yao and Islam 2008):

1. Obtain diversity among classifiers.

2. Determine which classifiers to combine (selection).

3. Determine the size of the ensemble.

Diversity among the base classifiers is achieved implicitly in MABLE since the MLPs are evolved to exhibit
different classification trade-offs, which implies that they make errors on different instances.

MABLE optimises the selection of classifiers to obtain a Pareto front of ensembles that exhibit different
classification trade-offs. Alternative approaches to selecting and combining classifiers are also examined:
combining all classifiers in the Pareto front, smaller subsets according to clustering, and smaller subsets
according to a filtering process based on classification thresholds. Further details are provided in Section
6.4.5.

Several approaches to determining the ensemble size are considered here. The maximum ensemble size
is determined by the the number of non-dominated classifiers in the archive from phase one of MABLE. In
the case of combining all classifiers, the ensemble size can become quite large. This is the main motivation
for performing clustering, to combine a smaller set of uniformly selected classifiers (Yao and Islam 2008).
k-means clustering (MacQueen 1967) is adopted here, in which the value of k can be altered to determine
the size of the ensemble. Further details are provided in Section 6.5.
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In the case of evolving ensembles, the MOGA implementation adopted here allows for fixed sized and
variable sized ensembles to be evolved. The former may be desirable if a user can determine a fixed size a

priori, which may be necessary due to constraints on computational costs. However, if this is not an issue,
evolving variable sized ensembles may obtain a greater coverage of the Pareto front. That is, an ensemble
of size 10 may obtain a particular classification trade-off that an ensemble of size 5 cannot. In the case of
evolving variable sized ensembles, a maximum size can be determined to allow for some flexibility whilst
preventing too large ensembles from being evolved.

Although not examined here, the ensemble size may be included as an additional objective, which would
allow the user to view the trade-offs that emerge in complexity as well as classification rates.

6.4.4 MABLE implementation

As this study is an extension of the previous work with the ENN, the implementation of the MOGAs used
in MABLE is an extension of the GA used in that work. However, it should be noted that the approach may
be implemented with any suitable multi-objective optimisation algorithm.

6.4.4.1 Base classifier and evaluation function

As a base classifier, the MLP remains the same as in the ENN, except that only three layers are considered
here since the previous study showed no significant benefits from adopting four layers. Furthermore, a
smaller number of neurons in the hidden layer are also considered, to examine whether ensembles consisting
of smaller base classifiers remain successful, thereby promoting modularisation. The following number of
neurons in the hidden layer are examined: {10, 30, 50, 70}.

The evaluation function adopted here is an extension of Eval5 (from the previous study) to multiple
objectives: maximising the classification rate of each class as separate objectives. This evaluation function
is used in both phases of MABLE. However, the approach is not constrained to these objectives. Examples
of other objectives include classification error for each objective, TPR and FPR, and may include additional
objectives such as ensemble size to view the trade-offs that emerge in complexity.

6.4.4.2 MOGA for phase one

The MOGA used in phase one, to evolve base classifiers (evolving the weights of MLPs), is almost a direct
extension of the GA used in the previous investigation. The MOGA is real-coded, uses the same crossover
and mutation operators, tournament selection and an elitist replacement strategy. To enable optimisation of
multiple objectives, non-dominated sorting and fitness sharing are adopted, similar to those used in NSGA
(Srinivas and Deb 1994). Additionally, an archive function is adopted similar to that of NSGA-II (Deb et al.

2000) and SPEA (Zitzler and Thiele 1999). This maintains a set of all non-dominated solutions found from
the start of the evolutionary process.

Unlike the other algorithms that adopt an archive mechanism, the archive in this MOGA does not partic-
ipate in the selection process, nor fitness calculation. However, there is a significant benefit of incorporating
such an archive function. The archive may save many non-dominated solutions that have been lost in the
population, due to the particular direction of the search. This is particularly beneficial with increasing num-
ber of objectives, since the number of non-dominated solutions required to sample the Pareto front increases
significantly. For example, results presented later show that evolving MLPs for a two class problem gave
an archive of approximately 30 non-dominated solutions, compared with more than 300 with three classes.
The experiments used a population size of 200, in which the Pareto front of the population consisted of
132 non-dominated solutions. An archive of 347 non-dominated solutions, therefore, gave a much more
complete Pareto front.
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Most of the MOGAs proposed in the literature do not consider replacement, since they are generational.
Compared with the replacement strategy adopted in the ENN, some modifications are required here due to
the consideration of multiple objectives. First, a set of individuals that the offspring dominates is populated.
From this set, the offspring replaces one at random. However, if the offspring does not dominate any
individuals, it is discarded. A different elitist replacement strategy, based on replacing the lowest ranking
individual, was examined during preliminary experiments. However, this was not fruitful as it lead to
premature convergence.

Fitness sharing is not utilised in replacement since this would require non-dominated sorting to be
performed after each offspring had been replaced to calculate new fitness values. However, this is calculated
after replacement and fitness sharing is utilised in the selection process. Parents that undergo tournament
selection are chosen based on their fitness values, which biases selection to less crowded regions of the
search space.

Further modifications were made for pragmatic reasons since the MOGA is significantly more time con-
suming than the single objective GA used in the previous study. This is due mainly to the non-dominated
sorting that takes place after each evaluation (when replacement takes place). Therefore, the first modifica-
tion addressing this is implementing a semi-generational structure, in which a pool of offspring is populated
and replacement performed in a block, followed by non-dominated sorting. The size of the offspring pool
becomes an additional parameter, which was examined in preliminary studies. The second modification
further improved run time by parallelisation, which is considered in Section 6.4.4.4.

The change to a semi-generational structure made a significant impact on the speed of the algorithm.
A preliminary experiment was conducted to demonstrate this: whilst the single objective GA from the
previous phase too 1 hour and 56 minutes to complete 20,000 evaluations, the MOGA with a steady state
structure took 13 hours and 33 minutes. The MOGA with a semi-generational structure took 5 hours and 25
minutes to complete the same number of evaluations, with the offspring pool size set to half the population
size.

Despite the speedup, there was some loss in search performance when changing to a semi-generational
population structure. Therefore, an additional elitist mechanism was incorporated to improve the conver-
gence speed of the algorithm. For this, the archive is used. At the time of replacement, a small percentage
of the archive is reintroduced into the population (selected at random). The replacement is conducted in
the same manner as with offspring, as described above. An additional benefit of this is the reintroduction
of genetic material that may have been lost due to genetic drift (leading to an incomplete sampling of the
Pareto front). With this modification, the MOGA was able to find solutions of the same quality as the single
objective GA.

6.4.4.3 MOGA for phase two

Other studies that have evolved base classifiers for classifier ensembles have combined the Pareto front of
non-dominated solutions instead of the entire population (Abbass 2003a, Chandra and Yao 2004; 2006b,
Ishibuchi and Nojima 2006). Similarly, the entire population is considered superfluous here, as we are
only interested in those solutions with non-dominated trade-offs in performance. Therefore, phase two of
MABLE takes the archive of non-dominated solutions from phase one and evolves classifier ensembles. A
fixed combiner is assumed; the majority vote combiner, which was chosen due to its success in the literature
(Ruta and Gabrys 2001a;b; 2005, Zhou et al. 2002, Yao and Islam 2008). In case of a tie, the winner is
randomly chosen.

The same modifications to the MOGA in phase one applies to the one in phase two. Furthermore, an
integer-coded chromosome representation is adopted to better accommodate for the needs of the selection
process in a more intuitive manner. Other representations have been considered. For example, a real valued
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chromosome representation can be adapted to perform selection in two ways:

1. Using a chromosome size equal to the number of base classifiers, each gene represents a base classi-
fier. The gene values are within the range [0,1] = {x ∈ R|0 ≤ x ≤ 1}, where a value ≥ 0.5 signifies
that the classifier is used in the ensemble, and a value < 0.5 signifies that it is not used.

2. Using a chromosome size equal to the desired ensemble size. Each gene represents a classifier, but
the gene value is scaled within the range [1,N] = {x ∈ Z|1 ≤ x ≤ N}, where N is the number of base
classifiers. Thus, the gene value represents the index/ID of a base classifier.

In the first case, it would be more intuitive to use a binary encoding. However, in either case, to accommo-
date fixed sized ensembles, additional mechanisms are required to control the genetic operators. A simple
crossover mechanism would not guarantee that the ensemble size stay fixed; on the contrary, it is likely to
change. Similarly, for a normal mutation operator, it will change.

In the second case, it is more straightforward to allow for fixed sized ensembles, which is not compli-
cated by the genetic operators. Crossover and mutation will lead to different classifiers being used, but the
number of them will not be altered. However, the issue with this solution is that the operators do not guaran-
tee that the same classifier is not used more than once in an ensemble. Given that a majority vote combiner
is used in this study, this is not desirable. The effect of duplicate classifier members is similar to giving
more weight to one (or more) classifier(s) over others in the ensemble, which may be fruitful. However, in
comparison to using a weighted combiner, duplicate members induce a computational overhead.

Following the discussion above, an integer coded MOGA is adopted. The implementation of this
MOGA is similar to that in (Wellington and Vincent 2002). The chromosome size corresponds to the
size of the ensemble, and each gene value corresponds to a classifier from the first phase of MABLE. The
order of the genes is irrelevant, which gives flexibility in the representation. In particular, this makes it
convenient to add or remove a classifier if variable sized ensembles are evolved.

The chromosome is implemented as a set, and the recombination of offspring is consistent with set
theory. Selection of two parents is made according to tournament selection. Thereafter, the union of the
parent genes is created, which forms a pool of genetic material from which the offspring is generated. The
gene values for the offspring are randomly selected from this set, according to its size. An example for a
fixed sized implementation follows:

P a r e n t 1 <1 ,6 ,3 ,8 ,2 >
P a r e n t 2 <3 ,2 ,5 ,9 ,6 >
Union <1 ,2 ,3 ,5 ,6 ,8 ,9 >

O f f s p r i n g <2 ,5 ,3 ,6 ,8 >

In a fixed sized implementation, the size of the offspring will be the same as the parents (as in the exam-
ple above) and the union of parents will be at least as large as the offspring. For variable sized ensembles,
a mechanism is needed to determine the size of the offspring. This could be calculated from the range of
sizes present in the selected parents. However, to encourage diversity, and allow the population to adapt
successfully the size of the ensemble, the offspring size here is chosen randomly within a range extended
by +/-1 (the range being constrained to have a minimum size of 2 and maximum size of the number of
base classifiers), much like the extended blend crossover adopted for the real coded MOGA of phase one,
without which there is a tendency to converge to the population mean (Eshelman and Schaffer 1993). If the
offspring size is larger than the union of classifiers formed from the parents, an additional classifier is added
to the offspring at random. An example of offspring generation for variable sized ensembles follows:
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P a r e n t 1 <3 ,5 ,2 >
P a r e n t 2 <1 ,8 ,3 ,6 ,2 >
Union <1 ,2 ,3 ,5 ,6 ,8 >

P a r e n t s i z e r a n g e [ 3 , 5 ]
O f f s p r i n g s i z e r a n g e [ 2 , 6 ]
Randomly chosen o f f s i n g s i z e : 4

O f f s p r i n g <1 ,3 ,6 ,2 >

The mutation operator does not use a mutation strength, as in the real-coded MOGA. Instead, it operates
only with a given probability of mutating an offspring (rather than a probability of mutating each gene, as in
the real-coded MOGA, since this was found to be too disruptive). For fixed sized ensembles, the mutation
randomly changes the value of a gene to the index of another classifier not currently used in the ensemble.
For variable sized ensembles, there are three operations that mutation can perform:

1. Change a gene value at random to the index of another classifier.

2. Add a gene, which is randomly set to an available classifier (incrementing the chromosome size).

3. Remove a gene at random (decrementing the chromosome size).

For the first two genetic operations, the operator ensures that duplicate classifiers are not used in the ensem-
ble by only randomly selecting from a set of classifiers not currently selected for that individual (ensemble).

The choice of mutation operation is done randomly. However, in the case of operator #1 and #2, if the
chromosome size is already equal to the pool of classifiers, it cannot be conducted. In this case, operator
#3 is executed instead. This ensures that the diversity function of the mutation operator remains constant
throughout the search. Similarly, if the chromosome size is already at its minimum size (2), operator #3 will
not be performed; instead operator #2 will add a random classifier to the ensemble. Thus, crossover and
mutation operators maintain the strict set semantics of the chromosome, ensuring that only valid individuals
are produced.

6.4.4.4 Parallel implementation

The parallel implementation chosen here follows the global model, which does not change the semantics
of the MOGA. PVM (Geist et al. 1994) provided the necessary middleware to enable evaluations to be
farmed out to slave processes running on a cluster of Linux computers. This is performed asynchronously
to minimise the time that the slave processes are idle. Figure 6.4 illustrates the implementation.

To facilitate asynchronous processing of evaluations, the master thread implements the MOGA, main-
taining a global population, and inserting offspring into a buffer. A separate buffer management thread
(BMT) is used to schedule offspring to slave processes for evaluation, and to receive and store the per-
formance evaluation of the offspring from the slave processes, allowing the slaves to be kept occupied
during global operations on the population. When the buffer contains a minimum number of completed
evaluations, determined by a readback parameter3, the master thread reads available results from the buffer
and performs replacement, followed by the usual process of non-dominated sorting, fitness sharing, and
reproduction, filling the now empty slots in the buffer ready for evaluation. Through a ‘well behaved’ (in
concurrent system terms) implementation of the master thread (i.e., one that provides appropriate yield
points, allowing the buffer management thread to run), and by careful selection of parameters – buffer size

3The readback parameter effectively determines the population structure of the MOGA, as discussed in Section 6.4.4.2.
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Figure 6.4: Parallel implementation of the MOGA.

and readback size – for a given number of slave processes, this asynchronous implementation is able to
maximise the load on the slaves and minimise the time spent by the master in performing the time con-
suming non-dominated sorting and sharing operations. Note also that this implementation is tolerant to the
failure of slave processes.

6.4.4.5 Configurations

The configurations of the MOGAs used in phase one and two of MABLE are given in Table 6.1. Using
the configurations of the GA in the previous study as a starting point, the configuration of the MOGAs
were refined according to preliminary experiments to ensure a good coverage of the Pareto front with an
acceptable solution quality.

Table 6.2 provides an overview of the settings related to the parallel framework. The number of slaves
was constrained by the number of hosts available. According to this, the buffer size and readback threshold
were adjusted to minimise the idle time of the slaves.

Table 6.1: Configuration details for the MOGAs.

Parameter Phase one Phase two

Population size 200 200

Over init. 100 100

Tournament size 5 5

Mutation rate 0.1 0.2

Mutation strength 0.3 N/A

σshare 0.1 0.1

Evaluations {5000, 7,000, 10,000} 5,000

Elitism Re-introduce 5% of archive every 500 evaluations
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Table 6.2: Configuration details for the parallel framework.

Parameter Value

Buffer size 60

Readback 30

Number of slaves 35

6.4.5 Other combination techniques

In addition to using the MOGA in phase two of MABLE, different methods to combine the pool of MLP
classifiers obtained in phase one are examined:

• Combine all non-dominated MLPs in the archive.

• Combine smaller subsets according to clustering.

• Combine reduced sets of MLPs that exceed specific thresholds on performance:

The clustering approach is discussed in Section 6.4.5.1, and the threshold approach in Section 6.4.5.2.
Additionally, the following classifier and classifier combination approaches are also included for compar-
ison of results: DT, Random Forest (RF) and AdaBoost. The same DT specifications as in the previous
investigations in this thesis are adopted here. Section 6.4.5.3 provides details about RF and AdaBoost.

6.4.5.1 Clustering approach

Yao and Islam (2008) suggest that clustering is a good way to reduce the ensemble size at an acceptable
loss of accuracy. A k-means (MacQueen 1967) clustering algorithm is adopted here, as suggested in (Yao
and Islam 2008), which is a well known clustering algorithm that is ideal for this purpose. The parameter k

determines the number of clusters, which here equates to the ensemble size. Depending on the number of
base classifiers in the archive, the following values of k are examined: {5, 10, 20, 30, 40, 50}. Clustering is
performed until a convergence threshold of 10−6 is reached4.

Typically, the cluster centroids are initialised randomly. However, this was not fruitful for this appli-
cation, as most of these centroids would be initialised far from the Pareto front, as seen in Figure 6.5a.
Consequently, some of these centroids would never manage to establish a cluster on the Pareto front, as
seen in Figure 6.5b (8 out of 10 clusters have been established). Therefore, a guided random initialisation
process was adopted, which initialises the centroids along the Pareto front. This gives a much better starting
point, as illustrated in Figure 6.5c, which does not have the issue of clusters not being established.

The guided initialisation is conducted by initialising the cluster centroids according to the classifiers
in the archive. First, the archive is sorted according to the first class (Normal in this case). Thereafter,
the classifiers are selected uniformly according to their index values, in a way that guarantees that the first
and last classifier in the archive are selected as centroids. The pseudo code in Algorithm 6.1 specifies this
process, where N refers to the number of classifiers in the archive:

The clustering algorithm does not guarantee that cluster centroids are formed at the boundary of the
performance space, which can be seen in Figure 6.5d. Consequently, classifiers that obtain the highest
performance for each class may not be included. These classifiers may be important, and are, therefore,
included in a new ensemble for comparison.

4k-means is an iterative clustering algorithm that will continue to adjust the cluster centroids until the maximum adjustment (in
one iteration) falls below a defined threshold for convergence.
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Algorithm 6.1 Initialisation of clusters for k-means in this thesis.

s o r t a r c h i v e
d i s t a n c e = 1 / ( k−1)
acc = 0
w h i l e ( acc < 1)

i d x = acc ∗ (N−1)
i n i t i a l i s e c l u s t e r a c c o r d i n g t o c l a s s i f i e r a t i n d e x i d x
acc += d i s t a n c e

end w h i l e
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(a) Random initialisation of centroids.
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(b) Final centroids after random initialisation.
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(c) Guided initialisation of centroids.
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(d) Final centroids after guided initialisation.

Figure 6.5: Initialisation approaches for k-means clustering.

6.4.5.2 Threshold approach

One of the assumptions of classifier combination, according to Kuncheva (2004), is that a successful ensem-
ble is composed of good classifiers that excel in different ways (makes errors on different data). Therefore,
it can be interpreted that an ensemble should not include classifiers that perform poorly in some manner.
However, this is a vague statement, because there is little information about this in the literature. It is only
clear that the classifiers need to be diverse, as discussed in Section 6.2.7 on page 109.

One possible assumption one can make from the statement above, is that each classifier should perform
better than a random classifier, which implies obtaining more than 50% accuracy according to the Con-

dorcent Jury Theorem (Valentini and Masulli 2002)5. However, the question remains as to whether this

5The Condorcent Jury Theorem states that “the judgment of a committee is superior to those of individuals, provided the individuals
have reasonable competence (that is, a probability of being correct higher than 0.5)” (Valentini and Masulli 2002).
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should require above 50% correct classification on all classes. Since this is a novel problem statement,
it is investigated empirically here, examining different threshold values. First, it is arguably desirable to
exclude classifiers that classify everything as one class. From there, different classification rate thresholds
are examined in increments of 10%: {0, 10, 20, 30, 40, 50}.

It is hypothesised here that this threshold approach will give the resultant ensembles different perfor-
mance trade-offs. This is further examined by removing classifiers that do not exceed a threshold for one
particular class, such as Normal. This may help bias the resultant ensembles to avoid unacceptable FPRs.
Similarly, if a uniform selection of classifiers results in a too low TPR, thresholds may be applied that select
more classifiers that obtain a higher TPR. The following class thresholds are examined (%): {50, 60, 70,
80, 90, 95, 97}.

6.4.5.3 Random forest and AdaBoost

RF and AdaBoost are popular classifier combination approaches, which have been adopted in the literature
to learn from imbalanced data, as reviewed in Section 5.1.4 on page 80. Similar to the other classifiers
adopted in this thesis, the Weka implementations are used. However, due to bugs in the ‘book version’ of
Weka (version 3.4.11) affecting the RF algorithm, a newer version of Weka was adopted for these experi-
ments (version 3.6.1).

The parameters of RF are the number of DTs and random features. The number of trees are investigated
in a systematic manner, similar to the number of ensemble members investigated for MABLE: {5, 10, 20,
30, 40, 50}. All features are used for all trees, since this study does not consider feature selection.

The parameters of AdaBoost are the number of iterations, weight threshold for weight pruning, and
whether resampling is used (instead of reweighting). Better performance was obtained with resampling, and
is, therefore, enabled. The number of iterations and the weight thresholds are investigated in a systematic
manner; iterations ∈ {10, 30, 50} and thresholds ∈ {10, 50, 100}. The default values for AdaBoost in Weka
are 10 iterations and a weight threshold of 100.

Both combination algorithms use a DT as a base classifier. There is no control of the configuration of
the DT for the RF implementation in Weka. For AdaBoost, the default configuration is used, which employs
‘normal’ pruning with a confidence factor of 0.25. This configuration also yielded good performance in the
previous experiments in this thesis.

It is worth noting that RF produces a diverse set of DTs in an implicit manner, similar to MABLE,
whilst AdaBoost does this in an explicit, iterative, manner. Furthermore, AdaBoost may have an advantage
over MABLE and RF since it makes use of a weighted combination of classifiers.

6.4.6 Data set

The KDD Cup ’99 data set is adopted for this investigation, as used previously in this thesis. However,
different subsets are employed for two different parts of this investigation. A two class subset, comprised
of Normal and U2R data, is adopted for an initial investigation of MABLE, which allows for a thorough
analysis of the algorithm. This is mainly due to pragmatic reasons, such as being able to use graphical
representations to better show how the algorithm behaves, and a much reduced run time, allowing many
experiments to be performed.

The U2R class was chosen instead of R2L since it is more challenging to learn. Furthermore, the data
subset adopted here is comprised of U2R instances from both the official training and test sets, whilst the
Normal instances were selected only from the 10% training set. This was done according to the findings
in the first part of this thesis, which demonstrated that the results of holdout validation are very sensitive
to the partitioning, especially for the minor classes. Therefore, the additional 70 instances from the test
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set make a significant difference, which also helps to reduce the absolute and relative rarity of this class,
allowing a better analysis of the generalisation ability of the algorithm. The data set remains, however,
extremely imbalanced; the U2R instances make up merely 0.13% of all instances. Furthermore, related to
the small disjuncts problem discussed in Section 5.1 on page 77, there are still very few instances of most
of the individual attacks that make up the U2R class. Table 6.3 provides an overview of the instances of
each attack in the training and test partitions.

Table 6.3: Number of U2R attack instances.

Attack Training Testing

buffer overflow 41 11

loadmodule 8 3

perl 4 1

ps 12 4

rootkit 18 5

sqlattack 1 1

xterm 10 3

The second part of this investigation focuses more on performance and scalability. For this, a three class
subset is adopted, based on the official 10% training set and test set. As in the previous investigation, the
three classes are Normal, U2R and R2L. Furthermore, according to the findings of the first investigation,
duplicates and Normal instances identical to intrusions are removed to avoid the methodological issues
related to R2L, as discussed in Section 4.5 on page 71, which detract from the focus of this investigation.
The class distribution of this subset is presented in Table 6.4 below.

Table 6.4: Proportions of instances in the classes of the training and test sets employed in the second part of the
MABLE investigation.

Class Training Test

Normal 87,831 (98.82%) 47,843 (93.86%)

U2R 52 (0.06%) 70 (0.14%)

R2L 999 (1.12%) 3,058 (6%)

The preprocessing and partitioning for holdout validation is done in the same manner as previously
in this thesis: all 41 features of the data set are adopted; nominal features are enumerated and then all
feature values are scaled within the range [0,1]. An 80/20 split for holdout validation is adopted for the two
class data set, for which the selection of training and test data is performed chronologically. This is done
according to individual attacks, whilst ensuring that attacks with as few as 2 instances obtain at least one
instance in the test set.

6.4.7 Metrics

Performance data for all techniques is collected on both the training and test sets. This includes every
individual in population, Pareto front of the population, and archive of the MOGAs, all of which represent
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MLPs and ensembles. Confusion matrices are used, as in the previous investigations. From these, the
following metrics are derived: accuracy, TPR, FPR and classification rates for each class.

In a practical application, there are pragmatic constraints that determine how many false positives can
be accepted. There are few guidelines in the literature about this for intrusion detection, but Hu et al. (2003)
and Maxion and Townsend (2002) consider a 1% FPR acceptable. This is adopted here as a constraint when
comparing the performance of the classifiers employed in this study.

To enable a comprehensive analysis of MABLE, the following data is also collected.

• The entire population in the MOGAs is saved at regular intervals. This is useful to confirm that the
algorithm successfully evolves the population and helps to determine a suitable stopping criterion.

• Size information about the archive and Pareto front of population, and variable sized ensembles.

• The number and identity of the base classifiers each ensemble dominates.

• Which base classifiers are used in each ensemble, and which were used, or not used at all, in any
ensemble.

Except for a specific study on generalisation, each algorithm is run three times. From this, the best trial is
chosen, as in the previous investigations in this thesis. The analysis of the generalisation ability of the MLPs
and ensembles evolved with MABLE is based on 50 trials. The difference in training and test performance
for each MLP and ensemble is calculated to give a numerical metric to assist in this analysis. This is
calculated by subtracting the classification rates on each class on the test set from the classification rates on
the training set. Therefore, a negative value indicates that the test performance is better.

6.4.8 Outline of empirical investigation

There are two parts to this empirical investigation: the first aims to provide a thorough analysis of MABLE
on a two class data set, and the second examines scaling to a larger three class data set and compares the
performance of MABLE with other classifiers.

In the first phase of MABLE, MLPs are evolved in a multi-objective manner, using the classification
rates of the two classes, Normal and U2R, as separate objectives. At the end of the run, the archive of non-
dominated MLPs provides a diverse set of classifiers that exhibit different classification trade-offs. Based on
this archive, classifier ensembles are evolved in the second phase of MABLE. Both fixed sized and variable
sized ensembles are evolved. Other, more common approaches to classifier combination are investigated
for comparison: combining the entire archive or smaller subsets determined by clustering. Furthermore, a
new approach is also investigated here: determining the ensemble members by filtering out classifiers that
do not exceed predefined classification thresholds. This may result in ensembles of higher accuracy, as well
as help bias the ensemble performance towards desirable classification trade-offs for a given application.

In the first part of this investigation, emphasis is given to the analysis of the algorithm, as easily in-
terpretable graphs can be produced from the two class data. Not only does this part aim to demonstrate
whether MABLE is successful or not, the analysis provides a novel perspective on ensemble generation,
demonstrating how generating a single ensemble may result in an inferior solution. The selection of base
classifiers by MABLE, clustering, and threshold filtering, is examined, which sheds light on how this pro-
cess affects the performance of the resultant ensembles. This part of the investigation on the two class data
also includes an analysis of generalisation, ensemble size and computational costs.

In the second part of this investigation, the performance of MABLE is put to test on a larger, three
class data set. The results are compared with other classifier combination techniques: Random Forest and
AdaBoost. These classifiers are widely used in the literature, which helps put the performance of MABLE
in context. This part also gives indications of how well MABLE scales with more objectives.
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6.5 Results

Sections 6.5.1 and 6.5.2 analyse the capability of MABLE to evolve MLPs and ensembles. Other ap-
proaches to combining the MLPs evolved in phase one of MABLE are examined in Section 6.5.3. An
analysis of the selection of base classifiers is considered in Section 6.5.4. Section 6.5.5 focuses on the
generalisation ability of the base classifiers and ensembles, followed by a treatment of complexity and com-
putational costs in Section 6.5.6. Finally, performance on three class data is evaluated in Section 6.5.7,
which includes a comparison with DTs, RF and AdaBoost.

6.5.1 Phase one of MABLE

Figure 6.6 illustrates how the population of MLPs in phase one are successfully evolved for 10,000 evalua-
tions. From the random initialisation of the population, it evolves towards the Pareto optimal front, keeping
the front well sampled throughout this process. The final sets of non-dominated solutions in the archives
range from 22–36 MLPs. The quality of these fronts is dependent on the MLP configuration (number of
neurons in the hidden layer). The best fronts (on the training set) are obtained with 50 and 70 neurons in
the hidden layer, which is illustrated in Figure 6.7. This figure plots the performance of the MLPs in the
archives of non-dominated solutions for each configuration.
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Figure 6.6: Evolution of the population in phase one of MABLE.
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(a) 10 neurons in the hidden layer.
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(b) 30 neurons in the hidden layer.
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(c) 50 neurons in the hidden layer.
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(d) 70 neurons in the hidden layer.

Figure 6.7: Best training performance for each MLP configuration according to the number of neurons in the hidden
layer.

6.5.2 Phase two of MABLE

As discussed in the previous section, the archives of MLPs with 50 and 70 neurons in the hidden layer
produced the best Pareto fronts. The archive of 32 MLPs with 50 neurons in the hidden layer was adopted
as a pool of base classifiers for ensemble generation. Due to the size of the pool, a maximum ensemble size
of 20 was set.

As seen in Figure 6.8, MABLE is able to successfully evolve a new Pareto front of variable and fixed
sized ensembles that improve on the performance of the base classifiers in the archive.

For all ensembles evolved by MABLE, both the variable sized and fixed sized, at least two base clas-
sifiers are dominated. The mode of dominated classifiers is 4 (the median is also 4, except for size 20,
which yielded a median of 3). Both approaches to ensemble generation with MABLE make good use of the
archive. For variable sized ensembles (and fixed sized ensembles of size 20), all base classifiers are used
in at least one ensemble. For smaller ensemble sizes, fewer base classifiers are used. However, still a high
number, 25/32 for size 5 and 31/32 for size 10.

A small fixed sized ensemble size, and variable sized ensembles, are able to obtain the largest Pareto
fronts. Based on the trials with each configuration, the Pareto front of the variable sized ensembles ranged
from 37–38, and 36–40 for size 5. The larger ensembles, of size 20, gave a set ranging from 21–25. This
observation is logical since the larger the ensemble size, the less scope there is to make diverse combinations
of the base classifiers. Furthermore, evolving variable sized ensembles gives greater scope for diversity. A
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(a) Ensembles of size 5.
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(b) Ensembles of size 10.

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
30

40

50

60

70

80

90

100

Normal%

U
2R

%

 

 

Archive
All ensembles
Fixed−sized 20

(c) Ensembles of size 20.
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(d) Variable sized ensembles.

Figure 6.8: Performance of fixed sized and variable sized ensembles evolved with MABLE.

larger Pareto front is obtained when evolving variable sized ensembles, although the mode ensemble size is
14 (the median is 12, the smallest size is 3, and the largest size is 19).

Although the Pareto front of ensembles of size 20 is smaller than that obtained with ensembles of size 5,
these perform better in a particular region that is illustrated in Figure 6.9 (circled)6. Without consideration
of the additional computational costs of larger ensembles7, size 20 may be more desirable if the ideal trade-
off is in this region, such as a 0.5% FPR (99.5% Normal). However, if a larger FPR is acceptable, ensembles
of size 5 offer a larger range of better solutions.

6.5.3 Other combination techniques

Other approaches to combining the classifiers are considered: combining the entire archive, reduced sub-
sets based on clustering, and a new approach based on only combining classifiers that exceed particular
performance thresholds.

Table 6.5 provides an overview of the results obtained when combining the entire archive, and reduced
subsets according to clustering. As illustrated in Figure 6.10, all but one of these solutions dominate base
classifiers. However, only for a very small region. Furthermore, all of these ensembles are themselves
dominated by ensembles obtained in the second phase of MABLE.

6According to 50 trials, the two single trials illustrated in Figure 6.9 are representative: ensembles of size 5 consistently underper-
formed in the region highlighted in this figure.

7An ensemble of size 5 processes all instances in the test set in 4 seconds compared with 14 seconds with an ensemble size of 20.
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Figure 6.9: Comparison of Pareto fronts obtained with ensembles of size 5 and 20.

Table 6.5: Combination of the entire archive and reduced subsets according to clustering.

k Normal% U2R% TPR% FPR%

5 99.71 72.34 72.34 0.29

10 99.59 71.28 71.28 0.42

20 99.69 73.40 73.40 0.31

30 99.72 70.21 70.21 0.28

all 99.78 72.34 72.34 0.22
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Figure 6.10: Combination of the entire archive and reduced subsets according to clustering.
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Including the boundary classifiers when performing clustering does not result in any significantly dif-
ferent performance, as seen in Table 6.6. There is, however, a larger difference in the results obtained
when filtering out classifiers according to performance thresholds. Table 6.7 provides an overview of these
results. Note that all base classifiers obtained more than 30% detection on both classes, hence, threshold
values below 40% are not included.

Table 6.6: Comparison of results with clustering. An asterisk signifies that boundary classifiers are included.

k = 5 k = 5∗ k = 10 k = 10∗ k = 20 k = 20∗

Normal% 99.71 99.71 99.86 99.58 99.69 99.79

U2R% 72.34 72.34 71.28 73.40 73.40 70.21

Table 6.7: Ensemble performance after filtering out classifiers according to classification thresholds for both classes.

Threshold% Normal% U2R% TPR% FPR% Size

40 99.73 73.40 73.40 0.27 31

50 99.05 85.11 85.11 0.95 24

Applying a threshold of 50% results in an ensemble that detects more than 10% more U2R instances
than an ensemble comprised of MLPs subject to a threshold of 40%. However, the performance decreases
on Normal, giving a different classification trade-off. This is illustrated in Figure 6.11. The following
section sheds more light on this, explaining why the thresholds affect the performance in this way.
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Figure 6.11: Performance of ensembles obtained after filtering out classifiers according to classification thresholds on
both classes.
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6.5.4 Selection of classifiers

The threshold filtering process biases the performance of the ensembles. The consequence of removing
classifiers that obtain less than 50% correct classification on each class is that several classifiers that perform
poorly on U2R are removed. Therefore, the resultant ensemble is composed of a higher proportion of
classifiers that perform better on U2R. However, the trade-off is that the classifiers that perform better on
U2R perform worse on Normal, which is reflected in the resultant ensemble. Similarly, thresholds can be
applied to a single class to help bias this trade-off, which is illustrated in Figure 6.12.
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(a) Based on Normal.
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(b) Based on U2R.

Figure 6.12: Performance of ensembles obtained after filtering out classifiers according to classification thresholds on
one class.

Although it is possible to bias the classification trade-off of the ensemble by filtering out classifiers that
do not exceed specific classification thresholds, there are two issues with this:

1. Although a classifier performs worse than a defined threshold, it may perform well on instances that
the other classifiers make errors on, and, thus, may be a valuable part of an ensemble.

2. Such a process presumes that the bias is induced by a uniform, local set of classifiers.

Figure 6.13 plots the performance of four ensembles (size 5) evolved by MABLE and the base classifiers
that they are comprised of. This demonstrates that the selection of classifiers is not uniform, nor local,
nor entirely diverse. Therefore, the development of an ensemble exhibiting a desired trade-off is non-
trivial, even if that trade-off is known a priori. It is also evident that, if an ensemble does not meet the
desired trade-off, it may be dominated by one or more base classifiers that offer a better trade-off for the
application. Furthermore, with reference to point one, above, it is clear that a simple threshold based
approach is insufficient, as a classifier with a lower performance may be valuable. This is particularly clear
for ensemble 2 in Figure 6.13b. As can be seen in Figure 6.12, above, the ensembles created from the
threshold process are all dominated by the ensembles generated by MABLE.

6.5.5 Generalisation

General observations are discussed in Section 6.5.5.1. Section 6.5.5.2 considers two approaches to improv-
ing the generalisation, with a particular focus on determining whether overfitting is the cause of a large
decrease in U2R performance observed on the test set. This is followed by a detailed analysis of perfor-
mance on the individual U2R attacks in Section 6.5.5.3. This analysis demonstrates that particular attack
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Figure 6.13: Selection of base classifiers in phase two of MABLE.

instances are consistently misclassified. Section 6.5.5.4 delves deeper still, analysing the feature values of
the attack instances, to provide indications as to why they are consistently misclassified.

6.5.5.1 General observations

As with any machine learning classifier, the performance on the test set is expected to be poorer than on the
training set. Moreover, each classifier is likely to generalise differently, i.e., some may perform better on
the test set, whilst others may perform worse. The MLPs (with 50 nodes in the hidden layer) from phase
one of MABLE generalised well on Normal, but the performance is poorer on U2R during testing. The
mean difference between the training and test performance of the MLPs is 0.13% on Normal and 11.15%
on U2R. However, despite this larger reduction in U2R detection, the performance on the test set follows
the performance curve on the training set well, as seen in Figure 6.14a.
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(a) Archive of MLPs from phase one.
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(b) Variable sized ensembles compared with the archive.

Figure 6.14: Comparison of training and test performance of MLPs (50HN) and ensembles.

The variable sized ensembles exhibit the same classifier behaviour on the test set, performing well on
Normal, but suffer a decreased detection rate on U2R. Figure 6.14b depicts the performance on the training
and test sets for both the base classifiers and the ensembles. The mean difference between the training and
test performance of the ensembles is -0.041% on Normal and 14.2% on U2R. The negative difference on
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Normal signifies that the test performance is better than the training performance.
According to the single trials discussed above, the ensembles appear to generalise better on Normal, but

worse on U2R than the MLPs. However, as mentioned initially, the classifiers are expected to generalise
differently, and there are trials of the algorithms when the performance is significantly better on the test
set for some classifiers, whilst the performance is significantly worse for others. Therefore, averages were
calculated from 50 trials, which are presented in Table 6.8. Figure 6.17b plots the performance of all base
classifiers and ensembles for all trials.

Table 6.8: Average differences between training and test performance, based on 50 trials with MLPs with 50 neurons
in the hidden layer.

(a) Archive of MLPs (50HN).

Mean% Median%

Normal 1.823 -0.003

U2R 10.511 10.258

(b) Variable sized ensembles.

Mean% Median%

Normal -0.034 -0.026

U2R 14.853 15.198
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Figure 6.15: Training and test performance from 50 trials, based on an archive of MLPs with 50 neurons in the hidden
layer.

Both the MLPs and the ensembles generalise well on Normal; the median measure indicates that the test
performance is actually better than the training performance8. Furthermore, as indicated from the single
trials discussed above, the ensembles do generalise better than the base classifiers on Normal. However,
the median performance on U2R is nearly 5% worse for the ensembles (15.198% compared with 10.258%).
Despite this, the average performance measures indicate that the ensembles are more robust, whilst the
base classifiers have more cases of significantly worse performance on the test set (on Normal). This is
illustrated well in Figure 6.17b, showing these as outliers, which is reflected in the smaller median of
-0.003% compared to the mean difference of 1.823% on Normal for the MLPs.

8The reason the median measure indicates better performance than the mean is that the majority of the MLPs obtain good per-
formance on the test set, whilst a small proportion detects more than 20% less Normal instances correctly. This is illustrated well in
Figure 6.17b.
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6.5.5.2 Overfitting

The reduced performance on U2R during testing may be due to overfitting the training data. However, the
results of the ensembles are inconsistent since they generalise better than the base classifiers on Normal,
but worse on U2R. The observations on Normal are in accordance with those in the literature, in which
several studies have found that creating ensembles is an effective way to improve generalisation (Hansen
and Salamon 1990, Zhou et al. 2001; 2002). However, the findings on U2R are contradictory. Alternatively,
the performance reduction may be caused by issues related to the U2R class, which is considered further at
the end of this section. First, the hypothesis of overfitting is considered, examining the following:

• Shorter training time for the base classifiers.

• Employing smaller networks (fewer neurons in the hidden layer).

Since the training process here is not an exact error based method such as backpropagation, for which
overfitting can be directly influenced by the training time, shorter training here may not necessarily reduce
overfitting. It may simply produce classifiers that perform worse, but maintain the same generalisation
properties. With certainty, however, smaller MLPs will not be capable of as complex fitting of the data, and,
therefore, may generalise better. In this case, one would expect to obtain worse training performance, but the
difference in test performance may be smaller; indicating better generalisation. Furthermore, it is interesting
to examine how well the Pareto front of ensembles composed of smaller base classifiers compares with the
Pareto front obtained with 50HN. For these experiments, MLPs with 10HN are considered.

As seen in Figure 6.16a, MLPs with 10HN tend to generalise better than MLPs with 50HN. Although
the training performance is slightly worse with 10HN, the test performance is better than that achieved
with 50HN. However, there is still an issue with some MLPs performing significantly worse during testing,
particularly those that detect more than 90% U2R during training.
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(a) Archive of MLPs from phase one.
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(b) Variable sized ensembles from phase two.

Figure 6.16: Training and test performance of MLPs with 50HN and 10HN, and associated ensembles.

The Pareto front of ensembles using 10HN MLPs as base classifiers is almost as good as that obtained
with 50HN MLPs, which is depicted in Figure 6.16b. Furthermore, as with the base classifiers, the testing
performance is generally better. Although higher detection of U2R is achieved during testing with smaller
base classifiers, there are more outliers than when using 50HN MLPs as base classifiers.

Due to an increase in outliers, the mean difference is greater for the MLPs with 10HN, as seen in Table
6.9. However, the median difference on U2R is lower: 8.890 compared with 10.258. Although the median
difference on U2R for the ensembles is almost identical with 10HN MLPs (15.426) compared with 50HN
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MLPs (15.198), the performance is not as robust. Nevertheless, as depicted in Figure 6.17a the ensembles
based on 10HN MLPs are capable of detecting more U2R intrusions. However, these are the outliers, which
is why the median difference remains a negative value whilst the mean is now positive (worse performance
on the test set).

Table 6.9: Average differences between training and test performance, based on 50 trials with MLPs with 10 neurons
in the hidden layer.

(a) Archive of MLPs (10HN).

Mean% Median%

Normal 2.970 -0.003

U2R 9.626 8.890

(b) Variable sized ensembles.

Mean% Median%

Normal 0.281 -0.046

U2R 14.648 15.426
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(a) 10HN MLPs.
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(b) 50HN MLPs.

Figure 6.17: Training and test performance of MLPs with 50HN and 10HN, and associated ensembles, over 50 trials.

The results discussed above indicate that the smaller MLPs generalise better, although the robustness is
compromised. The other factor that may affect generalisation is training time. It should be noted that the
training time for the MOGA is already short in comparison to the 20,000 evaluations used in the previous
investigation. Furthermore, since that was for single objective optimisation, it would be reasonable to expect
that the MOGA would require longer training time since it solves a more complex task. Nevertheless, the
MOGA has converged well after 10,000 evaluations, as illustrated in Figure 6.6 on page 129.

Two sets of experiments were conducted, setting the training time to 5,000 and 7,000 evaluations. An
overview of the average differences in performance between training and testing is presented in Table 6.10.
The median difference in training and test performance on Normal remains nearly identical as the training
time is reduced, but the mean is increased with 7000 evaluations. The mean difference on Normal from
7,000 to 5,000 evaluations is then slightly lower, however. Both the median and mean difference on U2R

decrease by approximately 1% with each reduction in training time. Although a decrease can indicate
improved generalisation, it is unlikely that this is the case here since the observations on the two classes are
contradictory. With shorter training, MABLE is not able to obtain as good a Pareto front on the training
set as with 10,000 evaluations. However, as seen in Figure 6.18, the test performance is almost the same.
Therefore, it is logical that the average difference decreases, since the majority of runs obtain a worse
training performance whilst the test performance remains very similar. Furthermore, although the median
difference on U2R decreases, the mean difference remains very similar, which indicates an increase in
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outliers. These are all indications of insufficient time to learn and issues with the U2R class (which are
discussed further below), rather than issues with overfitting.

Table 6.10: Average differences between training and test performance, dependent on training time. Based on 50 trials
with MLPs with 50 neurons in the hidden layer.

(a) 10000 evaluations.

Mean Median

Normal 1.823 -0.003

U2R 10.511 10.258

(b) 7000 evaluations.

Mean Median

Normal 3.730 0

U2R 9.737 8.967

(c) 5000 evaluations.

Mean Median

Normal 3.477 0

U2R 8.651 7.751
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(a) 10HN MLPs, 7k on top.
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(b) 10HN MLPs, 10k on top.
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(c) 50HN MLPs, 5k on top.
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(d) 50HN MLPs, 10k on top.

Figure 6.18: Generalisation performance for 50 trials with different number of evaluations.

6.5.5.3 Analysis of U2R attacks

Although there are some changes in the performance when altering the training time and number of neurons
in the hidden layers of the MLPs, the difference in test performance on U2R remains high. The U2R class
consists of seven different types of attacks. Three of these attacks have less than 10 instances to learn
from; one attack merely provides a single instance to learn from and one to test on. This is a very low
number of instances, which becomes an issue if not all seven attacks are similar in their feature values.
If they are not, one can expect that the smaller attack classes will not be learned properly. Since a single
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misclassification on the (small) test set has a larger impact on the classification rate than on the training
set, consistently misclassifying a few specific attacks, or attack instances, may be the cause of the large
performance decrease on the test set.

Additional experiments were conducted to obtain classification rates on each of the individual attacks.
This was done by evaluating the training and test performance of the existing MLPs and ensembles on
subsets of the data set that only contain a single attack type, labelled as U2R (as the classifiers have been
trained for). For this investigation, ensembles of size 5 were chosen to avoid issues related to potential
ties between the ensemble members; since the ties are resolved randomly, two trials of the same ensemble
may lead to different classification rates. For reference, an overview of the average differences between the
training and test performance for the ensembles are presented in Table 6.11. Since the result listings for
these experiments are quite extensive, they are not presented here. Instead, refer to Appendix B.3.1.3 on
page 217.

Table 6.11: Average differences between training and test performance of ensembles of size 5. Based on 50 trials with
MLPs with 50 neurons in the hidden layer.

Mean% Median%

Normal -0.056 -0.027

U2R 14.335 14.666

The additional experiments with the MLPs reveal that sqlattack, which has merely one instance to learn
from and one to test on, was always correctly classified. The second attack with only one instance in
the test set, perl, was only detected by 9 out of 32 MLPs, despite having more instances to learn from
(4). Furthermore, these four instances were all learned correctly during training by all but one MLP. Two
other attacks were also found to affect the decreased detection during testing: (1) the ps attack was never
fully detected, with one instance consistently misclassified, and (2) with the exception of one MLP, three
instances of buffer overflow were consistently misclassified. These four instances account for 14.29% of the
instances in the test set, which explains the consistent performance reduction on the test set. Other attacks,
however, compensate for this to a degree as they are detected with a higher accuracy, which lowers the
median difference (to approximately 10% for the MLPs, as listed in Table 6.8 on page 136).

The rootkit attack was also found to have a significant impact on the difference between training and test
performance. This attack is largely undetected despite being learned during the training phase. Interestingly,
when the attack is detected, generally all instances are then detected, giving ‘extreme’, almost binary,
classification behaviour. However, the attack is only detected when at least 14 instances have been correctly
learned (77.78% of all rootkit instances in the training set). In the case of learning 14 instances from
the training set, this accounts for 14.89% of all U2R instances in the training set. If all 5 instances are
detected during testing, this accounts for 17.85% of the total U2R detection. Hence, this gives a difference
of approximately 3%. In another typical case, when 14 (or more) instances are learned from the training set,
only 2 instances are detected during testing, which leads to a difference of approximately 7%. The extreme
classification behaviour on the test set is also seen during training, in which the number of learned instances
can be broadly clustered into two groups: (1) learning merely 3–5 instances correctly, or (2) 14–18. Since
the classification behaviour is almost binary, it causes some abrupt changes in the test performance, having
a significant positive or negative impact on the difference between the training and test performance. Figure
6.19 illustrates the scattered groups on both the training and test sets.
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Figure 6.19: Performance of the MLPs on the rootkit attack.

As with the base classifiers, the ensembles exhibit the same classification behaviour on the attacks
discussed above. However, the ensembles perform better on the rootkit attack during training, leading to
a larger difference in performance on the test set; 1.5% based on the trials examined here. Similarly, the
ensembles perform better on the buffer overflow attack during training, giving an additional 1% larger mean
difference. The mean difference on the U2R class as a whole, for the trials of the MLPs and ensembles
examined here, is approximately 3.5%, as seen in Table 6.12, below. The remaining 1% comes from the
perl attack. Similarly to the MLPs, the ensembles perform very well on this attack during training; every
ensemble correctly learned the four instances in the training set. However, only one ensemble was able to
detect the single attack instance in the test set.

Table 6.12: Differences between training and test performances of MLPs and ensembles.

(a) Archive of MLPs.

Mean% Median%

Normal 1.823 -0.003

U2R 10.511 10.258

(b) Ensembles (size 5).

Mean% Median%

Normal -0.056 -0.027

U2R 14.335 14.666

The observations discussed above give explanations as to what caused the large difference between the
training and test sets on the U2R class compared with the Normal class. There is an additional factor that
affects this difference: the proportion of instances of each attack in the training and test sets. Due to the
limited number of instances of most U2R attacks, it is not possible to partition the data to assign exactly
80% of the instances to the training set and the remaining 20% to the test set. For example, sqlattack has
one instance in the training set and one instance in the test set, which makes up 1.06% of all U2R training
instances and 3.57% of all U2R test instances. Therefore, even when the both the training and test instances
are detected, i.e., 100% detection of this attack, this gives a difference of 2.51%. Table 6.13 provides an
overview of the proportions of each U2R attack in the training and test sets.
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Table 6.13: Proportion of each U2R attack in the training and test sets.

buffer overflow loadmodule perl ps rootkit sqlattack xterm

Training% 43.62 8.51 4.26 12.77 19.15 1.06 10.64

Test% 39.29 10.71 3.57 14.29 17.86 3.57 10.71

6.5.5.4 Analysis of feature values of the U2R attacks

An analysis of the specific instances being misclassified provides some indication as to why three buffer

overflow attacks and one ps attack are consistently misclassified. Considering the features of the three buffer

overflow attacks, three of these are particularly suggestive as to why they are misclassified: (1) the duration

is greater than the other instances, both in the training and test sets; (2) the number of files created is greater,
4–6, whilst it is mostly 0 or 1 for other instances; (3) the value for hot is lower for the misclassified instances
compared with other instances in the test set (0–2 compared with 3–10). For hot, there are several training
instances with similar values, however, so this may or may not be a contributing factor.

The ps instance that is misclassified is nearly identical to one instance in the training set for many
features. However, the values of four features are significantly higher: destination host count (255 compared
with 29), destination host server count (172 compared with 3), destination host same server (0.67 compared
with 0.1); destination host server error (0.94 compared with 0). For the latter feature, there are other
instances in the training and test sets that have similar values, but very few; only two instances did not have
a 0 value. There are instances with similar feature values for destination host same server, but the values of
other features are different.

Since the single perl instance in the test set is not consistently misclassified, it is likely that its classi-
fication is dependent on correctly learning other attack instances that are similar. However, there are some
feature values that stand out as different within the instances of the perl attack: root shell, num root, and
destination host count. The latter feature was also found to reveal some differences between the training
and test instances for the ps attack, as discussed above. In this case, the destination host count is much
lower for the test instance compared with those in the training set. The two former features, root shell and
num root, are both zero/false for the test instance for the perl attack, whilst all training instances are based
on root shell being true and a num root count of 2.

As discussed above, the rootkit attack also exhibits quite ‘extreme’ classifier behaviour on the training
set; either learning correctly most instances, or very few. In the cases where three of the five test instances
are misclassified, it is largely three specific instances. Most strikingly, these instances target the ftp_data

service and have a very low duration. The two other test instances target the ftp service. Furthermore,
the three instances have low source and destination byte values, and a high destination host server count,
compared with the other instances.

The rootkit attack targets several protocols and services. Three instances from the training set that are
commonly not learned target the udp protocol, whilst all other instances target the tcp protocol. Further-
more, the service these three instances target is defined as ‘other’, which no other rootkit instances target.
Another instance that is often missed from the training set targets the ftp_data service, which is the same
service that is targeted by the three instances in the test set that are misclassified the most.

The analysis of the feature values of the attack instances only provides possible indications of what may
have caused the misclassifications. Since the MLPs are generally treated as ‘black boxes’, it is difficult
to confirm that these observations are indeed the contributing factors in the misclassifications. Although
there are seemingly evident differences between feature values of certain training and test instances, some
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of these features may not even be used in the classification process; i.e., the weights associated with the
features may yield approximately the same output regardless of input value.

6.5.6 Complexity and speed

The findings discussed in the previous section demonstrate that ensembles composed of smaller MLPs
(fewer neurons in the hidden layer) can achieve the same performance as ensembles composed of larger
MLPs. In some cases, they even appear to provide better performance as more U2R instances were detected
by some ensembles. There is an additional advantage of employing an ensemble of smaller MLPs: it reduces
the time required to process the data. This is important to factor to consider in an IDS, which aims to achieve
real-time intrusion detection. Although this is not the specific focus of this investigation, it is nonetheless
interesting to compare the computation times. As shown in Table 6.14, below, the computational cost of
50HN MLPs compared with 10HN MLPs is approximately three times as high9. Although larger ensemble
sizes imply higher computational costs, the majority vote combiner adopted here allows for convenient
parallelisation, in which each base classifier could be executed independently, passing on the vote to a
master decision module.

Table 6.14: Training and test times for the MLPs and ensembles.

MLPs Ensembles size 5 Ensembles size 20

Training Testing Training Testing Training Testing

10HN < 1s < 1s 4s 1s 18s 4s

50HN 3s 1s 14s 3s 56s 11s

Related to generalisation, it is interesting to determine whether the ensemble size has an impact on
the performance and generalisation ability of the ensembles. It was not straightforward to determine this
according to the findings with the variable sized ensembles from the previous section; in some cases, smaller
ensembles lead to large differences in classification rates, whilst in other cases, this was caused by larger
ensembles. An additional experiment was therefore conducted to measure the average performance of
ensembles of size 5, 10 and 20, using 10HN and 50HN MLPs as base classifiers, respectively. Averages are
presented in Table 6.15 for ensembles with 10HN MLPs and Table 6.16 for ensembles with 50HN MLPs.
The performance of each ensemble configuration is depicted in Figure 6.20.

Table 6.15: Average differences between training and test performance, based on 50 trials with MLPs with 10 neurons
in the hidden layer.

(a) Ensemble size 5.

Mean Median

Normal 0.629 -0.022

U2R 13.847 14.894

(b) Ensemble size 10.

Mean Median

Normal -0.040 -0.041

U2R 15.735 16.033

(c) Ensemble size 20.

Mean Median

Normal -0.074 -0.048

U2R 15.478 15.881

9It should be noted that the computation times quoted here are indicative only. The code has not undergone any specific investiga-
tion to identify ineffective code ‘hot spots’ that may render these times unrepresentative.
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Table 6.16: Average differences between training and test performance, based on 50 trials with MLPs with 50 neurons
in the hidden layer.

(a) Ensemble size 5.

Mean Median

Normal -0.056 -0.027

U2R 14.335 14.666

(b) Ensemble size 10.

Mean Median

Normal -0.024 -0.020

U2R 15.416 15.578

(c) Ensemble size 20.

Mean Median

Normal -0.035 -0.027

U2R 16.623 16.261
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(b) Size 5: 50HN.
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(c) Size 10: 10HN.
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(d) Size 10: 50HN.
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(e) Size 20: 10HN.
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(f) Size 20: 50HN.

Figure 6.20: Generalisation performance of fixed size ensembles for 50 trials.

144



CHAPTER 6. MULTI-OBJECTIVE EVOLUTION OF CLASSIFIER ENSEMBLES

All ensemble configurations but one (size 5 with 50HN MLPs) obtained better performance on the test
set on Normal. There are some differences in the results obtained with the ensembles comprised of 10HN
MLPs compared with those comprised of 50HN MLPs. As demonstrated earlier, the smaller ensembles
(size 5) comprised of 10HN MLPs produce several solutions that appear as outliers with significantly worse
performance on Normal, resulting in a worse mean measure of difference between the training and test
performance (up to approximately 20% worse on the test set). However, the largest ensembles (size 20)
comprised of 10HN MLPs actually led to better test performance than ensembles of the same size comprised
of 50HN MLPs.

A general trend that can be observed is that the detection of U2R decreases as the ensemble size is
increased; particularly with 50HN MLPs. The ensembles comprised of the smaller MLPs (10HN) maintain
a lower difference between the training and test performance. Although large ensembles of the larger MLPs
(50HN) produce a better Pareto front on the training set (than with 10HN MLPs), the test performance is
worse than with smaller base classifiers, which is depicted clearly in Figures 6.20e and 6.20f. Therefore,
there is a trade-off between the ideal ensemble configuration in terms of size and complexity of the base
classifiers, and how this affects the computational costs and performance.

As mentioned above, in terms of performance, large ensembles of small MLPs, or small ensembles of
larger MLPs, are fruitful. If parallel implementations are possible, the former solution may be desirable, as
it would require less computational costs to process the data by each classifier. However, the latter achieves
the highest classification rates and obtains a larger Pareto front.

6.5.7 Performance on three class data

The purpose of this investigation is to compare the performance of the MLPs and ensembles evolved with
MABLE with other popular classifiers; namely a Decision Tree (DT), Random Forest (RF) and AdaBoost.
The results of these tree classifiers are discussed first, in Section 6.5.7.1. Thereafter, the findings from phase
one and two of MABLE are discussed in Sections 6.5.7.2 and 6.5.7.3, respectively. This investigation also
gives indications of how well MABLE scales with an additional class/objective.

6.5.7.1 Tree classifiers

The performance of the DT varies insignificantly when examining the confidence factors for pruning. How-
ever, the RF and AdaBoost performance do vary with different configurations, and more significantly from
trial to trial. Both RF and AdaBoost improve on the performance of the DT, particularly in detecting the
intrusions. However, the results obtained with these classifiers are biased towards very high classification
of Normal. Table 6.17 provides an overview of the results obtained with two RFs and the best DT.

Table 6.17: Results of the DT and RF.

Accuracy% TPR% FPR% Normal% U2R% R2L%

DT 94.47 10.97 0.04 99.96 18.57 10.24

RF1 94.57 12.18 0.02 99.98 30.00 11.38

RF2 94.59 12.76 0.04 99.96 28.57 12.07

There is no clear trend in the performance of the RFs dependent on the number of trees. There are slight
performance differences from trial to trial and with different number of trees. For example, RF1 in Table
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6.17 obtained the best performance on U2R, which was achieved with 30 trees. RF2, performing best on all
aspects but FPR, was comprised of 5 trees. This gave the highest FPR of all RFs.

Similarly to the RF, the less complex AdaBoost solutions provide the highest TPR and accuracy. Ad-
aBoost is able to detect more R2L intrusions than RF, which is the main contributor to a higher TPR; see
AdaBoost110 in Table 6.18. There is more variation in the classification rates from trial to trial with Ad-
aBoost. However, this is less significant with a weight threshold of 100, which produces very large trees11

that obtain the lowest FPR, but perform consistently worse on the intrusion classes, indicating overfitting;
see AdaBoost312 in Table 6.18. As with RF, all AdaBoost solutions obtain merely 0.02–0.04% false posi-
tives.

Table 6.18: Different classification trade-offs obtained with AdaBoost.

Accuracy% TPR% FPR% Normal% U2R% R2L%

AdaBoost1 95.28 24.36 0.03 99.97 14.29 23.74

AdaBoost2 94.74 15.41 0.03 99.97 37.14 14.32

AdaBoost3 94.85 16.94 0.02 99.98 24.29 16.19

6.5.7.2 MABLE phase one

MABLE successfully evolves the MLPs and ensembles thereof on this three class data. Although the results
are not as easy to analyse as for the two class data, Figure 6.21 shows a 3D plot of the performance of MLPs
with 70HN, which have minimally 1% false positives. A contour view is presented in Figure 6.21b, with
axes for Normal and U2R detection, whilst the highest detection rate of R2L is depicted in red, following
the same colour grading as in Figure 6.21a.
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Figure 6.21: Training performance of MLPs from phase one of MABLE.

The MLPs evolved in the first phase of MABLE offer a large range of solutions with different trade-

10AdaBoost1 is configured with a weight threshold of 10, and 10 iterations.
11The size of the trees range from 125–169, with 63–85 leaf nodes. In comparison, the size of the trees obtained with a weight

threshold of 10 range from 15–19, with 8–10 leaf nodes.
12AdaBoost 3 is configured with a weight threshold of 100, and 10 iterations.
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offs. With the additional objective, the number of solutions in the Pareto front increases significantly. The
archive size is between 300 and 400, which is up to twice as large as the population size adopted here. Table
6.19 presents a selection of MLPs, ordered by FPR.

Table 6.19: Test performance of a range of MLPs evolved in phase one of MABLE.

Accuracy% TPR% FPR% Normal% U2R% R2L%

94.62 14.55 0.12 99.88 32.86 13.67

95.01 36.19 0.90 99.10 35.71 32.44

92.49 41.05 2.87 97.13 80 20.14

89.42 60.23 8.11 91.89 65.71 51.28

87.70 52.85 8.68 91.32 78.57 31.43

85.02 50.90 11.47 88.53 81.43 30.18

82.06 70.05 16.78 83.22 50 64.65

66.53 93.64 34.21 65.79 62.86 78.09

40.94 99.81 62.79 37.21 38.57 99.31

32.71 100 70.65 29.35 48.57 84.93

16.98 99.81 87.76 12.24 57.14 90.22

11.60 99.78 93.57 6.43 71.43 91.20

The tree classifiers discussed in the previous section are biased towards the major class, giving a high
classification of Normal and a low TPR. Assuming that a 1% FPR is acceptable (as discussed in Section
6.4.7 on page 127) this trade-off is not ideal. As seen in Table 6.19, above, a higher TPR is possible to
achieve with the evolved MLPs at an acceptable increase in FPR. For example, at approximately 1% FPR
(99.10% detection of Normal), it is possible to detect more than 30% U2R and R2L intrusions, leading
to a TPR of 36.19%. This is more than 20% higher TPR than the DT and RF, as seen in Table 6.20,
below. Moreover, this MLP obtains a 95.01% accuracy, compared with 94.59% for the best RF. One of the
AdaBoost solutions obtains a slightly higher accuracy (0.27% higher) and lower FPR, but the TPR is more
than 10% lower. Another AdaBoost solution offers a different trade-off, detecting more U2R intrusions,
but less R2L, which leads to a significantly lower TPR. Therefore, despite AdaBoost having a potential
advantage of weighted combination of DT classifiers, the solutions are inferior to some of the MLPs evolved
by MABLE.

Table 6.20: Comparison of results from the tree classifiers and an MLP evolved in phase one of MABLE.

Accuracy% TPR% FPR% Normal% U2R% R2L%

DT 94.47 10.97 0.04 99.96 18.57 10.24

RF1 94.57 12.18 0.02 99.98 30.00 11.38

RF2 94.59 12.76 0.04 99.96 28.57 12.07

AdaBoost1 95.28 24.36 0.03 99.97 14.29 23.74

AdaBoost2 94.74 15.41 0.03 99.97 37.14 14.32

MABLE1 95.01 36.19 0.90 99.10 35.71 32.44
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6.5.7.3 MABLE phase two

The base classifiers (MLPs) evolved in the first phase of MABLE already perform well compared with the
tree classifiers, producing solutions with more fruitful classification trade-offs. The archive of MLPs with
70 neurons in the hidden layer performed best, giving the largest number of ‘good’ solutions, and were
used as base classifiers for phase two. Due to the large archive sizes on this three class problem, a filtering
process was applied to help focus on the solutions that are likely to be competitive with those already
discussed. Therefore, according to the findings discussed above, the following thresholds were employed:
99% on Normal, 30% on U2R and 10% on R2L. It should be noted that these thresholds were not employed
in MABLE when evolving the ensembles; these thresholds were simply utilized to help filter out ensembles
with unfruitful classification trade-offs a posteriori.

A larger proportion of the archive of solutions evolved in phase two fulfil these threshold compared with
those in phase one: 179 of 324 variable sized ensembles (of maximum size 20) pass the filter, compared
with 30 of the 347 MLPs. This is a good indication that the solution quality of the ensembles is indeed
better than the base classifiers. Furthermore, the larger the ensemble size, the more solutions pass the filter.
This can be explained by the analysis on the two class data in Section 6.5.2 on page 130; demonstrating that
the Pareto front of larger ensembles is smaller and more ‘central’. The number of ensembles in the Pareto
front is 292 with size 20, compared with 388 with size 5.

The median number of base classifiers that the variable sized ensembles dominate is 22 (mode 11,
minimum 0 and maximum 53). The ensemble sizes range from 3 to 20. A maximum size 20 was set for
these experiments, but size 50 has also been examined, which is discussed further below. Evolving small
fixed sized ensembles dominate fewer base classifiers; the median is 12 for size 5. However, at size 10 and
20, the median number of dominated base classifiers is nearly the same as for the variable sized; 21 and
23, respectively. Although an ensemble size of 5 was sufficient for the two class data set, these findings
indicate that it is not for this three class data set. The median ensemble size is 17 when evolving variable
sized ensembles with a maximum size of 20. Table 6.21 gives an overview of the performance of a selection
of these variable sized ensembles, giving different classification trade-offs.

Table 6.21: A selection of variable sized ensembles from phase two of MABLE. The best individual rates are high-
lighted in bold.

Accuracy% TPR% FPR% Normal% U2R% R2L%

94.60 14.16 0.10 99.90 31.43 13.21

94.88 20.08 0.20 99.80 32.86 19.20

94.83 22.90 0.40 99.60 32.86 29.82

95.19 31.07 0.50 99.50 41.43 28.91

95.48 37.18 0.66 99.34 34.29 36.43

94.64 27.62 0.73 99.27 48.57 23.35

95.46 39.58 0.81 99.19 38.57 38.42

95.22 38.43 0.94 99.06 42.86 36.33

The maximum ensemble size was constrained to 20 for the results discussed above, since small ensem-
bles are desirable for this application domain to enable real time intrusion detection. Although this aspect
is not the focus of this investigation, it is generally interesting to demonstrate how MABLE performs with
such constraints. In comparison, experiments were also conducted with a maximum size of 50, to determine
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whether performance gains are possible.
The archive size is reduced when setting the maximum ensemble size to 50, remaining below 250,

which is nearly 100 less than when a maximum size of 20 was set. However, the quality of these ensembles
is similar to the larger fixed sized ensembles, giving a larger proportion of solutions passing the threshold.
There are fewer solutions ‘at the boundaries’, which can be observed as lower maximum individual classi-
fication rates obtained in the entire archive. Although an ensemble size of 50 was allowed, the maximum
evolved ensemble size is 44, with a median size of 33. The median number of base classifiers the ensembles
dominate is 26, which is greater than those discussed above (with a maximum size 20).

The performance of the other combination approaches was somewhat more successful on this data set
compared with those on the two class data, producing several ensembles with good trade-offs among the
classification rates. Results from combining all 347 classifiers and reduced sets according to clustering are
presented in Table 6.22. The highest accuracy is obtained when combining all classifiers. However, this is
merely 0.03% higher than combining a subset of 20 classifiers, which arguably obtains a better trade-off
for this application; exhibiting a slightly higher FPR (0.83% compared with 0.73%), but detecting more
intrusions.

Table 6.22: Combination of the entire archive and reduced subsets according to clustering.

k Accuracy% TPR% FPR% Normal% U2R% R2L%

5 93.62 14.61 1.08 98.92 37.14 11.87

10 94.28 31.68 1.51 98.49 31.43 29.86

20 95.08 36 0.83 99.17 44.29 32.28

30 94.84 32.10 0.90 99.10 44.29 29.33

40 95 30.37 0.69 99.31 37.14 28.88

50 94.87 27.33 0.63 99.37 41.43 25.67

all (347) 95.11 33.22 0.73 99.27 38.57 31.43

Results for the other approaches to combining the archive, based on clustering and threshold filtering,
are similar to those obtained on the two class data. Therefore, these results are only discussed in brief here,
whilst all results are available in Appendix B.3.2 on page 221. The ensembles obtained with clustering
when including the boundary solutions maintain a lower FPR (all below 1%). Most of these solutions
merely give a slightly different classification trade-off, except for the smallest ensemble sizes (size 5 and
10). This is most prominent for size 5, which, when including boundary solutions, gives an ensemble size
of 11. This is more than doubling the ensemble size, and, as discussed above, ensembles of size 10 and
above do perform better.

Removing classifiers that do not obtain more than 0% correct classification on all classes reduced the
pool of classifiers from 347 to 333. The results are, as expected, very similar. With increasing threshold
values, the FPR and TPR increase, as was observed on the two class data. Furthermore, filtering out
classifiers based only on the Normal class does bias the results towards lower FPR, however, at the expense
of the TPR. For example, a class threshold of 97% on Normal yields a pool of 162 classifiers, achieving the
lowest FPR of 0.07%. However, the TPR is merely 1.37% since only 0.49% R2L instances were classified
correctly.

Although combining the entire archive, or subsets based on clustering, led to some ensembles with good
classification trade-offs (close to 1% FPR), they do not perform as well as ensembles evolved by MABLE.
This is due to the limitation of performing uniform selection, as discussed in Section 6.5.4 on page 134. An
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overview of results obtained with all classifiers and ensemble approaches is presented in Table 6.2313.

Table 6.23: Comparison of the results of all classifiers.

Accuracy% TPR% FPR% Normal% U2R% R2L%

DT 94.47 10.97 0.04 99.96 18.57 10.24

RF #1 94.57 12.18 0.02 99.98 30.00 11.38

RF #2 94.59 12.76 0.04 99.96 28.57 12.07

AdaBoost #1 95.28 24.36 0.03 99.97 14.29 23.74

AdaBoost #2 94.74 15.41 0.03 99.97 37.14 14.32

MABLE1 95.01 36.19 0.90 99.10 35.71 32.44

MABLE2 #1 95.22 38.43 0.94 99.06 42.86 36.33

MABLE2 #2 94.85 33.34 0.87 99.13 51.43 28.88

MABLE2 #3 95.46 39.58 0.81 99.19 38.57 38.42

MABLE2 #4 95.48 37.18 0.66 99.34 34.29 36.43

6.6 Discussion

The proposed approach, MABLE, successfully learns from imbalanced data and offers the user a set of
solutions that exhibit different trade-offs in classification performance. The first phase of MABLE provides
an implicit mechanism for creating a diverse pool of classifiers that can be combined to form classifier en-
sembles. Ensembles evolved in the second phase of MABLE provide an improved Pareto front of solutions.
A particular benefit of the multi-objective approach taken here is that a good approximation of the true
Pareto front of non-dominated solutions is obtained in a single run.

It is clear that the classification trade-off needs to be taken into account both when creating classifiers
and ensembles. The implications of not doing so were indicated in the previous chapter, observing that the
ENN would occasionally obtain solutions with too great a false positive rate. Furthermore, the other ap-
proaches adopted here for comparison of results, DT, RF and AdaBoost, all offer undesirable classification
trade-offs. Although the false positive rates obtained with these techniques are very low, the trade-off is a
lower true positive rate than MLPs and ensembles evolved with MABLE were able to achieve. Since prac-
tical applications may allow a greater false positive rate, another solution may offer an acceptable trade-off
that obtains a higher true positive rate. Following statements in the literature that a 1% false positive rate
is acceptable for an IDS (Hu et al. 2003, Maxion and Townsend 2002), even MLPs offered better solutions
than the popular classifier combination approaches adopted here for comparison (RF and AdaBoost).

The Pareto analysis conducted in this thesis offers a novel perspective on the selection process of en-
semble members. Although combining all classifiers in the Pareto front, or reduced subsets according to
clustering or thresholding, produced ensembles that yielded improved performance compared with a small
number of base classifiers, these were consistently dominated by ensembles evolved with MABLE. An
analysis of the selection performed by MABLE demonstrates that the selection of classifiers is not uniform,
nor local, nor entirely diverse. Therefore, the development of an ensemble exhibiting a desired trade-off is
non-trivial, even if that trade-off is known a priori. It is also evident that, if an ensemble does not meet the

13MABLE2 #1 was evolved as a variable sized ensemble (size 18).
MABLE2 #2 was evolved as a fixed sized ensemble (size 10).
MABLE2 #3 was evolved as a variable sized ensemble (size 17).
MABLE2 #4 was evolved as a variable sized ensemble (size 16).
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desired trade-off, it may be dominated by one or more base classifiers that offer a better trade-off for the
application.

151



CHAPTER 7

Conclusions

A summary of the research conducted for this thesis is provided in Section 7.1, followed by the findings
and conclusions in Section 7.2. A discussion of the work conducted is provided in Section 7.3. The novelty
and contributions of this thesis are outlined in Section 7.4. Potential further work is discussed in Section
7.5.

7.1 Summary

The review of Artificial Intelligence (AI) applied to intrusion detection, conducted here, uncovered discrep-
ancies in the findings reported in the literature. Numerous studies have adopted the same machine learning
techniques and evaluated them on the KDD Cup ’99 data set, but have obtained different results. In some
cases, the results are contradictory. This formed the focus of the first part of this thesis, investigating em-
pirically the underlying causes of the discrepancies.

Several methodological factors were found to affect significantly the results in the first part of the thesis,
one of which was selected for further investigation in the second part of the thesis: learning from imbalanced
data. An empirical investigation was conducted to demonstrate that this is indeed a critical challenge to
intrusion detection, and one of the main reasons that Multi Layer Perceptrons (MLPs) have been reported
in the literature to be incapable of detecting a particular class of intrusion.

In the second part of the thesis, a Genetic Algorithm (GA) was proposed to optimise the weights of
MLPs to better learn from imbalanced data. This approach, referred to as an Evolutionary Neural Network
(ENN), was found to be successful, being able to detect the previously undetectable class of intrusion. How-
ever, one limitation of the approach was identified. Since single objective optimisation is performed, there
is no control of the classification trade-off that the resultant MLP obtains. Furthermore, it has been recog-
nised here that this is a limitation in all approaches that strive to obtain a single ‘best’ solution, typically
based on a single measure of accuracy.

To address the limitations of the ENN, the approach was extended to perform multi-objective optimisa-
tion. Treating the classification rate on each class as a separate objective, a Multi-Objective GA (MOGA) is
capable of evolving a set of non-inferior MLPs that exhibit different classification trade-offs. From this, a
user may select the ideal solution. This process is treated as phase one of an approach referred to as MABLE
(Multi-Objective Evolution of Artificial Neural Network Ensembles), which, in phase two, evolves classi-
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fier ensembles based on the MLPs evolved in the first phase. A MOGA was also adopted for phase two,
which provides an improved set of solutions that exhibit different classification trade-offs. Furthermore, this
final part of the thesis offered a novel perspective on the selection of ensemble members, demonstrating why
common approaches fail to provide fruitful solutions, since the classification trade-off is not considered.

7.2 Findings and conclusions

This section presents the findings and conclusions related to the aims of the three empirical parts of this
thesis.

7.2.1 Part one – discrepancies

Aim 1.1: Determine causes of discrepancies in the literature

The initial analysis of the published work indicated that the main cause of the discrepancies is due to re-
searchers adopting different subsets of the KDD Cup ’99 data set. Some researchers adopt the original
training and test sets, whilst others adopt subsets that change significantly the classification task, and, there-
fore, obtain better results. The importance of these findings is two-fold: first, the perils of comparing
results and findings across different studies are evident; second, it is clear that there is a need for deeper
consideration of methodological factors in empirical studies.

Several methodological factors that affect the results have been identified, and their impact on the find-
ings have been investigated empirically:

Subsets: As mentioned above, the choice of data partition affects significantly the results. This is not the
underlying cause; other methodological factors directly affect the results. The impact of these factors
differ between the subsets, and are not present in all. For example, one factor is that the original
test set contains 17 new attacks. Therefore, this is a more challenging problem than using only the
training set, or other subsets that do not contain new attacks in the test data.

New attacks: The new attacks introduced in the test set cause a more challenging problem than the other
subsets adopted in the literature, which is reflected in the findings. This is particularly prominent for
the Probing class, in which one new attack (mscan) in the test set caused the majority of misclassi-
fications for this class. However, it was found here that the new attacks are not the sole reason for a
decreased performance on the test set for R2L and U2R, as discussed further below.

R2L class: There are two particular factors that affect the detection of this class, dependent on the subsets
that are used. In the original test set, the number of R2L attacks double and the number of R2L

instances is approximately sixteen times greater. However, 90.59% of all R2L instances in the training
set (full or 10% version) belong to the warezclient attack, which is not present in the test set. This
leads to poor R2L detection when the original training and test sets are used. If only the training set
is adopted, R2L detection is very high. The second factor that affects R2L detection is that a large
proportion of snmpgetattack instances are identical to Normal instances, which has been identified
previously in the literature (Bouzida and Cuppens 2006a;b). Therefore, misclassifications between
these two are inevitable, unless only the training set is adopted (or small subsets that do not include
this attack).

Class imbalance: This is a factor that particularly affects U2R detection. There are so few instances to
learn from compared with the other classes that the classifiers are prone to simply ‘ignore’ it as the
impact on the accuracy is insignificant. Part two of this thesis has demonstrated empirically that
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this is the reason why MLPs trained with backpropagation have been unable to detect this class of
intrusion. Therefore, data processing that affects the class balance will directly affect the results.
Consequently, researchers that adopt small, balanced, subsets are able to obtain significantly better
results. However, this improvement is not a valid representation of the performance of the classifier
or proposed IDS prototype, if the effect of the class balance is not considered in the analysis of the
results.

Duplicates: Some studies have removed duplicate instances from the data, which affects the results in two
ways. First, the class balance changes, which is likely to improve the detection of the minor class(es).
Second, removing duplicates from the test data removes most of the snmpgetattack instances identical
to Normal instances. Therefore, misclassifications between Normal and R2L are reduced.

Validation method: It was found that holdout validation produced a more ‘pessimistic’ representation of
the performance compared with cross validation, particularly for the minor classes. Cross validation
makes more rigorous use of the data for testing, which is less sensitive to the chosen partition of a
training and test set. Therefore, studies that perform cross validation on the training set, merged data
set, or other subsets that are created, are likely to suggest better performance.

Taxonomy: Typically, the individual attacks are grouped into four classes of intrusion, according to the
taxonomy of Kendall (1999). As identified by McHugh (2000), this may not be appropriate since the
individual attacks within a class may not be similar in terms of their feature values. The empirical
findings in this thesis, both from the first and third parts, confirm that this is an issue. For example,
one of the new Probing attacks in the test set, mscan, targets a service that no other Probing attacks
target. It is mainly misclassified as either Normal or a DoS attack that also targets the same service.
Furthermore, in the third part of this thesis, the MLPs and classifier ensembles evolved with MABLE
appeared to generalise poorly on the U2R class (whilst generalising well on Normal). However, this
was found to be due to specific instances being consistently misclassified since they were different to
the other instances of that class.

Aim 1.2: Provide a benchmark to assist in interpreting the findings reported in the literature

The empirical work that has been conducted for this part of the thesis has provided benchmark results that
have enabled a better interpretation of the current body of research. First, it has demonstrated the impact
of the methodological factors discussed above, which has helped identify why there are such discrepancies
in the literature. Second, the findings can help interpret the findings of studies adopting different subsets
of the KDD Cup ’99 data set, such as those adopting the very small subset, as discussed in Section 4.6 on
page 73.

Aim 1.3: Determine whether the KDD Cup ’99 data set is useful to current and future research

Due to the existing criticisms in the literature and the discrepancies observed in results in the literature, it is
important to consider whether there is any value in continuing to use the KDD Cup ’99 data set in research
on intrusion detection and/or machine learning. One conclusion made here is that the data set should not
be continued to be used simply to evaluate IDS prototypes. However, there is still value in adopting the
data set for research on machine learning applied to this domain. The data set poses several challenges to
machine learning algorithms, and both generic and domain specific challenges for intrusion detection. For
example:

• Related to the learning process:
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– Dealing with high dimensional data (curse of dimensionality (Bellman 1961, Duda 2001) and
memory requirements).

– Learning from a very large data set (learning speed).

– Learning from imbalanced data.

• Feature selection (data reduction) .

• Incremental/continuous learning.

• Detecting new intrusions.

• Simulating intrusion detection of encrypted data.

What is important, however, is that researchers do not simply adopt subsets of the data set that gives the
best results. The purpose of the investigation should ultimately determine which subset of the data to use.

7.2.2 Part two – learning from imbalanced data

Aim 2.1: Determine whether class imbalance is the cause of poor detection rates of MLPs reported
in the literature

There has been a specific claim in the literature that MLPs are unable to detect the U2R class due to a lack
of instances to learn from (Bouzida and Cuppens 2006a;b). An empirical investigation conducted in this
thesis has demonstrated that this is due to the extreme class imbalance in the data set, in which U2R is the
smallest class. However, it was also found that MLPs are able to detect the U2R class given appropriate
training. The commonly adopted backpropagation algorithm is biased towards the major class(es), which
causes the MLPs to ignore the U2R class since errors on this class are insignificant to global measures of
accuracy. This coincides with other observations in the literature on class imbalance (Jo and Japkowicz
2004, Kotsiantis et al. 2006, Weiss and Provost 2003, Weiss 2004).

Aim 2.2: Develop an alternative method of training MLPs for imbalanced data

GAs have been used to evolve the weights of the MLPs, which has provided a successful approach to
learning from imbalanced data due to the evaluation functions that have been developed. Contrary to the
backpropagation algorithm, evaluation functions have been adopted here that are not biased towards the
major class(es). When the MLPs are evaluated with equal weight to each class, the minor class(es) are
learned significantly better, and, as mentioned above, the MLPs are able to detect the U2R class.

Another aim of the proposed method was to provide a generic method that assumes no domain knowl-
edge, and, thus, can be applied to any classification task. This is one of the benefits of using GAs, which
offer great flexibility in the way the MLPs can be evaluated. Generic measures based on the classification
rates and error have been investigated here, which are indeed applicable to any classification task. However,
domain knowledge can be incorporated into the evaluation functions if this is available, which may further
improve the results.

7.2.3 Part three – MABLE

Aim 3.1: Develop a method that learns from imbalanced data and is capable of producing a set of
classifiers that exhibit different classification trade-offs

The ENN proposed in the second part of the thesis, successfully learns from imbalanced data. However, the
drawback of the approach is that there is no control of the classification trade-offs the evolved MLPs obtain.
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Although two MLPs may obtain the same fitness score based on their classification rates, they may exhibit
completely different classification trade-offs. In some cases, the classification trade-off is unacceptable; e.g.,
too high FPR, despite a high TPR, or not detecting an intrusion class (typically U2R), despite obtaining a
very low FPR.

An extension of the ENN has been developed, which evolves the MLPs in a multi-objective manner,
considering the classification rate on each class as a separate objective. Therefore, the MOGA adopted for
this purpose is able to evolve a Pareto front of MLPs that exhibit different classification trade-offs. This
approach otherwise offers the same properties as the ENN; providing a generic way to evolve MLPs that
successfully learns from imbalanced data.

Aim 3.2: Extend the approach developed for aim 3.1 to create classifier ensembles

The approach developed for aim 3.1 has been further extended to evolve classifier ensembles based on the
previously evolved MLPs. The purpose of this is to obtain a new Pareto front of classifier ensembles, which
should improve on the Pareto front of the MLPs. This method is referred to as MABLE (Multi-Objective
Evolution of Artificial Neural Network Ensembles), which, importantly, also does not compromise the
properties of the previous methods; i.e., learns from imbalanced data and provides a set of solutions with
different classification trade-offs. MABLE provides a method that is competitive with popular, state-of-the-
art, methods.

Aim 3.3: Investigate how to select base classifiers to obtain a desired trade-off for an ensemble

Analysis of the Pareto fronts of solutions has yielded some significant insights into how the selection pro-
cess affects the performance of the resultant ensemble(s). First, it was found that ensembles based on
uniformly selected subsets of classifiers according to clustering produce ensembles with approximately the
same classification trade-off as combining all. Therefore, it can be concluded that clustering is a good
way to reduce the size of the ensemble without too much loss of accuracy, as recommended by Yao and
Islam (2008). However, there are two drawbacks of this: (1) such an approach may not give the desired
classification trade-off, and (2) a uniform selection limits the potential performance of the ensembles.

It is possible to bias the performance of the ensembles by filtering out classifiers that do not obtain a
particular threshold of performance. For example, to obtain an ensemble that performs better on one class,
classifiers that perform poorly on this class may be excluded from the selection process. Although it is
possible to affect the classification trade-off of the ensembles in such a manner, it is an ad hoc process and
it is difficult to obtain the exact trade-off that is desired. Furthermore, such a process remains limited by
performing a uniform selection.

The selection process that takes place in MABLE is non-uniform, and the ensembles created by MABLE
consistently dominate the ensembles based on all classifiers, clustering and thresholds. The analysis of the
selected classifiers revealed that the selection is indeed non-uniform and neither local, nor entirely diverse.
It was observed that the ensemble would fall approximately at the centre of the Pareto front of the selected
base classifiers, but that classifiers with a seemingly poor classification trade-off were important members
of the ensemble. Therefore, selection is a non-trivial task, which is well solved by an optimisation algorithm
such as the MOGA adopted in MABLE. Critically, diversity alone would be a poor basis for selection.

Aim 3.4: Analyse the properties of MABLE

Several properties of MABLE have been examined, both for phase one and two. Some aspects of this
analysis serve to demonstrate that the method successfully achieves the aims of this investigation, whilst
other aspects help to give guidelines for practical applications.
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Evolution and trade-offs: First, it has been established that MABLE successfully evolves both MLPs
(base classifiers) and ensembles thereof for imbalanced data. This has been successful for the in-
trusion detection application considered here. Furthermore, the approach has also demonstrated a
weakness in methods that generate only a single solution. Similar to the ENN developed for the sec-
ond part of this thesis, the classification trade-off is a factor that is important to consider, and not only
for imbalanced data. The approach is useful for any problem that has conflicting objectives, thus,
leading to different classification trade-offs, which is likely for any non-trivial classification problem
(i.e., one that has poor separation of classes).

Ensemble size: The most obvious impact of the ensemble size is on the computational cost; the larger
the ensemble, the greater the computational cost. It has also been found that the ensemble size
affects both the solution quality and generalisation ability of the ensembles. On the one hand, small
ensembles may not be able to obtain as good a solution for a particular classification trade-off as a
larger ensemble. That is, if both a large and small ensemble obtain a 1% FPR, the larger ensemble
may obtain a higher TPR than the smaller one. On the other hand, smaller ensembles are able to give
a larger Pareto front. Therefore, the smaller ensembles may obtain solutions with classification trade-
offs that the larger ensembles cannot obtain. However, it was found that increasing the ensemble size
improves the generalisation ability and robustness when small base classifiers are used. Robustness
here refers to the difference between classification rates on the training and test sets.

Size configuration: MABLE can be configured to evolve fixed sized or variable sized ensembles. As indi-
cated above, there are benefits of evolving variable sized ensembles. However, it is a more challeng-
ing problem for the MOGA to solve. Therefore, it was observed that evolving fixed sized ensembles
could produce a better Pareto front, which was more robust from trial to trial. Evolving variable sized
ensembles appears to increase the chances of the MOGA ‘getting stuck’ in local optima. However,
this may not be an issue if the MOGA is configured differently and allowed a longer time to evolve
the ensembles. This is an aspect that would be useful to investigate in future work.

Generalisation: Both the MLPs and ensembles were found to generalise well, which is most clearly
demonstrated on the Normal class. However, on average, the performance on U2R was found to
be approximately 10% worse during testing for the MLPs, and approximately 15% worse for the
ensembles. This was investigated as a potential issue of overfitting. However, despite altering the
training time and number of neurons in the hidden layer of the MLPs, the classification of U2R

instances remained significantly worse on the test set. A different hypothesis was therefore investi-
gated; examining whether this might be caused by not learning the smallest U2R attacks, as there are
three attacks with less than 10 instances to learn from. Again, this was not the cause. Instead, it was
found that some specific instances in the test set were consistently misclassified, which caused the
consistent reduction in classification rates on the test set. This reduction is greater for the ensembles
since they were found to perform better on the training set, whilst misclassifying the same instances.

Another aspect of generalisation was investigated, related to the ensemble size and complexity of
the MLPs (number of neurons in the hidden layer). The smaller MLPs were found to generalise bet-
ter, but were not as robust in their performance. That is, whilst the larger MLPs had a more consistent
performance reduction on the test set, there were a small proportion of smaller MLPs that obtained
a large performance reduction; up to approximately 20% on the Normal class. This is a property
that was found to be inherited by the ensembles. However, increasing the ensemble size does eradi-
cate this classification behaviour. Furthermore, the larger ensembles (size 20) of the smallest MLPs
(10HN) were found to generalise best.
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Scalability: MABLE successfully evolves MLPs and ensembles for both two and three class data. There is
one potential issue with applying the current implementation of MABLE to higher dimensional data
(more classes), related to the MOGA. The number of solutions in the archive of non-dominated solu-
tions is approximately ten times as large with three classes compared with two. This will continue to
grow with increasing dimensions in order to be able to obtain the same coverage of the Pareto front.
However, mechanisms can be put into place to maintain the archive to a more reasonable size, which
would be useful to investigate in further work.

It is not necessary for the archive to participate in either selection or replacement. If the archive
is passive, the growth induced by increasing objectives may not be an issue. More critically, however,
it may be necessary to increase significantly the population size to maintain a sufficient sample of the
Pareto front. This may be problematic in terms of computation, even if parallel hardware is available.
As the population size increases, the work of the master thread becomes significant. At some point, it
may be come too much for effective parallelisation given a cluster size, and it is not straightforward
to distribute the work of the master thread.

Aim 3.5: Comparison with other classifier combination approaches

The performance of the MLPs and ensembles evolved with MABLE have been compared with DTs and two
popular classifier combination approaches, namely Random Forest (RF) and AdaBoost. The DT is the base
classifier used in RF and AdaBoost (which do perform better). There are indications in the literature that
RF and AdaBoost learn better from imbalanced data. However, the experiments here have demonstrated
that both algorithms remain biased towards the major class (Normal), which leads to a very low FPR. This
is somewhat wasteful in this application since we can allow a higher amount of false positives.

Hu et al. (2003) and Maxion and Townsend (2002) consider 1% FPR acceptable, which is adopted here
as a constraint to demonstrate the drawback of approaches that produce only a single solution and do not
consider the classification trade-off problem. By simply allowing a 1% FPR, there are MLPs that offer
better solutions compared with RF and AdaBoost. The ensembles evolved with MABLE provide better
solutions still, whilst also achieving a higher accuracy.

7.3 Discussion

This thesis has made contributions to both the intrusion detection and machine learning domains. The
specific contributions, and novelty of this work, are discussed specifically in the following section. This
section discusses how this work relates to current research and practical applications.

The methods proposed here (ENN and MABLE) are not sufficient as stand alone systems for intrusion
detection. There are several aspects of an IDS that have not been considered here, including inter alia

system architecture, data processing, alert aggregation, and reporting mechanisms. However, the methods
proposed here have addressed a critical challenge of learning from imbalanced data and providing the user
with a set of solutions from which s/he can choose one (or more) that exhibit a sought after classifica-
tion trade-off. This solution, be it a single classifier or an ensemble, can then be incorporated in an IDS
framework as a detection module. Furthermore, there is room for improvement of the proposed methods,
concerning scalability and performance, which are discussed further in Section 7.5.

Classifier combination is a successful method for improving on the performance of a single classifier.
Furthermore, classifier ensembles can provide additional security from an adversary (Biggio et al. 2008;
2009). Although the findings in this thesis support the observations in the literature, that classifier combi-
nation can improve on the performance of single classifiers, current approaches to creating ensembles are
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prone to fail to do so simply because they may yield a solution with a poor classification trade-off. It has
been demonstrated in this thesis that simply allowing a 1% FPR would enable single classifiers to outper-
form both RF and AdaBoost. In general, this would be true of all such constraints except those within some
small region about the single ensemble produced by these techniques. This is of concern to the wider ma-
chine learning domain, as such a trade-off problem is likely to exist in any non-trivial classification problem
(in fact, irrespective of any class imbalance). For example, during its development, MABLE was applied to
drug screening (Engen et al. 2009), which is also an application that is challenged by extreme class imbal-
ance. Similarly to the intrusion detection problem, the primary goal is to obtain as high a TPR as possible
(correct classification of the minor class). However, for this problem, a significantly higher FPR can be
allowed, which demonstrates an even greater difference between feasible solutions evolved with MABLE
and ‘single’ ensembles that offer a poor classification trade-off.

There are other approaches to learning from imbalanced data, namely data sampling and cost sensitive
learning, as reviewed in Section 5.1 on page 77. Sampling training data is considered an infeasible approach
here due to the extreme class imbalance. For example, undersampling would arguably remove too much
data of the majority classes to create an equilibrium with the minor classes. Furthermore, this is not a
convenient approach for addressing the trade-off problem. In this respect, cost sensitive learning is more
appropriate. Weight matrices can be designed and modified to both better learn from imbalanced data and
to directly bias the classification trade-off. The drawback of such an approach is similar to the ad hoc

procedure of the threshold based filtering process that has been examined in this thesis. Such an approach
is also similar to weight based approaches to dealing with multiple objectives in optimisation problems, in
which multiple runs of the same algorithm with different weights are executed to obtain different solutions.
Research on multi-objective optimisation has established that this is not an ideal approach, since it may not
provide good coverage of the Pareto front (Deb 2001) and it would be far more computationally expensive
to do so. In this respect, multi-objective optimisation is considered a better alternative, with the additional
benefit that an approximation of the true Pareto front of solutions can be found in a single run of the
algorithm. Nevertheless, it is interesting for further work to examine how well MABLE compares with cost
sensitive learning.

There is another trade-off that should be considered when developing classifier ensembles, which is
related to computational costs and performance. These factors are affected by the ensemble size and com-
plexity of the base classifiers. For example, small ensembles of small MLPs are not as robust as small
ensembles of larger, more complex, MLPs. Large ensembles of small MLPs generalise better and resolve
the robustness problem. Although the smaller MLPs have less computational costs, the required (larger)
ensemble size may render this unfruitful, dependent on constraints of the particular application. However,
due to the combination method adopted here, the majority vote combiner, a parallel implementation may
render this problem obsolete if parallel hardware is available. It is also important, in this context, to bear in
mind that the larger the ensemble, the smaller the Pareto front of trade-off solutions becomes. Therefore, a
particular trade-off may not be achieved if the ensemble size is too large. This is, of course, dependent on
the sample density across the Pareto front.

The enhanced generalisation ability of larger ensembles of smaller MLPs may be considered directly in
the evolutionary process of MABLE. If an estimation set is adopted, the performance difference between
this and the training set may be incorporated into the fitness evaluation. This is mentioned here to emphasise
the further potential benefits of MABLE, or, specifically, multi-objective optimisation, when utilised to
create classifiers or classifier ensembles. This is discussed further in Section 7.5.
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7.4 Contributions and novelty

This thesis has made several contributions to two key research areas: intrusion detection and machine
learning. Some of the contributions apply specifically to the application of machine learning to intrusion
detection. However, many of the findings here contribute to the wider machine learning community, on
general classification problems, classifier combination and class imbalance.

Of particular interest to the intrusion detection domain, one of the main contributions of the thesis is
the discovery and empirical investigation of discrepancies in the findings reported in the literature with
the KDD Cup ’99 data set. From this investigation, class imbalance has been identified as a significant
challenge to intrusion detection, which has been shown, empirically, to cause poor detection of certain
classes of intrusion (the minor classes). Learning from imbalanced data is a problem that is of interest
to the wider machine learning community, and, therefore, this research is of interest to any problem with
class imbalance. Furthermore, an issue not previously considered in the machine learning community has
been identified, that most non-trivial classification problems will have conflicting objectives, and, therefore,
there can be a range of possible solutions that exhibit different trade-offs among these objectives/classes.
Consequently, the current approaches that focus on creating a single best solution based on accuracy may
provide a classification trade-off that renders the solution useless. This problem has been demonstrated
empirically and a new method has been proposed that takes this into account when creating both classifiers
and classifier ensembles.

The specific contributions of the work in this thesis are listed below, organised according to the three
empirical parts of this thesis. The contributions related to the first part of this thesis are as follows:

• Discovered wide spread discrepancies in the findings reported in the literature, despite the studies
stating that they use the same data set (KDD Cup ’99).

• Identified several methodological factors that have caused the discrepancy, and demonstrated empir-
ically how they affect the results of common, well known, classifiers.

– The comparative investigation has allowed a better interpretation of the current body of research.

– The findings can contribute to a more accurate analysis of results in future studies adopting the
KDD Cup ’99 data set.

• The empirical investigation, and the findings from that, have enabled the proper consideration of the
use of the data set in future work. This is an important contribution for two reasons:

1. There are several criticisms of the data set that encourage researchers to stop using it. How-
ever, no other studies have attempted to identify how the data set can still provide valuable
contributions to the research community.

2. Due to a lack of better publicly available data sets, researchers do continue to use the data set.

Contributions related to the second part of the thesis:

• Identified and demonstrated that the extreme class imbalance in the KDD Cup ’99 data set is a reason
that the U2R class has been reported to be undetectable by MLPs in the literature.

• Demonstrated that MLPs are capable of learning from imbalanced data, given a training approach
that is not biased towards the major class(es).

• Investigated the impact of various formulations of objective function in genetic algorithms used to
evolve MLPs.
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Contributions related to the final empirical part of the thesis:

• Identification of the classification trade-off problem.

– The investigations here, on imbalanced data, have demonstrated clearly this problem.

– A solution may dominate a small number of other (local) classifiers, but is also dominated by a
number of other classifiers. If the solution does not provide an appropriate classification trade-
off, another solution with a lower accuracy will be superior if it delivers a better trade-off.

• Proposed an approach to creating MLP classifiers that is capable of learning from imbalanced data
and considers the classification trade-off problem.

– Gives a user the choice of a wide range of solutions, from which s/he can select one (or more)
with the ideal classification trade-off(s).

– Can be applied to any classification problem for which there are conflicting objectives.

• Proposed an approach to creating classifier ensembles (MABLE), which takes into account the chal-
lenges of learning from imbalanced data and allows the user to select the ensemble with the ideal
classification trade-off.

– Gives a new set of solutions that exhibit different classification trade-offs, which yields an im-
proved Pareto front of solutions compared with the base classifiers (MLPs).

• Demonstrated empirically that common classifier combination approaches such as RF and AdaBoost,
although indicated in the literature to better learn from imbalanced data, remain biased towards the
major class, therefore obtaining poor classification trade-offs, which were worse than the MLPs and
ensembles evolved with MABLE.

• Provided a new perspective on the selection of base classifiers, using the concepts of dominance and
Pareto optimality, which has assisted in explaining why an ensemble obtains a particular classification
trade-off.

• The proposed method of classifier combination has achieved pragmatic solutions to three common
challenges of evolving classifier ensembles (Abbass 2006, Yao and Islam 2008), which can be adopted
in other studies:

1. Provided an implicit method of creating diverse base classifiers, by evolving MLPs with a
MOGA.

2. Optimising the selection of classifiers with a MOGA, which produces a Pareto front of solutions
that exhibit different classification trade-offs.

3. Determining the size of the ensemble automatically, allowing the MOGA to evolve an optimal
Pareto front of solutions, or specifying a fixed size, which may be desirable for applications
with known computational constraints. This was found to be superior to determining the size of
the ensemble(s) by clustering.

• Demonstrated how the ensemble size and complexity of the base classifiers affect the generalisation,
size of the Pareto front of solutions, and the computational costs. This is, therefore, another trade-off
problem to consider.

Much of the work of this thesis contains elements of novelty. Specific areas of novelty include:
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• Novel use of fitness functions in a GA to evolve MLPs for imbalanced data.

• MOGA application in MABLE.

– MOGAs have only very recently been adopted for evolving classifiers and classifier ensembles,
e.g., (Abbass 2003a, Chandra and Yao 2004; 2005; 2006a;b, dos Santos et al. 2008), and none
of the existing studies consider the trade-off problem for which the MOGA has been applied to
solve here.

– Novel multi-objective fitness function, used to evolve both classifiers and classifier ensembles.

• MABLE provides a new, implicit, method of creating diverse base classifiers.

• Novel application of the concepts of dominance and Pareto optimality to analyse the selection of base
classifiers for the ensembles, and to demonstrate the trade-off problem.

7.5 Further work

The further work that is discussed here mainly focuses on MABLE. Since MABLE is already an extension
of the ENN, the latter is therefore not considered. The aims and objectives regarding the investigation into
discrepancies in the findings with the KDD Cup ’99 data set in the literature were conclusive. Recommen-
dations for future work with this data set have been indicated, and as previously stated in this thesis, this
should rather be focused on creating and maintaining a new data set for intrusion detection. Therefore, this
section focuses on the further work related to MABLE.

First, in Section 7.5.1 further validation of the results is discussed. Thereafter, potential improvements
of MABLE are discussed. The scalability of the algorithm is discussed in Section 7.5.2. In conclusion,
Section 7.5.3 discusses further work related to the performance and pragmatic extensions.

7.5.1 Validation

The findings reported in this thesis are of interest to the wider machine learning community. Therefore, it
is desirable to conduct more experiments on different data sets. This has already been examined for drug
screening (Engen et al. 2009), which focused on learning from imbalanced data. However, it is interesting
to include more data sets with different properties, not only imbalanced data.

According to the findings here, MABLE should be successful on any classification problem with con-
flicting objectives (classes). However, there may be classification problems that do not have a prominent
conflict between the objectives. Even though there may be a class imbalance, this does not imply that the
objectives are conflicting. For such cases, MABLE may not be as successful as other, existing, techniques.

7.5.2 Scalability

Perhaps most importantly, the scalability of MABLE needs to be addressed in future work. In particular, this
concerns the extensive growth of the archive in the current implementation. A simple solution, which may
suffice, is to perform clustering of the archive at regular intervals to maintain an appropriate size, as in the
SPEA2 algorithm (Zitzler et al. 2002). However, the archive may be implemented as a passive mechanism,
in which case this increase may not be an issue. More critically, the population size is likely to significantly
increase to be able to maintain a reasonable coverage of the Pareto front.

Dependent on the application, domain knowledge may be used to determine a different, smaller, set
of objectives. For example, using TPR and FPR as objectives for intrusion detection may suffice. The
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drawback of using TPR and FPR as objectives is the lack of control of the trade-offs between the individual
classes, which may be important if this approach is adopted to learn from imbalanced data. That is, since
the training would be insensitive to this, a class could be ‘ignored’ whilst achieving a reasonable TPR/FPR.
Furthermore, this may reduce the diversity in the pool of base classifiers for ensemble generation. A po-
tential solution may be to evolve base classifiers according to the individual classes, and then evolve the
ensembles according to TPR and FPR.

A different mechanism that could be adopted to help manage the magnitude of solutions and their
properties is to implement constraint handling in the MOGA. Several methods of constraint handling in
GAs has been proposed; see, for example, (Coello Coello and Christiansen 1999, Deb 2000; 2001, Jiménez
et al. 1999), which can be utilised if suitable constraints on classification rates are known a priori.

7.5.3 Performance and pragmatic extensions

A different aim for future work on MABLE is to enhance the performance. This has not been a specific
focus of the investigation in this thesis, and better performance may be achieved by simply configuring the
MOGA and the MLPs differently, or by processing the data differently. With respect to the latter, only one
approach to handling nominal parameters was examined, by enumeration and scaling to single features.
Alternatively, treating all nominal values as separate features may prove beneficial. Bouzida and Cuppens
(2006a;b) treat the nominal values in the KDD Cup ’99 data set as separate features and, thus, obtain 125
input features. Due to the increase in input features, it may be desirable to reduce the dimensionality of
the problem by combining some nominal values into a single feature. For this reason, Tsang et al. (2007)
exclude the service feature, which gives 52 remaining features. However, instead of excluding this feature,
the main services could be adopted as separate features, and the rest labelled ‘other’.

Different preprocessing may be beneficial, compared with scaling or normalising numerical features
according to the minimum and maximum values in the data set. For example, for the features that represent
source and destination bytes, greater values may be encountered when the IDS is deployed, compared with
the values present in the training data. Furthermore, Depren et al. (2005) found it necessary to employ a
clustering algorithm to perform the analysis of those values since it was otherwise not possible to properly
distinguish instances based on these features if the values had been scaled or normalised in the range [0,1].
They give an example of a DoS attack to demonstrate why this is an issue: “destination byte values have 0

bytes and source byte values have 40–50 bytes. However, in normal connections both features have 40–50

bytes.” Considering a maximum value of 5000000, 50 bytes obtains a normalised/scaled value of 10−5,
which was not possible to distinguish from 0 by a self organising map (Depren et al. 2005). Alternative
processing that may be explored includes discretisation, which may incorporate domain knowledge to set
appropriate ranges, or performing exponential scaling.

Different evaluation functions could also be examined. For example, as mentioned above, the TPR
and FPR may be considered as objectives, which may help with potential scalability issues. Examples
of other potential objectives include the MSE (Mean of Squared Errors) for each class, ensemble size,
and consideration of generalisation ability. However, for the latter, this needs to be calculated based on
performance on an estimation set. For problems that have very few instances to learn from, this may not be
feasible. The MOGA may also be extended to evolve the structure of the MLPs as well as their weights, as
in (Han and Cho 2006), which has been found to produce better classifiers.

Better performing ensembles may be evolved with different combiners, such as a weighted majority vote
combiner or a cascade combination. Ensembles of one class classifiers are also interesting to investigate,
in two respects: (1) to compare the performance of the current implementation of MABLE with existing
one class ensemble approaches, and (2) to allow MABLE to evolve ensembles of one class classifiers.
This may be an alternative that resolves the potential scalability issues of MABLE on problems with many
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classes. Furthermore, evolving hierarchical combinations of one class classifiers may provide more suc-
cessful solutions for intrusion detection. An recent example of this is the system proposed by Xiang et al.

(2008), as discussed in Section 4.6.1 on page 73, which appears to be very successful, although the FPR
is arguably too large. Utilising the concepts proposed here, the classification trade-off can be controlled to
obtain solutions with a more acceptable false positive rate. There are other examples of multistage classifier
ensembles in the literature, e.g., (Senator 2005, Yang et al. 2002), but evolving such combinations has not
been previously considered.
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APPENDIX A

KDD Cup ’99 data set

The KDD Cup ’99 data set stems from data gathered at MIT Lincoln Laboratory (2000) under sponsorship
of the Defense Advanced Research Projects Agency (DARPA) to evaluate Intrusion Detection Systems
(IDSs) in 1998 (Lippmann et al. 2000a) and 1999 (Lippmann et al. 2000b). These two data sets are referred
to as DARPA98 and DARPA99, which consist of raw tcpdump data from a simulated medium sized US air
force base. The KDD Cup ’99 data set was provided by Stolfo and Lee for the Knowledge Discovery and
Data Mining Tools competition (and associated conference) in 1999 (Elkan 2000). This is a transformed
version of the DARPA tcpdump data, consisting of a set of features considered suitable for classification
with machine learning algorithms. The data set consists of 41 features, some of which are intrinsic to the
network connections, whilst other are created using domain knowledge. Refer to Lee and Stolfo (2000) for
further details.

There are three partitions of the KDD Cup ’99 data available online (The UCI KDD Archive 1999): a
full training set (4,898,431 instances), a 10% version of this training set, and a test set (311,029 instances).
The test set includes 17 new attacks. The intrusions are commonly grouped into 4 classes, according
to the taxonomy of Kendall (1999): Probing/Surveillance, Denial of Service (DoS), User to Root (U2R)
and Remote to Local (R2L). Some intrusions in the KDD Cup ’99 data set are not described by Kendall
(1999), but are grouped here according to that of the KDD contest (Elkan 1999), with two exceptions
due to inconsistencies. According to the KDD classification, three attacks were present in two categories:
httptunnel and multihop were present in U2R and R2L, but are kept only as R2L here; warezmaster was
classified as R2L for training, but as DoS during testing, but is consistently kept as R2L here. An overview
of the intrusions, grouped according to the these classes, is provided in Table A.1. The number of instances
for each of the attack types are listed in Table A.2, followed by the proportions of each attack class in Table
A.3.
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Table A.1: Attack types grouped to their respective classes. Legend: normal font for attacks in the training sets; italic
for attacks also present in the test set, with new attacks in bold.

Probing (1) DoS (2) U2R (3) R2L (4)

ipsweep
mscan
nmap

portsweep
saint
satan

apache2
back
land

mailbomb
neptune

pod
processtable

smurf
teardrop
udpstorm

buffer_overflow
loadmodule

perl
ps

rootkit
sqlattack

xterm

ftp_write
guess_passwd

httptunnel
imap

multihop
named

phf
sendmail

snmpgetattack
snmpguess

spy
warezclient
warezmaster

worm
xlock

xsnoop

Table A.2: An overview of the number of instances of each attack in the KDD Cup ’99 data set.

Attack name Class Training (full) Training (10%) Test

apache2 DoS ———— ———— 794

back DoS 2203 2203 1098

buffer_overflow U2R 30 30 22

ftp_write R2L 8 8 3

guess_passwd R2L 53 53 4367

httptunnel R2L ———— ———— 158

imap R2L 12 12 1

ipsweep Probing 12481 1247 306

land DoS 21 21 9

loadmodule U2R 9 9 2

mailbomb DoS ———— ———— 5000

multihop R2L 7 7 18

mscan Probing ———— ———— 1053

named R2L ———— ———— 17

neptune DoS 1072017 107201 58001

nmap Probing 2316 231 84

normal Normal 972780 97278 60593

perl U2R 3 3 2

phf R2L 4 4 2

pod DoS 264 264 87

portsweep Probing 10413 1040 354
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Attack name Class Training (full) Training (10%) Test

processtable DoS ———— ———— 759

ps U2R ———— ———— 16

rootkit U2R 10 10 13

saint Probing ———— ———— 736

satan Probing 15892 1589 1633

sendmail R2L ———— ———— 17

smurf DoS 2807886 280790 164091

snmpgetattack R2L ———— ———— 7741

snmpguess R2L ———— ———— 2406

spy R2L 2 2 ————

sqlattack U2R ———— ———— 2

teardrop DoS 979 979 12

udpstorm DoS ———— ———— 2

warezclient R2L 1020 1020 ————-

warezmaster R2L 20 20 1602

worm R2L ———— ———— 2

xlock R2L ———— ———— 9

xsnoop R2L ———— ———— 4

xterm U2R ———— ———— 13

SUM 4898430 494021 311029

Table A.3: Proportions of attack classes in the KDD Cup ’99 data set.

Class Training (full) Training (10%) Test

Normal 972,780 (19.86%) 97,278 (19.69%) 60,593 (19.48%)

Probing 41,102 (0.84%) 4,107 (0.83%) 4166 (1.34%)

DoS 3,883,370 (79.30%) 391,458 (79.24%) 229,853 (73.90%)

U2R 52 (0.00%) 52 (0.01%) 70 (0.02%)

R2L 1126 (0.02%) 1,126 (0.23%) 16,347 (5.26%)
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APPENDIX B

Additional results

Additional results are provided in this appendix to provide supplementary information related to investiga-
tions that were not discussed in full detail in the thesis to allow for a more focused discussion. Additional
results from the first empirical investigation, related to the discrepancies in findings obtained with the KDD
Cup ’99 data set, are given in Section B.1. Thereafter, Section B.2 includes results from two empirical
investigations that were only discussed in brief in Chapter 5. Additional results from the third, and final,
empirical investigation are provided in Section B.3.

B.1 Part one – discrepancies study
The additional results listed here are for holdout validation, as the results discussed in Chapter 4 are for
cross validation. The following abbreviations are used: DT refers to the Decision Tree classifier; NB refers
to the naïve Bayes classifier; CF refers to the confidence factors of the standard pruning algorithm for the
DT; REP refers to reduced error pruning for the DT; [o] refers to original data; [d] refers to duplicates
having been removed; [n] refers to normal instances identical to intrusions having been removed.

B.1.1 On original data
The results on the training and merged data sets are given in respective sections below.

B.1.1.1 Training set only

Table B.1: DT with CF 0.50 on the training set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 19410 1 44 1 0 99.76
Probing 4 819 0 0 0 99.51

DoS 128 159 78006 0 1 99.63
U2R 9 0 0 1 0 10
R2L 30 12 0 1 183 80.97

%correct 99.13 82.64 99.94 33.33 99.46
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Table B.2: DT with REP on the training set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 19405 1 43 1 6 99.74
Probing 13 810 0 0 0 98.42

DoS 57 238 77998 0 1 99.62
U2R 10 0 0 0 0 0
R2L 10 12 0 1 203 89.82

%correct 99.54 76.34 99.94 0 96.67

Table B.3: NB on the training set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 18696 585 0 47 128 96.09
Probing 1 821 1 0 0 99.76

DoS 175 20474 57153 488 4 73
U2R 1 1 0 8 0 80
R2L 1 0 0 3 222 98.23

%correct 99.06 3.75 100 1.47 62.71

B.1.1.2 Merged data set

Table B.4: DT with CF 0.05 on the merged data set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 29283 38 53 23 2178 92.74
Probing 129 1508 10 0 10 91.01

DoS 8 1 124258 0 0 99.99
U2R 11 0 0 16 1 57.14
R2L 608 0 1 3 2888 82.51

%correct 97.48 97.48 99.95 38.1 56.88

Table B.5: DT with REP on the merged data set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 29151 42 48 1 2333 92.32
Probing 76 1571 9 0 1 94.81

DoS 16 3 124238 0 10 99.98
U2R 13 0 0 14 1 50
R2L 604 0 1 2 2893 82.66

%correct 97.63 97.22 99.95 82.35 55.23
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Table B.6: NB on the merged data set.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 23585 118 362 70 7440 74.7
Probing 89 1558 4 6 0 94.03

DoS 1192 1029 121274 531 241 97.59
U2R 1 0 0 25 2 89.29
R2L 58 30 0 22 3390 96.86

%correct 94.62 56.97 99.7 3.82 30.62

B.1.2 Removing normal instances identical to intrusions

Table B.7: DT CF 0.25 on the merged data set; normal instances identical to intrusions removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 29310 37 36 10 567 97.83
Probing 121 1523 12 0 1 91.91

DoS 6 1 124254 0 6 99.99
U2R 8 0 0 16 4 57.14
R2L 28 0 1 3 3468 99.09

%correct 99.45 97.57 99.96 55.17 85.71

Table B.8: DT with REP on the merged data set; normal instances identical to intrusions removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 29275 46 37 4 598 97.71
Probing 93 1548 11 0 5 93.42

DoS 22 4 124241 0 0 99.98
U2R 14 0 0 13 1 46.43
R2L 56 0 1 1 3442 98.34

%correct 99.37 96.87 99.96 72.22 85.07

Table B.9: NB on the merged data set; normal instances identical to intrusions removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 24862 129 474 73 4422 82.98
Probing 93 1554 4 6 0 93.78

DoS 1148 1028 121268 565 258 97.59
U2R 1 0 0 25 2 89.29
R2L 55 30 0 22 3393 96.94

%correct 95.04 56.69 99.61 3.62 42.02

B.1.3 Removing duplicates from training set
The results on the training and merged data sets are given in respective sections below.
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B.1.3.1 Training set only

Table B.10: DT with CF 0.05 on the training set; duplicates removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 17516 3 37 2 9 99.71
Probing 2 427 0 0 0 99.53

DoS 148 9694 1075 0 0 9.85
U2R 9 0 0 1 0 10
R2L 4 1 0 2 194 96.52

%correct 99.08 4.22 96.67 20 95.57

Table B.11: DT with REP on the training set; duplicates removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 17510 6 34 2 15 99.68
Probing 3 426 0 0 0 99.3

DoS 25 9806 1086 0 0 9.95
U2R 9 0 0 1 0 10
R2L 7 8 0 2 184 91.54

%correct 99.75 4.16 96.96 20 92.46

Table B.12: NB on the training set; duplicates removed.

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 14207 2927 3 240 190 80.87
Probing 0 429 0 0 0 100

DoS 65 10064 563 222 3 5.16
U2R 0 2 0 8 0 80
R2L 1 0 0 3 197 98.01

%correct 99.54 3.2 99.47 1.69 50.51

B.1.3.2 Merged data set

Table B.13: DT with CF 0.05 on the merged data set; duplicates removed

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 26893 65 55 5 50 99.35
Probing 18 920 6 0 5 96.94

DoS 43 14 14217 0 0 99.6
U2R 10 0 0 18 0 64.29
R2L 44 0 1 3 767 94.11

%correct 99.57 92.09 99.57 69.23 93.31
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Table B.14: DT with REP on the merged data set; duplicates removed

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 26930 22 56 3 57 99.49
Probing 17 920 6 0 6 96.94

DoS 55 15 14204 0 0 99.51
U2R 12 0 0 16 0 57.14
R2L 40 1 1 3 770 94.48

%correct 99.54 96.03 99.56 72.73 92.44

Table B.15: NB on the merged data set; duplicates removed

Act \ Pred Normal Probing DoS U2R R2L %correct
Normal 26400 118 5 53 492 97.53
Probing 6 939 4 0 0 98.95

DoS 422 378 12920 228 326 90.51
U2R 1 0 0 23 4 82.14
R2L 60 27 0 14 714 87.61

%correct 98.18 64.23 99.93 7.23 46.48

B.1.4 Summaries

Table B.16: Overview of classification rates on the training set.

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

DT CF [o] 99.61 99.78 0.24 99.76 99.51 99.63 10 80.97

DT CF [d] 65.97 98.59 0.29 99.71 99.53 9.85 10 96.52

DT REP [o] 99.60 99.89 0.26 99.74 98.42 99.62 0 89.82

DT REP [d] 65.95 99.62 0.32 99.68 99.30 9.95 10 91.54

NB [o] 77.83 99.78 3.19 96.09 99.76 73 80 98.23

NB [d] 52.89 99.43 19.13 80.87 100 5.16 80 98.01
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Table B.17: Overview of classification rates on the merged data set.

Tech. [data] Accuracy% TPR% FPR% Normal% Probing% DoS% U2R% R2L%

DT CF [o] 98.05 99.42 7.46 92.54 91.01 99.99 57.14 82.51

DT CF [d] 99.26 99.28 0.65 99.35 96.94 99.60 64.29 94.11

DT CF [n] 99.47 99.87 2.17 97.83 91.91 99.99 57.14 99.09

DT REP [o] 98.04 99.45 7.68 92.32 94.81 99.98 50 82.66

DT REP [d] 99.32 99.23 0.51 99.49 96.94 99.51 57.14 94.48

DT REP [n] 99.44 99.86 2.29 97.71 93.42 99.98 46.43 98.34

NB [o] 93.05 98.96 25.30 74.70 94.03 97.59 89.29 96.86

NB [d] 95.04 96.96 2.47 97.53 98.95 90.51 82.14 87.61

NB [n] 94.79 99 17.02 82.98 93.78 97.59 89.29 96.94

B.2 Part two – ENN study
Two empirical investigations were not included in detail in Chapter 5, related to determining the number
of epochs to train the MLPs with backpropagation, and the learning rate and momentum. More details on
these investigations are provided in respective sections below. Thereafter, a complete listing of results for
the ENN is provided in Section B.2.3.

B.2.1 Epoch investigation
The following number of epochs were examined, to cover a range encompassing what has been used pre-
viously in the literature: {5, 10, 20, 50, 100, 500, 1000, 1500, 2000, 2500, 5000}. From preliminary
experiments, the following reasonable configuration parameters were used: 3 layers, 70 neurons in the
hidden layer, learning rate of 0.3 and momentum constant of 0.2.

Even though the error was observed to decrease with increasing number of epochs, the differences were
very small already after 5 epochs. The effects of training starts to plan out already after the fifth epoch,
which can be seen in Figure B.1. The error measure quickly reaches 0.002, but does not go below this,
which is illustrated in Figure B.2.

Figure B.1: Training error for the first 20 epochs.
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Figure B.2: Mean of final training error with increasing number of epochs.

The differences in the final error measure and classification rates, when validating the training on the
training set, are not good measures alone to determine when to stop the training. At a certain point, over
fitting the data is likely to happen. What can be observed, though, is that all classifications of R2L (on the
training set) are identical from 500-5000 epochs, detecting 758. Higher classification rates were possible
with short training, as low as 5, classifying 769 R2L instances, but then at the expense of misclassifying
more Normal instances, as seen in Table B.18. Another observation that was made was that the classification
rates became more stable after 50 epochs.

Table B.18: Confusion matrix for 5 (left) and 500 (right) epochs on the training set.

Act \ Pred Normal U2R R2L
Normal 77628 0 194

U2R 19 0 22
R2L 131 0 769

Act \ Pred Normal U2R R2L
Normal 77744 0 78

U2R 29 0 12
R2L 142 0 758

Observing the results on the test set, the best performance was obtained with 10 epochs. However,
similarly to the observations when evaluating the performance on the training set, this performance is not as
stable from run to run as the performance obtained when training longer. Table B.19 shows the confusion
matrices for three trials of 10 epochs, where the number of incorrectly classified instances range from 49
(bottom left) to 59 (top left). Compared with the results obtained with 50 epochs, the number of incorrectly
classified instances range from 52-53, which coincides with the observations made on the training set too.

Table B.19: Confusion matrices for four trials with 10 epochs on the test set.

Act \ Pred Normal U2R R2L
Normal 19435 0 21

U2R 11 0 0
R2L 27 0 199

Act \ Pred Normal U2R R2L
Normal 19443 0 13

U2R 11 0 0
R2L 29 0 197

Act \ Pred Normal U2R R2L
Normal 19446 0 10

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19439 0 17

U2R 11 0 0
R2L 27 0 199

Increasing the number of epochs to 100 or above appears to stabilise the performance more. The number
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of misclassifications never goes below 50 instances. To obtain a better sample, more trials of 100 and 200
epochs were conducted. Table B.20 includes six trials of 100 epochs, where two more trials managed to
reach the same best solution as with 10 epochs. Confusion matrices obtained with 200 epochs are provided
in Table B.21. The true positive rates are identical; the only difference is slight variations in false positives.

Table B.20: Confusion matrices for six trials with 100 epochs on the test set.

Act \ Pred Normal U2R R2L
Normal 19445 0 11

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19442 0 14

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19443 0 13

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19446 0 10

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19444 0 12

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19446 0 10

U2R 11 0 0
R2L 28 0 198

Table B.21: Confusion matrices for six trials with 200 epochs on the test set.

Act \ Pred Normal U2R R2L
Normal 19445 0 11

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19445 0 11

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19444 0 12

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19445 0 11

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19444 0 12

U2R 11 0 0
R2L 28 0 198

Act \ Pred Normal U2R R2L
Normal 19445 0 11

U2R 11 0 0
R2L 28 0 198

From the observations presented above, the number of epochs is set to 100. The best performance was
obtained already after 10 epochs, and, even though, the performance stabilises with longer training, it does
not reach the same classification rates after 100 epochs, which is potentially due to over fitting the data.
Therefore, early stopping is also adopted here. 100 epochs gives enough time to conduct successful training
and, if starting to over fit the data, the training process should then be stopped with early stopping. 20% of
the training set is used for validation, according to the notions suggested in the context of cross validation
(Haykin 1998, p. 215), and validation threshold is set to 5. That is, the training process will commence if
the error on the validation set decreases over 5 epochs.

B.2.2 Investigation of learning rate and momentum
With a low learning rate (0.05–0.1) everything is classified as Normal unless a large momentum is used (0.5–
0.9). The best classification rates are obtained with a learning rate set to 0.1, which gives similar classifier
behaviour as with the learning rate set to 0.05, but detects more R2L intrusions (even with low momentum
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values). The highest TPR is obtained with a momentum of 0.2, which manages to correctly classify 221
R2L intrusions. As the momentum is increased, it is impossible to detect more than 199 R2L intrusions,
which is also the trend as the learning rate is increased further. Figure B.3 depicts this relationship between
learning rate, momentum and neurons in the hidden layer. It is observed that larger momentum values have
a stabilising effect on the performance, and that the lowest FP rate is obtained with the highest learning rate
and largest momentum.

Figure B.3: Detection of R2L intrusions for learning rates 0.05 and 0.1, dependent on momentum and neurons in the
hidden layer for the MLP trained with backpropagation.

Table B.22: R2L detection with learning rate set to 0.05.

neurons\momentum 0.1 0.2 0.3 0.4 0.5 0.9

30 0 0 0 0 68–167 197–199

50 0 0 0 0 0 199–199

70 0 0 0 0 0 198–199

100 0 0 0 0 0 198–199

120 0 0 0 0 0 198–199

Table B.23: R2L detection with learning rate set to 0.1.

neurons\momentum 0.1 0.2 0.3 0.4 0.5

30 219–220 198–221 198–198 198–198 197–199

50 0–219 198–220 198–198 198–199 198–198

70 0–163 196–220 198–209 198–198 198–199

100 0–196 196–220 198–218 197–198 198–198

120 0–196 197–220 197–198 198–198 197–198
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Table B.24: R2L detection with learning rate set to 0.5.

neurons\momentum 0.1 0.2 0.3 0.4 0.5

30 197–198 198–198 198–199 197–199 197–199

50 197–198 198–199 197–199 197–199 197–199

70 197–198 198–199 197–198 198–199 198–199

100 198–199 196–199 196–199 197–199 198–199

120 196–199 198–199 198–199 198–198 197–199

B.2.3 Results with ENN
B.2.3.1 Three layers

Table B.25: Eval1 - three layers

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

30 98.17 0 0.64 99.36 0 0

30 98.80 0 0 100 0 0

30 98.75 0 0.05 99.95 0 0

50 98.79 0 0.01 99.99 0 0

50 99.98 0 0.02 99.98 0 0

50 98.70 0 0.10 99.90 0 0

70 94.19 0 4.67 95.33 0 0

70 98.75 0 0.05 99.95 0 0

70 98.60 0 0.20 99.80 0 0

100 96.72 0 2.10 97.90 0 0

100 98.80 0 0 100 0 0

100 98.11 0.42 0.70 99.30 0 0

120 98.68 0 0.11 99.89 0 0

120 95.09 0.42 3.75 96.25 0 0

120 98.73 0.42 0.07 99.03 0 0

Table B.26: Eval2 - three layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

30 98.80 0 0 100 0 0

30 98.80 0 0 100 0 0

30 98.80 0 0 100 0 0

50 98.80 0 0 100 0 0

50 98.80 0 0 100 0 0

50 98.80 0 0 100 0 0

70 98.80 0 0 100 0 0

70 98.83 4.22 0.01 99.99 0 3.98
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HN Accuracy% TPR% FPR% Normal% U2R% R2L%

70 98.82 2.11 0 100 36.36 0

100 98.80 0 0 100 0 0

100 98.80 0 0 100 0 0

100 98.79 0 0.01 99.99 0 0

120 99.91 77.64 0.09 99.91 0 81.42

120 99.77 81.86 0.01 99.99 0 85.84

120 98.80 0 0 100 0 0

Table B.27: Eval3 - three layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

30 97.75 97.47 2.24 97.76 54.55 99.12

30 98.26 97.47 1.69 98.31 0 99.12

30 98.99 84.81 0.82 99.18 0 88.05

50 99.10 84.81 0.71 99.29 0 88.05

50 97.87 99.16 2.10 97.90 0 100

50 98.70 94.94 1.27 98.73 0 98.67

70 97.71 96.62 2.26 97.74 0 99.56

70 98.20 92.41 1.70 98.30 18.18 93.36

70 98.70 94.51 1.24 98.76 0 98.23

100 98.73 98.73 1.24 98.76 63.64 98.23

100 97.71 95.78 2.26 97.74 0 99.56

100 97.97 95.36 1.98 98.02 0 98.67

120 98.56 96.20 1.37 98.63 0 97.35

120 97.71 95.78 2.17 97.83 0 98.67

120 97.48 97.89 2.49 97.51 0 99.56

Table B.28: Eval4 - three layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

30 79.04 96.20 21.17 78.83 54.55 97.79

30 97.91 95.78 2.05 97.95 0 99.12

30 97.81 98.73 2.16 97.84 0 99.56

50 97.12 98.73 2.85 97.15 0 99.12

50 98.20 97.89 1.76 98.24 9.09 99.12

50 97.07 97.89 2.90 97.10 0 99.12

70 97.69 97.89 2.30 97.70 81.82 98.23

70 99.11 97.05 0.83 99.17 0 98.67

70 98.49 94.94 1.45 98.55 0 98.67

100 98.67 97.47 1.40 98.60 54.55 97.79

100 97.35 99.16 2.65 97.35 63.64 99.12
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HN Accuracy% TPR% FPR% Normal% U2R% R2L%

100 98.18 96.20 1.76 98.24 0 97.79

120 98.40 96.20 1.56 98.44 27.27 98.23

120 99.52 83.97 0.29 99.71 9.09 87.61

120 98.31 95.36 1.63 98.37 0 98.23

Table B.29: Eval5 - three layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

30 76.80 88.61 23.34 76.66 90.91 88.05

30 73.38 96.62 26.73 73.27 63.64 83.19

30 77.51 94.51 22.66 77.34 9.09 95.13

50 72.06 98.31 28.07 71.78 81.82 95.58

50 98.92 96.62 1.02 98.98 0 98.67

50 70.22 97.89 30.04 69.96 81.82 92.04

70 96.69 97.05 3.23 96.77 81.82 90.71

70 75.43 97.89 24.70 75.30 81.82 86.73

70 98.21 98.31 1.76 98.24 72.73 97.35

100 77.25 98.73 23 77 81.82 96.76

100 76.45 96.20 22.76 77.24 36.36 10.62

100 76.94 98.73 23.15 76.85 81.82 84.96

120 93.70 98.73 6.19 93.81 81.82 84.96

120 97.33 97.89 2.67 97.33 72.73 98.23

120 98.43 85.65 0.41 99.59 72.73 0

B.2.3.2 Four layers

Table B.30: Eval1 - four layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

5-5 98.80 0 0 100 0 0

5-5 98.80 0 0 100 0 0

5-5 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

15-15 98.80 0 0 100 0 0

15-15 98.79 0.42 0.01 99.99 0 0

15-15 98.80 0 0 100 0 0

20-20 98.66 0.42 0.13 99.87 0 0

20-20 98.80 0 0 100 0 0

20-20 98.80 0 0 100 0 0

25-25 98.80 0 0 100 0 0
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HN Accuracy% TPR% FPR% Normal% U2R% R2L%

25-25 98.72 11.81 0.10 99.90 36.36 0

25-25 98.77 0 0.03 99.97 0 0

Table B.31: Eval2 - four layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

5-5 98.80 0 0 100 0 0

5-5 98.80 0 0 100 0 0

5-5 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

10-10 98.80 0 0 100 0 0

15-15 98.80 0 0 100 0 0

15-15 98.80 0 0 100 0 0

15-15 98.78 0 0.02 99.98 0 0

20-20 98.79 0 0.01 99.99 0 0

20-20 98.80 0 0 100 0 0

20-20 98.80 0 0 100 0 0

25-25 98.80 0 0 100 0 0

25-25 98.80 0 0 100 0 0

25-25 98.80 0 0 100 0 0

Table B.32: Eval3 - four layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

5-5 92.26 96.20 7.75 92.25 0 98.23

5-5 97.64 97.89 2.32 97.68 0 98.67

5-5 96.11 94.09 3.87 96.13 0 98.67

10-10 97.65 84.81 2.15 97.85 0 85.40

10-10 98.58 98.31 1.40 98.60 63.64 98.23

10-10 97.96 84.81 1.88 98.12 0 88.94

15-15 98.50 96.62 1.44 98.56 0 97.79

15-15 97.71 94.94 2.25 97.75 0 98.67

15-15 98.38 94.09 1.57 98.43 0 98.23

20-20 98.52 97.89 1.43 98.57 0 99.12

20-20 98.12 98.89 1.87 98.13 63.64 98.23

20-20 98.72 96.20 1.22 98.78 0 98.67

25-25 77.86 98.31 22.34 77.66 0 98.67

25-25 97.46 94.51 2.50 97.50 72.73 95.13

25-25 98.35 94.94 1.59 98.41 9.09 98.23
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Table B.33: Eval4 - four layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

5-5 97.44 95.36 2.53 97.47 0 99.56

5-5 97.94 88.61 1.92 98.08 0 90.71

5-5 97.95 97.89 2 98 0 98.67

10-10 97.98 94.51 1.97 98.03 36.36 96.90

10-10 96.28 95.36 3.70 96.30 0 99.12

10-10 97.72 96.62 2.25 97.75 0 99.56

15-15 97.57 98.73 2.40 97.60 0 100

15-15 99.10 95.78 0.84 99.16 0 98.67

15-15 97.81 94.51 2.14 97.86 0 98.23

20-20 97.52 91.98 2.40 97.60 0 95.13

20-20 98.16 97.89 1.80 98.20 0 99.56

20-20 96.83 98.31 3.18 96.82 81.82 98.23

25-25 98.58 88.19 1.24 98.76 0 88.05

25-25 97.31 97.89 2.66 97.34 9.09 99.12

25-25 98.11 84.81 1.72 98.28 0 87.61

Table B.34: Eval5 - four layers.

HN Accuracy% TPR% FPR% Normal% U2R% R2L%

5-5 83.81 86.50 15.21 84.79 72.73 0

5-5 77.68 85.23 21.41 78.59 63.64 0

5-5 95.31 97.47 4.66 95.34 81.82 93.36

10-10 75.87 97.47 24.38 75.62 72.73 97.79

10-10 73.16 99.16 27.07 72.93 81.82 92.04

10-10 98.06 98.31 1.90 98.10 0 99.12

15-15 97.65 89.03 2.23 97.77 72.73 88.50

15-15 98.53 97.05 1.32 98.68 63.64 87.61

15-15 97.82 83.97 1.01 98.99 27.27 0

20-20 77.23 87.76 22.84 77.16 72.73 83.19

20-20 97.32 96.62 2.50 97.50 54.55 84.07

20-20 92.91 98.31 7.08 92.92 81.82 92.48

25-25 97.68 97.89 2.28 97.72 81.82 95.13

25-25 96 96.20 3.95 96.05 63.64 92.92

25-25 97.84 97.47 2.14 97.86 72.73 97.79

B.3 Part three – MABLE study
Additional results for the two-class investigation are given below in Section B.3.1, and for the three-class
investigation in Section B.3.2.
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B.3.1 Two-class investigation
The additional results listed here are summaries of ensemble combinations from MABLE, and other com-
bination approaches based on threshold filtering.

B.3.1.1 Summaries of ensemble information

Table B.35: Summary of variable sized ensemble data.

ID Normal% U2R% TPR% FPR% Size Dom

#1 98.21 92.55 92.55 1.79 8 4

#2 96.51 97.87 97.87 3.49 3 3

#3 96.97 96.81 96.81 3.03 3 2

#4 99.95 64.89 64.89 0.05 17 3

#5 100 45.74 45.74 0 5 1

#6 97.61 95.74 95.74 2.39 10 4

#7 99.96 62.77 62.77 0.04 17 3

#8 98.92 88.3 88.3 1.08 8 5

#9 99.95 63.83 63.83 0.05 15 3

#10 99.6 78.72 78.72 0.4 12 3

#11 99.94 67.02 67.02 0.06 13 4

#12 99.9 70.21 70.21 0.1 14 3

#13 99.85 72.34 72.34 0.15 8 4

#14 99.93 68.09 68.09 0.07 15 4

#15 99.55 79.79 79.79 0.45 15 2

#16 99.1 87.23 87.23 0.9 14 4

#17 99.99 54.26 54.26 0.01 11 4

#18 98.72 91.49 91.49 1.28 10 5

#19 99.97 60.64 60.64 0.03 10 2

#20 99.98 59.57 59.57 0.02 12 4

#21 99.98 57.45 57.45 0.02 15 5

#22 99.94 65.96 65.96 0.06 12 4

#23 99.88 71.28 71.28 0.12 11 4

#24 99.54 80.85 80.85 0.46 12 3

#25 99.99 51.06 51.06 0.01 10 5

#26 99.52 81.91 81.91 0.48 13 3

#27 99.5 82.98 82.98 0.5 17 3

#28 99.7 76.6 76.6 0.3 14 4

#29 99.23 86.17 86.17 0.77 16 5

#30 99.8 74.47 74.47 0.2 14 4

#31 99.99 53.19 53.19 0.01 11 6

#32 99.91 69.15 69.15 0.09 14 3

#33 99.36 85.11 85.11 0.64 17 4

#34 97.72 93.62 93.62 2.28 11 4
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ID Normal% U2R% TPR% FPR% Size Dom

#35 99.98 56.38 56.38 0.02 11 5

#36 99.68 77.66 77.66 0.32 14 4

#37 99.96 61.7 61.7 0.04 10 2

#38 99.41 84.04 84.04 0.59 19 3

Table B.36: Summary of fixed sized ensemble data; size 5.

ID Normal% U2R% TPR% FPR% Size Dom

#1 99.99 55.32 55.32 0.01 5 6

#2 97.34 97.87 97.87 2.66 5 5

#3 98.94 88.30 88.30 1.06 5 5

#4 99.89 71.28 71.28 0.11 5 4

#5 99.96 63.83 63.83 0.04 5 3

#6 99.95 64.89 64.89 0.05 5 3

#7 99.99 47.87 47.87 0 5 4

#8 99.44 81.92 81.92 0.56 5 3

#9 97.84 96.81 96.81 2.16 5 6

#10 99.94 65.96 65.96 0.06 5 4

#11 99.99 57.45 57.45 0.01 5 5

#12 99.50 78.72 78.72 0.50 5 2

#13 98.04 93.62 93.62 1.97 5 4

#14 98.24 92.55 92.55 1.76 5 4

#15 99.90 70.22 70.21 0.10 5 3

#16 99.45 80.85 80.85 0.55 5 3

#17 99.38 82.98 82.98 0.62 5 3

#18 99.98 58.51 58.51 0.02 5 5

#19 99.50 79.79 79.79 0.50 5 2

#20 99.91 69.15 69.15 0.09 5 3

#21 99.96 60.64 60.64 0.04 5 2

#22 99.99 54.26 54.26 0.01 5 6

#23 99.79 74.47 74.47 0.22 5 4

#24 99.63 75.53 75.53 0.37 5 2

#25 97.92 95.75 95.74 2.08 5 5

#26 98.29 91.49 91.49 1.71 5 3

#27 99.79 72.34 72.34 0.21 5 4

#28 98.76 89.36 89.36 1.24 5 4

#29 99.92 68.09 68.09 0.08 5 4

#30 99.32 84.04 84.04 0.68 5 2

#31 99.15 86.17 86.17 0.86 5 4

#32 98.38 90.43 90.43 1.62 5 4
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ID Normal% U2R% TPR% FPR% Size Dom

#33 99.52 77.66 77.66 0.48 5 2

#34 99.56 76.60 76.60 0.44 5 2

#35 99.03 87.23 87.23 0.97 5 4

#36 99.96 62.77 62.77 0.04 5 3

#37 99.30 85.11 85.11 0.70 5 3

Table B.37: Summary of fixed sized ensemble data; size 10.

ID Normal% U2R% TPR% FPR% Size Dom

#1 98.13 91.49 91.49 1.87 10 3

#2 97.79 93.62 93.62 2.21 10 4

#3 98.6 89.36 89.36 1.4 10 4

#4 99.92 69.15 69.15 0.08 10 4

#5 99.96 63.83 63.83 0.04 10 3

#6 99.42 82.98 82.98 0.58 10 3

#7 99.63 77.66 77.66 0.37 10 3

#8 99.04 87.23 87.23 0.96 10 4

#9 99.84 73.4 73.4 0.16 10 4

#10 99.97 62.77 62.77 0.03 10 3

#11 99.97 59.57 59.57 0.03 10 2

#12 99.95 64.89 64.89 0.05 10 3

#13 99.35 84.04 84.04 0.65 10 3

#14 99.98 56.38 56.38 0.02 10 5

#15 99.98 57.45 57.45 0.02 10 5

#16 98.84 88.3 88.3 1.16 10 4

#17 98.36 90.43 90.43 1.64 10 4

#18 99.99 52.13 52.13 0.01 10 5

#19 99.56 80.85 80.85 0.44 10 3

#20 99.88 71.28 71.28 0.12 10 4

#21 99.93 68.09 68.09 0.07 10 4

#22 99.89 70.21 70.21 0.11 10 2

#23 99.87 72.34 72.34 0.13 10 4

#24 99.73 76.6 76.6 0.27 10 5

#25 99.99 55.32 55.32 0.01 10 6

#26 99.48 81.91 81.91 0.52 10 3

#27 99.74 75.53 75.53 0.26 10 4

#28 99.95 65.96 65.96 0.05 10 4

#29 99.93 67.02 67.02 0.07 10 4

#30 99.97 58.51 58.51 0.03 10 2

#31 99.27 86.17 86.17 0.74 10 5
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ID Normal% U2R% TPR% FPR% Size Dom

#32 99.75 74.47 74.47 0.25 10 3

Table B.38: Summary of fixed sized ensemble data; size 20.

ID Normal% U2R% TPR% FPR% Size Dom

#1 99.44 84.04 84.04 0.56 20 3

#2 98.95 87.23 87.23 1.05 20 4

#3 99.5 82.98 82.98 0.5 20 3

#4 99.64 77.66 77.66 0.36 20 3

#5 99.86 73.4 73.4 0.14 20 4

#6 99.93 68.09 68.09 0.07 20 4

#7 99.89 70.21 70.21 0.11 20 2

#8 99.77 75.53 75.53 0.23 20 4

#9 99.24 85.11 85.11 0.76 20 3

#10 99.95 62.77 62.77 0.05 20 2

#11 99.96 61.7 61.7 0.04 20 2

#12 99.2 86.17 86.17 0.8 20 4

#13 99.91 69.15 69.15 0.09 20 3

#14 99.94 64.89 64.89 0.06 20 3

#15 99.57 79.79 79.79 0.43 20 2

#16 99.62 78.72 78.72 0.38 20 3

#17 99.96 60.64 60.64 0.04 20 2

#18 99.88 72.34 72.34 0.12 20 4

#19 99.74 76.6 76.6 0.26 20 5

#20 99.8 74.47 74.47 0.2 20 4

#21 99.95 63.83 63.83 0.05 20 2

#22 99.94 65.96 65.96 0.06 20 4

B.3.1.2 Other combination approaches

Table B.39: Ensemble performance after filtering out classifiers according to classification thresholds for both classes.

Threshold% Normal% U2R% TPR% FPR% Size

40 99.73 73.40 73.40 0.27 31

50 99.05 85.11 85.11 0.95 24
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Table B.40: Ensemble performance after filtering out classifiers according to classification thresholds for the normal
class only.

Threshold% Normal% U2R% TPR% FPR% Size

95 99.84 67.02 67.02 0.16 30

97 99.91 64.89 64.89 0.094 27

B.3.1.3 Generalisation investigation: U2R attacks

Table B.41: Base classifiers (50HN MLPs) - the number of instances correctly classified during training.

buffer overflow loadmodule perl ps rootkit sqlattack xterm

#1 37 8 4 7 15 1 10

#2 35 5 4 2 5 1 7

#3 41 8 4 11 18 1 10

#4 37 6 4 9 14 1 10

#5 37 8 4 9 16 1 10

#6 40 8 4 9 17 1 10

#7 27 3 4 1 5 1 4

#8 41 8 4 8 15 1 9

#9 36 8 4 7 14 1 9

#10 35 8 4 4 5 1 9

#11 36 7 4 9 16 1 10

#12 37 7 4 5 9 1 9

#13 41 8 4 12 18 1 10

#14 36 8 4 5 5 1 8

#15 27 4 3 2 3 1 7

#16 37 6 4 5 14 1 9

#17 35 5 4 3 5 1 9

#18 40 8 4 8 17 1 10

#19 26 5 4 2 4 1 6

#20 23 3 4 1 4 1 5

#21 29 5 4 2 4 1 5

#22 24 5 4 1 4 1 7

#23 36 5 4 3 5 1 7

#24 32 3 4 2 5 1 6

#25 41 8 4 11 17 1 10

#26 36 7 4 5 8 1 9

#27 19 2 4 0 4 1 5

#28 37 6 4 7 15 1 10

#29 21 3 4 1 4 1 5

#30 22 3 4 1 4 1 7
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buffer overflow loadmodule perl ps rootkit sqlattack xterm

#31 26 3 4 1 4 1 5

#32 41 8 4 10 16 1 10

Mean 33.38 5.91 3.97 5.09 9.66 1.00 8.03

Median 36 6 4 5 6.5 1 9

Mode 37 8 4 1 4 1 10

Total 41 8 4 12 18 1 10

Table B.42: Base classifiers (50HN MLPs) - the number of instances correctly classified during testing.

buffer overflow loadmodule perl ps rootkit sqlattack xterm

#1 8 3 1 3 3 1 3

#2 8 3 0 1 0 1 2

#3 8 3 1 3 5 1 3

#4 8 3 0 3 5 1 3

#5 8 3 1 3 2 1 3

#6 8 3 0 3 5 1 3

#7 7 2 0 1 0 1 1

#8 8 3 1 3 0 1 3

#9 8 3 0 1 2 1 3

#10 8 2 1 1 0 1 3

#11 8 3 0 2 5 1 3

#12 8 3 0 2 0 1 3

#13 8 3 1 3 5 1 3

#14 8 3 0 1 0 1 3

#15 6 1 0 1 0 1 3

#16 8 3 0 2 2 1 3

#17 7 3 0 1 0 1 3

#18 8 3 0 2 5 1 3

#19 7 3 0 1 0 1 2

#20 7 3 0 1 0 1 1

#21 8 2 0 0 0 1 1

#22 7 2 0 0 0 1 2

#23 7 3 0 1 0 1 2

#24 8 3 0 1 0 1 1

#25 8 3 1 3 5 1 3

#26 8 3 1 2 0 1 3

#27 7 3 0 0 0 1 0

#28 8 3 0 1 2 1 3
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buffer overflow loadmodule perl ps rootkit sqlattack xterm

#29 7 2 0 0 0 1 0

#30 6 1 0 0 0 1 2

#31 6 1 0 1 0 1 2

#32 9 3 1 3 2 1 3

Mean 7.59 2.66 0.28 1.56 1.50 1.00 2.38

Median 8 3 0 1 0 1 3

Mode 8 3 0 1 0 1 3

Total 11 3 1 4 5 1 3

Table B.43: Ensembles (size 5) - the number of instances correctly classified during training.

buffer overflow loadmodule perl ps rootkit sqlattack xterm

#1 29 3 4 3 5 1 7

#2 41 8 4 11 17 1 10

#3 37 7 4 8 16 1 10

#4 36 8 4 5 5 1 8

#5 35 5 4 3 5 1 7

#6 36 5 4 3 5 1 7

#7 23 3 4 2 5 1 7

#8 36 8 4 5 14 1 9

#9 41 8 4 10 17 1 10

#10 36 5 4 3 5 1 8

#11 30 4 4 3 5 1 7

#12 35 8 4 4 13 1 9

#13 41 8 4 8 16 1 10

#14 41 8 4 7 16 1 10

#15 35 8 4 5 5 1 8

#16 35 8 4 5 14 1 9

#17 36 8 4 6 14 1 9

#18 30 4 4 3 5 1 8

#19 36 8 4 4 13 1 9

#20 35 7 4 5 5 1 8

#21 32 5 4 3 5 1 7

#22 27 4 4 3 5 1 7

#23 36 8 4 5 7 1 9

#24 36 7 4 5 8 1 10

#25 41 8 4 9 17 1 10

#26 41 8 4 7 15 1 10
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buffer overflow loadmodule perl ps rootkit sqlattack xterm

#27 36 8 4 5 6 1 8

#28 37 8 4 9 15 1 10

#29 35 6 4 5 5 1 8

#30 35 8 4 6 15 1 10

#31 37 8 4 6 15 1 10

#32 37 8 4 9 16 1 10

#33 37 8 4 5 9 1 9

#34 36 8 4 5 9 1 9

#35 37 8 4 7 15 1 10

#36 34 5 4 3 5 1 7

#37 36 8 4 6 15 1 10

Mean 35.51 6.86 4.00 5.43 10.32 1.00 8.72

Median 36 8 4 5 9 1 9

Mode 36 8 4 5 5 1 10

Total 41 8 4 12 18 1 10

Table B.44: Ensembles (size 5) - the number of instances correctly classified during testing.

buffer overflow loadmodule perl ps rootkit sqlattack xterm

#1 7 3 0 1 0 1 2

#2 8 3 1 3 5 1 3

#3 8 3 0 2 5 1 3

#4 8 3 0 1 0 1 3

#5 7 3 0 1 0 1 2

#6 7 3 0 1 0 1 2

#7 7 2 0 0 0 1 2

#8 8 3 0 1 2 1 3

#9 8 3 0 3 0 1 3

#10 8 3 0 1 0 1 3

#11 7 3 0 1 0 1 2

#12 8 3 0 1 2 1 3

#13 8 3 0 3 2 1 3

#14 8 3 0 2 2 1 3

#15 8 3 0 1 0 1 3

#16 8 3 0 1 2 1 3

#17 8 3 0 1 2 1 3

#18 7 3 0 1 0 1 3

#19 8 3 0 1 2 1 3
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buffer overflow loadmodule perl ps rootkit sqlattack xterm

#20 8 3 0 1 0 1 3

#21 7 3 0 1 0 1 2

#22 7 3 0 1 0 1 2

#23 8 3 0 1 0 1 3

#24 8 3 0 1 0 1 3

#25 8 3 0 3 5 1 3

#26 8 3 0 3 0 1 3

#27 8 3 0 1 0 1 3

#28 8 3 0 2 5 1 3

#29 8 3 0 1 0 1 3

#30 8 3 0 1 2 1 3

#31 8 3 0 1 2 1 3

#32 8 3 0 2 5 1 3

#33 8 3 0 1 0 1 3

#34 8 3 0 1 0 1 3

#35 8 3 0 1 2 1 3

#36 7 3 0 1 0 1 2

#37 8 3 0 1 2 1 3

Mean 7.76 2.97 0.03 1.35 1.27 1.00 2.78

Median 8 3 0 1 0 1 3

Mode 8 3 0 1 0 1 3

Total 11 3 1 4 5 1 3

B.3.2 Three-class investigation
These additional results listings are for combinations of base classifiers based on clustering and thresholds.

Table B.45: Ensembles based on clustering of the entire archive (70HN).

k Normal% U2R% R2L% TPR% FPR%

5 98.92 37.14 11.87 14.61 1.08

10 98.49 31.43 29.86 31.68 1.51

20 99.17 44.29 32.28 36 0.83

30 99.10 44.29 29.33 32.10 0.90

40 99.31 37.14 28.88 30.37 0.69

50 99.37 41.43 25.67 27.33 0.63

all (347) 99.27 38.57 31.43 33.22 0.73
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Table B.46: Ensembles based on clustering of the entire archive (70HN) - including boundary solutions.

Size Normal% U2R% R2L% TPR% FPR%

11 99.41 37.14 14.29 15.79 0.59

16 99.33 34.29 27.37 28.48 0.67

26 99.23 40.00 32.31 34.72 0.77

35 99.26 41.43 29.56 30.82 0.74

46 99.36 37.14 28.78 29.89 0.64

54 99.41 41.43 25.08 26.34 0.59

all (347) 99.27 38.57 31.43 33.22 0.73

Table B.47: Ensembles based on clustering after filtering out classifiers according to a 0% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 98.99 40.00 20.93 24.23 1.01

10 99.25 40.00 21.68 23.95 0.75

20 98.98 44.29 25.80 29.60 1.02

30 99.30 40.00 30.22 32.03 0.70

40 99.17 42.86 33.52 36.09 0.83

50 99.34 35.71 33.19 33.98 0.66

all (333) 99.19 41.43 31.82 34.18 0.81

Table B.48: Ensembles based on clustering after filtering out classifiers according to a 10% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 98.40 44.29 33.22 36.35 1.60

10 98.58 42.86 34.17 36.60 1.42

20 97.96 44.29 32.70 36.86 2.04

30 98.81 38.57 38.23 40.76 1.19

40 98.84 47.14 33.22 38.46 1.16

50 98.70 47.14 37.80 42.04 1.30

all (273) 98.83 44.29 35.19 38.87 1.17
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Table B.49: Ensembles based on clustering after filtering out classifiers according to a 20% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 98.88 38.57 35.12 37.95 1.12

10 98.91 47.14 32.50 36.13 1.09

20 98.23 45.71 34.17 38.62 1.77

30 98.47 42.86 37.84 43.41 1.53

40 98.47 45.71 38.13 43.89 1.53

50 98.66 44.29 37.25 41.88 1.34

all (247) 98.72 47.14 36.07 40.63 1.28

Table B.50: Ensembles based on clustering after filtering out classifiers according to a 30% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 97.50 34.29 37.44 41.46 2.50

10 98.46 48.57 34.17 38.46 1.54

20 98.57 44.29 37.48 41.98 1.43

30 98.18 50.00 35.68 42.26 1.82

40 98.50 45.71 37.08 42.62 1.50

50 98.74 48.57 36.27 40.70 1.26

all (223) 98.63 48.57 36.53 41.53 1.37

Table B.51: Ensembles based on clustering after filtering out classifiers according to a 40% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 96.62 50.00 37.34 43.09 3.38

10 97.07 55.71 37.90 45.33 2.93

20 98.20 50.00 35.64 41.56 1.80

30 98.10 48.57 37.21 43.35 1.90

40 98.02 48.57 37.44 42.58 1.98

50 98.28 47.14 36.59 41.69 1.72

all (190) 98.46 48.57 36.82 42.04 1.54
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Table B.52: Ensembles based on clustering after filtering out classifiers according to a 50% threshold.

k Normal% U2R% R2L% TPR% FPR%

5 98.19 47.14 36.36 42.68 1.81

10 97.46 45.71 36.89 42.07 2.54

20 98.05 50.00 38.39 44.82 1.95

30 97.80 45.71 37.38 43.41 2.20

40 97.78 48.57 37.28 44.41 2.22

50 97.83 50.00 38.52 44.66 2.17

all (155) 98.20 48.57 38.16 44.15 1.80

Table B.53: Ensembles based on clustering after filtering out classifiers according to a threshold of 50% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.21 27.14 15.99 17.10 0.79

10 99.43 38.57 29.10 30.08 0.57

20 99.11 40.00 32.05 35.36 0.89

30 99.16 37.14 27.40 30.47 0.84

40 99.27 44.29 28.29 30.53 0.73

50 99.27 37.14 30.80 32.32 0.73

all (328) 99.37 37.14 29.43 30.50 0.63

Table B.54: Ensembles based on clustering after filtering out classifiers according to a threshold of 60% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.68 31.43 15.14 18.45 0.32

10 99.64 28.57 20.50 21.58 0.36

20 99.41 35.71 29.53 31.11 0.59

30 99.12 41.43 31.13 33.31 0.88

40 99.43 37.14 26.85 27.88 0.57

50 99.36 38.57 29.01 30.66 0.64

all (326) 99.39 37.14 29.27 30.34 0.61
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Table B.55: Ensembles based on clustering after filtering out classifiers according to a threshold of 70% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.6886 32.8571 17.397 18.5102 0.311435

10 98.9152 35.7143 26.3571 30.3708 1.0848

20 99.3437 38.5714 20.0131 22.3785 0.656313

30 99.4628 34.2857 28.2538 29.3798 0.537174

40 99.3918 41.4286 23.2505 26.2788 0.608239

50 99.3897 37.1429 27.6324 29.6355 0.61033

all (317) 99.4377 37.1429 27.5343 28.5806 0.562256

Table B.56: Ensembles based on clustering after filtering out classifiers according to a threshold of 80% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.69 32.86 17.50 18.35 0.31

10 99.38 34.29 25.83 27.01 0.62

20 99.75 34.29 10.96 12.12 0.25

30 99.70 34.29 15.08 16.15 0.30

40 99.45 35.71 29.50 30.40 0.55

50 99.34 37.14 26.91 29.12 0.67

all (300) 99.51 35.71 23.97 24.94 0.49

Table B.57: Ensembles based on clustering after filtering out classifiers according to a threshold of 90% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.84 34.29 11.90 13.24 0.16

10 99.80 30 17.04 17.84 0.20

20 99.77 31.43 12.10 13.20 0.23

30 99.86 30 9.88 10.84 0.14

40 99.83 34.29 8.21 9.37 0.17

50 99.81 32.86 12.72 13.75 0.19

all (243) 99.80 34.29 12 13.08 0.20
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Table B.58: Ensembles based on clustering after filtering out classifiers according to a threshold of 95% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.90 20.00 6.93 7.67 0.10

10 99.91 24.29 4.38 5.31 0.09

20 99.92 30.00 1.83 2.81 0.08

30 99.90 30.00 1.34 2.37 0.10

40 99.90 28.57 4.02 5.05 0.10

50 99.91 31.43 0.62 1.69 0.09

all (190) 99.91 30.00 1.83 2.85 0.09

Table B.59: Ensembles based on clustering after filtering out classifiers according to a threshold of 97% for the normal
class only.

k Normal% U2R% R2L% TPR% FPR%

5 99.93 30.00 1.05 2.01 0.07

10 99.92 18.57 4.15 4.86 0.08

20 99.93 22.86 0.36 1.15 0.07

30 99.94 27.14 0.33 1.15 0.06

40 99.94 28.57 0.52 1.37 0.06

50 99.92 25.71 0.59 1.34 0.08

all (162) 99.93 28.57 0.49 1.37 0.07

226


	Titlepage
	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background and motivation
	1.2 Research questions and constraints
	1.3 Contribution and novelty
	1.4 Structure

	2 Intrusion detection
	2.1 Definitions and terminology
	2.2 Intrusions
	2.3 Intrusion detection systems
	2.3.1 Audit source location
	2.3.2 Detection method
	2.3.3 Detection approaches
	2.3.3.1 Event correlation (stateful)  
	2.3.3.2 Stateless intrusion detection
	2.3.3.3 Discussion

	2.3.4 Behaviour on detection and usage frequency

	2.4 Intrusion detection in wireless and mobile ad hoc networks
	2.5 Areas of research

	3 Artificial intelligence in intrusion detection systems
	3.1 Background reading and related research
	3.2 Rule based systems 
	3.2.1 Event correlation tools
	3.2.2 Fuzzy logic and rule induction
	3.2.3 Anomaly detection
	3.2.4 Hybrid systems

	3.3 Instance based learning  
	3.4 Bayesian reasoning
	3.4.1 Bayesian networks
	3.4.2 Naïve Bayes
	3.4.3 Event and alert correlation
	3.4.4 Other Bayesian applications

	3.5 Decision trees 
	3.5.1 Classifier performance
	3.5.2 Hybrids and classifier combination
	3.5.3 Other decision tree applications

	3.6 Artificial neural networks  
	3.6.1 Pros and cons
	3.6.2 Multi layer perceptrons 
	3.6.2.1 Topology
	3.6.2.2 Misuse detection
	3.6.2.3 Anomaly detection

	3.6.3 Self organising maps
	3.6.4 Other ANN models and Hybridisations

	3.7 Support vector machines
	3.7.1 Misuse detection
	3.7.2 Anomaly detection

	3.8 Artificial immune systems  
	3.8.1 AIS models
	3.8.2 Using negative selection
	3.8.3 Distributed AIS
	3.8.4 Hybrids

	3.9 Mobile agents 
	3.9.1 Pros and cons
	3.9.2 Early work and hierarchical structures
	3.9.3 Recent research
	3.9.4 Hybrid systems

	3.10 Clustering
	3.10.1 Unsupervised clustering
	3.10.2 Supervised misuse detection
	3.10.3 Hybrid approaches

	3.11 Hidden markov models
	3.11.1 Implementation considerations
	3.11.2 Performance
	3.11.3 Applications and recent research

	3.12 Population based search and optimisation techniques
	3.12.1 Background and problem representation
	3.12.2 Rule induction
	3.12.3 Clustering and stand alone detection applications
	3.12.4 Evolutionary neural networks
	3.12.5 Other applications

	3.13 Summary

	4 Discrepancies in findings reported in the literature
	4.1 Contradictory results
	4.2 Criticisms
	4.2.1 Not representative of real network traffic
	4.2.2 TTL values
	4.2.3 Training and test sets
	4.2.4 R2L intrusions

	4.3 Method
	4.3.1 Aims of the investigation
	4.3.2 Methodological factors
	4.3.2.1 Validation and taxonomy
	4.3.2.2 Difference between the training and test sets
	4.3.2.3 Classification of the R2L class
	4.3.2.4 Duplicates and class imbalance
	4.3.2.5 Issues not considered here

	4.3.3 Classifiers
	4.3.3.1 Decision tree
	4.3.3.2 Naïve Bayes

	4.3.4 Data set and validation
	4.3.5 Metrics
	4.3.6 Outline of the empirical investigation

	4.4 Results
	4.4.1 General observations
	4.4.1.1 Algorithms
	4.4.1.2 Validation methods
	4.4.1.3 Full training set

	4.4.2 Performance on original data
	4.4.3 Removing new attacks from the test set
	4.4.4 Removing normal instances identical to intrusions
	4.4.5 Removing duplicates

	4.5 Summary and discussion
	4.6 Implications
	4.6.1 Considerations of methodological factors
	4.6.2 Using the KDD Cup '99 data set in future research


	5 Learning from imbalanced data
	5.1 Class imbalance
	5.1.1 The class imbalance problem
	5.1.2 Data level
	5.1.3 Algorithm level
	5.1.4 Classifier combination
	5.1.5 Discussion

	5.2 Genetic algorithms
	5.2.1 Evolutionary cycle
	5.2.2 Application of genetic algorithms
	5.2.3 Evolutionary neural networks

	5.3 Method
	5.3.1 Aims and motivations
	5.3.2 Evolutionary neural network
	5.3.2.1 MLP specifications
	5.3.2.2 Genetic algorithm specifications
	5.3.2.3 Evaluation functions

	5.3.3 MLP trained with backpropagation
	5.3.3.1 Learning rate and momentum
	5.3.3.2 Epochs and early stopping

	5.3.4 Data set and preprocessing
	5.3.5 Metrics
	5.3.6 Outline of empirical investigation

	5.4 Results
	5.4.1 Decision tree
	5.4.2 MLP trained with backpropagation
	5.4.3 Evolutionary neural network
	5.4.3.1 Eval1 and Eval2
	5.4.3.2 Eval3
	5.4.3.3 Eval4
	5.4.3.4 Eval5

	5.4.4 Summary and comparisons

	5.5 Discussion

	6 Multi-objective evolution of classifier ensembles
	6.1 Multi-objective genetic algorithms
	6.1.1 Motivations for multi-objective optimisation
	6.1.2 Required modifications
	6.1.2.1 Niching
	6.1.2.2 Dominance
	6.1.2.3 Archive function

	6.1.3 Algorithms
	6.1.3.1 VEGA
	6.1.3.2 MOGA
	6.1.3.3 NSGA
	6.1.3.4 NPGA
	6.1.3.5 SPEA
	6.1.3.6 NSGA-II
	6.1.3.7 SPEA2

	6.1.4 Parallel MOGAs
	6.1.4.1 Parallel models
	6.1.4.2 Implementations for multi-objective optimisation


	6.2 Classifier combination
	6.2.1 Motivations
	6.2.2 Taxonomy
	6.2.3 Combination level
	6.2.4 Classifier level
	6.2.5 Feature level
	6.2.6 Data level
	6.2.7 Importance of diversity

	6.3 Evolving classifier ensembles
	6.3.1 Evolving base classifiers
	6.3.2 Evolving the combination of classifiers
	6.3.3 Evolving the classifiers and the ensemble
	6.3.3.1 Simultaneous learning
	6.3.3.2 Iterative

	6.3.4 Summary

	6.4 Method
	6.4.1 Related work
	6.4.2 Aims of the investigation
	6.4.3 Proposed method
	6.4.4 MABLE implementation
	6.4.4.1 Base classifier and evaluation function
	6.4.4.2 MOGA for phase one
	6.4.4.3 MOGA for phase two
	6.4.4.4 Parallel implementation
	6.4.4.5 Configurations

	6.4.5 Other combination techniques
	6.4.5.1 Clustering approach
	6.4.5.2 Threshold approach
	6.4.5.3 Random forest and AdaBoost

	6.4.6 Data set
	6.4.7 Metrics
	6.4.8 Outline of empirical investigation

	6.5 Results
	6.5.1 Phase one of MABLE
	6.5.2 Phase two of MABLE
	6.5.3 Other combination techniques
	6.5.4 Selection of classifiers
	6.5.5 Generalisation
	6.5.5.1 General observations
	6.5.5.2 Overfitting
	6.5.5.3 Analysis of U2R attacks
	6.5.5.4 Analysis of feature values of the U2R attacks

	6.5.6 Complexity and speed
	6.5.7 Performance on three class data
	6.5.7.1 Tree classifiers
	6.5.7.2 MABLE phase one
	6.5.7.3 MABLE phase two


	6.6 Discussion

	7 Conclusions
	7.1 Summary
	7.2 Findings and conclusions
	7.2.1 Part one – discrepancies
	7.2.2 Part two – learning from imbalanced data
	7.2.3 Part three – MABLE

	7.3 Discussion
	7.4 Contributions and novelty
	7.5 Further work
	7.5.1 Validation
	7.5.2 Scalability
	7.5.3 Performance and pragmatic extensions


	References
	A KDD Cup '99 data set
	B Additional results
	B.1 Part one – discrepancies study
	B.1.1 On original data
	B.1.1.1 Training set only
	B.1.1.2 Merged data set

	B.1.2 Removing normal instances identical to intrusions
	B.1.3 Removing duplicates from training set
	B.1.3.1 Training set only
	B.1.3.2 Merged data set

	B.1.4 Summaries

	B.2 Part two – ENN study
	B.2.1 Epoch investigation
	B.2.2 Investigation of learning rate and momentum
	B.2.3 Results with ENN
	B.2.3.1 Three layers
	B.2.3.2 Four layers


	B.3 Part three – MABLE study
	B.3.1 Two-class investigation
	B.3.1.1 Summaries of ensemble information
	B.3.1.2 Other combination approaches
	B.3.1.3 Generalisation investigation: U2R attacks

	B.3.2 Three-class investigation



