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ABSTRACT

Modern programming languages raise the level of abstraction, hide the details of computer

systems from programmers, and provide many convenient features. Such strong abstraction

from the details of computer systems with runtime support of many convenient features

increases the productivity of programmers.

Such benefits, however, come with performance overheads. First, many of modern pro-

gramming languages use a dynamic type system which incurs overheads of profiling program

execution and generating specialized codes in the middle of execution. Second, such spe-

cialized codes constantly add overheads of dynamic type checks. Third, most of modern

programming languages use automatic memory management which incurs memory over-

heads due to metadata and delayed reclamation as well as execution time overheads due to

garbage collection operations.

This thesis makes three contributions to address the overheads of modern programming

languages. First, it describes the enhancements to the compiler of dynamic scripting lan-

guages necessary to enable sharing of compilation results across executions. These compilers

have been developed with little consideration for reusing optimization efforts across execu-

tions since it is considered difficult due to dynamic nature of the languages. As a first step

toward enabling the reuse of compilation results of dynamic scripting languages, it focuses

on inline caching (IC) which is one of the fundamental optimization techniques for dynamic

type systems. Second, it describes a HW-SW co-design technique to further improve IC op-

erations. While the first proposal focuses on expensive IC miss handling during JavaScript

initialization, the second proposal accelerates IC hit operations to improve the overall perfor-

mance. Lastly, it describes how to exploit common sharing patterns of programs to reduce

overheads of reference counting for garbage collection. It minimizes atomic operations in

reference counting by biasing each object to a specific thread.
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CHAPTER 1: INTRODUCTION

Modern programming languages raise the level of abstraction, hide the details of computer

systems from programmers, and provide many convenient features. Such strong abstraction

from the details of computer systems with runtime support of many convenient features

increases the productivity of programmers. As a result, modern programming languages

are widely used by programmers in many application domains, both for clients [1, 2] and

servers [3, 4, 5, 6].

Such benefits, however, come with performance overheads. First, many of modern pro-

gramming languages use a dynamic type system which incurs overheads of profiling program

execution and generating specialized codes in the middle of execution. Second, such spe-

cialized codes constantly add overheads of dynamic type checks. Third, most of modern

programming languages use automatic memory management which incurs memory over-

heads due to metadata and delayed reclamation as well as execution time overheads due to

garbage collection operations.

In this thesis, I address the overheads of dynamic type system and garbage collection

in modern programming languages. The first two proposals analyze the key optimization

technique for dynamic type system, Inline Caching (IC), and use software and architectural

techniques to tackle its two common operations, IC miss and IC hit, respectively. In the

third proposal, I propose a novel algorithm for reference counting to reduce the overheads

of garbage collection by minimizing the use of atomic operations.

1.1 CONTRIBUTIONS

1.1.1 Reusable Inline Caching for Dynamic Scripting Languages

JavaScript compilers have been developed with little consideration for reusing compilation

and optimization efforts across executions (e.g., upon revisiting a website or visiting another

website using the same JavaScript library). Currently, the only compilation step which can

be saved by recycling information across executions is the initial bytecode generation from

the source code. The rest of compilation steps, such as profiling program behavior and

generating optimized codes, have to be repeated in every execution. The outputs from those

steps are highly dependent on the execution context and deemed to be difficult to share

across executions.

This paper analyzes the key optimization technique for dynamic type system, Inline
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Caching (IC), to show that the majority of IC information collected during JavaScript ini-

tialization (e.g., webpage loading) can be represented in a context-independent way and

shared across executions. Based on this observation, it proposes an enhanced design of IC

called Reusable Inline Caching (RIC). RIC extracts the context-independent portion of IC

information after the first execution, and this information is used to significantly improve

IC operations in future executions. We evaluate RIC with the state-of-the-art Google V8

JavaScript engine by measuring its impact on the initialization time of popular JavaScript

libraries. On average, by recycling IC information collected from the previous execution,

RIC reduces the number of IC misses by 53%, the dynamic instruction count by 15%, and

finally the execution time by 17%.

1.1.2 ShortCut: Architectural Support for Fast Object Access in Scripting Languages

The same flexibility that makes dynamic scripting languages appealing to programmers

is also the primary cause of their low performance. To access objects of potentially different

types, the compiler creates a dispatcher with a series of if statements, each performing a

comparison to a type and a jump to a handler. This induces major overhead in instructions

executed and branches mispredicted.

This work proposes architectural support to significantly improve the efficiency of accesses

to objects. The idea is to modify the instruction that calls the dispatcher so that, under

most conditions, it skips most of the branches and instructions needed to reach the correct

handler, and sometimes even the execution of the handler itself. Our novel architecture,

called ShortCut, performs two levels of optimization. Its Plain design transforms the call to

the dispatcher into a call to the correct handler — bypassing the whole dispatcher execution.

Its Aggressive design transforms the call to the dispatcher into a simple load or store — by-

passing the execution of both dispatcher and handler. We implement the ShortCut software

in the state-of-the-art Google V8 JIT compiler, and the ShortCut hardware in a simulator.

We evaluate ShortCut with the Octane and SunSpider JavaScript application suites. Plain

ShortCut reduces the average execution time of the applications by 30% running under the

baseline compiler, and by 11% running under the maximum level of compiler optimization.

Aggressive ShortCut performs only slightly better.

1.1.3 Biased Reference Counting: Minimizing Atomic Operations in Garbage Collection

Reference counting (RC) is one of the two fundamental approaches to garbage collection.

It has the desirable characteristics of low memory overhead and short pause times, which
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are key in today’s interactive mobile platforms. However, RC has a higher execution time

overhead than its counterpart, tracing garbage collection. The reason is that RC imple-

mentations maintain per-object counters, which must be continually updated. In particular,

the execution time overhead is high in environments where low memory overhead is critical

and, therefore, non-deferred RC is used. This is because the counter updates need to be

performed atomically.

To address this problem, this paper proposes a novel algorithm called Biased Reference

Counting (BRC), which significantly improves the performance of non-deferred RC. BRC is

based on the observation that most objects are only accessed by a single thread, which allows

most RC operations to be performed non-atomically. BRC leverages this by biasing each

object towards a specific thread, and keeping two counters for each object — one updated by

the owner thread and another updated by the other threads. This allows the owner thread

to perform RC operations non-atomically, while the other threads update the second counter

atomically.

We implement BRC in the Swift programming language runtime, and evaluate it with

client and server programs. We find that BRC makes each RC operation more than twice

faster in the common case. As a result, BRC reduces the average execution time of client

programs by 22.5%, and boosts the average throughput of server programs by 7.3%.
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CHAPTER 2: REUSABLE INLINE CACHING FOR DYNAMIC
SCRIPTING LANGUAGES

2.1 INTRODUCTION

Dynamic scripting languages, such as JavaScript, Python and PHP, gain popularity be-

cause of their ease of use enabled by many convenient runtime supports including dynamic

type systems, built-in objects, and automatic memory management. Such features increases

the programmer productivity but comes with performance overheads.

To overcome such performance overheads, the industry and developer communities have

put lots of efforts on improving the performance of compilers and runtime systems, such as

Google V8 JavaScript engine [7] and HHVM [8]. These compilers, however, have been de-

veloped with little consideration for reusing compilation results across executions. Dynamic

nature of these languages makes it very challenging for efficient code generation, and the

optimized codes and profiling data end up closely tied to a specific execution context. As a

result, in the current implementations, the only compilation step which can be saved by re-

cycling information across executions is the initial bytecode generation from the source code.

The rest of compilation steps, such as profiling program behavior and generating optimized

codes, have to be repeated from scratch in every execution. This remains as an unsolved

problem for the compilers of dynamic scripting languages.

At the same time, programs keep growing in size and complexity, and yet the user expec-

tation is ever increasing as well as shown in Figure 2.1. The average number of JavaScript

requests in the top 1000 websites have gone up from 12 in 2010 to 28 in 2015. Similarly,

the total transfer size of JavaScript files has also increased sharply from 103 KB to 404

KB during the same period. Considering that initialization of each JavaScript library takes

tens to hundreds of milliseconds [9], it puts much pressure on meeting ever increasing user

expectation. According to a series of user surveys [10, 11, 12, 13], while the majority of users

waited up to eight seconds for page load in 1999, this wait time had shrunk to two seconds

by 2014. Furthermore, the industry is pushing the bar even higher by advocating a sub

one-second limit so as to not interrupt a user’s flow of thoughts [14]. Note that JavaScript

initialization is only a part of works to be done for completing page load, and a sub one-

second page load is especially challenging in mobile devices with slow network connections

and limited computing resources.

We see a lack of sharing compilation efforts between executions as a missing piece to

improve JavaScript performance to get closer to a sub one-second page load. There are many

optimization techniques implemented in the current JavaScript engines. Among them, inline
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Figure 2.1: Contradictory trends of user expectation for page load time and webpage com-
plexity.

caching (IC) is a fundamental technique to reduce the overheads of dynamic type systems

based on an empirical evidence that the same type tends to be repeatedly encountered at

the same program location. Similar to other optimization techniques for dynamic scripting

languages, profiling data and generated codes for IC are tied to a specific execution context

and difficult to reuse across executions.

As the first step toward reusing optimization efforts across executions, this paper proposes

a new IC design called Reusable Inline Caching (RIC) which enables information sharing

across executions. RIC extracts the context-independent portion of IC information after the

first execution, and this information is used to significantly improve IC operations in future

executions.

We evaluate RIC with the state-of-the-art Google V8 JavaScript engine by measuring its

impact on the initialization time of popular JavaScript libraries. On average, by recycling

IC information collected from the previous execution, RIC reduces the number of IC misses

by 53%, the dynamic instruction count by 15%, and finally the execution time by 17%.

The contributions of this paper are as follows:

• Characterizes the overheads of IC during initialization of popular JavaScript libraries.

• Characterizes IC operations during JavaScript initialization to identify opportunities

to share IC information across executions.

• Proposes RIC, a new IC design to enable the reuse of IC information across executions

by extracting the context-independent portion of IC information.

• Implements RIC in the state-of-the-art Google V8 JavaScript engine.

• Provides a detailed evaluation of RIC’s performance.
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2.2 BACKGROUND

2.2.1 JavaScript Execution

While JavaScript standalone is as powerful as other dynamic scripting languages for var-

ious tasks, it was originally developed for browsers to provide application logic and user

interactivity. As such, a JavaScript compiler has evolved to provide APIs well-suited for

event-driven execution, and it is now widely used as an embedded language runtime in

many systems including browsers, server-side framework [3], operating systems [2], etc.

The host system, in which a JavaScript runtime is embedded, is responsible for scheduling

JavaScript execution. It triggers JavaScript execution mainly in two different ways: Ini-

tialization and Event Handling. Initialization happens when the host system first loads a

JavaScript source code into the JavaScript runtime. For example, when a browser encoun-

ters a script tag during HTML parsing, it passes a JavaScript source code in the tag to the

JavaScript runtime. Then, the runtime compiles the source code and executes statements in

the global scope.

In this paper we focus on JavaScript initialization, as it directly affects page load time

performance. Until all included JavaScript source codes are initialized, the page cannot be

fully loaded. For example, the initialization can block DOM object construction and page

rendering. In addition, typically user interaction is disabled until initialization is complete.

Both during and after initialization, the host system can also register JavaScript functions

to handle events, such as user input. In contrast to initialization, JavaScript execution for

event handling is highly dependent on user interactions. Hence, due to its unpredictable

behavior, improving the performance of event-handling is not addressed in this paper and is

left as future work.

2.2.2 V8 JavaScript Engine

V8 [7] is the JavaScript JIT compiler used in Google Chrome web browser. In the following,

we describe the concepts in V8 related to our work. These concepts are not specific to V8,

however, and are used in all popular JavaScript compilers.

Compilation Strategy Since there is no standard bytecode for JavaScript and every

JavaScript compiler generates code differently, a JavaScript program is delivered in source

code format. Therefore, the program has to be parsed and compiled before starting ex-

ecution. It introduces significant execution time overheads and takes about 30% of total
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execution time in real-world websites [15].

The early JavaScript compilers implemented Eager Compilation which compiles the entire

program before beginning execution. However, since only a small fraction of the program is

usually executed, eager compilation unnecessarily delays the start of execution by wasting

time on compiling unused functions [16]. Furthermore, it increases memory pressure by

generating code objects for functions that are ultimately never executed.

In order to accelerate the startup of execution, every major JavaScript compiler currently

implements Lazy Compilation, which only compiles statements in the global scope and delays

compilation of other functions until they are called during execution. As a result, it not only

minimizes the delay caused by compilation before the first execution, but also improves the

overall execution time and memory usage by only compiling necessary functions. Compared

to eager compilation, lazy compilation introduces runtime overhead to schedule compilation

dynamically, but such overhead is well justified in real-world programs where only a small

fraction of functions are ever called [16].

Code Caching Although JavaScript files are delivered in source code format and have to

be compiled before the first execution, some intermediate results are deterministic and may

be cached for the later executions. For example, parsing the same source code produces the

same AST, and then it is compiled into the same bytecodes. To avoid such redundant compi-

lation across executions, V8 supports APIs to enable embedders to access some compilation

results [17]. Using these APIs, Chrome browser maintains code cache containing compiled

codes for frequently executed JavaScript files. Previously, in conjunction with lazy compila-

tion, these APIs provided bytecodes for top-level codes only (i.e., statements in global scope).

They have been improved to increase the coverage by also providing bytecodes for functions

which are lazily compiled and executed [18]. With the increased coverage, code caching

essentially eliminates the overheads of bytecode generation during JavaScript initialization.

While code caching accelerates JavaScript initialization, it has limitations as it can only

store the initial compilation output, such as bytecode, which is deterministic and context-

independent. First, it doesn’t support any profiling data collected during the program

execution. Such profiling data is critical for efficient bytecode execution and optimized

code generation, and the time to collect the profiling data delays JavaScript initialization.

Second, it doesn’t support optimized codes. V8 profiles the program execution and generates

optimized machine codes for frequently executed functions. It is very difficult to cache and

reuse these optimized codes since they are tightly coupled to the execution context where

they are generated and executed. For example, memory addresses for built-in objects are

embedded as immediate operands in the optimized codes.
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1: function Point(x, y) {
2:  this.x = x;
3:  this.y = y;
4: }
5: p1 = new Point(10, 20);
6: p2 = new Point(30, 40);

(b) Example JavaScript code

(c) Hidden class transition example

Figure 2.2: Hidden class structure and example of hidden class transition

Hidden Classes JavaScript is a dynamically-typed programming language where prop-

erties can be added to, and deleted from objects on the fly. Such dynamism prohibits

JavaScript compilers from constructing a fixed object layout before execution. Type infor-

mation, however, is crucial to efficient code generation, and V8 dynamically creates Hidden

Classes behind the scenes to introduce the notion of types. The basic idea is similar to

the maps in Self [19]. Objects that are created in the same way are grouped in the same

hidden class. Note that the concept of types itself is an idea imposed by the compiler for

the purposes of code generation, and is not present in the semantics of a dynamically-typed

language like JavaScript. For this reason, types in dynamically-typed languages are called

hidden classes, to stress that the types are hidden from the programmer. We use the terms

type and hidden class interchangeably.

Figure 2.2(a) shows the hidden class structure. An object layout points to a table of

(property, offset) pairs, and it is context-independent as its content is not tied to any

specific execution context. On the other hand, the rest of the hidden class fields are context-

dependent in that they are tied to JavaScript objects allocated in the heap of JavaScript

execution context. A transition array points to an array of next hidden classes to transition

into when a new property is added. A proto points to the prototype object associated

with the constructor function. Note that JavaScript uses prototyping to emulate the class
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inheritance of statically-typed languages such as C++ or Java. Every object in JavaScript

inherits from a parent object, which is the prototype object of the constructor function used

to create that object. Inheritance is supported by having the special property proto

in the object pointing to the prototype object at object construction time. The prototype

object is inherited by all the objects that are created using the corresponding constructor.

Properties in the prototype can either be accessed via inheritance through the child object,

or directly through the prototype property in the constructor function object. In addition,

there are several other fields which are also context-dependent, and since a hidden class

contains context-dependent fields, a hidden class itself becomes context-dependent as well.

Hidden classes are mainly created in two different ways in the program. First, there is

a hidden class created for each function. When a function is used as a constructor for an

object, the hidden class associated with the function (Constructor HC in Figure 2.2(c)) is

assigned to the newly allocated object. For example, when the function Point is declared

on line 1 of Figure 2.2(b), a new function object, Point, is created along with a new hidden

class, HC0, and a prototype object, PrototypePoint, as shown in Figure 2.2(c). On line 5,

when the function Point is used as a constructor, the newly created object, p1, is initially

assigned the hidden class, HC0. Second, a new hidden class can be created when adding

a property to an object triggers a new hidden class transition. For example, after being

assigned HC0 on line 5, the construction of p1 continues to lines 2-3 with p1 bound to this,

and a new property x is added to p1 on line 2. Initially, the transition array of HC0 is

empty, and the runtime creates a new hidden class, HC1, with the object layout with the new

property x and updates HC0’s transition array. Similarly, when the property y is added on

line 3, the new hidden class, HC2, is created and HC1’s transition array is updated. During

the object construction, p1’s hidden class is initially set to HC0 on line 5 and updated to

HC1 on line 2 and finally to HC2 on line 3. Note that a new hidden class is created for a new

transition only. When p2 is constructed on line 6, it goes through lines 2-3 but does not

create any new hidden classes because the transition arrays of HC0 and HC1 already have

necessary transitions.

Inline Caching One of the fundamental optimization techniques enabled by type infor-

mation collected through hidden classes is inline caching [20]. It is based on the empirical

evidence that the objects received at a particular object access site are often of the same

type.

V8 generates a specialized handler for each observed hidden class and records (hidden

class, handler) pairs in ICVector (TypeFeedbackVector in V8 source code). An ICVector

is maintained per function, and each object access site in the function has a dedicated slot

9



1 class ICVectorSlot {

2 HiddenClassAddr incoming_hc_addr;

3 HiddenClassAddr transition_hc_addr;

4 HandlerAddr handler_addr;

5 };

6
7 class ICVector {

8 public:

9 ...

10
11 private:

12 map <ObjectAccessSiteID , vector <ICVectorSlot >> vector;

13 ...

14 };

Figure 2.3: ICVector’s data structures

in the vector. When executing an object access site, it first compares the hidden class of the

incoming object with the hidden classes recorded in the ICVector. If there is a match, it is

an IC hit and jumps to the recorded handler. Otherwise, it has to jump to the runtime to

search the object layout of the hidden class of the incoming object, generate a specialized

handler, and update the ICVector accordingly for the future execution.

Figure 2.3 shows the details of the ICVector. It maps each object access site to a list of

ICVectorSlot. Initially, the object access site is unitinitialized and its list is empty. After

the first IC miss at the object access site, a new ICVectorSlot is appended to the list and

the object access site becomes monomorphic. If a different hidden class is encountered at

the object access site later, it causes an IC miss to append another ICVectorSlot to the list

and make the object access site polymorphic.

There are mainly two different kinds of object access sites depending on the kind of memory

access performed (i.e., whether it is load or store). Object access sites at the line 2 and 3 in

Figure 2.2(b) both perform store operations. Furthermore, these object access sites updates

the hidden class of the incoming object. We call such object access sites as Transitioning

Object Access Site. When the program first executes a transitioning object access site, it

will be an IC miss and the execution jumps to the runtime to look up the transition array

of the incoming hidden class to figure out the hidden class to transition into. If the lookup

fails, the runtime creates a new hidden class. tranisition hc addr (line 3 in Figure 2.2) is

set for transitioning object access sites only.

Handlers are of various complexity depending on the object access site type (i.e., whether

it is load or store) and the object lookup result. Some handlers are very simple and context-

independent. For example, a handler could be as simple as a load instruction from a fixed

offset. On the other hand, some handlers perform more complicated operations, such as

10
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Figure 2.4: Overhead of IC miss handling in JavaScript libraries.

traversing the prototype chain or updating the incoming object’s hidden class, and are tied

to the execution context.

2.3 MOTIVATION

Overheads of IC To assess the overheads of IC, we count the number of instructions

spent on handling IC misses during initialization of popular JavaScript libraries. As shown

in Figure 2.4, IC miss handling incurs significant performance overheads during JavaScript

initialization. On average, 36% of instructions are spent on handling IC misses in the runtime

looking up the incoming object’s object layout to find the requested property, generating a

specialized handler, and updating the ICVector for the future execution.

Opportunities for Reuse To estimate the potential for reusing IC information between

executions, we instrument V8 JavaScript engine to collect various statistics related to IC as

shown in Table 2.1. The first column shows the number of hidden classes encountered during

initializing the evaluated JavaScript libraries. The second column shows the number of IC

misses. In all benchmarks, the number of IC misses is much higher than the number of hidden

classes. The third column shows the ratio of the first two columns. It shows that the same

hidden class is encountered in several different object access sites. On average, each hidden

class is shared in about 5 IC misses. The last column shows the ratio of handlers which are

not tied to a specific execution context so that they can be shared across executions. On

average, 60% of handlers generated in our benchmarks are reusable.

To summarize, while IC miss handling adds significant performance overheads for JavaScript

initialization, our characterization results show that there exist opportunities to avoid the
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# of # of % of
Hidden # of IC IC Misses Reusable

Benchmark Classes Misses per HC Handlers

angular 138 799 5.79 62.50
caman 99 383 3.87 61.84
handlebars 88 6.15 541 63.20
jquery 271 1547 5.71 57.31
jsfeat 116 323 2.78 51.72
react 360 2356 6.54 82.27
underscore 123 295 2.40 38.12
Average 171 892 4.75 59.57

Table 2.1: Statistic related to IC during JavaScript initialization.

overheads by reusing IC information across executions. First, the fact that the hidden classes

are shared in multiple IC misses opens up an opportunity to handle multiple IC misses at

the same time. Second, the fact that the majority of the handlers are context-independent

suggests that a large portion of IC information can be easily shared across executions.

2.4 REUSABLE INLINE CACHING

2.4.1 Main Idea

The goal of this paper is to reduce the overhead of IC miss handling by reusing the

information passed from the previous execution. We do this with an enhanced IC design

that we call Reusable Inline Caching (RIC). RIC leverages the observation that each hidden

class appears in multiple IC misses and many specialized handlers are context-independent.

Hence, RIC records the groups of object access sites encountering the same hidden class in

the previous execution (i.e., record run) so that they can be handled altogether in the future

execution (i.e., replay run) combining each group’s multiple IC misses into one.

RIC allows the reuse of IC information across executions by maintaining the information

in a context-independent manner. First, RIC does not attempt to record hidden classes.

Hidden classes are context-dependent since they point to prototype objects which are tied

to a specific execution context as explained in Section 2.2.2. Instead, RIC records where a

new hidden class is created in the program (e.g., when adding a new property to an object)

and at which object sites in the program this hidden class is encountered. Second, RIC only

deals with context-independent handlers.

RIC does not introduce any additional overheads to the record run as the information is
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1 struct TOASTEntry {

2 HiddenClassID incoming_hc_id;

3 HiddenClassID transition_hc_id;

4 };

5
6 typedef map <ObjectAccessSiteID , TOASTEntry > TOAST;

7
8 struct HCGTEntry {

9 bool validated;

10 set <pair <ObjectAccessSiteID , HandlerAddr >> dependents;

11 }

12
13 typedef map <HiddenClassID , HCGEntry > HCGT;

14
15 class ICRecord {

16 public:

17 void Add(ObjectAccessSiteID site , HiddenClassID incoming_hc_id ,

18 HiddenClassID transition_hc_id , HandlerAddr handler );

19
20 void Restore ();

21
22 private:

23 HCGT hcgt;

24 TOAST toast;

25 };

Figure 2.5: ICRecord’s data structures

generated in background after the execution finishes. All necessary information is already

collected during the execution in the ICVector. RIC scans the ICVector to generate the IC

Record which contains three pieces of information: (i) at which object site each hidden class

is created, (ii) which object sites depend on each hidden class, and (iii) context-independent

handlers generated for each object site and hidden class pair.

In the replay run, RIC validates the IC record as it creates a hidden class. A hidden class

is created at the transitioning object site when adding a property to an object triggers a new

hidden class transition as explained in Section 2.2.2. If the IC record contains the transition

at the object site and the incoming hidden class is already validated, RIC validates the

transition hidden class. Finally, RIC looks up the IC record to find out all the object sites

using the newly validated hidden class and updates the ICVector for those object sites to

avoid IC misses.

2.4.2 IC Record

The ICRecord consists of two data structures, Transitioning Object Access Site Table

(TOAST) and Hidden Class Group Table (HCGT). As its name suggests, the TOAST contains
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the table of transitioning object access sites which cause a new hidden class created upon

their first execution. The HCGT maps each hidden class to a group of object access sites

encountering the hidden class.

Figure 2.5 shows the details of TOAST and HCGT. The TOAST maps each transitioning object

access site to an entry containing a pair of incoming hidden class and transition hidden class.

The HCGT maps each hidden class to an entry containing a flag whether this hidden class is

validated and a set of object access sites dependent on this hidden class and their context-

independent handlers.

Note that ICRecord distinguishes hidden classes with context-independent integer IDs. On

the other hand, ICVector records hidden classes using their addresses as shown in Figure 2.3.

Generating ICRecord after Record Run The ICRecord is generated from ICVector

after the execution finishes. Figure 2.6 shows the methods for generating ICRecord after

the record run. GenerateICRecord (lines 34-52) is invoked after the execution finishes to

iterate the ICVector (lines 37-50) to extract the IC information in a context-independent

manner. For each ICVectorSlot, it first converts hidden class addresses to integer IDs (lines

41 and 42) using HiddenClassRecordMap (lines 12-32). Then, if the handler is context-

independent, it adds this ICVectorSlot’s information to the ICRecord (lines 46-49). When

adding information to the ICRecord, it first checks if it is for transitioning object access site

(line 3), and if so, it adds the information to the TOAST. Otherwise, it updates the HCGT.

Utilizing ICRecord in Replay Run In the replay run, the ICRecord passed from the

previous execution is utilized to handle multiple IC misses at once. Figure 2.7 shows the

methods for utilizing ICRecord in the replay run. The runtime function to handle IC miss

handling, HandleICMiss (lines 22), is extended to use these methods to update ICVector for

other object access sites dependent on the transition hidden class. HandleICMiss retrieves

a transition hidden class (line 27) and invokes ICRecord::Restore to update ICVector

according to ICRecord (line 29). ICRecord::Restore first checks if the current object

access site has information about transition in ICRecord’s TOAST (line 10). If so, it reads the

hidden class IDs from TOAST (lines 11-12). If the incoming hidden class ID is not validated, it

returns without validating the transition hidden class (line 13). It means that the execution

takes a different path than the record run and ICRecord for this object access site might

be wrong. If the incoming hidden class ID is already validated, the transition hidden class

ID is validated (line 14) and it iterates HCGT (line 15) to update ICVector of object access

sites dependent on the transition hidden class (line 18). This saves IC misses at those object

access sites.
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1 void ICRecord ::Add(ObjectAccessSiteID site , HiddenClassID incoming_hc_id ,

2 HiddenClassID transition_hc_id , HandlerAddr handler) {

3 if (transition_hc_id != 0) {

4 toast[site] = TOASTEntry(incoming_hc_id , transition_hc_id );

5 } else {

6 if (hcgt.count(incoming_hc_id) == 0)

7 hcgt[incoming_hc_id] = entry(false , set ());

8 hcgt[incoming_hc_id ]. dependents.insert(make_pair(site , handler ));

9 }

10 }

11
12 class HiddenClassRecordMap {

13 public:

14 HiddenClassID GetID(HiddenClassAddr addr) {

15 if (addr == nullptr) return 0;

16 else if (Exist(addr)) return hc_map(addr);

17 else return Add(addr);

18 }

19
20 private:

21 bool Exist(HiddenClassAddr addr) {

22 return (hc_map.count(addr) > 0);

23 }

24
25 HiddenClassID Add(HiddenClassAddr addr) {

26 HiddenClassID new_id = hc_map.size() + 1;

27 hc_map[addr] = new_id;

28 return new_id;

29 }

30
31 map <HiddenClassAddr , HiddenClassID > hc_map;

32 };

33
34 void ICVector :: GenerateICRecord () {

35 ICRecord ic_record;

36 HiddenClassMap hc_map;

37 for (auto& kvp in vector) {

38 ObjectAccessSiteID site = kvp.first;

39 vector <ICVectorSlot > slot_vector = kvp.second;

40 for (auto& slot in slot_vector) {

41 HiddenClassAddr incoming_hc_addr = slot.incoming_hc_addr;

42 HiddenClassAddr transition_hc_addr = slot.transition_hc_addr;

43 HandlerAddr handler = slot.handler;

44 HiddenClassID incoming_hc_id = hc_map.GetID(incoming_hc_addr );

45 HiddenClassID transition_hc_id = hc_map.GetID(transition_hc_addr );

46 if (IsContextIndependent(handler ))

47 ic_record.Add(site , incoming_hc_id ,

48 transition_hc_id , handler );

49 }

50 }

51 return ic_record;

52 }

Figure 2.6: Methods for generating ICRecord in the record run
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1 void ICVector ::Add(ObjectAccessSiteID site ,

2 HiddenClassAddr incmoing_hc_addr , HandlerAddr handler) {

3 vector[site]. push_back(ICVectorSlot(incoming_hc_addr , nullptr , handler ));

4 }

5
6 void ICRecord :: Restore(ObjectAccessSiteID site ,

7 HiddenClassAddr incoming_hc_addr ,

8 HiddenClassAddr transition_hc_addr ,

9 ICVector* ic_vector) {

10 if (toast.count(site) == 0) return;

11 HiddenClassID incoming_hc_id = toast[site]. incoming_hc_id;

12 HiddenClassID transition_hc_id = toast[site]. transition_hc_id;

13 if (!hcgt[incoming_hc_id ]. validated) return;

14 hcgt[transition_hc_id ]. validated = true;

15 for (auto& p in hcgt[transition_hc_id ]. dependents) {

16 ObjectAccessSiteID dependent_site = p.first;

17 HandlerAddr handler = p.second;

18 ic_vector ->Add(dependent_site , transition_hc_addr , handler );

19 }

20 }

21
22 void Runtime :: HandleICMiss(ObjectAccessSiteID site ,

23 Object* incoming_obj , PropertyName name) {

24 ...

25 HiddenClassAddr incoming_hc_addr = incoming_obj ->hc_addr;

26 HiddenClassAddr transition_hc_addr

27 = GetTransitionHiddenClass(incoming_hc_addr , name);

28 ...

29 ic_record ->Restore(site , incoming_hc_addr , transition_hc_addr ,

30 ICVector* ic_vector );

31 ...

32 }

Figure 2.7: Methods for utilizing ICRecord in the replay run
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1: var o = {};
2: if (…) o.x = 1; // S1
3: o.y = 2; // S2
4: print(o.y); // L1

(a) Example JavaScript code

Site S1 S2 L1 …

HCAddr …

Handler …

ICVector

Site S1 S2 L1 …

HCAddr A …

Handler H1 …

Site S1 S2 L1 …

HCAddr A B …

Handler H1 H2 …

Hidden Class Handler

Address: B

Property Offset

y 0

Initial

Line 3

Line 4

Address: A

Property Offset

Address: H1

obj.HC = B
obj[0] = 2

Status

(b) Transition during the first execution (branch not taken)

Address: H2

ret obj[0]

HCID V Dependents

0 0

1 0 (L1,H2)

Site Incoming HCID Transition HCID

Built-in 0

S2 0 1

Transition Object Access Site Table (TOAST)HC Group Table (HCGT)

(c) RIC information generated after the first execution

Site S1 S2 L1 …

HCAddr …

Handler …

ICVector

Site S1 S2 L1 …

HCAddr C D …

Handler H3 H2 …

Hidden Class Handler

Address: D

Property Offset

y 0

Initial

Line 3

Address: C

Property Offset

Address: H3

obj.HC = D
obj[0] = 2

Status

(d) Transition during the second execution if branch not taken

Address: H2

ret obj[0]

Context-independent
Handler

Site S1 S2 L1 …

HCAddr …

Handler …

ICVector

Site S1 S2 L1 …

HCAddr E …

Handler H4 …

Hidden Class Handler

Address: F

Property Offset

x 0

Initial

Line 2

Line 3

Address: E

Property Offset

Address: H4

obj.HC = E
obj[0] = 1

Status

(e) Transition during the second execution if branch taken

Site S1 S2 L1 …

HCAddr E F …

Handler H4 H5 …

Address: H5

obj.HC = G
obj[1] = 2

Address: G

Property Offset

x 0

y 1

Line 4

Site S1 S2 L1 …

HCAddr E F G …

Handler H4 H5 H6 …

Address: H6

ret obj[1]

Figure 2.8: Example walk-through of how RIC extracts and utilizes context-independent
portion of IC information.

2.4.3 RIC Examples

In this section, we show an example about how IC information is originally generated

during execution, how RIC extracts context-independent portion of the IC information, and

finally how RIC utilizes it to avoid IC misses while ensuring correctness.

Figure 2.8(a) shows a JavaScript source code example which creates an empty object (line

1), adds a property x if a branch is taken, adds a property y, and finally prints out the value

of the property y which will be always 2 in this simple example. There are 3 object access

sites in the example. Lines 2 and 3 have object access sites which adds a property and stores

the value to it which we will call as S1 and S2, respectively. Also, line 4 has an object access

site which loads the value of the property which we will call as L1.

Figure 2.8(b) shows how ICVector is updated and which hidden classes and handlers are

created as the example code in Figure 2.8(a) is executed in the baseline. ICVector has slots

for three object access sites in the code (S1, S2 and L1) and is initially empty. The only

relevant built-in hidden class is an empty hidden class and its hidden class object is located

at the memory address A. We assume that the branch on line 2 is not taken so that S1 is not
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accessed. On line 3, since ICVector is empty, it is an IC miss on S2 and the runtime creates

a new hidden class with the property y at the offset 0 and a new handler which makes a

hidden class transition to the new hidden class and stores the value to the offset 0 in the

incoming object. ICVector is updated with the incoming hidden class and the new handler.

On line 4, it is an IC miss on L1. This time, there is no need to create a new hidden class.

The runtime creates a new handler loading the value from the offset 0 and updates ICVector

with the incoming hidden class and the new handler.

Figure 2.8(c) shows how RIC extracts the context-independent portion of IC information.

HCGT enumerates hidden classes encountered during the execution, gives them integer IDs,

and records object access sites and corresponding context-independent handlers dependent

on each hidden class. In this example, there are 2 hidden classes observed and the only

hidden class associated with a context-independent handler is the hidden class B which is

created on line 3. HCGT assigns an integer ID 1 to it and records that the handler H2 may be

used at the object access site L1 if validated successfully. TOAST records where new hidden

classes are created and provides information to validate HCGT’s information. Lastly, RIC

keeps context-independent handlers. In this example, it only keeps the handler H2.

Figure 2.8(d) shows how RIC information is utilized to avoid IC misses when the execution

follows the same control flow (branch not taken on line 2) and RIC information is validated

successfully. ICVector is empty initially. The empty built-in hidden class object is located

at the memory address C this time. When built-in hidden classes are created at the beginning

of execution, it consults with RIC information to validate the related portion and updates

ICVector when necessary. In this case, it links the hidden class C to the integer ID 0

according to TOAST and validates the corresponding entry in HCGT. Since it does not have

any dependents, it does not update ICVector. The branch on line 2 is not taken so that

S1 is not accessed. On line 3, it is an IC miss on S2 and the runtime creates a new hidden

class D and a new handler H3 similar to the first execution. Note that this IC miss cannot be

avoided because the handler H3 is context-dependent. In addition to updating ICVector for

the object S2 with the hidden class C and the handler H3 as in Figure 2.8(b), it checks RIC

information. TOAST expects the incoming hidden class to have the integer ID 0 and have it

validated. As it is already validated when built-in hidden classes are created, it links the

hidden class D to the integer ID 1 according to TOAST and validates the corresponding entry

in HCGT. In this case, the entry also has dependents information and it updates ICVector

for the object access site L1 with the hidden class D and the handler H2. Thanks to this

update, on line 4, it is an IC hit as opposed to an IC miss in Figure 2.8(b).

Figure 2.8(e) shows how RIC’s validation scheme ensures the correctness when the exe-

cution takes a different control flow (branch taken on line 2). Again, ICVector is empty
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initially. The empty built-in hidden class is allocated at the memory address E and linked to

the integer ID 0 according to TOAST. The branch on line 2 is taken this time and the object

access site S1 is accessed. It is an IC miss and the runtime creates a new hidden class and

a new handler. However, RIC information lacks any information about S1 and the newly

created hidden class does not validate anything. On line 3, it is an IC miss on the object

access site S2 and the runtime creates a new hidden class and a new handler. Note that

the new hidden class G has the property y at the offset 1 while the hidden classes B and D

have it at the offset 0 in Figure 2.8(b) and Figure 2.8(d), respectively. TOAST has an entry

for the object access site S2 but it expects the incoming hidden class to have the integer ID

0 and have it validated. While the integer ID 0 is validated, remember that the integer ID

0 is linked to the hidden class E which is different from the incoming hidden class F. As a

result, we cannot validate the integer ID 1 and it prevents us from updating ICVector for

the object access site L1. Finally, on line 4, unlike in Figure 2.8(d), it is an IC miss on L1.

Note that we would end up accessing the object with the wrong offset (i.e., 0 instead of 1)

if RIC’s validation scheme prevents us from updating ICVector incorrectly.

2.5 EXPERIMENTAL SETUP

To characterize IC operations and evaluate our proposal, we use the version 6.8 of Google

V8 JavaScript engine [7]. We modify the V8 compiler to generate verbose log messages to

gather statistics related to IC operations, such as the number of IC misses, hidden class

addresses, etc. To simulate the performance impact of our proposal, we instrument the

V8 runtime and generated codes to communicate with Pin [21] to report the number of

instructions for each IC miss and other parts of execution. We gather the execution time

for each part using the high precision timer available in the V8 runtime.

In our experiments, for each benchmark, we first execute it to collect information to be

reused in the future executions (i.e., record run). Then, we execute it again with the collected

information (i.e., replay run) to take the actual measurements. We do not introduce any

additional overheads to the record run since information is processed in background after

the execution finishes.

We test two configurations to measure the performance impact of our techniques. The

baseline (B) the original V8 compiler with the code cache enabled. In the record run, B

generates bytecodes from the source code and store them in the code cache. In the replay

run, bytecode generation is compeltely avoided by reusing bytecodes provided by the code

cache. The reusable IC (R) is B with our enhanced IC design. In the record run, in addition

to bytecodes, the IC information is collected. In the replay run, bytecode generation is still
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skipped thanks to the code cache, and the IC information is utilized by our enhanced IC

design to reduce the overhead of IC miss handling.

To evaluate our enhancements, we select 7 popular JavaScript libraries from various do-

mains and measure their initialization performance. AngularJS [22] and React [23] are web

application frameworks to support the development of single-page applications. CamanJS

[24] is a JavaScript library for image manipulation. Handlebars [25] and Underscore [26]

are client-side template engines. jQuery [27] is the most widely used JavaScript library for

DOM manipulation. JSFeat [28] is a JavaScript library for computer vision.

We insert a fake window object to the original source codes to mimic the browser environ-

ment and run benchmarks in the standalone V8 shell. Octane benchmark suite [29] handles

the library execution in a standalone JavaScript shell in a similar way.

Lastly, in order to mimic the real webpages and evaluate the robustness of RIC, we create

two synthetic webpages loading the libraries in different orders. We use the first one for

the record run to generate RIC information. Then, we use the second one for the replay

run where we measure the performance. This effectively simulates the common scenario

when RIC information is generated and utilized in different webpages. With this setup, we

disable RIC for global objects since IC information for global objects varies for each website

depending on the order in which the libraries are loaded.

2.6 EVALUATION

In this section, we analyze various statistics related to IC opeartions to study the effective-

ness of RIC, and compare dynamic instruction count and execution time in the configurations

B and R to evaluate the performance impact of RIC.

2.6.1 IC Statistics

Table 2.2 shows the statistics related to RIC. The first four columns are repeated from

Table 2.1 for the explanation. The third column shows the ratio between the number of

hidden classes and the number of IC misses. On average, 4.75 IC misses share the same

hidden class. It means that RIC can potentially reduce the number of IC misses by the factor

of up to 4.75 (i.e., by about 80%). The fourth column shows the ratio of reusable handlers.

Reusable handlers are not tied to a specific execution context and easily transferable across

executions. On average, 60% of handlers are resuable which means that RIC can be applied

to the majority of handlers.
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# of # of % of ICRecord Stats
Hidden # of IC IC Misses Reusable % of % of Misses

Benchmark Classes Misses per HC Handlers Hits Handler Global Other

angular 138 799 5.79 62.50 52.44 12.52 4.13 30.91
caman 99 383 3.87 61.84 49.87 1.31 3.92 44.91
handlebars 88 541 6.15 63.20 64.88 8.32 1.85 24.95
jquery 271 1547 5.71 57.31 39.63 13.38 2.33 44.67
jsfeat 116 323 2.78 51.72 56.97 0.93 9.60 32.51
react 360 2356 6.54 82.27 79.50 10.19 1.66 8.66
underscore 123 295 2.40 38.12 30.85 3.39 4.07 61.69
Average 171 892 4.75 59.57 53.45 7.15 3.93 35.47

Table 2.2: Statistic related to IC during JavaScript initialization.

The last four columns show the statistics related to the operation of RIC on how ICRecord

utilized to avoid IC misses. The fifth column is the percentage of IC misses which are saved

by utilizing ICRecord. The number of hits in ICRecord is counted when updating ICVector

at line 18 in Figure 2.7. On average, 53.45% of IC misses are avoided this way. The next

three columns show the percentage of IC misses which ICRecord cannot help due to different

reasons. The sixth column shows the percentage of IC misses which have context-dependent

handlers which is not the target of RIC. The seventh column shows the percentage of IC

misses of which incoming object is a global object. We disable RIC for global objects because

we believe it is more realistic configuration considering the common case when the same

JavaScript library is shared by multiple webpages. The last column shows the percentage of

IC misses which ICRecord cannot help for other reasons. The majority of these are the cold

misses on transitioning object access sites where RIC creates a transition hidden class and

validates dependent object access sites.

2.6.2 Performance Improvement

Figure 2.9(a) shows the number of dynamic instructions normalized to the configuration

B. On average, R reduces the number of instructions by 15%. Similarly, Figure 2.9(b) shows

the execution time normalized to the configuration B. On average, R reduces the execution

time by 17%.

RIC improves the performance of benchmarks differently and its impact is roughly pro-

portional to the number of IC misses saved as shown in Table 2.2.
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Figure 2.9: Performance improvement normalized to B.

2.7 RELATED WORK

Ahn et al. [30] propose a modified type system which decouples the prototype pointer from

hidden classes and enables the hidden class and IC information to be reused when refreshing

the same website. Its applicability is, however, somewhat limited as it lacks the mechanism

to make the information persistent and improves the performance only under the specific

conditions (e.g., reloading the same website before garbage collection and without restarting

the browser). In addition, changing the hidden class structure may hurt other optimiza-

tion techniques which require stronger type guarantee provided by the original hidden class

with the prototype pointer. On the other hand, our proposal maintains the information

in a persistent manner to be more generally applicable and does not interfere with other

optimization techniques as it does not change the hidden class structure.

Oh and Moon [9] proposes a snapshot technique to accelerate JavaScript initialization for

mobile applications. V8 also has a similar API to create a custom startup snapshot [31].

Such approaches take a snapshot of the heap after the initialization of JavaScript frameworks

and libraries. When the same application is invoked later, it restores the objects from the

snapshot to the heap instead of recreating them by executing JavaScript code for initial-

ization. While the snapshot technique may greatly reduce the startup time by completely

avoiding JavaScript initialization, it has several limitations. First, it is too rigid for differ-

ent applications to share information. Although two applications use the same JavaScript

library, a snapshot is application-specific and each application has to create its own snap-

shot. In contrast, in our reusble IC design, the information is maintained for each JavaScript

file so that different applications can share it. Second, it has a correctness issue if the ini-

tialization involves any undeterministic behavior, such as the use of random function, date

function, IO operations, etc., of which output may be different in each invocation of the
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same application. Again, in our proposal, the initialization code is still fully executed but

only accelerated with the hints from the previous execution so that it produces the correct

results for undeterministic behavior in every invocation.

There exist some server-side techniques to improve the page load time performance [32,

33]. Kedlaya et al. propose server-side type profiling for optimizing client-side JavaScript

engines. They identify functions with dynamic behaviors which are frequently deoptimized

and waste computing power through server-side profiling. Then, they mark such functions

so that the client-side JavaScript engines do not attempt to optimize them. Compared to

our proposal, they convey the information at the function level and are orthogonal to our

approach. Google’s PageSpeed Module [32] is an open-source Apache HTTP Server module

which automatically applies best practices in the form of optimization filters to the website

source codes including CSS, JavaScript and images. More than 40 available optimization

filters include CSS and JavaScript concatenation, inlining, image optimization, resizing, etc.

PageSpeed can be used to complement our approach to improve the page load time but does

not address the issue of recycling compilation efforts, such as IC information.

2.8 CONCLUSION

JavaScript compilers have not been developed with the aim to resue compilation results

across executions (i.e. upon revisiting a website or visiting another website which uses

the same JavaScript libraries). In this paper, the analysis of the initialization of popular

JavaScript libraries confirmed that there exist opportunities to reuse compilation efforts

across executions: (i) the same hidden class is shared by many object access sites and (ii)

the majority of handlers are context-independent. Based on the observations, we proposed

a mechanism to record and reuse IC information across executions. We evaluated our en-

hanced IC design called Reusable Inline Caching (RIC) with the state-of-the-art Google V8

JavaScript engine by measuring its impact on the initialization time of popular JavaScript

libraries. On average, by recycling IC information collected from the previous execution,

the reusable IC reduced the number of IC misses by 53%, the dynamic instruction count by

15%, and finally the execution time by 17%.
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CHAPTER 3: SHORTCUT: ARCHITECTURAL SUPPORT FOR FAST
OBJECT ACCESS IN SCRIPTING LANGUAGES

3.1 INTRODUCTION

Dynamic scripting languages such as JavaScript [34], Python [35], and Ruby [36] are widely

used in many application domains, both for clients [1, 2] and servers [3, 4]. Programmers like

the portability, flexibility, and ease of programming of these languages, where everything —

including functions and primitives — can be treated as objects, and objects can add and

remove properties at runtime.

This same flexibility makes the task of using a compiler to optimize programs written in

these languages challenging. A given read or write in the program may access different types

of objects at different times. Since the compiler does not know the object types ahead of

execution, it has to augment the code with many runtime checks which slow down execution.

The place in the code where an object property is to be read or written is called an

access site. Access sites are organized to record information about the object types recently

encountered at the access site. The code performs a series of checks to determine if an

incoming object has the same type as any of the ones seen before. If so, the code jumps

to the appropriate handler to perform the access. If all checks fail, the code jumps to the

language runtime, which performs an expensive hash table lookup. The process of identifying

the correct type and invoking the correct handler is called the Dispatch operation. The actual

structure with checks and jumps is called the Inline Cache (IC) [20].

Our analysis of the code generated by the state-of-the-art Google V8 JavaScript JIT com-

piler [7] leads to some insights. Execution at an access site starts with a call to a dispatcher.

The dispatcher code has a series of if statements, each of which includes a comparison to

a type and a jump to a handler. This code executes many instructions, including hard-to-

predict control-flow instructions. Specifically, our experiments with V8’s baseline compiler

shows that, on average for two suites of applications, the dispatch operation accounts for

22% of the applications’ instruction count. Moreover, the branches in the dispatch operation

increase the applications’ average branch Mispredictions Per Kilo Instruction (MPKI) from

5.8 to 10.8.

Since inline caching is a central feature in dynamic scripting language implementations,

this paper examines architectural support to optimize its operation. Based on the insights

from the V8 analysis, our idea is to modify the instruction that calls the dispatcher so

that, under typical conditions, it skips most of the instructions in the IC execution. This is

possible thanks to a new hardware table that records the state observed in prior invocations
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of the code.

Our proposed architecture is called ShortCut, and performs two levels of optimization. In

the Plain design, it transforms the call to the dispatcher into a call to the correct handler

— bypassing the whole dispatcher execution. In the Aggressive design, it transforms the call

to the dispatcher into a simple load or store — this time bypassing the execution of both

dispatcher and handler.

We implement the ShortCut software changes in the state-of-the-art Google V8 JIT com-

piler, and the ShortCut hardware modifications in a Pin-based simulator. We use the Octane

and SunSpider JavaScript application suites. Our evaluation shows that Plain ShortCut re-

duces the average execution time of the applications by 30% running under the baseline

compiler, and by 11% running under the maximum level of compiler optimization. Aggres-

sive ShortCut performs only slightly better.

3.2 BACKGROUND AND MOTIVATION

3.2.1 Inline Caching in Scripting Languages

Many scripting languages, including JavaScript [34], Python [35], and Ruby [36], imple-

ment dynamic type systems. This means that, at runtime, a program can dynamically create

new types by adding or subtracting properties (i.e., data fields or methods) to an object.

Such flexibility promotes ease of programming.

With this support, however, a given access site can now encounter objects of different

types at different times. As a result, in a näıve design, the code at the access site has to

perform an expensive dictionary lookup to locate the property being accessed. This is in

contrast to statically-typed languages, such as C++ or Java, where the fields of a type do

not change at runtime, and are located at fixed offsets determined by the type definition. In

this case, an access site simply performs a memory access.

To overcome this limitation of dynamically-typed languages, the Smalltalk language in-

troduced a technique called Inline Caching (IC) [20]. The idea is to augment an access site

with a software cache that contains the outcome of the most recent dictionary lookup(s).

When an access site accesses a property of an object, the code first searches the cache for this

object type. If the object type is found, the code accesses the property with low overhead;

otherwise, it has to perform a dictionary lookup and update the inline cache.

This approach is widely used in modern virtual machines for dynamic scripting languages.

An access site is called monomorphic, polymorphic, or megamorphic if it sees a single type,

a few different types, or many different types, respectively.
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function get_x(obj) {
return obj.x;
}

a = {x:0};
b = {y:1, x:2};

get_x(a); // IC miss
get_x(a); // IC hit

get_x(b); // IC miss
get_x(b); // IC hit

// get_x
...
if obj_type == Typea
call Handlera

elif obj_type == Typeb
call Handlerb

else
call IC_Miss_Handler

...

// Shared_Read_Dispatcher
foreach Entry in IC_Vector (of site S)
if (obj_type == Entry.Obj_type)
jmp Entry.Handler

jmp IC_Miss_Handler

// get_x
...
call Custom_Dispatcher
...

// Custom_Dispatcher
if obj_type == Typea
jmp Handlera

elif obj_type == Typeb
jmp Handlerb

else
jmp IC_Miss_Handler

// get_x
...
call Shared_Read_Dispatcher
...

(a)	JavaScript	code	example	
with	a	property	load

(b)	Inlined dispatcher

(c)	Custom	dispatcher

(d)	Shared	read	dispatcher

// Handlera
ld Rdst,[Robj+offseta]
ret

// Handlerb
ld Rdst,[Robj+offsetb]
ret

(f)	Handlers

Obj_type Handler

Typea Handlera

Typeb Handlerb

... ...

(e)	IC	Vector	of	site	S

Figure 3.1: Code generation example with different inline cache implementations.

As an example, consider Figure 3.1(a). It shows function get x, which returns the value

of property x of the object argument. We have two objects, a and b. They have different

types because object a only has a property x, while object b has properties y and x. The

example code performs two calls to get x with object a, and two with object b. In both

cases, the first one misses in the IC and the second one hits.

Intuitively, ICs maintain a lookup result as a pair {object type, handler}. The handler

is code specialized to access a particular property of a particular object type. It can be as

simple as a memory access, or it can perform complex operations according to the language

semantics. The handler is generated by the language runtime. The process of identifying

the correct type and invoking the correct handler is called the Dispatch operation.

3.2.2 Approaches to Inline Caching

There are three different implementations of inline caching based on the dispatch mecha-

nism used.

Inlined Dispatcher In this design, the dispatcher is inlined at the access site. This is

the original design in Smalltalk [20], which only supported monomorphic access sites. It

can be generalized to support polymorphic access sites by generating code with a series of

if statements, where each one checks for a different type and, if there is a match, calls the

correct handler.

Figure 3.1(b) shows an example. This code performs the actual reading of obj.x in

function get x. In Figure 3.1(b), the code checks for Typea and Typeb in sequence. The

handlers access the property and then return, as shown in Figure 3.1(f). If no match occurs,
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the code in Figure 3.1(b) calls an IC miss handler in the language runtime, which performs

the access and then extends the IC with a new comparison and handler call.

The main advantage of this design is a relatively low dispatching overhead. A disadvantage

is that every time that a new type is encountered, the entire procedure that contains the

access site has to be extended and, therefore, recompiled. Frequent code recompilation adds

up to the execution time and degrades instruction cache performance. Thus, this design is

typically used only by the highest optimizing tier in multi-tier JIT compilers, which generates

code for hot functions with stable type information. For example, the highest compiler tier

in V8 [7] uses this design, and even inlines the handlers at the access site.

Custom Dispatcher In this design, the dispatcher is taken out from the access site. The

access site simply has a call to a dispatcher specific for this site [37]. In the dispatcher, the

code has the usual set of if statements with comparisons and jumps to handlers.

Figure 3.1(c) shows an example. When a new type is encountered, a new custom dispatcher

is generated that includes the additional comparison and jump. Since the new dispatcher

has a new address, the call at the access site is updated to transfer execution to the new

address. This does not require recompilation of the procedure that contains the access site.

However, it involves writing to the code, to invoke the dispatcher at a different address,

which causes the invalidation of instruction cache state.

The advantage of this approach is that it does not recompile the procedure with the

access site when a new type is encountered. Still, a new custom dispatcher needs to be

generated, and the modification of the call target hurts instruction cache performance. Also,

the memory overhead of maintaining a custom dispatcher per access site is not negligible in

resource-constrained devices.

This design was used by the baseline compiler in V8 until version 4.8 released in November

2015. Recall that V8 has two tiers of compilation. The baseline compiler performs the initial

compilation for all executed code. After warm-up, selected regions of performance-critical

code are recompiled by an optimizer (i.e., Crankshaft).

Shared Dispatcher In this design, instead of having a custom dispatcher for each access

site, there is one dispatcher shared by all the read access sites, and one dispatcher shared

by all the write access sites. The read dispatcher maintains a data structure with individual

information for each read access site. Such individual information is a set of 2-tuples called

Inline Cache (IC) Vector, where each tuple contains a type encountered by that site and its

handler. The write dispatcher maintains a similar data structure with an IC Vector for each

write access site.
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Let us call Site S the read access site in Figure 3.1(a) — i.e., obj.x. Figure 3.1(d) shows

the shared read dispatcher code, as it iterates over the entries of the IC Vector corresponding

to Site S. The shared read dispatcher code uses a register initialized at Site S to automatically

index the correct IC Vector. Figure 3.1(e) shows the IC Vector for Site S. The code in the

shared dispatcher iterates over the entries in this IC Vector, searching for the matching type.

If the matching type is found, the code jumps to the corresponding handler. Otherwise, it

jumps to the IC miss handler in the language runtime, which performs the load and then

adds a new 2-tuple to the IC Vector for S.

The advantage of this design is that it eliminates any recompilation upon an IC miss. This

is because it stores the previous lookup results as data, rather than hard-coding types and

handler addresses in the code. Thus, IC miss handling is quick. Also, the memory overhead

of the dispatcher code is small. However, getting to the handler is now more expensive: it

requires more instructions, many of which are memory accesses. This design has been used

by the baseline compiler in V8 since November 2015. In addition, as part of V8’s continuous

enhancement, its upcoming new interpreter tier will use a shared dispatcher.

Our Focus Our focus in this paper is on optimizing an IC with a shared dispatcher. The

reason is that this is the design currently used by the state-of-the-art V8’s baseline compiler,

but has performance shortcomings. Moreover, similar optimization insights will also apply

to an IC with a custom dispatcher. An IC with an inlined dispatcher, such as the one used

by the V8 optimizing compiler tier, could also benefit from our optimization, albeit to a

lesser extent because it is already highly optimized.

The performance of an IC with a shared or custom dispatcher is important regardless of

the availability of an optimizing tier. Indeed, even if the optimizing compiler is available, a

significant fraction of the execution of programs uses code generated by the baseline compiler

— and, hence, uses a shared or custom dispatcher. The reason is threefold. First, it takes a

while for the optimizing tier to engage. Second, if any assumption made by any optimization

fails (e.g., an unexpected object type is encountered), the baseline tier is re-invoked. Lastly,

there are some functions in a program that the optimizing tier abstains from compiling,

often based on heuristics; they include eval constructs and other complicated cases.
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jmp Handler

Dispatcher

Function

IC_Call Dispatcher,Type

dst objld R     , [R     + offset] dst objld R     , [R     + offset]

FunctionFunction

jmp Handler

Dispatcher

Handler

(a) Conventional

IC_Load Dispatcher,
Type,Base,Destination

Call Dispatcher

return

Handler

return

(b) Plain ShortCut

(c) Aggressive ShortCut

Figure 3.2: Operations of a conventional IC (a), Plain ShortCut (b), and Aggressive ShortCut
(c).

PC

PC Target

BTB

Fetch Decode
Immediate	operand
(Dispatcher)

PC

PC Target

BTB

Fetch RType ready

=

Update	BTB	on	misprediction

RType

(a)	Execution	of Call AddrDispatcher (b)	Execution	of	IC_Call AddrDispatcher,RType

PC Type Handler

=

ICTable

Update	BTB	on	misprediction

PC Type Simple Handler/Offset

Time Time

ICTable

(c)	Extended	ICTable for	Aggressive	design

if	Simple	==	0	→	Handler
if	Simple	==	1	→	Offset

Validate

Figure 3.3: Structures used in a conventional IC (a), Plain ShortCut (b), and Aggressive
ShortCut (c).

3.3 SHORTCUT ARCHITECTURE

3.3.1 Main Idea

Inline caching is a central feature in dynamic scripting language implementations. Unfor-

tunately, an examination of custom or shared dispatchers reveals that ICs still have a lot of

overheads. The general structure of these ICs is shown in Figure 3.2(a). The access site (e.g.,

obj.x in Figure 3.1(a)) uses a procedure call to invoke the dispatcher. The dispatcher, after

some checks with conditional branches, uses an unconditional jump to reach the handler.

In this process, many instructions are executed, including many control-flow instructions,

which often flush the pipeline.

The goal of this paper is to make inline caching in dynamic scripting languages signifi-

cantly more efficient. We propose two designs, which we call Plain ShortCut and Aggressive

ShortCut. In Plain ShortCut, we want to bypass the dispatcher and transfer execution di-

rectly to the correct handler as shown in Figure 3.2(b). Since a given access site may use
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different handlers at different times, we have to predict the correct handler. Then, we need

a way to validate the prediction and rollback execution if the prediction was incorrect.

Figure 3.2(b) shows the simplified control flow of Plain ShortCut. We replace the original

call with a new instruction called IC Call. Since the correct handler to use depends on

the type of the object accessed, IC Call takes, as an additional operand, the type of the

object accessed. If the prediction fails, execution falls back to the conventional path of

Figure 3.2(a).

In practice, a handler often performs nothing more than a simple load from or store to

an object’s property. This is shown in Figure 3.1(f). Calling the handler and returning

has substantial overhead. Hence, Aggressive ShortCut takes a more aggressive approach, as

shown in Figure 3.2(c). The idea is to perform the load or the store as part of the original

instruction that used to call the dispatcher.

These simple handlers with a load or store operation use a base register, an offset, and a

destination register. We add these two registers as additional operands to the instruction.

Moreover, the offset is fixed for a given access site and object type. Hence, if we predict the

type of the object correctly, the hardware can perform the load or store operation as part of

this instruction.

As shown in Figure 3.2(c), we replace the call with a new instruction called IC Load (or

IC Store). These instructions are used in read and write access sites, respectively. When an

IC Load or IC Store executes, if the prediction succeeds, the instruction either performs the

actual load/store operation in hardware (if the handler is a simple load or store operation) or

defaults to an IC Call (if the handler is more complicated). If the prediction fails, execution

falls back to the conventional path of Figure 3.2(a).

To see how we support these ideas, consider first how a conventional Call Dispatcher

instruction works in Figure 3.3(a). V8 uses a call instruction with the PC-relative address

of the dispatcher as an immediate. At instruction fetch, the BTB is accessed, and provides

the predicted target address. The pipeline starts fetching instructions at the predicted

target. When the dispatcher address is finally generated, the target is validated. If a

misprediction occurred, the pipeline is flushed, the BTB is updated, and the pipeline starts

fetching instructions at the dispatcher.

Plain ShortCut extends this procedure as shown in Figure 3.3(b). The Call Dispatcher

instruction is now replaced with our IC Call instruction. The IC Call instruction takes an

additional register (RType) with the type of the object accessed. In addition, we add a new

hardware table called Inline Cache Table (ICTable). Each entry in the table contains the

address of an IC Call instruction, an object type, and the address of the handler for that

object type.
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At instruction fetch in Plain ShortCut, the BTB is accessed and proceeds as usual — in

the best case, as we will see, predicting the handler address as the target (rather than the

dispatcher address). The pipeline starts fetching instructions at the predicted target. When

RType becomes available, the address of IC Call and the object type are hashed together to

index into the ICTable. On a hit, the ICTable provides the handler address. If the BTB had

provided the correct prediction, execution continues; otherwise, the pipeline is flushed, the

BTB is updated, and the pipeline starts fetching instructions at the correct handler address

provided by the ICTable. On an ICTable miss, the dispatcher has to be executed, and we

flush the pipeline unless the BTB had provided the dispatcher address.

Aggressive ShortCut upgrades the ICTable to the design of Figure 3.3(c). The table has

one extra field, called Simple, and the old Handler field becomes Handler/Offset. If Simple

is zero, the Handler/Offset field contains the handler address as in Plain ShortCut; if Simple

is set, the Handler/Offset field contains the offset of the requested property in the structure

of the object being accessed. Then, the hardware reads the offset, adds it to the base register

provided by the instruction, and performs the load/store operation.

3.3.2 Detailed Design of Plain ShortCut

The Plain ShortCut architecture is shown in Figure 3.3(b). It uses the set-associative

hardware table called ICTable. Each ICTable entry contains three virtual addresses (VA).

The first one is the VA of the IC Call instruction, which we refer to as the address of the

access site. The second is the VA of an object type that has been previously seen at this

access site. This is because V8 represents object types as memory addresses. The third is

the VA of the handler for this type.

The ICTable may contain multiple entries for the same access site. In this case, each entry

contains a different type. As a result, the ICTable is indexed by a hash of the access site

address and the type.

The ICTable provides the address of the handler to execute. The table cannot provide

incorrect results, as it is not a prediction. If an access to the ICTable hits, it contains the

VA of the handler that should be executed.

On an ICTable miss, the ICTable is updated in software by the dispatcher, once the

dispatcher determines the correct handler that will be executed. Such an update occurs

with a special instruction called IC Update. There is also a way to flush the whole ICTable.

This is done with the IC Flush instruction. We describe these instructions in Section 3.4.

The ICTable is accessed by the IC Call instruction described above. The access occurs

as soon as the access site address and the type are known during the execution of the
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instruction, after the access to the BTB at fetch time.

The BTB and the ICTable work together but have different roles. The BTB is accessed

in the pipeline’s front end. It provides a prediction, which is used to direct the fetching

of instructions. However, the BTB prediction may be incorrect. The ICTable validates or

refutes the prediction of the BTB later in the pipeline. If the prediction is refuted, the

pipeline is flushed and the BTB is updated.

The BTB has at most one entry for a given access site. If the entry exists, it can have

one of three different types of target addresses: the address of the dispatcher, the address of

the correct handler, or the address of an incorrect handler. The last case occurs when the

access site encounters a type that is different from the one last seen at this site.

The Plain ShortCut operation, therefore, involves two steps (Figure 3.3(b)). At fetch

time, the BTB is accessed and provides a target. The pipeline starts fetching instructions

from there. Later, when the ICTable is accessed, there are two possible outcomes: either

the ICTable misses or hits. If it misses, the hardware uses the dispatcher address generated

in the decode stage as the address of the next instruction to fetch. Hence, if the BTB had

predicted this target, the pipeline continues execution; otherwise, the pipeline is flushed and

fetching starts at the dispatcher address. If, instead, the ICTable hits, the hardware provides

the handler address in the ICTable entry as the correct target. As before, if the BTB had

predicted this target, the pipeline continues execution; otherwise, the pipeline is flushed and

fetching starts at the handler address provided by the ICTable.

The entries in the BTB and in the ICTable can be evicted independently due to con-

flicts in their structures. For simplicity, when an ICTable entry is evicted, the BTB is not

modified, and vice versa. As a result, when an ICTable entry for an access site and type

is evicted, it is possible that the BTB is left with an entry that will not be useful even if

the same access site and type are encountered. This is because while the target in the BTB

entry is the correct handler address, the ICTable miss will trigger a pipeline flush and the

redirection of instruction fetching to the dispatcher address. With additional hardware, we

could update the BTB with the dispatcher address upon the ICTable entry eviction to avoid

such misprediction. We choose not to do it for simplicity.

ICTable Operations Our Plain ShortCut design works best when a given access site

keeps encountering the same type repeatedly. In this case, the ICTable will store an entry

for this access site and type, and the corresponding BTB entry will set its target field to

be the correct handler address. The pipeline is never flushed and the dispatcher is always

avoided.

There are three cases when things go wrong. One case is when the access site encounters
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# When the Case BTB ICTable Pipeline What is Other Actions Taken
Happens Outcome Outcome Flush? Executed

1 First execution Miss Miss Yes Dispatcher Add entry to BTB w/ PC + handler
of access site + Handler Add entry to ICTable w/ PC + type + handler

2 Encounter Hit. Correct Hit No Handler
same type again handler
Encounter diff. Hit. Dispatcher Update BTB entry w/ handler

3 type (not yet Incorrect Miss Yes + Handler Add entry to ICTable w/ PC + type + handler
seen before) handler
Encounter diff. Hit.

4 type (already Incorrect Hit Yes Handler Update BTB entry w/ handler
seen before) handler

After ICTable Hit. Correct Dispatcher Update BTB entry w/ handler
5 eviction: same handler Miss Yes + Handler Add entry to ICTable w/ PC + type + handler

type accessed

After BTB
6 eviction: same Miss Hit Yes Handler Add entry to BTB w/ PC + handler

type accessed

Table 3.1: Interaction between the BTB and the ICTable.

different object types that keep alternating. This will cause the BTB to mispredict and

the pipeline will be flushed; however, the dispatcher will not be executed, as the ICTable

maintains the handlers for the multiple types. Another unfavorable case is when a useful

ICTable entry is evicted. In this case, when the evicted type is encountered again, the

dispatcher will have to be executed. Finally, a useful BTB entry may be evicted. This will

cause a BTB miss when the corresponding access site is executed again with the same type;

however, it will not cause dispatcher execution.

Table 3.1 summarizes all the possible cases. It lists when each case happens, the BTB

outcome, the ICTable outcome, whether there is a pipeline flush, what is executed, and other

actions taken. Case 1 is the first execution of the access site, which induces misses in both

structures and causes both dispatcher and handler execution. Case 2 is an execution of the

access site that encounters the same type as in the prior execution. This is the best possible

case. The next two cases occur when the execution encounters a different type than in the

prior execution — a type that has never been seen before (Case 3) or that has already been

seen before (Case 4).

Consider now that the ICTable entry for an access site and type is evicted while it had a

corresponding valid BTB entry. A new case occurs when the same access site and type are

encountered again before the BTB entry has changed. In this case, the pipeline is flushed

because both the dispatcher and the handler need to be executed. The ICTable and the

BTB are updated, even though the BTB had the correct handler address (Case 5). Note

that if after the ICTable entry eviction the same access site is encountered with a different

type, we have one of the situations discussed in Case 2, Case 3, or Case 4.

Finally, assume that a BTB entry for an access site is evicted. Case 6 is the case when

the access site is accessed again with a type that has an entry in the ICTable.
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3.3.3 Detailed Design of Aggressive ShortCut

Some of the read and write access sites, when they encounter certain object types, execute

handlers that perform nothing more than a simple load from or store to a property of the

object. They do not perform any other operation, such as traversing the object’s prototype

chain. We call these handlers simple handlers. In Aggressive ShortCut, we want to perform

the load or store without having to jump to the handler. Hence, we propose to functionally

transform the instruction that calls the dispatcher into a load or a store when the conditions

allow it. The goal is to emulate the low overhead of a statically-typed language.

As shown in Figure 3.1(f), these simple handlers execute an instruction of the form ld

Rdst,[Rbase+offset] (or st Rsrc,[Rbase+offset] at a write access site). Rbase contains the

base address of the object accessed by the handler (hence, we use Robj in Figure 3.1(f)). It

is set by the V8 compiler before calling the dispatcher. offset is the offset of the desired

property from the object’s base. V8 hardcodes offset in the handler for that access site

and type. Finally, Rdst/Rsrc is the register that receives the datum from the memory or that

provides it to the memory. It is always the same register as part of the calling convention.

The Aggressive ShortCut architecture augments the ICTable as shown in Figure 3.3(c).

It has an additional one-bit field called Simple. If a given entry corresponds to a simple

handler, Simple is set to one, and the field that used to contain the handler address now

contains the offset used in the load or store. If the entry does not correspond to a simple

handler, Simple is set to zero, and the Handler/Offset field contains the handler address.

On the software side, we modify the IC miss handler so that, when it generates a handler,

it checks if it is a simple handler. If so, as it inserts the entry in the ICTable, it sets the

Simple bit and stores the offset in the Handler/Offset field. In addition, as it adds the new

type and handler address in the software IC Vector for the site, it also records that this is a

simple handler and its offset.

Finally, we replace the IC Call instruction in read and write access sites with IC Load and

IC Store, respectively. These instructions take two additional registers as operands, which

are used as Rbase and Rdst/Rsrc. When these instructions execute, if they hit in the ICTable,

the hardware checks if the Simple bit is set. If so, the hardware reads the Handler/Offset field

and performs the ld Rdst,[Rbase+offset] or st Rsrc,[Rbase+offset] operation. Neither the

dispatcher nor the handler is called. In addition, the BTB target is updated to point to the

instruction that follows the IC Load or IC Store. This is because we have eliminated all calls

and jumps, and there is no control flow change. We have performed the load or store as part

of the IC Load or IC Store instruction.

IC Load and IC Store for a simple handler follow a similar algorithm as that in Table 3.1.
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For example, if the ICTable misses, the dispatcher executes, and inserts into the ICTable an

entry from the IC Vector that has a set Simple bit and an offset.

When the handler is not simple (i.e., Simple is clear), IC Load and IC Store operate exactly

like IC Call.

3.4 ADDITIONAL DESIGN ASPECTS

3.4.1 ISA Extensions

ShortCut extends the ISA to expose the ICTable to the software. It adds the five instruc-

tions shown in Table 3.2. The first three instructions can replace the call to the dispatcher

at IC access sites (call AddrD).

Instruction Functionality

IC Call Calls the handler if it hits in ICTable;
(Plain) calls the dispatcher otherwise

IC Load Performs a load if it hits in ICTable and Simple
(Aggressive) is set; calls handler or dispatcher otherwise

IC Store Performs a store if it hits in ICTable and Simple
(Aggressive) is set; calls handler or dispatcher otherwise

IC Update Installs an entry in the ICTable;
(Plain/Aggr.) updates the BTB

IC Flush Flushes the ICTable
(Plain/Aggr.)

Table 3.2: Instructions added by ShortCut.

IC Call AddrD,RType. It takes as operands the relative address of the dispatcher and a

register with the type of the object accessed. It indexes into the ICTable with a hash of

the PC and RType. If it hits, control is transferred to the handler provided by the ICTable;

otherwise, control is transferred to the dispatcher.

IC Load AddrD,RType. It takes as operands the relative address of the dispatcher, one

explicit register with the object type, and two implicit registers. One of the implicit registers

contains the base of the object (Rbase) and the other will receive the value of the object

property (Rdst). It replaces IC Call at read access sites in Aggressive ShortCut.

IC Load indexes into the ICTable with a hash of the PC and RType. If it hits and the

ICTable provides an offset, the instruction performs ld Rdst,[Rbase+offset]; if it hits

and the ICTable does not have an offset, control is transferred to the handler; if it misses,

control is transferred to the dispatcher.
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IC Store AddrD,RType. It takes as operands the relative address of the dispatcher, one

explicit register with the object type, and two implicit registers. The implicit registers

contain the base of the object (Rbase) and the value that will be stored into the object

property (Rsrc). It replaces IC Call at write access sites in Aggressive ShortCut. IC Store

operates like IC Load except that, if it hits in the ICTable and the ICTable provides an

offset, the instruction performs st Rsrc,[Rbase+offset].

IC Update RPC,RType. It takes as operands a register with the access site address (RPC),

a second register with the object type (RType), and either one or two implicit registers (in

Plain and Aggressive, respectively). The implicit register in Plain ShortCut contains the

handler address (Rhandler); those in Aggressive ShortCut contain the simple bit (Rsimple),

and either the handler address or the offset (depending on the value of the simple bit)

(Rvalue). IC Update indexes into the ICTable with a hash of access site address and object

type, and creates an entry in the table, filling it with its three or four register operands.

IC Update also updates the BTB entry indexed by RPC. In Plain ShortCut, the entry’s

target is set to the handler; in Aggressive ShortCut, if Rsimple is set, the entry’s target is

set to RPC + 4; otherwise, it is set to the handler.

IC Flush. It invalidates all entries in the ICTable. It is used by the language runtime

after garbage collection, and by the OS at context switches to prevent the use of stale or

incorrect data.

3.4.2 Integration with the Compiler

We modify V8 to use ShortCut’s new instructions. In the Plain ShortCut design, we

replace the call to the dispatcher at each access site with IC Call. Recall that IC Call takes

the object type as an operand. In the original V8, the object type is read in the dispatcher.

Consequently, we move the instruction that reads the type from the dispatcher to before the

IC Call.

In the Plain and Aggressive ShortCut designs, we modify V8’s dispatcher and IC miss

handler to use IC Update. Specifically, when the dispatcher finds the correct handler in the

IC Vector, we invoke IC Update to upload the information into an ICTable entry. Similarly,

when the IC miss handler creates a handler, we also invoke IC Update to upload the infor-

mation into an ICTable entry. These instructions add little overhead because dispatcher and

IC miss handler are invoked infrequently.

In the Aggressive ShortCut design, we replace the IC Call at each read and write access

site with IC Load and IC Store, respectively. These instructions need Rbase (and Rsrc in the
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case of IC Store) to be set in advance. The original V8 already sets these registers before

the call to the dispatcher. Hence, we do not need to make changes.

3.4.3 ShortCut Overheads

ShortCut adds both software and hardware overheads. The software overheads are very

small, and come from slightly higher memory pressure and from the instructions added.

The memory pressure increases slightly for two reasons. First, moving the instruction that

sets RType from the shared dispatcher to before the IC Call marginally increases the code

size. Second, extending the IC Vector in the Aggressive design to include the Simple bit

increases the data size a bit.

To assess the cost of the new instructions, we consider the following. IC Call is a call

instruction that, as it executes, checks the ICTable and confirms or refutes the prediction.

IC Load and IC Store additionally perform a load or a store based on data accessed from the

table. A possible latency for these instructions is one more cycle than a call (for IC Call) and

two more cycles than a load or store (for IC Load and IC Store). However, these additional

latencies are mostly hidden in an out-of-order pipeline, and are dwarfed by the instructions’

positive impact on prediction and avoidance of control flow change.

For the other two instructions, we assume that IC Update takes 6 execution cycles, and

IC Flush 20 execution cycles. These instructions are too rare to cause any noticeable over-

head.

The instruction count increases slightly because we add the IC Update instruction to the

dispatcher and to the IC miss handler, and need to use IC Flush at context switches and

after garbage collection invocations. However, the dispatcher and the IC miss handler are

invoked relatively infrequently, and context switches and garbage collection invocations are

even less frequent.

The main ShortCut hardware overhead is the ICTable. Each entry in the ICTable contains

three memory addresses — plus one bit in the Aggressive design. Current x86-64 processors

use 48 bits for a virtual address. Hence, the size of a 512-entry ICTable is about 9 KB,

which is a modest overhead.

Finally, although IC Call, IC Load, and IC Store interact with the BTB, they do not

place additional size requirements on the BTB. This is because each of these instructions

replaces an original instruction that called the dispatcher and already occupied a BTB entry.

Consequently, the total number of instructions competing for BTB entries is unchanged.
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3.5 DISCUSSION

3.5.1 Implications for Other Languages

While we use V8 to demonstrate the effectiveness of ShortCut, the idea can be ported to

other JavaScript compilers, and to compilers of other dynamic scripting languages. If such

compilers implement an IC in their lower tier, a shared or custom dispatcher is a much better

design choice than an inlined dispatcher, which has substantial recompilation overhead. For

example, WebKit’s baseline compiler implements a custom dispatcher [38]. Moreover, the

ShortCut hardware can be largely reused with minimal variations for any different imple-

mentation of a shared or custom dispatcher. Finally, while our software changes are based

on V8’s shared dispatcher design, we speculate that compiler teams for other languages and

implementations would find it relatively easy to support ShortCut.

It is also possible to apply ShortCut to other code structures. For example, it can be

applied to virtual function calls in statically-typed object-oriented languages [39], to avoid

vtable lookups and improve indirect branch prediction. Similarly, ShortCut can be used to

improve the performance of switch statements, by storing case labels and the corresponding

handlers in the ICTable.

3.5.2 Flushing the ICTable

The ICTable needs to be flushed upon garbage collection and upon context switches to

prevent the use of stale or incorrect data. It is possible to avoid unnecessary flushes after

garbage collection by tracking the types of objects collected, and executing IC Flush only

if the type structure is altered by the garbage collection. In addition, we can extend the

ICTable with a bloom filter [40] to track the types stored in the ICTable. In this way, we

can flush only if the types altered by the garbage collection hit on the bloom filter.

3.5.3 Applicability to Interpreters

As many scripting languages rely on interpreters, it would be interesting to extend Short-

Cut to support interpreters. Interpreters lack the capability of dynamic code generation;

they record profiling information as data instead of inlining it in codes. Hence, when in-

terpreters implement an IC, they use a design like the shared dispatcher. For example, to

record profiling information, WebKit’s LLInt [38] uses bytecode data, and the upcoming V8

Ignition [7] relies on the IC Vector of the shared dispatcher. Consequently, ShortCut has
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the potential to improve the IC operation of interpreters.

In interpreters, however, all access sites use the same instruction to call the dispatcher

from the bytecode handler. Consequently, all access sites are predicted with a single BTB

entry that transfers execution to the shared dispatcher. As a result, if we used ShortCut, we

would have a low BTB prediction accuracy, because a single BTB entry now needs to transfer

execution to different handlers. To overcome this limitation, we could extend ShortCut to

index the BTB with bytecode addresses instead of PCs. A similar approach is used in

previous BTB proposals [41, 42].

3.6 EXPERIMENTAL SETUP

To support ShortCut, we implement the compiler changes discussed in Section 3.4.2 to the

state-of-the-art Google V8 JavaScript JIT compiler [7]. Our implementation uses V8 version

5.1, which was the most recent release at the time of performing our experiments. V8 consists

of two compiler tiers; every function starts with the baseline tier, and only hot functions are

recompiled by the optimizing tier. We turn off garbage collection to achieve deterministic

results. We run the well-known Octane 2.0 [29] and SunSpider 1.0.2 [43] application suites.

To model and evaluate the ShortCut hardware, we extend the Sniper simulator [44], which

is a widely-used Pin-based [21] architecture simulator. The parameters of the processor

architecture are shown in Table 3.3. The baseline processor uses a 4K-entry BTB to predict

indirect branches [45]. The ICTable modeled has 512 entries. While Sniper is an application-

level simulator, we model the effect of context switches and garbage collection invocations

on ICTable by flushing the ICTable every 15 milliseconds with IC Flushes.

Core 4-wide out-of-order, 128-entry ROB, 2.66GHz

Branch Hybrid predictor
Predictor BTB: 4K entries, 4-way, RR replacement, 96b/entry

Branch misprediction penalty: 15 cycles

ICTable 512 entries, 4-way, RR replacement, 145b/entry

Caches L1-I: 32KB, 4-way, 4-cycle latency
L1-D: 32KB, 4-way, 4-cycle latency
L2: 256KB, 4-way, 12-cycle latency
L3: 8MB, 16-way, 30-cycle latency
Block size: 64B, LRU replacement

Memory 120-cycle minimum latency
16 DRAM banks

Table 3.3: Processor architecture. RR means round robin.
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Name Configuration

BO, B Baseline: Conventional processor using the unmodified V8
IO, I Ideal: Baseline enhanced with a perfect BTB for the IC
PSO, PS Plain ShortCut using the modified V8
ASO, AS Aggressive ShortCut using the modified V8

Table 3.4: Architecture and compiler configurations evaluated.

We evaluate the four pairs of configurations shown in Table 3.4. Baseline is a conventional

processor using the unmodified V8 compiler (BO, B). Ideal is the baseline configuration

enhanced with a perfect BTB that always provides the correct target for branches in the IC

code structure (IO, I). This serves as an upper bound for existing proposals for BTBs that

improve indirect branch prediction [41, 46, 47]. Finally, we model Plain ShortCut with its

modified V8 compiler (PSO, PS), and Aggressive ShortCut with its modified V8 compiler

(ASO, AS).

Within each pair, the two configurations are: one with the V8 optimizing tier enabled

(configurations terminated in O), and one with such tier disabled (configurations not termi-

nated in O). The configurations without the optimizing tier estimate the impact of ShortCut

in dynamic scripting languages that do not have an advanced optimizing tier. Also, recall

that we do not apply ShortCut to the IC with an inlined dispatcher used by the optimizing

tier. Applying ShortCut to it could potentially improve performance more.

Recall from Section 3.3.3 that the Aggressive ShortCut design supports simple load and

store handlers. Due to the complexity of the V8 compiler, however, our compiler support

for Aggressive ShortCut (ASO, AS) is currently limited to IC Load only (no IC Store). To

assess the potential of Aggressive ShortCut, we note that of all the handler invocations in

our applications, 75.7% are loads and 24.3% are stores. Further, 15.1% of the load handler

invocations and 17.2% of the store handler invocations, respectively, are simple.

3.7 EVALUATION

3.7.1 Characterization

We start by investigating the overhead of the IC in the unmodified V8 compiler. We

measure the dynamic instruction count and the branch misprediction count. We categorize

the dynamic instructions in an application execution into three categories: IC, Code, and

Runtime. IC is instructions spent in the IC shared dispatcher, executing the code in Fig-

ure 3.1(d); Code is instructions spent in the rest of the application code generated by the
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compiler; finally, Runtime is instructions spent in the language runtime — e.g., to support

compilation, string operations, and regular expressions.
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Figure 3.4: Breakdown of dynamic instruction count in Octane with (left) and without
(right) the optimizing tier.
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Figure 3.5: Breakdown of dynamic instruction count in SunSpider with (top) and without
(bottom) the optimizing tier.

Figures 3.4 and 3.5 show the breakdown of dynamic instruction count in Octane and

SunSpider, respectively. Each figure has two charts: one with the optimizer tier on, and one

with the optimizer tier off. In a chart, each application has four bars: Baseline configuration

(normalized to 1), Ideal, Plain ShortCut, and Aggressive ShortCut.

If we have the optimizing tier enabled (Figures 3.4-left and 3.5-top), the unmodified V8

system (BO) executes, on average, 10% and 7% of the instructions in the IC dispatcher for

41



bo
x2

d
co

de
-lo

ad
cr

yp
to

de
lta

blu
e

ea
rle

y-
bo

ye
r

gb
em

u
m

an
dr

ee
l

na
vie

r-s
to

ke
s

pd
fjs

ra
yt

ra
ce

re
ge

xp
ric

ha
rd

s
sp

lay
ty

pe
sc

rip
t

zli
b

Av
er

ag
e

3d
-cu

be
3d

-m
or

ph
3d

-ra
yt

ra
ce

bin
ar

y-
tre

es
fa

nn
ku

ch
nb

od
y

ns
iev

e
3b

it-
bit

s
bit

s-i
n-

by
te

bit
wi

se
-a

nd
ns

iev
e-

bit
s

co
nt

ro
lflo

w
cr

yp
to

-a
es

cr
yp

to
-m

d5
cr

yp
to

-sh
a1

da
te

-to
fte

da
te

-x
pa

rb
m

at
h-

co
rd

ic
pa

rti
al-

su
m

s
sp

ec
tra

l-n
or

m
re

ge
xp

-d
na

str
-b

as
e6

4
str

-fa
sta

str
-ta

gc
lou

d
str

-u
np

ac
k

str
-v

ali
da

te
Av

er
ag

e

0

5

10

15

20

25

30
Br

an
ch

 M
PK

I

B PS

Direct Indirect Dispatcher IC_Call

Figure 3.6: Branch MPKI in Octane (left) and SunSpider (right) for B and PS.

Octane and SunSpider, respectively. Moreover, if we do not have the optimizing tier enabled,

(Figures 3.4-right and 3.5-bottom), the unmodified system (B) executes, on average, 26%

and 19% of the instructions in the IC dispatcher for Octane and SunSpider, respectively. The

IC dispatcher executes at least 14 dynamic instructions every invocation, and consequently,

the overhead of executing the IC dispatcher is significant. These instructions are the main

target of ShortCut.

It can be shown that the indirect jump in the shared dispatcher (jmp Entry.Handler

in Figure 3.1(d)) is very hard to predict. This is because it has as many different targets as

the number of handlers. We measure that the average prediction accuracy of the BTB for

this branch is only 42% and 52% for Octane and SunSpider, respectively. As a result, for

the unmodified V8’s baseline compiler, this branch increases the application-wide average

Mispredictions Per Kilo Instruction (MPKI) substantially. Specifically, it can be shown that

it increases the application-wide average MPKI in Octane from 6.7 to 14.4, and in SunSpider

from 5.4 to 8.8. We will examine the branch behavior of the IC in more detail later.

3.7.2 Impact of ShortCut

Dynamic Instruction Count We now compare the different bars in Figures 3.4 and 3.5.

First, the IO and I configurations have the same instruction count as BO and B, respectively.

We now consider Plain ShortCut. Without the optimizing tier, (Figures 3.4-right and 3.5-

bottom), PS reduces the average number of instructions by 21% and 15% in Octane and

SunSpider, respectively. This is a substantial reduction. In addition, with the optimizing tier

enabled (Figures 3.4-left and 3.5-top), PSO still reduces the average number of instructions

by 8% and 6% in Octane and SunSpider, respectively.

Aggressive ShortCut improves little over Plain ShortCut. Specifically, AS shaves off an

average of 2% and 1% of the instructions in PS for Octane and SunSpider, respectively. The

reason for this small impact is that, as indicated in Section 3.6, Aggressive ShortCut only
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optimizes 15% of the load handlers and none of the store handlers. The reduction from ASO

to PSO is even smaller.

Looking at the breakdown of instructions, we see that the reduction from B to PS (or

from BO to PSO) comes from the IC category. ShortCut is avoiding the execution of the

dispatcher. PS and PSO, however, do not completely remove the dispatching overhead (IC).

The reason is that they still have to execute the dispatcher when they miss in the ICTable.

It can be shown that the average miss rate in the 512-entry ICTable is 5.7% .

The magnitude of the reduction in dynamic instructions varies by application, depending

on the frequency and predictability of inline caching operations. The code-load applica-

tion (the second application in Figure 3.4) is an extreme case where there is almost no inline

cache operation, as it measures compilation overhead and executes in the language runtime

(Runtime).

Branch Prediction Figure 3.6 shows the branch MPKI in Octane and SunSpider for

the B and PS configurations. We categorize branch instructions into four types: Direct,

Indirect, Dispatcher and IC Call. Direct is the traditional direct branches, where the target

is provided with an immediate operand. Indirect is the traditional indirect branches, where

the target is provided with a register operand. We count the indirect branch in the shared

dispatcher separately, in the Dispatcher category, to expose the overhead of inline caching.

Lastly, IC Call is ShortCut’s new type of indirect branch instruction. Note that B has

no IC Call category. The figure does not show I because I is identical to B without the

Dispatcher category. Also, AS is not shown because it is practically identical to PS.

As shown in the figure, PS reduces the average branch MPKI from 14.4 to 8.5 in Octane

and from 8.8 to 6.0 in SunSpider. Looking at the breakdown, we see that the reduction

in branch mispredictions comes from Dispatcher. PS rarely executes the Dispatcher branch

because it hits in the ICTable and avoids the execution of the dispatcher most of the time.

PS introduces IC Call in the figure by executing the IC Call instruction at each access

site. This instruction replaces a direct call instruction to the dispatcher in B, whose target

can be easily predicted by the BTB. On the other hand, IC Call can be mispredicted in some

cases, as explained in Table 3.1 — e.g., for polymorphic access sites. However, the average

prediction accuracy for IC Call is as high as 98%. Hence, the reduction in Dispatcher well

justifies the additional mispredictions caused by IC Call.

In the figure, Direct and Indirect seem to increase for some applications. This is due to the

reduction in dynamic instructions, but the absolute number of mispredictions remains same.

The BTB’s overall hit rate remains roughly the same for all configurations, confirming that

ShortCut does not increase the pressure on the BTB.
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Figure 3.7: Normalized execution time of Octane with (left) and without (right) the opti-
mizing tier.
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Figure 3.8: Normalized execution time of SunSpider with (top) and without (bottom) the
optimizing tier.

Execution Time Figures 3.7 and 3.8 show the execution time of Octane and SunSpider,

respectively, for all configurations with and without the optimizing tier. The figures are

organized as Figures 3.4 and 3.5. All bars are normalized to the baseline configuration (BO

in the charts with the optimizing tier, and B in the charts without it).

Without the optimizing tier (Figures 3.7-right and 3.8-bottom), PS improves the average

execution time by 37% and 26% for Octane and SunSpider, respectively, relative to B. The

improvement comes mostly from the combination of reduced instruction count and enhanced

branch prediction, as explained in the previous paragraphs. AS further decreases the exe-

cution time in some applications (up to 2.6%). However, its average impact is very small.

As indicated before, the reason for this small impact is that the current implementation of

Aggressive ShortCut only optimizes a small fraction of the handlers.

When the optimizing tier is enabled (Figures 3.7-left and 3.8-top), PSO reduces the average

execution time by 13% and 10% for Octane and SunSpider, respectively, relative to BO. This
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is smaller than without the optimizing tier, but still a substantial improvement — especially,

given the very highly optimized nature of the Google V8 compiler. The average reduction

from PSO to ASO is negligible.

Lastly, PSO and PS substantially outperform IO and I. This shows that having a perfect

BTB that always provides the correct target for branches in the IC code structure is no

match for our ShortCut optimization.

3.7.3 Sensitivity Study

We perform a sensitivity study by varying the ICTable size at a fixed associativity of 4,

for Plain ShortCut. Figure 3.9 shows the average execution time of Octane and SunSpider,

respectively, for PS with different ICTable sizes relative to B.
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Figure 3.9: Sensitivity of the execution time of PS to varying ICTable size. The execution
time is normalized to B.

Figure 3.9 shows that the performance benefits of Plain ShortCut decrease with smaller

ICTable sizes. However, ShortCut outperforms the baseline even with only 16 ICTable

entries. Small ICTable sizes such as these are relevant to resource-constrained embedded

devices. In these devices, the area overhead is a critical issue.

In addition, we measure the maximum performance benefit possible due to ShortCut

hardware by assuming an ICTable with infinite entries. Figure 3.9 shows that it reaches

near the maximum performance with 1024 entries. This result justifies our use of a 512-

entry ICTable, as it achieves a high speedup while having a reasonable area overhead.

3.8 RELATED WORK

Modern dynamic scripting languages derive key ideas from Smalltalk [20] and Self [19]

on how to support dynamic type systems and generate efficient code, most notably inline

caching [20, 37].
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Ahn et al. [30] reduce the overhead of inline cache miss handling in real-world JavaScript

workloads by proposing an alternative type system. In our paper, we instead focus on

architectural support to reduce the overhead of inline caching. Our ICTable design is inspired

by BTB proposals that improve indirect branch prediction [41, 46, 47]. In particular, our

approach of using both the access site address and the object type to index the ICTable

resembles the VBBI BTB design [41]. However, we separate the ICTable from the BTB to

minimize pipeline intrusion.

There are two hardware proposals to skip the execution of instructions that calculate a

dynamic jump target in a way similar to ShortCut. In the first proposal, Agrawal et al. [48]

propose a technique to optimize dynamic linking by avoiding the execution of the trampolines

for library function calls. Similar to ShortCut, it relies on the BTB to make a prediction

of the trampoline target. However, unlike ShortCut, each trampoline in dynamic linking

always jumps to the same address. In ICs, instead, the destination of the IC dispatcher code

depends on the incoming object type.

The second proposal by Kim et al. [42] reduces the overheads of bytecode dispatching

in interpreters by overlaying the bytecode jump table on the BTB. This scheme, however,

is not flexible enough to support ICs. First, it operates on a single variable, which is the

opcode of the bytecode. An IC operation, instead, requires three variables, namely object

type, property name, and access type (load/store). Second, Kim’s proposal is limited to

improving branch prediction of only one branch instruction, whose address is specified in a

special register. In contrast, ShortCut covers all access sites in a program, which include

many branches. Overall, to the best of our knowledge, there is no existing proposal with

hardware flexible enough to support ICs.

Several hardware proposals exist that address other overheads of dynamic scripting lan-

guages. For example, Checked Load [49] extends the ISA to reduce the overhead of checking

primitive types. Some proposals improve instruction cache performance on client-side [50]

and server-side [51] JavaScript programs. ParaGuard [52] and ParaScript [53] enable parallel

execution of JavaScript programs. These proposals are orthogonal to ShortCut, and they

could be used together with it.

Dot et al. [54] propose a hardware-software approach to accelerate property loads without

using the IC. The idea is to dynamically create a structure in memory with the offset of

all the properties of all the objects. A hardware cache caches commonly-used entries from

this structure. On a load to a property, special instructions access the cache and return the

property offset. While this technique can speed up loads, it is very specific to the design

considered. For example, it is unclear how it supports changes in prototype chains, and the

various types of handlers required by JavaScript semantics.
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Kedlaya et al. propose a technique to combine static type inference and dynamic type

feedback mechanisms to optimize dynamically-typed languages [55]. They also propose a

technique to enable deoptimization for dynamic language runtimes implemented on top of

typed, stack-based virtual machines [56]. These two techniques focus on type specialization

based on primitive types (e.g., generating specialized codes for ”+” operator differently

based on whether operands are integers or strings). They do not support dynamism in

object access. On the other hand, ShortCut specifically focuses on supporting IC operations

in hardware to minimize the overheads due to dynamic behaviors in object access sites.

Since the submission of this paper, the V8 team has announced their intention to change

the compilation tiers within V8 [57]. They plan to replace the baseline compiler with an

interpreter named Ignition, and their optimizing compiler with a new implementation named

Turbofan. The new version will also extensively use the shared dispatcher design and, hence,

would benefit from ShortCut.

3.9 CONCLUSION

Inline caching (IC) is a central feature in dynamic scripting language implementations.

This paper proposed architectural support to make IC more efficient. The architecture we

proposed, called ShortCut, performs two levels of optimization. Its Plain design transforms

the call to the dispatcher into a call to the correct handler — bypassing the whole dispatcher

execution. Its Aggressive design transforms the call to the dispatcher into a simple load or

store — this time bypassing the execution of both dispatcher and handler. We implemented

the ShortCut software modifications in the state-of-the-art Google V8 JIT compiler, and the

ShortCut hardware modifications in a Pin-based simulator.

Our evaluation using V8’s baseline compiler showed that Plain ShortCut reduces the aver-

age application’s instruction count by 17%, and its branch MPKI from 10.8 to 6.9. The result

is a reduction in the average execution time of the applications by 30%. Under the maximum

level of compiler optimization, with the V8 optimizing tier enabled, Plain ShortCut reduces

the average execution time of the applications by 11%. Aggressive ShortCut performs only

slightly better. The reason is that our current implementation of Aggressive ShortCut only

optimizes a small fraction of the handlers. Our future work involves enhancing the capability

of Aggressive ShortCut.
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CHAPTER 4: BIASED REFERENCE COUNTING: MINIMIZING ATOMIC
OPERATIONS IN GARBAGE COLLECTION

4.1 INTRODUCTION

High-level programming languages are widely used today. They provide programmers

intuitive abstractions that hide many of the underlying computer system details, improving

both programmer productivity and portability. One of the pillars of high-level programming

languages is automatic memory management. It frees programmers from the obligation to

explicitly deallocate resources, by relying on the runtime to automatically handle memory

management.

Garbage collection is the process of runtime monitoring the lifetime of objects and freeing

them once they are no longer necessary. There are two main approaches to garbage collection:

tracing [58] and reference counting (RC) [59]. Tracing garbage collection maintains a root set

of live objects and finds the set of objects reachable from this root set. Objects not reachable

from the root set are considered dead and their resources can be freed. RC garbage collection,

on the other hand, maintains a counter for each object, which tracks the number of references

currently pointing to the object. This counter is actively updated as references are added

and removed. Once the counter reaches zero, the object can be collected.

Most implementations of managed languages use tracing garbage collection, as RC is

believed to be slower. This belief stems from the fact that most of the tracing garbage

collection can be done in the background, off the critical path, while RC is on the critical

path. However, many optimization techniques exist to limit the number of RC operations and

reduce the overhead on the critical path. Furthermore, RC has the desirable characteristics

of low memory overhead and short pause times.

In garbage collection, memory overhead comes from two sources, namely garbage collector

metadata, and objects that are dead but not yet reclaimed by the garbage collector. While

RC adds, as metadata, one counter per object, RC can have low overall memory overhead

because it can be designed to free up objects very soon after they become dead.

Pause times are times when the application is stopped, to allow the garbage collector to

perform maintenance operations. RC can be designed to have only short pause times —

when individual objects are freed up.

Overall, the combination of low memory overhead and short pause times makes RC suitable

for today’s interactive mobile platforms. For this reason, some languages such as Swift [60]

use RC.

Unfortunately, RC can have significant execution time overhead when using algorithms
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that reclaim objects immediately after they become dead — i.e., non-deferred RC algorithms.

For example, we find that the non-deferred RC algorithm used in Swift causes Swift programs

to spend 32% of their execution time performing RC operations. Still, using non-deferred

RC is highly desirable when it is critical to keep memory overhead to a minimum, as in

many mobile platforms.

We find that a major reason for this execution time overhead of non-deferred RC is the use

of atomic operations to adjust the reference counters of objects. Note that even if a Swift

program has little sharing and, in fact, even if it is single-threaded, it may have to use atomic

operations. This is because, like many programming languages, Swift compiles components

separately to allow for maximum modularity. Separate compilation forces the compiler to be

conservative. Furthermore, Swift is compiled ahead of time, so the compiler cannot leverage

program information gathered throughout execution to limit the use of atomic operations.

The goal of this paper is to reduce the execution time overhead of non-deferred RC.

To accomplish this goal, we propose to replace the atomic RC operations with biased RC

operations. Similar to biased locks [61], our biased operations leverage uneven sharing to

create asymmetrical execution times for RC operations based on the thread performing the

operation. Each object is biased toward, or favors, a specific thread. This allows an object’s

favored thread to perform RC operations without atomic operations, at the cost of slowing

down all the other threads’ RC operations on that object.

While biased RC operations are very effective in most cases, sometimes multiple threads

do try to adjust the reference counter of the same object. To handle this, we exploit the

fact that, unlike locking, RC does not require strong exclusivity. While only one thread is

allowed to acquire a lock at any given time, it is possible for multiple threads to perform RC

operations on an object concurrently — if they use multiple counters and eventually merge

the counters.

Based on these ideas, we propose a novel algorithm called Biased Reference Count-

ing (BRC), which significantly improves the performance of non-deferred RC. BRC main-

tains two counters per object — one for the owner thread and another for the other threads.

The owner thread updates its counter without atomic operations; the other threads update

the other counter with atomic operations.

We implement BRC in the Swift runtime. We run various client and server Swift programs

and analyze both their performance and sharing patterns. Overall, we find that, on average,

BRC improves the execution time of client programs by 22.5%, and the throughput of server

programs by 7.3%.

The contributions of this paper are as follows:
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• Characterizes the overheads of RC in Swift programs.

• Characterizes the memory behavior and sharing patterns of Swift programs.

• Proposes BRC, a new algorithm to reduce the overhead of non-deferred RC with an efficient

biasing technique.

• Implements BRC in the state-of-the-art Swift runtime.

• Provides a detailed evaluation of BRC’s performance.

4.2 BACKGROUND

4.2.1 Reference Counting

The fundamental idea of RC [59] is to maintain a per-object counter denoting the current

number of references to the object. These per-object counters are updated as references are

created, reassigned, and deleted.

Figure 4.1 shows a simple program which highlights all possible RC operations. The

normal program commands are on the numbered lines. The RC operations required for each

command are on the lines directly above the command in gray and are not numbered. A RC

operation on an object obj is described by rc(obj). In this example, the reference counts

of objects obj1, obj2, and obj3 are adjusted as different assignments execute.

rc(obj1) = 1
var a = new obj1
rc(obj1)++
var b = a
rc(obj1)--, rc(obj2) = 1
b = new obj2
rc(obj1)--,rc(obj3) = 1

a = new obj3

1

2

3

4
free(obj1)

Figure 4.1: Basic RC operations.

While the idea of RC is straightforward, it should be implemented carefully to ensure

correctness. This is because it is possible to have data races while adjusting reference counters

in otherwise correct programs. Consider the code example in Figure 4.2. Note that in the

traditional sense there is no data race in this code. Each thread only reads shared variable

g, and all writes are performed to thread-local variables. However, due to both threads

adding another reference to obj, it is possible for the reference counter of obj to be updated

incorrectly without synchronization. In other words, it is possible for the rc(obj)++
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corresponding to the commands on lines 2A and 2B to race and produce incorrect results.

Hence, updates to an object’s reference counter must be done in a synchronized manner.

rc(obj) = 1
var g = new obj;

rc(obj)++
var a = g;

rc(obj)++
var b = g;

Thread A Thread B

Initialization

1

2A 2B

Figure 4.2: Data race due to RC.

There are several approaches to synchronizing RC operations. The most obvious approach

is to add locks around the RC operations. This approach has two main drawbacks. First,

the runtime must decide the number of locks to create. At one extreme, the runtime can

use a single lock for all objects, but this would incur a lot of contention for the lock by

threads trying to adjust the reference counters of different objects. At the other extreme,

each object can have its own lock. However, this adds an extra overhead to each object

header which can result in less locality and more cache misses. Another problem is that

there is very little work done in between the lock’s acquisition and release – i.e., one simple

arithmetic operation to adjust the reference counter. This makes processor stalls likely.

An alternative approach is a lock-free approach using atomic operations as shown in Algo-

rithm 4.1. In this approach, the reference counter is updated using an atomic compare-and-

swap (CAS) operation. If the CAS is successful, then the operation is complete. Otherwise,

the process is repeated until the operation can complete successfully. This lock-free approach

addresses the problems described above for the lock-based approach. First, since there are

no locks, there is no tradeoff between the contention for locks versus the memory overhead

of locks. Second, this algorithm has only one synchronization operation (the CAS). Because

of these benefits, modern RC implementations use lock-free algorithms.

Algorithm 4.1 CAS-based increment operation

1: procedure Increment(obj)
2: do
3: old := obj.rc counter . read old value
4: new := old
5: new += 1 . set new value
6: while !CAS(&obj.rc counter, old, new)
7: . Atomic update of counter
8: end procedure
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4.2.2 RC Optimization

Previous works to optimize RC can be categorized into two groups: works that defer

reclamation of objects (deferred RC) and works that do not (non-deferred RC).

Deferred RC These works postpone dead object reclamation, and divide execution into

distinct mutation and collection phases. During mutation phases, RC operations are simpli-

fied and there is no reclamation of dead objects; during collection phases, the dead objects

are reclaimed.

There are two groups of techniques: deferral and coalescing. In deferral [62, 63, 64, 65,

66, 67, 68], the mutation phase does not perform RC operations for local pointer variables

stored in the stack or registers. Then, the collection phase scans the stack and registers,

and determines the objects that have a reference count equal to zero, and therefore can be

reclaimed.

In coalescing [69, 70], the mutation phase only records the modified pointer variables

and their initial values. Then, the collection phase compares the initial and final values of

the modified pointer variables, and performs RC operations only on the objects pointed to

initially and at the end. Dead objects are found and reclaimed during the collection phase.

A hybrid approach [65] uses simple tracing garbage collection for young objects and RC

for old objects.

Optimizations of Non-deferred RC These techniques remove unnecessary RC oper-

ations through static compiler analysis. Some proposals [71, 72, 73, 74, 75] eliminate the

RC operations for a reference R to an object when R’s lifetime is completely nested in the

lifetime of another reference to the same object. Figure 4.1 shows a simple example of a

candidate for this optimization. In this figure, the lifetime of the reference to obj1 created on

line 2 is completely nested in the lifetime of the reference to obj1 created on line 1. Because

of this, it is unnecessary to adjust obj1’s reference counter to reflect var b’s effect, so lines

two and three need not adjust rc(obj1).

Another optimization [71] is to look at sequential chains of RC operations on the same ob-

ject, and find matching pairs of increments and decrements (potentially created by different

references). These RC operations can also be removed, as they negate one another.

4.2.3 Swift Programming Language

The Swift Programming Language was introduced by Apple in 2014 [76] as an alternative

programming language to Objective-C for development for the Apple platform. Due to its
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support by Apple and incorporation into the Apple software ecosystem, Swift has quickly

become popular and is now the preferred programming language for development on the

Apple platform.

Like most modern programming languages, Swift has automatic memory management.

Because of its popularity in the mobile environment, where memory overhead is a primary

concern, Apple’s implementation of Swift uses non-deferred RC and uses the optimizations

described in Section 4.2.2. Swift uses weak references to avoid cyclic references, an approach

popular in previous literature [77, 78].

4.3 MOTIVATION

4.3.1 Overhead of Reference Counting

To assess the overhead of state-of-the-art non-deferred RC, we measure the time spent

performing RC operations in Swift programs. Figure 4.3 shows, for a set of programs, the

fraction of time spent on RC operations for each program. The programs we evaluate are

explained in detail in Section 4.5. They include client programs (Swift Bench, CryptoSwift,

SwiftyJSON, Raytrace, GCBench-Single, GCBench-Multi, and Regex-Redux) and server

programs (Perfect-JSON, Perfect-Blog, Kitura-JSON, and Kitura-Blog).
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Figure 4.3: Overhead of RC in Swift programs.

As shown in the figure, performing RC operations takes on average 42% of the execution

time in client programs, and 15% in server programs. The average across all programs can

be shown to be 32%. The Swift compiler does implement optimization techniques to reduce

the number of RC operations similar to those described in Section 4.2.2. Without them,
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the overhead would be higher. The RC overhead is lower in server programs than in client

programs. This is because server programs spend relatively less time in Swift code and RC

operations; they spend relatively more time in runtime functions for networking and I/O

written in C++.

To estimate the contribution of using atomic operations to this overhead, we remove the

CAS operation from the RC code. Hence, the Swift runtime performs RC without safeguards.

As explained in Section 4.2.1, not using atomic operations is incorrect, and may result in

either memory leaks or objects being prematurely freed. As a result, we are able to run

only a subset of the programs without crash. We will show later that, on average, not using

atomic operations reduces the average execution time of the programs by 25%. This means

that the large majority of the RC overhead in these programs is due to the use of the CAS

operations.

This large overhead is due to two reasons. First, CAS instructions are more expensive

than normal updates. The reason is that there is a memory fence associated with a CAS

instruction. This limits the amount of instruction overlapping performed by the hardware,

preventing the out-of-order capabilities of modern cores from being effectively utilized. Sec-

ond, due to contention, it may be necessary to execute a CAS instruction multiple times

before completing successfully. Note that we run all of our experiments on a modern Intel

Haswell processor, which has an efficient CAS implementation.

4.3.2 Sharing Patterns of Swift Programs

Since the use of atomic operations greatly affects performance, we evaluate how often in

practice they are necessary for correctness. To do so, we modify the runtime so that, for

each RC operation, we record which thread is invoking the operation and which object’s

reference counter is being updated. We classify objects as private or shared. An object is

classified as private if all of its reference counter updates throughout its lifetime come from

one single thread. Otherwise, the object is classified as shared.

Table 4.1 shows our results. Each row corresponds to a different program. Columns 3 and

4 show the percentage of objects that we classify as private or shared. Columns 5 and 6 show

the percentage of reference counter updates that go to objects classified as private or shared.

We can see that, on average, over 99% of the objects in client programs, and over 93% of

those in server programs are private objects. Similarly, about 93% of the RC operations in

client programs, and about 87% of those in server programs are to private objects. This

means that the large majority of RC operations are to private objects, and one could skip

the corresponding atomic operation. However, as argued in Section 4.1, the Swift compiler
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does not know this because Swift compiles components separately. Hence, Swift is forced to

use atomic operations always for correctness.

Program Objects RC operations
Name Priv (%) Shar (%) Priv (%) Shar (%)

C
li

en
t

Swift
Benchmark 100.00 0.00 100.00 0.00
CryptoSwift 100.00 0.00 100.00 0.00
SwiftyJSON 100.00 0.00 100.00 0.00
Raytrace 100.00 0.00 100.00 0.00
GCBench-Single 100.00 0.00 100.00 0.00
GCBench-Multi 99.84 0.16 99.68 0.32
Regex-Redux 99.99 0.01 51.13 48.87
Average 99.98 0.02 92.97 7.03

S
er

ve
r

Perfect-JSON 94.74 5.26 83.99 16.01
Perfect-Blog 94.58 5.42 95.33 4.67
Kitura-JSON 91.41 8.59 84.29 15.71
Kitura-Blog 91.59 8.41 83.32 16.68
Average 93.08 6.92 86.73 13.27

Table 4.1: Sharing patterns of Swift programs.

4.4 BIASED REFERENCE COUNTING

4.4.1 Main Idea

The goal of this paper is to reduce the overhead of non-deferred RC by minimizing the use

of atomic operations. We do this with a novel algorithm for RC that we call Biased Reference

Counting (BRC). BRC leverages the observation that many objects are only accessed by a

single thread. Hence, BRC gives the ownership of, or biases, each object to a specific thread.

BRC provides two modes of updating an object’s reference count: the object’s owner thread is

allowed to update the reference count using non-atomic operations, while non-owner threads

must use atomic operations to update the reference count.

BRC allows these two modes of execution by maintaining separate counters for the owner

(or biased) thread and for the non-owner threads. The first counter, called the Biased

counter, counts the number of references to the object added by the owner thread minus those

removed by the owner thread. The second counter, called the Shared counter, maintains the

active reference count for all non-owner threads combined. Since the first counter is only

accessed by the owner thread, it can be accessed without atomic operations. The second

counter may be accessed by multiple threads concurrently. Therefore, it requires atomic

operations to prevent data races. The biasing information is maintained on a per-object
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basis. This allows each object to be biased toward the thread most likely to update its

reference counter.

In BRC, an object can be deallocated only when the sum of its two counters is zero. Hence,

the two counters first need to be merged. Since only the owner thread can read the biased

counter reliably, the owner thread is responsible for merging the counters. To merge the

counters, the owner thread first atomically accumulates the biased counter into the shared

counter. Next, the owner sets a flag to indicate that the two counters have been merged.

Once the counters are merged, if the shared counter is zero, the object may be deallocated;

otherwise, the owner unbiases the object, and all subsequent reference counter updates will

be performed on the shared counter. When the shared counter reaches zero, the object may

be deallocated.

In the following, we describe the changes that BRC introduces to the object header, list

the invariants in the BRC algorithm, show a few examples of counter transitions, and then

describe the BRC algorithm in detail.

4.4.2 Object Header Structure

To support RC, the compiler reserves one word in each object’s header, called RCWord

(for Reference Counting Word). The Swift runtime uses a 64-bit word. Figure 4.4 shows the

structure of the RCWord. It has a 30-bit counter to keep track of the number of references

to the object. The remaining 34 bits are reserved for weak reference counting and flags

to describe the state of the object. Weak references are used to prevent cycles, and are

outside of the scope of this paper. To prevent race conditions, accesses to RCWord always

use atomic operations.

Counter Reserved

30 bits 34 bits

Figure 4.4: Original RCWord.

Biased Shared

TID Counter Counter Flags Reserved

18 bits 14 bits 14 bits 2 bits 16 bits

Figure 4.5: BRC’s RCWord.

BRC modifies RCWord as shown in Figure 4.5. The new RCWord is now divided into two

half-words: Biased and Shared. The biased half-word contains two fields: the owner thread

56



identifier (TID) and the biased counter. The TID indicates which thread, if any, the object

is currently biased to. This thread has the exclusive right to modify the biased counter.

The shared half-word contains fields shared by all the threads. The shared counter field

tracks RC activity by non-owner threads. Then, there are two flags to support the BRC

algorithm: Merged and Queued. The Merged flag is set by the owner thread when it has

merged the counters. The Queued flag is set by a non-owner thread to explicitly request the

owner thread to merge counters. More details about the counter operations are explained

later.

To prevent race conditions, BRC uses atomic operations to access the shared half-word.

In some situations, the BRC algorithm requires multiple fields of the shared half-word to be

updated together atomically. This is why the flags must be inside of the shared half-word.

BRC reduces the number of bits per counter from 30 bits to 14 bits, which is more than

enough for RC. Many Java programs need only 7 bits [66], and we observe similar behavior

in our Swift programs. BRC also reduces the number of the reserved bits used for weak

reference counting and existing flags to 16 bits. Weak references occur significantly less

frequently than regular RC operations, so this size is acceptable. Alternatively, we could

keep the number of bits per counter unchanged to 30 by increasing the size of RCWord at the

cost of adding more memory overhead. We evaluate the memory overhead of this alternative

design as well in Section 4.6.4.

4.4.3 Algorithm Invariants

To understand the BRC algorithm, we start by describing its main invariants. They

are described in Table 4.2. Recall that the value of the counter in the original RCWord

(Figure 4.4) reflects the number of current references to the object, and must always be zero

or higher. For the same reason, in BRC, invariant I1 in Table 4.2 says that the sum of the

biased and shared counters must always be zero or higher.

Invariant I2 in Table 4.2 says that the biased counter must always be zero or higher. This

is because, as we will show, as soon as the biased counter reaches zero, the owner unbiases

the object. This action makes the biased counter inaccessible, and we say it implicitly merges

the two counters into the shared counter. The owner thread also sets the Merged flag.

On the other hand, I3 says that the shared counter can be negative. This is because a

pair of positive and negative updates may be split between the biased and shared counters,

pushing the shared counter below zero. As an example, consider two threads T1 and T2.

Thread T1 creates an object and sets itself as the owner of it. It points a global pointer

to the object, setting the biased counter to one. Then, T2 overwrites the global pointer,
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Invariant Description

I1: biased + shared = total number of references to object
* Must be zero or higher
* If zero, object can be deallocated

I2: biased = (references added - references removed) by owner
* Must be zero or higher
* When it reaches 0, owner unbiases object, implicitly merging

counters
I3: shared = (references added - references removed) by non-owners

* Can be negative
* If negative, biased must be positive, and object is placed

in owner’s QueuedObjects list so that owner can unbias it
I4: Owner only gives up ownership when it merges counters, namely:

* When biased reaches zero (implicit merge)
* Or when the owner finds the object in its QueuedObjects

list (explicit merge)
I5: Object can only be placed into QueuedObjects list once

* Placed when shared becomes negative for first time
* Removed when counters are explicitly merged

Table 4.2: Invariants of the BRC algorithm.

decrementing the shared counter of the object. As a result, the shared counter becomes

negative.

When the shared counter for an object becomes negative for the first time, the non-

owner thread updating the counter also sets the object’s Queued flag. In addition, it puts

the object in a linked list belonging to the object’s owner thread called QueuedObjects.

Without any special action, this object would leak. This is because, even after all the

references to the object are removed, the biased counter will not reach zero — since the

shared counter is negative. As a result, the owner would trigger neither a counter merge nor

a potential subsequent object deallocation.

To handle this case, BRC provides a path for the owner thread to explicitly merge the

counters called the ExplicitMerge operation. Specifically, each thread has its own thread-

safe QueuedObjects list. The thread owns the objects in the list. At regular intervals,

a thread examines its list. For each queued object, the thread merges the object’s counters

by accumulating the biased counter into the shared counter. If the sum is zero, the thread

deallocates the object. Otherwise, the thread unbiases the object, and sets the Merged flag.

Then, when a thread sets the shared counter to zero, it will deallocate the object. Overall,

as shown in invariant I4, an owner only gives up ownership when it merges the counters.

Invariant I5 in Table 4.2 says that an object can be placed into QueuedObjects list only

once. It is placed there when its shared counter becomes negative for the first time. After

that, while its shared counter may continue to change, since the object is already marked as
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queued, no action is required. It will remain in the owner’s QueuedObjects list until the

owner unbiases it.

4.4.4 Examples of Counter Transitions

Figure 4.6 shows some examples of RCWord transitions in BRC. To start with, Fig-

ure 4.6(a) shows the RCWord structure without the Reserved field. Then, in Figure 4.6(b),

we show the RCWord transitions for a private (i.e., thread-local) object. In this example,

thread T1 allocates the object and becomes the owner thread. Next, T1 creates up to N

references to the object, incrementing the biased counter up to N . Finally, T1 removes these

references, decrementing the biased counter to zero, and deallocates the object.

TID BC SC M Q

Thread ID

Biased
Counter

Shared
Counter

Merged
Flag

Queued
Flag

T1 1 0 0 0

T1 allocates an object

T1 N 0 0 0

T1 creates N references

T1 0 0 0 0

T1 removes all references
T1 deallocates object

(b)  Private Object
T1 1 0 0 0

T1 allocates an object

T1 1 1 0 0

T2 creates a reference

0 1 1 0

T1 removes its reference
T1 implicitly merges

T2 removes its reference
T2 deallocates object

(c)  Shared Non-Queued Object

0 0 1 0

T1 1 0 0 0

T1 allocates an object

T1 1 -1 0 1

T2 removes the reference
T2 sets the Queued flag

0 0 1 1

T1 explicitly merges
T1 deallocates object

(d)  Shared Queued Object

(a)  RCWord Structure

Figure 4.6: Examples of RCWord transitions.

In Figure 4.6(c), we show the RCWord transitions for a shared object that is not queued

in a QueuedObjects list during its lifetime. Thread T1 first allocates the object and

sets itself as the owner of it. Next, a second thread T2 creates a reference to the object,

incrementing the shared counter. Then, T1 removes its reference to the object, decrementing
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the biased counter. As the biased counter becomes zero, T1 performs an implicit counter

merge: it sets the Merged flag and unbiases the object. Later, T2 removes its reference

to the object, decrementing the shared counter. Since the shared counter is zero and the

Merged flag is set, T2 deallocates the object.

In Figure 4.6(d), we show the RCWord transitions for a shared object that is queued in

a QueuedObjects list during its lifetime. Thread T1 first allocates the object and sets

itself as the owner of it. Then, thread T2 overwrites the reference to the object and hence

decrements the shared counter. Since the shared counter becomes negative, T2 also sets the

Queued flag and places the object in T1’s QueuedObjects list. Later, T1 invokes the

ExplicitMerge operation and explicitly merges the counters, setting the Merged flag

and unbiasing the object. Since the sum of the counters is zero, T1 deallocates the object.

4.4.5 BRC Algorithm

The BRC algorithm introduces several changes to a conventional RC algorithm. First,

when an object is allocated, BRC saves the ID of the thread allocating the object in

the RCWord, effectively biasing the object. Second, BRC modifies the RC operations

(i.e., Increment and Decrement) to update one of the two RCWord counters based

on which thread an object is biased to. Finally, BRC adds two new operations, Queue and

ExplicitMerge, to handle a special case introduced by using two counters. In the follow-

ing paragraphs, we explain these operations in detail. We use a dot notation to access the

biased and shared half-words, and their fields in the algorithms. Note that the algorithms

given below sacrifice performance for maximum clarity. BRC’s implementation on the Swift

runtime is more efficient than what is shown here.

Algorithm 4.2 shows BRC’s Increment operation. It begins by checking whether the

new reference is being created by the object’s owner thread (line 4). If so, the owner thread

continues to the FastIncrement procedure to increment the biased counter (line 11).

Otherwise, a non-owner thread calls SlowIncrement and uses an atomic CAS operation

to increment the shared counter (line 19).

Algorithm 4.3 shows BRC’s Decrement operation. Similar to Increment, it first checks

whether the reference is being removed by the object’s owner thread (line 4). If so, the

owner thread continues to the FastDecrement procedure to decrement the biased counter

(line 11). If the resulting value of the counter is higher than zero (line 13), no further

action is required. Otherwise, the biased counter is zero, and the owner thread performs an

implicit merge of the counters. Specifically, it sets the Merged flag (line 19) by atomically

updating the shared half-word (line 20). Next, the shared counter is read. If its value is
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Algorithm 4.2 Increment operation

1: procedure Increment(obj) . Increment the reference count of obj
2: owner tid := obj.rcword.biased.tid
3: my tid := GetThreadID()
4: if owner tid == my tid then
5: FastIncrement(obj) . Owner access
6: else
7: SlowIncrement(obj) . Non-owner access
8: end if
9: end procedure

10: procedure FastIncrement(obj)
11: obj.rcword.biased.counter += 1
12: . Non-atomic increment of biased counter
13: end procedure

14: procedure SlowIncrement(obj)
15: do
16: old := obj.rcword.shared . Read shared half-word
17: new := old
18: new.counter += 1
19: while !CAS(&obj.rcword.shared, old, new)
20: . Atomic increment of shared counter
21: end procedure

zero (line 22), the object is deallocated. Otherwise, BRC unbiases the object by clearing

the owner TID (line 25). Now, all future RC operations to this object will invoke either the

SlowIncrement or the SlowDecrement procedures. In addition, any thread can make

the decision to deallocate the object. Note that the Deallocate call in line 23 does not

need to lock the object. This is because the last reference has been removed so no other

thread can access the object.

If the Decrement operation is invoked by a non-owner thread, it continues to the

SlowDecrement procedure (line 28). BRC decrements the shared counter (line 32) and,

if the counter’s new value is negative, BRC also sets the Queued flag (line 34). The shared

half-word is updated atomically (line 36). If the Queued flag has been set for the first time

by this invocation (line 38), BRC invokes function Queue to insert the object in a list to be

handled later by the owner (line 40) — note that this case implies that the counters have

not been merged yet, as the shared counter’s value is negative. Otherwise, if the Merged

flag is set and the shared counter is zero (line 41), BRC deallocates the object.

BRC adds two new operations, Queue and ExplicitMerge (Algorithm 4.4), to support

a special case introduced by having two counters. Specifically, the first time that the shared

counter attains a negative value, Queue is invoked. As indicated in Section 4.4.3, at this

point, the biased counter has a positive value. If BRC did not take any special action, the

61



Algorithm 4.3 Decrement operation

1: procedure Decrement(obj) . Decrement the reference count of obj
2: owner tid := obj.rcword.biased.tid
3: my tid := GetThreadID()
4: if owner tid == my tid then
5: FastDecrement(obj) . Owner access
6: else
7: SlowDecrement(obj) . Non-owner access
8: end if
9: end procedure

10: procedure FastDecrement(obj)
11: obj.rcword.biased.counter −= 1
12: . Non-atomic decrement of biased counter
13: if obj.rcword.biased.counter > 0 then
14: return
15: end if
16: do . biased counter is zero
17: old := obj.rcword.shared . Read shared half-word
18: new := old
19: new.merged :=True . Set merged flag
20: while !CAS(&obj.rcword.shared, old, new)
21: . Atomic update of shared half-word
22: if new.counter == 0 then
23: Deallocate(obj)
24: else
25: obj.rcword.biased.tid := 0 . Give up ownership
26: end if
27: end procedure

28: procedure SlowDecrement(obj)
29: do
30: old := obj.rcword.shared . Read shared half-word
31: new := old
32: new.counter −= 1
33: if new.counter < 0 then
34: new.queued :=True . Set queued flag
35: end if
36: while !CAS(&obj.rcword.shared, old, new)
37: . Atomic decrement of shared counter
38: if old.queued 6= new.queued then
39: . queued has been first set in this invocation
40: Queue(obj)
41: else if new.merged ==True and new.counter == 0 then
42: . Counters are merged and shared counter is zero
43: Deallocate(obj)
44: end if
45: end procedure

62



biased counter might never be decremented to zero and, thus, the counters might never be

merged, and the object might never be deallocated. This is a memory leak.

To guard against such scenarios, BRC keeps track of objects that may leak. As shown

in the Queue procedure of Algorithm 4.4, the non-owner thread that first finds that the

shared counter becomes negative, inserts the object in a thread-safe list belonging to the

object’s owner thread. The list is part of a structure called QueuedObjects (line 3), which

is organized as per-thread lists of potentially leaked objects. Potentially leaked objects are

added to the QueuedObjects list belonging to the object’s owner thread.

Algorithm 4.4 Extra operations

1: procedure Queue(obj)
2: owner tid := obj.rcword.biased.tid
3: QueuedObjects[owner tid].append(obj)
4: . Adds object to list belonging to owner tid
5: end procedure

6: procedure ExplicitMerge
7: my tid := GetThreadID()
8: for all obj ∈ QueuedObjects[my tid] do
9: do

10: old := obj.rcword.shared . Read shared half-word
11: new := old
12: new.counter += obj.rcword.biased.counter
13: . Merge counters
14: new.merged :=True
15: while !CAS(&obj.rcword.shared, old, new)
16: . Atomic update of shared half-word
17: if new.counter == 0 then
18: Deallocate(obj)
19: else
20: obj.rcword.biased.tid := 0 . Give up ownership
21: end if
22: QueuedObjects[my tid].remove(obj)
23: end for
24: end procedure

At regular intervals, a thread checks its QueuedObjects list, to explicitly merge counters

and enable object deallocation. The ExplicitMerge procedure of Algorithm 4.4 performs

this operation. The procedure searches through the thread’s QueuedObjects list and, for

each object, explicitly merges its two counters. Note that this merging can only be done by

the owner thread, so the procedure only accesses the QueuedObjects list owned by the

thread invoking the procedure (line 8). For each object in the list, BRC accumulates the

biased counter into the shared counter (line 12) and sets the Merged flag (line 14). This

change is atomic (line 15). If the merged counter becomes zero, the owner deallocates the

object (line 18). Otherwise, it unbiases the object (line 20) so that all future RC operations
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Name Configuration

O Original: The unmodified Swift runtime
I Ideal: O with no atomic operations
B Biased: O enhanced with BRC

Table 4.3: Configurations evaluated.

are performed on the shared counter. Once this merging is completed, it is no longer possible

for the object to be leaked, and thus the owner removes the object from QueuedObjects

in a thread-safe manner (line 22).

A given object can only be put in the QueuedObjects list once. This is because, before

an object is taken out of the list, its counters are merged. Such merging eliminates the

possibility that the shared counter become negative anymore.

Lastly, when a thread terminates, it processes the objects remaining in its QueuedObjects

list, and de-registers itself from the QueuedObjects structure. Theoretically, an object

can outlive its owner thread if its biased counter is positive, and has not been queued in the

QueuedObjects list when the owner thread terminates. We handle this case as follows.

When a non-owner thread makes the shared counter of an object negative, it first checks

whether the object’s owner thread is alive by looking-up the QueuedObjects structure —

which implicitly records the live threads. If the owner thread is not alive, the non-owner

thread merges the counters instead of queuing the object, and either deallocates the object

or unbiases it.

4.5 EXPERIMENTAL SETUP

To evaluate BRC, we implement it in the Swift version 3.1.1 runtime. We evaluate the three

configurations shown in Table 4.3. The Original configuration (O) is the unmodified Swift

runtime, which implements RC with lock-free atomic operations. The Ideal configuration (I)

takes O and eliminates all the atomic operations. In this configuration, due to data races,

counters may have incorrect values. In particular, an object may be accessed after being

deallocated, which may lead to a crash. We collect data from I only when the program runs

to completion, and its output and number RC operations are same as in O’s execution. This

ensures that I did not change semantics. Lastly, the biased configuration (B) is O enhanced

with BRC. As a result, all of Swift’s RC optimizations (which are present in O) are enabled

in B by default.

Table 4.4 shows the client and server programs that we evaluate. The official Swift Bench-

mark Suite [79] consists of a set of tests which cover important Swift workloads. The suite
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Program Multi-
Name threaded? Description

C
li

en
t

Swift Benchmark No A set of 212 benchmarks covering a number of important Swift
workloads designed to track Swift performance and catch perfor-
mance regressions

CryptoSwift No Performance tests of a Swift package for cryptography algorithms
SwiftyJSON No Performance tests of a Swift package for JSON handling
Raytrace No Ray tracing application
GCBench-Single No Single-threaded implementation of an artificial garbage collection

benchmark that creates perfect binary trees
GCBench-Multi Yes Multi-threaded implementation of GCBench
Regex-Redux Yes Benchmark that uses regular expressions to match and replace

DNA 8-mers

S
er

ve
r

Perfect-JSON Yes JSON generator running on the Perfect framework
Perfect-Blog Yes Blog engine running on the Perfect framework
Kitura-JSON Yes JSON generator running on the Kitura framework
Kitura-Blog Yes Blog engine running on the Kitura framework

Table 4.4: Client and server programs used.

is designed to track Swift performance and catch performance regressions. CryptoSwift [80]

and SwiftyJSON [81] are popular Swift packages for cryptography and JSON handling, re-

spectively. We also use a Swift version of ray tracing [82]. GCBench is an artificial garbage

collection benchmark which creates and discards perfect binary trees to estimate the collec-

tor performance. We use single-threaded and multi-threaded implementations of GCBench.

Lastly, Regex-Redux is a regular expression benchmark that uses regular expressions to

match and replace DNA sequences.

Our server programs are based on two popular server-side frameworks for Swift, namely

Perfect [5] and Kitura [6]. For each framework, we run a blog engine that returns random

images and blog posts for each request, and a JSON generator that returns a JSON dictionary

of random numbers for each request [83]. For the server programs, we measure throughput

instead of execution time.

We run our experiments on a desktop machine with an Intel Core i7 processor and 16 GB

of memory running Ubuntu 16.04 LTS. The processor has four cores cycling at 3.50 GHz.

Each experiment is run 10 times and the average is reported.
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Original Biased
% of Obj. RC RC Ops. RC % of RC % of RC % of RC % of % of RC

Program Shared Allocs. Ops. per Ops. Ops. to Ops. to Opts. to Queued Ops. Setting
Name Obj. per µs per µs Obj. per µs Shared Biased Shared Obj. Queued

obj. Counter Counter Flag

C
li
e
n
t

Swift 0.00 1.91 29.18 15.24 33.16 0.00 100.00 0.00 0.00 0.00
Benchmark
CryptoSwift 0.00 2.39 56.54 23.61 68.16 0.00 100.00 0.00 0.00 0.00
SwiftyJSON 0.00 2.60 68.19 26.24 93.77 0.00 100.00 0.00 0.00 0.00
Raytrace 0.00 0.00 101.70 27258.42 173.94 0.00 100.00 0.00 0.00 0.00
GCBench-Single 0.00 12.87 64.07 4.98 86.03 0.00 100.00 0.00 0.00 0.00
GCBench-Multi 0.16 50.69 150.39 2.97 195.44 0.32 99.97 0.03 0.01 0.00
Regex-Redux 0.01 2.58 92.61 35.91 123.99 48.87 88.02 11.98 0.00 0.00
Average 0.02 10.44 80.38 39338.19 110.64 7.03 98.28 1.72 0.00 0.00

S
e
rv

e
r Perfect-JSON 5.26 0.55 4.56 8.25 4.95 16.01 88.64 11.36 1.99 0.24

Perfect-Blog 5.42 0.45 12.57 27.95 12.90 4.67 96.72 3.28 1.95 0.07
Kitura-JSON 8.59 0.40 7.27 18.05 7.55 15.71 87.38 12.62 2.76 0.15
Kitura-Blog 8.41 0.39 6.12 15.81 6.34 16.68 86.68 13.32 2.70 0.17
Average 6.92 0.45 7.63 17.51 7.93 13.27 89.85 10.15 2.35 0.16

Table 4.5: Reference counting statistics.

4.6 EVALUATION

4.6.1 Characterization

We start by investigating the overhead of RC in the Original (O) and Biased (B) con-

figurations. Table 4.5 shows various metrics of RC behavior during execution for both

configurations. For reference, Column 3 repeats the data shown in Table 4.1 about the per-

centage of shared objects in each program. Recall that we consider an object as shared if its

reference counter updates come from more than one thread. Next, Columns 4-6 refer to the

O configuration, while columns 7-12 refer to the B configuration.

Columns 4 and 5 show the number of object allocations per µsecond and the number of

RC operations per µsecond, respectively. The latter are counter increments and decrements.

Based on the data in these two columns, Column 6 shows the average number of RC opera-

tions per object. We can see that, discounting Raytrace, there are 3–36 RC operations per

object in client programs, and 8–28 in server programs.

Column 7 shows the number of RC operations per µsecond in the B configuration. Due

to the improved performance of B , these numbers are higher than in O for all the programs.

Column 8 shows the percentage of RC operations to shared objects, and Columns 9 and

10 the percentage of RC operations to the biased and shared counters, respectively. We see

that only a small percentage of the RC operations are performed on shared objects (7.03%

in client programs and 13.27% in server programs), and an even smaller percentage are

performed on shared counters (1.72% in client programs and 10.15% in server programs).

The outlier is Regex-Redux, where nearly 50% of the RC operations are on shared objects,

and 12% use the shared counter. Overall, the small fraction of the RC operations that use

the shared counter is the reason for the speed-ups of B over O ; only such operations use

atomic instructions.
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Configuration Time (ns)

Original 13.84
Ideal 5.77
Biased (operation by owner) 6.28
Biased (operation by non-owner) 15.57

Table 4.6: Time of counter increment operations.

Column 11 shows the percentage of the total objects that are queued. On average, this

number is 0.00% in client programs, and 2.35% in server programs. This number is very

small, in part because the percentage of objects that are shared (Column 3) is already small.

Finally, Column 12 shows the percentage of RC operations that set the Queued flag and

add the object to the QueuedObjects list. We see that this is a rare event, which occurs

0.00% of the time in client programs, and 0.16% in server programs. Overall, queuing in the

QueuedObjects list is a negligible overhead.

4.6.2 Latency of RC Operations

We measure the time it takes to increment a reference counter in the different configu-

rations. For this measurement, we create kernels that repeatedly increment the counter in

a loop. Therefore, the operations have a near-perfect cache behavior. In addition, these

kernels are single-threaded and, therefore, the measured times do not include contention.

Overall, our experiments measure best-case timings.

Table 4.6 shows the time to perform a counter increment in our different configurations:

O , I , and B . For the B configuration, we show the operation time for the owner thread and

for non-owner threads. As shown in the table, the increment operation takes 13.84 ns in

O and 5.77 ns I . Hence, the use of atomic operations slows down the operation by 2.40x.

In B , the owner’s increment takes only 6.28 ns, while the non-owner increment takes 15.57

ns. Ideally, the former should be as fast as I , while the latter should take as long as O . In

practice, BRC adds some overhead to each of these operations, as the TID and various flags

are checked before performing the increment. Consequently, B owner takes 8.8% longer than

I , and B non-owner takes 12.5% longer than O .

4.6.3 Performance Improvement

In this section, we evaluate the performance improvements attained by BRC. Figure 4.7

shows the execution time of the client programs for the O , I , and B configurations, normal-
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Figure 4.7: Execution time of client programs under the O , I , and B configurations.

ized to the O configuration. On average, B reduces the execution time by 22.5% over O .

This is a substantial speed-up, which is attained inexpensively in software by improving the

RC algorithm. Further, this speed-up implies that a large fraction of the RC overhead in O

has been eliminated. Indeed, as shown in Figure 4.3, client programs spend on average 42%

of their time in RC operations. With B , it can be shown that we eliminate more than half

of such RC time.

We see that, on average, the B configuration is within 3.7% of the I configuration. This

difference is smaller than the 8.8% difference observed in Table 4.6 between the B (owner)

and I increment operations. This is due to Amdahl’s law, as programs only spend a fraction

of their time performing RC operations.

Figure 4.8 shows the throughput of the server programs under the O and B configurations,

normalized to the O configuration. We do not show data for the I configuration because

running these programs without atomic operations causes frequent program crashes due

to premature object deallocations. The figure shows that B attains a substantial average

throughput increase of 7.3% over O . This improvement is smaller than the 22.5% average

reduction in the execution time of the client programs. This is expected, given that the

overhead of RC in Figure 4.3 is higher in the client programs than in the server ones.

4.6.4 Memory Overhead

In this section, we evaluate BRC’s memory overhead by comparing the peak memory

usage of the O and B configurations. Figure 4.9 shows the peak memory usage of these

configurations normalized to the peak memory usage of O . Recall from Section 4.4.2 that
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Figure 4.8: Throughput of the server programs under the O and B configurations.

our BRC design does not increase the size of the per-object RCWord. Hence, the additional

memory overhead of B comes from the use of the QueuedObjects structure.
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Figure 4.9: Peak memory usage under the O and B configurations.

We observe that, on average, B has only a 1.5% higher memory overhead than O . Single-

threaded programs (i.e., the first 5 programs) have no additional memory overhead in B

because the shared counter is not used and, consequently, there are no queued objects.

While GCBench-single and Regex-Redux are multithreaded, they have negligible additional

memory overhead because they have almost no queued objects (Column 11 of Table 4.5). The

server programs have only a small fraction of queued objects and, therefore, their additional

memory overhead is on average about 4%.

We also measure the memory overhead in the alternative B implementation described
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in Section 4.4.2, where we add an additional 64-bit word to the object header to preserve

30-bit counters. In this case, the peak memory usage in B can be shown to be, on average,

a modest 6% higher than in O .

4.6.5 Sensitivity Study

To simulate a worst-case scenario for BRC, we create a synthetic benchmark where we can

control the number of queued objects. In the benchmark, a main thread creates 1,000,000

objects, creating a reference to each object, then performs a fixed amount of dummy com-

putation, and finally removes any remaining references to the objects. In parallel, a second

thread removes the references to 1, 000, 000×R objects allocated by the main thread. When

a shared counter becomes negative, the second thread adds the corresponding object to the

main thread’s QueuedObjects list. In our experiments, we vary R, which we call Ratio of

Queued Objects. Figure 4.10 shows the execution time and peak memory usage under the

B configuration as we vary R, normalized to the O configuration.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Queued Objects

0.6
0.8
1.0
1.2

Execution Time Peak Memory Usage

Figure 4.10: Normalized execution time and normalized peak memory usage of the B con-
figuration as we vary the number of queued objects.

Our results show that, for B to perform worse than the O configuration, one needs 75%

or more queued objects. In reality, as shown in Table 4.5, the percentage of queued objects

in our programs is much lower than this break-even point.

We also measure the additional memory overhead of B for this benchmark. As we see in

the figure, the additional memory overhead is kept low, under 12% over the O configuration.

This is because the counter merging and object dequeuing happen frequently enough that

reclamation of dead queued objects is not delayed too much. Note that, for our programs

in Table 4.5, the percentage of queued objects is very small and, therefore, the additional

memory overhead of BRC is small.
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4.7 DISCUSSION

4.7.1 Putting BRC in Context

In this section, we qualitatively compare BRC to other RC algorithms. Table 4.7 examines

the space-time trade-off of various RC implementations. Each row corresponds to a different

RC implementation. The table ranks the RC implementations from 1 (lowest) to 4 (highest)

in terms of performance overhead and memory overhead.

Algorithm Performance Overhead Memory Overhead

Basic non-deferred RC 4 1 (tie)
Non-deferred RC w/ optimization 3 1 (tie)
Deferred RC (DRC) 1 3
BRC 2 2

Table 4.7: Ranking performance and memory overheads of RC implementations from 1
(lowest) to 4 (highest).

The first row corresponds to the basic non-deferred RC described in Section 4.2.1. It suffers

from a high execution time overhead due to frequent atomic RC operations. However, it has

a minimal memory overhead thanks to immediate reclamation.

The second row corresponds to the non-deferred RC with the optimization described in

Section 4.2.2. This is Swift’s RC implementation. Compared to basic non-deferred RC, the

execution time overhead is dramatically reduced. This is because many unnecessary RC

operations are removed at compile time. Specifically, we found that Swift removes up to

97% of RC operations in our programs. This implementation is very effective at removing

RC operations for local variables. At the same time, it maintains immediate reclamation,

and hence has the same minimal memory overhead as the basic non-deferred RC.

The third row corresponds to deferred RC (DRC) implementations, as described in Sec-

tion 4.2.2. The performance overhead is lower, as deferral and coalescing avoid atomic RC

operations during the mutation phase. However, since DRC does not perform immediate

reclamation for all objects, the memory overhead is higher than the basic non-deferred RC.

The last row corresponds to BRC. While Swift’s non-deferred RC with optimization is

fast, it is still slower than DRC (about 20% [71]). BRC narrows this performance gap

by replacing atomic RC operations with non-atomic ones in most cases. It also retains

immediate reclamation for most objects in our programs. Hence, it increases the memory

overhead very little compared to the basic non-deferred RC. We discuss BRC’s impact on

performance and memory in Section 4.6.3 and 4.6.4 in detail.
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Overall, we believe that BRC enables a new space-time trade-off in the RC design space,

different from what has been proposed thus far. Further, we believe that BRC aligns well

with Swift’s philosophy that emphasizes speed and low memory consumption.

4.7.2 Ownership Transfer

In this section, we discuss the ownership transfer especially regarding assigning a new

owner after the initial owner gives up the ownership. Note that the current BRC algorithm

never transfers ownership after it assigns the initial owner. The initial owner of an object is

set to the thread allocating the object. After the initial ownership assignment, the only time

the ownership of the object is changed is when the the owner gives up the ownership either

by implicit or explicit merges as described in Section 4.4.5. After this point, the object has

no owner and all threads access the shared counter.

We extend SlowIncrement to enable a new ownership assignment as shown in Algo-

rithm 4.5. Lines 2-11 are added to assign a new owner if the object has no owner. It first

checks whether the object has an owner (line 3). If not, it prepares a new biased half-

word with the current thread as the owner (lines 6) and tries to set the biased half-word

atomically (line 8). If successful, it returns, and otherwise, it continues to the original part

of SlowIncrement to update the shared half-word (lines 12-18). SlowDecrement is

extended similarly.

Algorithm 4.5 SlowIncrement with new owner assignment

1: procedure SlowIncrement(obj)
2: owner tid := obj.rcword.biased.tid
3: if owner tid == 0 then
4: old := 0 . Current biased half-word should be 0
5: new := old
6: new.tid := GetThreadID() . Assign new owner
7: new.counter := 1 . Set biased counter
8: if CAS(&obj.rcword.biased, old, new) then . Atomic update of biased half-word
9: return

10: end if
11: end if
12: do
13: old := obj.rcword.shared . Read shared half-word
14: new := old
15: new.counter += 1
16: while !CAS(&obj.rcword.shared, old, new)
17: . Atomic increment of shared counter
18: end procedure

The performance impact of such extension is negligible in our programs (less than 1%
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slowdown). This is because the sharing patterns in our programs do not require ownership

transfer as the initial owner of an object tends to drop the last reference to the object and

deallocate the object. In other words, in most cases, an object is deallocated when its biased

counter reaches zero in our programs. The minor slowdown comes from extra checks added

to SlowIncrement and SlowDecrement to assign a new owner.

As different kinds of programs, exhibiting different sharing patterns, are developed in

Swift in the future, it may be worthwhile to reconsider the potential ownership transfer. As

shown in Algorithm 4.5, BRC is flexible to support various kinds of ownership transfer.

4.8 RELATED WORK

There have been many works [61, 84, 85, 86, 87, 88, 89] which try to limit the amount

of overhead to acquire uncontested locks. While BRC is inspired by biased locking [61], it

is not a straightforward re-application of biased locking. BRC proposes an efficient biasing

technique tailored to RC by exploiting the fact that RC does not require strong exclusivity

like locking. BRC lets multiple threads access the same object concurrently, by dividing an

object’s reference count into two counters. In biased locking, this is not possible. BRC also

makes ownership revocation very cheap. This is because ownership is typically voluntarily

revoked in BRC and only requires one CAS. On the other hand, ownership revocation is

extremely expensive in biased locking. It is triggered by a non-owner thread, and requires

inter-thread communication through OS signals or safepoints. This is the main drawback of

biased locking.

Subsequent works on biased locking [84, 85, 86, 87, 88, 89] improve on the original work

by making ownership revocation more efficient, enabling ownership transfer, or determining

when it is best to bias an object. It is possible to apply such ownership transfer techniques

to BRC. In future work, we plan to implement similar techniques to better support various

program behaviors.

Many prior works on RC [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75] focus on

reducing the number of RC operations. They are are briefly summarized in Section 4.2.2,

and compared to BRC in Section 4.7.1. Another category of works attempt to efficiently

detect and remove cyclic references [90, 91, 92, 93, 94]. Swift solves this problem through

weak references, an approach popular in previous literature [77, 78]. We believe that BRC

can also be integrated into RC implementations with cyclic reference detection and removal

algorithms.

Joao et al. [95] propose hardware support for RC. They augment the cache hierarchy to

gradually merge RC operations. Due to the delay of merging in hardware, their technique
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does not support immediate reclamation. In contrast, BRC supports immediate reclamation

in most cases.

Recently, Ungar et al. [96] propose a compiler-assisted dynamic optimization technique for

RC in Swift. It is similar to BRC in that it dynamically replaces atomic RC operations with

non-atomic ones. It adds checks before stores to conservatively capture escaping objects,

and uses atomic RC operations for escaped objects only. Compared to BRC, their technique

maintains the immediate reclamation property of non-deferred RC, while BRC relaxes this

for queued objects. However, their technique uses more atomic operations than BRC due to

its conservative escape detection, and its lack of the notion of biased threads. In addition, it

increases the overhead of the store barrier to detect and recursively mark escaping objects.

Finally, it does not fully support all of Swift’s function argument passing semantics.

4.9 CONCLUSION

This paper proposed Biased Reference Counting (BRC), a novel approach to speed-up

non-deferred RC for garbage collection. BRC is based on the observations that most objects

are mostly accessed by a single thread, and that atomic operations have significant overheads.

BRC biases each object toward a specific thread. Further, BRC adds a second counter to

the object header, enabling the owner thread to have its own counter. These changes allow

the owner thread of each object to perform RC operations without atomic operations, while

the other threads atomically update the other counter. BRC correctly manages the merging

of these two counters, handling all corner cases.

We implemented BRC in the Swift programming language runtime and evaluated it with

various client and server programs. We found that BRC accelerated non-deferred RC.

Specifically, it reduced the average execution time of client programs by 22.5%, and improved

the average throughput of server programs by 7.3%.
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CHAPTER 5: CONCLUSION

Modern programming languages provide many convenient features, such as dynamic type

system and automatic memory management, which increase the productivity of program-

mers. Such benefits, however, come with performance overheads.

This thesis focused on the overheads of various convenient features provided by modern

programming languages. It started by evaluating the overheads of dynamic type system.

It analyzed the state-of-the-art implementation of inline caching which is one of the funda-

mental optimization techniques for dynamically-typed languages. First, the thesis proposed

an enhanced IC design called Reusable Inline Caching (RIC) which enabled the reuse of IC

information across executions to avoid deterministic IC misses during JavaScript initializa-

tion. Second, it proposed ShortCut, an architectural support to accelerate IC hit operations

to improve the overall performance by extending the branch prediction mechanism. Lastly,

it evaluated the overheads of reference counting (RC) for automatic memory management

and proposed a novel algorithm for reference counting, Biased Reference Counting (BRC),

which accelerated RC operations by biasing each object toward a specific thread.
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