20 research outputs found

    Optimizing JavaScript Engines for Modern-day Workloads

    Get PDF
    In modern times, we have seen tremendous increase in popularity and usage of web-based applications. Applications such as presentation softwareand word processors, which were traditionally considered desktop applications are being ported to the web by compiling them to JavaScript. Since JavaScript is the de facto language of the web, JavaScript engine performance significantly affects the overall web application experience. JavaScript, initially intended solely as a client-side scripting language for web browsers, is now being used to implement server-side web applications (node.js) that traditionally have been written in languages like Java. Web application developers expect "C"-like performance out of their applications. Thus, there is a need to reevaluate the optimization strategies implemented in the modern day engines.Thesis statement: I propose that by using run-time and ahead-of-time profiling and type specialization techniques it is possible to improve the performance of JavaScript engines to cater to the needs of modern-day workloads.In this dissertation, we present an improved synergistic type specialization strategy for optimized JavaScript code execution, implemented on top of a research JavaScript engine called MuscalietJS. Our technique combines type feedback and type inference to reinforce and augment each other in a unique way. We then present a novel deoptimization strategy that enables type specialized code generation on top of typed, stack-based virtual machines like CLR. We also describe a server-side offline profiling technique to collect profile information for web application which helps client JavaScript engines (running in the browser) avoid deoptimizations and improve performance of the applications. Finally, we describe a technique to improve the performance of server-side JavaScript code by making use of intelligent profile caching and two new type stability heuristics

    Observable dynamic compilation

    Get PDF
    Managed language platforms such as the Java Virtual Machine rely on a dynamic compiler to achieve high performance. Despite the benefits that dynamic compilation provides, it also introduces some challenges to program profiling. Firstly, profilers based on bytecode instrumentation may yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations, or because the inserted instrumentation code disrupts such optimizations. To avoid such perturbations, we present a technique to make profilers based on bytecode instrumentation aware of the optimizations performed by the dynamic compiler, and make the dynamic compiler aware of the inserted code. We implement our technique for separating inserted instrumentation code from base-program code in Oracle's Graal compiler, integrating our extension into the OpenJDK Graal project. We demonstrate its significance with concrete profilers. On the one hand, we improve accuracy of existing profiling techniques, for example, to quantify the impact of escape analysis on bytecode-level allocation profiling, to analyze object life-times, and to evaluate the impact of method inlining when profiling method invocations. On the other hand, we also illustrate how our technique enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations. Secondly, the lack of profiling support at the intermediate representation (IR) level complicates the understanding of program behavior in the compiled code. This issue cannot be addressed by bytecode instrumentation because it cannot precisely capture the occurrence of IR-level operations. Binary instrumentation is not suited either, as it lacks a mapping from the collected low-level metrics to higher-level operations of the observed program. To fill this gap, we present an easy-to-use event-based framework for profiling operations at the IR level. We integrate the IR profiling framework in the Graal compiler, together with our instrumentation-separation technique. We illustrate our approach with a profiler that tracks the execution of memory barriers within compiled code. In addition, using a deoptimization profiler based on our IR profiling framework, we conduct an empirical study on deoptimization in the Graal compiler. We focus on situations which cause program execution to switch from machine code to the interpreter, and compare application performance using three different deoptimization strategies which influence the amount of extra compilation work done by Graal. Using an adaptive deoptimization strategy, we manage to improve the average start-up performance of benchmarks from the DaCapo, ScalaBench, and Octane suites by avoiding wasted compilation work. We also find that different deoptimization strategies have little impact on steady- state performance

    On the fly type specialization without type analysis

    Full text link
    Les langages de programmation typés dynamiquement tels que JavaScript et Python repoussent la vérification de typage jusqu’au moment de l’exécution. Afin d’optimiser la performance de ces langages, les implémentations de machines virtuelles pour langages dynamiques doivent tenter d’éliminer les tests de typage dynamiques redondants. Cela se fait habituellement en utilisant une analyse d’inférence de types. Cependant, les analyses de ce genre sont souvent coûteuses et impliquent des compromis entre le temps de compilation et la précision des résultats obtenus. Ceci a conduit à la conception d’architectures de VM de plus en plus complexes. Nous proposons le versionnement paresseux de blocs de base, une technique de compilation à la volée simple qui élimine efficacement les tests de typage dynamiques redondants sur les chemins d’exécution critiques. Cette nouvelle approche génère paresseusement des versions spécialisées des blocs de base tout en propageant de l’information de typage contextualisée. Notre technique ne nécessite pas l’utilisation d’analyses de programme coûteuses, n’est pas contrainte par les limitations de précision des analyses d’inférence de types traditionnelles et évite la complexité des techniques d’optimisation spéculatives. Trois extensions sont apportées au versionnement de blocs de base afin de lui donner des capacités d’optimisation interprocédurale. Une première extension lui donne la possibilité de joindre des informations de typage aux propriétés des objets et aux variables globales. Puis, la spécialisation de points d’entrée lui permet de passer de l’information de typage des fonctions appellantes aux fonctions appellées. Finalement, la spécialisation des continuations d’appels permet de transmettre le type des valeurs de retour des fonctions appellées aux appellants sans coût dynamique. Nous démontrons empiriquement que ces extensions permettent au versionnement de blocs de base d’éliminer plus de tests de typage dynamiques que toute analyse d’inférence de typage statique.Dynamically typed programming languages such as JavaScript and Python defer type checking to run time. In order to maximize performance, dynamic language virtual machine implementations must attempt to eliminate redundant dynamic type checks. This is typically done using type inference analysis. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. We introduce lazy basic block versioning, a simple just-in-time compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on the fly while propagating context-dependent type information. This does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses and avoids the implementation complexity of speculative optimization techniques. Three extensions are made to the basic block versioning technique in order to give it interprocedural optimization capabilities. Typed object shapes give it the ability to attach type information to object properties and global variables. Entry point specialization allows it to pass type information from callers to callees, and call continuation specialization makes it possible to pass return value type information back to callers without dynamic overhead. We empirically demonstrate that these extensions enable basic block versioning to exceed the capabilities of static whole-program type analyses

    Removing checks in dynamically typed languages through efficient profiling

    Get PDF
    Dynamically typed languages increase programmer's productivity at the expense of some runtime overheads to manage the types of variables, since they are not declared at compile time and can change at runtime. One of the most important overheads is due to very frequent checks that are introduced in the specialized code to identify the type of the variables. In this paper, we present a HW/SW hybrid mechanism that allows the removal of checks executed in the optimized code by performing a HW profiling of the types of object variables. To demonstrate the benefits of the proposed technique, we implement it in a JavaScript engine and show that it produces 7.1% speedup on average for optimized JavaScript code (up to 34% for some applications) and 6.5% energy reduction.Peer ReviewedPostprint (author's final draft

    HW-SW co-design techniques for modern programming languages

    Get PDF
    Modern programming languages raise the level of abstraction, hide the details of computer systems from programmers, and provide many convenient features. Such strong abstraction from the details of computer systems with runtime support of many convenient features increases the productivity of programmers. Such benefits, however, come with performance overheads. First, many of modern programming languages use a dynamic type system which incurs overheads of profiling program execution and generating specialized codes in the middle of execution. Second, such specialized codes constantly add overheads of dynamic type checks. Third, most of modern programming languages use automatic memory management which incurs memory overheads due to metadata and delayed reclamation as well as execution time overheads due to garbage collection operations. This thesis makes three contributions to address the overheads of modern programming languages. First, it describes the enhancements to the compiler of dynamic scripting languages necessary to enable sharing of compilation results across executions. These compilers have been developed with little consideration for reusing optimization efforts across executions since it is considered difficult due to dynamic nature of the languages. As a first step toward enabling the reuse of compilation results of dynamic scripting languages, it focuses on inline caching (IC) which is one of the fundamental optimization techniques for dynamic type systems. Second, it describes a HW-SW co-design technique to further improve IC operations. While the first proposal focuses on expensive IC miss handling during JavaScript initialization, the second proposal accelerates IC hit operations to improve the overall performance. Lastly, it describes how to exploit common sharing patterns of programs to reduce overheads of reference counting for garbage collection. It minimizes atomic operations in reference counting by biasing each object to a specific thread

    Practical Control-Flow Integrity

    Get PDF
    Control-Flow Integrity (CFI) is effective at defending against prevalent control-flow hijacking attacks. CFI extracts a control-flow graph (CFG) for a given program and instruments the program to respect the CFG. Specifically, checks are inserted before indirect branch instructions. Before these instructions are executed during runtime, the checks consult the CFG to ensure that the indirect branch is allowed to reach the intended target. Hence, any sort of control-flow hijacking would be prevented.However, CFI traditionally suffered from several problems that thwarted its practicality. The first problem is about precise CFG generation. CFI’s security squarely relies on the CFG, therefore the more precise the CFG is, the more security CFI improves, but precise CFG generation was considered hard. The second problem is modularity, or support for dynamic linking. When two CFI modules are linked together dynamically, their CFGs also need to be merged. However, the merge process has to be thread-safe to avoid concurrency issues. The third problem is efficiency. CFI instrumentation adds extra instructions to programs, so it is critical to minimize the performance impact of the CFI checks. Fourth, interoperability is required for CFI solutions to enable gradual adoption in practice, which means that CFI-instrumented modules can be linked with uninstrumented modules without breaking the program.In this dissertation, we propose several practical solutions to the above problems. To generate a precise CFG, we compile the program being protected using a modified compilation toolchain, which can propagate source-level information such as type information to the binary level. At runtime, such information is gathered to generate a relatively precise CFG. On top of this CFG, we further instrument the code so that only if a function’s address is dynamically taken can it be reachable. This approach results in lazily computed per-input CFGs, which provide better precision. To address modularity, we design a lightweight Software Transactional Memory (STM) algorithm to synchronize accesses to the CFG’s data structure at runtime. To minimize the performance overhead, we optimize the CFG representation and access operations so that no heavy buslockinginstructions are needed. For interoperability, we consider addresses in uninstrumented modules as special targets and make the CFI instrumentation aware of them. Finally, we propose a new architecture for Just-In-Time compilers to adopt our proposed CFI schemes

    New techniques for adaptive program optimization

    Get PDF
    Adaptive optimization technology is a key ingredient in modern runtime systems. This technology aims at improving performance by making optimization decisions on the basis of a program’s observed behavior. Application virtual machines indeed face different and perhaps more compelling issues compared to traditional static optimizers, as dynamic language features can force the deferral of most effective optimizations until run time. In this thesis, we present novel ideas to improve adaptive optimization, focusing on two main problems: collecting fine-grained program profiles with low overhead to guide feedback-directed optimization, and supporting continuous optimization and deoptimization by diverting execution across dynamically generated code versions. We present two profiling techniques: the first works at inter-procedural level to collect calling context information for hot code portions, while the second captures cyclic-path profiles within a function’s boundaries. Both techniques rely on efficient and elegant data structures, advancing the state of the art of the theory and practice of the performance profiling literature. We then focus our attention on supporting continuous optimization through on-stack replacement (OSR) mechanisms. We devise a new OSR framework encoded entirely at intermediate-representation level, which extends the best OSR practices with the ability to perform OSR at nearly any program location. Our techniques pave the road to aggressive optimizations and debugging techniques that were not supported by previous approaches. The main technical challenge is how to automatically generate compensation code to fix the program’s state across an OSR transition between different code versions. We present a conceptual framework for OSR, distilling its essence to a core calculus with an operational semantics. Using bisimulation techniques, we describe how OSR can be correctly supported in the presence of common compiler optimizations, providing the first soundness results in this context. We implement our ideas in production systems such as Jikes RVM and the LLVM compiler toolchain, and evaluate their performance against a variety of prominent benchmarks. We investigate the end-to-end utility of our techniques in a series of case studies: we illustrate two possible applications of multi-iteration path profiling, and show how our OSR techniques advance the state of the art for MATLAB code optimization and for source-level debugging of optimized code. Part of the results of this thesis have been published in PLDI, OOPSLA, CGO, and Software Practice and Experience

    Simple optimizing JIT compilation of higher-order dynamic programming languages

    Get PDF
    Implémenter efficacement les langages de programmation dynamiques demande beaucoup d’effort de développement. Les compilateurs ne cessent de devenir de plus en plus complexes. Aujourd’hui, ils incluent souvent une phase d’interprétation, plusieurs phases de compilation, plusieurs représentations intermédiaires et des analyses de code. Toutes ces techniques permettent d’implémenter efficacement un langage de programmation dynamique, mais leur mise en oeuvre est difficile dans un contexte où les ressources de développement sont limitées. Nous proposons une nouvelle approche et de nouvelles techniques dynamiques permettant de développer des compilateurs performants pour les langages dynamiques avec de relativement bonnes performances et un faible effort de développement. Nous présentons une approche simple de compilation à la volée qui permet d’implémenter un langage en une seule phase de compilation, sans transformation vers des représentations intermédiaires. Nous expliquons comment le versionnement de blocs de base, une technique de compilation existante, peut être étendue, sans effort de développement significatif, pour fonctionner interprocéduralement avec les langages de programmation d’ordre supérieur, permettant d’appliquer des optimisations interprocédurales sur ces langages. Nous expliquons également comment le versionnement de blocs de base permet de supprimer certaines opérations utilisées pour implémenter les langages dynamiques et qui impactent les performances comme les vérifications de type. Nous expliquons aussi comment les compilateurs peuvent exploiter les représentations dynamiques des valeurs par Tagging et NaN-boxing pour optimiser le code généré avec peu d’effort de développement. Nous présentons également notre expérience de développement d’un compilateur à la volée pour le langage de programmation Scheme, pour montrer que ces techniques permettent effectivement de construire un compilateur avec un effort moins important que les compilateurs actuels et qu’elles permettent de générer du code efficace, qui rivalise avec les meilleures implémentations du langage Scheme.Efficiently implementing dynamic programming languages requires a significant development effort. Over the years, compilers have become more complex. Today, they typically include an interpretation phase, several compilation phases, several intermediate representations and code analyses. These techniques allow efficiently implementing these programming languages but are difficult to implement in contexts in which development resources are limited. We propose a new approach and new techniques to build optimizing just-in-time compilers for dynamic languages with relatively good performance and low development effort. We present a simple just-in-time compilation approach to implement a language with a single compilation phase, without the need to use code transformations to intermediate representations. We explain how basic block versioning, an existing compilation technique, can be extended without significant development effort, to work interprocedurally with higherorder programming languages allowing interprocedural optimizations on these languages. We also explain how basic block versioning allows removing operations used to implement dynamic languages that degrade performance, such as type checks, and how compilers can use Tagging and NaN-boxing to optimize the generated code with low development effort. We present our experience of building a JIT compiler using these techniques for the Scheme programming language to show that they indeed allow building compilers with less development effort than other implementations and that they allow generating efficient code that competes with current mature implementations of the Scheme language

    The parallel event loop model and runtime: a parallel programming model and runtime system for safe event-based parallel programming

    Get PDF
    Recent trends in programming models for server-side development have shown an increasing popularity of event-based single- threaded programming models based on the combination of dynamic languages such as JavaScript and event-based runtime systems for asynchronous I/O management such as Node.JS. Reasons for the success of such models are the simplicity of the single-threaded event-based programming model as well as the growing popularity of the Cloud as a deployment platform for Web applications. Unfortunately, the popularity of single-threaded models comes at the price of performance and scalability, as single-threaded event-based models present limitations when parallel processing is needed, and traditional approaches to concurrency such as threads and locks don't play well with event-based systems. This dissertation proposes a programming model and a runtime system to overcome such limitations by enabling single-threaded event-based applications with support for speculative parallel execution. The model, called Parallel Event Loop, has the goal of bringing parallel execution to the domain of single-threaded event-based programming without relaxing the main characteristics of the single-threaded model, and therefore providing developers with the impression of a safe, single-threaded, runtime. Rather than supporting only pure single-threaded programming, however, the parallel event loop can also be used to derive safe, high-level, parallel programming models characterized by a strong compatibility with single-threaded runtimes. We describe three distinct implementations of speculative runtimes enabling the parallel execution of event-based applications. The first implementation we describe is a pessimistic runtime system based on locks to implement speculative parallelization. The second and the third implementations are based on two distinct optimistic runtimes using software transactional memory. Each of the implementations supports the parallelization of applications written using an asynchronous single-threaded programming style, and each of them enables applications to benefit from parallel execution

    The parallel event loop model and runtime: a parallel programming model and runtime system for safe event-based parallel programming

    Get PDF
    Recent trends in programming models for server-side development have shown an increasing popularity of event-based single- threaded programming models based on the combination of dynamic languages such as JavaScript and event-based runtime systems for asynchronous I/O management such as Node.JS. Reasons for the success of such models are the simplicity of the single-threaded event-based programming model as well as the growing popularity of the Cloud as a deployment platform for Web applications. Unfortunately, the popularity of single-threaded models comes at the price of performance and scalability, as single-threaded event-based models present limitations when parallel processing is needed, and traditional approaches to concurrency such as threads and locks don't play well with event-based systems. This dissertation proposes a programming model and a runtime system to overcome such limitations by enabling single-threaded event-based applications with support for speculative parallel execution. The model, called Parallel Event Loop, has the goal of bringing parallel execution to the domain of single-threaded event-based programming without relaxing the main characteristics of the single-threaded model, and therefore providing developers with the impression of a safe, single-threaded, runtime. Rather than supporting only pure single-threaded programming, however, the parallel event loop can also be used to derive safe, high-level, parallel programming models characterized by a strong compatibility with single-threaded runtimes. We describe three distinct implementations of speculative runtimes enabling the parallel execution of event-based applications. The first implementation we describe is a pessimistic runtime system based on locks to implement speculative parallelization. The second and the third implementations are based on two distinct optimistic runtimes using software transactional memory. Each of the implementations supports the parallelization of applications written using an asynchronous single-threaded programming style, and each of them enables applications to benefit from parallel execution
    corecore