
Observable Dynamic Compilation

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Yudi Zheng

under the supervision of

Prof. Walter Binder

May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/83636709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Nathaniel Nystrom Università della Svizzera Italiana, Switzerland

Prof. Thomas Gross ETH Zürich, Switzerland
Prof. Andreas Krall TU Wien, Austria

Dissertation accepted on 11 May 2017

Research Advisor PhD Program Director

Prof. Walter Binder Prof. Michael Bronstein

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been
submitted previously, in whole or in part, to qualify for any other academic
award; and the content of the thesis is the result of work which has been carried
out since the official commencement date of the approved research program.

Yudi Zheng
Lugano, 11 May 2017

ii

Abstract

Managed language platforms such as the Java Virtual Machine rely on a dy-
namic compiler to achieve high performance. Despite the benefits that dynamic
compilation provides, it also introduces some challenges to program profiling.

Firstly, profilers based on bytecode instrumentation may yield wrong results
in the presence of an optimizing dynamic compiler, either due to not being
aware of optimizations, or because the inserted instrumentation code disrupts
such optimizations. To avoid such perturbations, we present a technique to make
profilers based on bytecode instrumentation aware of the optimizations performed
by the dynamic compiler, and make the dynamic compiler aware of the inserted
code.

We implement our technique for separating inserted instrumentation code
from base-program code in Oracle’s Graal compiler, integrating our extension
into the OpenJDK Graal project. We demonstrate its significance with concrete
profilers. On the one hand, we improve accuracy of existing profiling techniques,
for example, to quantify the impact of escape analysis on bytecode-level allocation
profiling, to analyze object life-times, and to evaluate the impact of method
inlining when profiling method invocations. On the other hand, we also illustrate
how our technique enables new kinds of profilers, such as a profiler for non-inlined
callsites, and a testing framework for locating performance bugs in dynamic
compiler implementations.

Secondly, the lack of profiling support at the intermediate representation (IR)
level complicates the understanding of program behavior in the compiled code.
This issue cannot be addressed by bytecode instrumentation because it cannot
precisely capture the occurrence of IR-level operations. Binary instrumentation
is not suited either, as it lacks a mapping from the collected low-level metrics to
higher-level operations of the observed program. To fill this gap, we present an
easy-to-use event-based framework for profiling operations at the IR level.

We integrate the IR profiling framework in the Graal compiler, together with
our instrumentation-separation technique. We illustrate our approach with a
profiler that tracks the execution of memory barriers within compiled code. In

iii

iv

addition, using a deoptimization profiler based on our IR profiling framework,
we conduct an empirical study on deoptimization in the Graal compiler. We
focus on situations which cause program execution to switch from machine code
to the interpreter, and compare application performance using three different
deoptimization strategies which influence the amount of extra compilation work
done by Graal. Using an adaptive deoptimization strategy, we manage to improve
the average start-up performance of benchmarks from the DaCapo, ScalaBench,
and Octane suites by avoiding wasted compilation work. We also find that different
deoptimization strategies have little impact on steady-state performance.

Contents

Contents iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Accurate Profiling with Bytecode Instrumentation 3
1.2.2 Profiling at the IR Level . 4

1.3 Dissertation Outline . 5
1.4 Publications . 6

2 State of the Art 7
2.1 Dynamic Compilation and Deoptimization 7
2.2 Intermediate Code Representations 9
2.3 Instrumentation . 9
2.4 Profiling Techniques . 10
2.5 Profile Accuracy and Usefulness . 13

3 Accurate Bytecode Profiling 17
3.1 Motivation . 17
3.2 Approach . 18

3.2.1 Running Example . 19
3.2.2 Algorithm Overview . 20
3.2.3 Extracting ICGs . 21
3.2.4 Reconciling Operations on ICGs 24
3.2.5 Querying Compiler Decisions 28
3.2.6 Splicing ICGs . 29

3.3 Improving Existing Tools . 31
3.3.1 Impact on Allocation Profiling 31
3.3.2 Impact on Object Lifetime Analysis 34
3.3.3 Impact on Callsite Profiling 38

v

vi Contents

3.4 Enabling New Tools . 40
3.4.1 Identifying Inlining Opportunities 41
3.4.2 Calling-context Aware Receiver-type Profiler 42
3.4.3 Compiler Testing Framework 44

3.5 Discussion . 47
3.6 Summary . 50

4 Intermediate-Representation Profiling 51
4.1 Motivation . 51
4.2 Framework Design . 52
4.3 Approach . 54

4.3.1 Programming Model . 54
4.3.2 Implementation . 57
4.3.3 Architecture . 59
4.3.4 Optimizations on the Inserted Code 59

4.4 Evaluation . 60
4.5 Discussion . 63
4.6 Summary . 65

5 Empirical Study on Deoptimization 67
5.1 Motivation . 67
5.2 Background . 69

5.2.1 Speculation and Deoptimization 69
5.2.2 Deoptimization in the Graal Compiler 71

5.3 Study of Deoptimization Behavior . 74
5.3.1 Profiling Deoptimizations . 74
5.3.2 Investigating Repeated Deoptimizations 84

5.4 Alternative Deoptimization Strategies 89
5.4.1 Conservative Deoptimization Strategy 90
5.4.2 Adaptive Deoptimization Strategy 91

5.5 Performance Evaluation . 92
5.5.1 DaCapo and ScalaBench Evaluation 93
5.5.2 Octane on Graal.js Evaluation 100
5.5.3 On the Scale of Performance Changes 101

5.6 Discussion . 104
5.7 Summary . 104

vii Contents

6 Conclusion 107
6.1 Summary of Contributions . 108
6.2 Future Work . 109

Bibliography 111

viii Contents

Chapter 1

Introduction

In this chapter, we motivate the need for accurately observable dynamic compi-
lation (Section 1.1) and give an overview of the contributions of this disserta-
tion (Section 1.2). We also give an outline of the dissertation (Section 1.3) and
list the underlying publications (Section 1.4).

1.1 Motivation

Many programming languages are implemented on top of a managed runtime
system, such as the Java Virtual Machine (JVM) or the .NET CLR, featuring an
optimizing dynamic (just-in-time) compiler. Programs written in those languages
are first interpreted (or compiled by a baseline compiler), whereas frequently
executed methods are later compiled by the dynamic optimizing compiler. State-of-
the-art dynamic compilers, such as the optimizing compiler in the Jikes RVM [18,
4] or Graal [77], apply online feedback-directed optimizations [91, 7] to the
program according to profiling information gathered during program execution.

Although such a profile may not properly characterize the program behavior in
the subsequent execution phase, modern dynamic compilers aggressively optimize
hot methods by making assumptions on the future program behavior based on
the behavior observed so far. In the case where such assumptions turn out to
be wrong, the managed runtime system is forced to de-optimize, i.e., to fall
back to interpretation (or to code produced by a baseline compiler, respectively).
Subsequently, the method may get optimized and compiled again, based on
updated profiling information. In long-running programs, most execution time is
typically spent in highly optimized compiled code.

Common optimizations performed by dynamic compilers include method
inlining [5] and stack allocation of objects based on (partial) escape analysis [22,

1

2 1.1 Motivation

93], amongst others. Such optimizations result in compiled machine code that
does not perform certain operations present at the bytecode level. In the case of
inlining, method invocations are removed. In the case of stack allocation, heap
allocations are removed and pressure on the garbage collector is reduced.

Many profiling tools are implemented using bytecode instrumentation tech-
niques, inserting profiling code into programs at the bytecode level. However,
because dynamic compilation is transparent to the instrumented program, a
profiler based on bytecode instrumentation is not aware of the optimizations
performed by the dynamic compiler. Prevailing profilers based on bytecode instru-
mentation suffer from three serious limitations: (1) over-profiling of code that is
optimized (and in the extreme case completely removed) by the dynamic compiler,
(2) perturbation of the compiler optimizations due to the inserted instrumentation
code, and (3) inability to exactly profile low-level events at the dynamic compiler’s
intermediate representation (IR) level, such as e.g. deoptimization actions or the
execution of memory barriers.

Binary instrumentation is also often adopted in developing profiling tools.
One of the challenges to applying binary instrumentation techniques on man-
aged runtime systems is how to identify dynamically compiled code. Prevailing
solutions to this problem are twofold. Tools such as DynamoRIO [16] mark the
executable memory pages non-writable and intercept any write to these pages.
When deploying compiled code, the managed runtime system attempts to modify
these pages and thus triggers a previously registered instrumentation callback.
The drawback of such a solution is that it lacks the metadata of the compiled
code, which is essential for constructing calling-context information. Alternatively,
tools such as Pin [67] require a callback within the managed runtime system to
intercept the deployment of generated machine code. In both cases, it is diffi-
cult to map low-level events (e.g., memory access) to higher-level events (e.g.,
field access of a particular type) because of information loss. Consequently, the
collected profile is often not actionable at the source-code level.

These problems of profiling in the presence of dynamic compilation can be
tackled in two ways. On the one hand, to address the aforementioned limitations
with over-profiling and perturbation of optimizations in bytecode instrumentation,
the dynamic compiler is expected to distinguish between the base-program code
and the inserted instrumentation code. The base-program code is compiled in
the usual fashion, undergoing the same optimizations as if the inserted code was
not there, while the inserted code is adjusted to preserve its purpose with respect
to the optimized base-program code.

On the other hand, the gap between bytecode instrumentation and binary
instrumentation can be filled by employing instrumentation at the IR level, hence-

3 1.2 Contributions

forth called IR instrumentation. For instance, reasoning about deoptimization
behavior in a managed runtime system is impossible via bytecode instrumen-
tation and extremely tedious via binary instrumentation. But it can be easily
achieved using IR instrumentation, because a deoptimization action appears as
a single IR unit during compilation. Yet, the following challenges need to be
addressed: (1) the infrastructure shall maintain a mapping from an IR unit to its
originating bytecode; (2) unlike bytecode or machine code, each IR unit has a life
cycle, which covers only part of the compilation passes employed by the compiler;
(3) the inserted instrumentation code (and its callees) shall not trigger any IR
instrumenation (i.e., an IR instrumentation shall only apply to the base-program
code); (4) because an IR instrumentation may greatly inflate the emitted machine
code, optimizations are needed to improve efficiency and compactness of the
inserted code.

1.2 Contributions

In this dissertation, we make two major contributions to profiling in the presence
of dynamic compilation: (i) accurate profiling with bytecode instrumentation;
(ii) profiling at the IR level.

1.2.1 Accurate Profiling with Bytecode Instrumentation

We define a delimitation API to enable explicit marking of the inserted code
such that the dynamic compiler can distinguish between the base-program code
and the inserted code. The base-program code is compiled in the usual fashion,
undergoing the same optimizations as if the inserted code was not there, while
the inserted code is adjusted to preserve its purpose with respect to the optimized
base-program code.

We present a solution for a method-based dynamic compiler using a graph-
based IR. The dynamic compiler analyzes the IR and identifies the boundaries
between the base-program code and the inserted code. We unlink the inserted-
code sub-graphs (ICGs) from the IR and keep them separately as IR annotations
referencing the base-program nodes that either precede or follow the ICGs in
the control-flow graph. We let the dynamic compiler process the IR containing
only the base-program code. For each IR node operation, we perform a recon-
ciling operation on the corresponding ICG to preserve its semantics throughout
the transformations performed by the compiler. Towards the end of dynamic
compilation, the ICGs are spliced back into the base-program IR.

4 1.2 Contributions

We allow the inserted code to query (and adapt to) the dynamic compiler’s
decisions. The queries are represented as invocations of special methods that
are recognized and handled by the compiler similarly to intrinsics. We call these
special methods query intrinsics, and whereas normal compiler intrinsics expand
to a sequence of machine instructions, query intrinsics expand to an IR sub-graph
with one or more IR nodes. When the compiler encounters a query-intrinsic
invocation node (when the ICGs are spliced back into the base-program IR),
it executes a corresponding handler function, providing it with the invocation
context of the intrinsic. The handler returns an IR sub-graph, which replaces the
IR node representing the intrinsic invocation.

We implement the proposed approach in Oracle’s Graal compiler [77], and
integrate our extension into the corresponding OpenJDK project, such that profiler
developers in industry and academia directly benefit from our work. We apply
the approach in different scenarios. We present a profiler to explore the impact of
(partial) escape analysis and stack allocation on heap usage and object lifetime,
demonstrating that our approach helps improve the accuracy of existing bytecode
instrumentation-based tools. We present a profiler to study the impact of method
inlining considering varying levels of calling context, demonstrating that our
approach enables new tools that can help further improve the optimizations
performed by dynamic compilers. We also introduce a new framework for testing
the results of dynamic compiler optimizations at runtime. Our framework has
already helped the developers of Graal to locate and fix performance bugs in their
compiler.

1.2.2 Profiling at the IR Level

We present an easy-to-use event-based framework for profiling of IR-level opera-
tions. Our framework provides an abstraction for each kind of IR node, namely
IR event. We allow the developer to subscribe to an IR event by registering an IR
callback method. For each IR node of interest, our framework instantiates the
corresponding IR event along with the IR callback method and performs several
optimizations of the inserted code. We explain our IR profiling framework using
a memory-barrier profiler as running example.

We also implement a deoptimization profiler based on IR profiling. We char-
acterize the deoptimization causes in the code produced by Graal for various
benchmark suites using different programming languages. We find that only a
small fraction of deoptimization sites is triggered (∼2%), and most cause reprofil-
ing (∼98%). Based on the findings, we implement a conservative deoptimization
strategy for the Graal compiler that defers the invalidation of the compiled code

5 1.3 Dissertation Outline

until enough deoptimizations are observed, and an adaptive deoptimization strat-
egy which switches among various deoptimization actions according to a precise
deoptimization profile. We evaluate the performance of both deoptimization
strategies and compare them to the default strategy used by Graal. The result
shows that the conservative strategy, which is based on the inaccurate deopti-
mization profile collected by the HotSpot VM, may cause extra compilation work
due to a first recompilation without reprofiling and a (potential) subsequent
recompilation after reprofiling. On the other hand, the adaptive strategy, which
relies on a more accurate deoptimization profile, provides benefits for both static
and dynamic programming languages.

1.3 Dissertation Outline

This dissertation is structured as follows:

• Chapter 2 discusses the state of the art in the areas of dynamic compila-
tion, deoptimization, intermediate code representation, instrumentation,
profiling techniques, as well as profile accuracy and usefulness.

• Chapter 3 introduces our approach to make inserted profiling code explicit
to the dynamic compiler. Our approach also allows the inserted code
to query runtime path decisions in the optimized compiled code. The
new technique enables the collection of accurate profiles that faithfully
represent the execution of a base program without profiling (w.r.t. the
applied optimizations).

• Chapter 4 introduces an event-based framework for profiling IR-level oper-
ations. Our approach also enables the composition of IR-level profiling and
bytecode-level profiling.

• Chapter 5 presents an empirical study of the deoptimization behavior in
benchmarks executing on a VM using Graal. The chapter also presents two
alternative deoptimization strategies and performance evaluation results,
comparing the two strategies with Graal’s default deoptimization strategy.

• Chapter 6 concludes the dissertation and outlines future research directions
inspired by this work.

6 1.4 Publications

1.4 Publications

This dissertation is based on the following papers. The work on accurate bytecode
profiling (Chapter 3) has been published at OOPSLA ’15:

• Y. Zheng, L. Bulej, and W. Binder. Accurate Profiling in the Presence
of Dynamic Compilation. 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA-2015), Pittsburgh, PA, USA, October 2015. ACM Press, ISBN
978-1-4503-3689-5, pp. 433–450. Distinguished paper award; paper with
artifact.

The empirical study on deoptimization (Chapter 5) has been accepted at
ECOOP ’17:

• Y. Zheng, L. Bulej, and W. Binder. An Empirical Study on Deoptimization
in the Graal Compiler. 31st European Conference on Object-Oriented Pro-
gramming (ECOOP 2017), Barcelona, Spain, June 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

Chapter 2

State of the Art

In this chapter we discuss the the state of the art in the areas of dynamic compi-
lation and deoptimization (Section 2.1), intermediate code representation (Sec-
tion 2.2), instrumentation (Section 2.3), profiling techniques (Section 2.4), as
well as profile accuracy and usefulness (Section 2.5).

2.1 Dynamic Compilation and Deoptimization

Dynamic compilation is adopted in many programming-language implementa-
tions [3]. In comparison with static compilation, it has two major advantages.
First, dynamic compilation allows for a platform-independent code representation
(e.g., Java bytecode). Second, in some cases, the code generated by a dynamic
compiler may outperform statically compiled code, because the dynamic compiler
can optimize aggressively by making certain assumptions on the future program
behavior based on profiling information collected in the preceding execution. In
the unfortunate case where such assumptions fail, the managed runtime system
switches back to executing unoptimized code; this is called de-optimization [47].
Subsequently, the code may get optimized and compiled again.

Optimizing dynamic compilers perform online feedback-directed optimiza-
tions [7], such as profile-directed inlining of virtual call sites [4, 7, 25, 43, 48].
Self [48] introduces type feedback, which requires the managed runtime system to
profile the receiver type of virtual call sites. The collected receiver-type profile is
later applied in the dynamic compiler to perform guarded inlining. While inlining
such a call site, the dynamic compiler may either preserve the expensive dynamic
dispatch for the minority of receiver types, or inline all possible call targets with
the assumption that the profiled receiver types cover all potential use scenarios.
If an unexpected receiver type is encountered at runtime, the compiled code is

7

8 2.1 Dynamic Compilation and Deoptimization

de-optimized and will be profiled again for receiver types.
Dynamic deoptimization as a way to transfer execution from compiled code

to the interpreted code was introducted in the Self system to facilitate full source-
level debugging of optimized code [47]. Self also introduced techniques such
as on-stack replacement, which since then have been adopted and improved by
others [82, 33, 58, 52].

In general, deoptimization switches to a less optimized execution mode, i.e.,
interpreted execution, or execution of machine code generated by a baseline
compiler. In Self, deoptimization was primarily used to defer compilation and
to execute uncommon code in the interpreter. In the HotSpot VM, especially
with Graal enabled, deoptimization represents a key recovery mechanism for
speculative optimizations.

Being more interested in the use of deoptimization in the implementation
of speculative optimizations, we trace their origins to partial and deferred com-
pilation in Self [20]. To reduce compilation time, program code that was pre-
dicted to execute infrequently was compiled only as a stub which invoked the
compiler when a particular code path was first executed, thus deferring the com-
pilation of uncommon code paths until they were actually needed. Many of the
techniques found in Self, such as adaptive compilation, dynamic deoptimiza-
tion, and speculative optimizations using deoptimization, were later adopted by
Java [82, 58]. Further improvements to the HotSpot VM target selective compi-
lation [59, 19, 60, 61], phase-based recompilation [40], and feedback-directed
optimization [101, 7, 110, 94]. Google’s V8 JavaScript engine also contains an
optimizing compiler that heavily employs speculative optimizations based on the
profiled type information [38]. Unlike HotSpot VM, when an assumption in the
optimized code fails, V8 bails out into the code generated by a base compiler
instead of the interpreter.

Despite the role of deoptimization in the implementation of speculative op-
timizations, we are not aware of any study that characterizes the actual deopti-
mization behavior of programs compiled by a speculating dynamic compiler, and
the impact of the deoptimizations on the compiled code. This does not mean that
deoptimization does not receive any attention. In recent work [102], Wimmer et
al. present a VM implementation technique that allows a deoptimization triggered
in aggressively optimized code to resume execution in (deoptimized) machine
code generated by the same compiler at a different optimization level. In contrast
to an interpreter or baseline compiler, both of which rely on a fixed stack-frame
layout, using a single compiler allows using an optimized stack layout for both
the optimized and deoptimized code. This approach helps reduce the complexity
of a VM implementation, because neither an interpreter nor a baseline compiler

9 2.2 Intermediate Code Representations

are needed.

2.2 Intermediate Code Representations

Intermediate representations (IRs) are used by many modern compilers, as IR
graphs are well suited for implementing compiler optimizations via graph transfor-
mations, before emitting machine code [3]. In a dynamic compiler, different levels
of IR may be applied for different kinds of optimizations. For instance, Jikes RVM’s
optimizing compiler uses a high-level IR, a low-level IR, and a machine-specific IR,
for performing general optimizations, managed runtime-specific optimizations,
and machine-specific optimizations, respectively.

Additional forms of IR are used for speeding up local and global compiler
optimizations. For instance, the Program Dependence Graph (PDG) combines both
control-flow and data dependencies to express the program semantics [32], and is
extended by introducing nodes that are not necessarily fixed at a specific position
in the control flow [23]. The dynamic compiler must ensure a valid schedule for
the IR graph (i.e., a serialization of the graph). The IR graph must not contain
any data dependency edge where the to node is not reachable from the from
node. To represent φ-functions, Click et al. introduce a new node type that has
multiple input data values and outputs a single selected data value according to
the control-flow edge, namely Phi node [23].

2.3 Instrumentation

Instrumentation is commonly used to observe the runtime behavior of a program.
In a managed runtime system that applies feedback-directed optimization, the
dynamic compiler may automatically instrument the compiled code, in order to
collect profiling information for subsequent optimization; e.g., Jikes RVM features
such an optimization system [4]. Moreover, instrumentation is widely used for
implementing dynamic analyses such as for tracing, debugging, or profiling.
Typically, the inserted instrumentation code emits some events, which may be
simply dumped or consumed by an analysis at runtime.

Instrumentations for dynamic program analysis typically target either a pre-
compilation program representation (i.e., source code or bytecode) or the post-
compilation program representation (i.e., machine code).

Regarding bytecode instrumentations, libraries such as ASM [17], BCEL [24],
and Javassist [21] provide APIs for manipulating Java class files. Additionally,

10 2.4 Profiling Techniques

Javassist offers a source code-level API that enables program manipulation without
any knowledge of the details of Java bytecode. Soot [99] supports multiple
intermediate code representations for analyzing and instrumenting Java source
files or class files. WALA [50] integrates various static analyses, which can be
employed in their bytecode instrumentation library Shrike and dynamic load-time
instrumentation library Dila. RoadRunner [35] and Chord [75] encapsulate Java
bytecode instrumentation into events, and allow composition of analyses that
intercept these events. AspectJ [54] enables aspect-oriented programming in
Java, which can be used for instrumenting Java programs. DiSL [70] is a domain-
specific aspect language dedicated to bytecode instrumentation. ShadowVM [69]
is an extension of DiSL that enables asynchronous analysis in a separate process.

Concerning binary instrumentation, DynamoRIO [16] is a dynamic code ma-
nipulation system that performs binary code transformation while a program
is executing. Pin [67] provides a high-level, call-based instrumentation API for
intercepting both architecture-independent and architecture-specific events. Val-
grind [76] offers built-in shadow value support for constructing heavyweight
binary analysis tools.

However, prevailing tools relying of bytecode or binary instrumentation suffer
from several limitations. On the one hand, instrumenting the pre-compilation
program representation often impairs accuracy of an analysis [53]. On the other
hand, instrumenting the post-compilation representation makes it difficult to
map low-level events (e.g., memory access) to higher-level events at the level of
the used programming language (e.g., field access on an instance of a particular
type). One possible solution is to perform instrumentation directly within the
dynamic compiler. For instance, Jikes RVM’s optimizing compiler allows for the
integration of additional compiler phases dedicated to specific instrumentation
tasks [8]. The drawback of such a solution is that it requires deep knowledge of the
dynamic compiler’s implementation and of the IRs it uses. Furthermore, inserted
instrumentation code may still perturb the subsequent compilation phases.

2.4 Profiling Techniques

The importance of contextual information in profiles has been explored since the
early 80’s. Graham et al. extend the UNIX command prof that collects elapsed time
per method to the complete call graph [39]. Thanks to the contextual information,
they implement the tool gprof that enables the propagation of method execution
times across call sites. Pettis and Hansen present an application of gprof, but
slightly change its approach by replacing recompilation with a modified linker for

11 2.4 Profiling Techniques

inserting profiling code [83]. They use the profile to drive the code positioning
of the methods and the basic blocks, and to guide the code splitting according
to hotness of the code snippets. Both techniques benefit from the locality of
reference and help reduce the cache miss rate. As the call graph maintains only
one level of calling context, Ammons et al. introduce the Calling Context Tree
(CCT), which captures multiple levels of calling contexts and does not suffer from
the memory overhead of a complete dynamic call tree [1].

For reducing the runtime overhead of instrumentation-based profiling, a pro-
filer may periodically sample instead of collecting data continuously. Whaley
presents the Partial Calling Context Tree (PCCT) that supports the storage of in-
complete calling context information [100]. The PCCT approach applies periodic
sampling and incomplete stack traversals, and the author’s evaluation confirms
reduced runtime overhead. In order to recognize the visited stack frames, the
PCCT approach marks a bit in the return address, which requires support from the
platform for parsing the return address correctly. Arnold and Sweeney propose
a platform-independent implementation named Approximating Calling Context
Tree (ACCT). ACCT replaces the return address in every stack frame with the
address of a profiling method named trampoline [9]. After collecting the profile,
the trampoline transfers the control back to the caller. Froyd et al. optimize ACCT
by inserting the trampoline only to the very top stack frame and shifting it on
return [36]. Zhuang et al. apply bursty sampling on ACCT [111]. Their approach
predicts the method calls/returns during a burst using a history-based predictor,
and applies the prediction to disable redundant bursts. In order to reduce the
number of mis-predictions, their approach re-enables a small portion of bursts by
an adaptive re-enable ratio.

A more general framework for applying counter-based sampling on instrumen-
tation is introduced by Arnold and Ryder [8]. This framework inserts checks that
decrease a global counter and branch to the duplicated instrumented code when
the counter reaches a given threshold. The checks are placed on method entries
and on loop back edges, such that between checks the program never executes an
unbounded number of instructions. To distribute the checks, ensuring an upper
bound of executed instructions between two subsequent checks, one can apply
Feeley’s balanced polling strategy [31]. This strategy will insert checks at arbitrary
positions. However, as a modern compiler often inserts thread yield points on
method entries and on loop back edges, adding checks at these locations will
not significantly perturb the performance of the program. Hirzel and Chilimbi
extend this framework to allow collecting samples in bursts before switching
back to uninstrumented code [45]. Since the bursty sampling technique can span
procedure boundaries, profilers using that technique can collect more accurate

12 2.4 Profiling Techniques

profiles. Arnold and Grove follow the idea of bursty sampling, but they use a timer
as the triggering mechanism [6]. Their approach also introduces the sampling
stride, which results in skipping several sampling points before actually taking
every sample. Moret et al. introduce Polymorphic Bytecode Instrumentation (PBI),
allowing dynamic dispatch amongst multiple versions of method bodies [72].
Depending on the code version computed upon method entry, the control will
be passed to the corresponding method body. The aforementioned sampling
frameworks could be implemented using PBI with an extension that supports
branching to different code version at arbitrary locations.

Path profiling heavily involves static analyses to reduce runtime overhead.
Ball and Larus present an efficient path profiling approach that assigns each
path a dedicated number for indexing a counter array, and apply the maximum
spanning tree algorithm to identify the instrumentation locations [10]. Since the
algorithm only works on graphs without cycles, the authors truncate the back
edges and divide a single trace into several paths. Bond and McKinley extend this
approach by applying a simplified Arnold-Grove bursty sampling [15]. Instead
of sampling with a stride, their approach only skips the first sampling points and
continuously takes a certain number of samples. In addition, the authors propose
a smart numbering algorithm, whose goal is to reduce the runtime calculation of
the dedicated number for hot paths. They also conduct a profile-guided profiling
approach, which applies the profile to determine a hot path, and relocates the
instrumented code.

Profiling of languages hosted on managed runtime systems has been well stud-
ied. Sweeney et al. modify the Jikes RVM to generate traces of hardware events
for Java programs [95]. Hauswirth et al. extend this work by combining software
performance monitors at the application, virtual machine, and operating system
levels [42]. Their extension enables the reasoning of whole-system performance
of programs executed in a virtual machine.

In recent years, concrete profiling tools are implemented via modifying the
dynamic compiler of a runtime system. Xu et al. propose approaches to detect
high-overhead copy activities [107] and low-utility data structures [108] by mod-
ifying the dynamic compiler of IBM’s commercial J9 VM [49]. Yan et al. propose
a profiling technique to track the propagation of object references [109]. Xu
et al. present a tool for finding allocation sites that create reusable data struc-
tures [105], and a tunable technique to profile object lifetime [106]. Fang et
al. present an approach to amplify memory-related performance problems [30].
All these tools are based on modifications to the dynamic compilers of the Jikes
RVM.

13 2.5 Profile Accuracy and Usefulness

2.5 Profile Accuracy and Usefulness

To measure the usefulness of a profiler, researchers discuss about the benefit
gained by using the profile. Pettis and Hansen evaluate the impact of code
positioning on performance, and the reduction of executed branches [83]. Ball
and Larus evaluate path profiling on executed path lengths [10]. Ammons et
al. evaluate CCT profiling by applying it to measure the cache misses on paths
and procedures [1] in the SPEC95 suite [92].

To measure the accuracy of a profiler, the methodology differs depending on
the profiling technique. In the context of sampling profiling, researchers naturally
compare the result with the full profile (or perfect profile, exact profile) that is
collected by an instrumentation-based profiler [8, 45, 6, 111, 15, 73, 64, 103].
For instance, Arnold and Ryder evaluate the accuracy of an edge profiler using
the overlap percentage that accumulates the minimum of the normalized edge
counters in the sampling profile and the full profile [8]. These approaches assume
that metrics collected by an instrumentation-based profiler are stable across runs
such that they can serve as references for the sampling profiles.

In the context of timing profiling, researchers propose different measurement
methods on accuracy, because the instrumentation greatly disrupts the timing pro-
file and hence the full profile cannot serve as the baseline. Whaley evaluates PCCT
profiling by measuring the correlation between profiles collected in successive
runs [100]. Froyd et al. compare the profile result with a low-overhead sampling
profiler, assuming that the low-overhead profiler generates a closer match to the
actual program behavior [36]. Mytkowicz et al. observe that commonly used
Java sampling profilers often disagree with each other, and cannot attribute the
increased execution time to the inserted code in their causality analysis [74].
Therefore, they propose the concept of actionable profile, meaning that applying
the profile yields the expected output, such as blaming the inserted code in the
causality analysis, or speeding up real-world applications.

Unlike Mytkowicz’s concern about feasibility of measuring profile accuracy,
research on the relationship between profile accuracy and profile usefulness
questions the correlation between them. Duesterwald and Bala deny the positive
correlation between the percentage of profiled flows and the possible performance
improvement gained by hot path prediction [29]. Compared to traditional path
profiling, they aggressively assume that the Next Executing Tail (NET) is a hot
path. Their evaluation results confirm that earlier path prediction based on an
inaccurate profile may lead to better performance. Langdale and Gross calculate
normalized cycle counts as usefulness metric and several accuracy metrics on
the basic-block count profiles across runs [62]. They apply the Spearman Rank

14 2.5 Profile Accuracy and Usefulness

Correlation Coefficient to measure the correlation between profile accuracy metrics
and profile usefulness metric, and the result shows non-significant correlation.
Wu et al. conduct a similar study on the correlation between the sampling rate
and the feedback-driven program optimization benefits [103]. They analyze the
failure and attribute the problem to zero-count errors and inconsistency errors
that generally exist in sampling profiling. By statistically rectificating these errors
in a profile using a full profile for training, the authors increase the usefulness of
the sampled profiles. The above studies quantify the correlation between profile
accuracy and the profile usefulness in different aspects.

Apart from Wu’s work, Levin et al. propose an approach for fixing the sampling
profile off-line [64]. This approach adjusts the edge profile to respect a generalized
flow conservation rule that the net flow to a vertex is zero, except for the sources
and the sinks. After the adjustment, the sampling edge profile better overlaps
the full profile. Regarding online fix for sampling profilers, many approaches
introduce randomness on the sampling period such that the correlation between
sampling points and the executed code is reduced. Anderson et al. introduce a
randomized interrupt period by writing a pseudo-random value into a dedicated
performance counter [2]. Binder applies the same idea on Java counter-based
sampling profiling, and confirms an increased accuracy [11]. Arnold and Grove
skip a random number of sampling points in their bursty sampling framework,
to ensure an equal chance on each sampling point [6]. Tian et al. propose
randomized inspection-instrumentation to maximize coverage across multiple
runs [98]. Mytkowicz et al. blame the bias in existing Java profilers that take
samples only at thread yield points, and suggest using standard UNIX signals to
pause the application and take samples [74].

Dmitriev proposes JFluid for addressing the huge-overhead problem in an
instrumentation-based profiler [27]. This approach modifies the JVM to support
dynamic bytecode instrumentation, which enables the injecting and removing of
instrumentations on-the-fly. The overhead of an instrumentation-based profiler is
reduced by allowing a selective profiling at runtime. Hofer et al. propose partial
safepoints and incremental stack tracing for improving the performance of CCT
construction in a sampling-based profiler [46]. Compared to a sampling profiler
implemented using the Java Virtual Machine Tool Interface (JVMTI) [79], their
techniques significantly reduce the overhead without affecting the accuracy of
the profiles.

Tian et al. use the optimization level in Jikes RVM [18] for evaluating profile
accuracy [98]. They propose a continuous learning framework that applies cross-
run profiles stored in a database to guide the dynamic program optimizations.
Instead of recompiling methods at a higher optimization level as the original

15 2.5 Profile Accuracy and Usefulness

solution in the Jikes RVM, their framework directly predicts the optimization
level and compiles the method. The accuracy is measured by comparing the
optimization level prediction and the actual final decision dumped upon program
exit.

16 2.5 Profile Accuracy and Usefulness

Chapter 3

Accurate Bytecode Profiling

In this chapter, we present our approach to make inserted profiling code explicit to
the dynamic compiler. We start with the motivation of this technique in Section 3.1.
In Section 3.2 we present our approach in detail. Section 3.3 and Section 3.4
demonstrate the applicability and benefits of our approach in diverse scenarios.
An assessment of the strengths and limitations of our approach can be found
in Section 3.5.

3.1 Motivation

Many profiling tools are implemented using bytecode instrumentation techniques.
However, profiles produced by these tools are often misleading [74, 53]. On the
one hand, the dynamic compiler is not aware of the bytecode instrumentation. It
will optimize the instrumented methods; it may (re)move instructions that are
being profiled, but it will not (re)move the associated profiling code. Hence, the
profile will not exactly correspond to the execution of the optimized program. In
the case of a method invocation profiler, the profile may include spurious method
invocations. In the case of an object allocation profiler, the profile may show more
heap allocations than took place.

On the other hand, code instrumented by a profiler may affect the optimization
decisions of the dynamic compiler, i.e., the presence of profiling makes the profiled
program behave differently. For example, the increased size of an instrumented
method may prevent its inlining into callers, because method body sizes are used
in typical method inlining heuristics. As another example, passing the reference of
an application object to the profiling logic makes the object escape and therefore
forces heap allocation of the object, independently of whether the object escapes
in the original method or not. In general, when profiling a program, the observer

17

18 3.2 Approach

effect [74], i.e., perturbations of low-level dynamic metrics (such as hardware
or operating system performance counters), cannot be avoided. However, it is
possible to avoid perturbations of dynamic optimizations by making the dynamic
compiler aware of the inserted profiling code.

This problem of inaccurate profile has been witnessed by many researchers;
for example, tools for object lifetime analysis [44, 84] and for modeling garbage
collection behavior based on program traces [66] suffer from significant inaccura-
cies because they fail to capture the impact of escape analysis and stack allocation.
Moreover, using bytecode instrumentation, it is generally impossible to profile
the effectiveness of dynamic compiler optimizations.

We introduce a technique to make profilers implemented with bytecode in-
strumentation techniques aware of the optimization decisions of the dynamic
compiler, and to make the dynamic compiler aware of inserted profiling code. Our
technique enables profilers which collect dynamic metrics that (1) correspond to
an execution of the base program without profiling (w.r.t. the applied compiler
optimizations), and (2) properly reflect the impact of dynamic compiler optimiza-
tions. We implement our technique in Oracle’s Graal compiler [77] and provide a
set of query intrinsics for retrieving the optimization decisions within inserted
profiling code.

3.2 Approach

The aforementioned problems with over-profiling and perturbation of optimiza-
tions are due to the inability of the dynamic compiler to distinguish between
the inserted profiling/analysis code and the base program code, and due to the
inability of the inserted code to adapt to the optimizations performed by the
dynamic compiler.

The key idea of our approach is therefore to make the compiler aware of the
two kinds of code, and treat them differently. For the base program code, the goal
is to let the dynamic compiler process it in the usual fashion, making optimization
decisions and performing optimizations as if the inserted code was not there. For
the inserted code, the goal is to preserve its purpose and semantics by adapting it
in response to the optimizations performed by the dynamic compiler on the base
program code.

In this section we present our approach in detail. We start with an example
illustrating how instrumentation perturbs an allocation optimization (Subsec-
tion 3.2.1), followed by a high-level overview of our approach (Subsection 3.2.2).
It comprises several steps which we then present in detail (subsections 3.2.3–

19 3.2 Approach

A a := new A
if (cond)

a.foo()

(a) Base program

cond new A

if

foo()

...

TF

(b) Base program IR graph

cond new A

if

new A

foo()

...

TF

(c) After PEA

instrument after new: o ->
EmitAllocEvent(o)

(d) Instrumentation code

cond new A

EmitAllocEvent()

if

foo()

...

TF

(e) Instrumentation code

Figure 3.1. Instrumentation intercepting object allocations perturbing partial
escape analysis (PEA) due to dependency on the allocated object. In the IR
graphs, rectangles represent fixed IR nodes, rounded rectangles represent floating
IR nodes, thick red edges represent control flow, and thin black edges with
hollow arrows represent data flow. Eliminated IR elements (nodes, control-flow
edges, data-flow edges) are drawn using dashed lines.

3.2.6), progressively amending the running example to illustrate the effects of
our approach.

3.2.1 Running Example

Consider the snippet of pseudo code in Figure 3.1a. The code allocates an instance
of class A and then, only if a condition evaluates to true, invokes foo() on the
newly allocated object. To compile this code, the dynamic compiler first builds a
high-level IR for the code, represented by the graph shown in Figure 3.1b.

Before lowering the high-level IR to machine-code representation, the com-
piler performs optimizations on the IR, possibly reordering the code (while

20 3.2 Approach

preserving its semantics). One of the employed optimization is escape anal-
ysis [13, 14, 22, 56, 57, 71]. If the scope of an allocated object is method-local,
the compiler may allocate it on the stack or apply scalar replacement by “breaking
up” the object. Partial Escape Analysis (PEA) [93] extends the traditional escape
analysis by checking whether an object escapes for individual branches. PEA
allows for postponing heap allocation until an object escapes. Consequently, heap
allocation may occur in a different location than in the unoptimized program. For
example, if PEA determines that the allocation only escapes in the then-branch
of the conditional, the compiler may move the allocation there, as illustrated in
Figure 3.1c.

If we instrument the program code to trace object allocations using the pseudo-
code shown in Figure 3.1d, every allocation will be followed by an invocation of
the EmitAllocEvent() method with the newly allocated object as an argument.
The corresponding IR is shown in Figure 3.1e. When the compiler attempts to
optimize the instrumented program, it will determine that the newly allocated
object always escapes into the event-emitting method (assuming it is not inlined),
which will cause the object to be always allocated on the heap, even if the
conditional in a particular method invocation evaluates to false. The inserted
instrumentation code thus perturbs an optimization the compiler would otherwise
perform on the uninstrumented program.

To avoid perturbation, we would want the compiler to perform the optimiza-
tion as if the program was not instrumented. To enable instrumentation that
intends to intercept actual occurred program behavior, we would also want the
EmitAllocEvent() method to follow the movement of the allocation into the
then-branch of the conditional.

3.2.2 Algorithm Overview

Our approach has been formulated for a method-based dynamic compiler using a
graph-based IR in the Static Single Assignment (SSA) form, with optimizations
implemented as IR graph transformations.

When the dynamic compiler builds the IR of the method being compiled, we
identify the boundaries between the base program code and the inserted code,
and unlink the inserted code from the base program IR, creating inserted code
subgraphs (ICGs) associated with base program nodes. We then let the dynamic
compiler work on the base program IR while tracking the operations it performs
on the IR graph nodes. If the compiler performs an operation on a node with an
associated ICG, we perform a reconciling operation on the corresponding ICG to
preserve its semantics throughout the transformations performed by the compiler.

21 3.2 Approach

When the compiler finishes optimizing the base program IR, we splice the ICGs
back into the base program IR—before it is lowered to machine-code level.

To ensure that the semantics of the base program is not changed by the inserted
code, the ICGs must satisfy the following properties:

1. An ICG must have exactly one entry and exactly one exit.

2. An ICG must have exactly one predecessor1 and exactly one successor before
being extracted from the IR.

3. An ICG must not have any outgoing data-flow edges into the base program
IR, i.e., the base program code must not depend on any values produced
within an ICG.

There may be data-flow edges originating in the base program, caused by
the inserted code inspecting the base program state. While these are legal,
they would normally anchor the IR nodes belonging to the inserted code to a
particular location in the base program IR, effectively preventing optimizations
involving code motion. To avoid this perturbation, we consider all data-flow
edges originating in the base-program and targeting ICGs to be weak data-flow
edges. These edges will be ignored by the dynamic compiler working on the base
program IR, but taken into account when performing the reconciling operations
on the ICGs. After splicing the ICGs back into the base program IR, the weak data-
flow edges will resume their normal semantics. We now review the individual
steps of our approach.

3.2.3 Extracting ICGs

To distinguish between the base program code and the inserted code, we rely
on explicit marking of the boundaries of the inserted code. This is achieved
by enclosing the inserted code between invocations of a pair of methods from
the delimitation API shown in Table 3.1. Invocations of these methods can be
recognized at the IR level, and consequently used to identify the ICG boundaries.

Depending on the base program behavior the inserted code aims to intercept,
an ICG can be associated either with the predecessor or the successor base program
node, or anchor to its original location in the control flow graph (CFG). Because
the relative position of an ICG with respect to the base program nodes cannot

1This may require inserting a dummy “start” node at the beginning of each method being
compiled, and dummy “merge” nodes at control flow merge points. Modern compilers such as
Graal do this automatically.

22 3.2 Approach

Method Description

instrumentationBegin Marks the beginning of a block of inserted code. It
requires an argument indicating how to determine
the position of the instrumentation in the control
flow graph with respect to the base program nodes.
The supported values are PRED, SUCC, and HERE.
The first two values indicate that the position of the
instrumentation is relative either to the predecessor
or to the successor base program node in the control
flow graph. The last value indicates that the position
of the instrumentation in the control flow graph is
fixed, i.e., it does not depend on any base-program
node.

instrumentationEnd Marks the end of a block of inserted code.

Table 3.1. Delimitation API methods for explicit marking of inserted profiling
code.

be determined automatically, this information needs to be made explicit in form
of an argument to the invocation of the instrumentationBegin() method. When
HERE is passed as the argument, meaning that the inserted code is anchored to
its original location, we create a placeholder node inserted in place of the ICG,
and associate the ICG with the placeholder. To avoid any perturbation caused
by the placeholders, the dynamic compiler is modified to disregard them in all
optimization heuristics. Unless the basic block containing the placeholder is
eliminated, the placeholder, and hence the associated ICG, cannot be optimized
away by the compiler.

The procedure for extracting ICG is specified in Algorithm 1. The algorithm
employs the data structures defined in Figure 3.2, and its key part is the identifi-
cation of ICG nodes.

For each node bI corresponding to an invocation of instrumentationBegin(),
we collect all IR nodes reachable from bI via the CFG into a set of ICG nodes, until
we encounter a node corresponding to an invocation of instrumentationEnd()
(Line 4–8). Next, we add to the set of ICG nodes also nodes that represent data
values used exclusively within the ICG, i.e., nodes that are not involved in any
control flow and that are only involved in the data-flow among existing ICG nodes
(Line 9–12). With the set of ICG nodes identified, we collect the control-flow
edges, data-flow edges, and weak data-flow edges between ICG nodes into their

23 3.2 Approach

An IR graph is a tuple 〈N , C , D〉, where:
N denotes the set of IR nodes in the base program IR graph. Initially, it

also contains the IR nodes of the inserted code.
C denotes the set of control-flow edges in the base program IR graph.

Initially, it also contains the control-flow edges involving the inserted
code.

D denotes the set of data-flow edges in the base program IR graph.
Initially, it also contains the data-flow edges involving the inserted
code.

An ICG is a tuple 〈aI , pI , NI , CI , DI , WI〉, where:
aI denotes the base program node the ICG is associated with.
pI denotes the node representing the constant argument passed to

instrumentationBegin.
NI denotes the set of IR nodes in the ICG.
CI denotes the set of control flow edges in the ICG.
DI denotes the set of data flow edges in the ICG.
WI denotes the set of weak data flow edges from the base program to

the ICG.

Other important data structures:
I denotes the set of ICGs, initially empty.

Figure 3.2. Data structures used in ICG-related algorithms. The scope of
N , C , D, I is the context of dynamic compilation of a single method. Changes to
these sets will be visible in subsequent compilation passes.

respective sets (Line 13–15). We then remove ICG nodes and ICG edges from the
base program IR graph (Line 16–31). To preserve a valid CFG, we reconnect the
predecessor and the successor nodes of the ICG, either directly (Line 19–24) or
via a placeholder node created for an ICG (Line 25–29). Finally, we add a tuple
representing an ICG into a set of ICGs (Line 32).

To put the concepts presented so far into the context of our example, consider
again the program snippet shown in Figure 3.1a. The original instrumentation
code from Figure 3.1d is now surrounded by invocations of the delimitation API
methods, as shown in Figure 3.3a. In contrast to Figure 3.1e, the corresponding
IR graph in Figure 3.3b shows the instrumentation as an ICG associated with the
allocation node preceding the ICG in the base program IR.

24 3.2 Approach

1 procedure ExtractICGs
2 foreach bI ∈ N | (bI is a callsite invoking instrumentationBegin) do
3 NI ← {bI}
4 repeat
5 NI ← NI ∪ {v ∈ N | v /∈ NI

6 ∧ (∃u ∈ NI | 〈u, v〉 ∈ C∧(u is not
7 a callsite invoking instrumentationEnd))}
8 until NI not changed
9 repeat

10 NI ← NI ∪ {u ∈ N | u /∈ NI ∧ ({v | 〈v, u〉 ∈ C ∨ 〈u, v〉 ∈ C}= ;)
11 ∧({v | 〈u, v〉 ∈ D} ⊆ NI)}
12 until NI not changed
13 CI ← {〈u, v〉 ∈ C | u ∈ NI ∧ v ∈ NI}
14 DI ← {〈u, v〉 ∈ D | u ∈ NI ∧ v ∈ NI}
15 WI ← {〈u, v〉 ∈ D | u /∈ NI ∧ v ∈ NI}
16 N ← N − NI

17 let pI ∈ {u | 〈u, bI〉 ∈ D}
18 let eI = callsite in NI invoking instrumentationEnd
19 if pI = PRED then
20 let aI ∈ {u | 〈u, bI〉 ∈ C}
21 C ← {〈u, v〉 ∈ C | u /∈ NI ∧ v /∈ NI} ∪ {〈aI , v〉 | 〈eI , v〉 ∈ C}
22 else if pI = SUCC then
23 let aI ∈ {v | 〈eI , v〉 ∈ C}
24 C ← {〈u, v〉 ∈ C | u /∈ NI ∧ v /∈ NI} ∪ {〈u, aI〉 | 〈u, bI〉 ∈ C}
25 else // pI = HERE
26 aI ← new node created as the placeholder
27 N ← N ∪ {aI}
28 C ← {〈u, v〉 ∈ C | u /∈ NI ∧ v /∈ NI} ∪ {〈u, aI〉 | 〈u, bI〉 ∈ C}
29 ∪ {〈aI , v〉 | 〈eI , v〉 ∈ C}
30

31 D← (D− DI)−WI

32 I← I∪ {〈aI , pI , NI , CI , DI , WI〉}
33 end

Algorithm 1: Extract ICGs from the base program IR graph.

3.2.4 Reconciling Operations on ICGs

The optimizations performed by the dynamic compiler can be expressed as trans-
formations on the IR graph, which can be split into simpler graph-mutating

25 3.2 Approach

instrument after new: o ->
instrumentationBegin(PRED)
EmitAllocEvent(o)
instrumentationEnd()

(a) Enhanced instrumentation

cond new A

if EmitAllocEvent()

foo()

...

T

F

(b) Extracted ICG

Figure 3.3. Enhanced instrumentation and the IR graph of the base program
after extracting the instrumentation as an ICG. The gray rectangle in the
IR graph represents an extracted ICG (the delimitation API invocations are
omitted for clarity), solid black lines without arrows represent the association
between an ICG and a base program node, and the dotted edges with hollow
arrows represent a weak data-flow edge.

operations, such as node elimination, value replacement, expansion, cloning,
and movement. These node operations are sufficient to implement all important
dynamic compiler optimizations. If the compiler employs other node operations,
additional reconciling operation needs to be defined. To preserve the purpose
of the inserted code residing in ICGs associated with the base program IR nodes,
we perform reconciling operations on the ICGs in response to the graph opera-
tions performed on the base program IR. We now review each of the reconciling
operations defined in Algorithm 2.

Node elimination. Removes a node from the IR graph. This operation is primarily
used to eliminate dead code. The corresponding reconciling operation is to remove
the associated ICG (Line 3–4).

Value node replacement. Replaces the origin node in a data flow edge with
another node. This operation is involved in many optimizations, e.g., constant
folding. The corresponding reconciling operation is to update all affected weak
data-flow edges in all ICGs to use the replacement node as the new source of a
value (Line 5–7).

Node expansion. Expands a node into a subgraph which replaces the original
node in the CFG. This operation is typically used to implement IR lowering [90],
and often followed by a value node replacement operation. The corresponding
reconciling operation is to re-associate the ICGs with either the entry or the exit
node of the subgraph replacing the original node (Line 8–14).

26 3.2 Approach

Input : op: node operation applied to the base program IR graph by the
compiler

1 procedure ReconcileICGs(op)
2 switch op do
3 case elimination of n: do
4 I← {〈aI , pI , NI , CI , DI , WI〉 ∈ I | aI 6= n}
5 case value replacement of n→ nr : do
6 I←
⋃

〈aI ,pI ,NI ,CI ,DI ,WI 〉∈I{〈aI , pI , NI , CI , DI ,

7 {〈u, v〉 ∈WI | u 6= n} ∪ {〈nr , v〉 | 〈n, v〉 ∈WI}〉}
8 case expansion of n→ subgraph with entry bsub and exit esub: do
9 foreach 〈aI , pI , NI , CI , DI , WI〉 ∈ I | aI = n do

10 if pI = PRED then
11 I← (I− 〈aI , pI , NI , CI , DI , WI〉) ∪ {〈esub, pI , NI , CI , DI , WI〉}
12 else if pI = SUCC then
13 I← (I− 〈aI , pI , NI , CI , DI , WI〉) ∪ {〈bsub, pI , NI , CI , DI , WI〉}
14 end
15 case cloning of n→ nc: do
16 foreach 〈aI , pI , NI , CI , DI , WI〉 ∈ I | aI = n do
17 N ′I ← clone NI with mapping function mapclone

18 C ′I ←
⋃

〈u,v〉∈CI
{〈mapclone(u),mapclone(v)〉}

19 D′I ←
⋃

〈u,v〉∈DI
{〈mapclone(u),mapclone(v)〉}

20 W ′
I ←
⋃

〈u,v〉∈WI
{〈u,mapclone(v)〉}

21 I← I∪ {〈nc ,mapclone(pI), N ′I , C ′I , D′I , W ′
I 〉}

22 end
23 case movement of n: do
24 // nothing to be done
25 end

Algorithm 2: Reconcile ICGs for node operations in the base program IR graph.

Node cloning. Duplicates an IR node. This operation is often used in transforma-
tions implementing, e.g., loop peeling, loop unrolling, or tail duplication. The
newly created node is usually immediately moved to a different location in the
CFG, and the original node is sometimes eliminated. In any case, the correspond-
ing reconciling operation is to clone the associated ICG and attach it to the newly
created IR node (Line 15–22).

Node movement. Relocates a node to a different location in the CFG. This
operation usually follows a cloning operation, because the clone needs to be
moved to a new location. It can be used as a standalone operation to implement,

27 3.2 Approach

Method Description Default

Static query intrinsics

isMethodCompiled Returns true if the enclosing method has
been compiled by the dynamic compiler.

false

isMethodInlined Returns true if the enclosing method is in-
lined.

false

getRootName Returns the name of the root method for
the current compilation task. If the enclos-
ing method is inlined, it returns the name
of the method into which it was inlined.

“unknown”

Dynamic query intrinsics

getAllocationType Returns the kind of heap allocation for
a directly preceding allocation site. In
HotSpot, the possible return values are
{HEAP, TLAB}, representing a direct heap
allocation (slow path), or a TLAB alloca-
tion (fast path). If the allocation site was
eliminated, the method returns a special
error value.

ERROR

getLockType Returns the runtime lock type for a directly
preceding lock site. In HotSpot, the pos-
sible return values are {BIASED, RECUR-
SIVE, CAS}, representing the different lock-
ing strategies.

ERROR

Table 3.2. Query intrinsics available to the developer of bytecode instrumenta-
tion.

e.g., loop-invariant code motion. Node movement is a change that does not
affect the relative position between the moved IR node and the associated ICG.
Consequently, no special reconciling operation is needed—the ICG implicitly
“follows” the associated IR node around.

To illustrate the effect of the reconciling operations, we now return to our
running example. In Figure 3.3b we left off with the instrumentation code
extracted into an ICG. We assume that as a result of PEA (which disregards the
ICG), the dynamic compiler decides to move the allocation into the then-branch
of the conditional. To perform this transformation, the compiler first clones the

28 3.2 Approach

new Acond

if EmitAllocEvent()

new A

foo() EmitAllocEvent()

...

TF

(a) After reconciling

cond

if

new A

EmitAllocEvent()

foo()

...

T
F

(b) Final IR graph

Figure 3.4. Base program IR with the associated ICGs after moving the
allocation into the then-branch of the conditional, and after splicing the IGCs
back into the base program IR. Dashed lines represent eliminated nodes and
edges.

allocation node, which triggers a reconciling operation resulting in the cloning of
the associated ICG (this also involves updating all the IR edges to use the newly
created allocation node). The compiler then moves the cloned IR node to the
new location in the then-branch, and eliminates the original allocation node,
triggering the elimination of the original ICG. The IR graph resulting from these
operations is shown in Figure 3.4a.

3.2.5 Querying Compiler Decisions

An important aspect of our approach is that it allows the inserted code to query
and adapt to the dynamic compiler’s decisions. The queries are represented by
invocations of special methods that are recognized and handled by the compiler
similarly to intrinsics. We call these special methods query intrinsics, and whereas
typical compiler intrinsics expand to a sequence of machine code instructions,
query intrinsics expand to an IR subgraph comprising one or more IR nodes.
Depending on the type of the replacement subgraph, we distinguish between
static and dynamic query intrinsics.

The static query intrinsics expand to constant value nodes, which reflect static
(compile-time) decisions of the dynamic compiler. Examples include the name of
the compiling root method, or whether a method is compiled. In practice, the

29 3.2 Approach

1 function Evaluate(nI , aI)

2

return a subgraph 〈res, Nsub, Dsub〉 representing the evaluation result of the
query intrinsic nI . res denotes the value of the evaluated query
intrinsic, Nsub denotes all nodes (including res) in the subgraph, and
Dsub denotes all data-flow edges in the subgraph.

3

4 predicate NodeIsAvailable(u, v)
5 return true if u has not been eliminated and can be scheduled before v.

Algorithm 3: Sub-routines used in the splicing algorithm (Algorithm 4).

inserted code would typically use the static query intrinsics to limit the profiling
scope. For instance, the inserted code can query whether its containing method
is compiled, which allows enclosing all profiling code in a guarded block enabled
only for compiled methods. This in turn allows collecting metrics only for the
execution of compiled methods.

The dynamic query intrinsics expand toφ-function nodes. Depending on which
runtime path is taken during program execution, the φ-function node selects
a distinct constant value representing the path. This is useful when a compiler
expands a base program IR-node into a subgraph containing multiple code paths
that are selected at runtime. For instance, the inserted code can query whether
an object was allocated in a thread-local allocation buffer (TLAB) or directly on
the heap, or what kind of locking was used with a particular lock.

The query intrinsics recognized by the compiler represent an API that provides
an instrumentation developer with the means to determine both compile-time
and runtime compiler decisions, and allows creating an instrumentation that
adapts accordingly. An overview of the methods making up the API is shown in
Table 3.2.

3.2.6 Splicing ICGs

Towards the end of the dynamic compilation, we splice the ICGs back into the base
program IR, as shown in Algorithm 4. For each ICG, we first evaluate all query
intrinsics and replace the corresponding nodes with the resulting IR subgraph
(Line 3–8). We then remove the invocations of the delimitation API methods
(Line 9–11), and splice the ICG into the base program IR graph. Depending
on the constant argument passed to the instrumentationBegin() method, which
is either PRED, SUCC, or HERE, we insert the ICG after the associated node,
(Line 12–14), before the associated node (Line 15–17), or in place of the associated

30 3.2 Approach

1 procedure SpliceICGs()
2 foreach 〈aI , pI , NI , CI , DI , WI〉 ∈ I do
3 foreach nI ∈ NI | (nI is a query intrinsic) do
4 〈neval , Neval , Deval〉 ← Evaluate(nI , aI)
5 NI ← (NI − {nI})∪ Neval

6 CI ← {〈u, v〉 ∈ CI | u 6= nI ∧ v 6= nI} ∪ {〈u, v〉 | 〈u, nI〉 ∈ CI ∧ 〈nI , v〉 ∈ CI}
7 DI ← {〈u, v〉 ∈ DI | u 6= nI} ∪ {〈neval , v〉 | 〈nI , v〉 ∈ DI} ∪ Deval

8 end
9 let bI = callsite in NI invoking instrumentationBegin

10 let eI = callsite in NI invoking instrumentationEnd
11 N ← N ∪ (NI − {bI , pI , eI})
12 if pI = PRED then
13 C ← {〈u, v〉 ∈ C | u 6= aI} ∪ {〈u, v〉 ∈ CI | u 6= bI ∧ v 6= eI}
14 ∪ {〈aI , v〉 | 〈bI , v〉 ∈ CI} ∪ {〈u, v〉 | 〈u, eI〉 ∈ CI ∧ 〈aI , v〉 ∈ C}
15 else if pI = SUCC then
16 C ← {〈u, v〉 ∈ C | v 6= aI} ∪ {〈u, v〉 ∈ CI | u 6= bI ∧ v 6= eI}
17 ∪ {〈u, aI〉 | 〈u, eI〉 ∈ CI} ∪ {〈u, v〉 | 〈u, aI〉 ∈ C ∧ 〈bI , v〉 ∈ CI}
18 else // pI = HERE
19 N ← N − {aI}
20 C ← {〈u, v〉 ∈ C | u 6= aI ∧ v 6= aI} ∪ {〈u, v〉 ∈ CI | u 6= bI ∧ v 6= eI}
21 ∪ {〈u, v〉 | 〈u, aI〉 ∈ C∧〈bI , v〉 ∈ CI} ∪ {〈u, v〉 | 〈u, eI〉 ∈ CI∧〈aI , v〉 ∈ C}
22

23 D← D ∪ {〈u, v〉 ∈ DI | v 6= bI}
24 foreach 〈u, v〉 ∈WI do
25 if NodeIsAvailable(u,v) then
26 D← D ∪ {〈u, v〉}
27 else
28 d ← the default value of type of u
29 N ← N ∪ {d}
30 D← D ∪ {〈d, v〉}
31 end
32 end

Algorithm 4: Splice ICGs into the base program IR graph.

placeholder node (Line 18–22). Finally, we convert the weak data-flow edges back
to normal data flow edges (Line 23–30). If the originating node for a weak
data-flow edge is not available in the resulting IR graph, it will be replaced with
a default value corresponding to its type (Line 27–30). For example, if the
instrumentation intends to count “new” bytecode but at the same time constructs

31 3.3 Improving Existing Tools

a data dependency towards the allocated instance, the eventual object may be
stack allocated and hence replaced with the “null” value.

Coming back to our running example, the result of splicing the ICGs back
into the base program IR is shown in Figure 3.4b, with the invocation of the
EmitAllocEvent() method relocated to the then-branch of the conditional.

3.3 Improving Existing Tools

One of the use cases for our approach is improving the existing profilers and
tools based on bytecode instrumentation. These tools allow observing program
execution at the bytecode level, but they fail to provide insight into execution at
the level of compiled code. Profiling at the bytecode level tends to overprofile
certain operations compared to the execution of compiled code, because modern
JVMs will try to optimize them. The inserted instrumentation code tends to
perturb certain optimizations, further reducing accuracy of the results.

Our approach allows improving the existing tools by enabling observation
of program execution at the level of compiled code (but still using bytecode
instrumentation) and by avoiding optimization perturbations arising from in-
creased method sizes due to the inserted instrumentation code. We illustrate the
benefits of our approach on three case studies covering allocation profiling (Sub-
section 3.3.1), object-lifetime profiling (Subsection 3.3.2), and callsite profiling
(Subsection 3.3.3).

3.3.1 Impact on Allocation Profiling

Allocation profiling is generally used to identify allocation hotspots, because these
may be associated with high garbage collection (GC) overheads. Commonly
used profilers such as Netbeans profiler [81], Eclipse TPTP [97], JProfiler [96],
and hprof [78] all support this kind of analysis. However, these profilers rely
on bytecode instrumentation to track all object and array allocations, which
perturbs the dynamic compiler’s optimizations, and ultimately results in over-
profiling [74, 53]. An allocation hotspot profiler may thus draw attention to
places with high allocation rates (or amounts of allocated memory) which in
reality may have only a negligible impact on the GC overhead.

Also, previously published results on workload characterization [87, 65, 85]
capture a workload’s allocation behavior, but fail to differentiate between alloca-
tions that can be optimized away and allocations that are more costly because
the GC will have to take care of the garbage later. In such a case, a summary

32 3.3 Improving Existing Tools

1 instrument after new: o ->
2 instrumentationBegin(PRED)
3 if (isMethodCompiled())
4 EmitHeapAllocEvent()
5 else
6 EmitInterpreterAllocEvent()
7 instrumentationEnd()
8
9 instrumentationBegin(HERE)

10 EmitBytecodeAllocEvent()
11 instrumentationEnd()

Figure 3.5. Pseudo-code of the instrumentation used by the allocation profiler
to track object allocations.

quantification of the amount of overprofiled allocations may improve the results
and enable more realistic characterization of allocation behavior in the future.

To gauge the potential for allocation over-profiling, we developed an al-
location profiler which uses bytecode instrumentation to track object alloca-
tions. The instrumentation, shown in Figure 3.5, uses the delimitation API
to make itself visible to the dynamic compiler. It uses two instrumentation
blocks, one associated with the allocation, which will be executed only when
an actual allocation occurs, and one anchored to the place where the allo-
cation occurs at bytecode level. The former instrumentation block makes
use of the isMethodCompiled() intrinsic to distinguish between interpreted-
mode allocation and compiled-mode allocation. Below, we report on stack al-
locations calculated as the difference between the bytecode-level allocations
(counted via EmitBytecodeAllocEvent()) and actual allocations (counted via
EmitHeapAllocEvent() and EmitInterpreterAllocEvent()).

We profiled selected benchmarks2 from the DaCapo 9.12 suite [12] on a
multi-core platform3, and report results for the 1st (startup) and the 15th (steady
state) benchmark iteration4. The proportion of allocation types is shown in
Figure 3.6, with the actual values shown in Table 3.3. During the startup iteration,

2We excluded the tomcat, tradebeans, and tradesoap benchmarks due to well known is-
sues (see http://sf.net/p/dacapobench/bugs/70/ and http://sf.net/p/
dacapobench/bugs/68/). We also excluded the eclipse benchmark due to its incompati-
bility with Java 8.

3Intel Xeon E5-2680 2.7GHz with 8 cores, 64 GB of RAM, CPU frequency scaling and Turbo
mode disabled, Oracle JDK 1.8.0_20 b26 Hotspot Server VM (64-bit), running on Ubuntu Linux
Server 64-bit version 12.04.5 64-bit.

4 The profiler introduces an average overhead (i.e., geometric mean for DaCapo) of 9% for
exact profiling, and 3% for sampling with a rate of 1/1000. Our approach does not introduce any
noticeable additional runtime overhead (see Section 3.5 for a discussion of performance issues).

http://sf.net/p/dacapobench/bugs/70/
http://sf.net/p/dacapobench/bugs/68/
http://sf.net/p/dacapobench/bugs/68/

33 3.3 Improving Existing Tools

av
ro

ra
ba

tik fo
p h2

jyt
ho

n

lu
in

de
x

lu
se

ar
ch

pm
d

su
nfl

ow
xa

lan
0

20

40

60

80

100
Pe

rc
en

ta
ge

(%
)

Interpreter Heap Stack

Figure 3.6. Proportions of allocation types for the 1st (without pattern) and
the 15th (with pattern) benchmark iteration.

Benchmark 1st iteration 15th iteration

stack # % stack mem. % stack # % stack mem. %

avrora 111 676 21.88 3.6M 17.78 3 0 96 0
batik 0 0 0 0 19 438 6.76 0.8M 4.47
fop 2548 0.26 82K 0.16 70 823 7.22 2.4M 4.74
h2 411 038 16.61 12M 9.19 460 251 18.58 14.3M 10.9
jython 3 819 122 16.22 207M 16.03 983 843 7.33 47.7M 6.34
luindex 0 0 0 0 2468 1.74 79K 1.49
lusearch 55 717 0.99 1.8M 0.67 262 144 4.64 8.4M 3.16
pmd 136 788 3.75 3.3M 1.88 173 994 4.45 4.3M 2.28
sunflow 18 718 463 31.09 691M 26.22 19101 856 31.73 704M 26.72
xalan 3024 0.23 0.2M 0.28 5600 0.43 0.3M 0.46

average 9.1 7.22 8.29 6.06

Table 3.3. Number of stack allocation and stack-allocated memory (in bytes)
per benchmark, along with their proportions.

in which the benchmark code is in the least optimized form, the proportion of
stack allocations ranges from zero (batik, luindex) to 31.09% (sunflow), and
is 9.1% on average (arithmetic mean). The proportion of stack allocations in
the steady-state iteration ranges from zero (avrora) to 31.73% (sunflow), and is
8.29% on average.

Table 3.3 also shows the results in terms of allocated memory. For the startup

34 3.3 Improving Existing Tools

iteration, the proportion of stack-allocated memory ranges from zero (batik,
luindex) to 26.22% (sunflow), and is 7.22% on average. For the steady-state
iteration, the proportion of stack-allocated memory ranges from zero (avrora)
to 26.72% (sunflow), and is 6.06% on average. The overprofiling percentage
generally tends to be lower for the amount of allocated memory compared to the
number of allocations, because the result for the amount of allocated memory is
naturally weighted by the allocated object sizes.

We note a striking difference in the numbers of startup and steady-state stack
allocations for the avrora and jython benchmarks. Further profiling5 reveals that
the differences are due to each benchmark’s initialization phase6.

Both the number of stack allocations and the amount of memory allocated on
the stack potentially affect the ranking of the allocation hotspots in the resulting
profile. Without our approach, an allocation hotspot profiler may report hot
allocation sites that will be optimized away by the dynamic compiler, rendering
the output of the profiler “un-actionable”.

3.3.2 Impact on Object Lifetime Analysis

Another application of allocation profiling is to collect information on memory-
related behavior of programs, which helps in GC algorithm design and devel-
opment. For instance, the Merlin algorithm [44] maintains allocation and last-
reachable timestamps for each object, and calculates the lifetime as the difference
of the two timestamps when an object is garbage-collected. Compared to a brute-
force approach that repeatedly forces a whole-heap GC, the Merlin algorithm
provides more accurate and fine-grained results with less overhead, especially
when integrated in a VM such as Jikes RVM where the object header or GC can
be easily changed [106]. For other VM implementations, researchers typically
use instrumentation-based dynamic analysis tools such as ElephantTracks (an
implementation of the Merlin algorithm) [84].

The instrumentation needed to gather the information required by the Merlin
algorithm is inherently heavy-weight, because it needs to track object allocations,
object usage, and reference updates. Consequently, the inserted code significantly

5By using the getRootName() intrinsic, we can extend the identification of an allocation site
with the name of the root method into which the allocation site is inlined.

6An allocation site at cck.text.StringUtil.convertToHex inlined to avrora.monitors.Packet-
Monitor$Mon.renderPacket performs most of the stack allocations in the first iteration of avrora;
various allocation sites in org.python.antlr.PythonParser dominate the stack allocations in the
first iteration of jython. By excluding these, the average proportion of stack allocations in the
first iteration of jython is 5.68%.

35 3.3 Improving Existing Tools

impacts the ability and willingness of the dynamic compiler to optimize the
instrumented code. Specifically, the (significantly) increased method sizes prevent
inlining, while the object tracking causes all references to escape, thus forcing all
object allocations to happen on the heap (including those that could be converted
to stack allocations).

This causes two problems. The first is that we are unable to observe the
application’s original allocation behavior—we observe more allocations, and we
may observe them in different order compared to an uninstrumented program.
For example, the Merlin algorithm and its variant found in ElephantTracks use an
allocated-amount counter or method invocation/return counter as a logical clock,
both of which will be influenced by optimizing allocations away or by moving the
allocation code around. The second problem is that the increased number of heap
allocations causes the GC to behave differently from what would be observed
with an uninstrumented program.

In performance engineering research, the inaccurate allocation information
and the differences in GC behavior in response to slight changes in GC-relevant
workload make it extremely difficult to model and predict the impact of GC on
application performance [66]. While there is a need for accurate object-lifetime
profiles, existing tools such as ElephantTracks cannot provide it.

Overprofiling of the number of object allocations influences the distribution of
object lifetimes. Also, even if objects are not allocated on the stack, the allocation
code may have been moved around by the dynamic compiler [93], influencing
object lifetimes based on various logical clocks.

To quantify the impact of these observer effects on the object lifetimes, we
profiled the same set of DaCapo benchmarks as in the previous case study using
an implementation of the Merlin algorithm7. We developed two different variants
of the instrumentation necessary to track object allocations, object usage, and
reference updates. The first variant, which represents the baseline, is a standard
instrumentation, in which the inserted code for tracking object allocations and
object usage always emits all events and passes all object references to the profiler.
The second variant takes advantage of our approach, and explicitly marks the
instrumentation using the delimitation API from Table 3.2.

When tracking the target of an object-related operation, the instrumentation
will receive an actual reference if an object was heap-allocated, or null if it was
stack-allocated. Consequently, the object allocation and object usage events
are only emitted for heap-allocated objects. We use an atomic logical clock

7We adapted ElephantTracks to run on OpenJDK and Graal. We also excluded Graal classes
and their dependencies from instrumentation.

36 3.3 Improving Existing Tools

2e+05 1e+05 0 1e+05

1
10

10
0

10
00

0
ob

je
ct

 li
fe

tim
e

standard enhanced

(a) avrora

1.5e+07 5e+06 0 5e+06 1.5e+07

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(b) h2

1.5e+07 5e+06 0 5e+06 1.5e+07

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(c) jython

60000 20000 0 20000 60000

1
10

10
0

10
00

0
ob

je
ct

 li
fe

tim
e

standard enhanced

(d) luindex

Figure 3.7. Back-to-back histogram of object lifetime distributions for the first
benchmark iteration. The lifetimes are obtained using ET with the standard
and the enhanced instrumentations. The X-axis denotes the object counts per
bin. The differences between bins are marked in red.

represented by the cumulative amount of allocated memory, which is advanced
regardless of the allocation type to enable comparison between results from the
two versions8.

8Both versions of ElephantTracks introduce an average overhead of a factor of 17 during
startup, and of a factor of 79 and 68, respectively, during steady-state execution. The speedup
observed in the version based on our approach is due to omission of events corresponding to
stack-allocated objects. While these overhead factors may seem high, they are common for tools
using such a heavy-weight instrumentation as ElephantTracks [84].

37 3.3 Improving Existing Tools

1e+06 5e+05 0 5e+05 1e+06

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(a) lusearch

5e+05 0 5e+05 1e+06

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(b) pmd

1.5e+07 5e+06 0 5e+06

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(c) sunflow

4e+05 2e+05 0 2e+05 4e+05

1
10

10
00

1e
+0

5
ob

je
ct

 li
fe

tim
e

standard enhanced

(d) xalan

Figure 3.8. Back-to-back histogram of object lifetime distributions for the
first benchmark iteration (continued). The results for the batik and the fop
benchmarks are excluded due to less significant differences.

To capture the increasing influence of the dynamic compiler, we collect allo-
cation traces for the first benchmark iteration and compare the distributions of
object lifetimes obtained using the two instrumentation variants.

The back-to-back histograms in Figure 3.7 and Figure 3.8 show the object
lifetime distribution obtained without and with being aware of stack allocations,
respectively. The results for avrora show that stack allocations shrink the pro-
portion of objects in the shorter-lifetime bin of the histogram. The results for
xalan are interesting, because the benchmark has virtually no stack allocations
(0.23% in the 1st iteration, and 0.43% in the 15th iteration). We can observe a

38 3.3 Improving Existing Tools

significant increase in the number of very short-lived objects as they move to the
shortest-lifetime bin. This is because PEA attempts to coalesce allocations and
postpone them until the objects escape [93]. The results for sunflow demonstrate
this kind of behavior in the case of a benchmark with a significant proportion of
stack-allocated objects. We can observe that the differences in the histograms
exhibit both shifting from bins corresponding to longer-lived objects to bins cor-
responding to shorter-lived objects, as well as proportional shrinking of some
bins.

These changes in the distribution of object lifetime are significant. While they
do not influence bytecode-level workload characterization results, which are only
concerned with allocations, any research that depends on object lifetime profiles
obtained by tools such as ElephantTracks is potentially influenced. For example,
simulation of generational garbage collector behavior is particularly sensitive to
inaccurate inputs. The over-profiled allocations artificially increase the rate at
which the young-generation space fills up, and trigger simulated minor collections
sooner than expected. This in turn influences the rate at which objects mature,
affecting the simulation of tenured-generation collections. Because the GC is
a non-linear system, this then derails the predictions of major collections [66].
Using the enhanced instrumentation allows obtaining accurate information about
the memory-related behavior of a program, thus improving simulation results.

3.3.3 Impact on Callsite Profiling

Dynamic compilers in modern VM implementations aggressively inline methods
at hot call sites [4, 7, 25] to eliminate the method invocation overhead, to expand
the scope for other intraprocedural optimizations, and to enable specialization of
the inlined code [48]. At polymorphic callsites the target method is determined by
the receiver type and usually requires dynamic dispatch, which hinders inlining.
However, when the number of target methods is very small, inlining can be still
done with appropriate guards in place. In workload characterization research,
callsite profiling is used to identify callsites [88, 85] that are suitable for inlining
or inline caching, which requires collecting information on the actual number of
target methods and on the distribution of receiver types.

For the Java benchmarks from the DaCapo suite, Sewe et al. [88] report
that on average 97.8 % of callsites are monomorphic, and account for 91.5 %
of method invocations. However, from this information we can only infer how
much a JVM could optimize at these callsites, not what it actually does, i.e., that
most of these callsites are actually inlined by a modern JVM. Yet with a classic
instrumentation-based callsite profiler it is impossible to distinguish between an

39 3.3 Improving Existing Tools

inlined and a non-inlined callsite, because the inlining behavior is not observable
at the bytecode level.

Our approach allows building a profiler that can determine whether a callsite
was inlined or not, enabling analysis of the inlining behavior for a particular
JVM. Specifically, if we are interested in understanding or improving the inlining
policy, we would prefer to profile callsites that were not inlined. In this context,
the callsite information provided by a classic callsite profiler can be considered
significantly overprofiled, and is therefore of little use.

Similar to allocation profiling presented earlier, bytecode instrumentation has
a tendency to disturb optimizations—in this case inlining. This is because the
inserted code (often excessively) increases methods sizes and compilers generally
avoid inlining large methods. Therefore, even if we can determine whether a
callsite has been inlined or not, the inlining decision for a particular callsite may
have been perturbed by the instrumentation, resulting in loss of accuracy with
respect to the execution of the base program without instrumentation.

To quantify the aforementioned two types of overprofiling, we developed
a callsite profiler using bytecode instrumentation which counts the number of
method invocations at each callsite. Without our approach, the profiler naïvely
collects the total number of method invocations at each callsite, similar to what
an existing callsite profiler would do. Using our approach, the inserted instru-
mentation code is associated with the call site, and will emit an event only when
a callsite is not inlined.

To evaluate the potential loss of accuracy caused by perturbing the inlining
optimization, we use two variants of the dynamic compiler. The first compiler
variant, referred to as “perturbed”, includes the size of the inserted code in
the calculated method size, causing the instrumentation to influence inlining
decisions. The second compiler variant, referred to as “accurate”, disregards the
size of the inserted code, which is what we normally do in our approach.

We profiled 15 iterations of the same set of DaCapo benchmarks as in Sub-
section 3.3.1 using the two compiler variants9. We report results for the 15th
iteration (steady state) in Table 3.4, showing the total number of method invoca-
tions, and the number of non-inlined method invocations collected by the profiler
using the “perturbed” and “accurate” variants of the dynamic compiler.

Compared to our (accurate) approach to profiling non-inlined callsites, the
classic callsite profiler overprofiles 92.65 % of method calls. The instrumentation
significantly perturbs the inlining optimization, increasing the number of method

9The profiler introduces an average overhead of 49% for exact profiling, and 16% for sampling
with a rate of 1/1000.

40 3.4 Enabling New Tools

Benchmark Bytecode-level
Profiler

Non-inlined Callsite Profiler

Perturbed Accurate

Method calls Method calls % Method calls %

avrora 619416 614 81417 434 13.14 56 855805 9.18
batik 19882 555 2302 771 11.58 1 957338 9.84
fop 34145 814 3802 440 11.14 3 241928 9.49
h2 881803 337 146743 342 16.64 125 981105 14.29
jython 424639 480 50547 787 11.90 32 425816 7.64
luindex 95286 242 12375 687 12.99 7 165321 7.52
lusearch 377707 756 29581 448 7.83 27 714126 7.34
pmd 118230 869 16192 709 13.70 13 499182 11.42
sunflow 1 973544 191 222996 162 11.30 67 157052 3.40
xalan 301667 030 25613 673 8.49 20 232863 6.71

Total 4 846323 888 591573 453 12.21 356 230536 7.35

Table 3.4. The number of method invocation aggregated over all profiled callsites.
The total number of invocations is produced by a bytecode-level callsite profiler,
while the numbers of invocations at non-inlined callsites are produced by a
similar profiler using our approach. The data for the “perturbed” and “accurate”
columns correspond to data collected with the respective dynamic compiler
variant.

calls at non-inlined callsites by 4.86 %.
Our approach thus enables more accurate characterization of JVM workloads

and allows analyzing the inlining policy of a particular JVM using bytecode
instrumentation. By combining accurate callsite profiling with calling context
profiling, our approach also enables accurate stack depth profiling, which is again
a metric commonly found in workload characterization research [88, 65, 85].

3.4 Enabling New Tools

The ability to profile program execution at both the bytecode level as well as at
the level of compiled code enables construction of new tools that were previously
impossible to build using bytecode instrumentation. We illustrate this on three

41 3.4 Enabling New Tools

additional case studies. In the first case study, we use the aforementioned callsite
profiler to identify the causes for not inlining potentially hot callsites (Subsec-
tion 3.4.1). In the second case study, we use a calling-context-aware receiver-type
profiler to explore the potential benefits of using calling-context information to
resolve target methods at non-inlined polymorphic callsites (Subsection 3.4.2). In
the third case study, we present a compiler testing framework (Subsection 3.4.3)
relying on the ability to observe program behavior at the level of compiled code.

3.4.1 Identifying Inlining Opportunities

When tuning the inlining strategy to suit a particular program, we can instruct the
dynamic compiler to print all inlining decisions10. The log usually includes the
inlining decision for each compiled call site, along with reasons for not inlining
specific call sites. If we rely on certain methods to be inlined, the log allows
checking whether the expected inlining happened or failed and for what reason.

We could also use the log to identify additional optimization opportunities, but
the logs produced by existing VMs do not help in deciding whether the reasons
for not inlining a particular call site are worth analyzing. This is because there is
not enough additional information (e.g. hotness) related to a particular call site,
and also because the logs may contain duplicate entries for methods that were
either inlined from different root methods or recompiled.

This is unfortunate, because if, for example, a VM developer or a researcher
decides to include calling context into traditional receiver-type profiling to enable
more inlining opportunities, the information missing in the inlining log prevents
him or her to quickly gauge the actual potential for such optimization at individual
call sites before committing to implementing it in the interpreter and dynamic
compiler.

To make the inlining decision log more useful, we complement the log with
the information about hotness of the non-inlined call sites collected in Subsec-
tion 3.3.3. We filtered the resulting augmented inlining log, looking for inlining
opportunities at polymorphic call sites. For each benchmark, we identified the
hottest call site that was not inlined due to polymorphism-related reasons, as
shown in Table 3.5. In general, the reason for not inlining these call sites is that
they target too many types. The specific reason #1 (no methods remaining after
filtering less frequent methods) means that the number of receiver types exceeds
a preset limit11 and that the frequency of the profiled types is below a preset

10Enabled by -G:Log=InliningDecisions in Graal.
11Determined by the -XX:TypeProfileWidth option.

42 3.4 Enabling New Tools

Benchmark Hottest non-inlined call site Invocation
Counter

Reason for
not inlining

Caller BCI

avrora DefaultMCU$Pin.write 29 179553 #1
batik CSSEngine.getComputedStyle 81 45226 #1
fop Comp...Maker.makeCompound 41 97916 #2
h2 Select.queryFlat 123 6848 343 #2
jython PyObject.__getattr__ 2 2994 315 #1
luindex IndexOutput.writeVInt 17 14227 #2
lusearch IndexSearcher.search 25 259 440 #2
pmd SimpleJavaNode.childrenAccept 29 3311 669 #1
sunflow Geometry.intersect 28 41155 041 #2
xalan AbstractSAXParser.characters 59 708 840 #2

Table 3.5. Hottest call sites not inlined due to polymorphism-related reasons:
#1: no methods remaining after filtering less frequent methods, #2: relevance-
based. The call sites are represented by the enclosing method name as well as
the bytecode index (BCI).

threshold. The specific reason #2 (relevance-based) means that the compiler
wanted to inline one or more targets, but the total size of these targets is over a
certain limit.

A generally observed phenomenon is that a call site may have different distri-
butions of dynamic receiver types in different calling contexts. For instance, a call
site in a Java class library method often has library receiver types if invoked inter-
nally, but many other receiver types if invoked from application code. Because the
receiver-type profiling in the interpreted mode lacks calling-context information,
the negative inlining-decision results shown in Table 3.5 are based on information
from all calling contexts. The compiler does not inline the target even for call sites
for which the receiver type could be resolved within a particular calling context.
This leads to a hypothesis that including calling context in receiver-type profiling
may help in resolving the receiver type for some of the non-inlined call sites.

3.4.2 Calling-context Aware Receiver-type Profiler

To test the hypothesis, we extended the previous non-inlined callsite profiler
to combine the existing calling-context profiling with a receiver-type profiling.
With each non-inlined call site, the profiler associates a receiver type profile for
each of 0, 1, 2, and 3 levels of calling context. The profiler therefore produces a

43 3.4 Enabling New Tools

av
ro

ra
ba

tik fo
p h2

jyt
ho

n

lu
in

de
x

lu
se

ar
ch

pm
d

su
nfl

ow
xa

lan
0

20

40

60

80

100 9.4
· 1

0
5

3.8
· 1

0
5

2.9
· 1

0
6

1.7
· 1

0
8

4.8
· 1

0
7

51
,24

2

4.9
· 1

0
6

3.7
· 1

0
7

2.1
· 1

0
8

2.4
· 1

0
6

Pe
rc

en
ta

ge
(%

)

unresolved resolved at L3 resolved at L2 resolved at L1

Figure 3.9. The percentages of invocations at non-inlined call sites for which
the receiver type can be resolved using 1, 2, or 3 levels of calling context. Above
each bar is the total number of invocations at non-inlined callsites.

distribution of dynamic receiver types for each non-inlined call site and calling-
context level, with level 0 (i.e., no calling-context information) representing the
baseline receiver-type profile.

We collected the context-sensitive receiver-type profiles for the selected Da-
Capo benchmarks12, and for each call site, we determined whether it is possible
to resolve the receiver to a single type using the additional calling-context infor-
mation. We then calculated the number of invocations that could be resolved
while considering 1, 2, and 3 levels of calling context at each call site. The results
are shown in Figure 3.9.

While the results vary with each benchmark, we note that there are sev-
eral benchmarks where the calling-context-sensitive receiver-type profiling could
improve inlining. In particular, we observe that adding a single level of calling-
context information to the receiver-type profile for jython allows resolving the
receiver type in 60.7% of invocations at the non-inlined call sites. Adding a
second level of calling-context information increases this to 72.2%. This sug-
gests that calling-context-aware receiver-type profiling may be beneficial for the
implementation of dynamic-language interpreters.

Consistent with these findings, the most significant peak performance speedup

12The profiler introduces an average overhead of factor 68 for exact profiling, and 66% for
sampling with a rate of 1/1000.

44 3.4 Enabling New Tools

in a recent trace-based JIT compiler for Java was achieved for jython (factor
of 1.59) [41]. Performing the above analysis based on the currently available
inlining decision logs is simply not possible. Using our approach, we were able
to quickly create a tool that helps a compiler developer direct his or her efforts,
instead of blindly following intuition.

3.4.3 Compiler Testing Framework

Unit testing is considered best practice in any serious software development
project. When developing a dynamic compiler, the various optimizations oper-
ating at the IR level are perfect candidates for unit testing—to ensure that the
optimizations never produce incorrect code. However, compilers always perform
many optimizations, often repeatedly and in multiple passes, because transforma-
tions performed by some optimizations may enable other optimizations to yield
better results. Therefore, in addition to individual optimizations, the developers
should be also able to test whether the expected synergy between optimizations
actually occurs. Yet such tests are difficult to write at the IR level; it may be
difficult to specify what the input and the result should be.

It is considerably easier to test the synergy between specific optimizations
by executing the compiled code and checking if it produces an expected output.
Currently, this approach is only able to detect incorrect results. Results that are
merely suboptimal, because some of the expected optimizations did not happen,
or because the expected synergy between optimizations did not materialize, will
not be detected.

We can improve assertion-based testing using our approach, allowing the
developers to specify the test input and the expected results using normal (Java)
code instead of having to craft instances of the post-optimization IR. The test
input (target code), on which the optimizations should be performed, is compiled
and executed on the JVM, and when compiled by the dynamic compiler, it exposes
the compiler decisions made at critical locations. A test case would then assert
decisions to be made at concrete locations, e.g., expecting a particular allocation
to be converted to a stack allocation, or expecting that certain callsites will be
inlined.

Based on this idea, we built a testing framework to simplify testing of compiler
optimizations and the combinations thereof. A high-level overview of the frame-
work is shown in Figure 3.10. The input to the framework consists of the target
code, the test case, and (optionally) the profiler code. The target code is normally
compiled and executed. For simple test cases, the target code will typically use
the methods of the compiler decision query API (c.f. Table 3.2) directly. For test

45 3.4 Enabling New Tools

Dynamic Compiler Testing Framework

Target JVM

① Warmup

Interpreted
Mode

② Profiling

Compiled
Mode

Random
Generator

Testing Controller

In
st

ru
m

en
to

r

P
ro

fil
er

P
ro

fil
in

g
Tr

ig
ge

r

Te
st

 C
as

e
Ta

rg
et

 C
od

e

Random
Generator

③ Validation

Expected  
Result

Figure 3.10. Overview of the dynamic compiler testing framework

cases requiring complex target code, the test will typically use a profiler, i.e., a
specialized dynamic analysis focused at a specific optimization. The profiler will
instrument the target code automatically when it is loaded by the JVM. The test
case triggers the execution of the target code and captures the expected results in
the form of assertions. For simple target code, or generally when it is possible
to determine the expected result value exactly, the assertions will test for that
value. For target code in form of large programs (such as the benchmarks from
the DaCapo suite), determining the expected result value exactly may be difficult,
therefore the assertions may expect the result value to be in a certain range.

The test execution has three major phases: warmup, profiling, and validation.
During the warmup phase, the target code executes in the interpreted mode,
mainly to collect internal profile information needed by the dynamic compiler.
When the target code is compiled by the dynamic compiler, a trigger in the
target code switches the test execution into profiling phase, which exercises the
optimized target code and collects information on the decisions made by the
dynamic compiler. The target code may exercise more than one code path, e.g.,
by using a random number generator to select certain code paths with predefined
probability, which is especially useful for synthetic target code. Finally, during
the validation phase, the results from the actual profile are compared with the
expected values to determine the test result. If the target program is probabilistic,
the comparison of the profiles should take into account the expected probabilities.

Our testing framework is built as an abstract base test class on top of JUnit.
During test setup, the framework triggers the execution of the warmup operation,
which causes the target code to be loaded by the JVM. If a profiler is used, the target

46 3.4 Enabling New Tools

1 /** Framework base class. */
2 abstract class JITTestCase extends TestCase {
3 /** Repeatedly invoke warmup()
4 until isWarmedUp() returns true. */
5 @Before
6 public final void warmUpTarget() { ... }
7 /** Returns TRUE with the given probability. */
8 protected boolean likely(double probability) { ... }
9 /** Warmup operation. */

10 protected abstract void warmup();
11 /** Returns TRUE if more warmup is needed. */
12 protected abstract boolean isWarmedUp();
13 }
14
15 /** The test case: Partial Escape Analysis. */
16 class PEATestCase extends JITTestCase {
17
18 static final double PROB = 0.8;
19 static final int ITERATIONS = 10000;
20 static final double EPSILON = 0.02;
21 static int cnt = 0;
22
23 protected void warmup() { A.foo(likely(PROB)); }
24 protected boolean isWarmedUp() { return cnt > 0; }
25
26 @Test
27 public void testPartialEscape() {
28 cnt = 0;
29 for (int i = 0; i < ITERATIONS; i++) {
30 A.foo(likely(PROB));
31 }
32 assertEquals(((double) cnt)/ITERATIONS, PROB, EPSILON);
33 }
34 }
35
36 /** The target code. */
37 class A {
38
39 static void foo(boolean invokeBar) {
40 A a = new A();
41 DelimitationAPI.instrumentationBegin(PRED);
42 if (CompilerDecision.isMethodCompiled()) {
43 PEATestCase.cnt++;
44 }
45 DelimitationAPI.instrumentationEnd();
46 if (invokeBar) { a.bar(); }
47 }
48 /** This method will not be inlined. */
49 void bar() { ... }
50 }

Figure 3.11. Example of a simple Partial Escape Analysis test.

47 3.5 Discussion

code will be automatically instrumented. During warmup, the target methods use
the isMethodCompiled() intrinsic as a guard to avoid profiling the target methods
during interpreted execution. While warming up the target code, the test setup
code polls a test-specific monitor to determine whether more warmup activity is
needed. After the target code is warmed up, the test execution progresses to the
profiling phase for a fixed number of target method invocations before advancing
to the validation phases which checks the results. The code for both the profiling
and the validation phases is located in a single test method identified by the
@Test annotation.

To demonstrate the usage of the testing framework, we present an example
intended to test the results of PEA. The code in Figure 3.11 shows the abstract
base class providing the necessary support for the dynamic compiler test cases
(Line 1–13), the actual test case (Line 15–34), and the target code (Line 36–50)
with the inlined profiling code surrounded by invocations of delimitation API
methods (Line 41–45), which can be delegated to a dedicated profiler.

Using a similar test, we discovered a subtle bug13 where a later optimization
pass reverted the optimization done by Graal’s PEA. Some bugs may only appear
when a certain combination of optimizations is applied at the same time. For
example, instead of invoking the target method directly, a test case can invoke
another method to repeatedly invoke the original target method within a for loop.
This may trigger the application of both inlining and loop unrolling optimizations.
We discovered another subtle bug14 when the previous test case was positioned
in a loop. In line with best practices, such test cases should become part of a
project’s test suite to avoid regression in future versions.

3.5 Discussion

Below we discuss the benefits and limitations about our approach.

Applicability and ease of use. Our approach can be easily integrated into existing
tools and profilers for improved accuracy. For example, in the case of the allocation
profiler, one only needs to wrap the original instrumentation code with invocations
of the delimitation API methods to avoid over-profiling of allocations.

Our approach also simplifies implementation of new profilers that focus on
the runtime behavior of code optimized by the dynamic compiler. The query

13A fix can be found at http://hg.openjdk.java.net/graal/
graal-compiler/rev/1f4c9729c9f0

14A fix can be found at http://hg.openjdk.java.net/graal/
graal-compiler/rev/c215dec9d3cf

http://hg.openjdk.java.net/graal/graal-compiler/rev/1f4c9729c9f0
http://hg.openjdk.java.net/graal/graal-compiler/rev/1f4c9729c9f0
http://hg.openjdk.java.net/graal/graal-compiler/rev/c215dec9d3cf
http://hg.openjdk.java.net/graal/graal-compiler/rev/c215dec9d3cf

48 3.5 Discussion

intrinsics API allows the profiler to determine the actual runtime path taken by
specific operations. For instance, an allocation profiler can find out where an
object is allocated on the heap (i.e., in the TLAB or in the Eden space). A lock
profiler can query the runtime behavior upon lock acquisition (e.g., recursive
locking, biased locking, epoch expired).

Previously, writing such profilers required direct modification of the dynamic
compiler to insert the appropriate profiling logic, which in turn required certain
familiarity with the VM internals. Each tool required a tool-specific VM version,
and making changes to a tool forced a recompilation of the VM. In contrast, our
approach allows developers to create such profilers with widely used bytecode
instrumentation techniques. Even though certain familiarity with compiler op-
timizations is assumed, our approach does not significantly change the level of
abstraction the tool developer deals with, compared to having to deal with VM
implementation details of production-level VMs.

Our approach is also applicable in other contexts, not just instrumentation
code; the queries can be made directly in the source code of the base program, as
shown in Figure 3.11.

Improved profiler accuracy. In general, tools based on bytecode instrumentation
inflate the base-program code and introduce additional dependencies on base-
program objects. This perturbs the results of analyses such as PEA, and prevents
optimizations such as inlining, scalar replacement, or code motion in general,
that would otherwise be performed on the base-program code. Our approach
eliminates this problem for all such cases, while requiring only minor changes
to existing tools. Consequently, our approach improves the accuracy of profilers
that are inherently susceptible to this kind of observer effect. We demonstrate
and quantify this improvement in Section 3.3, where the ability to accurately
observe the allocation behavior of applications running on a state-of-the-art VM
is extremely important, e.g., for modeling the impact of garbage collection on
application performance [66].

Obviously, our approach is not a general solution to all kinds of observer
effects. We only avoid perturbations of the dynamic compiler’s optimization
decisions, and make the profiler aware of the applied optimizations. When it
comes to external metrics such as wall clock time of method executions, profilers
will still suffer from the observer effect due to the execution overhead of the
instrumentation code, but that can be mitigated by sampling techniques.

Testing dynamic compiler optimizations. Finding a performance bug in a dy-
namic compiler is difficult, because there is nothing obviously wrong but an
optimization not being activated. Reporting such a bug is also difficult, because

49 3.5 Discussion

the circumstances may be complex and difficult to describe, which subsequently
impairs the ability of a compiler developer to reproduce the bug. However, having
a test case that showcases a bug is an entirely different matter. The testing frame-
work based on our approach allows writing test cases that help reproducing and
locating such performance bugs in a dynamic compiler. The test cases can be also
used to document the expected behavior of specific optimizations, e.g., inlining
decisions at specific call sites, and in general optimizations that use different
runtime paths to improve common-case performance. The framework can be also
used by developers who care about performance of an application running in a
VM with a dynamic compiler. They can write performance test cases to check
whether certain parts of the application are optimized as expected.

Since our approach focuses on dynamically compiled code, the testing frame-
work requires an initial warmup phase to exercise the base program code in
interpreted (or baseline-compiled) mode. In comparison to unit testing that pri-
marily checks functional correctness, our approach requires longer test execution
time.

Performance impact. Our approach does not introduce any overhead to the
execution of the analysis code, nor does it aggravate the (in)efficiency inherent
to a particular analysis. However, in some circumstances, our approach may
improve the performance of a particular profiler by filtering out unnecessary
profiling sites, such as stack allocations in the case of the allocation profiler. Our
approach is fully compatible with the sampling technique, which helps improve
the performance of heavy profilers.

Our approach may affect dynamic compilation time. On the one hand, it
requires additional compilation phases to extract, reconcile, and splice the ICGs
back into the IR. On the other hand, it decreases the complexity of the base-
program IR by extracting the ICGs. In practice, the possible extra compilation
overhead introduced by our technique is negligible compared to the overhead
caused by many instrumentation-based profilers.

Implementation. The proposed approach, including the query intrinsics API,
is implemented in Oracle’s Graal compiler [28]. The implementation currently
relies on the explicit marking of the inserted instrumentation code. To relieve the
developer from having to care about marking the boundaries of inserted instru-
mentation code, we have modified the DiSL [70, 68] instrumentation framework
to automatically insert the necessary delimitation API invocations.

Our current implementation targets execution of code produced by an optimiz-
ing dynamic compiler, i.e., the query intrinsics receive special handling only when
the code is compiled. The interpreter is left unmodified, therefore when executing

50 3.6 Summary

in interpreted mode, the query intrinsics return defaults that are adequate for
the interpreter. In general, certain optimizations may be performed by a baseline
compiler. The support for handling the query intrinsics needs to be implemented
in these compilers depending on the optimizations they perform. The imple-
mentation effort would be reduced in runtimes employing a single optimizing
compiler with support for different optimization levels, such as Jikes RVM.

3.6 Summary

In this chapter we present a new approach to make inserted profiling code explicit
to the dynamic compiler and to allow the inserted code to query runtime path
decisions in the optimized compiled code, enabling the collection of accurate
profiles that faithfully represent the execution of a base program without pro-
filing (w.r.t. the applied optimizations). We demonstrate the benefits and the
applicability of our approach with case studies in different scenarios.

On the one hand, our approach allows improving the accuracy of existing pro-
filers, which typically only need minor modifications to wrap the instrumentation
with invocations of the delimitation API methods. This application is supported
by allocation profiling, object lifetime analysis, and callsite profiling.

On the other hand, our approach enables new kinds of profilers that allow for
gathering information on the effectiveness of dynamic compiler optimizations.
This application is supported by inlining profiling and calling-context-aware
receiver-type profiling, which show that our analysis-agnostic approach makes
it easy for, e.g., language implementers to quickly create analyses that help in
deciding which optimizations are worth pursuing, or what would be the effect of
particular context information in certain optimizations.

Finally, our approach eases the development of performance testing tools,
supporting both compiler implementers and application developers who rely on
particular dynamic compiler optimizations for critical parts of their application
code. This application is supported by the compiler testing framework, which
presents a novel framework that enables writing simple test cases for individual
compiler optimizations without interfering with the way the dynamic compiler
combines these optimizations. This allows discovering performance bugs in
the dynamic compiler that frequently occur due to the interplay of different
optimizations, and that are generally difficult to detect, reproduce, and fix. Thanks
to our testing framework, we discovered and reported two performance bugs in
Graal that were subsequently fixed by the Graal team.

Chapter 4

Intermediate-Representation
Profiling

In this chapter, we present our approach to profile IR-level operations. We
start with the motivation of this approach in Section 4.1. We then discuss the
general technical challenges and the framework design in Section 4.2. We present
our approach in Section 4.3 and demonstrate its applicability in Section 4.4.
An assessment of the strengths and limitations of our approach can be found
in Section 4.5.

4.1 Motivation

Instrumentation is a commonly adopted technique for developing profilers. Pre-
vailing instrumentation techniques targeting programs running on the JVM can
be divided into bytecode instrumentation and binary instrumentation. Yet, both
techniques suffer from limitations that cannot be easily addressed.

On the one hand, tools based on bytecode instrumentation cannot precisely
capture the occurrence of IR-level operations such as memory barriers or deopti-
mizations. One may mimic the profiling of IR-level operations by intercepting
their originating bytecodes. For example, the FastTrack data-race detector instru-
ments each volatile field-access bytecode to emit memory-barrier events [34]. It
addresses the problem of false positives of prevailing data-race detectors such as
Eraser [86] on programs that rely on barrier synchronization. With the assistance
of our accurate bytecode profiling technique presented in Chapter 3, the inserted
code will be adapted to compiler optimizations. However, this approach may
result in an incomplete profile, as it is not possible to intercept IR-level operations
that do not have an associated originating bytecode. For example, the compiler

51

52 4.2 Framework Design

may insert a memory barrier upon exit of an inlined constructor, for ensuring safe
publication. Another example is the triggering of deoptimization, which does not
correspond to any specific bytecode pattern.

On the other hand, tools based on binary instrumentation often lack a mapping
from the collected profile of program behavior at the binary level to higher-level
operations. Because of various compiler optimizations, the emitted binary code
may be significantly different from the input bytecode in terms of code structure.
Moreover, information may be lost when lowering a high-level operation to a
lower-level operation. For example, it is difficult to map a memory access to the
access of a field of a particular type. As a consequence, the resulting profile is
often not actionable at the source-code level.

To fill the gap between bytecode instrumentation and binary instrumentation,
we introduce a technique to profile IR-level operations used during dynamic
compilation. We present an easy-to-use event-based framework, which allows a
profiler to register callback methods that will be invoked when the emitted code of
the IR-level operation is executed. Our technique enables the combination of IR-
level profiling with bytecode-level instrumentation. We implement our approach
to IR-level profiling in Oracle’s Graal compiler, together with the accurate bytecode-
level profiling technique discussed in Chapter 3.

4.2 Framework Design

Before presenting the details of our IR profiling framework, we discuss several
challenges that need to be addressed.

Life cycle of IR nodes. Unlike bytecode or machine code that are static and fixed,
an IR node has a life cycle during compilation, because it can be eliminated or
replaced by other nodes. A general observation is that an IR node representing a
high-level concept will be lowered to a subgraph consisting of numerous IR nodes.
Our accurate profiling technique (Chapter 3) presents a solution for tracking node
elimination or replacement. To complement this technique, our infrastructure
performs the instrumentation at the last optimization phase within the life cycle of
an IR node. During instrumentation, we attach the inserted code to an individual
IR node as an ICG, and rely on the accurate profiling technique to handle the
reconciliation and inlining of the ICG.

Re-entrance of the inserted code. Because the inserted code is subject to com-
pilation before instrumentation, its own IR representation may also contain the
targeted operation. This issue can be addressed by not instrumenting the inserted

53 4.2 Framework Design

code itself. However, the inserted code may also invoke other methods. If such a
method is compiled and instrumented, it may result in an infinitely recursive in-
vocation of the inserted code. Our infrastructure provides a dedicated mechanism
to prevent such infinite recursions.

Efficiency and compactness of the inserted code. If the target operation is com-
mon, the emitted machine code may be greatly inflated due to the instrumentation.
Thus, efficiency and compactness of the inserted code has to be taken into con-
sideration. While offering freedom for the profiler developers to write arbitrary
instrumentations, our infrastructure applies various optimizations, including es-
cape analysis, partial evaluation, and dead code elimination on the inserted code.
In many cases, these optimizations significantly reduce the size of the inserted
code.

While these general challenges have to be addressed in the implementation,
we now focus on desired properties of the programming model for IR profiling.
Below, we motivate the main design choices besides using IR-level operations as
profiling targets.

High-level programming model. Although targeting IR-level operations, we
aim at a high-level programming model for describing IR instrumentations, to
accelerate the development of new profilers. That is, the developer can profile
the operation represented by an IR node, without the knowledge of the IR node
per se. To this end, our infrastructure offers the same level of abstraction as the
IR in the form of simply events (having a small, easy-to-use interface) that are
decoupled from the corresponding IR nodes. Context information specific to the
IR-level operations is included within the events. For subscribing to an event, the
profiler developer only needs to designate a callback method in the profiler.

Association of an IR event with its originating bytecode. A key benefit that
differentiates IR-level profiling from binary instrumentation is the ability to trace
an IR back to its originating bytecode (if any). Such mapping information is
available via tracking node transformation during dynamic compilation, but is
discarded in the emitted binary code. The originating bytecode can be useful for
locating the hotspot of certain IR-level operations in the bytecode. For all IR-level
events, our infrastructure provides access to the originating bytecode. In case
of IR-level operations inserted by the dynamic compiler, a predefined constant
indicates the absence of an associated bytecode.

Composition of bytecode-level and IR-level profiling. By invoking the same
profiler both from a bytecode instrumentation and from a callback method for IR
profiling, we enable the composition of two instrumentation techniques within one

54 4.3 Approach

profiler. For example, bytecode-level profiling can be used to maintain a calling-
context representation to store counters for the observed IR-level operations in a
calling-context-sensitive manner. Even though the two techniques are decoupled,
the bytecode instrumentation may perturb IR-level profiling, if the dynamic
compiler cannot distinguish the code inserted by a bytecode instrumentation
from the base-program code. Our framework guarantees that if a tool applies
the accurate bytecode profiling technique presented in Chapter 3, it will avoid
IR-level profiling within all inserted instrumentation code.

4.3 Approach

In this section we present our approach to profiling at the IR level in detail. We
start with the programming model of our event-based IR profiling framework
(Subsection 4.3.1), followed by an explanation of its implementation (Subsec-
tion 4.3.2). We then present the architecture of our approach (Subsection 4.3.3).
Finally, we discuss optimizations on the IR instrumentation (Subsection 4.3.4).

4.3.1 Programming Model

The key element of our event-based IR profiling framework is IR event, which can
be subscribed by a profiler to get notified of the occurrence of certain IR-level
operations. The IR event also serves as a data container for passing VM-internal
or compiler-internal information to the profiler. In our programming model, IR
events are standard Java classes implementing the IREvent interface. The internal
context information is then stored in instance fields. IREvent also offers methods
to access the originating method and bytecode index of the corresponding IR-level
operation.

We create an IR event for each IR node type in the Graal compiler. Table 4.1
summarizes a selective list of IR events, along with their context information.
As a running example, Figure 4.1b presents the MemoryBarrierEvent class. It
contains an instance field of type int for indicating different kinds of barriers.

To be able to profile an IR event, the profiler needs to designate an IR callback.
The IR callback is a static method annotated with @IRCallback. Its method body
is used as a template that is instantiated and inlined at each corresponding IR
node. Any profiling routine that the IR callback invokes should be included in the
bootstrap classes, to ensure the routine’s visibility in any other package, including
those from the Java class library. The target IR event is specified in the event
attribute in the @IRCallback annotation. The IR callback may include the IR

55 4.3 Approach

Event Description Field

Control: Split&Merge

IfEvent Split into two paths.

MergeEvent Merge of multiple paths.

SwitchEvent Switch amongst multiple paths.

Control: Invocation

InvokeEvent Invocation of a Java method. The “descriptor”
field indicates the identifier of the method.

descriptor: String

NativeCallEvent Invocation of a native method. The “descriptor”
field indicates the identifier of the method.

descriptor: String

Control: Loop

LoopBeginEvent Entrance of a loop.

LoopBackEdgeEvent Back-edge of a loop.

LoopExitEvent Exit of a loop.

Control: Runtime

DeoptimizationEvent Deoptimization. The “action” field encodes the
deoptimization action and the “reason” field en-
codes the deoptimization reason.

action: int
reason: int

SafePointEvent Safe point.

Data: Allocation

NewArrayEvent Array allocation. The “elemType” field indicates
the element type of the allocated array.

elemType: Class

NewInstanceEvent Instance allocation. The “type” field indicates
the type of the allocated instance.

type: Class

Data: Consistency

ReadAndAddEvent Atomic read&add operation.

ReadAndWriteEvent Atomic read&write operation.

CompareAndSwapEvent Atomic compare&swap operation.

MemoryBarrierEvent Memory barrier. The “barrierKind” field encodes
the type of the memory barrier.

barrierKind: int

MonitorEnterEvent Entrance of a monitor. The “lock” field indicates
the object on which an exclusive lock is obtained.

lock: Object

MonitorExitEvent Exit of a monitor. The “lock” field indicates the
object on which an exclusive lock is released.

lock: Object

Table 4.1. A selective list of IR events in our framework. The third column
corresponds to the internal context information carried by the IR event.

56 4.3 Approach

1 public interface IREvent {
2 default String originatingMethod() { ... }
3 default int originatingBytecodeIndex() { ... }
4 ...
5 }
6
7 @Target(ElementType.METHOD)
8 public @interface IRCallback {
9 Class<? extends IREvent> event();

10 }

(a) Definition of IREvent and @IRCallback.

1 public class MemoryBarrierEvent implements IREvent {
2 private int barrierKind;
3 public int getBarrierKind() { return barrierKind; }
4 ...
5 }

(b) Definition of MemoryBarrierEvent.

1 public class MemoryBarrierProfiler {
2 @IRCallback(event = MemoryBarrierEvent.class)
3 static void callback(MemoryBarrierEvent e) {
4 profile(e.getBarrierKind());
5 }
6 static void profile(int barrierKind) {
7 // profile number of barriers per kind
8 }
9 }

(c) A profiler subscribing to MemoryBarrierEvent.

Figure 4.1. MemoryBarrierEvent and a profiler subscribing to it.

event as formal parameter and access the contents of the IR event within its body.
The specified formal parameter will be type-checked by our framework to ensure
the validity of the IR callback.

Figure 4.1c demonstrates a simple memory-barrier profiler that declares an
IR callback. The callback method is annotated with @IRCallback that is parame-
terized by MemoryBarrierEvent. This indicates that the profiler is listening to
MemoryBarrierEvent. Furthermore, the IR callback receives a formal parameter
of type MemoryBarrierEvent. The barrier kind carried by the input event instance
is then passed to a profiling method.

Even though the developer may freely compose IR callbacks, there are two
general guidelines that help improve accuracy and performance of an IR profiler.
Firstly, each IR callback has to be thread-safe. Because the IR event can be
triggered from multiple threads, the developer needs to employ thread-local data

57 4.3 Approach

structure, concurrent data structure, or proper synchronization to ensure the
correctness of the profile. Secondly, the IR callback should be short. Otherwise, if
the targeted IR-level operation occurs frequently, the emitted machine code would
be significantly inflated by the instrumentation, increasing compilation time and
occupying a larger part of the limited code cache. If the profiler contains complex
operations, a good practice is to create a separate profiling method instead of
squeezing all the code into the IR callback. However, for simple counter-based
profilers, it is more beneficial to embed the incrementing of the counter within
the IR callback, so as to avoid the overhead of extra method invocations and
bypass activations in the callbacks.

With respect to the composition of IR-level and bytecode-level profiling, while
these techniques offer different mechanisms for emitting events, they can share the
same profiler backend. Hence, one scenario is to use IR-level profiling for updating
custom software performance counters, and to use bytecode-level profiling as the
consumer of those performance counters.

The composition of both profiling techniques reveals two issues concerning
the accuracy of the profile. Firstly, the code inserted by bytecode instrumentation
as well as its callees are subject to IR-level profiling, which may result in over-
profiling. To tackle this issue, we apply the mechanism for bypassing IR-level
profiling on the bytecode instrumentation marked by the delimitation API methods
from Table 3.1. Implementation details will be discussed in Subsection 4.3.2.
Secondly, one may apply both profiling techniques to emit the same kind of
events to achieve full code coverage both in the interpreter and in the compiled
code. Consequently, the compiled code may emit redundant events both from the
bytecode instrumentation and from the IR-level instrumentation. The use of the
isMethodCompiled intrinsic presented in Chapter 3 allows one to avoid emitting
bytecode-level events in the compiled code.

4.3.2 Implementation

While the IR-event definitions are decoupled from the concrete IR, the underlying
implementations heavily depend on the dynamic compiler and its IR. We hereby
base the discussion on a graph-oriented IR in SSA form, with optimizations
implemented as IR graph transformations.

To provide library support for an IR event, our framework demands a speci-
fication that defines the associated IR node type and the instantiation of the IR
event. The associated IR node type is used both for selecting instrumentation
locations and for determining the timing of the instrumentation. As discussed
previously, each IR node type has its own life cycle. Therefore, we maintain a

58 4.3 Approach

1 // Instantiation of the IREvent
2 MemoryBarrierEvent newEvent = new MemoryBarrierEvent();
3 newEvent.barrierKind = ... // The init value is provided by
4 // the corresponding specification.
5 // Inlined IRCallback
6 MemoryBarrierProfiler.profile(newEvent.getBarrierKind());

Figure 4.2. Pseudo code of the instrumentation.

mapping from each IR node type to the last optimization phase within its life
cycle. Our framework inserts an instrumentation before the mapped phase.

The instrumentation inserts a subgraph at each IR node that is associated with
the target IR event. The inserted code consists of two parts: the instantiation of
the IR event and the method body of the IR callback. If applicable, the formal
argument of the IR callback (i.e., the event instance) will be type-checked to ensure
consistency with the associated event. Upon creation of the instrumentation
template, any reference to the formal parameter in the IR callback will be replaced
by the allocated IR event. For example, Figure 4.2 illustrates the pseudo code of
the instrumentation derived from the IR callback in Figure 4.1c. The reference to
the formal argument e in the IR callback is replaced by the allocated newEvent.

Our framework avoids recursive entrance of the callback method using a
per-thread “bypass” flag [72]. If we detect a method invocation in the IR callback
that cannot be inlined, we activate the bypass by wrapping the inserted code with
a test against the value of the bypass flag. This flag is set before executing the
inlined IR callback and cleared afterwards. Consequently, code executed in the IR
callback will not trigger any callback. The bypass flag is also externally accessible,
for bypassing the IR callback in certain situations such as for code inserted by a
bytecode instrumentation.

Our framework reuses the ICG-related techniques described in Chapter 3.
During IR instrumentation, we attach an ICG (which is transformed from the IR
callback preceded by the IR-event instantiation code) to the target IR node. In
general, because the instrumentation is to indicate the successful execution of
the target IR node, we create an ICG parameterized with PRED. In the cases
of jump nodes or termination nodes such as deoptimization, we create an ICG
parameterized with SUCC. Once created, the ICG will be reconciled according
to the compiler optimizations and eventually spliced back into the base-program
IR, as presented in Chapter 3.

59 4.3 Approach

}
 Insert Instr. Phase

Life Cycle
IREvent0 Spec

ICGIRCallback

Compiler Phase Suite

 Create Instr. Template Attach Instr.

Assoc. IR Node Type

Figure 4.3. Overview of the event-based IR profiling framework.

4.3.3 Architecture

Figure 4.3 gives an overview of the IR profiling framework. During initialization,
our framework first looks up the IR node type associated with the specified IR
event, and inserts an instrumentation phase preceding the last optimization phase
within the life cycle of the type (step 1). Then, it merges both the IR-event
instantiation logic and the IR callback into an instrumentation template (step 2).
Upon dynamic compilation, the instrumentation phase searches for the IR nodes
of the associated types and attaches an ICG to them; the ICG is instantiated from
the instrumentation template (step 3). Eventually, the ICGs are spliced back into
the base program IR before emitting the machine code.

4.3.4 Optimizations on the Inserted Code

Similar to other instrumentation techniques, an IR instrumentation may result
in greatly inflated code. Besides suggesting developers to keep IR callbacks
concise by extracting profiling logic into a separate method, we also perform
various optimizations on the instrumentation. One very beneficial optimization
is escape analysis on the instantiated IR event. If the allocated IR event does
not escape the IR callback, our framework is able to eliminate the allocation and
the initialization of the IR event. For example, Figure 4.4 illustrates the pseudo
code of the instrumentation after performing escape analysis on Figure 4.2. The
eventual instrumentation no longer contains the allocation and initialization of
MemoryBarrierEvent.

60 4.4 Evaluation

1 int barrierKind = ... // The init value is provided by
2 // the corresponding specification.
3 // Inlined IRCallback
4 MemoryBarrierProfiler.profile(barrierKind);

Figure 4.4. Applying escape analysis on the instrumentation from Figure 4.2.

Another beneficial optimization is partial evaluation [51, 89] of the instanti-
ated instrumentation. Because many IR events carry constant information, there
is the potential for optimizing the instrumentation using the contents of the con-
crete target IR node. Especially, if the designated IR callback contains branching
statements on such constant information, our framework is able to eliminate dead
branches and eventually the corresponding condition tests.

We rely on partial evaluation to create embedded compiler-time filters. For
example, even though the dynamic compiler should insert memory barriers pre-
ceding or succeeding volatile filed accesses for implementing the Java Memory
Model (JMM) [80], part of these barriers amount to no-ops especially on proces-
sors without out-of-order load/store [63]. The dynamic compiler still places the
IR nodes that represent memory barriers for all barrier kinds in the architecture-
independent front-end. These IR nodes will then be evaluated based on the barrier
kind in the architecture-dependent back-end. For example, on the x86_64 archi-
tecture, all barriers except those separating a store operation from subsequent
load operations need not be inserted. Thus, we create an embedded filter and
profile only the materialized memory barriers, as shown in Figure 4.5a. When
the instrumentation is instantiated using a memory barrier that separates a store
operation from subsequent load operations, the resulting instrumentation is the
code within the if block (Figure 4.5b). Otherwise, the resulting instrumentation
is empty (Figure 4.5c).

4.4 Evaluation

For our evaluation, we modify the StoreLoadBarrierProfiler from Figure 4.5a to
further categorize the executed barriers by their originating bytecode. It reports
the number of executed barriers in the compiled code per originating bytecode on
an x86_64 architecture, so as to detect the hottest locations with such expensive
memory operations. We profile selected benchmarks15 from the DaCapo 9.12

15We excluded the tomcat benchmark due to a well known issue (see http://sf.net/p/
dacapobench/bugs/68/). We also excluded the eclipse benchmark due to its incompati-
bility with Java 8.

http://sf.net/p/dacapobench/bugs/68/
http://sf.net/p/dacapobench/bugs/68/

61 4.4 Evaluation

1 public class StoreLoadBarrierProfiler {
2 @IRCallback(event = MemoryBarrierEvent.class)
3 static void callback(MemoryBarrierEvent e) {
4 if ((e.getBarrierKind() & STORE_LOAD) != 0) {
5 profileStoreLoad();
6 }
7 }
8 static void profileStoreLoad() {
9 // count StoreLoad barriers

10 }
11 }

(a) IR callback with compile-time filter that selects only memory barriers inserted
between a store operation and subsequent load operations. These memory barriers
are denoted as STORE_LOAD (0x04 in the Graal compiler), and are often combined
with those between a store operation and subsequent store operations (denoted by
STORE_STORE, 0x08), for implementing the Java Memory Model with respect to
volatile field writes.

1 StoreLoadBarrierProfiler.profileStoreLoad();

(b) Inserted instrumentation after a memory barrier for separating a store operation
and subsequent load operations.

1 // empty instrumentation

(c) Instrumentation on other memory barriers removed by partial evaluation.

Figure 4.5. Partial evaluation of the instrumentation.

suite and all benchmarks from the ScalaBench suite on a multi-core platform16.
We exclude the profile from the compiler threads and report the results for the
1st (startup) and the 15th (steady state) benchmark iterations.

Table 4.2 shows the collected results for DaCapo and Scalabench. We note a
varying difference between the startup and the steady-state iterations for indi-
vidual benchmarks. The reasons are twofold. Firstly, during the startup iteration
the benchmark code is in the least optimized form. With more methods being
compiled, the chance of triggering our IR profiler increases. Secondly, the startup
iteration may initialize the input for the whole benchmarking process. For ex-
ample, the fop benchmark fetches data from a zip file and stores the data in a
ConcurrentHashMap during the startup17. In general, the DaCapo benchmarks

16Intel Xeon E5-2680, 2.7 GHz, 8 cores, 64 GB RAM, CPU frequency scaling and Turbo mode
disabled, hyper-threading enabled, Oracle JDK 1.8.0_101 b13 Hotspot Server VM (64-bit), running
on Ubuntu Linux Server 64-bit version 14.04.1

17We observe executed barriers in ZipFile$ZipFileInputStream.close() and in Concurrent-
HashMap.putVal(Object,Object,boolean).

62 4.4 Evaluation

Benchmark 1st iteration 15th iteration

#Total #APP %APP #Total #APP %APP

D
ac

ap
o

avrora 422 0 0.0 0 0 0.0
batik 50 326 45396 90.2 98 694 96 893 98.2
fop 1924 0 0.0 0 0 0.0
h2 87 971 87949 100.0 97 725 93 723 95.9
jython 4688 919 486116 10.4 4360 693 420 539 9.6
luindex 104 0 0.0 11 243 0 0.0
lusearch 4 0 0.0 1903 0 0.0
pmd 14 845 0 0.0 10 391 0 0.0
sunflow 6 0 0.0 0 0 0.0
tradebeans 101 206 0 0.0 85 887 0 0.0
tradesoap 764 066 6764 0.9 920 517 15 660 1.7
xalan 10 627 0 0.0 81 471 0 0.0

Average 16.8 17.1

Sc
al

aB
en

ch

actors 20602 229 5 782267 28.1 22502 956 7155 007 31.8
apparat 972 148 728747 75.0 1109 886 801 213 72.2
factorie 2108 336 15.9 2719 342 12.6
kiama 281 044 46518 16.6 282 099 47 112 16.7
scalac 738 585 689629 93.4 726 018 716 094 98.6
scaladoc 552 692 523979 94.8 568 495 549 287 96.6
scalap 2258 0 0.0 12 527 4322 34.5
scalariform 101 945 93917 92.1 139 590 130 663 93.6
scalatest 123 883 0 0.0 63 911 12 154 19.0
scalaxb 24 489 45 0.2 33 849 0 0.0
specs 101 079 3 0.0 50 294 7045 14.0
tmt 3953 0 0.0 39 802 1551 3.9

Average 34.7 41.1

Table 4.2. Number of executed memory barriers for dynamically compiled code
in DaCapo and ScalaBench benchmarks. The APP subscript denotes memory
barriers originating from the application code instead of the Java class library.

execute significantly less barriers when compared to the ScalaBench benchmarks.
Especially, there are three workloads that do not execute a single memory barrier
in the steady state. On the contrary, the ScalaBench suite contains more workloads

63 4.5 Discussion

with considerable numbers of executed barriers.
Table 4.2 also shows the number and the proportion of executed barriers

derived from the application code (in contrast to the Java class library) for each
benchmark. For the startup iteration of DaCapo, the percentage of executed
barriers from application code is 16.8% on average. That is, most memory
barriers are executed in code of the Java class library, such as in the java.util.-
concurrent package. For the steady-state iteration of DaCapo, the percentage
of memory barriers executed in application code slightly increases to 17.1%. In
both the startup and the steady-state iterations, only 4 out of 12 benchmarks
execute memory barriers in the application code. In comparison, the average
percentages for ScalaBench are 34.7% and 41.1% for the startup and steady-state
iteration, respectively. Moreover, only a single benchmark executes no barrier in
application code in the steady-state iteration.

We analyze the hottest bytecodes reported by our profiler for each benchmark.
In particular, we find that in jython the memory barrier resulting from the volatile
field store at org.python.core.PyList.list_append(PyObject)#11 is executed
315089 times (85 182/s) in the steady state. Further manual analysis shows
that the corresponding volatile field is loaded only during sorting of the PyList,
which is rarely invoked. This breaks the assumption of the barrier-placement
strategy that the read accesses to a volatile field would outnumber the writes to
the field [63]. Our profiler helps identifying such situation where an alternative
placement strategy that issues the StoreLoad barriers before each volatile read
would be beneficial.

With respect to performance, the StoreLoadBarrierProfiler employs a
lightweight technique that maintains thread-local counters and increments them
once a MemoryBarrierEvent is received. Thanks to the optimizations we apply to
the inserted code, the instantiation of the MemoryBarrierEvent is eliminated and
the compile-time filter is evaluated based on the kind of the memory barrier. The
eventual inserted code is reduced to just a few extra memory-access instructions.
As a result, the profiler introduces only negligible overhead below 0.1%, even for
exact profiling.

4.5 Discussion

Below, we discuss the benefits and limitations about our approach.

Applicability. Our approach provides abstractions of the IR-level operations and
allows profiling them without knowledge of the underlying implementation of the
IR operations in the dynamic compiler. For example, one only needs to know about

64 4.5 Discussion

the concept of a memory barrier instead of the dedicated (and often complex) IR
representation (e.g., MembarNode representing a memory barrier in Graal’s IR).
Our approach offers profiling in an event-based manner. The developer can thus
focus on the analysis code and rely on our framework for the instrumentation.

Our approach also enables the composition of IR-level profiling and bytecode-
level profiling. This can be beneficial for binding IR-level metrics to the calling
context maintained by bytecode-level profiling. In addition, because our ap-
proach targets IR-level operations that do not exist during interpretation, it is
essential to combine bytecode-level profiling for covering the full program exe-
cution. For example, one may need to emit memory-barrier events both in the
interpreter and in the compiled code for data-race detection. In this case, the
isMethodCompiled intrinsic presented in Chapter 3 can be useful for excluding
the redundant bytecode-level profiling in the compiled code.

Extensibility. The implementation of the IR events is modular in the sense that
each IR event corresponds to a specification defining the associated IR node type
and the instantiation of the event. To extend the library with a new IR event,
we only need to add a new specification. In our framework, we enumerate all
IR node types within the Graal compiler and create an IR event for each type.
Yet, there is still room for extensibility in the future work. One possibility would
be to provide events representing IR nodes with certain traits. For example, for
detecting loop unswitching opportunities, the developer would subscribe to an
event representing a branch operation within a loop. Another possibility would
be to support events representing IR subgraphs of a particular structure (e.g.,
basic blocks at the IR level) instead of individual IR nodes.

Performance. In general, the performance of the custom IR callback (as well as the
profiling routine it typically invokes) does not depend on the event instantiation
code, which is generated by our approach and inlined at each instrumentation
site. However, the latter may significantly increase the memory usage and lead
to additional garbage collections. Thanks to the escape analysis performed on
the inserted code, allocations of the IR event can be avoided if the event instance
does not escape the inserted code. In practice, the IR event is often needed only
conceptually, and its carried internal information can be directly used after scalar
replacement. Moreover, whether an instrumentation is needed in a particular
code site can be evaluated during compilation by constructing branches based on
compile-time constants.

65 4.6 Summary

4.6 Summary

In this chapter we present an easy-to-use event-based framework for profiling
IR-level operations. Our framework provides an abstraction of each IR node in the
form of an event, and the developer only needs to register callbacks to subscribe to
these events. We demonstrate the usage as well as the internal implementation and
optimization with a profiler subscribing to MemoryBarrierEvent. Our framework
also enables the composition of IR-level profiling and bytecode-level profiling.

We use the running example of memory barrier profiler to conduct a simple
workload characterization study on the DaCapo and ScalaBench benchmarks. In
the next chapter, we will use a profiler subscribing to the DeoptimizationEvent
for conducting an empirical study on deoptimization behavior.

66 4.6 Summary

Chapter 5

Empirical Study on Deoptimization

In this chapter, we present an empirical study on deoptimization in a VM with
Graal. We start with the motivation of this study in Section 5.1. We discuss the
relevant background on speculation and deoptimization in Section 5.2. In Sec-
tion 5.3, we discuss the general deoptimization profiling result and analyze two
special cases with considerable amount of repeated deoptimizations. We then
present the alternative deoptimization strategies in Section 5.4 and evaluate them
in Section 5.5. An assessment of the strengths and limitations of our study can be
found in Section 5.6.

5.1 Motivation

Besides producing machine-code for the underlying hardware platform, the dy-
namic compiler is also in an ideal position to perform speculative optimizations
based on the collected profiling information. While profile-driven and feedback-
driven optimizations are not exclusive to managed platforms with dynamic com-
pilers, a dynamic compiler works with profiles that reflect the actual behavior of
the currently executing program. This provides the compiler with a more accurate
view of the common-case behavior which the compiler should optimize. If a
certain assumption about program behavior turns out to be wrong, the affected
code can be recompiled to reflect the new behavior. This allows the dynamic
compiler to pay less attention to uncommon execution paths, replacing them
with traps that switch from program’s machine code back to the virtual machine’s
(VM) runtime which then decides how to handle the situation. As a result, the
compiler needs to do less work and produces higher-density code for the common
code paths. Combined with aggressive inlining and code specialization based
on receiver type feedback, a dynamic compiler can optimize away a significant

67

68 5.1 Motivation

portion of the abstraction overhead commonly found in object-oriented programs
that make heavy use of small methods and dynamic binding.

The pioneering work by the authors of the SmallTalk-80 [26] and the Self-
93 [48] systems has laid down the foundations of modern dynamic compilers,
and sparked an enormous body of research [3] on techniques that make managed
language platforms fast, such as selective compilation [48, 59, 19, 60, 61], pro-
filing for feedback-directed optimization and code generation [101, 7, 110, 94],
or dynamic deoptimization and on-stack replacement [47, 82, 33, 58, 52]. As
a result, adaptive compilation and speculative optimization techniques are now
widely used. Ideally, speculative optimizations will always turn out to be right
and provide performance gains that outweigh the one-time cost in terms of com-
pilation time before the program terminates. In reality, some speculations in the
machine code will be wrong, and trigger deoptimization. Besides switching to
interpreted (or otherwise less optimized) execution mode, deoptimization may
also trigger recompilation of the affected code, thus wasting previous compilation
work and adding to the overall cost of compilation.

How often does this happen and for what reason? How much compilation
effort is wasted and what is the cost of speculative optimizations? What happens
when the compiled code triggers deoptimization? In fact, these aspects of specu-
lative optimizations have not been previously studied in the literature—unlike,
e.g., the trade-offs involved in selective compilation. We therefore analyze the
deoptimization behavior of code compiled by the Graal dynamic compiler and
the behavior of the VM runtime in response to the deoptimizations. Even though
Graal has not (yet) replaced the classic C2 server compiler, it is integrated in
Oracle’s HotSpot Virtual Machine and serves as the basis for the Truffle frame-
work for self-optimizing interpreters [104]. Truffle allows executing programs
written in modern dynamic languages on the JVM and generally outperforms
the original interpreters. Similarly to the classic C2 compiler, Graal performs
feedback-directed optimizations and generates code that speculates on receiver
types and uncommon paths, but is more aggressive about it. Unlike the C2 com-
piler, when Graal reaches a deoptimization site in the compiled code, it switches
back to interpreted mode and discards the machine code with the aim to generate
it again using better profiling information. The C2 compiler is more conservative
and in many cases discards the compiled code only after it triggers multiple
deoptimizations. The obvious question is then: which of the two approaches is
better, and how often programs actually violate the assumptions put in the code
by the dynamic compiler?

To answer this question, we characterize the deoptimization causes in the
code produced by Graal for the DaCapo [12], ScalaBench [88], and Octane [37]

69 5.2 Background

benchmark suites (Section 5.3). We show that only a small fraction (∼2%) of
deoptimization sites is triggered, most of which (∼98%) cause reprofiling. We
investigate the causes of two types of repeatedly triggered deoptimizations that
appear in the profile. We provide two alternative deoptimization strategies for the
Graal compiler. A conservative strategy, which defers invalidation of compiled code
until enough deoptimizations are observed (default HotSpot behavior not used by
Graal), and an adaptive strategy which switches among various deoptimization
actions based on a precise deoptimization profile (Section 5.4). We evaluate the
performance of both deoptimization strategies and compare them to the default
strategy used by Graal (Section 5.5). We show that the conservative strategy may
cause extra compilation work, while the adaptive strategy reduces compilation
work and provides statistically significant benefits to startup performance on a
single-core system with both static and dynamic languages.

5.2 Background

In this section we first provide background on the use of deoptimization in
speculative optimizations, and then complement it with details specific to the
Graal compiler.

5.2.1 Speculation and Deoptimization

Speculative optimizations are aimed at optimizing for the common case, which is
approximated using profiling data collected during program execution. Common
speculative optimizations include implicit null checks, uncommon conditional
branch elision, and type specialization. If a speculation turns out to be wrong,
deoptimization allows the VM to ensure that the program always executes correctly,
albeit more slowly.

Deoptimizations are usually triggered synchronously with program execution,
either explicitly by invoking a deoptimization routine of the VM runtime, or
implicitly, by performing an operation which causes a signal (e.g., segmentation
fault in the case of a null pointer) to be sent to the VM, which handles the signal
and switches execution to the interpreter. Deoptimizations can be also triggered
asynchronously at the VM level, when the program invalidates assumptions under
which it was compiled, e.g., when the second class implementing an interface is
loaded.

The ability to trigger deoptimization from compiled code allows the compiler
to avoid generating code that will be rarely used, e.g., code that constructs and

70 5.2 Background

throws exceptions, because exceptions should be rare in well-written programs.
This applies both to explicitly thrown exceptions as well as exceptions that can be
thrown implicitly by operations such as array access or division by zero. Based
on the profiling feedback, the dynamic compiler can apply a similar approach
to conditional jumps, replacing low-probability branches with a deoptimization
trigger. Hence, the compiler saves computing resources by avoiding code gener-
ation for the uncommon paths. Moreover, this approach helps speed up global
optimizations thanks to the reduced program state, and makes the generated
machine code more compact, resulting in better instruction cache performance.

Another common kind of speculative optimization relies on type feedback,
which allows the compiler to specialize code to most commonly used types.
For instance, the targets of a virtual method invocation may be inlined (or the
invocation can be devirtualized) if only a limited number of receiver types has
been observed at a particular callsite. The type-specific code will be guarded by
type-checking conditions, while a generic code path representing an uncommon
branch may trigger deoptimization to handle the invocation in the interpreter.

While deoptimization is handled by the VM runtime, the compiler needs to
provide the VM with details on how to handle it. This information is typically
provided in form of parameters passed to the invocation of the deoptimization
trigger routine in the generated code. For example, if recompilation of the
code that triggers a deoptimization is unlikely to make it any better, the VM is
instructed to just switch to the interpreter and leave the compiled code as-is. If
a deoptimization does not depend on profiling data and could be eliminated by
recompiling the code, the code is invalidated and the corresponding compilation
unit is immediately scheduled for recompilation. If a deoptimization was caused by
insufficient profiling information, besides invalidating the machine code, the VM
also attempts to reprofile the method thoroughly and recompile it later based on
the updated profile. To avoid an endless cycle of recompilation and deoptimization
for pathologic cases, per-method counters are used to stop recompilation of a
method if it has been recompiled too many times (yet did not eliminate the
deoptimization).

In state-of-the-art dynamic compilers the mapping between a deoptimization
reason and the corresponding deoptimization action is hard-coded. This makes
perfect sense for certain cases, when there is only a single suitable deoptimization
action. However, determining the most suitable action for situations in which the
deoptimization is caused by an incomplete profile is difficult. For instance, when
the compiler inlines potential callee methods based on the receiver type profile,
it inserts a reprofiling deoptimization trigger in the uncommon (generic) path
to cope with previously unseen receiver types. When encountering a very rare

71 5.2 Background

Graal Deopt Action Description HotSpot Deopt Action

None Do not invalidate the compiled code. none

RecompileIfToo-
ManyDeopts

Do not invalidate the compiled code and
schedule a recompilation if enough deop-
timizations are seen.

maybe_recompile

InvalidateReprofile Invalidate the compiled code and reset
the invocation counter.

reinterpret

InvalidateRecompile Invalidate the compiled code and sched-
ule a recompilation immediately.

make_not_entrant

InvalidateStop-
Compiling

Invalidate the compiled code and stop
compiling the outermost method of this
compilation.

make_not_compilable

Table 5.1. Deoptimization actions in the Graal compiler. The common prefix
of the corresponding HotSpot deoptimization actions (“Action_”) are omitted.

receiver type, deoptimization (including reprofiling) is triggered. However, due
to the (usually) limited receiver type profile space18, the newly collected profiling
information might not include the rare case at the time of recompilation. The
dynamic compiler will then either use the original invocation as the uncommon
path (if megamorphic inlining is supported), or not inline the callsite at all. In
both cases, the reprofiling and recompilation effort is wasted, and the recompiled
code may become even worse.

5.2.2 Deoptimization in the Graal Compiler

The Graal compiler makes heavy use of profile-directed speculative optimizations
and is thus more likely to exhibit deoptimizations. Because Graal only provides
the last-level compiler, it can only instruct the HotSpot runtime what action to
perform during deoptimization. The HotSpot runtime takes care of everything
else. The deoptimization actions used internally by Graal can be therefore directly
mapped to the deoptimization actions defined in the HotSpot runtime.

The possible deoptimization actions are summarized in Table 5.1. Apart from
the None action, which only switches execution to the interpreter, all other options
influence the compilation unit which triggered the deoptimization in some way.
Most of them invalidate the compilation unit’s machine code immediately, with

18-XX:TypeProfileWidth in the Oracle JVM, defaults to 2 in standard HotSpot runtime or 8 in
the Graal compiler.

72 5.2 Background

Deoptimization Reason Description Associated Action

None Absence of a relevant deoptimiza-
tion.

-

NullCheckException Unexpected null or zero divisor. None
InvalidateRecompile
InvalidateReprofile

BoundsCheckException Unexpected array index. InvalidateReprofile

ClassCastException Unexpected object class. InvalidateReprofile

ArrayStoreException Unexpected array class. InvalidateReprofile

UnreachedCode Unexpected reached code. InvalidateRecompile
InvalidateReprofile

TypeCheckedInliningViolated Unexpected receiver type. InvalidateReprofile

OptimizedTypeCheckViolated Unexpected operand type. InvalidateRecompile
InvalidateReprofile

NotCompiledExceptionHandler Exception handler is not compiled. InvalidateRecompile

Unresolved Encountered an unresolved class. InvalidateRecompile

JavaSubroutineMismatch Unexpected JSR return address. InvalidateReprofile

ArithmeticException A null_check due to division by
zero.

None
InvalidateReprofile

RuntimeConstraint Arbitrary runtime constraint vio-
lated.

None
InvalidateRecompile
InvalidateReprofile

LoopLimitCheck Compiler generated loop limits
check failed.

InvalidateRecompile

TransferToInterpreter Explicit transfer to interpreter. -

Table 5.2. Deoptimization reasons in the Graal compiler.

the exception of the RecompileIfTooManyDeopts action, which depends on a
profile of preceding deoptimizations, and only invalidates the compiled code if
too many deoptimizations are triggered at the same site or within the compilation
unit.

Even though the deoptimization action is fixed in the compiled code, the
HotSpot runtime rewrites the actual action either to force reprofiling or to avoid
endless deoptimization and recompilation cycles. If a recompilation is scheduled
for the second time for the same deoptimization site with the same reason,
the HotSpot runtime rewrites the action to InvalidateReprofile, which resets

73 5.2 Background

method’s hotness counters and causes it to be reprofiled. If the total number of
recompilations of any method exceeds a threshold, the HotSpot runtime rewrites
the action to InvalidateStopCompiling to prevent further recompilation of the
method.

To illustrate how Graal uses these deoptimization actions, Table 5.2 shows
the deoptimization reasons along with the associated actions as defined and used
throughout the Graal code base. The table reveals that the actions RecompileIf-
TooManyDeopts and InvalidateStopCompiling are not used as of Graal v0.1719.
This suggests that the compiler tries to keep full control over invalidation of
compiled code, and that it tries not to give up any optimization opportunity until
the HotStop runtime enforces certain actions.

Some of the deoptimization reasons are used with multiple actions, depend-
ing on the situation in which the deoptimization is invoked. For instance, the
OptimizedTypeCheckViolated reason is used when inlining the target of an inter-
face with a single implementation, and when optimizing instanceof checks. In the
former case, if a guard on the expected receiver type fails, the compiler invokes
the InvalidateRecompile action with the reason OptimizedTypeCheckViolated,
because it has produced the compiled code under the assumption that there is only
a single implementation of a particular interface. In the latter case, the compiler
checks against types derived from the given type that have been observed so
far. Because the occurrence of a previously unseen type indicates an incomplete
type profile, the compiler invokes the InvalidateReprofile action to get a more
accurate type profile. If the compiler knew that the previously unseen type was a
very rare case, it could invoke the None action. However, because encountering
a new type may also signify a phase change in the application, Graal uses the
InvalidateReprofile action.

Nevertheless, the mapping between deoptimization reasons and deoptimiza-
tion actions in the Graal compiler is hard-coded and represents the trade-offs
between startup and steady-state performance made by the compiler develop-
ers. Yet the HotSpot demands both information, to profile the occurrence of
each deoptimization reason per method, and to adapt the deoptimization action
according to the existing deoptimization profile. In the following sections, we
provide quantitative and qualitative analyses of how these decisions influence
the Graal compiler’s actual deoptimization behavior.

19https://github.com/graalvm/graal-core/tree/graal-vm-0.17

https://github.com/graalvm/graal-core/tree/graal-vm-0.17

74 5.3 Study of Deoptimization Behavior

5.3 Study of Deoptimization Behavior

In this section we analyze the deoptimization behavior of the HotSpot VM with
the Graal compiler when executing benchmarks from the DaCapo [12], Scal-
aBench [88], and Octane [37] benchmark suites. The individual benchmarks
are based on real-world programs written in Java and Python (DaCapo), Scala
(ScalaBench), and JavaScript (Octane), slightly modified to run under a bench-
marking harness suitable for experimental evaluation. The Python workloads are
executed by Jython, a Python interpreter written in Java, the Scala workloads are
compiled to Java bytecode, and the JavaScript workloads are executed by Graal.js,
a JavaScript runtime written in Java on top of the Truffle framework [104].

We first analyze the kind of deoptimization sites emitted by Graal and the
frequency with which they are triggered during execution, and then investigate
two specific cases in which the same deoptimizations are triggered repeatedly.

5.3.1 Profiling Deoptimizations

To collect information about deoptimizations, we implement a profiler based on
our IR-level profiling technique presented in Chapter 4. The profiler subscribes to
the DeoptimizationEvent and instruments each deoptimization site and reports
the number of deoptimizations triggered at that site during execution.

The identity of each deoptimization site consists of the deoptimization reason,
action, the originating method and bytecode index, and (optionally) a context
identifying the compilation root if the method was inlined. The information
encoded in the site identity along with the number of deoptimizations triggered
at the site allow us to perform qualitative and quantitative analysis of the de-
optimizations triggered in the compiled code produced by Graal. To this end,
we profile selected benchmarks20 from the DaCapo 9.12 suite, all benchmarks
from the ScalaBench suite, and selected benchmarks21 from the Octane suite on
a multi-core platform22.

We present the resulting profile from different perspectives. First we provide
a static break-down of the deoptimization sites and deoptimization actions found

20We excluded the tomcat benchmark due to a well known issue (see http://sf.net/p/
dacapobench/bugs/68/). We also excluded the eclipse benchmark due to its incompati-
bility with Java 8.

21We excluded the pdf.js benchmark due to an internal exception.
22Intel Xeon E5-2680, 2.7 GHz, 8 cores, 64 GB RAM, CPU frequency scaling and Turbo mode

disabled, hyper-threading enabled, Oracle JDK 1.8.0_101 b13 HotSpot Server VM (64-bit), running
on Ubuntu Linux Server 64-bit version 14.04.1

http://sf.net/p/dacapobench/bugs/68/
http://sf.net/p/dacapobench/bugs/68/

75 5.3 Study of Deoptimization Behavior

in the code emitted by Graal (Section 5.3.1). This is complemented by a dy-
namic view of deoptimization sites that are actually triggered during execution
(Section 5.3.1). Finally, we look at the most frequent repeatedly-triggered deopti-
mizations, because these are potential candidates for wasted compilation work
(Section 5.3.1).

Deoptimizations Sites Emitted

The profiling results of the emitted deoptimization sites are summarized in Ta-
ble 5.3 and Table 5.4. The top-level column groups represent the actions used at
the deoptimization sites. We only track three of the five possible deoptimization
actions, because Graal does not make use of the other two (c.f. Section 5.2). The
bottom-level columns correspond to the number of deoptimization sites invoking
a particular action and the fraction of the total number of sites.

In general, the number of deoptimization sites emitted during a benchmark’s
lifetime varies significantly, ranging from 2000 to 23000. For the DaCapo bench-
marks, 94.17% of the total deoptimization sites invoke the InvalidateReprofile
action, 3.23% just switch to the interpreter (action None), and 2.60% invoke the
InvalidateRecompile action. For the ScalaBench benchmarks, the compiler emits
a slightly higher proportion (95.44%) of the InvalidateReprofile deoptimization
sites and a lower proportion (1.16%) of the InvalidateRecompile sites. We at-
tribute this to the fact that the Scala language features are compiled into complex
call chains in the Java bytecode. During dynamic compilation, these callsites are
optimized with type guards that lead to InvalidateReprofile deoptimization sites.
To summarize, in standard Java/Scala applications the Graal compiler favors
speculative profile-directed optimizations, which invoke the InvalidateReprofile
deoptimization action in their guard failure paths.

For the Octane benchmarks, the compiled code of the Graal.js self-optimizing
interpreter contains a higher proportion (4.74%) of the InvalidateRecompile de-
optimization sites. One of the reasons for this difference is that language runtimes
implemented on top of the Truffle framework heavily utilize the Truffle API.
Because this API consists of many interfaces with a single implementation, the
compiled code for callsites invoking the Truffle API uses guarded devirtualized in-
vocations. Consequently, the (many) corresponding guard failure paths invoke the
InvalidateRecompile deoptimization action with OptimizedTypeCheckViolated
as the reason (c.f. Section 5.2). The second reason for the higher proportion of
InvalidateRecompile deoptimization sites is that the Truffle framework encour-
ages aggressive type specialization in the interpretation of abstract syntax tree
(AST) nodes of the hosted language. Internally, Truffle uses Java’s exception

76 5.3 Study of Deoptimization Behavior

Benchmark None Reprofile Recompile

Sites % # Sites % # Sites %

avrora 94 3.15 2813 94.21 79 2.65
batik 147 3.48 3991 94.48 86 2.04
fop 186 3.83 4639 95.55 30 0.62
h2 208 2.60 7516 93.96 275 3.44
jython 337 2.94 10 837 94.54 289 2.52
luindex 196 6.40 2839 92.75 26 0.85
lusearch 204 6.68 2785 91.22 64 2.10
pmd 163 2.56 5942 93.21 270 4.24
sunflow 92 4.11 2123 94.73 26 1.16
tradebeans 267 2.68 9307 93.37 394 3.95
tradesoap 608 2.76 20 866 94.56 593 2.69
xalan 225 3.65 5880 95.33 63 1.02

Total 2727 3.23 79 538 94.17 2195 2.60

actors 116 2.50 4418 95.17 108 2.33
apparat 230 3.79 5751 94.71 91 1.50
factorie 133 3.98 3153 94.40 54 1.62
kiama 178 4.90 3423 94.25 31 0.85
scalac 289 1.82 15 525 97.62 90 0.57
scaladoc 288 2.54 10 909 96.10 155 1.37
scalap 133 5.16 2428 94.15 18 0.70
scalariform 189 4.27 4198 94.74 44 0.99
scalatest 215 4.96 4083 94.19 37 0.85
scalaxb 166 4.43 3547 94.74 31 0.83
specs 212 5.40 3672 93.60 39 0.99
tmt 191 3.96 4535 93.99 99 2.05

Total 2340 3.40 65 642 95.44 797 1.16

Table 5.3. The number and percentage of deoptimization sites with a partic-
ular action emitted during the first benchmark iteration of the DaCapo and
ScalaBench workloads.

77 5.3 Study of Deoptimization Behavior

Benchmark None Reprofile Recompile

Sites % # Sites % # Sites %

box2d 195 2.19 8162 91.76 538 6.05
code-load 699 2.85 23041 93.79 827 3.37
crypto 142 2.08 6325 92.59 364 5.33
deltablue 136 2.31 5395 91.78 347 5.90
earley-boyer 172 2.36 6740 92.48 376 5.16
gbemu 200 1.91 9743 92.89 546 5.21
mandreel 367 3.33 10197 92.41 470 4.26
navier-stokes 129 2.43 4930 92.76 256 4.82
raytrace 133 2.16 5696 92.42 334 5.42
regexp 221 2.27 9050 93.11 449 4.62
richards 113 2.15 4834 91.85 316 6.00
splay 123 2.02 5664 93.11 296 4.87
typescript 294 2.04 13403 93.13 694 4.82
zlib 204 2.93 6458 92.79 298 4.28

Total 3128 2.43 119638 92.83 6111 4.74

Table 5.4. The number and percentage of deoptimization sites with a particular
action emitted during the first benchmark iteration of the Octane workloads on
Truffle/JS.

mechanism to undo type specialization, and because at the time the type special-
ization occurs the exception handler has never been executed (otherwise the type
specialization would not happen in the first place), the dynamic compiler consid-
ers the exception handler to be uncommon and replaces it with a deoptimization
site which invokes the InvalidateRecompile action with NotCompiledException-
Handler as the reason. This mechanism allows Truffle to attempt aggressive type
specialization and recompile with generic types if a type-related exception occurs.

Deoptimization Sites Triggered

The profiling results of the triggered deoptimization sites are summarized in Ta-
ble 5.5 and Table 5.6. We only track the InvalidateReprofile and Invalidate-
Recompile actions, because deoptimizations with the None action is not triggered
at any of the sites emitted. The bottom level columns correspond to the number
of deoptimization actions of particular type triggered, the fraction of the total

78 5.3 Study of Deoptimization Behavior

Benchmark Reprofile Recompile

Deopts % % Sites # Deopts % % Sites

avrora 43 100.00 1.04 0 0.00 0.00
batik 119 99.17 2.70 1 0.83 0.02
fop 80 100.00 1.52 0 0.00 0.00
h2 242 98.37 2.49 4 1.63 0.05
jython 256 98.84 1.89 3 1.16 0.03
luindex 42 100.00 1.37 0 0.00 0.00
lusearch 33 100.00 0.75 0 0.00 0.00
pmd 78 90.70 1.11 8 9.30 0.09
sunflow 26 100.00 1.12 0 0.00 0.00
tradebeans 302 99.34 2.25 2 0.66 0.02
tradesoap 471 99.16 1.71 4 0.84 0.02
xalan 24 100.00 0.34 0 0.00 0.00

Total 1716 98.73 1.68 22 1.27 0.02

actors 229 96.22 1.87 9 3.78 0.09
apparat 166 88.77 2.45 21 11.23 0.12
factorie 82 100.00 1.71 0 0.00 0.00
kiama 117 100.00 2.26 0 0.00 0.00
scalac 655 99.85 3.15 1 0.15 0.01
scaladoc 450 100.00 2.93 0 0.00 0.00
scalap 44 100.00 1.59 0 0.00 0.00
scalariform 64 100.00 1.11 0 0.00 0.00
scalatest 57 96.61 1.25 2 3.39 0.05
scalaxb 65 98.48 1.68 1 1.52 0.03
specs 51 96.23 1.27 2 3.77 0.05
tmt 112 100.00 1.97 0 0.00 0.00

Total 2092 98.31 2.27 36 1.69 0.03

Table 5.5. The number and percentage of deoptimization sites with a particu-
lar action triggered during the first benchmark iteration of the DaCapo and
ScalaBench workloads.

79 5.3 Study of Deoptimization Behavior

number of deoptimizations, and the deoptimization site coverage, that is, the
fraction of the total number of deoptimization sites emitted at which at least one
deoptimization was triggered.

Of all the sites emitted for the DaCapo benchmarks, only 1.68% were actu-
ally triggered and invoked the InvalidateReprofile deoptimization action during
execution. The proportion increases to 2.27% in the ScalaBench benchmarks
for the same reason that affects the total number of emitted sites. Similarly,
only 0.02% of the sites in the DaCapo benchmarks and 0.03% of the sites in the
ScalaBench benchmarks were triggered and invoked the InvalidateRecompile
action. This indicates that in ordinary Java/Scala applications, deoptimization
sites that do not rely on profiling feedback represent only a small fraction of the
total number of deoptimization sites and are rarely triggered. In addition, these
sites tend to be eliminated by the recompilation they force, therefore they rarely
cause repeated deoptimizations. In total, over 98% of all triggered deoptimiza-
tions invoke the InvalidateReprofile action, while only less than 2% invoke the
InvalidateRecompile action. This suggests that in the code produced by the Graal
compiler, deoptimizations are dominated by those that force reprofiling of the
affected code.

Compared to DaCapo and ScalaBench, the number and the proportion of the
InvalidateRecompile deoptimizations triggered during execution of the Octane
benchmarks on top of Graal.js is significantly higher. As discussed earlier, this is
because the Truffle code that undoes type specialization in the hosted language
is implicitly replaced by deoptimization. Nevertheless, similarly to DaCapo and
ScalaBench, the most frequently triggered deoptimization action in the Octane
benchmarks is InvalidateReprofile (88.83%).

Deoptimizations Triggered Repeatedly

In Table 5.7 and Table 5.8 we show the number of sites which trigger a particular
deoptimization more than once during benchmark execution. In the DaCapo
benchmarks, these sites account for 11.67% of deoptimization sites triggered
at least once, and for 26.64% of all triggered deoptimizations; the results for
ScalaBench are similar. For the Octane benchmarks on Graal.js, the proportion
of repeated deoptimization sites drops to 5.96%, which is caused by Truffle
invalidating the type specialization code that triggered a deoptimization.

While it is possible for multiple threads to trigger the same deoptimization
site in the same version of the compiled code, the majority of the repeated
deoptimizations originate from recompiled code. This means that if recompilation
does not eliminate these deoptimization sites, reprofiling either does not produce

80 5.3 Study of Deoptimization Behavior

Benchmark Reprofile Recompile

Deopts % % Sites # Deopts % % Sites

box2d 140 73.30 1.43 51 26.70 0.46
code-load 403 80.60 1.43 97 19.40 0.37
crypto 105 90.52 1.46 11 9.48 0.16
deltablue 74 87.06 1.19 11 12.94 0.15
earley-boyer 521 94.90 1.65 28 5.10 0.36
gbemu 308 91.12 2.74 30 8.88 0.28
mandreel 206 81.42 1.72 47 18.58 0.37
navier-stokes 106 96.36 1.88 4 3.64 0.06
raytrace 81 80.20 1.28 20 19.80 0.32
regexp 248 95.75 2.27 11 4.25 0.11
richards 79 88.76 1.48 10 11.24 0.19
splay 117 94.35 1.87 7 5.65 0.12
typescript 702 91.29 1.58 67 8.71 0.38
zlib 148 91.93 1.98 13 8.07 0.17

Total 3238 88.83 1.71 407 11.17 0.28

Table 5.6. The number and percentage of deoptimization sites with a particular
action triggered during the first benchmark iteration of the Octane workloads
on Truffle/JS.

a profile that would change the optimization decisions, or that the profile is not
provided in time for the recompilation.

To aid in investigating the reasons behind the worst-case repeated deoptimiza-
tions, Table 5.7 and Table 5.8 also list the deoptimization sites that repeatedly
trigger the most deoptimizations during the execution of a particular benchmark.
We observe that the most frequently triggered deoptimization sites cause repro-
filing for three main reasons: TypeCheckedInliningViolated, OptimizedType-
CheckViolated, and UnreachedCode. Deoptimizations specifying UnreachedCode
as the reason result from conditional branches that were eliminated based on
(assumed) zero execution probability according to the branch profile for the
corresponding bytecode. The actors benchmark contains the most frequent deop-
timization site of this type in method java.util.concurrent.locks.AbstractQueued-
Synchronizer$ConditionObject.await(), which contains a blocking thread syn-
chronization operation. Deoptimizations that specify type-checking violations as
the reason result from optimizations that rely on a type profile. Here, the compiler

81 5.3 Study of Deoptimization Behavior

Benchmark Repeated Deoptimizations Most Frequent Site

Sites % Sites % Deopts # Reason

avrora 6 19.35 41.86 4 1©
batik 4 3.48 7.50 3 2©
fop 2 2.70 10.00 6 1©
h2 27 13.30 28.46 6 3©
jython 22 10.00 23.55 9 1©
luindex 0 0.00 0.00 - -
lusearch 2 8.70 36.36 10 2©
pmd 6 7.79 17.44 5 1©
sunflow 1 4.00 7.69 2 2©
tradebeans 34 15.04 36.84 10 2©
tradesoap 58 15.22 32.00 5 2©
xalan 1 4.76 16.67 4 2©

Total 163 11.67 26.64

actors 14 15.38 67.65 64 1©
apparat 15 9.62 24.60 3 2©
factorie 8 14.04 40.24 9 3©
kiama 11 13.41 39.32 10 3©
scalac 70 13.94 34.15 23 2©
scaladoc 41 12.31 35.11 23 2©
scalap 2 4.88 11.36 3 2©
scalariform 7 14.29 34.38 7 3©
scalatest 3 5.36 10.17 2 2©
scalaxb 1 1.56 4.55 3 2©
specs 1 1.92 3.77 2 2©
tmt 7 7.37 21.43 9 3©

Total 180 11.40 34.31

Table 5.7. The number of deoptimization sites triggered repeatedly and the
most frequently triggered InvalidateReprofile deoptimization site during the first
benchmark iteration of the DaCapo and ScalaBench workloads. The reasons
for most frequently triggered deoptimization sites are 1© UnreachedCode, 2©
TypeCheckedInliningViolated, and 3© OptimizedTypeCheckViolated.

82 5.3 Study of Deoptimization Behavior

Benchmark Repeated Deoptimizations Most Frequent Site

Sites % Sites % Deopts # Reason

box2d 16 9.52 20.42 6 2©
code-load 35 7.92 18.60 6 1©
crypto 2 1.80 6.03 5 1©
deltablue 5 6.33 12.94 3 2©
earley-boyer 5 3.42 74.32 398 2©
gbemu 17 5.38 11.54 4 1©
mandreel 12 5.19 13.44 5 1©
navier-stokes 4 3.88 10.00 5 2©
raytrace 2 2.02 3.96 2 2©
regexp 16 6.90 16.60 9 1©
richards 1 1.14 2.25 2 2©
splay 3 2.48 4.84 2 1©
typescript 24 8.48 66.32 237 2©
zlib 11 7.33 13.66 2 3©

Total 153 5.96 33.72

Table 5.8. The number of deoptimization sites triggered repeatedly and the
most frequently triggered InvalidateReprofile deoptimization site during the
first benchmark iteration of the Octane workloads on Truffle/JS. The reasons
for most frequently triggered deoptimization sites are 1© UnreachedCode, 2©
TypeCheckedInliningViolated, and 3© OptimizedTypeCheckViolated.

typically uses deoptimization in the failure path of a guard that ensures that type-
specific code is only reached with proper types. Among the benchmarks that suffer
from deoptimizations for these reasons, the scalac and scaladoc benchmarks share
the same worst-case deoptimization site which triggers deoptimization 23 times.

In the case of the Octane benchmarks on Graal.js, a high number of repeated
deoptimizations are triggered in the earley-boyer and typescript benchmarks.
The underlying reason for repeated deoptimizations is the same as in the case of
the DaCapo and ScalaBench suites—inaccurate profiling information caused by
associating a profiling record with a deoptimization target (instead of origin), and
subsequent sharing of this record by multiple deoptimization sites. Unfortunately,
code obfuscation in the Graal.js binary release prevents us from presenting the
situation in more detail at source code level.

83 5.3 Study of Deoptimization Behavior

Iteration 1 2 3 4 5 6 ... 15 16 17 18 19 20

avrora 43 17 4 1 2 0 0 0 0 0 0 0
batik 120 20 18 14 6 2 1 1 0 0 1 0
fop 80 23 5 4 2 0 0 1 1 0 0 0
h2 246 17 4 1 2 0 0 1 1 0 0 0
jython 259 27 2 1 0 0 1 1 2 1 0 1
luindex 42 14 1 0 0 0 0 0 0 0 0 0
lusearch 33 3 0 0 0 0 ... 0 0 0 0 0 0
pmd 86 25 6 11 5 4 1 1 2 3 0 0
sunflow 26 3 1 0 0 0 0 0 0 0 0 0
tradebeans 304 7 4 0 0 0 0 0 0 0 0 0
tradesoap 475 34 3 0 2 2 0 1 0 0 0 1
xalan 24 1 1 0 0 0 0 0 0 0 0 0

actors 238 28 5 6 4 5 0 1 2 1 1 2
apparat 187 22 9 3 5 2 3 2 2 2 2 3
factorie 82 10 0 0 0 0 0 1 2 0 0 0
kiama 117 5 2 3 3 3 0 0 1 0 0 2
scalac 656 123 36 25 22 21 8 14 5 13 8 12
scaladoc 450 106 18 13 1 6 1 0 0 2 2 8
scalap 44 10 0 0 0 0 ... 0 0 0 0 0 0
scalariform 64 23 9 5 4 3 1 0 0 0 0 0
scalatest 59 29 8 9 3 1 1 0 0 0 0 0
scalaxb 66 26 3 0 0 1 0 0 0 0 1 0
specs 53 10 9 5 5 7 6 6 4 2 3 4
tmt 112 6 4 3 2 1 2 1 2 2 2 1

Table 5.9. Number of deoptimizations per iteration when executing the DaCapo
and ScalaBench benchmarks.

Deoptimizations per Iteration

Finally, Table 5.9 shows the number of deoptimizations triggered in subsequent
benchmark iterations for the DaCapo and ScalaBench benchmarks. Most bench-
marks encounter no more than 3 deoptimizations per iteration after the 4th
iteration, because the compiled code for most of the hot methods stabilizes. How-
ever, there are a few cases of repeated deoptimizations, especially in the scalac
benchmark, where on average 10 deoptimizations per iteration are triggered even
past the 15th iteration. In most cases, TypeCheckedInliningViolated is given

84 5.3 Study of Deoptimization Behavior

as the reason, and half of the deoptimizations originate at the same bytecode
(scala.collection.immutable.HashSet.elemHashCode(Object)#9) inlined in dif-
ferent methods. This suggests that the receiver type profile may not be updated
properly (or soon enough) after deoptimization and reprofiling.

5.3.2 Investigating Repeated Deoptimizations

Our findings in Section 5.3.1 indicate that certain deoptimizations are triggered
repeatedly at the same site. If a particular deoptimization is triggered by multiple
threads in one version of the compiled code, the subsequent recompilation should
eliminate the deoptimization site. However, repeated deoptimizations triggered
at the same site in multiple subsequent versions of the compiled code indicate a
problem, because that site should have been eliminated by recompilations.

By analyzing the cases of repeatedly triggered deoptimization, we have dis-
covered that this situation occurs because an outdated method profile is used
during the recompilation. In the Graal compiler, this can happen because Graal
inlines methods aggressively, but at the same time, deoptimization site in the
inlined code can deoptimize to the caller containing the callsite of the inlined
method (if no program state modification precedes the deoptimization site in the
inlined code). After deoptimization, when the interpreter wants to invoke the
(previously inlined) method at the callsize, the callee can be compiled either at a
different level (without speculation and thus deoptimization), or with a different
optimization outcome that did not emit a deoptimization site. In both cases, the
profile for the callee is not updated, and subsequent recompilations of its inlined
code will use an inaccurate profile, resulting in repeated deoptimizations.

We now illustrate the situations leading to repeated deoptimization for two
specific cases: the UnreachedCode deoptimization in the actors benchmark, and
the type-check related deoptimizations in the scalac benchmark.

Analyzing Deoptimizations in the actors Benchmark

The results in Table 5.7 show that the actors benchmark contains a site
which triggers the UnreachedCode deoptimization 64 times during the first
iteration of the benchmark execution. Figure 5.1 shows a snippet of
code containing this deoptimization site. The await() method invokes the
checkInterruptWhileWaiting(Node) method (line 26), which returns a value
depending on the result of the Thread.interrupted() method.

When compiling the await() method, Graal inlines the invocation of the (small
and private) checkInterruptWhileWaiting(Node) method at the callsite (line 26).

85 5.3 Study of Deoptimization Behavior

1 public abstract class AbstractQueuedSynchronizer
2 extends AbstractOwnableSynchronizer
3 implements java.io.Serializable {
4 final boolean isOnSyncQueue(Node node) {
5 if (node.waitStatus == Node.CONDITION
6 || node.prev == null)
7 return false;
8 ...
9 }

10 public class ConditionObject
11 implements Condition, java.io.Serializable {
12 private int checkInterruptWhileWaiting(Node node) {
13 return Thread.interrupted() ?
14 (transferAfterCancelledWait(node) ?
15 THROW_IE : REINTERRUPT) : 0;
16 }
17
18 public final void await() throws InterruptedException {
19 ...
20 int savedState = fullyRelease(node);
21 int interruptMode = 0;
22 while (!isOnSyncQueue(node)) {
23 LockSupport.park(this);
24 if ((interruptMode
25 = checkInterruptWhileWaiting(node))
26 != 0)
27 break;
28 }
29 ...
30 }
31 }
32 }

Figure 5.1. Excerpt from the source code of java.util.concurrent.locks.Abstract-
QueuedSynchronizer.

The ternary operator used in the return statement of that method is essentially a
conditional branch compiled using the ifeq23 bytecode, for which the VM collects
a branch profile. Because thread interruption happens rarely, it is very likely that
all invocations of Thread.interrupted() will return false, and the branch profile
for the ifeq bytecode will tell the compiler that the branch was taken in 100% of
the cases. By default24, Graal removes the code in the (apparently) unreachable
branch, and inserts a guard for the expected result of the Thread.interrupted()
method with a failure path which invokes the InvalidateReprofile deoptimization
with UnreachedCode as the reason.

In the await() method, threads may block in the park() method at line 23,

23Branch if the value on top of the operand stack is zero, i.e., false.
24This can be disabled via -Dgraal.RemoveNeverExecutedCode=false.

86 5.3 Study of Deoptimization Behavior

which returns when a thread is unparked, or when a thread is interrupted. Any
thread returning from the park() method will execute the condition at line 25,
including the inlined optimized version of checkInterruptWhileWaiting(Node). If
a thread was interrupted, the Thread.interrupted() method returns true contrary
to the expectation, and causes the thread to trigger a deoptimization. The first
thread to trigger the deoptimization will invalidate the compiled code of the
await() method by making it not entrant (execution entering the compiled code
will immediately switch to interpreter), and resume execution in the interpreter.

However, there may be more threads in the same situation, executing the (now
invalidated) compiled code—the 64 repeated deoptimizations in the actors bench-
mark were caused by 64 different threads triggering the same deoptimization in
the same version of the compiled code. While this kind of repeated deoptimization
causes threads to execute in the interpreter, it only leads to a single recompilation
and is relatively harmless. The branch profile for the ifeq bytecode will be updated
during interpreted execution, and taken into account during recompilation of the
await() method.

But the await() method contains another UnreachedCode deoptimization
site that is problematic. In this case, Graal inlines the invocation of the (final)
isOnSyncQueue(Node) method at the callsite (line 22). The null-check in the
inlined code uses the ifnonnull bytecode (line 6), which is a conditional branch.
Based on the associated branch profile indicating 100% branch-taken probability,
Graal replaces the unreachable branch with a deoptimization which is triggered
if node.prev is null.

If the deoptimization in the loop header is triggered, the code of the await()
method will be invalidated and the interpreter will resume execution at beginning
of the loop (line 22). The interpreter will then likely invoke the compiled version
of the isOnSyncQueue(Node) method, which contains the same guard and de-
optimization derived from the same ifnonnull branch profile. In the meantime,
because the actors benchmark is highly multi-threaded, another thread may set
node.prev to a non-null value. The compiled version of the isOnSyncQueue(Node)
method will then execute normally, without retriggering the deoptimization. With-
out that the isOnSyncQueue(Node) method will not be reinterpreted, and the
branch profile for the innonnull bytecode will not be updated. When recompil-
ing the await() method, the compiler will use an inaccurate branch profile and
produce the same code that was previously invalidated. In our experiment, we
observed 9 deoptimizations originating at the same site, but triggered in different
versions of the compiled code. This kind of repeated deoptimizations is more
serious, because it causes reprofiling of the await() method (requiring it to be
executed in the interpreter more times) and subsequent recompilation, but does

87 5.3 Study of Deoptimization Behavior

1 class HashSet[A] extends Set[A]
2 with GenericSetTemplate[A, HashSet]
3 with SetLike[A, HashSet[A]] {
4 protected def elemHashCode(key: A) =
5 if (key == null) 0 else key.##
6 protected def computeHash(key: A) =
7 improve(elemHashCode(key))
8 }

9 // Java pseudo-code for the ## operation
10 int ##() {
11 if (this instanceof Number) {
12 return BoxesRunTime.hashFromNumber(this);
13 else {
14 return hashCode();
15 }
16 }

Figure 5.2. Excerpt from scala.collection.immutable.HashSet.

1 if (key.type == String) {
2 // inlined code of String.hashCode
3 } else {
4 deoptimize(InvalidateReprofile,
5 TypeCheckedInliningViolated,
6 HashSet.computeHash /* target method */,
7 0 /* target bytecode index */
8); // never returns
9 }

Figure 5.3. Pseudo-code of the Graal-compiled code for ##.

not improve the situation.

Analyzing Deoptimizations in the scalac Benchmark

Another deoptimization anomaly that can be observed in the profiling results
concerns several benchmarks that exhibit the same pattern of repeated deoptimiza-
tions, with either TypeCheckedInliningViolated or OptimizedTypeCheckViolated
specified as the reason. This is also true for the steady-state execution of the
scalac benchmark shown in Table 5.9, which we now investigate in more detail.

The code containing the deoptimization site is shown in Figure 5.2. At line 7
the computeHash(Object) method invokes the elemHashCode(Object) method,
which in turn invokes the ## operation on key. The ## operation is a Scala
intrinsic which can be expressed as Java pseudo-code shown in lines 10–16. For ev-
ery use of the ## operation, the Scala compiler directly inlines the corresponding
bytecode sequence into the bytecode it produces.

Line 11 produces an instanceof bytecode which checks for the Number class,

88 5.3 Study of Deoptimization Behavior

and is subject to type-profile-based optimizations in Graal. When compiling the
instanceof bytecode into machine code, the compiler queries the recorded type
profile associated with the particular bytecode, and generates tests against the
profiled types instead of the operand type, and a failure path which will trigger
deoptimization if all the type checks fail.

In our experiment, when compiling the computeHash(Object) method for the
first time, the compiler receives a type profile containing only the String class,
and generates machine code corresponding to the pseudo-code shown in Fig-
ure 5.3. The deoptimization in the else branch actually transfers execution to the
beginning of the computeHash(Object) method, because the program state is not
mutated between the invocation of the elemHashCode(Object) method and the
deoptimization due to the inlined ## operation. When the interpreter reaches
the invocation of the elemHashCode(Object) method again, it will likely find the
method compiled, so the invocation will switch to machine code. However, with
the default tiered compilation strategy, the elemHashCode(Object) method is very
likely to be compiled by the level 1 compiler, which is intended for simple meth-
ods. As such, level 1 compilation does not use profile-directed optimizations for
instanceof and the generated code does not update the profiling information. The
compiled version of the elemHashCode(Object) method will therefore correctly
handle the ## operation for all types, but the type profile for the inlined code
of the ## will not be updated. When Graal compiles the computeHash(Object)
method again, it will inline the elemHashCode(Object) method again, but the
type profile for the instanceof bytecode will still contain only the String class.
The recompiled elemHashCode(Object) method will therefore repeatedly trigger
deoptimizations and recompilations.

Consequently, the anomaly occurs when a deoptimization due to an inlined
method resumes in the caller and invokes a compiled version of the (previously
inlined) callee. If the callee is compiled at level 1, it neither contains profile-
directed optimizations nor updates profiling information. When the caller is
recompiled (as it is a hot method) and the callee is inlined again, the compiler
uses the inaccurate type profile for the code in the callee and generates code that
triggers the same deoptimization.

We have also identified a similar problem when Graal devirtualizes method
invocations. A devirtualized callsite uses a number of type checks against types
from a callsite’s receiver profile to invoke concrete methods on specific receiver
types, and may trigger deoptimization if it encounters an unexpected receiver
type (unless the callsite is megamorphic, which instead performs a virtual method
dispatch). The problem occurs if a callsite is devirtualized in the ancestor of the
direct caller of a method, which may happen when the direct caller is inlined. If

89 5.4 Alternative Deoptimization Strategies

such a devirtualized (non-megamorphic) callsite triggers a deoptimization and
does not transfer execution to the direct caller, the receiver type profile used for
devirtualization of the callsite may not be updated if the direct caller also has
a standalone compiled version that neither devirtualizes the callsite (and thus
trigger the same deoptimization) nor collects profiling information. In general,
this situation is caused by the weighted inlining mechanism in the Graal compiler,
and the problem would be remedied by either disallowing deoptimization to cross
the direct caller’s method boundary, or by invalidating its compiled code.

5.4 Alternative Deoptimization Strategies

The deoptimization code produced by Graal mostly invokes the
InvalidateReprofile action, hoping to trade extra work in the short term
for a potentially better peak performance in the long term. Another reason for
using this kind of deoptimization is to cope with application phase changes.
These can manifest in the form of completely different execution and type
profiles, rendering the compiled code based on profiles from the previous phase
obsolete. Obviously, the compiler cannot tell ahead of time whether the actual
benefits will outweigh the costs. However, as long as the costs are not excessive,
they will be amortized in the long term even without huge performance gains.

With this strategy, the worst-case scenario for long-term performance is the
occurrence of rare cases that trigger deoptimization. In this case, the ensuing
reprofiling and recompilation will not provide a long-term benefit, but instead
cause short-term performance degradation. Worse, during recompilation, the
rare case may cause the compiler to abandon speculative optimizations that have
worked well before the rare case occurred.

The solution is to introduce some tolerance for rare cases, delaying deoptimiza-
tions until the supposedly rare cases become more frequent. This notion is sup-
ported by the HotSpot runtime, as the presence of the Action_maybe_recompile
deoptimization action suggests. However, Graal does not use its own correspond-
ing action (RecompileIfTooManyDeopts) in the deoptimization code it emits.
Presumably, this is because Graal speculates aggressively and the Graal developers
do not want to delay recompilation if the program violates optimization assump-
tions. In addition, because Graal focuses on achieving high peak performance,
the cost associated with eager deoptimizations should be amortized in the longer
run.

Because the effect of this approach on performance has not been previously
studied, we modify Graal to support two additional strategies for handling deop-

90 5.4 Alternative Deoptimization Strategies

timizations and compare the performance achieved with both strategies to the
default strategy used by Graal. Unlike the default strategy, which always invokes
the InvalidateReprofile action, the alternative strategies differ in the degree of
tolerance for rare cases.

5.4.1 Conservative Deoptimization Strategy

The first strategy, referred to as conservative, replaces the use of the Invalidate-
Reprofile action with the RecompileIfTooManyDeopts. This strategy relies on
the existing mechanisms in the HotSpot runtime to determine when to invalidate
the compiled code and when to reinterpret (and possibly reprofile) it. The run-
time keeps an execution profile for each method, including information about
deoptimizations. The deoptimization profile consists of a counter for each de-
optimization reason as well as a recompilation counter. It also stores limited
information associated with deoptimization targets (referred to as traps), i.e., the
bytecode instructions at which the interpreter resumes execution after deopti-
mization. The per-trap information is keyed to the bytecode index of the target
instruction in the target method, and stores the reasons25 for which the trap was
targeted, and whether the method code was invalidated and recompiled due to
this trap. The deoptimization reasons are split into two categories considered
separately. The first category, referred to as per-method, represents reasons that
are only considered at the method level, while the second category, referred to as
per-bytecode, represents reasons that are only considered at the bytecode level.

When a deoptimization is triggered, the HotSpot runtime uses the method
profile to make the following decisions: (1a) if the deoptimization reason belongs
to the per-bytecode category, was previously observed at this trap, and the deopti-
mization count (taken from the method-level profile) for that reason exceeds a
per-bytecode threshold26, the compiled code is invalidated; (1b) if the deoptimiza-
tion reason belongs to the per-method category and the deoptimization count for
that reason exceeds a per-method threshold27, the compiled code is invalidated;
(2) for compiled code that is to be invalidated, if the per-trap information shows
that the code has been previously recompiled for the same per-bytecode reason, or
if the recompilation counter is greater than 0 for other reasons, the runtime resets
the method execution and back-edge counters to facilitate reprofiling; (3) if the

25To limit memory consumption, only one precise reason can be stored, otherwise the profile
just indicates that there is more than one reason.

26-XX:PerBytecodeTrapLimit, defaults to 4.
27-XX:PerMethodTrapLimit, defaults to 100.

91 5.4 Alternative Deoptimization Strategies

recompilation counter for a per-bytecode reason exceeds a per-bytecode threshold28,
or a per-method threshold29 for per-method reasons, the deoptimizing method is
made not compilable.

The per-trap information is inherently approximate. For example, it does not
distinguish between two deoptimization sites sharing the same deoptimization
target. But when Graal is enabled, it makes it even more approximate. While
the trap bytecode index always refers to the instruction in the bytecode of the
target method, updates to the per-trap information are stored in the profile of
the method in which a deoptimization occurred (not the deoptimization target,
as in the case of HotSpot without Graal). A deoptimization triggered by an
inlined method will therefore update the per-trap information of the compilation
root using an index associated with the bytecode in the target method. This is
presumably to avoid spurious invalidation of the compiled code of methods that
were inlined with speculative optimizations. However, if several methods inlined
in the same compilation root contain a trap instruction, they may share the same
slot in the per-trap profile of the compilation root. In addition, due to Graal’s
aggressive inlining, the deoptimization target may cross method boundaries—a
deoptimization from an inlined method may target the returning bytecode of the
previous callsite in the caller.

5.4.2 Adaptive Deoptimization Strategy

The second strategy, referred to as adaptive, uses a custom deoptimization profile
to choose a deoptimization action both during dynamic compilation and during
program execution. Unlike the HotSpot runtime or Graal (c.f. Subsection 5.4.1),
we simply associate a deoptimization counter with each deoptimization site
ID (c.f. Section 5.3), but disregard the stack trace for inlined methods. This
means that methods inlined in different compilation roots will update the same
deoptimization counters.

During compilation, whenever Graal intends to emit the InvalidateReprofile
deoptimization at a particular site, we check the value of the counter correspond-
ing to that site, and emit the default deoptimization code (invoking Invalidate-
Reprofile) if the value is between two thresholds, deoptsTolerated (exclusive,
defaults to 1) and deoptsAllowed (inclusive, defaults to 100). If the counter ex-
ceeds the deoptsAllowed threshold, too many deoptimizations have been triggered
at that particular site, and we instead emit code to invoke the InvalidateStop-

28-XX:PerBytecodeRecompilationCutoff, defaults to 200.
29-XX:PerMethodRecompilationCutoff, defaults to 400.

92 5.5 Performance Evaluation

Compiling deoptimization. If the method containing the deoptimization site is
being inlined, we mark the method as non-inlineable and emit the Invalidate-
Recompile deoptimization in the inlined code. Consequently, the method is
inlined one last time in the compilation root being compiled, but will not be
inlined in future recompilations of any method. If the counter does not exceed
the deoptsTolerated threshold, the number of deoptimizations triggered at the
site is considered tolerable, and we emit code that chooses between the None
and InvalidateReprofile deoptimization actions at runtime. When such a deopti-
mization site is reached and the corresponding deoptimization counter still does
not exceed the deoptsTolerated threshold, the deoptimization just switches to
the interpreter and keeps the compiled code as-is (the None action). Otherwise
the deoptimization invalidates the code and resets the hotness counters of the
corresponding method to force reprofiling (the InvalidateReprofile action).

To avoid using a stale deoptimization profile during application phase changes,
the counters for deoptimization sites involved in a particular compilation are aged
in each compilation. Alternatively, we provide an option to age the deoptimiza-
tion profile periodically, which allows tolerating deoptimizations based on rates,
instead of absolute numbers.

5.5 Performance Evaluation

We now evaluate performance of the two alternative strategies and compare
them to the default strategy used by Graal. Using the same set of benchmarks
and the same hardware platform as presented in Section 5.3, we evaluate the
deoptimization strategies with a varying number of CPU cores available to the
JVM. To minimize interference due to compilation of Graal classes, we enable
bootstrapping of Graal30 at JVM startup.

Because the DaCapo and ScalaBench benchmark suites are similar (ScalaBench
uses the DaCapo benchmarking harness), we present the results for these two
benchmark suites separately from the results for the Octane benchmarks on
Graal.js, which are not directly comparable to the results from the other two
suites. We also subject the results from the DaCapo and ScalaBench benchmark
suites to more extensive evaluation, whereas the results for the Octane benchmarks
are meant to illustrate the indirect impact of deoptimization strategies on the
performance of the hosted language (JavaScript).

To illustrate the variability in the data observed during multiple benchmark
runs, we use statistical bootstrap with 50000 replicas to calculate 99% confidence

30Enabled by the -XX:+BootstrapJVMCI option.

93 5.5 Performance Evaluation

1 2 4 8 16
0.5

1

1.5

2

scalap

lusearch

scalap

lusearch

scalap

lusearch

xalan

factorie

scalap

xalan
factorie

scalap

factorie

Available Cores

Sp
ee

du
p

Fa
ct

or

(a) Startup

1 2 4 8 16
0.5

1

1.5

2
scalariform
scalaxb

factorie

jython

factorie
factorie

factorie

Available Cores

Sp
ee

du
p

Fa
ct

or

(b) Steady-state

Figure 5.4. Speed-up factors for startup and steady-state performance of Graal
compared to C2 when running the DaCapo and ScalaBench benchmarks with
increasing number of CPU cores available to the JVM.

interval of the geometric mean and (where applicable) the difference of means.
In the plots below, we indicate the confidence interval using “whiskers” around
the respective values.

5.5.1 DaCapo and ScalaBench Evaluation

To evaluate the impact of the deoptimization strategies on the performance of
the benchmarks from the DaCapo and ScalaBench benchmark suites, we collect
the following performance metrics: (1) startup time, i.e., the wall-clock time for
the execution of the first benchmark iteration, (2) steady-state execution time,
i.e., the wall-clock time for the execution of the last31 benchmark iteration, and
(3) compilation time in each iteration, i.e., the CPU time spent in compiler threads
during the benchmark iteration.

For each benchmark from the DaCapo and ScalaBench benchmark suites, we
show both the speed-up factors for the individual benchmarks as well as the
overall speed-up factor calculated as a geometric mean of the individual speed-up
factors.

Choosing the Baseline

The choice of the baseline for evaluating the performance of the alternative
deoptimization strategies in Graal deserves a justification. Because changes were

31All the benchmarks were run for at least 10 iterations and 10 seconds.

94 5.5 Performance Evaluation

made to the original Graal implementation, using HotSpot with Graal in place of
the server compiler is our default choice. However, the production configuration
of the HotSpot JVM still uses the C2 server compiler in the last compilation tier,
which makes C2 a candidate for a performance baseline. Moreover, reporting
changes against a well-known HotSpot configuration can help assessing the
relevance of the presented changes.

A potential problem may arise if the Graal baseline was significantly slower
than C2. Any performance improvements would be reported against a slow
baseline, but the peak performance might not reach or exceed that of C2. To
resolve this tension, we evaluate the relative performance of the two potential
baselines, C2 and Graal, using the same set of DaCapo and ScalaBench benchmarks
used in the evaluation of the alternative deoptimization strategies.

The results of this comparison for different number of cores available to the
JVM are shown in Figure 5.4. In the case of startup performance (Figure 5.4a),
we can observe that on average, the Graal baseline outperforms the C2 baseline.
We attribute this to the fact that we enable bootstrapping of the Graal compiler,
which may not only precompile methods from the Graal compiler itself, but also
precompile frequently executed methods from the Java class library.

On the other hand, the plot depicting steady state performance (Figure 5.4b)
shows that on average, the Graal baseline becomes slightly slower (2.1% in the
worst case for 4 cores, with speed-up factor of 0.979 and 99% confidence interval
of [0.971, 0.987]) than C2 as more CPU cores are made available to the JVM. The
single-core case is an exception in which Graal outperforms C2 by 9% (speed-up
factor of 1.090 with a 99% confidence interval of [1.074, 1.106]).

This experiment validates our choice of baseline — Graal is a competitive
compiler for our workload.

Start-up Performance

In Figure 5.5, we show the results of the startup and steady-state performance
evaluation for the benchmarks from the DaCapo and ScalaBench suites. The
default deoptimization strategy used by Graal represents the baseline, and the
plots show the speed-up factor of the conservative and the adaptive strategies with
respect to the default strategy. The line connecting the overall speed-up factors
illustrates the trend of the overall speed-up as the number of CPU cores available
to the JVM increases.

The plot in Figure 5.5a shows that in the single-core case, the conservative
strategy is approximately 1.8% slower than the default strategy (speed-up factor
of 0.982 with 99% confidence interval of [0.972, 0.992]).

95 5.5 Performance Evaluation

1 2 4 8 16
0.9

1

1.1

1.2

1.3

factorie

apparat

luindex

kiama
scalap

Available Cores

Sp
ee

du
p

Fa
ct

or

(a) Conservative Startup

1 2 4 8 16
0.9

1

1.1

1.2

1.3

scalac
kiama

factorie
fop

scalac scalatest

scalaxb
factorie factorie

scalaxb

Available Cores

Sp
ee

du
p

Fa
ct

or

(b) Conservative Steady-state

1 2 4 8 16
0.9

1

1.1

1.2

1.3 luindex

apparat
fop

scalac
h2

factorie

luindex
fop
apparat
scalac

tmt

scalatest
luindex

factorie

luindex
apparat

luindex

Available Cores

Sp
ee

du
p

Fa
ct

or

(c) Adaptive Startup

1 2 4 8 16
0.9

1

1.1

1.2

1.3

apparat

scalac

fop

scalaxb
tmt

scalac

scalaxb

apparat

scalaxb

apparat

scalaxb

Available Cores

Sp
ee

du
p

Fa
ct

or

(d) Adaptive Steady-state

Figure 5.5. Speed-up factors for the startup and steady-state performance when
running DaCapo and ScalaBench benchmarks with increasing number of CPU
cores.

As the number of available CPU cores increases, the single-core slowdown
becomes a very slight speed-up for 16 cores. The conservative strategy apparently
causes more compilation work and benefits from the ability to hide compilation
latency as much as the default strategy. Apparently, while tolerating some deopti-
mizations may provide a slight performance benefit, in this case it is completely
outweighed by the extra compilation work.

In contrast, Figure 5.5c shows that the adaptive strategy is faster by approx-
imately 6.4% in the single-core case (speed-up factor of 1.064 with 99% con-
fidence interval of [1.055, 1.073]), and is on average slightly faster than the
default strategy. The adaptive strategy causes less compilation work, improving
startup performance on average, but the benefit diminishes with the increasing
number of available CPU cores, because the (baseline) default strategy can hide

96 5.5 Performance Evaluation

some its compilation latency.
The two alternative strategies differ mainly in the level of tolerance for deop-

timizations, the accuracy of the deoptimization profile used to make decisions,
and the deoptimization actions taken. The conservative strategy actually makes
the compiler less sensitive to changes in profiling information during startup. On
the one hand, the RecompileIfTooManyDeopts deoptimization used by the con-
servative strategy delays recompilation, but on the other hand it causes methods
to be recompiled without being thoroughly reprofiled. Recall also that unlike
the adaptive strategy, the conservative strategy associates deoptimization profile
with the target of a deoptimization, not its origin. This impairs the ability to
tolerate rare deoptimizations but deal with deoptimizations that are repeatedly
triggered at the same deoptimization site. Due to inlining, the code triggering
the deoptimizations may be duplicated in different methods and target different
deoptimization traps, spreading the information about a single deoptimization
site among different profiles.

The effect of tolerating deoptimizations is clearly workload dependent, and
the results show a few interesting cases. The luindex benchmark clearly bene-
fits from the adaptive strategy, as it exhibits a speed-up factor of 1.289 in the
single-core case, and a speed-up factor of at least 1.082 throughout the whole
experiment. Interestingly, it does not benefit from the conservative strategy, ex-
hibiting a slow-down (speed-up factor of 0.965) in the single-core case, even
though the compilation times for both strategies are similar.

In contrast to luindex, the factorie benchmark does not benefit from either
of the strategies, exhibiting slowdowns (speed-up factors from 0.928 to 0.996
throughout the experiment. Further investigation shows that the slowdown results
from an increased number of deoptimizations which may result in more time
spent in the interpreter.

Steady-state Performance

The plots in Figure 5.5b and Figure 5.5d show the steady-state performance for
both strategies. Even though the results for individual benchmarks may differ
slightly, on average the steady-state performance of the conservative strategy does
not really differ from the default strategy.

In the case of the adaptive strategy, the overall speed-up factor remains slightly
below 1 as the number of CPU cores increases. We attribute this to the fact that
unlike the conservative strategy, which is supported by the HotSpot runtime and
attempts to store all profiling data efficiently, the implementation of the adaptive
strategy is far from optimized. It uses more memory to store profiling data, and

97 5.5 Performance Evaluation

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

Benchmark Iteration

Sa
ve

d
Ti

m
e

(s
)

conservative adaptive

Figure 5.6. Total saved execution time for the selected 24 DaCapo and Scal-
aBench benchmarks in single-core setup. Negative values represent a slowdown.

emits conditional code and a volatile memory access at deoptimization sites that
select deoptimization action at runtime. We expect this to impact performance,
especially given the memory barriers associated with the volatile memory access
and the increasing number of CPU cores.

For some benchmarks, the increased tolerance to deoptimizations is beneficial
even during steady-state execution. The scalac benchmark benefits from both
strategies in the single-core and dual-core configurations, exhibiting a perfor-
mance improvement of 9.4% (single-core) or 5% (dual-core) over the baseline
with the adaptive strategy, and 11.6% (single-core) or 4.4% (dual-core) with the
conservative strategy in the single-core case. The apparat benchmark benefits
from the adaptive strategy even in 4 or 8-core configurations, which we attribute
to the aging of the deoptimization profile. On the other hand, benchmarks such
as tmt exhibit an average 4% slow-down in steady-state performance for all core
configurations. Short-running benchmarks (less than 300ms) such as fop and
scalaxb have a tendency to amplify speed-ups and slow-downs, so they appear to
be outliers in the plots.

Overall Execution and Compilation Time

Figure 5.6 shows the amount of execution time saved for the 24 benchmarks
from the DaCapo and ScalaBench suites together in a single-core configuration.
When considering the total execution time, the execution time of each benchmark
provides a weight to its respective speed-up or slow-down. With the adaptive
strategy, the first iteration of all benchmarks finishes 17.7 seconds earlier than
with the default strategy (which required 337 seconds in total), resulting in a

98 5.5 Performance Evaluation

1 2 4 8 16
0

50

100

150

200

Available Cores

C
PU

Ti
m

e
(s

)
baselineUnique conservativeUnique adaptiveUnique
baselineRecomp conservativeRecomp adaptiveRecomp

(a) 1st Iteration

1 2 4 8 16
0

20

40

60

Available Cores

C
PU

Ti
m

e
(s

)

(b) 2nd Iteration

1 2 4 8 16
0

2

4

6

8

Available Cores

C
PU

Ti
m

e
(s

)

(c) 10th Iteration

Figure 5.7. The total CPU time spent compiling (+) and recompiling ()
when executing the 24 selected DaCapo and ScalaBench benchmarks.

speed-up factor of 1.053. With the conservative strategy, the first iteration takes 6
seconds longer than with the default strategy, resulting in a speed-up factor of
0.982. Note that these speed-up factors implicitly weigh the speed-up achieved
for individual benchmarks by the execution time of each benchmark, giving a
more conservative estimate than the geometric mean of speed-up factors, which
treats all benchmarks with equal weight. The improvement observable with the
adaptive strategy diminishes with the increasing number of available CPU cores,
but the adaptive strategy still manages to save some time on each iteration, which
would accumulate in the long run. Considering the overall execution time shows
that the adaptive strategy does not necessarily hurt steady-state performance, as
the results discussed in Section 5.5.1 may suggest.

Even though there are benefits in avoiding repeated deoptimizations, the influ-
ence of the increasing number of CPU cores on the performance results suggests
that the differences in performance can be mostly attributed to compilation. To
support this observation, Figure 5.7 provides a summary of the compilation log
for all strategies. The data shows that indeed the adaptive strategy saves approxi-
mately 8% in the total compilation time compared to the default strategy in the
first iteration of the single-core scenario, which benefits the most. The alternative
strategy mostly saves time in all scenarios, but the impact on total execution time
diminishes with increased number of cores available, and in steady-state execu-
tion. In contrast, the conservative strategy is apparently not a good fit for the first
iteration, because it creates more compilation work. It saves some compilation

99 5.5 Performance Evaluation

1 2 3 4 5 6 7 8 16
0

2

4

6

deoptsTolerated

#
be

nc
hm

ar
ks

20

40

60

80

100

1.064 1.071
1.076 1.077

1.085
1.086

1.089 1.090

1.091

%
be

nc
hm

ar
ks

Figure 5.8. Theoretical speed-up with optimal values of deoptsTolerated for
each of the 24 selected DaCapo and ScalaBench benchmarks. The bars represent
the number of benchmarks for which the value was optimal. The line connecting
the dots shows cumulative percentage of benchmarks for which the optimal
threshold does not exceed the given value. Associated with each dot is the
overall speed-up factor the would be achieved if we managed to choose an
optimal threshold for each benchmark not exceeding the given value.

time in later iterations, but too little too late.

Tolerance for Deoptimizations in the Adaptive Strategy

The tolerance of the adaptive strategy to deoptimizations can be adjusted by chang-
ing the deoptsTolerated and deoptsAllowed thresholds (c.f. Subsection 5.4.2).
The results presented so far were obtained with the default values, but we are
interested in how different levels of tolerance to deoptimizations impact per-
formance of the strategy. Because the strategy had the most effect on the 1st
benchmark iteration in the single-core configuration, we evaluated the perfor-
mance of the adaptive strategy with the deoptsTolerated threshold set to 1–8, and
16. We analyzed the speed-up factors of individual benchmarks for all tested val-
ues of the deoptsTolerated threshold, and selected the threshold value resulting
in maximal speed-up factor as optimal for each benchmark.

The tolerance to deoptimizations, and thus the value of the deoptsTolerated
threshold, is clearly a property of a particular workload and represents a tuning
parameter. If we were able to (quickly) determine the appropriate threshold
based on the character of the workload being executed, the parameter could be
adjusted in response to program behavior. To gauge the potential for improvement,
Figure 5.8 shows the theoretical speed-up factor that could be achieved, if we

100 5.5 Performance Evaluation

1 2 4 8 16
0.8

1

1.2
Crypto

DeltaBlue

Gameboy

Splay

Typescript

RayTrace

Splay

Available Cores

Sp
ee

du
p

Fa
ct

or

(a) Conservative Warm-up

1 2 4 8 16
0.8

1

1.2

CodeLoad

DeltaBlue

Crypto

Box2D
RegExp

Splay Splay

CodeLoad

Available Cores

Sp
ee

du
p

Fa
ct

or

(b) Conservative Steady-state

1 2 4 8 16
0.8

1

1.2
Crypto

RayTrace
DeltaBlue
Gameboy

RayTrace

Splay
Crypto

Splay

Available Cores

Sp
ee

du
p

Fa
ct

or

(c) Adaptive Warm-up

1 2 4 8 16
0.8

1

1.2
RegExp

Typescript

Available Cores

Sp
ee

du
p

Fa
ct

or

(d) Adaptive Steady-state

Figure 5.9. Speed-up factors for the warm-up and steady-state performance
when running Octane benchmarks on Graal.js with increasing number of CPU
cores.

managed to find the optimal deoptsTolerated threshold (within a given limit)
for each benchmark. The plot shows that searching for an optimal threshold
in the range of 1–5 would provide an optimal value for approximately 50% of
benchmarks (given the upper bound of 16), and yield a speed-up factor of 1.085.

5.5.2 Octane on Graal.js Evaluation

To evaluate the performance of the Octane benchmarks running on Graal.js, we
use the benchmarking harness for the Octane suite provided in the GraalVM
binary release32. The harness uses benchmark-specific warm-up times ranging
from 15 to 120 seconds, and a common steady-state period of 10 seconds. When

32http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

101 5.5 Performance Evaluation

finished executing a benchmark, the harness reports per-iteration execution times
achieved during the warm-up and steady-state periods. We collect the per-iteration
execution times for both phases and report the speed-up factors w.r.t. the default
deoptimization strategy. Because the warm-up and steady-state phases are defined
differently for the Octane suite than for the DaCapo and ScalaBench suites, we
report the speed-up factors separately.

The plots in Figure 5.9a and Figure 5.9c show the warm-up performance
of Octane benchmarks running on Graal.js with the conservative strategy and
the adaptive strategy, respectively. We again show the speed-up factors for the
individual benchmarks and the overall speed-up factor calculated as a geometric
mean of the individual speed-up factors. In the single core case, both alternative
deoptimization strategies achieve better warm-up performance than the default
strategy. On average, the conservative strategy is approximately 3.5% faster
(speed-up factor of 1.035 with 99% confidence interval of [1.004, 1.069]) and
the adaptive strategy is approximately 5.1% faster (speed-up factor of 1.051 with
99% confidence interval of [1.020, 1.085]) than the default strategy.

The results indicate that the JavaScript runtime implemented using the Truf-
fle framework generally benefits from tolerating deoptimizations during startup
due to the reduction of the compilation work. This is potentially beneficial for
JavaScript workloads that mostly execute code once, instead of repeatedly. How-
ever, similarly to the DaCapo and ScalaBench benchmarks, the benefit diminishes
as the number of available CPU cores increases. Even though JavaScript is a
single-threaded language, the runtime may use additional CPU cores to hide
compilation latency.

Finally the plots in Figure 5.9b and Figure 5.9d show the steady-state per-
formance of Octane benchmarks with the conservative and adaptive strategies,
respectively. Neither of them deviates from the performance of the default strategy
in a significant way.

5.5.3 On the Scale of Performance Changes

The results of performance evaluation indicate that on average the adaptive
deoptimization strategy provides moderate improvements to startup performance
in a single-core scenario. As the number of cores and benchmark runtime increases,
the effect wears off, until it disappears. Because the improvement is moderate, it
is difficult to assess how it fits the overall picture. In his 1974 paper, Knuth notes
that in established engineering disciplines, 12% improvement, easily obtained, is
never considered marginal [55]. The improvements obtained here are roughly
half of that, but still rather easily obtained, given the complexity of the other

102 5.5 Performance Evaluation

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

factorie

lusearch

factorie
tmt

scalacscaladoc

fopscalariform

pmd

scalacscaladoc

scalap

scalap

factorie

VM Configuration

Sp
ee

du
p

Fa
ct

or

(a) Startup (1-core)

c2/g1gc c2/noinline c2/notiered c2/graal graal/nospec
0

1

2

3

factorie
factorietmt

jython
scalariform
scalaxb

scalap

scalariform
scalaxb

specs

VM Configuration

Sp
ee

du
p

Fa
ct

or

(b) Steady-state (1-core)

Figure 5.10. Speed-up factors for the startup and steady-state performance of
different VM configurations compared to their respective baseline.

parts of the VM.
Arguably, the execution time aspect of the improvement diminishes with more

CPU cores available to the JVM, but the computation saved remains. To provide
a frame of reference, we evaluate the single-core performance of five different
configurations of the HotSpot VM and compare it with their respective baselines.
Two of the configuration changes swap entire VM subsystems, while three other
changes alter the behavior of the dynamic compiler.
The first baseline is the default configuration of HotSpot equipped with C2 to
which we compare the performance obtained with the following configurations:

g1gc Replaces the default garbage collector in HotSpot with the Garbage First
(G1) garbage collector.

noinline Disables inlining in C2.

notiered Disables tiered compilation in HotSpot, i.e., disables C1 compiler.

graal Replaces the C2 server compiler with Graal.

103 5.5 Performance Evaluation

The second baseline is the default configuration of HotSpot equipped with Graal
to which we compare the following configuration:

nospec Disables the majority of speculative optimizations relying on deoptimiza-
tion in Graal, providing a rough estimate the the performance gains
enabled by deoptimization.

The results of the evaluation are shown in Figure 5.10. The subfigures correspond
to startup (Figure 5.10a) and steady state (Figure 5.10b) performance, each
showing average performance of the first four configurations compared to the C2
baseline, followed by the fifth configuration compared to the Graal baseline.

In a single-core setting, the change of the GC algorithm caused a 10.4% drop
in startup performance, and a 12.9% drop in steady-state performance. We are
aware that this results from different mode of operation of the G1 collector, which
is typically recommended for heaps exceeding 6 GB. However, it illustrates the
kind of performance impact a careless swap of a GC may have in a particular
scenario.

The noinline and nospec configurations reduce the amount of compilation
work, either due to avoiding redundant compilation of methods that could have
been inlined, or due to compiling immediately using the highest-tier compiler.
Consequently, we observe a significantly better startup performance in the single-
core scenario—29.4% improvement due to disabled inlining, and 12.6% due to
disabled tiered compilation. In steady state, disabled tiered compilation retains
a 7.4% performance improvement, but disabled inlining changes the situation
dramatically. Because inlining is a critical optimization that increases optimization
scope and effectively enables inter-procedural optimization, disabling inlining
causes a 40% drop in steady-state performance.

The graal configuration illustrates the effect of replacing a C2 server compiler
with Graal. We have explored this situation more closely in Section 5.5.1, here
we just note a 14.4% improvement in startup performance, and 9% improvement
in steady-state performance.

Finally, the nospec configuration illustrates the effect of disabling various
speculative optimizations in the Graal compiler. These include elimination of
unreached branches, heuristic inlining, speculative instanceof test, elimination of
unreached exception handlers, and elimination of safepoints within a loop. On
average, this change appears to have neutral impact on startup performance, but
has a significant impact later, resulting in a 26.1% performance drop in the steady
state.

This suggests that the above speculative optimizations pay off in the long term,
but do not provide much benefit at startup. The adaptive strategy complements this

104 5.6 Discussion

by providing a moderate improvement in startup performance without adversely
affecting performance in the long term.

5.6 Discussion

Below, we discuss the benefits and limitations about our study.

Representativeness. Our study is conducted only on a Graal-enabled HotSpot
VM. We choose the Graal compiler because it aggressively employs speculative
optimizations, which potentially lead to more deoptimizations. Indeed, our
profiler reports a considerable amount of deoptimizations across the application
code and the Java class library, and reveals some buggy behavior of repeated
deoptimizations and recompilations in the Graal compiler’s emitted code. Still,
some of our findings can serve as a starting point for experiments on other
VMs. If they heavily rely on speculation, the accuracy of the deoptimization
profile matters for an adaptive recompilation mechanism that tolerates infrequent
deoptimizations. Such mechanism is often essential in a device with limited
resource such as a mobile phone.

Performance. Unlike the default deoptimization strategy and the conservative
strategy, the adaptive strategy maintains its profile separately in addition to
HotSpot VM’s built-in profile. For a consistent access of the customized profile,
we insert memory barriers at the places where the conditional code selects dif-
ferent deoptimization actions based on the profile. Even though deoptimization
should occur infrequently, the inserted memory barriers may negatively affect
performance, especially with an increasing number of CPU cores. Moreover, the
increased memory usage on the Java heap due to the customized profile may
lead to increase the garbage-collection costs. Hence, while the adaptive strat-
egy outperforms the other two strategies during the startup phase, there is still
room for improvement by optimizing the data structure keeping the accurate
deoptimization profile.

5.7 Summary

In this chapter we build a deoptimization profiler based on the IR profiling tech-
nique presented in Chapter 4, and conduct a study of deoptimization behavior in
benchmarks executing on a Graal-enabled HotSpot VM. We profile deoptimization
sites in the code produced by the Graal compiler, and provide a qualitative and
quantitative analysis of deoptimization causes in commonly used benchmark

105 5.7 Summary

suites such as DaCapo, ScalaBench, and Octane, which provide workloads derived
from real applications and libraries written in Java, Python, Scala, and JavaScript.
We show that only a small fraction of deoptimization sites actually trigger deopti-
mizations at runtime, and that most of the deoptimizations actually triggered in
Graal-compiled code unconditionally invalidate and reprofile the method which
caused a deoptimization.

To gain insight on the trade-offs made by Graal in its default deoptimization
strategy, we modify Graal to add support for two alternative deoptimization
strategies and evaluate benchmark performance using the three strategies. We
show that by avoiding the conservative strategy provided by the HotSpot VM
runtime, Graal gains better startup performance. However, we also show that
certain tolerance to deoptimizations can provide performance benefits, if used
with a precise deoptimization profile. The adaptive strategy, which switches
among various deoptimization actions based on a precise deoptimization profile,
manages to reduce the amount of method recompilations and eliminate certain
repetitive deoptimizations. As a result, on a single-core system, it improves the
average start-up performance by 6.4% in the DaCapo and ScalaBench benchmarks,
and by 5.1% in the Octane benchmarks.

Finally, we show that tolerance to deoptimizations is a workload-specific
parameter, and that finding correlation between some workload characteristics
and the appropriate level of tolerance to deoptimizations can potentially provide
additional performance benefits.

106 5.7 Summary

Chapter 6

Conclusion

Profiling is a generally adopted technique to reason about program behavior
during execution. In a managed runtime system, prevailing profilers either yield
wrong results or are unable to intercept low-level operations in the presence of
dynamic compilation. The reasons are twofold.

Firstly, profilers based on bytecode instrumentation are not aware of the
optimizations performed by the dynamic compiler, which in turn is not able
to distinguish the base-program code from the inserted instrumentation code.
Hence, the inserted code either over-profiles the optimized code or perturbs the
optimizations. In both situations, the resulting profile will be inaccurate.

Secondly, prevailing instrumentation techniques suffer from limitations on
intercepting IR-level operations. In the case of bytecode instrumentation, it is not
possible to intercept IR-level operations that do not have an associated originating
bytecode. Binary instrumentation lacks a mapping from the collected profile of
program behavior at the machine-code level to higher-level operations, and thus
may result in profiles that are not actionable.

In this dissertation, we tackle the problems on profiling in the presence of
dynamic compilation in two ways. To address over-profiling and perturbation of
optimizations in bytecode instrumentation, we introduce a technique to make
profilers implemented with bytecode instrumentation techniques aware of the
optimization decisions of the dynamic compiler, and to make the dynamic compiler
aware of inserted profiling code. To address the inability of intercepting IR-level
operations, we introduce a technique to perform instrumentation at the IR level.

107

108 6.1 Summary of Contributions

6.1 Summary of Contributions

Below we summarize the contributions of this dissertation.

Accurate Bytecode Profiling. We present a new technique to make profilers aware
of dynamic compiler optimizations and to avoid perturbation of the optimizations.
We implement our technique in Oracle’s Graal compiler and integrate it into the
Graal project in OpenJDK. We provide a set of query intrinsics for retrieving the
optimization decisions within inserted profiling code.

We present profilers to explore the impact of (partial) escape analysis and stack
allocation on heap usage and object lifetime, and to explore the impact of method
inlining on callsite profiling, demonstrating that our approach helps improve
the accuracy of existing bytecode-instrumentation-based tools. We present tools
to identify inlining opportunities, and to study the impact of method inlining
considering varying levels of calling context, demonstrating that our approach
enables new tools that can help further improve the optimizations performed
by dynamic compilers. We introduce a new framework for testing the results
of dynamic compiler optimizations at runtime, which helps, e.g., to discover
optimizations that become ineffective due to unwanted interferences among
different optimization phases. Our testing framework has already helped the
developers of Graal to locate and fix performance bugs in their compiler.

IR Profiling. We present an event-based framework to support profiling of the IR-
level operations used during dynamic compilation. We implement our framework
in Oracle’s Graal compiler, together with the accurate bytecode-level profiling
technique.

We present a characterization study on the memory-barrier usage in the code
produced by Graal for the DaCapo and ScalaBench benchmark suites. We also
present an empirical study on the deoptimization causes in the code produced
by Graal for the DaCapo, ScalaBench, and Octane benchmark suites. We provide
two additional feedback-directed deoptimization strategies. We evaluate the
performance of both deoptimization strategies and compare them to the default
strategy used by Graal. We observe an improvement of the start-up performance
with our adaptive deoptimization strategy. We also find that the choice of a
deoptimization strategy has negligible impact on steady-state performance. This
indicates that the cost of speculation matters mainly during start-up, where it can
disturb the delicate balance between executing the program and compilation, but
is quickly amortized in steady state.

109 6.2 Future Work

6.2 Future Work

The work presented in this dissertation opens several future research directions.
Below, we give an overview of our research plans:

Flexible and Extensible IR Profiling. We have presented an event-based IR profil-
ing framework, which predefines all the IR events that are one-to-one mapped to
the IR node types. We plan to make the framework easily extensibile. Firstly, we
would allow the definition of events with certain traits, e.g., an event indicating a
conditional within a loop. Secondly, we would like to support custom IR-level
events representing IR subgraphs with specific properties instead of only single
IR nodes.

Inspection of Compiler Optimizations. One of the key reasons for introducing
IR profiling is that it allows one to inspect compiler optimizations. For example,
the compiler developer may be interested in finding out the efficiency of the loop
unswitching optimization, which moves a conditional outside of a loop. This can
be achieved by profiling the executed number of conditionals that are unswitched.
To this end, we need a mechanism that allows the profiler developer to perform
static analysis on the IR graph before and after specific compiler phases.

Enhancing Existing Tools. Prevailing tools based on bytecode instrumentation
may emit a misleading profile due to perturbations or the inability of precisely
intercepting low-level operations. Our accurate bytecode profiling technique and
the IR profiling technique address these problems. A possible future direction
would be to enhance existing tools to use our techniques and evaluate the im-
proved accuracy of the new profilers. One possible target is the modeling of
garbage-collector behavior based on program traces, as prevailing techniques
observe significant inaccuracies due to perturbations caused by inserted instru-
mentation code [66].

110 6.2 Future Work

Bibliography

[1] Ammons, G., Ball, T., Larus, J.R.: Exploiting Hardware Performance Coun-
ters with Flow and Context Sensitive Profiling. In: Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation. pp. 85–96. PLDI ’97, ACM, New York, NY, USA (1997)

[2] Anderson, J.M., Berc, L.M., Dean, J., Ghemawat, S., Henzinger, M.R.,
Leung, S.T.A., Sites, R.L., Vandevoorde, M.T., Waldspurger, C.A., Weihl,
W.E.: Continuous Profiling: Where Have All the Cycles Gone? ACM Trans.
Comput. Syst. 15(4), 357–390 (Nov 1997)

[3] Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.: A Survey of Adaptive
Optimization in Virtual Machines. Proceedings of the IEEE 93(2), 449–466
(Feb 2005)

[4] Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F.: Adaptive Opti-
mization in the Jalapeño JVM. In: Proceedings of the 15th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications. pp. 47–65. OOPSLA ’00, ACM, New York, NY, USA (2000)

[5] Arnold, M., Fink, S., Sarkar, V., Sweeney, P.F.: A Comparative Study of
Static and Profile-based Heuristics for Inlining. In: Proceedings of the
ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and
Optimization. pp. 52–64. DYNAMO ’00, ACM, New York, NY, USA (2000)

[6] Arnold, M., Grove, D.: Collecting and Exploiting High-Accuracy Call Graph
Profiles in Virtual Machines. In: Proceedings of the International Sympo-
sium on Code Generation and Optimization. pp. 51–62. CGO ’05, IEEE
Computer Society, Washington, DC, USA (2005)

[7] Arnold, M., Hind, M., Ryder, B.G.: Online Feedback-directed Optimization
of Java. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-

111

112 Bibliography

oriented Programming, Systems, Languages, and Applications. pp. 111–
129. OOPSLA ’02, ACM, New York, NY, USA (2002)

[8] Arnold, M., Ryder, B.G.: A Framework for Reducing the Cost of Instru-
mented Code. In: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation. pp. 168–179. PLDI
’01, ACM, New York, NY, USA (2001)

[9] Arnold, M., Sweeney, P.F.: Approximating the calling context tree via
sampling. Tech. rep., IBM Research (2000)

[10] Ball, T., Larus, J.R.: Efficient Path Profiling. In: Proceedings of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture. pp.
46–57. MICRO 29, IEEE Computer Society, Washington, DC, USA (1996)

[11] Binder, W.: Portable and Accurate Sampling Profiling for Java. Softw. Pract.
Exper. 36(6), 615–650 (May 2006)

[12] Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In: Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-oriented Program-
ming Systems, Languages, and Applications. pp. 169–190. OOPSLA ’06,
ACM, New York, NY, USA (2006)

[13] Blanchet, B.: Escape Analysis for Object-oriented Languages: Application
to Java. In: Proceedings of the 14th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. pp. 20–34.
OOPSLA ’99, ACM, New York, NY, USA (1999)

[14] Blanchet, B.: Escape Analysis for Java: Theory and Practice. ACM Trans.
Program. Lang. Syst. 25(6), 713–775 (Nov 2003)

[15] Bond, M.D., McKinley, K.S.: Continuous Path and Edge Profiling. In: Pro-
ceedings of the 38th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. pp. 130–140. MICRO 38, IEEE Computer Society, Wash-
ington, DC, USA (2005)

[16] Bruening, D., Garnett, T., Amarasinghe, S.: An Infrastructure for Adaptive
Dynamic Optimization. In: Proceedings of the International Symposium

113 Bibliography

on Code Generation and Optimization: Feedback-directed and Runtime
Optimization. pp. 265–275. CGO ’03, IEEE Computer Society, Washington,
DC, USA (2003)

[17] Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to
implement adaptable systems. In: Adaptable and extensible component
systems (2002)

[18] Burke, M.G., Choi, J.D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano,
M.J., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño dynamic
optimizing compiler for Java. In: Proceedings of the ACM 1999 Conference
on Java Grande. pp. 129–141. JAVA ’99, ACM, New York, NY, USA (1999)

[19] Buytaert, D., Georges, A., Hind, M., Arnold, M., Eeckhout, L., De Bosschere,
K.: Using Hpm-sampling to Drive Dynamic Compilation. In: Proceedings
of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems and Applications. pp. 553–568. OOPSLA ’07, ACM,
New York, NY, USA (2007)

[20] Chambers, C., Ungar, D.: Making pure object-oriented languages practical.
In: Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications. pp. 1–15. OOPSLA ’91, ACM, New York, NY,
USA (1991)

[21] Chiba, S.: Load-Time Structural Reflection in Java. In: Proceedings of the
14th European Conference on Object-Oriented Programming. pp. 313–336.
ECOOP ’00, Springer-Verlag, London, UK, UK (2000)

[22] Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape
Analysis for Java. In: Proceedings of the 14th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications.
pp. 1–19. OOPSLA ’99, ACM, New York, NY, USA (1999)

[23] Click, C., Paleczny, M.: A Simple Graph-based Intermediate Representa-
tion. In: Papers from the 1995 ACM SIGPLAN Workshop on Intermediate
Representations. pp. 35–49. IR ’95, ACM, New York, NY, USA (1995)

[24] Dahm, M.: Byte Code Engineering, pp. 267–277. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1999)

[25] Detlefs, D., Agesen, O.: Inlining of Virtual Methods. In: Proceedings of the
13th European Conference on Object-Oriented Programming. pp. 258–278.
ECOOP ’99, Springer-Verlag, London, UK, UK (1999)

114 Bibliography

[26] Deutsch, L.P., Schiffman, A.M.: Efficient Implementation of the Smalltalk-
80 System. In: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. pp. 297–302. POPL ’84, ACM,
New York, NY, USA (1984)

[27] Dmitriev, M.: Design of JFluid: A Profiling Technology and Tool Based on
Dynamic Bytecode Instrumentation. Tech. rep., Mountain View, CA, USA
(2003)

[28] Duboscq, G., Würthinger, T., Stadler, L., Wimmer, C., Simon, D., Mössen-
böck, H.: An Intermediate Representation for Speculative Optimizations in
a Dynamic Compiler. In: Proceedings of the 7th ACM Workshop on Virtual
Machines and Intermediate Languages. pp. 1–10. VMIL ’13, ACM, New
York, NY, USA (2013)

[29] Duesterwald, E., Bala, V.: Software Profiling for Hot Path Prediction: Less
is More. SIGPLAN Not. 35(11), 202–211 (Nov 2000)

[30] Fang, L., Dou, L., Xu, G.: PerfBlower: Quickly Detecting Memory-Related
Performance Problems via Amplification. In: Boyland, J.T. (ed.) 29th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2015). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 37, pp. 296–320.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2015)

[31] Feeley, M.: Polling Efficiently on Stock Hardware. In: Proceedings of
the Conference on Functional Programming Languages and Computer
Architecture. pp. 179–187. FPCA ’93, ACM, New York, NY, USA (1993)

[32] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst. 9(3),
319–349 (Jul 1987)

[33] Fink, S.J., Qian, F.: Design, Implementation and Evaluation of Adaptive
Recompilation with On-stack Replacement. In: International Symposium
on Code Generation and Optimization, 2003. CGO 2003. pp. 241–252.
CGO ’03, IEEE Computer Society, Washington, DC, USA (March 2003)

[34] Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise Dynamic
Race Detection. In: Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 121–133. PLDI
’09, ACM, New York, NY, USA (2009)

115 Bibliography

[35] Flanagan, C., Freund, S.N.: The RoadRunner Dynamic Analysis Frame-
work for Concurrent Programs. In: Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing. pp. 1–8. PASTE ’10, ACM, New York, NY, USA (2010)

[36] Froyd, N., Mellor-Crummey, J., Fowler, R.: Low-overhead Call Path Profil-
ing of Unmodified, Optimized Code. In: Proceedings of the 19th Annual
International Conference on Supercomputing. pp. 81–90. ICS ’05, ACM,
New York, NY, USA (2005)

[37] Google: Octane 2.0 JavaScript Benchmark. https://developers.
google.com/octane/

[38] Google: The V8 JavaScript engine. https://developers.
google.com/v8/

[39] Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A Call Graph Execution
Profiler. In: Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction. pp. 120–126. SIGPLAN ’82, ACM, New York, NY, USA (1982)

[40] Gu, D., Verbrugge, C.: Phase-based Adaptive Recompilation in a JVM. In:
Proceedings of the 6th Annual IEEE/ACM International Symposium on
Code Generation and Optimization. pp. 24–34. CGO ’08, ACM, New York,
NY, USA (2008)

[41] Häubl, C., Wimmer, C., Mössenböck, H.: Trace Transitioning and Exception
Handling in a Trace-based JIT Compiler for Java. ACM Trans. Archit. Code
Optim. 11(1), 6:1–6:26 (Feb 2014)

[42] Hauswirth, M., Sweeney, P.F., Diwan, A., Hind, M.: Vertical Profiling: Un-
derstanding the Behavior of Object-priented Applications. In: Proceedings
of the 19th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications. pp. 251–269. OOPSLA ’04,
ACM, New York, NY, USA (2004)

[43] Hazelwood, K., Grove, D.: Adaptive online context-sensitive inlining. In:
Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization. pp. 253–264.
CGO ’03, IEEE Computer Society, Washington, DC, USA (2003)

[44] Hertz, M., Blackburn, S.M., Moss, J.E.B., McKinley, K.S., Stefanović, D.:
Generating Object Lifetime Traces with Merlin. ACM Trans. Program. Lang.
Syst. 28(3), 476–516 (May 2006)

https://developers.google.com/octane/
https://developers.google.com/octane/
https://developers.google.com/v8/
https://developers.google.com/v8/

116 Bibliography

[45] Hirzel, M., Chilimbi, T.: Bursty Tracing: A Framework for Low-Overhead
Temporal Profiling. In: 4th ACM Workshop on Feedback-Directed and
Dynamic Optimization. pp. 117–126. FDDO ’01 (2001)

[46] Hofer, P., Gnedt, D., Mössenböck, H.: Lightweight Java Profiling with
Partial Safepoints and Incremental Stack Tracing. In: Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering. pp.
75–86. ICPE ’15, ACM, New York, NY, USA (2015)

[47] Hölzle, U., Chambers, C., Ungar, D.: Debugging Optimized Code with
Dynamic Deoptimization. In: Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation. pp.
32–43. PLDI ’92, ACM, New York, NY, USA (1992)

[48] Hölzle, U., Ungar, D.: Reconciling Responsiveness with Performance in
Pure Object-oriented Languages. ACM Trans. Program. Lang. Syst. 18(4),
355–400 (Jul 1996)

[49] IBM: J9 Virtual Machine. https://www.ibm.com/support/
knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.
70.doc/user/java_jvm.html

[50] IBM: T.J. Watson Libraries for Analysis (WALA). http://wala.
sourceforge.net/wiki/index.php/Main_Page

[51] Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic
Program Generation. Prentice Hall (1993)

[52] Kedlaya, M.N., Robatmili, B., Caşcaval, C., Hardekopf, B.: Deoptimization
for Dynamic Language JITs on Typed, Stack-based Virtual Machines. In:
Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. pp. 103–114. VEE ’14, ACM, New York,
NY, USA (2014)

[53] Kell, S., Ansaloni, D., Binder, W., Marek, L.: The JVM is Not Observable
Enough (and What to Do About It). In: Proceedings of the Sixth ACM
Workshop on Virtual Machines and Intermediate Languages. pp. 33–38.
VMIL ’12, ACM, New York, NY, USA (2012)

[54] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: An Overview of AspectJ. In: Proceedings of the 15th European
Conference on Object-Oriented Programming. pp. 327–353. ECOOP ’01,
Springer-Verlag, London, UK, UK (2001)

https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

117 Bibliography

[55] Knuth, D.E.: Structured programming with go to statements. ACM Comput.
Surv. 6(4), 261–301 (Dec 1974)

[56] Kotzmann, T., Mössenböck, H.: Escape Analysis in the Context of Dynamic
Compilation and Deoptimization. In: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments. pp. 111–120.
VEE ’05, ACM, New York, NY, USA (2005)

[57] Kotzmann, T., Mössenböck, H.: Run-Time Support for Optimizations Based
on Escape Analysis. In: Proceedings of the International Symposium on
Code Generation and Optimization. pp. 49–60. CGO ’07, IEEE Computer
Society, Washington, DC, USA (2007)

[58] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., Cox,
D.: Design of the Java HotSpot™ Client Compiler for Java 6. ACM Trans.
Archit. Code Optim. 5(1), 7:1–7:32 (May 2008)

[59] Krintz, C.J., Grove, D., Sarkar, V., Calder, B.: Reducing the overhead of
dynamic compilation. Software: Practice and Experience 31(8), 717–738
(2001)

[60] Kulkarni, P., Arnold, M., Hind, M.: Dynamic Compilation: The Benefits of
Early Investing. In: Proceedings of the 3rd International Conference on
Virtual Execution Environments. pp. 94–104. VEE ’07, ACM, New York, NY,
USA (2007)

[61] Kulkarni, P.A.: JIT Compilation Policy for Modern Machines. In: Pro-
ceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications. pp. 773–788. OOPSLA
’11, ACM, New York, NY, USA (2011)

[62] Langdale, G., Gross, T.: Evaluating the Relationship Between the Usefulness
and Accuracy of Profiles. In: Proc. Workshop on Duplicating, Deconstruct-
ing, and Debunking (2003)

[63] Lea, D.: The JSR-133 Cookbook for Compiler Writers. http://gee.
cs.oswego.edu/dl/jmm/cookbook.html

[64] Levin, R., Newman, I., Haber, G.: Complementing Missing and Inaccurate
Profiling Using a Minimum Cost Circulation Algorithm. In: Proceedings of
the 3rd International Conference on High Performance Embedded Archi-
tectures and Compilers. pp. 291–304. HiPEAC’08, Springer-Verlag, Berlin,
Heidelberg (2008)

http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html

118 Bibliography

[65] Li, W.H., Singer, J., White, D.: JVM-Hosted Languages: They Talk the Talk,
but Do they Walk the Walk? In: Proc. Intl. conf. on Principles and Practices
of Programming on the Java platform:Virtual machines, languages, and
tools. pp. 101–112. PPPJ ’13, ACM (2013)

[66] Libič, P., Bulej, L., Horky, V., Tůma, P.: On the Limits of Modeling Gen-
erational Garbage Collector Performance. In: Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering. pp.
15–26. ICPE ’14, ACM, New York, NY, USA (2014)

[67] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace,
S., Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In: Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
pp. 190–200. PLDI ’05, ACM, New York, NY, USA (2005)

[68] Marek, L., Zheng, Y., Ansaloni, D., Bulej, L., Sarimbekov, A., Binder, W.,
Qi, Z.: Introduction to Dynamic Program Analysis with DiSL. In: Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance
Engineering. pp. 429–430. ICPE ’13, ACM, New York, NY, USA (2013)

[69] Marek, L., Kell, S., Zheng, Y., Bulej, L., Binder, W., Tůma, P., Ansaloni,
D., Sarimbekov, A., Sewe, A.: ShadowVM: Robust and Comprehensive
Dynamic Program Analysis for the Java Platform. In: Proceedings of the
12th International Conference on Generative Programming: Concepts
& Experiences. pp. 105–114. GPCE ’13, ACM, New York, NY, USA
(2013)

[70] Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: A
Domain-specific Language for Bytecode Instrumentation. In: Proceedings
of the 11th Annual International Conference on Aspect-oriented Software
Development. pp. 239–250. AOSD ’12, ACM, New York, NY, USA (2012)

[71] Molnar, P., Krall, A., Brandner, F.: Stack Allocation of Objects in the CACAO
Virtual Machine. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java. pp. 153–161. PPPJ ’09,
ACM, New York, NY, USA (2009)

[72] Moret, P., Binder, W., Tanter, E.: Polymorphic Bytecode Instrumentation.
In: Proceedings of the Tenth International Conference on Aspect-oriented
Software Development. pp. 129–140. AOSD ’11, ACM, New York, NY, USA
(2011)

119 Bibliography

[73] Moseley, T., Shye, A., Reddi, V.J., Grunwald, D., Peri, R.: Shadow Profiling:
Hiding Instrumentation Costs with Parallelism. In: Proceedings of the
International Symposium on Code Generation and Optimization. pp. 198–
208. CGO ’07, IEEE Computer Society, Washington, DC, USA (2007)

[74] Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Evaluating the
Accuracy of Java Profilers. In: Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp.
187–197. PLDI ’10, ACM, New York, NY, USA (2010)

[75] Naik, M.: Chord: A Program Analysis Platform for Java. http://www.
seas.upenn.edu/~mhnaik/chord.html

[76] Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation. In: Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp.
89–100. PLDI ’07, ACM, New York, NY, USA (2007)

[77] Oracle: Graal project. http://openjdk.java.net/projects/
graal/

[78] Oracle: hprof. http://docs.oracle.com/javase/8/docs/
technotes/samples/hprof.html

[79] Oracle: Java virtual machine tool interface. https://docs.oracle.
com/javase/8/docs/technotes/guides/jvmti/

[80] Oracle: JSR 133: Java Memory Model and Thread Specification Revision.
https://jcp.org/en/jsr/detail?id=133

[81] Oracle: Netbeans profiler. https://profiler.netbeans.org

[82] Paleczny, M., Vick, C., Click, C.: The Java HotSpot™ Server Compiler.
In: Proceedings of the 2001 Symposium on JavaTM Virtual Machine Re-
search and Technology Symposium - Volume 1. pp. 1–1. JVM’01, USENIX
Association, Berkeley, CA, USA (2001)

[83] Pettis, K., Hansen, R.C.: Profile Guided Code Positioning. In: Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design
and Implementation. pp. 16–27. PLDI ’90, ACM, New York, NY, USA (1990)

http://www.seas.upenn.edu/~mhnaik/chord.html
http://www.seas.upenn.edu/~mhnaik/chord.html
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
http://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://jcp.org/en/jsr/detail?id=133
https://profiler.netbeans.org

120 Bibliography

[84] Ricci, N.P., Guyer, S.Z., Moss, J.E.B.: Elephant Tracks: Portable Production
of Complete and Precise GC Traces. In: Proceedings of the 2013 Inter-
national Symposium on Memory Management. pp. 109–118. ISMM ’13,
ACM, New York, NY, USA (2013)

[85] Sarimbekov, A., Stadler, L., Bulej, L., Sewe, A., Podzimek, A., Zheng, Y.,
Binder, W.: Workload Characterization of JVM Languages. Softw. Pract.
Exper. 46(8), 1053–1089 (Aug 2016)

[86] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
Dynamic Data Race Detector for Multi-threaded Programs. In: Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles. pp.
27–37. SOSP ’97, ACM, New York, NY, USA (1997)

[87] Sewe, A., Mezini, M., Sarimbekov, A., Ansaloni, D., Binder, W., Ricci, N.,
Guyer, S.Z.: new Scala() instance of Java: a comparison of the memory
behaviour of Java and Scala programs. In: Proc. Intl. symp. on Memory
Management. pp. 97–108. ISMM ’12, ACM (2012)

[88] Sewe, A., Mezini, M., Sarimbekov, A., Binder, W.: Da Capo con Scala:
design and analysis of a Scala benchmark suite for the Java virtual machine.
In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications. pp. 657–676.
OOPSLA ’11, ACM, New York, NY, USA (2011)

[89] Shali, A., Cook, W.R.: Hybrid Partial Evaluation. In: Proceedings of the
2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications. pp. 375–390. OOPSLA ’11, ACM,
New York, NY, USA (2011)

[90] Simon, D., Wimmer, C., Urban, B., Duboscq, G., Stadler, L., Würthinger, T.:
Snippets: Taking the High Road to a Low Level. ACM Trans. Archit. Code
Optim. 12(2), 20:20:1–20:20:25 (Jun 2015)

[91] Smith, M.D.: Overcoming the Challenges to Feedback-directed Optimiza-
tion (Keynote Talk). In: Proceedings of the ACM SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization. pp. 1–11. DYNAMO
’00, ACM, New York, NY, USA (2000)

[92] SPEC: SPEC95. http://www.specbench.org/osg/cpu95/

http://www.specbench.org/osg/cpu95/

121 Bibliography

[93] Stadler, L., Würthinger, T., Mössenböck, H.: Partial Escape Analysis and
Scalar Replacement for Java. In: Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization. pp. 165:165–
165:174. CGO ’14, ACM, New York, NY, USA (2014)

[94] Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H., Nakatani, T.: Design
and Evaluation of Dynamic Optimizations for a Java Just-in-time Compiler.
ACM Trans. Program. Lang. Syst. 27(4), 732–785 (Jul 2005)

[95] Sweeney, P.F., Hauswirth, M., Cahoon, B., Cheng, P., Diwan, A., Grove,
D., Hind, M.: Using Hardware Performance Monitors to Understand the
Behavior of Java Applications. In: Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium - Volume 3. pp. 5–5.
VM’04, USENIX Association, Berkeley, CA, USA (2004)

[96] ej technologies: JProfiler. https://www.ej-technologies.
com/products/jprofiler/overview.html

[97] The Eclipse Foundation: eclipse tptp. https://eclipse.org/
tptp/

[98] Tian, K., Zhang, E., Shen, X.: A step towards transparent integration of
input-consciousness into dynamic program optimizations. In: Proceedings
of the 2011 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications. pp. 445–462. OOPSLA ’11,
ACM, New York, NY, USA (2011)

[99] Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sun-
daresan, V.: Optimizing Java Bytecode Using the Soot Framework: Is It
Feasible? In: Proceedings of the 9th International Conference on Compiler
Construction. pp. 18–34. CC ’00, Springer-Verlag, London, UK, UK (2000)

[100] Whaley, J.: A Portable Sampling-based Profiler for Java Virtual Machines.
In: Proceedings of the ACM 2000 Conference on Java Grande. pp. 78–87.
JAVA ’00, ACM, New York, NY, USA (2000)

[101] Whaley, J.: Partial Method Compilation Using Dynamic Profile Information.
In: Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications. pp. 166–179. OOP-
SLA ’01, ACM, New York, NY, USA (2001)

https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://eclipse.org/tptp/
https://eclipse.org/tptp/

122 Bibliography

[102] Wimmer, C., Jovanovic, V., Eckstein, E., Würthinger, T.: One Compiler: De-
optimization to Optimized Code. In: Proceedings of the 26th International
Conference on Compiler Construction. pp. 55–64. CC 2017, ACM, New
York, NY, USA (2017)

[103] Wu, B., Zhou, M., Shen, X., Gao, Y., Silvera, R., Yiu, G.: Simple Pro-
file Rectifications Go a Long Way. In: Proceedings of the 27th European
Conference on Object-Oriented Programming. pp. 654–678. ECOOP’13,
Springer-Verlag, Berlin, Heidelberg (2013)

[104] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer,
C., Richards, G., Simon, D., Wolczko, M.: One VM to Rule Them All. In:
Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software. pp. 187–204.
Onward! 2013, ACM, New York, NY, USA (2013)

[105] Xu, G.: Finding Reusable Data Structures. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Lan-
guages and Applications. pp. 1017–1034. OOPSLA ’12, ACM, New York,
NY, USA (2012)

[106] Xu, G.: Resurrector: A Tunable Object Lifetime Profiling Technique for
Optimizing Real-world Programs. In: Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Systems
Languages and Applications. pp. 111–130. OOPSLA ’13, ACM, New York,
NY, USA (2013)

[107] Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the
Flow: Profiling Copies to Find Runtime Bloat. In: Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 419–430. PLDI ’09, ACM, New York, NY, USA (2009)

[108] Xu, G., Mitchell, N., Arnold, M., Rountev, A., Schonberg, E., Sevitsky, G.:
Finding Low-utility Data Structures. In: Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
pp. 174–186. PLDI ’10, ACM, New York, NY, USA (2010)

[109] Yan, D., Xu, G., Rountev, A.: Uncovering Performance Problems in Java
Applications with Reference Propagation Profiling. In: Proceedings of the
34th International Conference on Software Engineering. pp. 134–144.
ICSE ’12, IEEE Press, Piscataway, NJ, USA (2012)

123 Bibliography

[110] Yasue, T., Suganuma, T., Komatsu, H., Nakatani, T.: An Efficient Online
Path Profiling Framework for Java Just-In-Time Compilers. In: Proceedings
of the 12th International Conference on Parallel Architectures and Compi-
lation Techniques. pp. 148–. PACT ’03, IEEE Computer Society, Washington,
DC, USA (2003)

[111] Zhuang, X., Serrano, M.J., Cain, H.W., Choi, J.D.: Accurate, Efficient, and
Adaptive Calling Context Profiling. In: Proceedings of the 2006 ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
pp. 263–271. PLDI ’06, ACM, New York, NY, USA (2006)

124 Bibliography

	Contents
	Introduction
	Motivation
	Contributions
	Accurate Profiling with Bytecode Instrumentation
	Profiling at the IR Level

	Dissertation Outline
	Publications

	State of the Art
	Dynamic Compilation and Deoptimization
	Intermediate Code Representations
	Instrumentation
	Profiling Techniques
	Profile Accuracy and Usefulness

	Accurate Bytecode Profiling
	Motivation
	Approach
	Running Example
	Algorithm Overview
	Extracting ICGs
	Reconciling Operations on ICGs
	Querying Compiler Decisions
	Splicing ICGs

	Improving Existing Tools
	Impact on Allocation Profiling
	Impact on Object Lifetime Analysis
	Impact on Callsite Profiling

	Enabling New Tools
	Identifying Inlining Opportunities
	Calling-context Aware Receiver-type Profiler
	Compiler Testing Framework

	Discussion
	Summary

	Intermediate-Representation Profiling
	Motivation
	Framework Design
	Approach
	Programming Model
	Implementation
	Architecture
	Optimizations on the Inserted Code

	Evaluation
	Discussion
	Summary

	Empirical Study on Deoptimization
	Motivation
	Background
	Speculation and Deoptimization
	Deoptimization in the Graal Compiler

	Study of Deoptimization Behavior
	Profiling Deoptimizations
	Investigating Repeated Deoptimizations

	Alternative Deoptimization Strategies
	Conservative Deoptimization Strategy
	Adaptive Deoptimization Strategy

	Performance Evaluation
	DaCapo and ScalaBench Evaluation
	Octane on Graal.js Evaluation
	On the Scale of Performance Changes

	Discussion
	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

