
Lehigh University
Lehigh Preserve

Theses and Dissertations

2016

Practical Control-Flow Integrity
Ben Niu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Niu, Ben, "Practical Control-Flow Integrity" (2016). Theses and Dissertations. 2745.
http://preserve.lehigh.edu/etd/2745

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2745?utm_source=preserve.lehigh.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Practical Control-Flow Integrity

by

Ben Niu

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy in

Computer Science

Lehigh University

January, 2016

Copyright © 2015 Ben Niu.

All rights reserved.

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the re-

quirements for the degree of Doctor of Philosophy.

Ben Niu

Practical Control-Flow Integrity

Date

Gang Tan, Dissertation Director

Accepted Date

Committee Members

Gang Tan (Chair)

Mooi-Choo Chuah

Michael Spear

Stephen McCamant

iii

ACKNOWLEDGEMENTS

I am very grateful to my great advisor Prof. Gang Tan. I had no idea how to do research

when I came to Lehigh, and he taught me what to think of, how to think, how to present my

thoughts, and how to write them down. His door was always open for discussion, he replied

emails during weekends, and he provided detailed guidance on any technical problem. I was

constantly surprised at his breadth of knowledge and depth of understanding, and I enjoyed

working with him.

I also thank my thesis committee members, Prof. Mooi-Choo Chuah, Prof. Michael Spear,

and Prof. Stephen McCamant for their courses, research works and insightful comments on my

research. Michael’s parallel programming course introduced me lock-free algorithms and his

operating system course consolidated my system programming skills. Stephen’s research on SFI

provided me a foundation in my research, without which I would be still looking for decent

solutions.

I appreciate my colleagues at MSRC during my internship at Microsoft, especially Matt & Ken,

Suha, Vishal, Swamy, Joe, Axel and Marcus. Discussion with them about the design of Control-

Flow Guard helps me better understand practicality of CFI.

I owe a big debt of gratitude to my apprehensive wife Yinzi, without whose company I could

never finish this dissertation. I also thank her for bringing our daughter Jill to the world, who

brought our family hope and joy, and I could not imagine how my life would be without her.

Moreover, I am very thankful for the invaluable help and support my parents and parents-in-law

provided during this adventure.

Last but not least, I thank my friends Zheng Shi, Shen Liu, Qi Li, Junqi Chen, Zhongyuan

Wei, Zhongliang Liang, Mengtao Sun, Dongrui Zeng, Zi Wang, Bin Zeng and Siliang Li for their

generous help in my daily life.

iv

To my family.

v

Contents

List of Tables x

List of Figures xii

Abstract 1

1 Introduction 2

1.1 Control-Flow Hijacking . 2

1.2 Deployed Defenses . 4

1.3 Control-Flow Integrity . 6

1.3.1 Threat Model . 7

1.3.2 The Classic Implementation of CFI . 8

1.3.3 Granularity of CFI . 9

1.4 Practical Issues of Previous CFI . 10

1.5 Challenges to CFI Practicality . 12

1.6 Thesis Statement . 14

1.7 Contributions . 14

1.8 This Dissertation versus Previous Publications . 14

1.9 Outline . 15

2 Modular Control-Flow Integrity 16

2.1 Overview . 16

vi

2.2 Fine-grained CFG Generation . 17

2.2.1 Source-Level Semantics-based CFG Generation 17

2.2.2 CFG Soundness . 24

2.2.3 CFG Precision Loss . 28

2.3 Modularity and Efficiency . 30

2.3.1 Design of IDs and ID Tables . 32

2.3.2 Memory Layout of MCFI and Protection of ID Tables 34

2.3.3 CFG Check and Update Transactions . 35

2.4 Interoperability . 43

2.5 Implementation . 46

2.6 Evaluation . 46

2.6.1 CFG Statistics . 47

2.6.2 Performance Evaluation . 52

2.7 Future Work . 54

2.8 Summary . 56

3 Per-Input Control-Flow Integrity 58

3.1 Overview . 58

3.1.1 Motivation for per-input CFGs . 60

3.1.2 From edge addition to address activation . 63

3.2 System Design . 64

3.2.1 Secure code patching . 64

3.2.2 Address activation . 66

3.2.3 Compatibility issues . 73

3.3 Implementation . 75

3.4 Evaluation . 75

3.4.1 ECFG Statistics . 75

3.4.2 Performance Evaluation . 78

3.5 Future Work . 79

vii

3.6 Summary . 81

4 RockJIT 82

4.1 Overview . 82

4.2 System Design . 83

4.2.1 Common JIT Architecture . 83

4.2.2 RockJIT Architecture . 85

4.2.3 RockJIT CFG Generation . 85

4.3 JITted Code Manipulation . 87

4.3.1 JITted Code Verification . 88

4.3.2 JITted Code Installation, Deletion, and Modification 90

4.4 Modification to a JIT compiler . 91

4.5 Evaluation . 93

4.5.1 SCFG and ECFG Statistics . 93

4.5.2 Performance Overhead . 94

4.6 Future Work . 96

4.7 Summary . 97

5 Security Analysis 98

5.1 Mitigation of Advanced Attack Forms . 99

5.1.1 Just-In-Time Code Reuse . 99

5.1.2 JIT Spraying . 100

5.1.3 Counterfeit Object-Oriented Programming 101

5.1.4 Control-Flow Bending . 101

5.1.5 Control Jujutsu . 102

5.1.6 Sigreturn-Oriented Programming . 103

5.2 Comparison with Deployed Defenses . 103

5.2.1 Stack Cookie . 103

5.2.2 ASLR . 104

5.3 Limitations of CFI and Future Research . 105

viii

6 Related Work 108

6.1 Control-Flow Integrity . 108

6.2 Software-based Fault Isolation . 110

6.3 JIT Compiler Hardening . 110

6.4 Software Transactional Memory . 111

7 Conclusions 113

Bibliography 124

Vita 125

ix

List of Tables

2.1 Condition violations in SPECCPU2006 C benchmarks. 26

2.2 Numbers of cases for the two kinds of violations. 27

2.3 Condition violations in SPECCPU2006 C++ benchmarks. 28

2.4 CFG statistics for SPECCPU2006 C/C++ benchmarks. 48

2.5 Edge distribution for SPECCPU2006 C/C++ benchmarks. 48

2.6 CFG statistics for SPECCPU2006 C/C++ benchmarks without tail-call elimination. 49

2.7 Equivalence class loss of returns. 50

2.8 Equivalence class loss due to legalized C++ upcalls. 50

2.9 Equivalence class loss due to C++ method pointers. 51

2.10 CFG generation time decomposition. 52

3.1 ECFG statistics of SPECCPU2006 C/C++ benchmarks. 76

3.2 ECFG statistics of Nginx . 79

4.1 Equivalence classes for Google V8 JavaScript compiler. 93

4.2 ECFG statistics of the Google V8 JavaScript engine. 94

4.3 Performance overhead contributors to RockJIT-hardened V8. 95

x

List of Figures

1.1 A stack buffer overflow bug (CVE-2013-2028) in Nginx 1.4.0. 3

1.2 A proof of concept example of Return-Oriented Programming (ROP) attacks. . . . 5

1.3 An example of the ClassicCFI instrumentation for x64 Linux. 9

2.1 A toy C++ example of virtual method call targets. 18

2.2 An example about C++ function pointers. 19

2.3 Control transfers during C++ table-based exception handling. 21

2.4 Metadata annotation for the assembly code of memcpy. 23

2.5 Bad function pointer type cast example in C. 24

2.6 Example of CFG precision loss due to MCFI tail-call elimination. 29

2.7 Example of CFG precision loss because of indirect calls. 30

2.8 Example code of CFG precision loss due to C++ method pointers. 31

2.9 MCFI’s ID Encoding for x64. 32

2.10 Memory layout of MCFI. 36

2.11 Pseudocode for implementing update transactions. 39

2.12 Implementation of check transactions for x64 return instructions. 40

2.13 A compatibility condition violation introduced by the interoperability support. . . 44

2.14 Interoperable check transactions for x64 return instructions. 45

2.15 MCFI runtime overhead on SPECCPU2006 C/C++ benchmarks. 53

2.16 MCFI code size increase on SPECCPU2006 C/C++ benchmarks. 53

3.1 A motivating example for per-input CFGs. 60

xi

3.2 Edge-addition instrumentation for the motivating example. 61

3.3 Memory layout of πCFI . 65

3.4 πCFI activates a return address following a direct call instruction. 68

3.5 The patch stub for activating return addresses. 69

3.6 πCFI activates a return address following an indirect-call instruction. 69

3.7 Example code for function address activation. 71

3.8 πCFI’s instrumentation for activating a function address. 71

3.9 Example C++ code for virtual methods’ address activation. 72

3.10 πCFI activates a virtual method . 73

3.11 Growth of activated target addresses for 400.perlbench. 78

3.12 Growth of activated target addresses for 403.gcc. 78

3.13 Growth of activated target addresses for Nginx. 79

3.14 πCFI runtime overhead on SPECCPU2006 C/C++ benchmarks. 80

3.15 πCFI code size increase on SPECCPU2006 C/C++ benchmarks. 80

4.1 The common architecture of modern JIT compilers. 83

4.2 The architecture of RockJIT. 86

4.3 Indirect branch instrumentation in JITted code. 92

4.4 V8 CFG growth for Octane 2. 94

4.5 πCFI and MCFI overhead on Octane 2 with Google V8. 95

5.1 Runtime overhead comparison among πCFI and deployed defenses 104

xii

ABSTRACT

Control-Flow Integrity (CFI) is effective at defending against prevalent control-flow hijacking at-

tacks. CFI extracts a control-flow graph (CFG) for a given program and instruments the program

to respect the CFG. Specifically, checks are inserted before indirect branch instructions. Before

these instructions are executed during runtime, the checks consult the CFG to ensure that the

indirect branch is allowed to reach the intended target. Hence, any sort of control-flow hijacking

would be prevented.

However, CFI traditionally suffered from several problems that thwarted its practicality. The

first problem is about precise CFG generation. CFI’s security squarely relies on the CFG, there-

fore the more precise the CFG is, the more security CFI improves, but precise CFG generation was

considered hard. The second problem is modularity, or support for dynamic linking. When two

CFI modules are linked together dynamically, their CFGs also need to be merged. However, the

merge process has to be thread-safe to avoid concurrency issues. The third problem is efficiency.

CFI instrumentation adds extra instructions to programs, so it is critical to minimize the perfor-

mance impact of the CFI checks. Fourth, interoperability is required for CFI solutions to enable

gradual adoption in practice, which means that CFI-instrumented modules can be linked with

uninstrumented modules without breaking the program.

In this dissertation, we propose several practical solutions to the above problems. To generate

a precise CFG, we compile the program being protected using a modified compilation toolchain,

which can propagate source-level information such as type information to the binary level. At

runtime, such information is gathered to generate a relatively precise CFG. On top of this CFG,

we further instrument the code so that only if a function’s address is dynamically taken can it be

reachable. This approach results in lazily computed per-input CFGs, which provide better pre-

cision. To address modularity, we design a lightweight Software Transactional Memory (STM)

algorithm to synchronize accesses to the CFG’s data structure at runtime. To minimize the perfor-

mance overhead, we optimize the CFG representation and access operations so that no heavy bus-

locking instructions are needed. For interoperability, we consider addresses in uninstrumented

modules as special targets and make the CFI instrumentation aware of them. Finally, we propose

a new architecture for Just-In-Time compilers to adopt our proposed CFI schemes.

1

Chapter 1

Introduction

In this chapter, we first introduce prevalent control-flow hijacking attacks and deployed mitiga-

tion. Then, we describe concepts and implementations of Control-Flow Integrity (CFI, [1]), which

is a fundamental approach to mitigating control-flow hijacking attacks. Finally, we present prac-

tical issues of previous CFI systems and summarize how we address those problems.

1.1 Control-Flow Hijacking

C and C++ are perhaps the most important programming languages, since almost all critical

software is written in them. For instance, operating system kernels such as Windows and Linux,

virtual machines such as Xen and JVM, compilers such as GCC and LLVM, database management

systems such as MySQL and PostgreSQL, web browsers such as Chrome and FireFox, are all

written mostly in C/C++. On the one hand, programs written in C/C++ enjoy high performance;

on the other hand, these programs all suffer from memory corruption issues such as out-of-bound

accesses or object use-after-free bugs.

Consider a real memory corruption bug found in the popular Nginx HTTP server 1.4.0, which

is extracted and shown in Figure 1.1. An attacker has full control over content length n at line 8,

which is a signed integer. The macro ngx min at line 7 processes two signed integers and returns

the least one. Hence, if the attacker feeds Nginx a negative value, ngx min will return the negative

2

1 #define ngx_min(val1 , val2) ((val1 > val2) ? (val2) : (val1))

2 #define NGX_HTTP_DISCARD_BUFFER_SIZE 4096

3 ...

4 u_char buffer[NGX_HTTP_DISCARD_BUFFER_SIZE];

5 ...

6 /* content_length_n is of type off_t , a signed integer type */

7 size = (size_t) ngx_min(

8 r->headers_in.content_length_n , /* attacker -controlled */

9 NGX_HTTP_DISCARD_BUFFER_SIZE);

10

11 n = r->connection ->recv(r->connection , buffer , size);

Figure 1.1: A stack buffer overflow bug (CVE-2013-2028) in Nginx 1.4.0.

integer, which will then be converted to an unsigned integer and assigned to size at line 7. Later

on, the code invokes the recv system call at line 11 to populate the array buffer defined at line

4 with attacker-controlled data. Since the array length is smaller than the size returned at line 7,

the array will overflow, which results in code injection or code reuse attacks.

Code injection. In code injection attacks, the attacker injects new code into the address space

of the victim program and executes her code. In the example of Figure 1.1, if the stack is exe-

cutable, the attacker could send malicious code bytes to fill the array as well as the overflown

stack. During the same process, the return address of the current function can also be overwritten

with a pointer pointing to the entry of the injected code. Then, when the current function returns,

instead of returning to the caller, the function returns to the injected code and executes it.

Code reuse. In code reuse attacks, the attacker reprograms the existing code bytes to execute

a malicious instruction stream. In the above example, the attacker could simply overwrite the

return address to the address of a libc function system and write arguments to the function on

the stack. When the function returns, system will be executed with attacker-fed arguments, which

enable the attacker to execute arbitrary commands (subject to Nginx’s security privileges) on the

victim machine. As can be seen, no new code bytes are executed in code reuse attacks, but existing

code is reused.

In cases where simply overwriting a return address is not sufficient to mount an attack (e.g.,

the arguments to sensitive functions cannot be arbitrarily set), attackers can use a more advanced

3

code reuse technique called Return-Oriented Programming (ROP [2]). To mount such an attack,

the attackers first scan the code bytes and find gadgets, which are instruction sequences ending

with a return (or an indirect call/jump), and perform basic operations such as an addition or

memory load. Then, by carefully overflowing the stack, the attackers can chain these gadgets into

an arbitrary program.

Next, we use a simple proof-of-concept example in Figure 1.2 to demonstrate principles of

ROP attacks in x86-64 Linux. We assume a function foo contains an out-of-bound array write

bug that allows the attackers to overwrite the stack buffer, like the example in Figure 1.1. We also

assume a piece of code at memory address addr, which normally performs arithmetic operations.

However, if we decode the instruction stream from the middle, we could possibly get three ROP

gadgets. Gadget1 increments register %eax by one and returns; Gadget2 sets %eax to zero and re-

turns; and Gadget3 performs a system call. As a result, if attackers overwrite foo’s return address

to the address of Gadget2, and write 231 copies of Gadget1 addresses, followed by the address of

Gadget3, as shown on the right in Figure 1.2, the attackers can essentially set %eax to 0, increment

it by 231 (equivalent to setting %eax to 231), and execute a system call after foo returns. Since

Linux uses %eax to pass the system call number to the kernel, and 231 is the system call number

for exit group, the current process will exit. Although this simple attack only terminates the

victim program, by carefully choosing and chaining gadgets, the attackers can conduct arbitrary

computation on the victim system.

In both code injection and code reuse attacks, execution of the attack code almost always

deviates from the legal control flow of the victim program. In other words, the attackers typically

mount control-flow hijacking attacks by exploiting memory corruption bugs.

1.2 Deployed Defenses

It is extremely hard to find and fix all the memory corruption bugs before software is shipped

to end users. Therefore, modern OSes (e.g., Windows, Linux and OSX) deploy the following

bug-tolerant defenses to mitigate control-flow hijacking attacks.

Data-Execution Prevention (DEP) DEP prevents code injection attacks by enforcing that the stack

4

addr: BA FF C0 C3 00 81 C2 31 C0 C3 00 81 CA 0F 05 00 00

movl $0xc3x0ff %edx
addl $0xc3c031, %edx
orl $0x50f, %edx
Normal execution

Gadget1:
incl %eax
ret

Gadget2:
xorl %eax, %eax
ret

Gadget3:
syscall

Stack Bottom

...

Return Address
(overwritten to

&Gadget2)
foo’s Frame

&Gadget1

&Gadget3

...

231 &Gadget1

Figure 1.2: A proof of concept example of Return-Oriented Programming (ROP) attacks. Function foo con-
tains a bug that enables stack buffer overflow. “&Gadgetn” means the address of Gadgetn. For
example, &Gadget1 = addr+1. Function foo’s stack frame is omitted except its return address.

and heap areas of a program are non-executable, while the code pages are non-writable by

default. To enjoy DEP, current programs are compiled with separated code and data, which

are stored in memory pages with different protection. However, it is easy to see that DEP

has no protection against code reuse attacks. Moreover, DEP is not compatible with pro-

grams that generate and modify code on-the-fly, such as Just-In-Time (JIT) compilers.

Address Space Layout Randomization (ASLR) ASLR is an approach to mitigating both code in-

jection and reuse attacks. The basic idea of ASLR is to make it harder for attackers to pre-

cisely locate the injected code or reusable code. To do so, program modules such as the ex-

ecutable file and dependent libraries are compiled to be position-independent and loaded

to random places at runtime. Similarly, stack and heap are allocated at random memory

addresses as well. Consequently, the attackers probably need to guess the position of code

and data to mount a successful attack.

However, ASLR has its weaknesses. First, its security depends on how much entropy it

can provide for randomization. As shown in [3], even brute-force guesses can be used to

practically break low-entropy ASLR especially on 32-bit machines.

5

Second, ASLR is vulnerable to information leaks. For example, if the attacker can read a

C++ object on the heap, she can easily figure out where the code modules are by following

the virtual table pointer.

Third, ASLR can be degraded by heap spraying, whose basic idea is to allocate a large chunk

of heap memory and fill that memory with repeated nops followed by the actual exploit

code. Then, instead of precisely jumping to the exploit, the attacker could just randomly

jump to any address in the chunk. Since most of the chunk is filled with nops, which will

lead to execution of the exploit, the chance of success is high.

Stack Cookies Stack cookies [4] also mitigate control-flow hijacking attacks by monitoring the

integrity of return addresses. When a function is called, its prologue pushes a random value

(cookie) onto the stack and the epilogue checks whether the cookie has been modified. If

the cookie changes, stack overflow might have happened and the program is terminated.

However, stack cookie can be bypassed. First, stack cookie only detects sequential stack

buffer overflow. Unfortunately, if an attacker can control the index to an array, she can

choose an index that bypasses the cookie. In addition, stack cookies cannot detect stack

buffer underflow. Second, since the cookie is a randomly chosen value, it may be quickly

guessed, as shown in [5]. Third, stack cookies cannot protect heap buffer overflows.

1.3 Control-Flow Integrity

Stronger than all the deployed defenses, Control-Flow Integrity (CFI [1]) is a fundamental method

for mitigating control-flow hijacking attacks by forbidding illegal control flows. In general, CFI

specifies a Control-Flow Graph (CFG) G = (V ,E) for a victim program P. In G, vertices V rep-

resent instructions and edges E denote legal control-flow transfers between instructions. By en-

forcing control-flow integrity with respect to G, it is guaranteed that every control-flow transfer

during P’s execution is in E.

Control-flow transfers can be either direct or indirect. Direct edges include sequential instruc-

tion execution and direct branching. For example, the transfer from a direct call instruction to

6

its target function address is a direct control-flow transfer. Fortunately, targets of direct control

transfers cannot be arbitrarily controlled by attackers (detailed in §1.3.1), so they are less of con-

cern. On the other hand, indirect transfers through indirect branch instructions including indirect

calls, indirect jumps and returns are more dangerous, because their targets may be arbitrarily con-

trolled by attackers. To ensure CFI for indirect branches, they are checked before execution so that

their targets are always legal.

CFI is a general approach that can secure both operating system kernels and user-level appli-

cations. However, in this dissertation, we limit our discussion to only user-level program protec-

tion without loss of generality. In addition, we always use x64 (short for x86-64) Linux by default

when discussing CFI implementations.

1.3.1 Threat Model

When used to protect user-level applications, CFI assumes that the underlying hardware and

software stack, including the firmware, the virtual machine monitor (if there is one), and the op-

erating system kernel, are in the Trusted Computing Base (TCB). CFI requires a CFI-aware program

loader (also called the CFI runtime or just runtime) to load modules and generate the CFG, and it

is assumed to be trusted. Programs protected with CFI should be built by a CFI-aware compila-

tion toolchain including the compiler, assembler, and linker, and we also consider them trusted.

At runtime, the above trusted modules should enforce a critical invariant: any virtual mem-

ory page that contains code or read-only data is never writable. The reason is straightforward:

without this invariant, the program could be induced to modify itself and execute arbitrary in-

structions. (CFI support for self-modifying code needs special consideration, which will be fully

discussed in §4.) Fortunately, modern hardware and OSes provide primitives that can enforce

this invariant. With this invariant, we consider that direct branches always obey the CFG policy

since their targets are statically computed by the trusted compilation toolchain and hard-coded

in non-modifiable code.1 Therefore, CFI is all about protecting indirect branches.

1A separate verifier can be built to check direct control transfers, as shown in [1]. We ignore the verification for statically
compiled code in this thesis.

7

We model the attacker as a thread running in the address space of the victim application pro-

cess. Therefore, the attacker has full control over all writable memory pages allocated to the

application. However, the attacker cannot directly modify other application threads’ critical reg-

isters (e.g., the program counter). Instead, they may somehow change memory values that will

be loaded to registers by the application threads themselves, and such changes can even be con-

ducted between any consecutive instructions executed by the application threads.

1.3.2 The Classic Implementation of CFI

Since CFI’s inception, many implementations have been proposed. We next describe the classic

(the first) CFI enforcement technique (which we refer to as ClassicCFI) given by Abadi et al. [1].

ClassicCFI generates the CFG using a flow-insensitive analysis that conservatively allows any

indirect call to target any function whose address is taken. For an indirect branch, ClassicCFI

inserts runtime checks, which are described below, before the indirect branch to ensure that the

control transfer is always consistent with the CFG.

First, the set of indirect branch targets is partitioned into equivalence classes after CFG genera-

tion. Two target addresses are equivalent if there exists an indirect branch that can jump to both

targets according to the CFG. An indirect branch is allowed to jump to any destination in the

same equivalence class. If two indirect branches target two sets of destinations and those two sets

are not disjoint, the two sets are merged into one equivalence class.

After partitioning, all addresses in each equivalence class are assigned an equivalence class

number (ECN), which is a natural number that uniquely identifies the equivalence class. The

branch ECN of an indirect branch refers to the ECN of the equivalence class whose addresses the

branch can jump to. The target ECN of an indirect branch is a dynamic notion and refers to the

ECN of the equivalence class in which the attempted destination is when the indirect branch runs

in a specific state.

For an indirect branch to respect the CFI policy, its branch ECN must be the same as its target

ECN. This is enforced by the ClassicCFI instrumentation. Figure 1.3 shows the instrumentation 2

of a return instruction that targets the address retaddr:

2We have ported 32-bit x86 code from ClassicCFI to x64.

8

ret retaddr:

The above return instruction is rewritten to the following:

popq %rcx

cmpl $ECN, 4(%rcx)

jne error

jmpq *%rcx

retaddr:

prefetchnta ECN

Figure 1.3: An example of the ClassicCFI instrumentation for x64 Linux.

(a) At the target, retaddr, ClassicCFI inserts a side-effect-free instruction (prefetchnta for mem-

ory prefetching) with the target address’s ECN embedded in.

(b) The return instruction is rewritten to (1) pop the return address to a temporary register (%rcx

in this case); (2) retrieve the target ECN and compare it with the branch ECN using cmpl and

jne (the address %rcx+4 points to the middle of prefetchnta, if the correct return address is

on the stack); (3) if they are the same, the control is transferred.

In this technique, ECNs are embedded in the non-writable code section to prevent corruption.

However, ClassicCFI does not support secure and thread-safe ECN changes, which may be nec-

essary when a new CFG is generated to replace the old one during dynamic code linking. How

to design a CFI scheme to support dynamic code linking is one of the challenges this dissertation

addresses. We will discuss the details later.

1.3.3 Granularity of CFI

CFI forbids all control-flow transfers not included in the CFG, as a result, the CFG should be

sound, which means if any edge is required by normal execution, it must appear in the generated

CFG. Therefore, a program may have different sound CFGs3, each of which probably contains

redundant edges that are not needed by normal execution.

For each sound CFG of a program, indirect branches and their targets can be partitioned into

equivalence classes as in ClassicCFI. Indirect branches can target any indirect branch targets in the

same equivalence class, but none in other equivalence classes. Different CFI techniques support

3In general, it is impossible to generate a minimal sound CFG, since CFG generation is essentially an alias analysis
problem, which has been shown to be undecidable [6].

9

different numbers of equivalence classes. In general, CFI techniques in the literature can be clas-

sified into two categories: coarse-grained CFI and fine-grained CFI, depending on their support for

equivalence classes.

Coarse-grained CFI

Coarse-grained CFI supports a program-independent number of equivalence classes, which is usu-

ally no more than three. In coarse-grained CFGs, typically each kind of indirect branches is al-

lowed to target one equivalence class. For instance, in binCFI [7] return instructions are allowed

to target all return addresses, which are addresses following call instructions. Example coarse-

grained CFI techniques include PittSFIeld [8], NaCl [9, 10], CCFIR [11], binCFI [7], and MIP [12].

The major benefit of coarse-grained CFI is that coarse-grained CFGs are easier to build, even

without access to source code (e.g., [13]). However, recent attacks presented in [14–16] show that

arbitrary computation can be easily constructed without breaking coarse-grained CFI.

Fine-grained CFI

Fine-grained CFI supports a program-dependent number of equivalence classes. Each indirect

branch can have its own target set. Example fine-grained CFI approaches include several systems

[17–21]. Fine-grained CFI provides better security than coarse-grained CFI, because in general,

the finer the CFG is, the fewer edges attackers can use, and therefore the harder it is for attack-

ers to mount attacks. Unfortunately, existing fine-grained CFI has several issues that affect its

practicality, which will be fully described next.

Based on the above discussion, we can see that coarse-grained CFI is a specialized form of

CFI, while fine-grained CFI is general, therefore in the remainder of this dissertation we use the

terms “CFI” and “fine-grained CFI” interchangeably.

1.4 Practical Issues of Previous CFI

Despite (fine-grained) CFI’s efficacy, it has not seen wide industrial adoption. We believe that not

well supporting the following four critical features contributes to CFI’s poor deployment:

10

• Fine-grained CFGs. Existing fine-grained CFG generation techniques such as SafeDispatch

[22] and ForwardCFI [23] only consider precise edges for C++ virtual method calls, but not

others. HyperSafe [18] generates fine-grained CFGs for C programs, but not for C++. There

has been no fine-grained CFG generation approach that works for all indirect branches in

both C and C++ programs.

Moreover, all existing CFG generation methods statically generate CFGs for all inputs, but

programs may only need a small portion of the edges in a specific run. Therefore, there

might be redundant edges in any statically generated CFG from a concrete input’s perspec-

tive. If we can generate per-input CFGs, the CFG precision could further be improved.

• Modularity. Modularity refers to the capability that two program modules can be sepa-

rately compiled (and instrumented), and linked either statically or dynamically. For exam-

ple, mainstream operating systems support dynamically linked libraries (DLLs) that can be

loaded and linked to a running executable on demand at runtime, but compiled separately

from the main executable. This facilitates software development and update, which can

then be performed separately. As another important example, Just-In-Time (JIT) compilers

for high-level languages such as JavaScript play a key role in today’s computing, because

they provide a good balance between development and efficiency. For performance, JIT

engines emit native code on-the-fly and directly execute the code for performance. How-

ever, previous fine-grained CFI approaches do not support modularity, since they do not

support safe dynamic code loading. As a result, no JIT compiler can be secured by previous

fine-grained CFI.

• Efficiency. CFI-protected programs require extra execution time and space compared to

their native counterparts. For example, at runtime, the CFI checks are executed no matter

whether there are attacks, thus the protected programs are in general slower than the native

versions. Furthermore, the checks consume disk and memory space. For instance, Classic-

CFI reports 16% performance overhead and enlarges the binary size by 8%. Szekeres et al.

[24] propose that a CFI approach is efficient, so that it is possible to see practical use, only if

its performance overhead is less than 10% when measured on compute-intensive programs

11

such as SPEC, and the less the better. We agree upon that estimate. Space overhead is usu-

ally less significant than the performance overhead, as CFI only changes the program code,

whose memory consumption at runtime is often much smaller than the program data, but

it should also be as small as possible.

• Interoperability. In practice, software consists of multiple modules produced by different

vendors, and it is hard to guarantee that each vendor would adopt CFI with the same pace.

In addition, legacy modules may not even have source code available. Therefore, it is crucial

to support interoperability, which means that instrumented modules and uninstrumented

modules can be linked together and run without breaking the program. With interoperabil-

ity, vendors and users can roll out their own plans for CFI instrumentation and adoption.

None of the previous CFI approaches meets all of the above four requirements. For example,

ClassicCFI only supports fine-grained CFG; Zeng et al. ([25], [26]) improve ClassicCFI’s perfor-

mance to make it efficient, but still do not support modularity. The reason is that ClassicCFI does

not allow the running module’s CFG to be combined with other modules’ CFGs at runtime, be-

cause ClassicCFI embeds all IDs in the code region and cannot safely update them to reflect new

equivalence classes in the combined CFG.

1.5 Challenges to CFI Practicality

Apparently, a CFI approach supporting all the four features is more practical than all existing CFI

methods, as it provides better security due to fine-grained CFGs, conforms to programming con-

vention because of modularity and interoperability, and incurs less performance overhead thanks

to high efficiency. However, designing such a CFI approach is not without general challenges:

• Fast combination of fine-grained CFGs. When two modules each of which carries a fine-

grained CFG are linked at runtime, their CFGs should be combined to form a CFG for the

linked modules4. Since the CFGs are combined at runtime, the combination should be as

4CFG generation for a single module is a special case when the module is linked with an empty module.

12

fast as possible, otherwise the efficiency feature is lost. Therefore, we cannot afford expen-

sive online analysis to extract the combined CFG when modules are linked; instead, fast

and scalable approaches are preferred. Further, without expensive (usually comprehensive)

static analysis, we might lose precision of CFGs to some extent. However, such precision

loss should be mild and therefore still leads to fine-grained CFGs.

• Atomic query and update of the enforced CFG. After the running module’s CFG is com-

bined with the loaded module’s CFG at runtime, the enforced CFG on the running module

has probably changed but should still be sound. However, during the CFG update, there

might be other threads running, whose CFI checks consult the CFG for capturing CFI vio-

lations. Unfortunately, these threads may access certain unsound intermediate CFGs if the

CFG query or update is not atomic. For example, suppose before module linking, two in-

direct branches b1 and b2 can target memory addresses A1 and A2, respectively, and after

module linking, b1 should target A1,A3 and b2 should target A2,A4. One possible inter-

mediate CFG would allow b1 to target A1,A3 and b2 to target only A2 but not A4. This

unsound CFG breaks the program semantics by disallowing b2 to reach A4. Consequently,

the CFG query and update operations should both be atomic to ensure that each thread only

sees sound CFGs. Although such atomicity can be naı̈vely implemented using locks in the

inserted CFI checks, they are expensive instructions, which will jeopardize the efficiency.

• Fast execution of CFI checks. CFI checks are inserted right before frequently executed in-

structions such as function returns. As a result, the checks should be as efficient as possible

so that the execution slowdown is tolerable.

• Interoperability with acceptable CFI protection weakening. When uninstrumented mod-

ules are linked to instrumented modules, the CFI protection for instrumented modules

could be degraded but should never disappear. Basic CFI protection (coarse-grained) should

still be preserved for instrumented modules.

13

1.6 Thesis Statement

Given these challenges, an interesting question is: does a practical CFI solution that supports

fine-grained CFGs, modularity, efficiency and interoperability exist?

Thesis Statement: Control-Flow Integrity can be fine-grained, modular, efficient and interoperable,

and therefore practical.

1.7 Contributions

The thesis statement is fully supported by the following contributions described in this disserta-

tion.

1. Two fine-grained, modular, efficient and interoperable approaches to CFI. One approach,

dubbed Modular Control-Flow Integrity (MCFI), solves the above basic problem. The other

approach, entitled Per-Input Control-Flow Integrity (PICFI or πCFI), builds upon MCFI and

provides even finer-grained CFGs customized for concrete program inputs.

2. A framework that can instrument and load programs using the above CFI approaches

and securely execute CFI-protected programs. We changed the Clang/LLVM compilation

toolchain for program instrumentation, and rolled out a user-level CFI-aware runtime, run-

ning in x64 Linux. The toolchain is open source and hosted at https://github.com/mcfi.

3. A general approach entitled RockJIT to extend MCFI and πCFI to supporting JIT compilers.

We ported the Google V8 JavaScript engine to demonstrate the protection.

4. A study on the practicality of the above proposed CFI. Using the above tools, we instru-

mented and measured CFG precision, modularity, efficiency and interoperability on a vari-

ety of programs.

1.8 This Dissertation versus Previous Publications

The content of this dissertation, especially Chapter 2, 3 and 4, is based on our previous publica-

tions [27–29]. However, we make improvements by presenting technical details uncovered in the

14

https://github.com/mcfi

published papers, adding more experimental results, etc. The detailed differences can be found

in §2.8, §3.6 and §4.7.

1.9 Outline

The remainder of this dissertation is organized as follows: Chapter 2 describes Modular Control-

Flow Integrity. Chapter 3 presents Per-Input Control-Flow Integrity. Chapter 4 discusses RockJIT.

Chapter 5 presents our case-by-case security analysis. Chapter 6 elaborates some related work.

Chapter 7 draws conclusions.

15

Chapter 2

Modular Control-Flow Integrity

2.1 Overview

Modular Control-Flow Integrity (MCFI) is the first CFI approach that supports fine-grained CFGs,

modularity, efficiency and interoperability. To generate a fine-grained CFG, MCFI propagates

source-level information such as type information to the binary level as metadata, and gathers

such metadata at program load time to build a precise CFG, which is consulted (or read) by the

program to detect CFI violations. When a code module is loaded during execution, the loading

module’s metadata is combined with the loaded module’s metadata to compute a CFG for both

modules. The old CFG will then be replaced with the new CFG in order not to break program ex-

ecution. Since the CFG update operation might be executed by a concurrent thread, while other

threads may be reading it, data races may occur. To resolve the race condition, we designed a

lightweight Software Transactional Memory (STM) scheme to synchronize the CFG query and

modification operations, which results in small performance overhead. When uninstrumented

modules are linked, since no metadata is available, we conservatively mark each code address in

the uninstrumented modules as a legal target for any indirect branch, and we revise the transac-

tion scheme to appropriately handle this special case. In addition, the fine-grained CFG generated

for all instrumented modules is coarsened to support interoperability.

16

2.2 Fine-grained CFG Generation

MCFI is designed for enforcing CFI on binaries compiled from C or C++. Since the C language

is a subset of C++, we focus our discussion on C++. In practice, C/C++ programs may be mixed

with assembly code, and we also discuss how to handle CFG generation for assembly. C++ CFG

generation depends on the Application Binary Interface (ABI), and we focus on the Itanium ABI

[30] used in x64 Linux.

2.2.1 Source-Level Semantics-based CFG Generation

MCFI needs to generate CFGs (or specifically indirect edges as discussed) for program binaries

compiled from C++. For each indirect branch instruction (e.g., an indirect call) and each indirect

branch target (e.g., a return address), MCFI propagates its source-level information (e.g., virtual

call function type) to metadata packaged with the binary. At module load time, such metadata

is extracted from each module and combined to generate the CFG. Next, we analyze all possible

C++ constructs (e.g., virtual method call) that might be lowered to an indirect branch instruction

and for each case how to generate edges for the indirect branch.

Virtual Method Calls

C++ supports multiple inheritance and virtual methods. A virtual method call through an ob-

ject is usually compiled to an indirect call (or an indirect jump with tail call optimization). A

virtual call on an object is resolved during runtime through dynamic dispatch. Which method it

invokes depends on the actual class of the object. Similar to SafeDispatch [22], MCFI performs

Class Hierarchy Analysis (CHA) [31] on C++ code. This analysis tracks the class hierarchy of a

C++ program and determines, for each class C and each virtual method of C, the set of methods

that can be invoked when calling the virtual method through an object of class C; these methods

might be defined in C’s subclasses. MCFI simply allows a virtual method call to target all meth-

ods determined by CHA. Also, note that to support C++ multiple inheritance, the compiler may

generate thunks [32], which are simple trampolines that first adjust “this” pointer [33] and then

jumps to the corresponding virtual methods. The thunks may be used to fill virtual tables instead

17

1 class A {

2 public:

3 virtual void foo() const {}

4 virtual void foo() {}

5 virtual void bar() const {}

6 virtual void bar() {}

7 };

8 class B : public A {

9 public:

10 virtual void foo() const {}

11 virtual void foo() {}

12 virtual void bar() {}

13 };

14 ...

15 void fx(A *a) {

16 a->foo();

17 }

18 void fy(B *b) {

19 b->foo();

20 }

Figure 2.1: A toy C++ example of virtual method call targets.

of their corresponding virtual methods and therefore can be called by virtual method invocation

as well. We associate each thunk with the same meta-information as its corresponding virtual

method and add it to the class hierarchy as well for CFG generation.

Next we use a toy C++ example in Figure 2.1 to demonstrate the basic idea. We define a class

A and its subclass B as well as their virtual methods. In function fx, virtual method foo is invoked

with respect to a class A object pointer; in function fy, foo is invoked with a class B object pointer.

According to the class hierarchy, which can be constructed straightforwardly, a->foo() at line

16 possibly targets A::foo and B::foo, while b->foo() at line 19 can target B::foo. Note that

a->foo() should not reach A::foo const at line 3 or B::foo const at line 10, because their type

qualifiers [34] do not match: a->foo() calls a non-constant virtual method, but A::foo const

and B::foo const are constant methods.

It should be pointed out that CHA is a whole-program analysis. To support modularity, MCFI

emits a class hierarchy for each module and combines modules’ class hierarchies at link time.

18

1 typedef int (*Fp)();

2 Fp fp = &getpagesize;

3 std::cout << (*fp)();

4 ...

5 typedef void (A::* memFp)() const;

6 ...

7 void fz(const A *a) {

8 memFp memfp = &A::foo;

9 (a->*memfp)();

10 }

Figure 2.2: An example about C++ function pointers.

Function Pointer Dereference

C++ supports two kinds of function pointers: (1) those that point to global functions or static

member methods; (2) those that point to non-static member methods. Function pointers in these

two kinds have different static types. Their target sets are disjoint and they are handled differently

by compilers. Figure 2.2 shows a code example about the two kinds of function pointers.

Function pointer fp is of the first kind. It is assigned to the address of a global function

getpagesize at line 2. At line 3, the function pointer is invoked via an indirect call (or indirect

jump if it is a tail call). To identify its targets, MCFI adopts a type-matching method: an indirect

branch via a function pointer of type τ∗ can target any global function or static member method

whose static type is equivalent to τ and whose address is taken in the code. For simplicity, we use

Clang to compile C/C++ programs to LLVM intermediate representation (IR) and use the names

of LLVM IR types to represent function types. Two types are equivalent if and only if their names

are literally the same. Taking a function’s address means that the function’s address is assigned

to a function pointer somewhere in the code (e.g., line 2).

Function pointer memfp at line 9 is of the second kind, which is also called a method pointer.

The code reuses the class definition in Figure 2.1. According to the C++ semantics, we allow an

indirect branch through such a method pointer of type τ∗ to target any virtual or non-virtual

member method defined in the same class whose type is equivalent to τ, whose address is taken

19

and whose type qualifier such as const matches the method pointer’s. (LLVM IR does not sup-

port function type qualifiers, so we changed Clang and LLVM to propagate C++ member method

type qualifiers to the LLVM IR as metadata.) Moreover, for each matched virtual member method,

we search the class hierarchy to find in derived classes all virtual methods whose types and qual-

ifiers match and add those functions to the target set, because, for example, if a B object pointer

is passed at line 7, B::foo const will be called. Consequently, the method pointer dereference

(a->*memfp)() at line 9 can possibly reach A::foo const, A::bar const or B::foo const in

Figure 2.1 at line 3, 5 or 10, respectively.

It should be noted that function addresses can also be explicitly taken at runtime by libc func-

tion dlsym. Therefore, we changed dlsym’s implementation so that before dlsym returns a valid

function address, an MCFI runtime trampoline (details in §2.3.2) is called to mark the function’s

address as taken and update the CFG so that function pointers with the equivalent type can legit-

imately call the function. Later in §3, we show that by carefully handling address-taken events,

we can further refine the CFGs.

Returns

To compute control-flow edges out of return instructions, we construct a call graph, which tells

how functions get called by direct or indirect calls, which have been described above. Using the

call graph, control-flow edges out of return instructions can be computed: if there exists an edge

from a call node to a function, return instructions in the function can return to the return address

following the call node.

In addition, modern compilers usually perform tail-call elimination at machine code level to

save stack space. Basically, if a return instruction immediately follows a call instruction during

code emission, the return is eliminated and the call is replaced with a jump. We handle this case

in the following way: if in function f, there is a call node calling g, and g calls h through a series

of tail jumps, then an edge from the call node in f to h is added to the call graph. Unfortunately,

tail-call elimination may introduce CFG precision loss, and we discuss the problem in detail in

§2.2.3.

20

Ltry:
...

call cxa throw
Lcatch:
...

call printf

libc++abi

libunwind

(1): cxa throw

(2): Unwind RaiseException(3): gxx personality v0

(4): Lcatch

Figure 2.3: Control transfers during C++ table-based exception handling.

Exception Handling

We first discuss how C++ exceptions are handled by compilers and libraries that implement the

Itanium C++ ABI. In this ABI, C++ exception handling is joint work of the compiler, a C++-specific

exception handling library such as libc++abi and a C++-agnostic stack-unwinding library such

as libunwind.

When a compiler compiles a C++ program, it emits sufficient information for stack unwind-

ing, since every stack frame needs to be searched to find a matching catch clause for a thrown

exception object. Such data is emitted as metadata (e.g., the eh frame and gcc except table

sections in an ELF file) during compilation. Figure 2.3 depicts the runtime control flow when

an exception object is thrown. It assumes libc++abi and libunwind are used; the control flow

would be the same when other libraries are used as long as they obey the Itanium C++ ABI.

The left box in Figure 2.3 shows some assembly code, where the Ltry label starts a C++ try

statement and Lcatch implements a catch statement. A C++ throw statement is translated to a

direct call to libc++abi’s cxa throw, which takes three arguments: the heap-allocated excep-

tion object, its type information, and a pointer to the object’s destructor. It performs initialization

and invokes Unwind RaiseException in libunwind, which extracts the code address where the

exception is thrown and walks through each stack frame by consulting the eh frame section. In

each stack frame, Unwind RaiseException uses an indirect call to invoke a C++-specific routine

called gxx personality v0 defined in libc++abi, which searches for catch clauses in that frame

by consulting gcc except table. Two cases can happen. If a type-matching catch clause is found

in the current frame, control is transferred to the catch clause via an indirect branch, which we

call CatchBranch. If a type-matching catch is not found, the stack unwinding should be resumed.

21

However, if there is a clean-up routine that is used to deallocate objects allocated in try state-

ments, the clean-up routine needs to run before the unwinding continues. It turns out that the

same indirect branch (CatchBranch) is used to transfer the control to the clean-up routine, but

with a different target address.

Consequently, all control-flow edges in Figure 2.3, except for the edges out of CatchBranch,

can be handled using the strategies we have discussed (CHA and the type-matching method).

For the CatchBranch, our implementation connects it to all catch clauses and cleanup routines. To

support separate compilation, MCFI’s modified LLVM compiler emits a table recording addresses

of all catch clauses and cleanup routines in each module, and these tables are combined during

linking.

If an exception object is caught, but not rethrown, libc++abi invokes the object’s destructor,

which is registered when calling cxa throw. The invocation is through an indirect call. Possible

targets of this call in a module can be statically computed by tracking cxa throw invocations. As

a result, MCFI’s compiler emits these target addresses for each module and the runtime combines

them at link time.

Global constructors and destructors. The constructors of global and local static objects are in-

voked before the main function of a C++ program, and their destructors are called after the main

function returns. LLVM handles such cases by generating stub code for each such object. The

stub code directly invokes the constructor and registers the destructor using either cxa atexit

or atexit defined in libc. The addresses of the stub code are arranged in the binary and iterated

by an indirect call (called CtorCall) in libc before main. After main, another libc indirect call

(called DtorCall) iterates the registered destructors to destroy objects. Both CtorCall and Dtor-

Call’s targets are statically computable by analyzing the compiler-generated stub code.

Signal Handlers

In Linux, signal handlers are usually not invoked by any application code1, so they do not return

to the application code. Instead, signal handlers return to a code stub set up by the OS kernel,

1If a signal handler is invoked by application code, we can change the code to duplicate the handler so
that the copy is never invoked.

22

1 memcpy:

2 ... # instructions omitted

3 __mcfi_return_memcpy:

4 mcfi -ret # MCFI -instrumented return

5

6 .section MCFIMetadata ,"", progbits

7 .ascii "memcpy : void* (*)(void*, void*, size_t)"

Figure 2.4: Metadata annotation for the assembly code of memcpy.

which invokes the sigreturn system call. MCFI provides new function attributes for developers

to annotate signal handlers in the source code so that the compiler will inline the code stub into

each signal handler during code generation. Each signal handler is associated with a special type

signature to ensure it never becomes any indirect call target. This design helps mitigate Sigreturn-

Oriented Programming attacks [35], which will be discussed in §5.1.6.

Indirect Control-Flow in Assembly Code

Indirect branches and indirect branch targets in assembly code should be appropriately handled

to enable CFG edge generation with MCFI-instrumented C/C++ code. MCFI requires the devel-

opers to manually annotate the assembly instructions so that the assembly code seems like being

compiled by the MCFI compiler. For example, some libc functions such as memcpy is implemented

using manually written assembly for performance, and suppose Figure 2.4 shows memcpy’s start-

ing label and the instrumented return instruction mcfi-ret (the instrumentation is later explained

in §2.3). To help generate the CFG, type information needs to be added for the assembly function

of memcpy. Moreover, its instrumented return instruction should be annotated so that the MCFI

runtime knows which indirect branch in the binary code performs the function return operation

for memcpy. To achieve these, we insert an MCFI-specific label “ mcfi return memcpy” for iden-

tifying memcpy’s instrumented return, and add a string (enclosed in double quotes) in a newly

created section “MCFIMetadata” to record the type information. It should be noted that for sim-

plicity, the annotation format in Figure 2.4 is slightly different from the format used in our actual

implementation.

23

1 typedef void (*F)(char*); /* define F to be void (*)(char*) */

2 void foo(long x); /* a global function */

3 ...

4 F fp = (F)&foo; /* cast the type of foo to F */

5 (*fp)(0); /* False CFI violation */

Figure 2.5: An example showing that our CFG generation process may break C code with type casts from
function pointers.

Other Control-Flow Features

According to the specification, longjmp always returns (through an indirect jump instruction) to

the address set up by a setjmp call. MCFI simply connects the longjmp’s indirect jump to the

return addresses of all setjmp calls. Other functions such as setcontext and getcontext can be

handled in a similar way.

Switch and indirect goto statements are typically compiled to direct jumps or jump-table

based indirect jumps; their targets are statically computed and embedded in read-only code or

jump tables, so they do not need instrumentation.

Lambda functions are available in C++11, whose related control-flow edges (returns) are also

supported by our CFG generation. Compilers automatically convert lambda functions to func-

tors, which are classes with operator() methods that are directly called. The return edges of the

operator() methods can be handled in the same way as those of other functions.

2.2.2 CFG Soundness

Due to arbitrary type cast, our aforementioned CFG generation approach may not generate a

sound CFG for an arbitrary C/C++ program because of the indirect branch edge analysis for

virtual method calls and function pointer dereferences. Consider a toy C example in Figure 2.5.

The function pointer dereference at line 5 would be falsely detected as a CFI violation, because

the function pointer fp’s type is void (*)(char*), but it actually points to function foo that has

a different type, which means the edge that connects fp to foo is missing in the generated CFG.

We believe that MCFI can generate a sound CFG for a memory-safe C/C++ program if the

program satisfies a compatibility condition that it has no bad type cast from or to type T (defined below)

24

that contains function pointer types, because each indirect call will only be assigned values of the

matching type. Here, T is either a function pointer type, or an aggregate type (e.g., struct) that

has a field of type T , or a pointer type pointing to an object of type T . Note that C++ classes with

virtual methods are also of type T as they essentially contain a virtual table pointer pointing to

virtual method pointers. Moreover, note that MCFI allows each virtual method call to reach any

virtual method implementation according to the class hierarchy, so the condition can be relaxed

to allow all type casts between two classes (or class pointers) as long as there exists an inheritance

path in the class hierarchy between those two classes.

In practice, not every C/C++ program satisfies the above condition, so they first need to be

retrofitted to meet the condition. We built a Clang-based static checker that can capture all bad

casts to facilitate the retrofitting process. The checker is executed after the Abstract Syntax Tree

(AST) is generated in Clang, which explicitly represents all type casts.

Effort to Retrofit Existing C/C++ Code

We investigated how much effort it takes to make SPECCPU2006 C/C++ programs comply with

the compatibility condition. First we present the results for the twelve C programs in Table 2.1.

For a benchmark, column “SLOC” lists its lines of source code and column “VBE” (Violation Be-

fore false-positive Elimination) lists the number of condition violations. While some benchmarks

such as 445.gobmk have no violations, two benchmarks, 400.perlbench and 403.gcc, have thou-

sands of violations. We found many cases do not lead to actual violations of the CFG built by our

system; that is, they are false positives.

Some of the false positives have common patterns and can be easily ruled out by the analyzer.

We next briefly discuss those cases: (1) Upcast (UC). C developers sometimes use type casts be-

tween structs to emulate features such as parametric polymorphism and inheritance. An abstract

struct type is defined and it contains common fields for its subtypes. Then, a few concrete struct

types are physical subtypes of the abstract struct type (in the sense that they share the same prefix

of fields). A function can be made polymorphic by accepting values of the abstract struct type.

Callers of the function have to perform type casts. Those type casts are upcasts, which are false

positives in our system because the extra fields in a concrete struct cannot be accessed after the

25

SPECCPU2006 SLOC VBE UC DC MF SU NF VAE
400.perlbench 126,345 2878 510 957 234 633 318 226
401.bzip2 5,731 27 0 0 6 4 0 17
403.gcc 235,884 1366 0 0 15 737 27 587
429.mcf 1,574 0 0 0 0 0 0 0
445.gobmk 157,649 0 0 0 0 0 0 0
456.hmmer 20,658 20 0 0 20 0 0 0
458.sjeng 10,544 0 0 0 0 0 0 0
462.libquantum 2,606 1 0 0 0 0 0 1
464.h264ref 36,098 8 0 0 8 0 0 0
433.milc 9,575 8 0 0 3 0 0 5
470.lbm 904 0 0 0 0 0 0 0
482.sphinx3 13,128 12 0 0 11 1 0 0

Table 2.1: Condition violations in SPECCPU2006 C benchmarks.

cast. (2) Safe downcast (DC). Downcasts from an abstract struct type to a concrete struct type are

in general not safe. However, a common pattern is to have a type tag field in the abstract struct;

the runtime type tag encodes the type of a concrete struct when it is cast to the abstract struct.

Clearly, if all casts involving the abstract struct type respect a fixed association between tag val-

ues and concrete struct types, those casts can be considered false positives. Such association can

be specified manually (or inferred from source code) and fed to the analyzer. (3) Malloc and free

(MF). malloc always returns void*. If it is invoked to allocate a struct that contains function

pointers, the compatibility condition is violated as it involves a type cast from void* to a struct

with function pointers inside. We consider such violations false positives because if the function

pointers inside the struct are used without proper initialization, the C program is not memory

safe. Similarly, type casts in invocations of free are also considered false positives. (4) Safe up-

date (SU). We consider updating function pointers with literals as false positives. For instance,

function pointers may be initialized to be NULL, which involves a cast from integers to function

pointers. This is a false positive as dereferencing a null value would terminate the program. (5)

Non-function-pointer access (NF). There are some type casts that involve function pointers but after

casts the function pointers are not used. Take the following example from 400.perlbench.

if (((XPVLV *)(sv ->sv_any))->xlv_targlen) { ... }

Struct XPVLV has a function-pointer field, but after the cast only non-function-pointer fields are

used. It is a false positive.

26

400.perlbench 401.bzip2 403.gcc 462.libquantum 433.milc
K1 4 0 580 1 0
K1-fixed 4 0 72 1 0
K2 222 17 7 0 5

Table 2.2: Numbers of cases for the two kinds of violations.

In Table 2.1, columns “UC”, “DC”, “MF”, “SU” and “NF” list the numbers of false positives

removed by our aforementioned elimination methods. Column “VAE” presents the number of

cases after elimination. As can be seen from the table, the elimination methods are effective at

eliminating a large number of false positives. After the process, seven C benchmarks report no

violations and need no code fixes. For the other five C benchmarks, the remaining cases can be

put into the following kinds:

K1 A function pointer is initialized with the address of a function whose type is incompatible

with the function pointer’s type.

K2 A function pointer is cast to another type and cast back to its original type at a later point.

Table 2.2 reports the number of K1 and K2 cases in the remaining five benchmarks. Row

“K1-fixed” lists the number of cases in K1 that require changes to the source code to generate a

working CFG using the type-matching method. None of the cases in K2 requires us to change the

source code.

Most K1 cases require us to change the source code manually because the unmatched types

of function pointers and functions may cause missing edges in the generated CFG. Consider a

case in the 403.gcc benchmark that is related to a generic splay tree implementation. Each node

in the splay tree has a key typed unsigned long. There is a key-comparison function pointer

typed int (*)(unsigned long, unsigned long). In two places, the function pointer is set to be

the address of strcmp, whose type is int (*)(const char*, const char*). Since the function

pointer’s type is incompatible with strcmp’s, the CFG generation does not connect the function

pointer to strcmp. To fix the problem, we added a strcmp wrapper function that has the equiv-

alent type as the type of the comparison function and makes a direct call to strcmp. The key-

comparison function pointer is then set to be the address of the wrapper function. For another

27

Program SLOC K1 K1-fixed K2 VAE
444.namd 3,886 0 0 0 0
447.dealII 94,384 0 0 15 15
450.soplex 28,277 0 0 0 0
453.povray 78,705 35 35 25 60
471.omnetpp 19,991 0 0 48 48
473.astar 42,80 0 0 0 0
483.xalancbmk 267,399 0 0 350 350

Table 2.3: Condition violations in SPECCPU2006 C++ benchmarks.

example in 403.gcc, different instruction emission functions have different numbers of param-

eters, and 403.gcc initializes a variadic function pointer array with those instruction emission

functions’ addresses, which contribute most K1 cases. To fix those cases, we cast the variadic

function pointer to a non-variadic function pointer at its call sites. All cases in the “K1-fixed” row

can be fixed by wrappers or by directly changing the types of function pointers or functions.

Four benchmarks report K2 cases. Consider an example in the 400.perlbench program. A

function pointer is initially stored in a void* pointer and later the void* pointer is cast back to the

original function pointer’s type and dereferenced. In 400.perlbench and 403.gcc, there are also

cases of downcast without performing dynamic checking on type tags. In these cases, developers

decided those downcasts are safe (perhaps through code inspection) to avoid dynamic checks.

None of the K2 cases required code changes to generate a working CFG. This was confirmed by

running instrumented benchmarks successfully with all the provided data sets.

Similarly, we ran the analyzer on the seven C++ benchmark programs and found three of them

satisfy the compatibility condition while six of them do not need any code fix. Details are shown

in Table 2.3

Our experience on SPECCPU2006 shows that the task of making source code work with the

type-matching approach is not onerous and can be achieved without many changes to the code.

Furthermore, our empirical investigation suggests that only K1 cases are the ones that need fixes.

2.2.3 CFG Precision Loss

As discussed, the tail-call elimination optimization during machine code emission may be per-

formed to replace a call followed by a return with a jump, which can save stack space and may

28

1 // (a) no tail -call elimination

2 f:

3 call foo

4 L:

5 ...

6 foo:

7 ...

8 call bar

9 ret

10 bar:

11 ...

12 ret

// (b) tail -call elimination

f:

call foo

L:

...

foo:

...

jmp bar

bar:

...

ret

Figure 2.6: Example of CFG precision loss due to MCFI tail-call elimination.

speed up program execution. However, this optimization introduces CFG precision loss by en-

larging target sets of return instructions, as demonstrated by the example code in Figure 2.6. Fig-

ure 2.6 (a) shows the code without tail-call elimination, and the above described CFG generation

method will allow function foo’s return instruction at line 9 to target label L, but not bar’s return.

Figure 2.6 (b) lists the code after tail-call elimination, which connects function bar’s return to L as

well as all return addresses following call sites to foo, thus resulting in a larger return address set

and CFG precision loss. Fortunately, such CFG precision loss can be recovered by disabling the

instruction replacement, and the recovered CFG can be enforced by the MCFI instrumentation

(detailed in §2.3).

After the CFG is generated, MCFI performs equivalence class partitioning and assigns a unique

ECN to each indirect branch and indirect branch target, same as ClassicCFI (details in §1.3.2).

However, this process might result in CFG precision loss as well, because the finally enforced

CFG is coarser-grained than the generated CFG, in the following cases.

Return addresses may be merged into an equivalence class due to indirect calls, and Figure

2.7 shows an example. According to the CFG generation strategy, function foo’s return (omitted

in the figure) should target Lfoo or L, and bar’s return (also omitted) should target Lbar and L.

However, the equivalence class partitioning process will merge Lfoo, Lbar and L into the same

equivalence class because all of the three addresses share the same ECN.

Moreover, C++ virtual method calls may legally reach more virtual methods defined in super

29

1 call foo

2 Lfoo:

3 ...

4 call bar

5 Lbar:

6 ...

7 call *%rax # rax may be equal to foo or bar

8 L:

9 ...

Figure 2.7: Example of CFG precision loss because of indirect calls.

classes. According to the class hierarchy of Figure 2.1, the virtual method call b->foo() at line

19 should only target B::foo. However, since the virtual method call a->foo() at line 16 can

reach both A::foo and B::foo, B::foo will be assigned with the same ECN as A::foo, essentially

allowing b->foo() to also target A::foo in the enforced CFG.

Finally, C++ method pointers can cause CFG precision loss and let us take the C++ code in

Figure 2.8 as an example. According to the CFG generation approach mentioned in §2.2.1, a->foo

at line 11 should only reach A::foo, while a->*memfp at line 12 can target either A::foo or A::bar.

However, since MCFI assigns the same ECN to both A::foo and A::bar (as well as a->foo and

a->*memfp), a->foo can also target A::bar at runtime. The effect is equivalent to the merging

of the equivalence classes of A::foo and A::bar, which should have been different without the

method pointer.

Unfortunately, the equivalence class partitioning process is required by the MCFI instrumen-

tation discussed next, so the CFG loss caused by this process cannot be recovered and enforced

by the instrumentation.

2.3 Modularity and Efficiency

After the fine-grained CFG is generated, MCFI partitions indirect branch targets into equivalence

classes and labels each with an ECN, same as what ClassicCFI does. To remove the global unique-

ness requirement in ClassicCFI, ECNs are pulled out of the code section and stored in a runtime

30

1 class A {

2 public:

3 virtual void foo(void) {}

4 void bar(void) {}

5 };

6

7 typedef void (A:: memFp *)(void);

8

9 memFp memfp = &A::bar;

10 A *a = new A;

11 a->foo();

12 (a->*memfp)();

Figure 2.8: Example code of CFG precision loss due to C++ method pointers.

data structure consisting of two separate tables. These tables are conceptually maps from ad-

dresses to IDs, each of which contains an ECN and other components (detailed later in §2.3.1).

The branch ID table, called the Bary table, maps from an indirect-branch location to the location’s

branch ID, which contains the ECN of the equivalence class of addresses the branch is allowed

to jump to. The target ID table, called the Tary table, maps from an address to an ID showing the

equivalence class to which the address belongs.

With the ID tables, instrumenting an indirect branch is straightforward. Take the example of

a return instruction located at address l. The instrumentation can first use the Bary table to look

up the branch ID for address l, use the Tary table to look up the target ID for the actual return

address, and check whether the branch ID is the same as the target ID.

This CFG encoding has several benefits. First, IDs in the tables can overlap with the numbers

in the code section, eliminating the global ID uniqueness assumption in ClassicCFI. Second, the

instrumentation code before indirect branches is parameterized over the ID tables and remains

the same once loaded. Therefore, code pages for applications and libraries can be shared among

processes, saving memory and application launch time.

With specially encoded IDs, we design table access operations as transactions to enable thread-

safe table look-ups and updates. The look-up operation does not use any heavy bus-locking

instruction, which makes the transaction execution efficient.

31

0... 0... 0... 0... 0... 0... 0... 1...

Equivalence Class Number Version

Higher 4 bytes Lower 4 bytes

8-byte aligned

Figure 2.9: MCFI’s ID Encoding for x64.

2.3.1 Design of IDs and ID Tables

As discussed, MCFI maintains two tables, both of which map from addresses to IDs. The Bary

table holds branch IDs and the Tary table holds target IDs. An ID is eight-byte long, visualized in

Figure 2.9. An ID is stored in an eight-byte aligned memory address so that a single x64 memory

access instruction can atomically access it.

An MCFI ID contains several components. The first component is composed of the least sig-

nificant bits in the eight bytes. They are reserved and have the special bit values 0, 0, 0, 0, 0, 0, 0,

and 1, from high to low bytes. These reserved bits are to prevent the use of an address that points

to the middle of an ID to look up the tables; more on this will be discussed shortly. We define a

valid ID to be an ID that has the special bit values at the reserved-bit positions.

Besides, an MCFI ID contains a 28-bit ECN in the higher four bytes and a 28-bit version num-

ber in the lower four bytes. Our ID-encoding scheme allows 228 different equivalence classes in

programs. The version number in an ID is to support table access transactions and is used to

detect whether a check transaction should be aborted and retried (details discussed later). The ID

encoding allows 228 different version numbers.

We next discuss how MCFI represents Bary and Tary tables during runtime. Since they are

queried frequently, MCFI should choose an appropriate data structure to minimize the ID-access

time. There is a range of data structures MCFI could use. A naı̈ve choice is a hash map that maps

from addresses to IDs. This is space efficient, but the downside is that an ID access involves many

instructions for computing the hash value and even more when there is a hash collision.

Instead, MCFI adopts a simple representation of the ID tables. Both Bary and Tary tables are

32

represented using arrays. The Tary table is an array of IDs indexed by code addresses. If a code

address is not a possible indirect-branch target, the corresponding array entry contains all zeros;

otherwise, it contains the ID of the code address. This design clearly enables efficient look-ups

and updates, but one worry is its space efficiency.

In the case that there is an entry in the table for every code address, the size of the table

is eight times of the code size since each ID is eight-byte long. To have a smaller Tary table,

MCFI uses a space-optimization technique. It inserts extra nop instructions into the program to

force indirect-branch targets to be eight-byte aligned. As a result, the table needs entries only

for eight-byte aligned code addresses, and the size of the Tary table is the same as the code size.

During runtime, since the majority of memory consumed by a program holds data in the heap,

the Tary table causes only a small increase on the runtime memory footprint. The alignment also

guarantees that any program whose code size is no more than 2GB is supported by MCFI, as

there will be no more than 228 indirect branch targets in the code, which is equal to the maximum

number of equivalence classes.

Moreover, MCFI has to prevent programs from using indirect-branch targets that are not eight-

byte aligned. This is where those reserved bits in an ID help2. In particular, if an indirect branch

uses an address that is not eight-byte aligned, the eight-byte target ID loaded from the Tary table

will not be valid (i.e., it will not have the special bit values 0, 0, ..., and 1 in the least-significant

bits). Then, the comparison with the branch ID will fail because the branch ID loaded from the

Bary table is always valid, as discussed next.

The Bary table could use the same design as the Tary table, but MCFI uses an optimization

to increase its space and time efficiency. Recall that the Bary table conceptually maps indirect-

branch locations to branch IDs. One observation is that instruction addresses are known once

they are loaded in memory. Therefore, when a module is loaded into the code region, MCFI’s

loader patches the code to embed constant Bary table indexes that correspond to correct branch

IDs in branch-ID read instructions. In this design, the Bary table does not need entries for code

addresses that do not hold indirect branches (in contrast, the Tary table has all-zero entries even

2Alternatively, we can insert an and instruction to align the indirect-branch targets by clearing the least
two bits, but it incurs more overhead.

33

for addresses that are illegal indirect-branch targets). Furthermore, all branch IDs loaded from

the Bary table are valid IDs as long as the loader embeds the correct table indexes in branch-ID

read instructions.

2.3.2 Memory Layout of MCFI and Protection of ID Tables

The Bary and Tary tables need to be protected at runtime so that application code cannot directly

change them. Figure 2.10 shows the memory layout of an application protected with MCFI. The

application should have been compiled and instrumented by MCFI’s compilation toolchain. The

application and all its instrumented libraries are loaded into a sandbox created by the MCFI run-

time. The sandbox can be realized using Software-based Fault Isolation (SFI [36]) or hardware

support (e.g., segmentation). In our case, we use the scheme described in [37] to create the SFI

sandbox. In detail, the sandbox for running applications is within [0, 4GB) 3, and the MCFI com-

piler instruments each indirect memory write instruction by adding a 0x67 prefix, which is the

32-bit address-override prefix. The prefix forces the CPU to clear all upper 32 bits after computing

the target address. As a result, code in the sandbox cannot arbitrarily execute or write memory

pages outside the sandbox, but has to invoke trampolines provided by the MCFI runtime; these

trampolines allow the untrusted code to escape the sandbox safely. The runtime also maintains

the invariant that no memory pages in the sandbox are writable and executable simultaneously,

at any time, according to the threat model of CFI (§1.3.1). In addition, the runtime guarantees

that read-only data, such as jump tables, are not writable. Consequently, those system calls that

might subvert the invariant are replaced with runtime trampoline invocation. For instance, the

mmap, munmap and mprotect system calls in the libc are all rewritten to invoke the relevant runtime

trampolines that are checked. The MCFI runtime and the encoded CFG, i.e., Bary and Tary, are

stored outside of the sandbox. The ID tables are read-only from the application’s perspective, but

writable by the runtime.

MCFI uses the %gs segment register to index both the Bary and Tary tables. Inside the sand-

box, MCFI always loads the code in [4MB, 4GB) to comply with the x64 Linux ABI, and the region

3The maximum sandbox size can be extended to 64TB on x64 if the sandboxing technique in PittSFIeld [8]
is used or the MCFI runtime is implemented as a kernel module.

34

[0, 4MB) is always unmapped. Therefore, we allocate [%gs+68KB, %gs+4MB) for the Bary table,

and [%gs+4MB, %gs+4GB) for the Tary table. MCFI always unmaps [%gs, %gs+64KB) for trap-

ping calls to the NULL pointer, and uses the page [%gs+64KB, %gs+68KB) for storing trampolines,

which are pointers to MCFI runtime services. Applications can be modified to jump to the tram-

polines to safely escape the sandbox. For example, jmpq %gs:65536 would transfer the control to

the first trampoline MCFI installs.

Figure 2.10 also shows parallel mapping of runtime-adjustable read-only data4, especially the

GOT.PLT data in Linux. The PLT (Procedure Linkage Table) contains a list of entries that con-

tain glue code emitted by the compiler to support dynamic linking. Code in the PLT entries

uses target addresses stored in the GOT.PLT table (GOT is short for Global Offset Table). The

GOT.PLT table is adjusted during runtime by the linker to dynamically link modules. However,

security weakness results from the GOT.PLT table’s writability, as demonstrated by a recent attack

[15]. To address this security concern, MCFI sets the GOT.PLT table to be always read-only in-

side the sandbox and creates outside the sandbox a shadow GOT.PLT table (by calling shm open,

ftruncate, and mmap), which is mapped to the same physical pages as the in-sandbox GOT.PLT

table. All changes to the GOT.PLT table are therefore performed by the MCFI runtime, which

ensures that each entry’s value is the address of either the dynamic linker or the address of a

function whose name is the same as the corresponding PLT entry’s name. Later in §3 and §4, we

generalize the parallel mapping to support finer-grained CFGs and self-modifying code.

2.3.3 CFG Check and Update Transactions

The ID tables may be accessed concurrently by multiple threads. One thread may dynamically

load a module, which triggers the generation of a new CFG. Consequently, a new set of IDs

based on the new CFG needs to be put into the ID tables. At the same time, another thread

may execute an indirect branch, which requires reading IDs from the tables. Since concurrent

reads and writes are possible, a synchronization mechanism must be designed for maintaining

consistency of the tables. Otherwise, the tables may reach some intermediate state that represents

an unsound CFG and breaks program execution. A simple lock-based scheme for accessing tables

4Alternatively, the Bary IDs could be associated with each code module as read-only data.

35

Virtual Address Space

Code (RX)

RO-Data (R)

Data (RW)

Shadow RO-Data (W)

MCFI runtime

CFG (ID Tables)%gs

Physical Pages

SFI Sandbox

Unmapped region
Page mapping

Figure 2.10: Memory layout of MCFI. “R”, “W” and “X” appearing in parentheses denote the Readable,
Writable, and eXecutable memory page permissions, respectively. The “RO-” prefix means
Read-Only.

could be adopted, but it would incur a large performance penalty due to MCFI’s table-read-

dominant workloads: dynamic linking is a rare event compared to the use of an indirect branch

(especially return instructions); even in Just-In-Time (JIT) compilation environments such as the

Google V8 JavaScript engine, which optimizes code on-the-fly, the number of indirect branch

execution is roughly 108 times of CFG updates triggered by dynamic code installation.

Our solution is to wrap table operations into transactions and use a custom form of Software

Transactional Memory (STM) to achieve safety and efficiency. We use two kinds of transactions:

(1) Check transaction (TxCheck). This transaction is executed before an indirect branch. Given

the address where the indirect branch is located and the address which the indirect branch

targets, the transaction reads the branch ID and the target ID from the tables, compares the

two IDs, and takes actions if the IDs do not match. This transaction performs only table reads.

(2) Update transaction (TxUpdate). This transaction is executed during dynamic linking. Given the

new IDs generated from the new CFG after linking a library, this transaction updates the Bary

and Tary tables.

36

The reason why a transaction-based approach is more efficient is that the check transaction

performs speculative table reads, assuming there are no other threads performing concurrent

writes; if the assumption is wrong, it aborts and retries. This technique matches our context well

and provides needed efficiency.

MCFI could adopt standard STM algorithms to implement the transactions. However, those

algorithms are generic and separate metadata (e.g., the version numbers) from real data (the

ECNs). As a result, they require multiple instructions for retrieving metadata and real data, and

multiple instructions for comparing metadata and real data to check for transaction failure and

CFI violation. We micro-benchmarked the TML [38] algorithm, a state-of-the-art sequence-lock-

based STM algorithm particularly optimized for read-dominant workloads, and found it is one-

time slower than MCFI’s custom transaction algorithm, which puts metadata and real data in a

single word. The compact representation enables MCFI to use a single instruction to retrieve both

meta and real data and a single instruction to check for transaction failure.

Update Transactions

When a library is dynamically linked, MCFI produces a new CFG for the program after linking.

Based on the new CFG, a new set of Equivalence Class Numbers (ECNs) is assigned to equiva-

lence classes induced by the new CFG. In the rest of this section, we assume the existence of two

functions that return the new ECNs: (1) getBaryECN takes a code address as input and, if there

is an indirect branch at that address, returns the branch ECN of the indirect branch; it returns a

negative number if there is no indirect branch at the address; (2) getTaryECN takes a code address

as input and, if the address is a possible indirect-branch target, returns the address’s ECN (i.e.,

the ECN of the equivalence class that the address belongs to); it returns a negative number if the

code is not a possible indirect-branch target.

Figure 2.11 presents the pseudocode that implements update transactions. It is implemented

inside MCFI’s runtime and is used by MCFI’s dynamic linker to update the ID tables. An update

transaction starts by acquiring a global update lock and incrementing a global version number.

The lock is to serialize update transactions among threads. This simple design takes advantage

of the fact that update transactions are rare in practice and allowing concurrency among update

37

transactions does not gain much efficiency. We note that the global update lock does not prevent

concurrency between update transactions and check transactions.

The update transaction performs table updates in two steps: first update the Tary table, and

then the Bary table. The separation of the two steps is achieved by a memory write barrier at line

5, which guarantees that all memory writes to Tary finish before any memory write to Bary. Bary

and Tary table updates cannot be interleaved; otherwise, at some intermediate state in an update

transaction, some IDs in the Tary and Bary tables would have the old version and some IDs would

have the new version. Consequently, check transactions would use different versions of CFGs for

different indirect branches, therefore seeing an unsound intermediate CFG. By updating one table

first before updating the other, check transactions either see the old sound CFG or the new sound

CFG for all indirect branches at all times.

Function updTaryTable first constructs a new Tary table (line 11). Constants CodeBase and

CodeLimit are the code region base and limit, respectively. The table construction process it-

erates each eight-byte aligned code address, invokes getTaryECN, and updates the appropriate

entry in the table. The auxiliary function setECNAndVer updates the table entry with the ECN

and the global version number; its code is omitted for brevity. After construction, the new Tary

table is copied to the Tary table region with the base address in TaryTableBase (line 21). The

copyTaryTable implementation is critical to the performance of update transactions. An insight

is that table entries can be updated in parallel; the only requirement is that each ID update should

be atomic. Therefore, we could use the weak order memory write instruction movnti, which

directly writes data into memory without polluting the cache, to perform fast parallel copying.

Function updBaryTable performs similar updates on the Bary table with the help of getBaryECN;

its pseudocode is omitted.

Check Transactions

Check transactions run during the execution of indirect branches. For efficiency, MCFI imple-

ments a check transaction as a sequence of machine instructions and instruments an indirect

branch to inline the sequence. The sequence is slightly different for each kind of indirect branches

38

1 void TxUpdate () {

2 acquire(updLock);

3 globalVersion = globalVersion + 1;

4 updTaryTable ();

5 sfence;

6 updBaryTable ();

7 release(updLock);

8 }

9 void updTaryTable () {

10 // allocate a table and init to zero

11 allocateAndInit(newTbl);

12 for (addr=CodeBase;addr <CodeLimit;addr +=8) {

13 ecn=getTaryECN(addr);

14 if (ecn >= 0) {

15 entry=(addr - CodeBase) / 8;

16 newTbl[entry]=0x1; // init reserved bits

17 setECNAndVer(newTbl , entry ,

18 ecn , globalVersion);

19 }

20 }

21 copyTaryTable(newTbl , TaryTableBase);

22 free(newTbl);

23 }

Figure 2.11: Pseudocode for implementing update transactions.

(i.e., returns, indirect jumps, and indirect calls). Further, it needs adaptation for different CPU ar-

chitectures. We present the x64 sequence in this dissertation. The implementation on other CPU

architectures is similar and thus omitted for brevity.

Figure 2.12 presents how a check transaction is implemented in assembly for return instruc-

tions on x64. A return instruction is translated into a popq/jmpq sequence (lines 2 and 9); this is

to prevent a concurrent attacker from modifying the return address on the stack after checking.

Instruction at line 3 operates on lower four bytes of %rcx and has the side effect of clearing the

upper 32 bits of %rcx. As discussed, the sandbox is in the region of [0, 4GB); so the instruction at

line 3 restricts the return address to be within the sandbox. Instruction at line 5 reads the branch

ID from a constant index in the Bary table. Instruction at line 6 reads the target ID from the Tary

table. As discussed before, both the Bary and Tary tables start from %gs.

Based on the values of the branch and target IDs, the following four cases may occur:

39

1 TxCheck {

2 popq %rcx # pop the return address into rcx

3 movl %ecx , %ecx # clear the upper 32 bits of rcx

4 Try:

5 movq %gs:ConstBaryIndex , %rdi # retrieve the Bary ID

6 movq %gs:(% rcx), %rsi # retrieve the Tary ID

7 cmpq %rdi , %rsi # compare the IDs

8 jne Check # if ne , IDs are not equal

9 jmpq ∗%rcx # perform the indirect jmp

10 Check:

11 testb $1, %sil # test whether the Tary ID is valid

12 jz Halt # if z, not valid

13 cmpl %edi , %esi # compare the versions

14 jne Try # if ne , abort the check and retry

15 Halt:

16 hlt # CFI violation

17 }

Figure 2.12: Implementation of check transactions for x64 return instructions.

(1) If the branch ID in %rdi equals the target ID in %rsi, instructions at lines 7, 8 and 9 get exe-

cuted, performing the control transfer. In this case, the target-ID-validity check, the version

check, and the ECN check are completed by a single comparison instruction, making this com-

mon case efficient. It should be noted that the same checks might be bypassed if the attackers

redirect the target to a region in [0, 4MB) where the trampoline pointers and Bary table IDs

are stored, discussed in §2.3.2. However, since the region is always unmapped, the program

will be trapped after the indirect control transfer.

(2) If the target address is not 8-byte aligned or its corresponding Tary ID contains all zeros,

then the target ID in %rsi is invalid. Since the branch ID is always valid, the ID comparison

fails. As a result, instructions at lines 7, 8, 11, 12, and 16 get executed and the program is

terminated. In “testb $1, %sil”, %sil is the lowest byte in %rsi and the instruction tests

whether the lowest bit in %sil is one. If it is not one, we have a violation of the CFI policy

because it uses a return address that cannot be a possible target.

(3) If the target ID is valid, but the branch ID in %rdi has a different version from the target

ID in %rsi, instructions at lines 7, 8, 11, 12, 13, and 14 get executed, causing a retry of the

40

transaction. This case happens when an update transaction is running in parallel. The check

transaction has to wait for the update transaction to finish updating the relevant IDs.

(4) If the target ID is valid, and the versions of the two IDs are the same, but they have differ-

ent ECNs, instructions at lines 7, 8, 11, 12, 13, 14, and 16 get executed and the program is

terminated. This case violates the CFI policy.

Indirect calls and jumps can be instrumented similarly with minor adjustments mainly for

scratch registers. It is also straightforward to port the above implementation to other CPU archi-

tectures.

Linearizability. The two ID tables can be viewed as a concurrent data structure with two op-

erations (check and update operations). One widely adopted correctness criterion in the literature

of concurrent data structures is linearizability [39], meaning that a concurrent history of operations

should be equivalent to a sequential history that preserves the partial order of operations induced

by the concurrent history. Our ID tables are linearizable. In TxUpdate, the linearization point is

right after the memory barrier at line 5. Before the point, TxChecks respect the old CFG; after

the point, TxChecks respect the new CFG. In TxCheck, the linearization point is the target ID read

instruction at line 6 when the valid target ID has the same version as the branch ID or the target

ID is invalid.

ABA problem. MCFI’s ID-encoding scheme supports 228 versions and it might encounter the

ABA problem [40]. For example, an attacker may load over 228 modules and exhaust the MCFI’s

version number space. This is unlikely in practice, even for just-in-time compiled code. Security

is violated only if the program has at least 228 code updates during a check transaction. To avoid

this issue, MCFI maintains a counter of executed update transactions and makes sure it does not

hit 228. After completion of an update transaction, if every thread is observed to have finished

using old-version IDs (when each thread invokes a system call or runtime trampoline calls), the

counter is reset to zero.

Dynamic code unloading. In addition to dynamic code loading, MCFI supports dynamic li-

brary unloading. When a library is unloaded, all indirect branch targets inside the library’s code

are marked invalid, achieved by changing the validity bits of IDs in the Tary table to all zeroes.

41

This prevents all threads from entering the library’s code, since there should be no direct branches

targeting the library. However, there might be threads currently running or sleeping in the li-

brary’s code. Hence, it is unsafe to reclaim the library code pages at this moment; otherwise those

pages could be refilled with newly loaded library code and the sleeping threads might resume

and execute unintended instructions. To safely handle this situation, MCFI asynchronously waits

until it observes that all threads have executed at least one system call or runtime trampoline

call; we instrument each syscall instruction in the libc to increment a per-thread counter when

a syscall instruction is executed. Then, the runtime can safely reclaim the memory allocated for

the library after every counter has been incremented.

MCFI transactions versus Sequence Locks

MCFI transactions are similar to sequence locks such as Transactional Mutex Locking (TML) [38],

which defines a global sequence number S (like MCFI’s version) starting from an even number

(usually 0). When TML-protected data structures, such as Bary and Tary, are read, three steps

are conducted: (1) the global sequence number is read and kept in a local variable v; if v is odd,

then the data structures are being concurrently updated, the program re-executes step 1; (2) the

data structures are read; (3) the global sequence number is read again and compared with the

previously read one. If v == S, it indicates that during the read operation, the data structures

were not altered, so the program has read a consistent snapshot; otherwise the three steps are

re-executed. When TML-protected data structures are changed, the writer first increments S by

one to make it odd, then makes changes and finally increments S by one to make it even again.

MCFI’s check transaction implementation has two advantages over TML: (1) TML requires

four memory reads to read the versions and IDs, while MCFI needs only two, therefore TML

consumes twice as much time as MCFI; (2) when implemented on other CPU architectures that

may reorder memory reads, load fences need to be added between each step in TML, which harms

the performance. However, MCFI’s two memory read instructions do not need to be serialized,

since their execution order does not matter.

42

In-place Update versus Copy-On-Write Update

The MCFI update transaction performs in-place updates, but Copy-On-Write (COW) update

schemes could alternatively be used, which replace the old tables with newly allocated ones.

For example, since both Bary and Tary tables are indexed by the %gs segment register, we could

change the register to point to new Bary and Tary tables after CFG generation, and delete the

old tables if all threads have finished referencing the old tables (e.g., when all threads have been

observed to execute system calls or trampoline calls at least once, similar to how we deal with the

ABA problem and dynamic code unloading previously.)

However, the COW schemes in general may use an unbounded amount of memory. For in-

stance, if a thread has a lower priority than other threads and rarely gets a time quantum to run,

loading any new module will allocate new tables but not free the old tables, which might exhaust

physical memory. Fortunately, the in-place update avoids this issue.

2.4 Interoperability

To be practical, MCFI should be interoperable, meaning that code instrumented with MCFI can

be linked with uninstrumented modules (could also be JITted code) without breaking the pro-

gram. Interoperability allows incremental development and deployment of software modules,

which are critical to software engineering. However, the check transactions described in Figure

2.12 do not support interoperability and need to be adjusted. Otherwise without adjustments,

the program will break, since uninstrumented modules do not have CFG-metadata associated

and sound ID assignment is generally infeasible. As a result, we reserve the byte 0xfc for inter-

operability use, and guarantee that any Bary and Tary ID should not contain any byte equal to

0xfc (this design slightly reduces the maximum number of supported equivalence classes and

versions). When an uninstrumented module is loaded, we populate all its code’s corresponding

Tary bytes using 0xfc. The check transactions are accordingly changed to what Figure 2.14 shows.

Compared to Figure 2.12, we add two extra instructions at line 12 and 13 that check whether an

instrumented indirect branch is jumping into an uninstrumented module. If so, the control is

transferred to the target; otherwise the target is in an instrumented module and therefore the

43

1 /* An MCFI -instrumented

2 module A */

3 typedef void (*F)(char*);

4 typedef void (*G)(long);

5 void fx(char*) {}

6 void fy(G fp) {

7 /* False CFI violation */

8 fp(0);

9 }

10 ...

11 /* function fz is defined

12 in module B */

13 void fz(F);

14 ...

15 /* the following calls into

16 module B */

17 fz(fx);

1 /* An uninstrumented

2 module B */

3 void fz(F fp) {

4 /* calls back to module A */

5 fy((G)fp);

6 }

Figure 2.13: A compatibility condition violation introduced by the interoperability support.

same checks are performed.

Another point worth mentioning is that when an uninstrumented module is linked, the com-

patibility condition (§2.2.2) for the sound CFG generation may not hold any more. Figure 2.13

shows such an example of two modules: module A (on the left) is MCFI-instrumented and mod-

ule B (on the right) is uninstrumented. Module A calls module B at line 17 and passes the address

of function fx of type F to module B. Then, module B casts fx’s address to type G and passes it

back to module A, so the function pointer fp at line 7 will hold the address of fx. However, since

fp has a different type from fx, the dereference at line 8 will be falsely detected as a CFI viola-

tion. Consequently, we conservatively merge all functions whose addresses are taken into one

equivalence class to tolerate possible compatibility condition violations. In addition, all return

addresses are merged into another equivalence class. Essentially, coarse-grained CFI is enforced

for interoperability.

The above described solution works for uninstrumented modules that do not invoke system

calls directly, which should be the common case. However, for those modules that directly invoke

system calls, our current implementation might break code, because of the SFI isolation. For ex-

ample, if an uninstrumented module allocates a memory page outside of the sandbox (by issuing

44

1 TxCheck {

2 popq %rcx # pop the return address into rcx

3 movl %ecx , %ecx # clear the upper 32 bits of rcx

4 Try:

5 movq %gs:ConstBaryIndex , %rdi # retrieve the Bary ID

6 movq %gs:(% rcx), %rsi # retrieve the Tary ID

7 cmpq %rdi , %rsi # compare the IDs

8 jne Check # if ne , IDs are not equal

9 Go:

10 jmpq ∗%rcx # perform the indirect jmp

11 Check:

12 cmpb $0xfc , %sil # test if the target is uninstrumented

13 je Go # if e, jump to the target

14 testb $1, %sil # test whether the Tary ID is valid

15 jz Halt # if z, not valid

16 cmpl %edi , %esi # compare the versions

17 jne Try # if ne , abort the check and retry

18 Halt:

19 hlt # CFI violation

20 }

Figure 2.14: Interoperable check transactions for x64 return instructions.

the mmap system call) and passes a page pointer to an MCFI module for write. Since the MCFI

module cannot directly modify the page outside of the sandbox, the program will be trapped.

Therefore, to achieve general interoperability, the MCFI runtime needs to be moved into the OS

kernel, similar to how Control-Flow Guard is implemented in Windows 10. With such an im-

plementation, we could cut the virtual address space into two halves: the lower half [0, 64TB) is

used for application code and data, while the upper half [64TB, 128TB) is for Bary and Tary tables.

The tables are always read-only in the user-space, thus removing the need for SFI. If they need

to be updated, the kernel remaps them to writable pages in the kernel space and changes their

contents. In addition, the current runtime services should be redesigned as system calls.

45

2.5 Implementation

The MCFI toolchain basically has two tools: an LLVM-based C/C++ compiler, which performs

code instrumentation and generation of CFG-related metadata; and a runtime that loads instru-

mented modules and monitors their execution.

The MCFI compiler is modified from Clang/LLVM-3.5, with a diff result of about 4,500 lines

of changes. In summary, the changes to LLVM propagate metadata such as class hierarchies and

type information for generating the CFG. The metadata are inserted into the compiled ELF as

new sections. In addition, each MCFI-protected application runs with instrumented libraries.

Therefore, we also modified and instrumented standard C/C++ libraries, including the musl libc,

libc++, libc++abi, and libunwind. Moreover, since the signal handler is sandboxed in the same

way as regular application code, the signal handling stack for each thread should be in the sand-

box. Therefore, after a new thread is created, the libc code is changed to allocate a memory region

inside the sandbox and execute sigaltstack to switch the stack to the in-sandbox region, which

is released when the thread exits. Security analysis of this design is presented in §5.1.6.

The MCFI runtime consists of around 11,000 lines of C/assembly code. The runtime is position-

independent, and is injected to an application’s ELF as its interpreter. When the application is

launched, the Linux kernel loads and executes the runtime first. The runtime then loads the

instrumented modules into the sandbox region, creates shadow regions, and patches the code

accordingly. The CFG is generated using the metadata in the code modules.

2.6 Evaluation

We evaluated MCFI on a PC running x64 Unbuntu 14.04.3. The computer has an Intel Xeon E3-

1245 v3 processor and 16GB memory. We chose SPECCPU2006 C/C++ benchmark programs to

measure the CFG precision and performance, and compiled all programs with the O3 optimiza-

tion level and stack cookie protection off.

46

2.6.1 CFG Statistics

Equivalence Classes

MCFI supports program-dependent numbers of equivalence classes. Table 2.4 shows the num-

bers. The “IBs” column lists the total number of instrumented indirect branches, with the number

of those indirect branches that have targets shown in the parentheses. For example, a libc func-

tion aio cancel is never called by any of the benchmarks, so its return instruction has nowhere to

target. The “IBTs” column presents the number of all indirect branch targets; the “EQCs” column

presents the number of equivalence classes of the indirect branch targets. Moreover, the “Avg IBTs

/ IB” lists how many targets an indirect branch has on average, and the “Avg IBs / IBT” shows the

number of indirect branches that could reach the same target on average. As can be seen, MCFI

indeed supports fine-grained CFGs. The average targets per indirect branch and average indirect

branches per target are much less than coarse-grained CFI, which could be as many as the number

of indirect branch targets and indirect branches, respectively. Further, indirect branches can reach

more targets in some programs (e.g., 403.gcc) than others, and it is because those programs have

function pointers that could indirectly reach many functions or functions that are called in many

places. For example, 403.gcc defines different functions for emitting different instructions, and

these functions are all indirectly callable and share the same type signature.

Distribution of Edges

In addition to the average results shown before, we calculated the edge distribution, and list the

detailed results in Table 2.5. Each cell shows how many indirect branches (in percentage) have the

number of targets specified in the cell’s column header. For example, 47.4% of indirect branches

in 400.perlbench have less than ten targets. As can be seen from the table, on average about

66.1% indirect branches have less than ten targets, and nearly 86.7% indirect branches have less

than a hundred targets. The other 13.3% indirect branches have no less than 100 targets, and 7.9%

even has one thousand targets or more. These indirect branches are either indirect calls that can

reach thousands of functions (e.g., 445.gobmk) or return instructions whose functions have many

call sites.

47

SPECCPU2006 IBs (with matching targets) IBTs EQCs Avg IBTs / IB Avg IBs / IBT
400.perlbench 3327 (2399) 18379 1039 722 95
401.bzip2 1711 (943) 4065 505 33 8
403.gcc 6108 (5039) 50413 2321 1244 125
429.mcf 1625 (875) 3852 493 34 8
433.milc 1825 (1030) 5880 625 36 7
444.namd 4796 (3042) 17620 1314 154 27
445.gobmk 3908 (3119) 14557 944 949 204
447.dealII 13624 (8361) 61464 3225 1035 141
450.soplex 6305 (4407) 22418 1847 175 35
453.povray 6275 (4355) 28738 2027 374 57
456.hmmer 2038 (1136) 7907 682 93 14
458.sjeng 1777 (1010) 4827 560 32 7
462.libquantum 1688 (917) 4170 514 35 8
464.h264ref 2455 (1616) 7047 793 41 10
470.lbm 1612 (867) 3840 485 35 8
471.omnetpp 7791 (5526) 35772 2203 456 71
473.astar 4770 (2994) 16763 1325 159 29
482.sphinx3 1893 (1071) 6432 652 39 7
483.xalancbmk 31167 (27117) 97265 7970 1103 308

Table 2.4: CFG statistics for SPECCPU2006 C/C++ benchmarks.

SPECCPU2006 [1, 10) [10, 100) [100, 1000) [1000,+∞)

400.perlbench 47.4% 23.9% 6.7% 22.0%
401.bzip2 68.6% 24.3% 7.1% 0%
403.gcc 56.4% 21.7% 4.7% 17.2%
429.mcf 67.0% 25.8% 7.2% 0%
433.milc 66.9% 25.1% 8.0% 0%
444.namd 73.3% 18.6% 2.3% 5.8%
445.gobmk 32.1% 10.8% 6.2% 50.9%
447.dealII 72.9% 15.1% 4.1% 7.9%
450.soplex 77.6% 14.6% 2.8% 5.0%
453.povray 71.1% 17.0% 2.0% 9.9%
456.hmmer 67.4% 23.9% 2.2% 6.5%
458.sjeng 65.5% 28.2% 6.3% 0%
462.libquantum 66.2% 26.0% 7.8% 0%
464.h264ref 75.2% 17.6% 7.2% 0%
470.lbm 66.1% 26.6% 7.3% 0%
471.omnetpp 68.1% 14.9% 7.6% 9.4%
473.astar 74.8% 17.4% 1.9% 5.9%
482.sphinx3 68.8% 23.0% 8.2% 0%
483.xalancbmk 71.4% 17.2% 2.0% 9.4%
Avg 66.1% 20.6% 5.4% 7.9%

Table 2.5: Edge distribution for SPECCPU2006 C/C++ benchmarks.

CFG Precision Loss

In addition, we measured the CFG precision loss mentioned in §2.2.3. For the loss induced by

tail-call elimination, we disabled the optimization at the machine code level and collected the48

SPECCPU2006 IBs (with matching targets) IBTs EQCs Avg IBTs / IB Avg IBs / IBT
400.perlbench 4036 (2747) 19362 1469 18 3
401.bzip2 2155 (1100) 4572 727 9 3
403.gcc 7362 (5865) 52754 3567 70 8
429.mcf 2067 (1034) 4353 710 9 3
433.milc 2289 (1196) 6422 868 10 2
444.namd 5669 (3496) 18603 1719 37 7
445.gobmk 4667 (3566) 15453 1310 19 5
447.dealII 15963 (10177) 64095 4121 222 36
450.soplex 7308 (4934) 23591 2365 32 7
453.povray 7331 (4978) 30069 2606 41 7
456.hmmer 2547 (1319) 8505 956 11 2
458.sjeng 2234 (1181) 5348 794 10 3
462.libquantum 2142 (1085) 4555 756 9 3
464.h264ref 2949 (1814) 7652 1085 8 2
470.lbm 2059 (1029) 4346 705 9 3
471.omnetpp 8820 (6129) 36957 2703 95 16
473.astar 5650 (3460) 17748 1736 37 8
482.sphinx3 2373 (1253) 6994 916 10 2
483.xalancbmk 33933 (29142) 100641 9321 133 39

Table 2.6: CFG statistics for SPECCPU2006 C/C++ benchmarks without tail-call elimination.

CFG statistics in Table 2.6. Compared to Table 2.4, the average IBTs per IB and average IBs per

IBT decrease by 84.5% and 81.5%, respectively, indicating relatively large precision recovery with

the optimization turned off. As a result, it is useful to further study how to selectively turn

on/off the optimization for specific returns to meet performance and security goals, although our

experimental results show that even completely disabling the optimization incurs only 0.1% more

performance overhead than enabling the optimization.

Besides, we measured the CFG precision loss caused by equivalence class partitioning (with

the tail-call elimination turned off), which is also described in §2.2.3 as three cases. For the case of

return address merging due to indirect calls, we calculated the number of different return address

sets without equivalence class partitioning, denoted by N, and the number of equivalence classes

of return addresses, represented by M, and report the loss ratio defined as 1 −M/N in Table

2.7. On average, 12.2% of return address sets are merged into equivalence classes. It is worth

mentioning that different programs report different loss ratios. Basically, the more functions that

can be indirectly called, the more precision is lost. For example, C++ programs tend to have larger

loss ratios (avg. 28.8%) than C programs (7.4%) because many functions are virtual methods that

49

SPECCPU2006 Equivalence class loss ratio
400.perlbench 22.1%
401.bzip2 5.0%
403.gcc 19.6%
429.mcf 4.9%
433.milc 4.4%
444.namd 19.6%
445.gobmk 45.0%
447.dealII 38.6%
450.soplex 28.8%
453.povray 22.5%
456.hmmer 4.8%
458.sjeng 5.0%
462.libquantum 4.7%
464.h264ref 5.2%
470.lbm 4.9%
471.omnetpp 32.5%
473.astar 18.6%
482.sphinx3 4.4%
483.xalancbmk 55.3%
Geomean 12.2%
Geomean (C) 7.4%
Geomean (C++) 28.8%

Table 2.7: Equivalence class loss due to indirect call-triggered equivalence class merging of returns.

Program Equivalence class loss ratio
444.namd 27.8%
447.dealII 31.5%
450.soplex 25.4%
453.povray 23.6%
471.omnetpp 21.8%
473.astar 26.7%
483.xalancbmk 34.3%
Geomean 27.0%

Table 2.8: Equivalence class loss in the case when C++ virtual method calls are legally allowed to invoke
virtual methods defined in super classes.

are indirectly reachable.

Similarly, we calculated the equivalence class loss ratios caused by allowing virtual method

calls to target methods in super classes, and report the results in Table 2.8. On average, the loss

ratio is about 27%.

Finally, Table 2.9 summarizes the loss caused by C++ method pointers. The “Unique Method

50

SPECCPU2006 Unique Method Pointer Dereferences # of Merged Member Method EQCs
447.dealII 1 1
483.xalancbmk 7 20

Table 2.9: Equivalence class loss due to C++ method pointers.

Pointer Dereferences” column shows how many different types of method pointers are deref-

erenced in the final binary, and the “# of Merged Method EQCs” presents how many different

member method equivalence classes are merged because of being pointed to by the same type of

method pointer. Only two C++ benchmarks, 447.dealII and 483.xalancbmk use method point-

ers. However, 447.dealII does not lose any precision since only one method matches the type

of the method pointer; 483.xalancbmk loses some precision, because the method pointers merge

a few more different member method equivalence classes.

CFG Generation Time

We measured the CFG generation time for each benchmark, and observed the maximum time on

483.xalancbmk, which is about 0.5 second.

The MCFI CFG generation consists of four phases: metadata processing, edge connection,

equivalence class partitioning and ID filling. The metadata processing combines metadata of

all modules and linearly parses the metadata to construct class hierarchies and represent virtual

method calls, function pointers, returns, functions and return addresses as graph nodes. The

edge connection phase simply connects indirect branches to their targets using undirected edges

according to §2.2.1. In the resulted graph, each connected component is an equivalence class, and

a Breadth-First Search (BFS) procedure is then repeatedly performed on the graph to extract all

connected components, so the time complexity of this phase is O(V + E), where V is the number

of nodes and E denotes the number of edges. The ID filling phase, which conducts table update

transactions that assign each equivalence class an ID and copy the ID to corresponding Bary and

Tary entries, is also a linear procedure.

Each of the four phases costs different periods of time, and Table 2.10 lists the average time as

a percentage compared to the total CFG generation time. As can be seen, the metadata parsing

consumes more than half of the CFG generation time. If the CFG generation time is considered

51

Metadata processing 55.3%
Edge connection 22.8%
Equivalence class partitioning 12.5%
ID assignment and filling 9.4%

Table 2.10: CFG generation time decomposition.

intolerable for larger programs, the metadata processing could be optimized (e.g., using a more

compact encoding for the metadata).

2.6.2 Performance Evaluation

MCFI inserts checks into programs and programs protected with MCFI is slower and larger. We

present our measurements on SPECCPU2006 benchmarks.

Execution Time Overhead

We ran SPECCPU2006 benchmarks over the reference data sets for three times and calculated the

average running time (with the variance less than 1%). Then, we compared the running time of

MCFI-protected programs (including the CFG generation time) with that of native programs and

calculated the overhead, depicted as percentages in Figure 2.15. On average, MCFI slows down

program execution by 2.9%.

Two points are worth mentioning. First, notice that several benchmarks (e.g., 450.soplex) run

even faster with MCFI’s instrumentation. We replaced the MCFI instrumentation with nops and

still observed the acceleration (e.g., 0.6% faster for 450.soplex), therefore we believe the reason

is the extra alignments MCFI requires for indirect branch targets. Second, MCFI incurs different

overhead over different programs, and it is positively correlated with the execution frequency of

indirect branches. We calculated the correlation using the Pearson correlation coefficient and got

the result of 0.74, which indicates strong correlation.

To demonstrate interoperability, we linked instrumented SPEC C++ programs with uninstru-

mented libc++ and libc++abi and successfully tested their execution on the same reference data

sets. The performance overhead is similar to the above runs with all libraries instrumented.

52

-3%

0%

3%

6%

9%

12%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi
nx

48
3.

xa
la
nc

bm
k

G
eo

M
ea

n
(IN

T)

G
eo

M
ea

n
(F

P)

G
eo

M
ea

n
(C

)

G
eo

M
ea

n
(C

++
)

G
eo

M
ea

n
(A

ll)

MCFI

Figure 2.15: MCFI runtime overhead on SPECCPU2006 C/C++ benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi
nx

48
3.

xa
la
nc

bm
k

G
eo

M
ea

n

MCFI

Figure 2.16: MCFI code size increase on SPECCPU2006 C/C++ benchmarks.

In addition, we tested the performance overhead when disabling the tail-call elimination opti-

mization at the machine-code level, which was about 3%. Considering the negligible performance

slowdown and the relatively big precision recovery, it might be beneficial to generally turn the

optimization off, especially for non-compute-intensive modules.

53

Space Overhead

Figure 2.16 shows the code size increase incurred by MCFI on SPECCPU2006 benchmarks. On av-

erage, the code bloat is around 22.6%, due to MCFI’s checks and alignments. C++ programs tend

to have a larger bloat after MCFI’s instrumentation because of higher density of indirect branches

and indirect branch targets. At runtime, the Bary and Tary tables occupy nearly the same amount

of memory as the code, so compared to the native counterparts, MCFI needs extra memory of

around 1.2 times of the code size. However, the memory footprint increase is negligible (< 0.8%),

because the most of the runtime memory consumption is about data.

2.7 Future Work

Condition violation checker. MCFI generates sound CFGs for only those C/C++ programs that

satisfy the compatibility condition in §2.2.2. Our current checker captures bad type casts and

rules out those “safe” bad casts. However, there are still quite some violations left for manual

investigation. We could, in the future, add data-flow analyses to the checker to filter out more

false positives.

CFG loss reduction. As mentioned, three cases of CFG precision loss exist because the current

instrumentation design requires equivalence class partitioning. Therefore, it would be interesting

and beneficial to further improve (or redesign) the instrumentation to reduce the CFG precision

loss.

Portability. MCFI is currently only implemented on x64, and it would be beneficial to port

it to other CPU architectures such as ARM and POWER. Since the transactions of MCFI only

require that word-aligned read and write instructions are atomic, which are supported by most

CPUs, porting of the transaction implementation should be straightforward. The SFI sandbox

implementation may need some changes as other CPUs might not support address overriding,

but SFI as a general approach for implementing user-level isolation may be implemented in many

other ways. Alternatively, the runtime can be implemented inside the OS kernel so that the SFI

sandbox is no longer needed. In addition, it would be interesting to implement MCFI in other

mainstream OSes such as Windows and OSX.

54

Interoperability. MCFI currently supports interoperability between instrumented modules

and uninstrumented modules that do not directly invoke system calls as previously discussed

in §2.4. To support uninstrumented modules that may directly issue system calls, the runtime

needs to be implemented as part of the OS kernel to eliminate the SFI isolation. In addition, our

current implementation merges all equivalence classes of each kind of indirect branches when

an uninstrumented module is loaded, which deteriorates the protection. Hence, another possible

research direction about interoperability is how to still enforce fine-grained CFI for instrumented

modules. For instance, if none of an uninstrumented module’s exported functions accepts func-

tion pointers as arguments, it is probably safe not to merge equivalence classes for functions, since

there exists no data flow (except through other media such as files) that could pass a function

address in an instrumented module to an instrumented indirect call with an unmatched type,

assuming the compatibility condition is met in all instrumented modules. Binary analysis can

also be conducted to investigate any binary module to see if the compatibility condition might be

violated in the uninstrumented module. Further, if there exists no indirect tail-jumps and direct

tail-jumps to PLT entries, the equivalence classes for returns may neither need to be merged, since

there exists no tail-call chain that would connect an instrumented return to a return address in an

instrumented module.

Backward compatibility. Backward compatibility means that an MCFI-instrumented code

module can run on any existing systems that are unaware of MCFI at all. For example, MCFI-

instrumented SPEC benchmark binaries should run on current Ubuntu without any system patches.

This is a nice-to-have feature for practicality since it eases software maintenance and distribution.

Apparently our current implementation of the check transactions does not support this feature,

because the %gs register and the ID tables will are not set by current systems. However, a fea-

sible solution would be that after MCFI instrumentation the compilation toolchain replaces the

instrumentation with nops but remembers the instrumentation code bytes as metadata. For ex-

ample, the 0x67 prefix added for memory write sandboxing could be replaced with 0x90, which

is a nop. In addition, special flags need to be added to the generated ELF file to indicate MCFI. As

a result, existing systems that are unaware of the special flags would execute the patched code,

while MCFI-aware systems would patch the nops back to the instrumentation code and execute

55

the protected binary.

MCFI for the OS kernel. Most research about CFI focuses on application protection, but the

OS kernel also needs hardening since most kernels are written in C/C++ as well. KCoFI [41] uses

ClassicCFI to secure a FreeBSD kernel, so it is reasonable to believe that MCFI can protect the

kernel with the support of dynamically loadable kernel modules.

2.8 Summary

This chapter presents MCFI, the first CFI approach that supports fine-grained CFGs, modularity,

efficiency and interoperability. MCFI adopts a source-level semantics-based CFG generation ap-

proach to extract fine-grained CFGs. The generated CFG is then encoded as two arrays, which

contains specially designed IDs to enable efficient table look-ups and updates that are imple-

mented as lightweight STM transactions. Moreover, the ID encoding and instrumentation sup-

port interoperability.

The content of this chapter is based on our previously published papers [27] and [28] (the C++

CFG generation part). The major differences between this chapter and the published papers are

the followings:

• This chapter presents the 8-byte ID encoding scheme on x64, while the published papers

discuss a 4-byte ID encoding scheme on both x64 and x86. As a result, the ID-encoding-

dependent Bary and Tary table query and update operations differ as well. On x64, 8-byte

IDs should provide better practicality than 4-byte IDs due to the much larger equivalence

class amount and version space.

• The memory write sandboxing described in this chapter uses a hardware address-override

prefix [37], while the published papers use the same technique as MIP [12], which needs

more instrumentation and is slower.

• This chapter details the general process of dynamic code unloading, which is not mentioned

in the published papers.

• This chapter allows a variadic function pointer to reach only those functions with literally

56

the same type. However, the published papers allow variadic function pointers to also tar-

get non-variadic functions with the matching return type and known parameter types. For

example, a function pointer fp of type void (*)(int, ...) can reach only functions of

type void (*)(int, ...) in this chapter, but the same function pointer can target func-

tions of type void (*)(int, int) in the published papers besides those functions of type

void (*)(int, ...). Although allowing variadic function pointers to target non-variadic

functions could reduce code retrofitting effort due to less bad type casts, the CFG precision

is lower.

• This chapter discusses a new protection scheme for GOT.PLT, which does not need instru-

mentation for PLT entries. However, PLT entry instrumentation is needed in the published

papers.

• This chapter presents new experimental data such as CFG precision loss and CFG genera-

tion time. The libraries are dynamically linked in this chapter (and others), but statically

linked in the published papers. The CPU and OS used in measurements are also different.

57

Chapter 3

Per-Input Control-Flow Integrity

3.1 Overview

In this chapter, we consider improving the precision of CFGs generated by MCFI. Although we

might adopt other static CFG generation algorithms, the biggest concern is that for any program

there exists a minimal sound CFG that cannot be further improved by any static analysis. The

undecidability of generally generating such a minimal sound CFG makes things even worse (see

§1.3.3 for details). However, notice that statically generated CFGs contain edges for all inputs,

there might still exist many redundant edges for a given concrete input. Therefore, for each

input, we may trim those unnecessary edges from the static CFG to build a more precise CFG.

Essentially, we describe how to generate per-input CFGs and enforce such CFGs in a new CFI

scheme called Per-Input CFI (PICFI or πCFI).

Since it is impossible to enumerate all inputs of a program, computing the CFG for each input

and storing all per-input CFGs are infeasible. Instead, we adopt the following approach: we start

a program with the empty CFG and let the program itself lazily compute the CFG on the fly. One

idea of computing the CFG lazily is to add edges to the CFG at runtime, before indirect branches

need those edges. In this way, the per-input CFG generation problem becomes feasible: for an

arbitrary input, the dynamically generated and enforced CFG is equivalent to what should have

been computed prior to the execution.

58

However, two challenges still remain to be addressed. The first challenge is, since edge addi-

tion is issued by untrusted code, how to prevent it from arbitrarily adding edges. πCFI should be

able to identify those edges that shall never be added. To address this challenge, πCFI statically

generates a CFG leveraging MCFI’s source-level semantics-based CFG generation. Then, πCFI

starts executing the program with the empty CFG being enforced. At runtime, the program adds

edges on the fly, but πCFI disallows addition of any edge not included in the static, all-input CFG.

In other words, the all-input CFG serves as the upper bound for what edges can be added to the

enforced CFG during runtime.

The second challenge is how to achieve small performance overhead for enforcing πCFI. For

each indirect branch, there is a need to add the necessary edge into the CFG. This can be achieved

by code instrumentation; that is, by inserting extra code that adds edges into the original pro-

gram. However, such instrumentation can be costly since every time the indirect branch gets

executed, the edge-addition operation needs to be performed. πCFI adopts a performance op-

timization technique, with some loss of CFG precision. This technique turns edge addition to

address activation. In particular, instead of directly adding edges, πCFI activates target addresses.

Activating an address essentially adds all edges with that address as the target into the currently

enforced CFG. The benefit of using address activation operations is that they can be made idem-

potent operations with some careful design. With idempotent operations, we can safely patch

them to nops after their first execution, minimizing performance overhead.

Before proceeding, we introduce some terminology that will make the following discussion

more convenient. Conceptually, a CFI method involves two kinds of CFGs:

• A static, all-input CFG. This is typically computed by static analysis. We call this CFG a

Static CFG, abbreviated to SCFG. The CFG generated by MCFI is an SCFG.

• The CFG that is dynamically enforced. Checks are inserted before indirect branches to con-

sult this CFG to decide whether indirect branches are allowed. We call this the Enforced CFG,

abbreviated to ECFG.

In MCFI and all previous CFI systems, SCFG = ECFG, and we call them conventional CFI. In

πCFI, SCFG ⊇ ECFG, since πCFI uses the SCFG to upper-bound the ECFG as described.

59

1 void foo(void) {

2 /* We omit code that handles user inputs. The

3 code contains a stack buffer overflow so

4 that attackers can control the following

5 return instruction s target. */

6 ...

7 return;

8 }

9 int main(int argc , char *argv []) {

10 if (argc < 2) {

11 foo();

12 L1:

13 ... /* irrelevant code , omitted */

14 execve (...); /* arguments omitted */

15 } else {

16 foo();

17 L2: ...

18 }

19 }

Figure 3.1: A motivating example for per-input CFGs.

3.1.1 Motivation for per-input CFGs

Different from conventional CFI enforcement techniques, πCFI’s ECFG is computed for each spe-

cific input. We next use a toy C program listed in Figure 3.1 to illustrate its high-level idea and

security benefits. The main function in the program has an if branch, whose condition depends

on the number of command-line arguments. Assume that the number of command-line argu-

ments is greater than or equal to two in a particular production environment. The main function

invokes the foo function (whose code is omitted) to handle user inputs. Let us assume that foo’s

code has a stack-overflow vulnerability that enables attackers to control its return target. Appar-

ently, this vulnerability can be easily exploited to hijack the control flow of this program. (For

simplicity, we ignore ASLR and stack cookies in our discussion since they are orthogonal defense

mechanisms to CFI.)

With conventional CFI protection, which enforces a CFG for all inputs, this particular program

is still vulnerable. Notice that the main function invokes foo at two different places. As a result,

both L1 and L2 are possible return addresses for foo. In conventional CFI, foo’s return is always

60

1 void foo(void) {

2 /* We omit code that handles user inputs. The

3 code contains a stack buffer overflow so

4 that attackers can control the following

5 return instruction s target. */

6 ...

7 return;

8 }

9 int main(int argc , char *argv []) {

10 if (argc < 2) {

11 /* connect foo s return to L1 */

12 add_edge(foo , L1); /* Instrumentation */

13 foo();

14 L1:

15 ... /* irrelevant code , omitted */

16 execve (...); /* arguments omitted */

17 } else {

18 /* connect foo s return to L2 */

19 add_edge(foo , L2); /* Instrumentation */

20 foo();

21 L2: ...

22 }

23 }

Figure 3.2: Edge-addition instrumentation for the motivating example.

allowed to target both addresses. Therefore, even if the program executes only the else branch

when deployed, attackers can still control foo’s return and redirect it to L1. With appropriate data

manipulation, the attacker might execute the following execve with arbitrary arguments.

With πCFI, such an attack can be prevented. One possible instrumentation method is shown

in Figure 3.2 so that the program can add its required edges during execution. (Instead of edge

addition, πCFI actually uses address activation, which will be detailed later in §3.1.2.) The pro-

gram is started with the empty ECFG. At runtime, the else branch will be executed, but right

before foo is called at line 20, the edge from foo’s return to L2 is added (by calling πCFI’s runtime

at line 19). When foo returns, it is only allowed to target L2, not L1, as no such an edge has been

added to the ECFG.

We note that the example in Figure 3.1 can also be protected by defenses that protect the stack

through a shadow stack. For instance, XFI [17] adopts the shadow-stack defense to protect return

61

addresses. This ensures that a function returns to the caller that called it. As a result, the return

instruction in foo can return only to L2 when it is called in the else branch. In comparison,

πCFI’s protection on return instructions is weaker: it ensures a return instruction in a function

can return to only those call sites that have so far called the function. On the other hand, πCFI

offers a number of benefits than the shadow-stack approach. First, it provides stronger protection

for indirect calls. For instance, if in an SCFG an indirect call is allowed to target two functions, say

f1 and f2, but in one code path only f1’s address is taken, then the indirect call will be disallowed

to target f2 in πCFI. XFI, as it stands, allows an indirect call to target any address according to

the static CFG and cannot restrict the set of targets per a specific input as πCFI does. Second, the

shadow-stack defense traditionally has compatibility issues with code that uses unconventional

control-transfer mechanisms including setjmp/longjmp, exceptions, and continuations since they

do not follow the rigid call-return matching paradigm. πCFI offers the compatibility advantage

because it reuses MCFI’s sound SCFG generation (§2.2.1) that already handles unconventional

control flow and it always adds necessary edges before they are needed by indirect branches

(discussed in §3.2.2). In fact, πCFI can be built on top of any conventional CFI that generates

sound SCFGs.

However, since πCFI does not perform edge removal (except during code module unloading),

one worry is that its ECFG grows along with the program execution. In theory, an attacker might

use some malicious input to trigger the addition of all edges in an SCFG, in which case πCFI

falls back to conventional CFI. This is especially a concern for a long running program that keeps

taking inputs, such as a web server. However, we believe πCFI offers benefits even for such

programs, for the following reasons:

• An attacker would need to find a set of inputs that can trigger the addition of all edges of

her/his interest; this is essentially asking the attacker to solve the code coverage problem, a

traditionally hard problem in software testing.

• Our experiments suggest that the number of edges in an ECFG stabilizes to a small percent-

age of the total number of edges in an SCFG even for long running programs that contin-

uously take normal user inputs. We believe this is due to several factors. First, a typical

62

application includes a large amount of error-handling code, which will not be run in nor-

mal program execution. For instance, Saha et al. [42] found that 48% of Linux 2.6.34 driver

code is found in functions that handle at least one error and in general systems software

contains around 43% of the code in functions that contain multiple blocks of error-handling

code. Second, an application may contain code that handle different configurations (like

the motivating example) of execution environments. It is generally hard for a static analy-

sis to construct a per-configuration CFG as it has to consider features such as environment

variables. Finally, static analysis has to over-approximate when constructing static CFGs.

As a result, many dynamically unreachable edges are included. For instance, static analy-

sis may fail to recognize dead code in the application and allow indirect branches to target

addresses in the dead code. This is especially the case for functions in library code.

• A long running program that continuously takes user inputs typically forks new processes

or pre-forks a pool of processes for handling new inputs. For instance, web servers such as

Apache and Nginx pre-fork a process pool for processing client requests. In πCFI, the CFG

growth of a child process is independent of the CFG growth of the parent process. This

setup limits the CFG growth of such programs.

3.1.2 From edge addition to address activation

The simple instrumentation shown in Figure 3.2 has performance problems: each time foo is

invoked, add edge is also invoked. Although we can use static analysis to eliminate redundant

edge-addition calls (e.g., it might be possible to hoist such calls outside a loop), it would be hard

to minimize such instrumentation code. Instead, we propose an alternative approach.

We design every operation that modifies the ECFG to be idempotent and eliminate it by patch-

ing it to nops after its first execution. An idempotent operation is designed so that the effect of

performing it arbitrary times is the same as the effect of conducting it only once. Therefore, after

the first time, there is no need to perform it again. For example, the operation at line 19 in Figure

3.2 is idempotent: it transfers the control to the trusted runtime, and the runtime adds an edge

from foo’s return to L2 to the CFG. Before the runtime returns, it can patch the code at line 19

63

with nops to reduce any subsequent execution’s cost.1 Furthermore, as we will explain, using

idempotent operations is also important for code synchronization when performing online code

patching in multi-threaded applications running on multi-core architectures.

However, how to make every edge addition idempotent? Consider an example of an indirect

call. Before the indirect call, we could add an edge addition to register the edge required to ex-

ecute the call. However, this operation is not idempotent, because the indirect call may have a

different target next time it is invoked. One solution is to use an operation that adds all possible

edges for the indirect call according to the SCFG. This operation is idempotent, but is incompati-

ble with dynamic linking, during which the SCFG itself changes and new targets for the indirect

call may be added.

Our solution is to turn edge addition to address activation of statically known addresses to

enable idempotence. In general, we observe that only if an indirect branch target address is activated,

can the address be reachable by indirect branches. Activating an address has the same effect as adding

all edges that target the address from the current (and future) SCFG to the current (and future)

ECFG. Activating a statically known address is idempotent, as activating the same address mul-

tiple times has the same effect as activating it only once.

3.2 System Design

In this section, we discuss the detailed system design of πCFI, including how it achieves secure

online code patching, how it activates addresses for each kind of indirect branch target addresses,

and how it is made compatible with typical software features.

3.2.1 Secure code patching

Idempotent address-activation operations allow πCFI to patch the operations with nops after their

first execution, but the patching should be securely performed. Online code patching typically

implies granting the writable permission to code pages, which enables code-injection attacks. To

1The edge addition happens only once in the code of Figure 3.2, but in other examples such an operation
may be executed multiple times, for instance, when it is in a loop.

64

Virtual Address Space

Code (RX)

RO-Data (R)

Data (RW)

Shadow Code (W)

Shadow RO-Data (W)

πCFI runtime

SCFG/ECFG%gs

Physical Pages

Physical Pages

Sandbox

Unmapped region

Page mapping

Figure 3.3: Memory layout of πCFI. “R”, “W” and “X” appearing in parentheses denote the Readable,
Writable, and eXecutable memory page permissions, respectively. The “RO-” prefix means Read-
Only.

avoid such risks, we extend MCFI’s memory layout (detailed in §2.3.2) for secure code patching.

Figure 3.3 shows the memory layout of an application protected with πCFI. The application

should have been compiled and instrumented by πCFI’s compilation toolchain, which is an ex-

tension of the MCFI toolchain. The application and all its instrumented libraries are loaded into

the sandbox created by the πCFI runtime using the same technique as in MCFI.

To enable secure patching, πCFI’s runtime allocates another set of writable virtual memory

pages, called shadow code pages, outside the sandbox and maps these pages to exactly the same

physical pages as the application’s code pages inside the sandbox. The shadow code pages are

writable by the runtime, but cannot be modified by the application since those pages are outside

the sandbox. In this way, πCFI maintains the invariant that no memory pages in the sandbox

are writable and executable at the same time. More importantly, the πCFI runtime can securely

perform code patches on the shadow code pages and these changes are synchronously reflected

in the application’s code pages since they are mapped to the same physical pages.

65

3.2.2 Address activation

πCFI dynamically activates indirect branch targets. When a target address is submitted to πCFI’s

runtime for activation, it consults the encoded SCFG to check if the address is a valid target

address; if so, the runtime activates the address (by enabling it in the ECFG) so that future indirect

branches can jump to it.

For each target address, there is a time window during which that target can be activated—

from the beginning of program execution to immediately before the target is first used in an

indirect branch; in the case when a target is never used in a program run, the time window is

from the beginning of program execution to infinity. One way to think of MCFI (or conventional

CFI) is to view it as an approach that eagerly activates all target addresses at the beginning of

program execution. πCFI, on the other hand, wants to delay address activation as late as possible

to improve security. One natural approach would be to always activate a target immediately

before its first use. This approach, however, does not take into account other constraints, which

are discussed as follows:

• Idempotence. As we mentioned before, for efficiency we want every address-activation oper-

ation to be idempotent so that we can patch it to nops after its first execution. This constraint

implies that not every address activation can happen immediately before its first use. We

previously discussed the indirect-call example: if we insert an address-activation operation

for the actual target immediately before the indirect call, that operation is not idempotent

because the target might be different next time the indirect call is invoked.

• Atomic code updates. It is tricky to perform online code patching on modern multi-core pro-

cessors. If some code update by a thread is not atomic, it is possible for another thread to

even see corrupted instructions. Therefore, a πCFI patch operation must be atomic, which

means that any hardware thread should either observe the address-activation operation be-

fore the patch or the nops after the patch. Fortunately, x86 CPUs manufactured by both

Intel and AMD support atomic instruction stream changes if the change is of eight bytes

and made to an eight-byte aligned memory address, as confirmed by Ansel et al. [43]. We

66

take advantage of this hardware support to implement πCFI’s instrumentation and patch-

ing. It is important to stress that it is possible that the code in memory has been atomically

patched by one thread, but the code cache for a different hardware thread might still contain

the old address-activation operation. Consequently, the address-activation operation may

be re-executed by the second thread. However, since all our address-activation operations

are idempotent, their re-execution does not produce further effect. Once again, idempotence

is of critical importance.

Therefore, the issue of when to activate a target address has to be carefully studied consid-

ering the aforementioned constraints. πCFI selects different design points for different kinds of

target addresses, including return addresses, function addresses, virtual method addresses, and

addresses associated with exception handlers. Each kind of these target addresses has different

activation sites, which will be discussed next. Without losing generality, we still use x64 Linux to

discuss the technical details. As we will see, activation of target addresses is the result of a careful

collaboration between πCFI’s compilation toolchain, its loader, and its runtime.

Return addresses

The most common kind of indirect-branch targets is return addresses. A return address could

be activated immediately before a return instruction. However, it would not be an idempotent

operation as the same return instruction may return to a different return address next time it

is run. Instead, πCFI activates a return address when its preceding call instruction is executed.

The activation procedure is different between direct calls and indirect calls, which are discussed

separately next.

For a direct call, we use the example in Figure 3.4 to illustrate its activation procedure. To

activate return address L following a direct call to foo, the following steps happen:

1. Before the direct call, πCFI’s compilation toolchain inserts appropriate nops (line 3) to align

L to an 8-byte aligned address. πCFI’s implementation is based on MCFI, which requires all

target addresses are 8-byte aligned.

2. When the code is loaded into memory by πCFI’s runtime, the immediate operand of the call

67

1 // (a) before

2 // loading

3 nop

4 call foo

5 L:

// (b) after

// loading

nop

call patchstub

L:

// (c) after

// patching

nop

call foo

L:

Figure 3.4: πCFI activates a return address following a direct call instruction. L is 8-byte aligned.

instruction (line 4) is replaced with an immediate called patchstub, as shown in Figure 3.4

(b). Therefore, the call is redirected to patchstub, whose code is listed in Figure 3.5.

3. When line 4 is reached after the program starts execution, the control transfers to patchstub.

It firstly pops the return address L from the stack (line 2 in Figure 3.5) to %r11, which can be

used as a scratch register thanks to the calling convention of x64 Linux. It then invokes the

return address activate service provided by πCFI’s runtime.

4. The runtime, once entered, saves the context and activates L by updating the ECFG. πCFI

reuses MCFI’s Tary table for encoding an ECFG. After πCFI generates the SCFG and com-

putes all the Tary IDs, their validity bits are set to all zeroes, making the ECFG essentially

empty. During address activation, the validity bits are changed to the valid encoding (see

§2.3.1 for more details) by flipping the least significant bit to one.

5. The runtime next copies out eight bytes from [L-8, L), modifies the immediate operand of

the call instruction to target foo, and uses an 8-byte move instruction to patch the code,

as shown in Figure 3.4 (c). Finally, the runtime restores the context and jumps to line 4

in Figure 3.4 (c) to execute the patched call instruction. It should be noted that the x64

CPU automatically synchronizes the instruction cache if the new code is jumped to after

modification [44]. On other CPU architectures (e.g., ARM), it may be necessary to use cache

cleaning instructions (e.g., DSB and ISB on ARM [45]) to synchronize the instruction cache

and data cache for guaranteeing the execution of the new instruction.

A few points are worth further discussion. First, since any return address is 8-byte aligned

and any direct call instruction is 5-byte long, 8-byte atomic code update is always feasible and

68

1 patchstub:

2 popq %r11

3 jmpq %gs:return_address_activate

Figure 3.5: The patch stub for activating return addresses.

1 // (a) before

2 // loading

3 mcfi -check %r8

4 nop // 5-byte

5 call *%r8

6 L:

// (b) after

// loading

mcfi -check %r8

call patchstub

call *%r8

L:

// (c) after

// patching

mcfi -check %r8

nop

call *%r8

L:

Figure 3.6: πCFI activates a return address following an indirect-call instruction. L is 8-byte aligned.

consequently all threads either call patchstub or foo. Second, the ECFG update should always

be conducted prior to the update that changes patchstub to foo; otherwise another thread would

be able to enter foo’s code and execute foo’s return instruction without L being activated.

Finally, the patchstub uses the stack to pass the address to be activated and therefore there is

a small time window between the call to patchstub and the stack-pop instruction in patchstub

during which an attacker can modify the return address on the stack. However, the most an

attacker can do is to activate a different valid target address because the πCFI runtime would

reject any invalid target address according to the SCFG. More importantly, since there are CFI

checks before return instructions, CFI will never get violated. If we want to guarantee that πCFI

always activates the intended address, one simple way would be to load the return address to a

scratch register and pass the value to patchstub via the scratch register. This would add extra

address loading instructions and nops after patching. Another way would be to have a dedicated

patch stub for each call instruction (instead of sharing a patch stub among all call instructions and

relying on the stack for passing the return address). This solution would cause roughly the same

runtime overhead, at the cost of additional code bloat (around 14% on average for SPECCPU2006

C/C++ benchmarks).

Next, we describe how πCFI activates return addresses following indirect calls. Only indirect

calls through registers are emitted in πCFI-compiled code, as all indirect calls through memory

69

are translated to indirect calls through registers. The instrumentation is listed in Figure 3.6. L

is always aligned to an 8-byte aligned address by appropriately inserting nops, which are not

shown. The mcfi-check at line 3 is a pseudo-operation that performs MCFI checks (detailed in

§2.3.3) and can also be implemented using any conventional CFI checks. In addition, πCFI in-

serts a 5-byte nop (line 4) at compile-time (Figure 3.6 (a)) so that at load time a direct call to the

patchstub can be inserted (Figure 3.6 (b)). Note that in this case when patchstub gets called its

stack pop instruction (line 2 in Figure 3.5) does not load L to %r11, but the runtime can straightfor-

wardly calculate L by rounding %r11 to the next 8-byte aligned address. After the return address

is activated by the runtime, the patchstub call is patched back to the 5-byte nop (Figure 3.6 (c)).

The patch is atomic because an indirect call instruction through a register in x64 is encoded with

either 2 or 3 bytes; therefore, the patched bytes will always stay within [L-8, L).

Function addresses

As discussed before, we cannot activate the target address immediately before an indirect call

because of the idempotence requirement. Instead, πCFI activates the address of a function at the

place when the function’s address is taken. Consider an example shown in Figure 3.7, where

foo and bar are global functions. foo’s address is taken at line 3, while bar’s address is taken

at line 5. For those functions whose addresses are taken in the global scope, such as foo, πCFI

activates their addresses at the beginning of execution; hence no additional instrumentation and

patching are required for these function addresses. For functions whose addresses are taken

elsewhere, such as bar, πCFI inserts address-activation operations right before their address-

taking sites. As an example, Figure 3.8 presents part of the code that is compiled from the example

in Figure 3.7 and the lea instruction at line 4 in Figure 3.8 takes the address of bar. Before the

instruction, πCFI’s compilation inserts a direct call to patchstub at (at line 2 in Figure 3.8 (a)),

which is another stub similar to Figure 3.5 but invokes a separate runtime function) to activate

bar’s address. However, a mechanism is required to translate the value passed on stack into bar’s

address, which is achieved by the label (“ picfi bar”) inserted at line 3. The label consists of a

special prefix (“ picfi ”) and the function’s name (bar), so the runtime can look up the symbol

table to translate the stack-passed value to the function’s name during execution, and then looks

70

1 void foo(void) {}

2 void bar(void) {}

3 void (*fp) = &foo;

4 int main() {

5 void (*bp) = &bar;

6 fp();

7 bp();

8 }

Figure 3.7: Example code for function address activation.

1 // (a) after loading

2 call patchstub_at

3 __picfi_bar:

4 leaq bar(%rip), %rcx

// (b) after patching

nop // 5-byte

__picfi_bar:

leaq bar(%rip), %rcx

Figure 3.8: πCFI’s instrumentation for activating a function address.

up the symbol table again to find the address of bar. Appropriate nops are also inserted before

line 2 so that the 5-byte patchstub at call instruction ends at an 8-byte aligned address to enable

atomic patching. The patching replaces the call instruction with a 5-byte nop shown in Figure 3.8

(b).

Furthermore, C++ code can take the addresses of non-virtual methods. Such addresses are

activated in the same way as a function address; that is, they are activated at the places where the

addresses are taken.

C++ virtual method addresses

πCFI activates a virtual method’s address when the first object of the virtual method’s class is

instantiated. Consider the code example in Figure 3.9. Methods A::bar and B::foo’s addresses

are activated at line 13, because class B has foo declared and inherits the bar method from class

A. Method A::foo’s address is activated at line 15.

In πCFI, the address-activation operations for virtual method addresses are actually inserted

into the corresponding classes’ constructors so that, when a constructor gets first executed, all

virtual methods in its virtual table are activated. For example, suppose Figure 3.10 (a) shows the

71

1 class A {

2 public:

3 A() {}

4 virtual void foo(void) {}

5 virtual void bar(void) {}

6 };

7 class B : A {

8 public:

9 B() : A() {}

10 virtual void foo(void) {}

11 };

12 int main() {

13 B *b = new B;

14 b->foo();

15 A *a = new A;

16 a->foo();

17 }

Figure 3.9: Example C++ code for virtual methods’ address activation.

prologue of A’s constructor A::A, which is 8-byte aligned. When the code is loaded into memory,

as shown in Figure 3.10 (b), πCFI’s runtime changes the prologue to a direct call to patchstub vm

(which is another stub similar to patchstub in Figure 3.5 but jumps to a separate runtime function

to activate virtual methods) so that, when A::A is firstly entered, the virtual method activation is

carried out. Note that in this case when patchstub vm is executed, its stack pop instruction (same

as line 2 in Figure 3.5) does not set %r11 as the constructor’s address, so the runtime needs to

calculate it by taking the length of the patchstub vm call instruction (5 bytes) from %r11. After

its first execution, the runtime patches the direct call back to its original bytes, and executes the

actual code of A::A. Only five bytes are modified in the patching process, and all these five bytes

reside in an 8-byte aligned slot; therefore, the patch can be performed atomically.

The above virtual method activation procedure assumes a class object is always created by

calling one of the class’s constructors. Although most classes have constructors, there are excep-

tions. For example, due to optimization, some constructors might be inlined. We could either

disable the optimization or activate the addresses of the associated virtual methods at the begin-

ning of the program execution. πCFI chooses the latter method for simplicity and performance.

Moreover, since uninstrumented modules may implement C++ class constructors or statically

72

1 // (a) before

2 // loading

3 A::A:

4 push %rbp

5 movq %rsp ,%rbp

// (b) after

// loading

A::A:

call patchstub_vm

... // omitted

// (c) after

// patching

A::A:

push %rbp

movq %rsp ,%rbp

Figure 3.10: πCFI activates a virtual method by instrumenting and patching a C++ class constructor A::A,
which is 8-byte aligned.

construct a class without calling any constructors, meaning that class objects’ virtual methods

may not be appropriately activated, all virtual methods need to be activated when an uninstru-

mented module is loaded. However, we believe this case should be rare in practice and thus do

not activate all virtual methods in our current implementation.

Exception handler addresses

Exception handlers include code that implements C++ catch clauses and code that is generated

by the compiler to release resources during stack unwinding (see details in §2.2.1). We consider

an exception handler’s address activated when the function where the exception handler resides

gets executed for the first time. Therefore, same as how πCFI instruments and patches C++ con-

structors, πCFI instruments those functions that have exception handlers when loading the code

into memory and patches the code back to its original bytes when such functions are executed for

the first time.

A better design would be activating exception handlers when their corresponding try block

is executed for the first time. When multiple try/catch blocks exist in a single function, this

scheme may activate less exception handler than the scheme we have implemented. We leave the

implementation as future work.

3.2.3 Compatibility issues

As a defense mechanism, πCFI transforms an application to insert CFI checks and code for ad-

dress activation, and performs online patching. We next discuss how this process is made com-

patible with typical programming conventions, including dynamic linking and process forking.

73

Dynamic linking. πCFI’s implementation is based on MCFI, designed to support modularity

features such as dynamic linking and JIT compilation. Whenever a new library is dynamically

loaded, MCFI builds a new SCFG based on the original application together with the new library;

the new SCFG will be installed and used from that point on.

πCFI’s design of using address activation is compatible with dynamic linking, based on the

following reasoning. When an address, say addr, is activated, all edges with addr as the target

in the SCFG are implicitly added to the ECFG. Now suppose a library is dynamically loaded. It

triggers the building of a new SCFG, which may allow more edges to target addr, compared to the

old SCFG. However, since addr has already been activated, the current ECFG allows an indirect

branch to target addr through newly added edges. Therefore, address activation accommodates

dynamic linking.

Besides, πCFI supports dynamic library unloading and the detailed process is the same as

what MCFI does (details in §2.3).

Process forking. In Linux, the fork system call is used to spawn child processes. For example,

the Nginx HTTP server forks child processes to handle user requests. During forking, all non-

shared memory pages are copied from the parent process to the child process (typically using a

copy-on-write mechanism for efficiency). As a result, the child process has its own copy of the

SCFG/ECFG data structure. This is good for security, because the child and the parent processes

can grow their ECFGs separately as each has its own private copy of the data structure.

However, there is an issue with respect to the code pages. Recall that, to achieve secure code

patching, the actual code pages and the shadow code pages are mapped to the same physical

pages (as shown in Figure 3.3). In Linux, this is achieved by using mmap with the MAP SHARED

argument. As a result, the actual code pages are considered shared and the fork system call

would not make private copies of the code pages in the child process. Consequently, we would

encounter the situation of having shared code pages and private CFG data structures between

the parent and the child processes. This would create the following possibility: the parent would

activate an indirect branch target address, update its private ECFG, and patch the code; the child

would lose the opportunity to patch the code and update its private ECFG, since the address-

activation instrumentation would have been patched by the parent; the child’s subsequent normal

74

execution would be falsely detected as CFI violation.

To solve this problem, πCFI intercepts the fork system call, and before it is executed πCFI

copies the parallel-mapped code pages to privately allocated memory and unmaps those pages.

Next, fork is invoked, which copies the private code pages as well. The runtimes in both pro-

cesses next restore the parallel mapping in their own address spaces using the saved code bytes.

This solution allows the child process to have its private code pages and CFGs. The same solution

also applies to those parallel-mapped read-only data pages (shown in Figure 3.3). It should be

pointed out that this solution does not support fork calls issued in a multi-threaded process, be-

cause the unmapping would crash the program if other threads are running. However, to the best

of our knowledge, multi-threaded processes rarely fork child processes due to potential thread

synchronization problems. Another downside of this approach is that it disables code sharing

among processes, which would increase physical memory consumption.

3.3 Implementation

The πCFI toolchain is based on MCFI’s toolchain. πCFI has around 300 lines of code more than

MCFI’s compiler to identify function address-taking instructions and insert calls to patchstub at

before these instructions (detailed in §3.2). In addition, about 320 lines of code were added to the

MCFI runtime to implement the secure patching processes.

3.4 Evaluation

We used the MCFI’s test environment configuration to evaluate πCFI, so please refer to §2.6 for

details.

3.4.1 ECFG Statistics

We compiled and instrumented all 19 SPECCPU2006 C/C++ benchmark programs and measured

the statistics of the enforced CFGs using the reference data sets that are included in the bench-

marks. If a benchmark program has multiple reference data sets, we chose the one that triggered

75

Benchmark RAA FAA VMA EHA IBTA IBEA
400.perlbench 19.9% 83.2% N/A N/A 22.5% 15.4%
401.bzip2 5.0% 41.9% N/A N/A 5.6% 6.1%
403.gcc 27.0% 91.7% N/A N/A 28.6% 20.3%
429.mcf 5.5% 45.0% N/A N/A 6.1% 7.4%
433.milc 13.6% 41.9% N/A N/A 13.9% 9.6%
445.gobmk 35.4% 98.1% N/A N/A 43.4% 64.4%
456.hmmer 9.2% 32.9% N/A N/A 9.4% 9.4%
458.sjeng 9.8% 46.3% N/A N/A 10.3% 8.3%
462.libquantum 7.2% 39.3% N/A N/A 7.7% 8.3%
464.h264ref 19.5% 49.5% N/A N/A 20.0% 20.6%
470.lbm 4.5% 40.0% N/A N/A 5.1% 7.4%
482.sphinx 18.9% 44.8% N/A N/A 19.1% 14.8%
444.namd 5.3% 84.3% 61.5% 3.2% 8.9% 3.5%
447.dealII 7.1% 95.5% 32.2% 13.0% 10.7% 5.5%
450.soplex 8.9% 87.7% 69.8% 19.5% 14.2% 7.6%
453.povray 12.9% 92.1% 62.9% 5.3% 16.1% 9.6%
471.omnetpp 19.1% 94.8% 55.4% 37.7% 25.3% 13.9%
473.astar 5.3% 87.4% 61.2% 2.2% 8.9% 6.4%
483.xalancbmk 14.3% 94.5% 56.6% 27.9% 21.4% 13.5%

RAA: Return Address Activation; FAA: Function Address Activation;
VMA: Virtual Method Activation; EHA: Exception Handler Activation;
IBTA: Indirect Branch Target Activation; IBEA: Indirect Branch Edge Ac-
tivation.

Table 3.1: ECFG statistics of SPECCPU2006 C/C++ benchmarks.

the most address-activation operations (i.e., the worst case). The results are shown in Table 3.1.

The “RAA” column shows the percentage of return addresses that are activated at the end of the

program over the return addresses in MCFI’s CFG; the “FAA” column shows the percentage of ac-

tivated function addresses over function addresses in MCFI’s CFG (note that not all functions are

indirect-branch targets in MCFI’s CFG; if a function’s address is never taken, MCFI does not al-

low the function to be called via an indirect branch); the “VMA” column shows the percentage of

activated virtual method addresses; the “EHA” column shows the percentage of activated excep-

tion handlers. Finally, “IBTA” column shows the percentage of all activated indirect branch target

addresses, and the “IBEA” column shows the percentage of indirect-branch edges in πCFI’s ECFG

at the end of the program over the indirect-branch edges in MCFI’s CFG. Those C programs (i.e.,

those above 444.namd in the table) do not have virtual methods or exception handlers; therefore,

VMA and EHA measurements are not applicable to them.

As can be seen in the table, only a small percentage (10.4% on average) of indirect branch

76

edges are activated in the ECFG. Most programs activate less than 20% of indirect branch edges,

which severely limits attackers’ capability of redirecting control flow. The low percentage of edge

activation is mostly attributed to the low percentage of return address activation as return ad-

dresses are the most common kind of indirect-branch targets. Function addresses are activated

in higher percentages. The reason is that C programs tend to take addresses of functions early

in the program and store them in function-pointer tables. From the perspective of security en-

gineering, it would be better to refactor such programs to dynamically take function addresses,

following the principle of least privilege. In addition, to simulate real attack scenarios when at-

tackers can feed multiple different inputs to a given program to trigger as many indirect branch

targets as possible, we calculated the cumulative total indirect branch targets for 400.perlbench

and 403.gcc by merging the activated addresses of each input file in both the test and reference

data sets. For 400.perlbench, about 31.9% of indirect branch targets are cumulatively activated;

for 403.gcc, around 34.9%. These numbers indicate that it might be hard to activate all indirect

branches even with multiple inputs.

In our experiments, we were also interested in studying how the ECFG grows over time. For

each benchmark, we measured the number of activated indirect branch targets over time. For

most benchmarks (18 out of 19), most address activation happens at the beginning of execution

and grows slowly (and stabilizes in most cases). For example, Figure 3.11 shows the target activa-

tion of the 400.perlbench program when tested on its longest-running data set checkspam. The

X-axis is the execution time and the Y-axis is the proportion of activated indirect branch targets.

However, we did observe an outlier, 403.gcc, when tested over the g23 data set, whose address

activation curve is drawn in Figure 3.12. As can be seen, the address activation shows steep

growth even at the end; on the other hand, it does not activate more target addresses compared

to other input data sets, which trigger similar ECFG growth as 400.perlbench.

To demonstrate that process forking would cause different CFG growths for the parent and

child processes in a long running program, we used πCFI to protect an Nginx server and used

the sever to host a WordPress site. Then, we used almost all features of WordPress for a session

of about 20 minutes. Table 3.2 shows the address activation results. We configured Nginx to use

two processes: the master process was responsible for initialization and handling administrators’

77

0%

5%

10%

15%

20%

25%

10s 20s 30s 40s 50s 60s 70s 80s 90s 100s 110s 120s 130s 140s

checkspam

Figure 3.11: Growth of activated target addresses for 400.perlbench.

0%

5%

10%

15%

20%

25%

30%

8s 16s 24s 32s 40s 48s

g23

Figure 3.12: Growth of activated target addresses for 403.gcc.

commands while a worker process created by the master processed all user inputs. πCFI’s design

allows the master and worker to have different ECFGs; therefore their address activation results

are different. Figure 3.13 shows the target activation growth curve for the worker process. Similar

to other tested programs, the percentage quickly stabilized.

3.4.2 Performance Evaluation

Execution Time Overhead

πCFI’s design is geared toward having a small runtime overhead, including the use of idempotent

operations and online code patching. Next, we report our experimental results of the performance

overhead of πCFI, including runtime and space overhead. Of the two, having a small runtime

overhead is much more important.

The runtime-overhead results of SPECCPU2006 are presented in Figure 3.14. On average,

πCFI incurs 3.9% overhead on integer benchmarks and 3.2% overhead over all benchmarks (in-

cluding both integer and floating-point benchmarks). In comparison, MCFI incurs 3.7% and 2.9%

on the same benchmark sets. Compared to MCFI, πCFI causes a small increase of runtime over-

head, due to address-activation operations and execution of nops after patching.

78

Benchmark RAA FAA IBTA IBEA
Master 9.3% 67.1% 13.3% 8.6%
Worker 14.9% 73.5% 19.0% 13.2%

Table 3.2: ECFG statistics of the Nginx HTTP server’s master and worker processes.

0%

5%

10%

15%

20%

120s 240s 360s 480s 600s 720s 840s 960s 1080s

Figure 3.13: Growth of activated target addresses for Nginx.

We also tested the performance overhead of a πCFI-hardened Nginx-1.4.0 server, compiled at

the O2 optimization level. The πCFI-protected Nginx run nearly as fast as the native version.

Space Overhead

πCFI may insert more code than MCFI, so its space overhead is slightly higher than MCFI, shown

in Figure 3.15. On average, πCFI bloats the code by around 22.9%, 0.3% more than MCFI. How-

ever, the memory footprint increase is still negligible. In addition, the code size for Nginx in-

creases by 22.8%, similar to SPECCPU2006 programs.

3.5 Future Work

Target deactivation. In πCFI, the ECFG grows monotonically if no code is unloaded. A larger

ECFG decreases the strength of the CFI protection. As a result, a potential future direction is to

study when to deactivate addresses safely. In general, an address of an application can be deacti-

vated at a specific moment if no future execution of the application’s code will reach that address.

This notion is very similar to garbage data as defined in a garbage collector, except it is for code

instead of data. Therefore, one idea is to design specialized garbage collectors for code to au-

tomatically compute what code is garbage and use that information to deactivate addresses in

79

-3%

0%

3%

6%

9%

12%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi
nx

48
3.

xa
la
nc

bm
k

G
eo

M
ea

n
(IN

T)

G
eo

M
ea

n
(F

P)

G
eo

M
ea

n
(C

)

G
eo

M
ea

n
(C

++
)

G
eo

M
ea

n
(A

ll)

πCFI

MCFI

Figure 3.14: πCFI runtime overhead on SPECCPU2006 C/C++ benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi
nx

48
3.

xa
la
nc

bm
k

G
eo

M
ea

n

πCFI

MCFI

Figure 3.15: πCFI code size increase on SPECCPU2006 C/C++ benchmarks.

garbage code. Another way of address deactivation is to expose APIs to applications to deacti-

vate addresses and ask developers to decide when and where to invoke these APIs. This is in

general unsafe (similar to manual memory management in C/C++). However, it is still useful in

situations when developers know exactly what code is inactive at a specific point.

Portability. We would like to investigate how πCFI can be implemented on other CPU archi-

tectures. Its design relies on the following hardware-provided mechanisms: (1) virtual memory,

80

based on which the secure code patching is implemented; (2) atomic instruction-stream modifi-

cation, which prevents hardware threads from executing corrupted instructions during patching.

x86-32 and x86-64 CPUs support both, but it would be interesting to explore other CPU architec-

tures such as ARM and POWER.

Physical code memory saving. Current πCFI support for process forking directly copies the

code pages in both the parent and child processes, thus doubling the physical code memory.

Therefore, another potential direction of future work is how to improve πCFI to reduce or elimi-

nate the extra physical code pages.

3.6 Summary

This chapter presents πCFI, a general method for lazily computing per-input CFGs based on a

statically generated CFG generated by MCFI. Besides MCFI’s instrumentation, πCFI inserts more

code to explicitly take addresses of functions and register them to the ECFG dynamically. As the

experiments show, πCFI can effectively reduce the available indirect branch edges for attackers.

The content of this chapter is based on our previously published paper [29] with no major

changes.

81

Chapter 4

RockJIT

4.1 Overview

In this chapter, we discuss how to enforce πCFI for Just-In-Time (JIT) compilers. (Enforcing πCFI

is stronger than enforcing MCFI, so we do not discuss MCFI enforcement separately.) JIT engines

dynamically emit code to writable memory pages, and then execute the native code for speed.

Traditionally, JIT engines suffer from both code injection and reuse attacks (e.g., [46, 47]). How-

ever, it is not straightforward to extend πCFI to JIT engines, because of the following challenges:

• Our goal is to enforce CFI for the JIT engine and the JITted code, so we need to compute a

single CFG for both parts, neither of which is trusted. The (sub)CFG for the JIT engine can

be generated using source-level information acquired during a trusted compilation process,

but the JITted code cannot use this process as its compilation process is not trusted. Since

the JIT engine itself is subject to malicious manipulation, how to securely and efficiently

generate a (sub)CFG for the JITted code and merge it with the JIT compiler’s CFG?

• Since JIT engines emit code on-the-fly, which might be corrupted by attackers, how to se-

curely install, modify and delete the JITted code?

We propose a general approach called RockJIT to solve the above problems. Noticing that JIT

compilers share a common architecture that naturally separates the CFG part of the JIT engine

82

JIT Compiler

Baseline
Executor

Optimizing
Compiler

Garbage
Collector

Basic
Services

JE
n

tr
ie

s
C

E
n

tr
ie

s

Code Heap (RWX)

Function f1

Function f2

Function f3

Code Emission Control Flow Transfer

Figure 4.1: The common architecture of modern JIT compilers.

and that of the JITted code, we enforce πCFI on the JIT engine while coarse-grained CFI for the

JITted code. We reuse the πCFI memory layout and export JITted code installation, deletion and

modification trampolines to JIT engines to invoke. Any JITted code manipulation is delegated to

the πCFI runtime and verified on-the-fly.

4.2 System Design

4.2.1 Common JIT Architecture

We investigated a range of JIT compilers, including Google V8 (JavaScript), Mozilla TraceMon-

key (JavaScript), Oracle HotSpot (Java), Facebook HHVM (PHP), and LuaJIT (Lua). We found

that their architectures share many commonalities and can all be represented by the diagram in

Figure 4.1. A JIT compiler emits JITted code in the code heap and executes it. The code heap

is readable (R), writable (W), and executable (X). A typical JIT compiler contains the following

major components:

Baseline Executor. When a program starts running, its execution is the job of the baseline execu-

tor. Oftentimes, the baseline executor is an interpreter, which is easy to implement but slow.

For instance, HotSpot has an interpreter that interprets Java bytecode. The baseline execu-

tor may have a different implementation from an interpreter. For example, the baseline

executor of V8 compiles JavaScript source code directly to unoptimized native code.

83

Optimizing Compiler. During the execution of a program by the baseline executor, the JIT com-

piler performs runtime profiling to identify hot code and to identify types in the case of

dynamically typed languages. Based on the runtime profile, the optimizing compiler gen-

erates optimized native code. JIT engines can have quite different designs for the optimiz-

ing compiler. For example, V8 profiles method execution and optimizes a whole method

at a time. However, TraceMonkey profiles execution paths (e.g., a hot loop) and performs

trace-based optimization [48] .

Garbage Collector. Managed languages provide automatic memory management, which is sup-

ported by a garbage collector. Most garbage collectors implement common algorithms such

as concurrent mark and sweep.

Basic Services. The JIT compiler also provides runtime services, including support for debug-

ging, access to internal states for performance tuning, foreign function interfaces for en-

abling interoperability between managed languages and native code.

For performance, all JIT compilers we inspected are developed in C/C++. Since the calling

convention of C/C++ is different from that of JITted code, which is JIT-compiler specific, JIT com-

pilers introduce interfaces to allow context switches between the code of the compiler and JITted

code. In Figure 4.1, the interfaces are depicted as JEntries and CEntries; both are essentially

indirect branches. JEntries transfer control to JITted code and CEntries transfer control to the

JIT compiler. As an example of JEntries in V8, the initial control transfer from the JIT compiler to

the code heap is through an indirect call (JEntry) in a code stub called JSEntryStub. As an exam-

ple of CEntries, V8 provides services (or functions) such as JavaScript object creation and object

property access. When JITted code invokes these services, the control can be first transferred to

a stub called CEntryStub with a register containing the address of the target service function.

Within CEntryStub, an indirect call (CEntry) through the register is executed to transfer the con-

trol to the service function. Moreover, it should be noted that both CEntries and JEntries could

be dynamically generated (e.g., when emitting JITted functions that directly invoke CEntries to

efficiently call a JIT-engine service).

84

4.2.2 RockJIT Architecture

RockJIT transforms the common JIT architecture to the one visualized in Figure 4.2, based on

the memory layout in Figure 3.3. The πCFI runtime provides services to a JIT compiler and

monitors its security. An existing JIT compiler such as V8 should be modified to cooperate with

πCFI’s runtime. It is then compiled and instrumented by πCFI’s compilation toolchain. The

compiled JIT engine is loaded by πCFI into the SFI sandbox. After loading, the πCFI runtime

generates an SCFG for the JIT compiler based on the meta-information in the module, constructs

Bary and Tary tables that encode the SCFG and ECFG, and starts execution of the JIT compiler.

Same as how πCFI handles secure code patching, all executable memory pages in the sandbox

are made non-writable, and they are mapped to outside-sandbox writable pages. As shown in

the figure, the code heap’s physical pages are also mapped from the shadow code heap outside

of the sandbox. Therefore, JITted code installation, modification and deletion are all conducted

by the πCFI runtime on the shadow code heap.

Since it is possible that the attackers could modify the JITted code before it is installed, RockJIT

performs online verification on the native code to check a set of properties (detailed in §4.3.1) for

security. If the verification succeeds, RockJIT installs the new code in the shadow code heap and

updates MCFI tables by taking the new code into account.

4.2.3 RockJIT CFG Generation

RockJIT enforces control-flow integrity on both the JIT compiler and JITted code, but applies

different precision on those two parts. For the JIT compiler, RockJIT uses the πCFI toolchain to

enforce a per-input fine-grained CFG. In contrast, the CFG for JITted code is coarse-grained in

the sense that all its indirect branches share a common set of targets and no address activation

is conducted on-the-fly. The JIT compiler is modified to emit not only instrumented JITted code,

but also information about indirect-branch targets. The verifier then deduces the coarse-grained

CFG for the new code and combines it with the old CFG.

The approach of hybrid CFI precision in RockJIT is the result of a careful consideration of

both security and performance. First, the JIT compiler’s code is mostly where the majority of

85

JIT Compiler

Baseline
Executor

Optimizing
Compiler

Garbage
Collector

Basic
Services

JE
n

tr
ie

s
C

E
n

tr
ie

s

Code Heap (RX)

Function f1

Function f2

Function f3

πCFI SFI Sandbox

Shadow Code Heap (W)

Function f1

Function f2

Function f3

πCFI Runtime

Verifier
Ok

Update

Bary and Tary

M
ap

p
ed

to
th

e
sa

m
e

p
h

y
si

ca
l

p
ag

es

Code Emission Control Flow Transfer

Figure 4.2: The architecture of RockJIT.

the code is and contains dangerous system call invocations. Since its code is statically available,

constructing a fine-grained CFG offline and a per-input CFG online for the JIT compiler increases

security substantially as recent work has shown that coarse-grained CFI can still be easily at-

tacked by ROP attacks [14–16]. On the other hand, JITted code is frequently generated on-the-fly

and for performance it is important that verification and new CFG generation do not have high

overhead. Verification and CFG-generation algorithms for coarse-grained CFI are simpler and

thus can run much faster. However, a big concern of coarse-grained CFI for JITted code is that it

might jeopardize security. We do not believe that is the case because JITted code should not con-

tain dangerous instructions such as system calls, a property that is enforced by RockJIT’s verifier;

such instructions are required in an attack. JITted code can still request system-call services from

the JIT compiler, but the JIT compiler is hardened through πCFI: security is preserved as long

86

as sufficient checks are placed along per-input CFG paths. Moreover, enforcing coarse-grained

CFI on the JITted code makes the RockJIT approach general to handle all kinds of JIT-compiled

languages (e.g., Java bytecode, PHP, etc.) for which fine-grained CFG generation may be hard.

One point worth mentioning is that, thanks to the verifier (in §4.3.1), the JIT compiler is not in

the TCB even though it performs runtime code generation. The native code generated by the JIT

compiler is first checked to obey a set of safety properties before installed. The verifier is in the

TCB but it is much smaller than the JIT compiler.

4.3 JITted Code Manipulation

The code heap maintained by a JIT compiler is where code is dynamically managed. It consists of

multiple code regions such as functions. A JIT compiler dynamically installs, deletes, and mod-

ifies code regions. New code regions are frequently generated by the compiler and installed in

the code heap. When a code region is no longer needed, the JIT compiler can delete it from the

code heap and reuse its memory for future code installation. Runtime code modification is mostly

used in performance-critical optimizations. As an example, inline caching [49, 50] is a technique

that is used in JIT compilers to speed up access to object properties. In this technique, a JIT com-

piler modifies native code to embed an object property such as a member offset after the property

has been accessed for the first time, avoiding expensive object-property access operations in the

future. Another example of runtime code modification happens in V8 during code optimization.

V8 profiles function and loop execution to identify hot functions and loops. It performs opti-

mization on the hot code to generate an optimized version. Afterwards, runtime code patching

is performed on the unoptimized code to transfer its control to the optimized version through a

process called on-stack replacement [51].

Since RockJIT enforces CFI, it is necessary to check security for each step of runtime code

installation, deletion, and modification. In §4.3.1, we present how verification is performed when

a new piece of code is installed. The process for code deletion and modification has only small

differences; we leave their discussion to §4.3.2 when we discuss the detailed steps for runtime

code manipulation. In all cases, we take the Google V8 JavaScript engine as an example, since we

87

have modified a version to implement RockJIT.

4.3.1 JITted Code Verification

The verifier in general maintains three sets of addresses that are code addresses in the code heap:

• Pseudo-instruction start addresses (PSA). This address set remembers the start addresses

of all pseudo-instructions. We define a pseudo-instruction as: (1) a checked indirect branch,

which is a CFI check instruction sequence (detailed in §4.4) for checking a register r imme-

diately followed by an indirect branch through r; or (2) a sandboxed memory write, which is

a 0x67-prefixed memory write for SFI (see §2.3.2); or (3) an instruction that is neither an

indirect branch nor an indirect memory write.

• Indirect branch targets (IBT). This address set records all possible indirect branch targets.

• Direct branch targets (DBT). This address set remembers all direct branch targets.

The critical invariant of the three sets is IBT ∪ DBT ⊆ PSA. That is, all indirect and direct

branch targets must be start addresses of pseudo-instructions. With this invariant, it is impossible

to jump to the middle of an instruction where system call instructions may hide. Furthermore, it

is impossible to transfer the control to an indirect branch or a memory write without executing

its preceded MCFI check, which is necessary for SFI.

The three sets can be built incrementally with the installation of new code. Initially, they

are all empty sets when the code heap contains no code. When a new code region is installed,

the verifier updates the three sets by computing PSA ′, IBT ′ and DBT ′ after taking new code

into consideration. For instance, direct branch targets (DBT ′) can be computed from the code

alone. PSA ′ can be computed by disassembling the JITted code, while IBT ′ can be computed by

modifying the JIT compiler to emit legal indirect branch targets as metadata.

With the new address sets, the verifier checks IBT ′
∪ DBT ′

⊆ PSA ′ and the following con-

straints on the new code:

C1 Indirect branches and memory-write instructions are appropriately instrumented. In partic-

ular, only checked indirect branches and masked memory writes are allowed.

88

C2 Direct branches jump to addresses in DBT ′. This ensures that the new code respects DBT ′.

C3 The code contains only instructions that are used for a particular JIT compiler. This set of

instructions is usually a small subset of the native instruction set and can be easily derived by

inspecting the code-emission logic of a JIT compiler. Importantly, this subset cannot contain

system calls and privileged instructions.

Next, we present some implementation details about a verifier we constructed for V8. Our

coarse-grained CFI policy allows each indirect branch in the JITted code to target any pseudo-

instruction for simplicity, so IBT = PSA. The address sets are implemented by bitmaps for fast

look-ups and updates. Each bitmap maps a code address to one if and only if that address belongs

to the corresponding set, otherwise zero.

In addition, the speed of verification is of practical importance. Since V8 performs frequent

code installation, a slow verifier can negatively impact the performance non-trivially. For ex-

ample, NaCl-JIT [43] includes a disassembly-based verifier and it reports 5% overhead for the

verification alone. We adopt an approach based on Deterministic Finite Automata (DFA) follow-

ing RockSalt [52]. It performs address-set updates and constraint checking in one phase without

doing full code disassembly. Our verifier incurs only 1.3% overhead for the verification.

In detail, we wrote a 2776-line Python script (instr.py) to enumerate all possible allowed

instruction encoding as byte sequences. Next, we used another 219-line Python script (trie.py)

to build a trie structure [53], which was next converted to a DFA by another 185-line Python

script (trie to c.py). Both trie.py and trie to c.py scripts were modified from Seaborn’s

code [54]. The DFA has 411 states in total, including 17 acceptance states (e.g., accepting a direct

call) and 1 rejection state. The verifier iterates all JITted code using the DFA. When a direct

branch is matched, it records its jump target; when a checked indirect branch, a masked memory

write, or one allowed instruction is matched, it moves forward. In the above cases, the pseudo-

instruction boundaries are recorded as well. The verification fails whenever the DFA reaches the

rejection state (e.g., due to an illegal instruction). After all code bytes have been matched, the

verifier updates the address sets and checks that DBT ′
⊆ PSA ′. When the verification succeeds,

constraints C1–C3 are respected by the JITted code.

89

Recall that our threat model (§1.3.1) does allow attackers to write arbitrary memory pages in

the sandbox that are writable, so after the code is emitted in the sandbox and before it is copied

outside of the sandbox for verification, the attackers might corrupt it. However, the corrupted

code still needs to pass the verification. If it passes the verification, the CFI property cannot be

violated.

4.3.2 JITted Code Installation, Deletion, and Modification

In RockJIT, a JIT compiler cannot directly manipulate the code heap, which does not have the

writable permission. Instead, RockJIT provides services to the JIT compiler for code installation,

deletion, and modification. One worry for runtime code manipulation is thread safety: one thread

is manipulating code, while another thread may see partially manipulated code. This is more gen-

eral than πCFI, which carefully arranges instructions so that code modification always changes

only a single instruction at a time. We next discuss the detailed steps involved in RockJIT’s code

manipulation and how thread safety is achieved.

Code installation. For code installation, the JIT compiler invokes RockJIT’s code installation

service and sends a piece of native code, the target address where the native code should be

installed, and meta-information about the code for constructing new address sets. The code-

installation service then performs the following steps:

1. The verifier performs verification on the code and updates the address sets to PSA ′, IBT ′,

and DBT ′.

2. If the verification succeeds, the code is copied to the shadow code heap at an address com-

puted from the start address where the code should be installed.

3. The runtime tables used by MCFI are updated to take into account the new code. Since

coarse-grained CFI is enforced on JITted code, only information in IBT ′ is needed to update

the tables.

There are a couple of notes worth mentioning about the above steps. First, the verification of

benign programs is expected to succeed if there are no bugs in the JIT compiler. A verification

90

failure indicates a bug that should be fixed. Second, it is important that the MCFI tables are up-

dated after copying the code, not before. During the copying process, the code becomes partially

visible to the JIT compiler as the code heap is mapped to the same physical pages as the shadow

code heap. However, since the MCFI tables have not been updated yet, no branches can jump to

the new code, avoiding the situation in which one thread is installing some new code and another

thread branches to partially installed code.

Code deletion. Deletion of JITted code is similar to library unloading, with the only difference

being that before deactivating all targets in the code being deleted, RockJIT should make sure

there is no direct branch instruction targeting the code that is to be deleted.

Code modification. If the new code region has the same internal pseudo-instruction bound-

aries and native instruction boundaries as the old code region, only the native instructions are

modified, and the new code passes verification, RockJIT follows NaCl-JIT’s approach to replace

the old code with the new code. Otherwise, code modification is implemented as a code deletion

followed by a code installation.

4.4 Modification to a JIT compiler

Existing JIT compilers need to be modified to work with RockJIT. We next report our experience

of adapting Google’s V8 JavaScript engine (3.29.88.19). To adapt V8’s x64 source, we modified

1934 lines of its source code: 1914 lines were changed to make it generate πCFI-compatible code

and invoke RockJIT’s services for runtime code manipulation; 20 lines were added for bad type

casts (details in §2.2.2) that prevent sound SCFG generation. This experience demonstrates that

modifying an existing JIT compiler to work with RockJIT requires modest effort. Most of the

changes to V8 were in its code-emission logic to make the generated code compatible with πCFI:

• Code-emission functions that generate indirect branches were modified to generate checked

indirect branches. We could directly use MCFI’s instrumentation (i.e., the transactions) to

rewrite the JITted code, but for coarse-grained CFG enforcement, we use a simplified CFI

check implementation. First, we reserve byte 0xf4 so that it never appears in any Bary or

Tary IDs. Then, for each indirect branch target in JITted code, we map it to 0xf4 in the Tary

91

1 cmpb $0xf4 , %gs:(% r10)

2 jne -3

3 jmpq *%r10

Figure 4.3: Indirect branch instrumentation in JITted code.

table; other code addresses are therefore mapped to byte values that are never 0xf4. This is

similar to how MCFI supports interoperability (§2.4).

Next, we instrument each JITted indirect branch in a way similar to Figure 4.3, assuming

register r10 contains the target. The comparison at line 1 simply checks whether the target’s

corresponding Tary byte is 0xf4. If so, the next jne instruction is a nop, which leads to the

actual indirect control transfer at line 3. Otherwise, the jne instruction jumps back three

bytes, landing in the middle of the comparison instruction’s last byte, 0xf4. 0xf4 happens

to be the encoding for the hlt instruction, resulting in termination of the JIT engine.

• Code-emission functions for indirect memory writes were modified to generate masked

memory writes. The sandbox resides in the [0, 4GB) memory. Therefore, an indirect memory

write should be prefixed with 0x67 to override the 64-bit address to 32-bit (details in §2.3.2).

Since V8 also emits JEntries and CEntries on-the-fly, RockJIT provides services for V8 to

securely install those JEntries and CEntries as well as their type signatures to enable SCFG

generation.

Another part we modified was to accommodate online code patching. When V8 emits certain

optimized native code, it reserves some bytes in the code in anticipation of future code patching

(for a process called deoptimization). The original V8 reserves 13 bytes for such purpose. RockJIT

needs more bytes because of extra MCFI checks; we had to reserve 24 bytes instead.

Finally, changes were made to V8 to invoke code installation, deletion, and modification ser-

vices provided by RockJIT at appropriate places.

Compared to related work, RockJIT changes around 60% less code than NaCl-JIT, which

changed over 5,000 lines of code for the x64 version of V8. NaCl-JIT requires more changes

because: (1) it disallows the mix of code and data in the JIT-compiled code and V8 has to be

92

IBs (with matching targets) IBTs EQCs Avg IBTs / IB Avg IBs / IBT
V8 35775 (29609) 116,919 9,696 808 205

Table 4.1: Equivalence classes for Google V8 JavaScript compiler.

changed to separate code and data; RockJIT’s CFI allows the mixture of code and data as long as

data cannot be reached from code with legal control flow; (2) NaCl-JIT uses the ILP32 program-

ming model on x64, while the native V8 uses LP64 model; therefore, it has to change nearly the

entire code-emission logic.

4.5 Evaluation

We compiled the modified Google V8 JavaScript compiler to a standalone executable using the

πCFI toolchain and measured the CFG statistics and performance overhead with the same system

configuration as reported in §2.6.

4.5.1 SCFG and ECFG Statistics

RockJIT supports fine-grained SCFGs for the JIT compiler. Table 4.1 presents the details of the

SCFG extracted for V8. Similar to SPECCPU2006 C++ benchmarks, thousands of equivalence

classes are supported, and the average number of targets of indirect branches and average num-

ber of indirect branches targeting an address are much less than coarse-grained CFI, which could

be the number of indirect branch targets and the number of indirect branches, respectively.

We ran V8 on three benchmark suites: Sunspider 1.0.2, Kraken 1.1, and Octane 2, and collected

ECFG statistics (as percentage compared to the SCFG) for those benchmark suites listed in Table

4.2. The meanings of column names are the same as those of Table 3.1. The first “No input” row

shows the statistics when no input is fed to V8. Note that the benchmarks, especially Octane 2

(around 373K lines of JavaScript code) does not activate significantly more targets than the no-

input case. When we merge all benchmarks’ results, about 30% of indirect branch targets are

activated in total, slightly more than the result triggered by Octane 2. Therefore, given the size

and diversity of benchmarks, we hypothesize that other JavaScript programs will not activate

93

Benchmark RAA FAA VMA EHA IBTA IBEA
No input 15.6% 86.5% 41.4% 2.2% 18.5% 17.8%
Sunspider 1.0.2 23.1% 86.8% 56.2% 2.2% 26.1% 24.9%
Kraken 1.1 21.8% 86.9% 53.9% 2.2% 24.8% 23.2%
Octane 2 26.6% 87.0% 59.2% 2.2% 29.5% 28.6%

* Please refer to table 3.1 for meanings of the column names.

Table 4.2: ECFG statistics of the Google V8 JavaScript engine.

0%

5%

10%

15%

20%

25%

30%

35%

3s 6s 9s 12s 15s 18s 21s 24s 27s 30s 33s

Octane2

Figure 4.4: V8 CFG growth for Octane 2.

significantly more addresses than those benchmarks. The ECFG growth curve of V8 when tested

over Octane 2 is shown in Figure 4.4, from which we can see that the number of target activation

grows very slowly after the initial burst, similar to what we observed on SPEC benchmarks (e.g.,

Figure 3.11 and 3.12).

Compared to NaCl-JIT, which enforces a form of coarse-grained CFI on V8’s code, RockJIT’s

SCFG removes about 99.7% indirect branch edges from NaCl-JIT’s CFG, and the ECFG generated

on Octane 2 eliminates over 99.9% indirect branch edges.

4.5.2 Performance Overhead

Execution Time Overhead

As already discussed, πCFI slows down program execution. We measured the slowdown of πCFI-

instrumented V8 over Octane 2 benchmarks, which is shown in Figure 4.5. On average, 12.1%

runtime overhead is incurred by πCFI, while 11.7% by MCFI. As analyzed before, πCFI costs a bit

more time than MCFI due to online address activation and patched nops.

In general, RockJIT’s performance overhead are due to five major contributors: separation of

94

0%

10%

20%

30%

40%

50%

60%

R
ic
ha

rd
s

D
el
ta

Blu
e

C
ry

pt
o

R
ay

Tra
ce

Ear
le
yB

oy
er

R
eg

Exp

Spl
ay

N
av

ie
rS

to
ke

s

Spl
ay

La
te

nc
y

Pdf
JS

M
an

dr
ee

l

M
an

dr
ee

lL
at

en
cy

G
am

eb
oy

C
od

eL
oa

d

Box
2D zl

ib

Typ
es

cr
ip
t

G
eo

M
ea

n
(O

ct
an

e2
)

G
eo

M
ea

n
(O

ct
an

e)

πCFI

MCFI

Figure 4.5: πCFI and MCFI overhead on Octane 2 with Google V8.

Separation of the code heap and shadow code heap 6.2%
MCFI instrumentation of V8’s code 2.2%
πCFI online activation 0.4%
CFI instrumentation of JITted code 2.0%
Online verification 1.3%
Total 12.1%

Table 4.3: Performance overhead contributors to RockJIT-hardened V8.

the code heap and shadow code heap, MCFI instrumentation of the JIT compiler’s code, πCFI

online address activation, instrumentation of the JITted code, and verification. Table 4.3 shows

the performance overhead of each contributor over Octane 2 benchmarks. These overhead results

were generated by disabling overhead contributors one at a time.

Also, we separately calculated runtime-overhead results for the subset of benchmarks that

were included in Octane 1 (the predecessor of Octane 2) since related works use Octane 1 for eval-

uation. πCFI incurs only 3.1% overhead over them on average. Compared to other JIT-compiler

hardening works, such as NaCl-JIT [43], librando [55], and SDCG [46], πCFI incurs less overhead

and provides better security.

Space Overhead

In terms of code bloat, the code size of V8 increases by around 39.4% after the πCFI instrumenta-

tion, in which 38.2% is due to MCFI checks and 1.2% is for πCFI’s address-taken instrumentation.

95

The size of JITted code generated for the Octane 2 benchmarks is 18.2% larger with the CFI in-

strumentation presented in §4.4.

4.6 Future Work

RockJIT for Trace-JIT. V8 adopts the traditional method-JIT technology to emit JITted code one

function at a time, while other JIT engines such as FireFox SpiderMonkey may adopt trace-based

JIT [48] to generate code traces, which might consist of code parts from multiple functions. Al-

though we consider there would not be any technical challenges when extending RockJIT to trace-

based JIT engines, we still believe it would be interesting to confirm this and secure both kinds of

JIT engines.

Parallelizing the πCFI runtime. Note that the separation of code heap and shadow code heap

incurs the single largest performance overhead shown in Table 4.3. We suspect that the current

implementation of the πCFI runtime may be the culprit, because it uses a single global lock to

synchronize all threads. Given that V8 is a multi-threaded JIT engine that has separate threads

for concurrent compilation and garbage collection, both of which need to enter the runtime for

code installation and memory reclamation, respectively, the lock may be highly contended. We

plan to investigate the issue to further reduce the performance overhead.

CFG precision improvement for the JITted code. RockJIT enforces coarse-grained CFI for

the JITted code to balance performance and security. In the future, it might be worth explor-

ing new methods for generating fine-grained CFGs for the JITted code without jeopardizing the

performance. After all, the more precise the CFG is, the more security we gain from CFI.

Full browser CFI enforcement. In practice, JavaScript engines are often part of web browsers,

which also include many other libraries for page rendering, multimedia, etc. Those libraries

may also be JIT engines, such as the Adobe Flash Player in Chrome. Conceptually, it should be

straightforward to extend RockJIT and πCFI to full browsers, and we leave this to future work.

96

4.7 Summary

This chapter presents a general approach to enforcing fine-grained CFI (πCFI and MCFI) for Just-

In-Time (JIT) engines by (1) using parallel memory mapping to monitor and securely modify

JITted code pages and (2) separately generating the CFG parts for the JIT engine and JITted code

and then merging them into a single CFG.

The content of this chapter is based on our previously published work [28, 29]. Note that the

JITted code instrumentation in [28] is the same as that in [27], while this chapter and [29] share a

simpler version of the JITted code instrumentation described in §4.4. In addition, the V8 version

used in [28] is older than the version mentioned in this chapter and [29].

97

Chapter 5

Security Analysis

We discuss security benefits of previously proposed CFI schemes and focus on πCFI, since it pro-

vides better protection than MCFI thanks to finer-grained CFGs while incurring comparable over-

head. In general, πCFI can mitigate both code injection and code reuse attacks. For code-injection

attacks, πCFI enforces DEP (Data Execution Prevention) at all times; its runtime enforces this by

intercepting and checking all system calls that may change memory protection, including mmap,

mprotect and munmap. Therefore, code injection attacks are impossible for programs that do not

generate code at runtime. For programs that generate code on-the-fly (i.e., JIT compilers), their

JITted code manipulation is performed by the trusted runtime as discussed in §4. Attackers may

still inject code into the JITted code, but the injected code never violates CFI because of online

code verification. For example, the injected code can never contain any system call instruction.

For code-reuse attacks (e.g., ROP), πCFI mitigates them by enforcing a fine-grained per-input

CFG, which provides multiple security benefits. First, the number of ROP gadgets that current

tools can recognize is decreased. For instance, a ROP gadget finding tool rp++ [56] can only

find around 4% of the ROP gadgets in instrumented SPECCPU2006 benchmarks compared to the

results in native binaries, and the reason is CFI disables those ROP gadgets that start from the

middle of instructions. Second, by reducing indirect branch targets/edges, πCFI makes it hard

for attackers to redirect the control flow from the first instruction they can control (e.g., an indirect

branch) to their targeted sensitive function (e.g., execve). Third, when there is unreachable code

98

with respect to a concrete input, the per-input ECFG is likely to exclude the unreachable code.

For instance, if a libc function is never called in an application’s source code (including libraries),

it is unreachable at runtime. This property makes remote exploits nearly impossible for programs

that never invoke critical system functions (e.g., execve) as most attacks rely on calling such

functions to cause damage. Examples of such programs include compression tools (e.g., gzip),

bind (a widely-used DNS server), and memcached etc.; they do not invoke execve-like functions.

5.1 Mitigation of Advanced Attack Forms

In this section, we describe recently proposed advanced attack forms of code injection and code

reuse, and discuss how πCFI could mitigate these attacks.

5.1.1 Just-In-Time Code Reuse

Just-In-Time Code Reuse [47], or JIT-ROP, is an advanced ROP attack specially targeting JIT en-

gines. JIT-ROP firstly exploits a memory leak bug of a JIT engine and finds a code byte address.

Then, it scans the memory page of that leaked code byte to see if there are pointers inside the

page that references other code pages. If so, it follows the pointers and recursively explores other

executable memory pages. After harvesting sufficient memory pages, JIT-ROP scans those pages

again for ROP gadgets, and uses a specially built compiler that considers the ROP gadgets as

instructions to compile the attack payload. Finally, it executes the attack payload by jumping to

the first gadget.

πCFI can mitigate JIT-ROP by making it harder to find usable gadgets and chain them. With

πCFI, gadgets cannot begin from the middle of instructions; instead, they have to start from a

valid indirect branch target; a function address, for example. This implies that gadgets in πCFI

are much longer and involve more side effects, which make exploit writing more difficult. More-

over, the fine-grained per-input CFG makes attacks harder by restricting which gadgets can be

connected to which other gadgets. As our experiments have shown in §4.5.1, πCFI significantly

reduces the number of indirect branch edges, which are essential to chain the gadgets.

99

5.1.2 JIT Spraying

JIT compilers have large attack surfaces, since the input program can be fully controlled by an

attacker. Specifically, a JIT spraying attack [57] takes advantage of the often predictable code-

emission logic in the JIT compiler. The attacker crafts an input program with special embedded

constants and uses a vulnerability in the JIT compiler to hijack the control flow to execute those

constants as malicious code. To illustrate this point using JavaScript, suppose the input code is “x

= x ∧ 0x3C909090”, where ∧ is JavaScript’s xor operator. A JavaScript compiler may generate

native code for implementing the xor operation, in which we assume the constant 0x3C909090 is

encoded literally. Therefore, the byte sequence on x64 for encoding an xor operation is as follows,

assuming %eax holds the value for x.

35 90 90 90 3c: xorl 0x3C909090, %eax

Now suppose the JavaScript compiler has a vulnerability that enables the attacker to control

the program counter. Because x64 has a variable-length instruction set, the attacker can change

the control flow to point to the middle of the above instruction and start the execution of a totally

different instruction stream from the intended. For example, if the program counter is changed

to point to the first 0x90 in the above, the next instruction to execute is a nop (the encoding

of 0x90), followed by other instructions not intended in the original program. Note that the

constant 0x3C909090 above is under the control of the attacker, who can put any constant there

for executing arbitrary code.

Modern operating systems deploy ASLR, which makes it hard for the attacker to locate the

absolute addresses of constants in instructions such as xor. The attacker, however, can spray

many copies of the same code in memory to increase the chance of a successful attack on the

JIT; this is why it is called JIT spraying. Real JIT spraying attacks have been demonstrated, for

example, on the JavaScript engine of the Safari browser [58] and Adobe’s Flash Player [59].

One observation about JIT spraying attacks is they involve both the JITted code and the JIT

compiler. The attacker takes advantage of the fact that the JITted code is often predictable for

a given piece of source code. Furthermore, there must be a vulnerability in the JIT compiler so

that the control can be transferred to the middle of an instruction to start an unexpected and

100

harmful code sequence. Given this observation, one natural defense is to randomize code gen-

eration to make the generated native code less predictable. This approach has been explored by

systems such as librando [55] and others. The downside is that it provides only a probabilis-

tic defense. Instead, RockJIT (or πCFI) hardens both the JIT compiler and the JITted code using

control-flow integrity so that it is impossible to transfer the control to the middle of instructions.

As a result, unexpected instructions can never be executed, making JIT spraying impossible in

RockJIT-protected JIT compilers.

5.1.3 Counterfeit Object-Oriented Programming

Counterfeit Object-Oriented Programming (COOP [60]) attacks construct counterfeit C++ objects

with forged virtual table pointers and carefully chain virtual calls to achieve Turing-complete

computation, even in applications protected with coarse-grained CFI. However, as mentioned by

the authors of COOP, CFI solutions that generate fine-grained CFGs based on class hierarchies

tend to be immune to COOP. Since πCFI builds static CFGs using class hierarchies (§2.2.1) and

performs online activation of virtual methods, COOP is made harder on πCFI-protected C++

applications.

5.1.4 Control-Flow Bending

Control-Flow Bending (CFB, [61]) is a recently proposed general methodology for attacking con-

ventional CFI systems that statically generate CFGs, including MCFI. At a high level, CFB abuses

certain functions (called dispatchers) whose execution may change their own return addresses to

“bend” the control flow. These dispatchers are often common libc routines (e.g., memcpy, printf,

etc.) that are invoked in many places of the program to increase the possibility of bending the

control flow to critical system call sites. Different dispatchers can be chained to achieve more

flexibility. For example, the authors show that memcpy and ngx snprintf in Nginx can be used as

dispatchers to alter the normal control flow to another site where execve is reachable.

πCFI mitigates CFB attacks by reducing the number of return addresses of dispatchers. For

example, the same exploit to attack Nginx in the CFB paper would fail in πCFI-protected Nginx,

101

because the dispatcher chain will be cut off due to inactive return addresses in the worker process.

(Specifically, ngx exec new binary is not executed in the worker process, so all return addresses

inside it won’t be activated.) The xpdf exploit in the CFB paper can be prevented as well, since

it does not use execve-like functions, which makes those functions unreachable. To attack πCFI,

attackers may firstly need to steer the control flow to activate return addresses of their interest.

On top of πCFI, we can further mitigate CFB attacks by disabling certain dispatchers. For

example, in our implementation, memcpy is changed so that its return address is stored in a ded-

icated register once it is entered. When memcpy returns, the value stored in the register is used.

Similar changes are also made to other strcat-like libc functions. With these changes, the at-

tackers can no longer directly use those functions as dispatchers, although they can still use the

callers of those functions. As long as those functions’ callers do not have as many call sites as

those functions, what the attackers can do becomes more restricted. The same technique could

be implemented in the πCFI toolchain for all leaf functions, and potential dispatchers might be

appropriately inlined to be such leaf functions whose execution therefore never changes its own

return address.

5.1.5 Control Jujutsu

Control Jujutsu [62] is another recently proposed attack form targeting fine-grained CFI imple-

mentations including MCFI. At a high level, the attacker firstly finds special indirect call instruc-

tions, called Argument Corruptible Indirect Call Sites (ACICS), whose targets and arguments can

both be controlled by attackers. Then, by using those ACICS gadgets that are close to critical

system calls (e.g., execve) and carefully crafting those arguments, the attackers may achieve ar-

bitrary code execution.

Fortunately, πCFI can mitigate such attacks by reducing the number of targets of ACICS gad-

gets. For example, the authors demonstrate a proof-of-concept attack against Nginx by redi-

recting an ACICS gadget to target ngx execute proc that later invokes execve. However, in

πCFI-protected Nginx, since the CFGs of the master process and the worker process are different,

ngx execute proc is never activated by any normal inputs. Therefore, attackers need to first steer

the execution to activate ngx execute proc, if possible, to attack πCFI-protected Nginx.

102

5.1.6 Sigreturn-Oriented Programming

Sigreturn-Oriented Programming [35], or SROP, attacks exploit the Linux signal handling mech-

anism to mount attacks. Specifically, when a signal is delivered to a thread, the Linux kernel sus-

pends the thread and saves its context (e.g., program counter and stack pointer) onto the thread’s

signal handling stack in user space (πCFI stores the stack inside the sandbox as described in

§2.5) and invokes the signal handler. After the signal handler finishes execution, it returns to a

kernel-inserted stub calling sigreturn, which restores the saved thread context. Therefore, it is

possible that attackers may change the saved context or fake one and redirect the control flow to

a sigreturn system call and restore the context to execute arbitrary code. πCFI mitigates SROP

attacks by inlining sigreturn system calls into each signal handler, which is unreachable from

other application code. As a result, attackers need to trigger real signals to execute the sigreturn

system call. To corrupt the saved thread context stored inside the sandbox, the attackers have to

either exploit a buggy signal handler, or use other threads to concurrently and reliably modify the

signal handling thread’s saved context, neither of which we believe is easy since signal handlers

rarely have complex code and usually do not run for a long period of time.

5.2 Comparison with Deployed Defenses

5.2.1 Stack Cookie

Stack Cookie [4] is widely deployed on all major OSes including Windows, Linux and OSX. Its

basic idea is to store some random value before the return address on the stack when executing

the function prologue and check the cookie’s integrity before the function returns. If there is any

sequential buffer overflow vulnerability in the program, the cookie will be changed before the

return address is changed, and therefore the check before the return will raise an exception.

Compared to πCFI, Stack Cookie only protects function returns. However, if a bug allows the

attackers to arbitrarily control stack addresses (e.g., the attacker can control the index to an array),

Stack Cookie can be easily bypassed. In addition, Stack Cookie does not protect any function

pointers in the heap such as virtual table pointers, therefore it provides no protection against

103

-3%

0%

3%

6%

9%

12%

15%

18%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi
nx

48
3.

xa
la
nc

bm
k

G
eo

M
ea

n
(IN

T)

G
eo

M
ea

n
(F

P)

G
eo

M
ea

n
(C

)

G
eo

M
ea

n
(C

++
)

G
eo

M
ea

n
(A

ll)

πCFI

PIE

Stack Cookie (Default)

Stack Cookie (Full)

Figure 5.1: Runtime overhead comparison among πCFI, Position-Independent Executable (PIE) and stack
cookie.

use-after-free exploits. On the other hand, πCFI protects the control flow in many more cases.

We benchmarked the performance overhead of Stack Cookie and compare it with πCFI. The

detailed numbers are shown in Figure 5.1. “Stack Cookie (Default)” means that we used no

extra compilation flag to compile the SPECCPU2006 benchmarks except “-O3”. The compiler

analyzes each function and if it is safe (e.g., a function does not manipulate any stack arrays),

Stack Cookie will not be enabled for that particular function. For “Stack Cookie (Full)”, we passed

“-fstack-protector-all” to instrument each function with Stack Cookie’s guard code.

As can be seen from the figure, πCFI incurs similar overhead to the full instrumentation of

Stack Cookie, but more overhead than the default instrumentation. It might be possible to also

perform Stack Cookie’s analysis to disable πCFI instrumentation for certain functions and reduce

πCFI’s overhead, but concurrent return address corruption is then possible.

5.2.2 ASLR

Same as Stack Cookie, ASLR is deployed on the mainstream OSes by default. Different from

Stack Cookie and πCFI, ASLR makes ROP harder by loading code modules at random mem-

ory addresses. However, as shown in §1.2, ASLR is vulnerable to memory leak, spraying and

104

even brute-force cracking. In terms of performance overhead, ASLR on average incurs similar

overhead to the default Stack Cookie protection, shown in Figure 5.1 as the “PIE” bars. In Linux,

ASLR is disabled for the main executable but enabled for libraries. Therefore, we turned on ASLR

for the main executable by passing “-fPIE” during compilation and compared the execution time

with the default counterpart to get the above performance results.

5.3 Limitations of CFI and Future Research

As already discussed, CFI in general mitigates control-flow hijacking attacks, but data-only at-

tacks [63] that always follow the CFG are out of CFI’s protection scope, even if an ideal per-input

CFG is enforced. For instance, the notorious “HeartBleed” [64] vulnerability of OpenSSL cannot

be mitigated by any CFI. In detail, OpenSSL misses a check for a packet length so that a malicious

client can read more data than it requires by sending a packet that claims its length is larger than

the packet’s actual length, resulting in possible private key leakage. Recently, Hu et al. [65] even

demonstrated that data-only exploits can be automatically generated.

CFI can neither prevent logic errors. CFI assumes that the program as well as the program’s

CFG is “legal”, but in practice, it is not always true. For example, Apple’s “goto fail” bug [66]

legitimately jumps over checks so that the verification would never fail. Even if CFI is enforced,

that problematic control flow is still valid according to any CFG. Similarly, attacks such as SQL

injection and cross-site scripting (XSS) are also logic errors in essence.

In summary, CFI is unfortunately not a silver bullet. In the future, more research is needed in

the following areas to further improve software security.

• Data-Flow Integrity (DFI [67]) is effective at mitigating data-only attacks in general. DFI

computes a legal static data flow graph for a program and inserts instrumentation to en-

force that any runtime data flow should be specified in the data flow graph. DFI provides

stronger protection than CFI, since CFI can be considered as enforcing DFI on only the con-

trol data. However, DFI still lacks many features that would make it practical: modularity,

efficiency and interoperability. To make DFI practical, future research needs to first solve

these problems, and we believe our work has laid the foundation for potential solutions.

105

• Enforcing spatial and temporal memory safety is a fundamental way of defeating memory

corruption. Spatial memory safety (or bounds checking) requires that any pointer derefer-

ence should be within the bound that is established at memory object creation time. Ex-

ample systems include SoftBound [68] and baggy bounds checking [69]. Temporal memory

safety addresses object use-after-free issues by forbidding pointers to freed objects to be

dereferenced. For example, CETS [70] associates each pointer and memory object a version

number and compares the versions to determine whether a freed object is being derefer-

enced. The major problem of enforcing memory safety is the high performance overhead,

therefore currently memory safety enforcement is more suitable to facilitate bug hunting

during software testing (e.g., AddressSanitizer [71]). To be practical, current memory safety

techniques need substantial overhauls for low overhead.

• Information-hiding-based memory randomization complements CFI by making it harder

to precisely locate ROP gadgets, and recent research has gone far beyond ASLR by lever-

aging eXecute-no-Read (XnR) memory pages [72]. For example, Readactor [73] runs ap-

plications in virtual machines whose executable memory pages are set non-readable using

hardware virtualization support, so the attackers cannot directly read the code to harvest

gadgets. Then, it uses position-independent trampolines to relay indirect calls and returns

to their targets and randomly place those trampolines to probabilistically eliminate code

pointers in readable memory. Other recent memory randomization work includes [74–77].

However, these proposed techniques lack either efficiency or interoperability, therefore fu-

ture research should make these techniques more practical.

• We believe formal verification is the only approach to secure software. Basically, the be-

haviors of software should be formally specified first, and a mathematical proof (typically

machine-checkable) should be conducted on the software code to prove that the code cor-

rectly implements the specification. For example, seL4 [78] is a micro-kernel that has been

formally verified to respect a specification. This area is under heavy research and we believe

more research is needed to further lower the cost and improve the efficiency.

• Quantitative security measurement for CFI defenses is perhaps another important future

106

research direction. Currently, there are three major quantitative security measurement met-

rics and all of them need to be improved to better reflect security enhancement. First, ROP

gadget reduction is calculated to see how many ROP gadgets can be eliminated if a secu-

rity defense approach is deployed. The baseline is calculated using existing ROP gadget

finding tools, which only find simple gadgets (e.g., several instructions followed by an in-

direct branch). However, the baseline is not strong enough since new attack research keeps

finding more sophisticated ROP gadgets (e.g., full functions in COOP [60]) that bypass the

defense. As a result, it is reasonable to study how to semantically define ROP gadgets and

find all equivalent ones (if possible) in a program as a strong baseline. Fortunately, Q [79]

has provided inspiration in this direction. Second, the AIR [7] value is often calculated to

measure how many targets can be reduced for each indirect branch on average. It is always

less than one, and the more it approaches one, the better. MCFI reports a 99.97%+ AIR

value, but it has been shown to be vulnerable to CFB [61] and Control-Jujutsu [62] attacks.

Consequently, the discrimination degree of AIR is not good enough. Third, failed attacks

are conducted against a defense mechanism to demonstrate that the defense can prevent

conventional attacks. However, using the same vulnerabilities, other attack methodology

may be possible to break the defense. Hence, from failed attacks, we can only draw the

conclusion that either the attack is flawed or the defense is effective, which does not help

quantitative security evaluation much. In conclusion, we should either polish the existing

metrics or design better metrics for quantitatively measuring security for CFI methods.

107

Chapter 6

Related Work

6.1 Control-Flow Integrity

Abadi et al. [1] coined the term “Control-Flow Integrity”, and proposed the first implementation

(ClassicCFI, detailed in §1.3.2) in 2005. Niu et al. [12] proposed a taxonomy that classifies CFI

implementations into two categories: coarse-grained CFI and fine-grained CFI according to the

equivalence class support of a particular CFI approach (details in §1.3.3).

Coarse-grained CFI approaches include PittSFIeld [8], NaCl [9, 10], CCFIR [11], binCFI [7],

and MIP [12]. The major benefit of coarse-grained CFI is that coarse-grained CFGs are easier to

build, even without access to source code (e.g., [13]). But on the down side, the coarse-grained

CFGs are too permissive so that it is still possible to mount attacks in general, as demonstrated in

recent work [14–16].

Previous fine-grained CFI approaches include several systems [17–21, 25, 26, 41]. However,

limited by their CFI enforcement mechanisms, none of them supports modularity. ForwardCFI

[23] is a fine-grained CFI system with insecure modularity support, because its modularity sup-

port introduces time windows for attacks during dynamic module linking. Our MCFI [27] work

is the first fine-grained CFI technique that supports dynamic code linking, and RockJIT [28] ex-

tends MCFI to securing Just-In-Time (JIT) compilation. The CFG generation of both ForwardCFI

and MCFI (only the C++ part) is based on the idea of SafeDispatch [22]. vfGuard [80] describes a

108

sound CFG edge generation approach at the binary level. Lockdown [81] is another fine-grained

CFI enforcement system, which can work on stripped binaries without access to source code.

However, its execution performance overhead is higher than MCFI because its implementation is

based on dynamic binary translation.

πCFI is the first CFI approach to comprehensively enforcing per-input CFGs. Independently

and concurrently with πCFI, HAFIX [82] enforces per-input CFGs using specially built hardware.

However, compared to πCFI’s support for all indirect branches, HAFIX only supports per-input

CFGs with respect to returns. HAFIX also lacks support for multi-threaded programs, which are

supported by πCFI. In addition, πCFI is a pure software-based technique that can run on existing

commodity hardware, which is more deployable than HAFIX that modifies the hardware. Recent

attacks such as Control-Flow Bending [61] and Control Jujutsu [62] show methods of attacking

conventional fine-grained CFI systems, but fortunately πCFI [29] can mitigate those attacks.

Systems such as XFI [17] protect the integrity of the stack by using a shadow stack. It ensures

that a return instruction always returns to its actual runtime call site. πCFI’s protection on return

instructions falls between conventional CFI and the shadow-stack defense: it ensures a return in-

struction in a function can return to only those call sites that have so far called the function. πCFI,

on the other hand, better protects other indirect branches (e.g., indirect calls) and is compatible

with unconventional control flow mechanisms such as exception handling.

Code-Pointer Integrity (CPI [83]) is a recent system that isolates all data related to code point-

ers into a protected safe memory region and thus can mitigate control-flow hijacking attacks. It

is also a compiler-based framework and has low execution overhead. However, it lacks interop-

erability support and incurs high memory overhead. Furthermore, CPI does not directly enforce

a control-flow graph. The control-flow graph provided by CFI methods such as MCFI and πCFI

is valuable to other software-protection mechanisms because they can use it to perform static-

analysis based optimization and verification [25].

109

6.2 Software-based Fault Isolation

Software-based Fault Isolation, or SFI, was first proposed by Wahbe et al. [36] in 1993 on RISC to

achieve efficient user-level domain isolation, and was ported to x86 in PittSFIeld [8]. For every

indirect memory access, PittSFIeld masks its target address using a single and instruction. To en-

sure that no such and instruction is bypassed, PittSFIeld implements a coarse-grained CFI called

aligned-chunk CFI. In this approach, the code region is divided into chunks of the same size such

as 16 bytes. Branch targets are aligned at chunk beginnings. All branches are restricted to target

beginnings of chunks. For indirect branches, this is achieved by dynamic checks. Thanks to the

restriction on branches, instrumentation code cannot be bypassed as long as it stays in the same

chunk as the protected memory access. The same approach has been adopted by NaCl [9, 10]. The

downside of this approach is that many nops need to be inserted into the code for alignments,

so we adopt the approach in [37] for memory sandboxing, which leverages the CPU-provided

address overriding prefix.

Both CFI and SFI weave checks into the code to monitor the runtime execution, and they are

essentially Inlined Reference Monitors, which are conceptualized by Erlingsson et al. [84, 85].

6.3 JIT Compiler Hardening

RockJIT’s goal of improving the security of JIT compilation is shared by several other systems.

Perhaps the closest work is NaCl-JIT [43], which applies SFI to constraining both a JIT compiler

and JITted code. To prevent SFI checks from being bypassed, NaCl-JIT enforces aligned-chunk

CFI similar to PittSFIeld [8], which enforces coarse-grained CFGs. In contrast, RockJIT applies

fine-grained per-input CFI on the JIT compiler and therefore provides stronger security. NaCl-

JIT also has high performance overhead. Its aligned-chunk CFI requires insertion of many nop

instructions to make indirect-branch targets aligned at chunk boundaries. NaCl-JIT reports nops

account for half of the sandboxing cost. Largely because of this, its performance overhead is

around 51%. By contrast, RockJIT’s overhead is 12.1%.

In addition, software diversification has been studied to harden JIT compilation. The librando

system [55] inserts a random amount of nops in the JITted code. In addition, it uses a technique

110

called constant blinding: it replaces instructions that have constant operands with other equiv-

alent instruction sequences to mitigate JIT spraying [57]. Due to its black-box implementation,

librando has to disassemble the JITted code, modify the code, and re-assemble the new code. It

incurs a significant overhead (265.8%). Other systems including INSeRT [86], JITSafe [87], and

RIM [88] also employ diversification techniques similar to librando’s. Readactor [73] leverages

execute-only pages supported by virtualization and runs randomized JIT engine and JITted code

inside those pages. Most of these diversification-based systems protect only JITted code, not the

JIT compiler. Even Readactor needs to temporarily allow writable code during JITted code instal-

lation. In comparison, RockJIT can eliminate JIT spraying attacks and enforces CFI on both the

JIT compiler and JITted code. On the other hand, since software-diversification techniques are

orthogonal to CFI, it is perhaps beneficial to deploy both defenses in a JIT compiler, following the

principle of defense in depth.

Another mitigation mechanism for JIT is to separate the write permission from the execu-

tion permission for the code heap. For instance, SDCG [46] stores the shadow code heap in an-

other process and emits code to the process through inter-process communication. However, the

process-based separation seems to be heavier than RockJIT’s SFI-based separation. JITDefender

[89] and JITSafe [87] drop the write permission of the code heap whenever it is not needed. How-

ever, before dropping the permission, those code pages may have already been modified by the

attacker for arbitrary code execution. More importantly, they cannot prevent JIT spraying attacks,

which do not require modifying the code heap.

6.4 Software Transactional Memory

The idea of Transactional Memory was first proposed by Herlihy and Moss [90] in 1993, and

was implemented as a simple extension to the cache coherence protocols used in multiprocessor

CPUs. Later in 1995, Shavit and Touitou proposed a software-only implementation of transac-

tional memory, coined Software Transactional Memory (STM) [91]. The original STM algorithm

operates on pre-determined shared memory words and for each word, it associates an ownership

record (orec) indicating the transaction that tries to modify it. A transaction needs to acquire the

111

ownership of all words before committing its changes, and it does so in a global total order. If

a transaction tries to acquire the ownership of a word that has been owned, it is aborted and re-

tried. It has two limitations: first, it doubles memory usage by attaching an ownership record to

each memory word; second, it assumes that the accessed memory words are statically known. To

reduce memory overhead, Harris et al. proposed a Hashtable STM [92] that hashes those memory

words to the same hash entry if they are owned by the same transaction. To support dynamically

allocated shared memory, object-based STM systems [93, 94] were proposed. For example, DSTM

[93] dynamically allocates ownership records for well-defined shared objects such as a tree node.

DSTM also introduces the concept of contention manager to handle transaction conflicts more

efficiently.

All of the above STM algorithms use ownership records for detecting conflicts. However,

they are not suitable for MCFI’s transaction design because of performance. For instance, reading

object data in DSTM needs to dereference two levels of pointers, which is likely to incur large

runtime overhead for CFI checking. Instead, MCFI’s check transactions use version numbers to

validate read consistency, whose basic idea is similar to Transactional Locking II (TL2) [95] and

Transactional Mutex Locking (TML) [38]. Both TL2 and TML use a global version number and

locally kept version numbers to detect read-write conflicts, but due to their generic transaction

support, the version number retrieval and actual data read are separate. In MCFI, we merge the

two memory reads into one single instruction using specially designed ID encoding to improve

efficiency.

112

Chapter 7

Conclusions

In this dissertation, we have described MCFI, the first CFI system supporting fine-grained CFGs,

modularity, efficiency and interoperability. MCFI adopts a source-level semantics-based method

to generate fine-grained CFGs for C/C++ programs, and the generated CFG is encoded as two

tables in memory during runtime, which are consulted by MCFI-inserted checks in the program

for detecting CFI violations. When new code modules are loaded dynamically, the CFG tables

may be concurrently updated and queried. For thread safety, MCFI uses a specially designed

lightweight STM algorithm to update and query the CFG tables, which results in low performance

overhead. The table and transaction design also enable interoperability.

Atop MCFI, we have proposed πCFI, a CFI technique that is able to generate and enforce per-

input CFGs. πCFI inserts extra instrumentation into the target program, and takes advantage of

MCFI’s CFG generation to compute a fine-grained static CFG for the program. During execution,

πCFI dynamically activates target addresses lazily before the addresses are needed by later exe-

cution. πCFI can effectively reduce available indirect branch edges by a large percentage, while

incurring low overhead.

Finally, we presented a general approach entitled RockJIT to securing JIT compilers using

πCFI. RockJIT enforces fine-grained per-input CFI on the JIT compiler and coarse-grained CFI

on the JITted code, resulting in much improved security and lower performance overhead than

other state-of-the-art systems.

113

Bibliography

[1] Abadi, M., Budiu, M., Erlingsson, Ú. & Ligatti, J. Control-Flow Integrity. In 12th ACM

Conference on Computer and Communications Security (CCS), 340–353 (2005).

[2] Shacham, H. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function

Calls (on the x86). In 14th ACM Conference on Computer and Communications Security (CCS),

552–561 (2007).

[3] Shacham, H. et al. On the Effectiveness of Address-space Randomization. In Proceedings of

the 11th ACM Conference on Computer and Communications Security, CCS ’04, 298–307 (ACM,

New York, NY, USA, 2004). URL http://doi.acm.org/10.1145/1030083.1030124.

[4] Cowan, C. et al. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-

overflow Attacks. In Proceedings of the 7th Conference on USENIX Security Symposium

- Volume 7, SSYM’98, 5–5 (USENIX Association, Berkeley, CA, USA, 1998). URL

http://dl.acm.org/citation.cfm?id=1267549.1267554.

[5] Bittau, A., Belay, A., Mashtizadeh, A., Mazières, D. & Boneh, D. Hacking Blind. In Proceedings

of the 2014 IEEE Symposium on Security and Privacy, SP ’14, 227–242 (IEEE Computer Society,

Washington, DC, USA, 2014). URL http://dx.doi.org/10.1109/SP.2014.22.

[6] Ramalingam, G. The Undecidability of Aliasing. ACM Trans. Program. Lang. Syst. 16, 1467–

1471 (1994). URL http://doi.acm.org/10.1145/186025.186041.

[7] Zhang, M. & Sekar, R. Control Flow Integrity for COTS Binaries. In Proceedings of the 22Nd

USENIX Conference on Security, SEC’13 (2013).

114

http://doi.acm.org/10.1145/1030083.1030124
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dx.doi.org/10.1109/SP.2014.22
http://doi.acm.org/10.1145/186025.186041

[8] McCamant, S. & Morrisett, G. Evaluating SFI for a CISC Architecture. In Proceedings of the

15th Conference on USENIX Security Symposium - Volume 15, USENIX-SS’06 (USENIX Associ-

ation, 2006). URL http://dl.acm.org/citation.cfm?id=1267336.1267351.

[9] Yee, B. et al. Native Client: A Sandbox for Portable, Untrusted x86 Native Code. In Security

and Privacy, 2009 IEEE Symposium on, 79–93 (2009).

[10] Sehr, D. et al. Adapting Software Fault Isolation to Contemporary CPU Architectures. In

19th Usenix Security Symposium, 1–12 (2010).

[11] Zhang, C. et al. Practical Control Flow Integrity and Randomization for Binary Executables.

In Security and Privacy (SP), 2013 IEEE Symposium on, 559–573 (2013).

[12] Niu, B. & Tan, G. Monitor Integrity Protection with Space Efficiency and Separate Compila-

tion. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Secu-

rity, CCS ’13, 199–210 (ACM, 2013). URL http://doi.acm.org/10.1145/2508859.2516649.

[13] Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K. W. & Franz, M. Opaque Control-Flow

Integrity. In Proceedings of the 22nd Network and Distributed System Security Symposium (NDSS)

(San Diego, California, 2015).

[14] Goktas, E., Athanasopoulos, E., Bos, H. & Portokalidis, G. Out Of Control: Overcoming

Control-Flow Integrity. In Security and Privacy (SP), 2014 IEEE Symposium on (2014).

[15] Davi, L., Lehmann, D., Sadeghi, A. & Monrose, F. Stitching the Gadgets: On the Ineffective-

ness of Coarse-Grained Control-Flow Integrity Protection. In 23rd USENIX Security Sympo-

sium (USENIX Security 14) (USENIX Association, 2014).

[16] Carlini, N. & Wagner, D. ROP is Still Dangerous: Breaking Modern Defenses. In 23rd

USENIX Security Symposium (USENIX Security 14) (USENIX Association, 2014).

[17] Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M. & Necula, G. XFI: Software Guards for Sys-

tem Address Spaces. In USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 75–88 (2006).

115

http://dl.acm.org/citation.cfm?id=1267336.1267351
http://doi.acm.org/10.1145/2508859.2516649

[18] Wang, Z. & Jiang, X. HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor

Control-Flow Integrity. In Security and Privacy (SP), 2010 IEEE Symposium on, 380–395 (2010).

[19] Akritidis, P., Cadar, C., Raiciu, C., Costa, M. & Castro, M. Preventing Memory Error Exploits

with WIT. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, 263–277 (2008).

[20] Davi, L. et al. MoCFI: A Framework to Mitigate Control-Flow Attacks on Smartphones. In

Network and Distributed System Security Symposium (NDSS) (2012).

[21] Pewny, J. & Holz, T. Control-Flow Restrictor: Compiler-based CFI for iOS. In ACSAC ’13:

Proceedings of the 2013 Annual Computer Security Applications Conference (2013).

[22] Jang, D., Tatlock, Z. & Lerner, S. SafeDispatch: Securing C++ Virtual Calls from Memory

Corruption Attacks. In 20th Annual Network and Distributed System Security Symposium, NDSS

’14 (The Internet Society, 2014).

[23] Tice, C. et al. Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In 23rd

USENIX Security Symposium (USENIX Security 14) (USENIX Association, 2014).

[24] Szekeres, L., Payer, M., Wei, T. & Song, D. SoK: Eternal War in Memory. In IEEE Symposium

on Security and Privacy (S&P), 48–62 (2013).

[25] Zeng, B., Tan, G. & Morrisett, G. Combining Control-flow Integrity and Static Analysis for

Efficient and Validated Data Sandboxing. In 18th ACM Conference on Computer and Commu-

nications Security (CCS), 29–40 (2011).

[26] Zeng, B., Tan, G. & Erlingsson, Ú. Strato: A Retargetable Framework for Low-Level Inlined-

Reference Monitors. In 22nd Usenix Security Symposium, 369–382 (2013).

[27] Niu, B. & Tan, G. Modular Control-Flow Integrity. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, 577–587 (ACM,

2014). URL http://doi.acm.org/10.1145/2594291.2594295.

[28] Niu, B. & Tan, G. RockJIT: Securing Just-In-Time Compilation Using Modular Control-

Flow Integrity. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

116

http://doi.acm.org/10.1145/2594291.2594295

Communications Security, CCS ’14, 1317–1328 (ACM, New York, NY, USA, 2014). URL

http://doi.acm.org/10.1145/2660267.2660281.

[29] Niu, B. & Tan, G. Per-Input Control-Flow Integrity. In Proceedings of the 2015 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’15, 1317–1328 (2015). URL

http://dx.doi.org/10.1145/2810103.2813644.

[30] Itanium C++ ABI. https://mentorembedded.github.io/cxx-abi/abi.html.

[31] Dean, J., Grove, D. & Chambers, C. Optimization of Object-Oriented Programs Using Static

Class Hierarchy Analysis. In Proceedings of the 9th European Conference on Object-Oriented

Programming, ECOOP ’95, 77–101 (1995).

[32] Itanium C++ ABI. http://mentorembedded.github.io/cxx-abi/abi.html.

[33] The “this” pointer in c++. http://en.cppreference.com/w/cpp/language/this.

[34] C++ type qualifiers. http://en.cppreference.com/w/cpp/language/cv.

[35] Bosman, E. & Bos, H. Framing Signals - A Return to Portable Shellcode. In Security and

Privacy (SP), 2014 IEEE Symposium on, 243–258 (2014).

[36] Wahbe, R., Lucco, S., Anderson, T. E. & Graham, S. L. Efficient Software-based Fault Isola-

tion. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP

’93, 203–216 (ACM, 1993). URL http://doi.acm.org/10.1145/168619.168635.

[37] Deng, L., Zeng, Q. & Liu, Y. ISboxing: An Instruction Substitution Based Data Sandboxing

for x86 Untrusted Libraries. In Federrath, H. & Gollmann, D. (eds.) ICT Systems Security

and Privacy Protection, vol. 455 of IFIP Advances in Information and Communication Technology,

386–400 (Springer International Publishing, 2015).

[38] Dalessandro, L., Dice, D., Scott, M., Shavit, N. & Spear, M. Transactional Mutex Locks. In

Proceedings of the 16th International Euro-Par Conference on Parallel Processing: Part II, Euro-

Par’10, 2–13 (Springer-Verlag, Berlin, Heidelberg, 2010).

117

http://doi.acm.org/10.1145/2660267.2660281
http://dx.doi.org/10.1145/2810103.2813644
https://mentorembedded.github.io/cxx-abi/abi.html
http://mentorembedded.github.io/cxx-abi/abi.html
http://en.cppreference.com/w/cpp/language/this
http://en.cppreference.com/w/cpp/language/cv
http://doi.acm.org/10.1145/168619.168635

[39] Herlihy, M. P. & Wing, J. M. Linearizability: A Correctness Condition for Concurrent Objects.

ACM Transactions on Programming Languages and Systems 12, 463–492 (1990).

[40] Dechev, D. The ABA Problem in Multicore Data Structures with Collaborating Operations.

In 7th International Conference on Collaborative Computing: Networking, Applications and Work-

sharing (CollaborateCom), 158–167 (2011).

[41] Criswell, J., Dautenhahn, N. & Adve, V. KCoFI: Complete Control-Flow Integrity for Com-

modity Operating System Kernels. In Proceedings of the 2014 IEEE Symposium on Security

and Privacy, SP ’14, 292–307 (IEEE Computer Society, Washington, DC, USA, 2014). URL

http://dx.doi.org/10.1109/SP.2014.26.

[42] Saha, S., Lozi, J.-P., Thomas, G., Lawall, J. & Muller, G. Hector: Detecting Resource-Release

Omission Faults in Error-Handling Code for Systems . In Dependable Systems and Networks

(DSN), 2013 43rd Annual IEEE/IFIP International Conference on, 1–12 (2013).

[43] Ansel, J. et al. Language-Independent Sandboxing of Just-In-Time Compilation and Self-

Modifying Code. In ACM Conference on Programming Language Design and Implementation

(PLDI), 355–366 (2011).

[44] Section 8.1.3: Handling Self- and Cross-Modifying Code. Intel 64 and IA-32 Architectures

Software Developers Manual, Volume 3.

[45] Example B2-1 Cache cleaning operations for self-modifying code. ARM Architecture Refer-

ence Manual ARMv7-A and ARMv7-R edition.

[46] Song, C., Zhang, C., Wang, T., Lee, W. & Melski, D. Exploiting and Protecting Dynamic Code

Generation. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015,

San Diego, California, USA, February 8-11, 2014 (2015).

[47] Snow, K. Z. et al. Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address

Space Layout Randomization. In IEEE Symposium on Security and Privacy (S&P), 574–588

(2013).

118

http://dx.doi.org/10.1109/SP.2014.26

[48] Gal, A. et al. Trace-based Just-in-time Type Specialization for Dynamic Languages.

In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’09, 465–478 (ACM, New York, NY, USA, 2009). URL

http://doi.acm.org/10.1145/1542476.1542528.

[49] Deutsch, L. P. & Schiffman, A. M. Efficient Implementation of the Smalltalk-

80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, POPL ’84, 297–302 (ACM, 1984). URL

http://doi.acm.org.ezproxy.lib.lehigh.edu/10.1145/800017.800542.

[50] Hölzle, U., Chambers, C. & Ungar, D. Optimizing Dynamically-Typed Object-Oriented Lan-

guages with Polymorphic Inline Caches. In America, P. (ed.) ECOOP’91 European Conference

on Object-Oriented Programming, vol. 512 of Lecture Notes in Computer Science, 21–38 (Springer

Berlin Heidelberg, 1991). URL http://dx.doi.org/10.1007/BFb0057013.

[51] Hölzle, U., Chambers, C. & Ungar, D. Debugging Optimized Code with Dynamic Deop-

timization. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language

Design and Implementation, PLDI ’92, 32–43 (ACM, 1992).

[52] Morrisett, G., Tan, G., Tassarotti, J., Tristan, J. & Gan, E. RockSalt: Better, Faster,

Stronger SFI for the x86. In Proceedings of the 33rd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’12, 395–404 (ACM, 2012). URL

http://doi.acm.org/10.1145/2254064.2254111.

[53] Fredkin, E. Trie Memory. Communications of ACM 3, 490–499 (1960).

[54] Seaborn, M. A dfa-based x86-32 validator for native client.

https://github.com/mseaborn/x86-decoder (2011).

[55] Homescu, A., Brunthaler, S., Larsen, P. & Franz, M. Librando: Transparent Code Ran-

domization for Just-In-Time Compilers. In Proceedings of the 2013 ACM SIGSAC con-

ference on Computer & Communications Security, CCS ’13, 993–1004 (ACM, 2013). URL

http://doi.acm.org/10.1145/2508859.2516675.

119

http://doi.acm.org/10.1145/1542476.1542528
http://doi.acm.org.ezproxy.lib.lehigh.edu/10.1145/800017.800542
http://dx.doi.org/10.1007/BFb0057013
http://doi.acm.org/10.1145/2254064.2254111
https://github.com/mseaborn/x86-decoder
http://doi.acm.org/10.1145/2508859.2516675

[56] The rp++ ROP gadget finding tool. https://github.com/0vercl0k/rp.

[57] Blazakis, D. Interpreter Exploitation. In Proceedings of the 4th USENIX Confer-

ence on Offensive Technologies, WOOT’10, 1–9 (USENIX Association, 2010). URL

http://dl.acm.org/citation.cfm?id=1925004.1925011.

[58] Sintsov, A. Safari JS JITed Shellcode. http://www.exploit-db.com/exploits/14221/

(2010).

[59] Badishi, G. JIT Spraying Primer and CVE-2010-3654.

http://badishi.com/jit-spraying-primer-and-cve-2010-3654/ (2012).

[60] Schuster, F. et al. Counterfeit Object-oriented Programming: On the Difficulty of Preventing

Code Reuse Attacks in C++ Applications. In 36th IEEE Symposium on Security and Privacy

(Oakland) (2015).

[61] Carlini, N., Barresi, A., Payer, M., Wagner, D. & Gross, T. R. Control-Flow Bending: On

the Effectiveness of Control-Flow Integrity. In 24th USENIX Security Symposium (USENIX

Security 15) (USENIX Association, Washington, D.C., 2015).

[62] Evans, I. et al. Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity.

In Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’15 (2015).

[63] Chen, S., Xu, J., Sezer, E. C., Gauriar, P. & Iyer, R. K. Non-control-data Attacks Are Realistic

Threats. In In USENIX Security Symposium, 177–192 (2005).

[64] HeartBleed. http://heartbleed.com/.

[65] Hu, H., Chua, Z. L., Adrian, S., Saxena, P. & Liang, Z. Automatic Generation of Data-

Oriented Exploits. In 24th USENIX Security Symposium (USENIX Security 15), 177–192

(USENIX Association, Washington, D.C., 2015).

[66] Apple Goto Fail. https://gotofail.com/.

120

https://github.com/0vercl0k/rp
http://dl.acm.org/citation.cfm?id=1925004.1925011
http://www.exploit-db.com/exploits/14221/
http://badishi.com/jit-spraying-primer-and-cve-2010-3654/
http://heartbleed.com/
https://gotofail.com/

[67] Castro, M., Costa, M. & Harris, T. Securing Software by Enforcing Data-flow Integrity. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI), 147–160 (2006).

[68] Nagarakatte, S., Zhao, J., Martin, M. M. K. & Zdancewic, S. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In PLDI, 245–258 (2009).

[69] Akritidis, P., Costa, M., Castro, M. & Hand, S. Baggy Bounds Checking: An Efficient and

Backwards-Compatible Defense against Out-of-Bounds Errors. In 18th Usenix Security Sym-

posium, 51–66 (2009).

[70] Nagarakatte, S., Zhao, J., Martin, M. M. & Zdancewic, S. CETS: Compiler En-

forced Temporal Safety for C. In Proceedings of the 2010 International Symposium on

Memory Management, ISMM ’10, 31–40 (ACM, New York, NY, USA, 2010). URL

http://doi.acm.org/10.1145/1806651.1806657.

[71] Serebryany, K., Bruening, D., Potapenko, A. & Vyukov, D. AddressSanitizer: A Fast Ad-

dress Sanity Checker. In Proceedings of the 2012 USENIX Conference on Annual Technical

Conference, USENIX ATC’12, 28–28 (USENIX Association, Berkeley, CA, USA, 2012). URL

http://dl.acm.org/citation.cfm?id=2342821.2342849.

[72] Backes, M. et al. You Can Run but You Can’T Read: Preventing Disclosure Exploits in

Executable Code. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’14, 1342–1353 (ACM, New York, NY, USA, 2014). URL

http://doi.acm.org/10.1145/2660267.2660378.

[73] Crane, S. et al. Readactor: Practical Code Randomization Resilient to Memory Disclosure. In

Security and Privacy (SP), 2015 IEEE Symposium on, 763–780 (2015).

[74] Crane, S. J. et al. It’s a TRaP: Table Randomization and Protection Against Function-

Reuse Attacks. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, 243–255 (ACM, New York, NY, USA, 2015). URL

http://doi.acm.org/10.1145/2810103.2813682.

[75] Tang, A., Sethumadhavan, S. & Stolfo, S. Heisenbyte: Thwarting Memory Disclosure At-

tacks Using Destructive Code Reads. In Proceedings of the 22Nd ACM SIGSAC Conference on

121

http://doi.acm.org/10.1145/1806651.1806657
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://doi.acm.org/10.1145/2660267.2660378
http://doi.acm.org/10.1145/2810103.2813682

Computer and Communications Security, CCS ’15, 256–267 (ACM, New York, NY, USA, 2015).

URL http://doi.acm.org/10.1145/2810103.2813685.

[76] Bigelow, D., Hobson, T., Rudd, R., Streilein, W. & Okhravi, H. Timely Rerandomization

for Mitigating Memory Disclosures. In Proceedings of the 22Nd ACM SIGSAC Conference on

Computer and Communications Security, CCS ’15, 268–279 (ACM, New York, NY, USA, 2015).

URL http://doi.acm.org/10.1145/2810103.2813691.

[77] Lu, K. et al. ASLR-Guard: Stopping Address Space Leakage for Code Reuse At-

tacks. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’15, 280–291 (ACM, New York, NY, USA, 2015). URL

http://doi.acm.org/10.1145/2810103.2813694.

[78] Klein, G. et al. seL4: Formal Verification of An OS Kernel. In ACM SIGOPS Symposium on

Operating Systems Principles (SOSP), 207–220 (2009).

[79] Schwartz, E. J., Avgerinos, T. & Brumley, D. Q: Exploit Hardening Made Easy. In Proceedings

of the 20th USENIX Conference on Security, SEC’11, 25–25 (USENIX Association, Berkeley, CA,

USA, 2011). URL http://dl.acm.org/citation.cfm?id=2028067.2028092.

[80] Prakash, A., Hu, X. & Yin, H. vfGuard: Strict Protection for Virtual Function Calls in COTS

C++ Binaries. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015,

San Diego, California, USA, February 8-11, 2014 (2015).

[81] Payer, M., Barresi, A. & Gross., T. R. Fine-Grained Control-Flow Integrity through Binary

Hardening. In Proceedings of the 12th Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA) (Milano, Italy, 2015).

[82] Arias, O. et al. HAFIX: Hardware-Assisted Flow Integrity Extension. In 52nd Design Automa-

tion Conference (DAC) (2015).

[83] Kuznetsov, V. et al. Code-Pointer Integrity. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 147–163 (2014).

122

http://doi.acm.org/10.1145/2810103.2813685
http://doi.acm.org/10.1145/2810103.2813691
http://doi.acm.org/10.1145/2810103.2813694
http://dl.acm.org/citation.cfm?id=2028067.2028092

[84] Erlingsson, Ú. & Schneider, F. SASI Enforcement of Security Policies: A Retrospective. In

Proceedings of the New Security Paradigms Workshop (NSPW), 87–95 (ACM Press, 1999).

[85] Erlingsson, Ú. & Schneider, F. IRM Enforcement of Java Stack Inspection. In IEEE Symposium

on Security and Privacy (S&P), 246–255 (2000).

[86] Wei, T., Wang, T., Duan, L. & Luo, J. INSeRT: Protect Dynamic Code Generation against

Spraying. In Information Science and Technology (ICIST), 2011 International Conference on, 323–

328 (2011).

[87] Chen, P., Wu, R. & Mao, B. JITSafe: A Framework against Just-In-Time Spraying Attacks.

Information Security, IET 7, 283–292 (2013).

[88] Wu, R., Chen, P., Mao, B. & Xie, L. RIM: A Method to Defend from JIT Spraying Attack. In

Availability, Reliability and Security (ARES), 2012 Seventh International Conference on, 143–148

(2012).

[89] Chen, P., Fang, Y., Mao, B. & Xie, L. JITDefender: A Defense against JIT Spraying Attacks. In

26th IFIP International Information Security Conference, vol. 354, 142–153 (2011).

[90] Herlihy, M. & Moss, J. E. B. Transactional Memory: Architectural Support for Lock-

free Data Structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture, ISCA ’93, 289–300 (ACM, New York, NY, USA, 1993). URL

http://doi.acm.org/10.1145/165123.165164.

[91] Shavit, N. & Touitou, D. Software Transactional Memory. In Proceedings of the fourteenth

annual ACM symposium on Principles of distributed computing, PODC ’95, 204–213 (1995).

[92] Harris, T. & Fraser, K. Language Support for Lightweight Transactions. In Proceedings of the

18th annual ACM SIGPLAN conference on Object-oriented programing, systems, languages, and

applications, OOPSLA ’03, 388–402 (ACM, New York, NY, USA, 2003).

[93] Herlihy, M., Luchangco, V., Moir, M. & Scherer, W. N., III. Software Transactional Memory

for Dynamic-sized Data Structures. In Proceedings of the Twenty-second Annual Symposium

123

http://doi.acm.org/10.1145/165123.165164

on Principles of Distributed Computing, PODC ’03, 92–101 (ACM, New York, NY, USA, 2003).

URL http://doi.acm.org/10.1145/872035.872048.

[94] Fraser, K. Practical Lock-Freedom. Ph.D. thesis, University of Cambridge (2003).

[95] Dice, D., Shalev, O. & Shavit, N. Transactional Locking II. In Proceedings of the 20th In-

ternational Conference on Distributed Computing, DISC’06, 194–208 (Springer-Verlag, Berlin,

Heidelberg, 2006). URL http://dx.doi.org/10.1007/11864219_14.

124

http://doi.acm.org/10.1145/872035.872048
http://dx.doi.org/10.1007/11864219_14

Vita

Ben Niu was born in Lishi, a small city in Shanxi province, China in June, 1988. His parents,

Siping Niu and Tuqin Qiao, are both civil engineers. He spent fourteen years in Lishi and finished

8th grade in No.1 Junior High School. Shortly, he moved to the city of Jinzhong and attended

Xinxing Senior High School, where he had three wonderful years of study. After graduation from

Xinxing, he enrolled at Zhejiang University in Hangzhou, a fabulous city in East China, majoring

in Software Engineering. There, he was fascinated by computer systems and security, which

later became his major research interests. In 2009, he graduated from Zhejiang University with

honors and enrolled in its graduate school. One year later, he dropped out and came to Lehigh

University in the U.S., pursuing a doctoral degree in the area of computer system security. He has

been a co-author of a few papers published at prestigious computer science venues such as ACM

PLDI and CCS. He has also been an external reviewer for several conferences. He was a software

engineering intern at FireEye in the summer of 2014 and a security software engineering intern at

Microsoft in summer 2015.

Publications

* Per-Input Control-Flow Integrity. Ben Niu and Gang Tan. At the twenty- second ACM Con-

ference on Computer and Communications Security (CCS), 2015

* RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity. Ben Niu and

Gang Tan. At the twenty-first ACM Conference on Computer and Communications Security

(CCS), 2014.

* Modular Control-Flow Integrity. Ben Niu and Gang Tan. At the thirty-fifth annual ACM

SIGPLAN conference on Programming Language Design and Implementation (PLDI), 2014.

* Monitor Integrity Protection with Space Efficiency and Separate Compilation. Ben Niu and Gang

Tan. At the twentieth ACM Conference on Computer and Communications Security (CCS), 2013.

* Efficient User-Space Information Flow Control. Ben Niu and Gang Tan. In the eighth ACM

Symposium on Information, Computer and Communication Security (AsiaCCS), 2013.

* Enforcing User-Space Privilege Separation with Declarative Architectures. Ben Niu and Gang Tan.

In the seventh ACM Workshop on Scalable Trusted Computing (STC), 2012.

125

	Lehigh University
	Lehigh Preserve
	2016

	Practical Control-Flow Integrity
	Ben Niu
	Recommended Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Control-Flow Hijacking
	Deployed Defenses
	Control-Flow Integrity
	Threat Model
	The Classic Implementation of CFI
	Granularity of CFI

	Practical Issues of Previous CFI
	Challenges to CFI Practicality
	Thesis Statement
	Contributions
	This Dissertation versus Previous Publications
	Outline

	Modular Control-Flow Integrity
	Overview
	Fine-grained CFG Generation
	Source-Level Semantics-based CFG Generation
	CFG Soundness
	CFG Precision Loss

	Modularity and Efficiency
	Design of IDs and ID Tables
	Memory Layout of MCFI and Protection of ID Tables
	CFG Check and Update Transactions

	Interoperability
	Implementation
	Evaluation
	CFG Statistics
	Performance Evaluation

	Future Work
	Summary

	Per-Input Control-Flow Integrity
	Overview
	Motivation for per-input CFGs
	From edge addition to address activation

	System Design
	Secure code patching
	Address activation
	Compatibility issues

	Implementation
	Evaluation
	ECFG Statistics
	Performance Evaluation

	Future Work
	Summary

	RockJIT
	Overview
	System Design
	Common JIT Architecture
	RockJIT Architecture
	RockJIT CFG Generation

	JITted Code Manipulation
	JITted Code Verification
	JITted Code Installation, Deletion, and Modification

	Modification to a JIT compiler
	Evaluation
	SCFG and ECFG Statistics
	Performance Overhead

	Future Work
	Summary

	Security Analysis
	Mitigation of Advanced Attack Forms
	Just-In-Time Code Reuse
	JIT Spraying
	Counterfeit Object-Oriented Programming
	Control-Flow Bending
	Control Jujutsu
	Sigreturn-Oriented Programming

	Comparison with Deployed Defenses
	Stack Cookie
	ASLR

	Limitations of CFI and Future Research

	Related Work
	Control-Flow Integrity
	Software-based Fault Isolation
	JIT Compiler Hardening
	Software Transactional Memory

	Conclusions
	Bibliography
	Vita

