
Removing Checks in Dynamically Typed Languages through
Efficient Profiling

Gem Dot Alejandro Martínez Antonio González
Universitat Politècnica de Catalunya ARM Universitat Politècnica de Catalunya

Barcelona, Spain Cambridge, United Kingdom Barcelona, Spain
 gdot@ac.upc.edu almavi1980@gmail.com antonio@ac.upc.edu

Abstract

Dynamically typed languages increase programmer’s
productivity at the expense of some runtime overheads to
manage the types of variables, since they are not declared
at compile time and can change at runtime. One of the most
important overheads is due to very frequent checks that are
introduced in the specialized code to identify the type of the
variables.

In this paper, we present a HW/SW hybrid mechanism
that allows the removal of checks executed in the optimized
code by performing a HW profiling of the types of object
variables. To demonstrate the benefits of the proposed
technique, we implement it in a JavaScript engine and show
that it produces 7.1% speedup on average for optimized
JavaScript code (up to 34% for some applications) and
6.5% energy reduction.

1. Introduction

The popularity of dynamically typed programming lan-
guages has increased significantly in the last years [33].
The most common languages are JavaScript, Python, PHP,
Ruby, Smalltalk and Self. Nowadays, JavaScript is the
most popular one [8].

The dynamic typing feature of these languages require
that their applications are Just-in-Time (JIT) compiled. A
characteristic of these languages is that variables are neither
declared nor bound to a particular type in the source code,
and their types may change during the execution. Compil-
ers usually make some assumptions about the types of the
variables, in order to generate specialized code, which is
significantly more efficient than a generic one. These as-
sumptions are based on some dynamic profiling infor-
mation collected previously by the runtime, during the
execution of the application.

Therefore, we can identify two main types of overheads
in the execution of these languages: the overheads associat-
ed to the dynamic compilation, profiling, garbage collector,
and other housekeeping tasks and the overheads related to
the verifications of the assumptions that have been intro-
duced in the specialized code. In modern JITs, these verifi-
cations are referred to as checks.

In this paper, we take an innovative approach to elimi-
nate some of these checks. A detailed characterization of
representative applications shows that most of the time
variables stay with the same type throughout the whole

execution of a program. We have also observed that pro-
grams normally use a limited number of classes (as in ob-
ject-oriented programming) and these classes tend to re-
main constant. Based on these observations, we propose a
hardware mechanism to track classes and more specifically,
which object properties and arrays of these classes contain
objects that always have the same type (i.e., they are mon-
omorphic). Once we have identified these properties, the
information is passed to the compiler, which can use it to
remove some checks and perform new optimizations as-
suming that the type of these variables will never change.
The last key element of our scheme is an efficient way to
verify the compiler assumptions. For this purpose, when a
store that writes an object property is executed, the
Memory Unit sends a request to a special hardware struc-
ture called the Class Cache, which tracks the properties that
so far are monomorphic. If this is the case for the property
to be written, then an exception is triggered when trying to
write them, as long as this property has been used to re-
move any check. This exception is captured by the runtime,
which can choose to execute a non-specialized version of
the code or recompile the offending function.

In this work we use JavaScript as a vehicle to demon-
strate the benefits of the proposed technique. First of all, we
develop an instrumented version of V8, the JavaScript
engine used by Google, which allows us to perform a de-
tailed characterization for a representative set of bench-
marks. In particular, this analysis quantifies the overhead
due to checks.

The proposed scheme attacks this overhead and results
in significant improvements in performance (7.1% speedup
on average for optimized code and up to 34% for some
applications) and energy consumption (6.5% reduction on
average).

The remainder of this paper is organized as follows: In
section 2, the related work is presented. Section 3 provides
an overview of the most important aspects of the V8 JavaS-
cript engine. In Section 4, we describe the proposed hard-
ware mechanism and some optimizations that rely on it.
The results are presented in section 5 and finally, section 6
concludes this paper.

2. Related Work

The state-of-the-art technique that modern JITs use to deal
with the dynamic typing feature is known as Inline Caching

CGO 2017, Austin, USA1

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/CGO.2017.7863745

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

[21, 22]. It is based on specializing every code section that
accesses a variable or an object property, according to the
types that have been previously seen during profiling.

Inline Caching technique was first introduced in the
Smalltalk compilers [21] and it was later used in Self com-
pilers [1][5][12][13][17][18]. One important contribution
[17] evolves this technique to Polymorphic Inline Caching.
There are some recent contributions that improve Inline
Caching performance for JavaScript compilers. One of
them [29] is based on applying classic optimizations to
specialized code based on profiled runtime values. Ahn et
al. [14] proposed a technique to increase the hit rate of
Inline Cache accesses and improvements to the Polymor-
phic Inline Caching scheme.

Various proposals to reduce the overhead of checks can
be found in the literature [2][3][4][7][10][20]. Checked
Load [20] introduces automatic checking of types. Basical-
ly, checks are not removed, but partially performed implic-
itly by a specialized hardware instead. However, this work
deals only with those checks that are necessary just before
an object property is loaded.

3. The V8 JavaScript Engine

In this paper we evaluate the proposed technique and
demonstrate its benefits for a JavaScript [24] environment,
which is the most popular dynamically typed language now-
adays. In particular, we use the JavaScript engine from
Google, which is known as V8 [9][11[15][16]. Other ven-
dors have alternative engines for JavaScript. Apple uses
Nitro [26] (previously known as SquirrelFish Extreme),
Mozilla uses SpiderMonkey [19] and Microsoft uses Chakra
[34]. The proposed scheme can be applied to other dynami-
cally typed languages and engines.

V8 is open source and widely used. V8 compiles JavaS-
cript to native machine code (IA-32, x86-64, ARM, or
MIPS) before executing it, instead of using other traditional
techniques such as interpreting it and compiling only those
sections that are frequently used. Below we outline its inter-
nal operation because it will help to understand how our
scheme works.

V8 was specifically designed for fast execution of large
JavaScript applications. Depending on the nature of a spe-
cific program, its performance is normally better if it runs
the same functions repeatedly, instead of running many
different functions very few times each. This is because V8
optimizer focuses on hot functions (i.e. those functions that
execute more often). V8 includes two compilers: The first
one is called Full Codegen, which has light overhead but
produces generic code; The second one is called Crankshaft,
and is slower but produces more optimized code, including
code specialization [6][35][36].

3.1 Hidden Classes

JavaScript is an object-oriented programming language in
which classes are not explicitly specified by the program-

mer. However, hidden classes are immutable entities intro-
duced by V8 that represent object types. In other words,
objects that share the same hidden class have the same
type. In this regard, each hidden class represents an ordered
set of object named variables and methods (i.e., object
properties). When at runtime an object is created for the
first time, its hidden class is also created. Moreover, every
time that a new property, x, is added to an object, the object
changes its hidden class to another one, which contains all
properties of the old hidden class plus the property x. If this
latter hidden class does not exist yet (i.e. it is the first time
that x is added to the old hidden class), then it is created.
Note that the first field of each object contains the address
of the hidden class descriptor, which is also used as hidden
class identifier.

Furthermore, objects contain two reserved special prop-
erties, which are used to manage their numbered variables
(i.e., variables that are indexed by a number): The elements
array pointer and the elements length, which are located in
the third and fourth 8-byte words of the object, respective-
ly. The former contains a pointer that targets an internal
array called the elements array, which contains all the
variables of the object that are indexed by a number. Note
that the addition of a numbered variable to an object does
not change the hidden class of that object. The latter con-
tains the length of the elements array, which can change
during the execution. However, in some other cases, the
elements length is directly located inside the elements ar-
ray, instead of the object itself.

3.2 Inline Caching

Inline Caching technique has a twofold purpose: recording
information concerning the types of objects and improving
the performance of the system lookup routine used to dis-
ambiguate the type of objects when they are accessed. Each
of the two compilers, Full Codegen and Crankshaft, applies
this technique in a different manner.

 During the execution of the generic code produced by
Full Codegen, for each object property access, a call instruc-
tion is executed, which is constantly patched by the runtime.
The first time that the access is produced, the call instruc-
tion targets a lookup routine that performs a sequence of
steps that determine the type of the object and find the offset
for that property. Then, the access is performed by this rou-
tine. Since this process is quite costly, a special software
structure called Inline Cache (IC) is created, which contains
specialized code (i.e., the code to perform that access) for
that particular object type and the offset found. Then, the
call instruction is patched to point to this Inline Cache.
Therefore, subsequent accesses are substantially faster if the
type keeps being the same. In this regard, a checking opera-
tion needs to be inserted before the generated code to verify
that the type is the expected one.

The information recorded during the above process is al-
so used by Crankshaft (the optimizing compiler) to perform
more aggressive optimizations for hot code. In this regard,

2

Crankshaft generates specialized code that performs directly
the property accesses for those hidden classes previously
encountered by the Inline Caches, instead of executing a call
instruction for each of them. Also, checking operations are
introduced in this specialized code, in order to verify that
the encountered type is the expected one; otherwise (i.e.
when a checking operation fails), the optimized code falls
back to non-optimized code through a deoptimization
bailout. Note that the specialized code produced by Crank-
shaft is much more efficient than the non-optimized code
produced by Full Codegen, due to the fact that the call in-
structions are not present, which also allows that other
standard compiler optimizations can be performed over this
specialized code. Therefore, this specialized code is key to
efficiently implement JavaScript characteristics, such as the
dynamic typing feature.

3.3 Checking Operations

Next, we list the most common checking operations used in
V8:

 Check Map: The first slot in each V8 object points
to its class identifier (corresponding to its hidden
class, which is its type). In this case, the type of an
object is checked to be the same as that of another
type, which has been seen before.

 Check SMI: A register containing a boxed object can
be of two types: either a SMI (small integer), which has
its last bit cleared or a pointer, which has its last bit set.
In this case, the last bit of a register is checked to know
whether it is a SMI.

 Check Non-SMI: The opposite of Check SMI.

In Figure 1, we show the breakdown of dynamic instruc-
tions for Checks, math assumptions and Tags/Untags cate-
gories. Checks category refers uniquely to the checking
operations listed above. However, both math assumptions
and Tags/Untags categories can also contain some of these
checking operations. As we can see, 19.5% of the dynamic
instructions correspond to these categories for representative
benchmarks (Octane [30], Kraken [31] and SunSpider [27]
suites) on their steady state, which is a significant amount of
overhead. In V8, the most common kind of checking opera-
tions is referred to as Check Maps. However, other kinds of
checks are also common during the execution of optimized
code, such as Check Non-SMI.

Tags/Untags are operations used to box and unbox
number values. When a number value is boxed, the register
that supposedly contains that number does not contain the
value directly. Instead, it contains the object (i.e. the address
of the object, but its last bit is set to 1) where that value is
stored. As an exception, if the boxed number is a SMI (i.e.,
a small integer), the value is located in the 32 most signifi-
cant bits of the register and the last bit is set to 0. Note that
some of the untagging operations also perform Check Maps,
Check Non-SMI and Check SMI operations before the value

is untagged, in order to verify that the number to be un-
tagged has the expected type (i.e., either SMI or Non-SMI).
We have included these additional checking operations in
the Tags/Untags category.

On the other hand, the math assumptions category corre-
sponds to some math operations that require some runtime
value verifications on their source operands or the produced
result. The most common scenarios are overflows of SMIs
and division by 0.

4. Dynamic Type Profiling and Optimization

In this section we present our proposed technique and some
of the optimizations that it allows, which reduce some of the
most important overheads due to dynamic typing. First, we
explain the reasons that have motivated us to devise this
new technique. Next, we present the design and functionali-
ty of the technique and lastly, we describe some optimiza-
tions that make use of it.

4.1 Motivation

We have observed that for many benchmarks, the main
source of the overhead quantified in Figure 1 comes from
checking operations of objects obtained from properties or

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

n
av

ie
r-

st
o

ke
s

p
d

fj
s

ra
yt

ra
ce

re
ge

xp

ri
ch

ar
d

s

sp
la

y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

d
ar

kr
o

o
m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6-
it

er
at

iv
e

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 I
n

st
ru

ct
io

n
s

(%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

e
cu

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
pa

rb

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

D
yn

am
ic

 I
n

st
ru

ct
io

n
s

(%
)

Checks Tags/Untags
Math Assumptions Other Optimized Code
Rest of Code

Figure 1. Breakdown of dynamic instructions.

3

elements arrays. In Figure 2 we quantify this overhead for
both the whole application and optimized code. Note that
we also include part of the overhead of untagging opera-
tions, which corresponds to the checking operations needed
before unboxing a value.

We can see that about half of the total benchmarks pre-
sent a zero overhead. One of the major reasons for this is
that some of them do not exploit the object-oriented para-
digm of JavaScript and therefore, they do not perform
many dynamic object accesses. Another important reason is
that although some of these benchmarks perform a signifi-
cant number of object accesses, they do not require any
checking operation after these accesses because they use
built-in JavaScript objects for their computations. Note that
most of the properties from built-in objects are either read-
only or type specific (e.g., Float64Array objects) and there-
fore, they do not require any type check after they have
been obtained. Finally, there are a few number of bench-
marks that still are spending a significant fraction of the
time in non-optimized code (e.g., string-base64 benchmark,
from SunSpider suite), which does not suffer from the
overheads targeted in this section. For the rest of this paper,
in order to evaluate the impact of these particular checking
operations, we have selected the benchmarks with more
than 1% overhead, which represent 27 out of 54 bench-
marks. In this regard, we have averaged the benchmarks
suites of Figure 2 only for these selected benchmarks. We

can see that these overheads represent 10.7% of the total
dynamic instructions for the whole application in steady
state. Furthermore, if we take into account only the opti-
mized code, these overheads represent 15.9% of the total
dynamic instructions, which is quite significant.

On the other hand, we have observed that most of the
type checks quantified in Figure 2 are performed over
monomorphic properties or monomorphic elements arrays
(i.e., those that contain objects with the same type through-
out the whole execution of the program). We have quanti-
fied that 66% of the object load accesses target either mon-
omorphic properties or monomorphic elements arrays as
showed in Figure 3. Lastly, we have also observed that
many checking operations target these object load accesses.
Therefore, the key idea behind our technique is that these
checking operations can be removed as long as the mono-
morphism of the variables is preserved during the execution
of the program.

Finally, we have also observed that programs normally
use a limited number of hidden classes and these classes
tend to remain constant. Our analysis of representative
workloads reveals that the number of hidden classes is
relatively small in almost all benchmarks: they all use up to
32 hidden classes excepting box2d and raytrace, from Oc-
tane. Therefore, the hardware structure that we use to keep
the hidden class information about monomorphic properties
or monomorphic elements arrays (i.e., the Class Cache)
does not have important storage requirements.

4.2 The Proposed Mechanism

The proposed mechanism is based on a small, special new
HW/SW structure called the Class Cache that keeps infor-
mation about monomorphic properties and monomorphic
elements arrays at hidden class level. In other words, for
each hidden class, it stores which properties and elements
arrays contain objects with the same type (i.e. a particular
hidden class or SMI) during the whole execution of a pro-

0

5

10

15

20

25

30

35

40

45

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to
d

el
ta

b
lu

e
ea

rl
ey

-b
o

ye
r

gb
em

u
m

an
d

re
el

n
av

ie
r-

st
o

ke
s

p
d

fj
s

ra
yt

ra
ce

re
ge

xp
ri

ch
ar

d
s

sp
la

y
zl

ib
O

ct
an

e
av

er
ag

e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6-
…

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 I
n

st
ru

ct
i o

n
s

(%
)

0

5

10

15

20

25

30

35

40

45

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

e
cu

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
pa

rb

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized code

D
yn

am
ic

 I
n

st
ru

ct
i o

n
s

(%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

cr
yp

to
d

el
ta

b
lu

e
ea

rl
ey

-b
o

ye
r

gb
em

u
m

an
d

re
el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s
O

ct
an

e
av

er
ag

e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e
ac

ce
ss

-b
in

ar
y-

tr
ee

s
ac

ce
ss

-f
an

n
ku

ch
ac

ce
ss

-n
b

o
d

y
cr

yp
to

-a
es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm
st

ri
n

g-
u

n
p

ac
k-

co
d

e
Su

n
Sp

id
er

 a
ve

ra
ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

56
-…

K
ra

ke
n

 a
ve

ra
ge

O
b

je
ct

 l
o

ad
 a

cc
e

ss
e

s
(%

)

no monomorphic array elements no monomorphic properties

monomorphic array elements monomorphic properties

Figure 3. Object load accesses to monomorphic properties and
monomorphic elements arrays.

Figure 2. Overhead produced by checking and untagging
operations after performing object load accesses.

4

gram. This structure collects information during the execu-
tion of the code produced by the Full Codegen compiler
(i.e., non-optimized code). This information is used to
perform the optimizations in the code produced by Crank-
shaft compiler (i.e. optimized code). Then, this structure is
accessed to verify the assumptions about monomorphic
properties and monomorphic elements arrays. In this re-
gard, the class properties’ information is read on demand
when a store that targets an object property is executed.
Similarly, the class elements array’ information is read on
demand when a store that targets an elements array is exe-
cuted.

On the other hand, a new entry is stored in this structure
every time that a property of a new hidden class is written
for the first time. Below we explain in detail the new struc-
tures used for this mechanism and how these two phases,
profiling and optimization, work

4.2.1 The New Structures

In this section, we present the software and hardware com-
ponents used for the proposed mechanism.

4.2.1.1 The Class List

The runtime maintains a software structure that we call the
Class List, which stores the object types of the monomor-
phic properties and monomorphic elements arrays for each
hidden class of the JavaScript application. As we outlined
in Section 3.1, the V8 engine creates these hidden classes
dynamically as objects are constructed. For each hidden
class, the Class List contains as many entries as cache lines
the objects belonging to this class occupy. Note that for
each 64-byte cache line, there are up to seven 8-byte prop-
erties, because the first 8-byte word contains the identifier
for the hidden class along with the corresponding relative
cache line position. For each entry, it contains the follow-
ing information.

 ClassID, Line: The identifier of the hidden class to-
gether with the relative cache line that this entry repre-
sents. As commented above, each entry represents up to
seven properties of the object. Note that these identifiers
are not the same that the ones used by V8 (described in
section 3.1), which need 48 bits for their representation
because they are memory addresses of the hidden class

descriptors. Instead, the identifiers for the hidden class
that we use (i.e., ClassID) are consecutive numbers,
which allow us to represent them with only 8 bits. On
the other hand, the Line attribute is represented with 8
bits. Note that the Class List occupies only 2^16 entries,
which are located together in the same memory region.
As special case, the SMI (i.e., small integer) type is en-
coded as 11111111.

 InitMap: An 8-bit map that indicates for each property
of the entry whether it has been initialized in any object.
This bitmap is initialized to zeros, indicating that no
property has been initialized so far. Note that each bit
represents a different property, so only the 7 least-
significant bits are used in practice.

 ValidMap: An 8-bit map that indicates for each proper-
ty of the entry whether this is monomorphic so far. As
with InitMap field, each bit represents a property of the
object. This bitmap is initialized to 11111111, indicating
that all properties are monomorphic. Note that the first
time that a type is profiled for a particular property, the
corresponding bit of the InitMap field is set to 1. Then,
if the type of that property differs from the profiled one,
the corresponding bit of the ValidMap field is set to 0
and this will never be set to 1 again.

 SpeculateMAP: A bit map that indicates for each prop-
erty whether a speculative optimization that depends on
this property has been applied. This field is initialized to
zeros.

 Prop1 … Prop7: Seven 1-byte fields that contains the
ClassIDs that are profiled for each property of the entry.
As special case, the Prop2 field of the first line of each
object contains the ClassID that has been profiled for
the objects contained in the elements array, as long as
all the objects contained in this array have been profiled
with one single ClassID.

 FunctionList: For each property, the list of functions
that have been speculatively optimized based on this
property.

In Table 1 we show an example of a Class List, which
contains two hidden classes: NodeList and GraphNode.
GraphNode occupies two cache lines because it has 9 prop-

ClassID, Line InitMap ValidMap Speculate
Map

Prop1 Prop2 … Prop6 … FunctionList
(property: functions)

GraphNode, 1 01111111 11111111 00000010 …. …. … classPosition … 6th property:
findGraphNode

GraphNode, 2 01100000 11111111 00000000 …. …. … …. … ---

NodeList, 1 01111000 11111111 00100000 …. GraphNode … …. … 2nd property:
findGraphNode

… … … …. …. … …. … …

Table 1. Class List Structure.

5

erties. In the first cache line, the InitMap field indicates that
all the properties have been initialized for that line and
therefore, Prop1 to Prop7 fields contain the profiled Clas-
sID for each property. Note also that the ValidMap field
indicates that all the ClassIDs profiled for each property are
valid (i.e., monomorphic), which means that they can be
used for our optimizations. Moreover, findGraphNode
function has been speculatively optimized assuming that
the sixth (position) property is monomorphic, and its type is
classPosition hidden class according to the profiling data.
The two properties contained in the second cache line have
not been used to optimize any function, despite the fact that
both properties are valid and initialized.

NodeList objects occupy only one cache line because
they contain four properties. In Table 1, all the properties of
this hidden class have been initialized and are considered
valid. Note also that the second property of this hidden
class has been used to speculatively optimize find-
GraphNode function. As commented above, this is a spe-
cial property that contains the elements array pointer of the
object. Therefore, the hidden class profiled for this property
(i.e., GraphNode) corresponds to the type of the objects
contained in the elements array of NodeList.

Besides, there is a special register that has a pointer to
this Class List in memory, in a similar way that there is a
special register that points to the memory translation tables.
Note that the Class List entries are together in the same 64
KB memory region and therefore, all the entries are in-
dexed by adding to this special register the resulting value
of concatenating the ClassID and the Line number attrib-
utes.

4.2.1.2 New Machine Instructions

The compiler (both Full Codegen and Crankshaft) identi-
fies which stores can affect objects and they are encoded
with a new different opcode through two new instruction
called movStoreClassCache and movStoreClassCacheAr-

ray. The former is used for stores that target properties and
the latter is used for stores to the elements array of an ob-
ject. These instructions are similar to a mov x86-64 instruc-
tion, but in addition to the L1 data cache write, they per-
form a request to the Class Cache in parallel.

Besides these instructions, two more new instructions
are required by our mechanism, which are called movClas-
sID and movClassIDArray. The former loads the ClassID
of an object to a special 8-byte register called regOb-
jectClassId. If the object is a SMI (i.e., the least-significant
bit of the register that represents the object is 0), the corre-
sponding ClassID value for SMI’s (i.e., 11111111) is di-
rectly loaded to the regObjectClassId. Otherwise, since the
register that represents the object contains the memory
address where the object resides, the ClassID is obtained
from the first 8-byte word of this location. Note that this
register will be used by both movStoreClassCache and
movStoreClassCacheArray instructions. The latter works
similar to the former, but instead of loading the ClassID to
the regObjectClassId special register, it is loaded to a spec-
ified register among an additional set of four special 8-byte
registers called regArrayObjectClassId0-3. Note that these
registers will be consumed only by
movStoreClassCacheArray instructions.

4.2.1.3 The Class Cache

The Class Cache is a cache of the Class List, in a similar
way as the TLB is a cache of the Page Table. When a spe-
cial store that writes to an object property or an elements
array is executed, the Memory Unit sends a request to the
Class Cache that includes the ClassID of the hidden class
that contains that property or array, the relative cache line
(0 in case of a movStoreClassCacheArray instruction), the
position of the property that is written (3 in case of a
movStoreClassCacheArray instruction) and the ClassID of
the object to be stored.

In Figure 4 we depict a Class Cache request for a

Figure 4. Block diagram of a Class Cache access a for a movStoreClassCache instruction.

6

movStoreClassCache instruction. Note that in V8, the first
8-byte word of the first cache line of an object contains its
hidden class identifier, which occupies the 48 least-
significant bits. Therefore, we store the ClassID and Line
parameters in the two most significant bytes of the first 8-
byte word. Furthermore, for objects larger than one cache
line, the rest of lines also contain the ClassID and Line
parameters in the same position (and the rest of the bytes in
the first 8-byte word are not used). Consequently, the pro-
posed mechanism requires that objects are created aligned
to cache lines. Note that this restriction is not costly [20]
and both Nitro [26] and Mozilla JavaScript engines [19]
already apply it. Moreover, a Class Cache request needs to
specify the relative position that the property occupies
inside the cache line. Since objects are cache line aligned,
this information is contained in the bits 3-5 of the store
address. Finally, each execution of a movStoreClassCache
instruction requires the previous execution of a movClas-
sID instruction, which loads the ClassID of the object that
is written in the selected property to the regObjectClassId
register.

In Figure 5 we illustrate a Class Cache request for the
movStoreClassCacheArray instruction. This scenario is
very similar to the previous one, with two main differences.
The first one is that the relative property position and the
Line parameters of the Class Cache are fixed to 3 and 0,
respectively. This is because the field inside the Class
Cache that is reserved for the second property of each hid-
den class (i.e., the special property that contains the pointer
to the elements array) is used to keep the ClassID that has
been profiled for the objects contained in the elements
array. Note that this special property will never be used by
a movStoreClassCache instruction. The second difference
is that the ClassID parameter of the Class Cache (i.e., the

hidden class identifier of the object that contains the array
in which the store will write) comes from another special
register (regArrayObjectClassId0-3), which is selected by
the movStoreClassCacheArray instruction. In this regard,
each execution of a movStoreClassCacheArray instruction
requires also the previous execution of a movClassIDArray
instruction, apart from the corresponding movClassID in-
struction. This movClassIDArray instruction loads the
ClassID of the object that contains the elements array to
one of the regArrayObjectClassId0-3 registers.

Note that in the optimized code, both
movStoreClassCache and movStoreClassCacheArray in-
structions are inserted only for those properties or elements
arrays that still are considered monomorphic. Otherwise, a
regular store is used. Furthermore, the movClassIDArray
instructions can be moved out of the loop in many cases, as
long as the variable that contains the object is not modified
inside the loop and there are not function calls inside this
loop. For this reason, we have four regArrayObjectClas-
sId0-3 registers, in order to move out of the loop up to four
movClassIDArray instructions for different objects that are
accessed inside the loop.

Each Class Cache entry contains the ClassID, the Line,
the InitMap, the ValidMap and the SpeculateMAP attributes
from the Class List, as we can see in Figure 6. The ClassID
and line parameters are used to index the Class Cache. The
Class Cache checks whether it has the corresponding entry
stored, as we can see in the left upper part of Figure 6. If
the class is not present, its information is obtained from the
Class List in memory, in a similar way to a TLB miss, and
one of the entries is replaced and copied back to the Class
List. Once the requested entry is in the cache, the corre-
sponding bits of InitMap, ValidMap and SpeculateMap are
selected by the relative property position input parameter.

Figure 5. Block diagram of a Class Cache access for a movStoreClassCacheArray instruction.

7

Moreover the corresponding field with the profiled ClassID
(Prop1-Prop7) is selected by this input parameter.

The first time that a particular property is selected, the
corresponding InitMap bit contains a 0 value, indicating
that no ClassID have been profiled yet for that property.
Therefore, the Object ClassID input parameter is stored in
the corresponding prop1-prop7 field and the InitMap bit is
set to 1. For the following accesses to that property, the
Object ClassID input parameter is compared to the corre-
sponding prop1-prop7 field. When this comparison is not
equal, the corresponding ValidMap bit is set to 0 and it will
never be set to 1 again. Moreover, the corresponding Spec-
ulateMap bit is checked. If this bit is set to 1, then a HW
exception is raised, because at least one function was opti-
mized assuming that this property was monomorphic, but it
is not anymore. The exception routine deoptimizes the
offending functions and sets to 0 the corresponding Specu-
lateMap bit.

4.2.2 How the Mechanism Works

As explained in section 3, when a function is invoked by
the first time, the code is compiled by Full Codegen and
then it is executed. This execution may create new classes
and their corresponding entries in the Class List and the
Class Cache. In addition, it updates all the fields of the
Class Cache accordingly. That is, when a property or ele-
ments array is written, the Class Cache is accessed, in order
to perform the corresponding profile.

When a function has been executed often enough (hot
function), the runtime compiles it with the more aggressive
compiler (Crankshaft). Using the information collected by
the Class List, the compiler can perform some speculative
optimizations that we describe later (section 4.3), based on
the assumption that monomorphic properties or monomor-
phic elements arrays will remain so for the rest of the exe-
cution. When any of these optimizations are applied, the
relevant bit in the SpeculateMAP of the corresponding

property or elements array is set to 1. Figure 7 illustrates
this optimization process.

For every store to an object property or elements array,
the Class Cache is accessed, in order to perform the corre-
sponding hidden class profiling and to check whether a
misspeculation has occurred (i.e. a monomorphic property
or elements array is not monomorphic anymore and it had
previously been used to optimize at least one function). If
so, then a hardware exception is triggered. In the exception
routine, the V8 runtime is called, which invalidates and
recompiles all the functions that have performed specula-
tive optimizations assuming that the property or elements
array was monomorphic. These functions are identified by
the runtime through the FunctionList field of the Class List.
Note that the application state is correct because up to this
point in the execution all the assumptions were correct, so
no recovery action is required.

There is a situation that deserves special attention,
which is due to functions in the program stack (i.e. function
f calls function g, and g causes an exception that requires f
to be deoptimized). This case can be handled by performing
on-stack-replacement, which is a technique that modern
JavaScript engines already support.

Figure 6. Scheme of a Class Cache entry.

Figure 7. Optimizations process.

8

Although this technique introduces some overheads (ex-
tra movClassID and movClassIDArray instructions, larger
objects, Class Cache misses), it allows for new compiler
optimizations, and the net benefit is a significant reduction
in execution time and energy consumption, as we will see
in the next sections.

4.3 New Speculative Optimizations

Functions compiled with the non-optimizing compiler do
not contain any speculation and are executed as usual.
When functions become hot and are optimized by the
Crankshaft compiler, the information contained in the Class
Cache and the Class List is used to optimize the generated
code. Below we describe several new optimizations that we
have developed based on this scheme. Note that these op-
timizations also includes checking operations that are nec-
essary for the Tags/Untags quantified in Figure 1

4.3.1 Check Maps Elimination

We remove the Check Maps operations that verify mono-
morphic properties or monomorphic elements arrays.

4.3.2 Check Non-SMI Elimination

We remove the Check Non-SMI operations that verify the
monomorphic properties or monomorphic elements arrays
that are profiled as non-SMI.

4.3.3 Check SMI Elimination

We remove the Check SMI operations that verify mono-
morphic properties or monomorphic elements arrays that
are profiled as SMIs.

5. Performance Evaluation

In this section, the benefits of the proposed technique are
evaluated in terms of execution time and energy consump-
tion. The V8 JavaScript engine has been extended to in-
clude the proposed optimizations. The hardware has been
modeled through Marss [25], which is a cycle-accurate,
full-system simulator of the x86-64 architecture, with a
micro-architectural configuration closely matching a Neha-
lem core. Energy consumption is measured through the
McPat simulator [32] and Cacti [23]. We run three com-
monly used benchmark suites: Octane [30], Kraken [31]
and SunSpider [27]. We focus on the steady state, to center
on the execution of non-optimized code, which is achieved
by executing the benchmark ten times and taking statistics
from the tenth iteration.

5.1 Cycle Count Improvements

In this section we evaluate the performance benefits of our
technique, as measured with the Marss cycle-level microar-
chitecture simulator. Table 2 shows the main microarchi-
tectural features of the simulated core, which resemble
those of a Nehalem core [28]. The Class Cache has 128
entries and 2-way set associativity. We have chosen this

configuration because it achieves more than 99.9% of hit
rate for all the benchmarks, with very low hardware cost.

Figure 8 shows the speedups for both the optimized
code and the whole application. Regarding the former, our
technique achieves an average speedup of 7.1%. We can
see benchmarks with gains up to 34%. This confirms that
our technique has an important impact on the execution of
many JavaScript applications.

If we look at the whole application, including all the
runtime, the average speedup is 5%. This is still an im-
portant benefit and, as discussed above, we expect it will
improve as JavaScript applications become more compute
intensive and the relative overhead of the housekeeping
tasks decrease.

A remarkable case is ai-astar benchmark, from Kraken,
which achieves a 34% of speedup. This benchmark is exe-
cuting most of the time a loop with many object property
accesses, which require an important number of checking
operations that are removed by our optimizations, which
more than half are Check-Maps operations. Note also that a
Check-Maps operation performs a memory access, in order
to obtain the hidden class identifier of the object. We have
observed that after removing most of these memory access-

Issue width 4

Instruction Issue queue 36 entries

Window size 128

Outstanding load/stores 10

L1 load latency 2 cycles

Itlb 128 entries

Dtlb 256 entries

Il1 cache 32 KB, 4-way

Dl1 cache 32 KB, 8-way

L2 cache 256 KB, 8-way

Class Cache 128 entries, 2-way

0

5

10

15

20

25

30

35

40

b
o

x2
d

cr
yp

to
d

el
ta

b
lu

e
ea

rl
ey

-b
o

ye
r

gb
em

u
m

an
d

re
el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s
O

ct
an

e
av

er
ag

e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e
ac

ce
ss

-b
in

ar
y-

tr
ee

s
ac

ce
ss

-f
an

n
ku

ch
ac

ce
ss

-n
b

o
d

y
cr

yp
to

-a
es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm
st

ri
n

g-
u

n
p

ac
k-

co
d

e
Su

n
Sp

id
er

 a
ve

ra
ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

5
6

-…
K

ra
ke

n
 a

ve
ra

ge

Whole Application Optimized Code

Sp
e

e
d

u
p

 (
%

)

Figure 8. Improvement in number of cycles.

Table 2. Simulated Micro-architecture configuration.

9

es, the DL1 hit rate, the L2 hit rate and the Dtlb hit rate
have improved by 20%, 40% and 37% respectively, which
indicates that memory accesses are an important bottleneck
for this benchmark.

5.2 Energy Reduction

Figure 9 shows the energy savings of our technique for the
three benchmark suites, which are measured through the
McPAT simulator [32]. We used CACTI [23] to obtain the
energy consumption of the Class Cache. Energy consump-
tion is reduced by 4.5% on average for the whole applica-
tion and 6.5% for optimized code. These savings come
mainly from the reduction in number of executed instruc-
tions (which results in less dynamic energy) and execution
time (which results in less leakage energy). Again, Kraken
suite achieves the best energy savings with a 6.5% im-
provement. The consumed energy of this suite is also sig-
nificantly reduced for optimized code, by 8.8% on average.

5.3 Incurred Overheads

In this section we present a detailed analysis of the over-
heads incurred by our technique.

5.3.1 Warm-Up Period

The amount of time constructing the Class List is propor-
tional to the number of hidden classes that are dynamically

created as objects are constructed. On the other hand, the
number of hidden classes is relatively small in almost all
benchmarks, which use up to 32 hidden classes excepting
two benchmarks. Therefore, this overhead can be consid-
ered as negligible.

5.3.2 Class Cache Hits

Every time that a special store instruction that targets an
object is performed, the Class Cache has to be accessed at
the same time as the data is written to L1 data cache.
Therefore, as long as the access hits in the Class Cache, we
do not incur any penalty for the movStoreClassCache and
movStoreClassCacheArray instructions.

5.3.3 Class Cache Misses

When a miss in the Class Cache happens, the information
has to be retrieved from the Class List, which resides in
main memory, and is rather slow operation. However, the
hit rate of a Class Cache of just 128 entries and 2-way
associativity is higher than 99.9% for all benchmarks and
thus the penalty of misses is negligible.

5.3.4 Larger Objects

The objects whose size is higher than 64 bytes (one cache
line) require an extra memory word for each extra. The fact
that some objects are slightly larger (ranging from 7% to
11% of memory space increment for objects that occupy
more than one cache line) may affect the L1 Data Cache hit
rate. However, most of the object property accesses (79%)
target the first cache line. Therefore, the L1 Data Cache
miss rate hardly increases and this overhead is not relevant.

5.4 Hardware Cost

The Class Cache occupies less than 1.5KB, which repre-
sents less than 0.04% of the total area of the core, measured
through McPAT [32] and CACTI [23]. Similarly, the ener-
gy consumption of this hardware structure has a negligible
impact in total consumption of the core.

Note that a pure software implementation of the pro-
posed technique would be possible but would result in
significant penalties, which would more than offset its
benefits.

6. Conclusions

Dynamically typed programming languages have become
very popular and are widely used nowadays. In these lan-
guages, performance is significantly burdened by the fact
that object types have to be constantly checked at run time.

In this paper, we have proposed a new mechanism, the
Class Cache, which allows a number of optimizations
based on code specialization for particular object types.
The specialization is based on a run time profiling that is
extremely accurate. Besides, the proposed scheme detects
when the specialized code is no longer correct before exe-
cuting it, so there is no need for providing a recovery
mechanism. In those cases, an exception is triggered and
the code is recompiled to a non-specialized version that is
guaranteed to be correct.

We have shown that these optimizations achieve im-
portant improvements in terms of speedup (7.1% on aver-
age; up to 34% for some programs) and energy consump-
tion (6.5% on average) for optimized JavaScript code.

Acknowledgments

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness under grants
TIN2010-18368 and TIN2013-44375-R and the Spanish
Ministry of Education, Culture and Sport under grant
FPU12/05670.

0

5

10

15

20

25

30

35

b
o

x2
d

cr
yp

to
d

el
ta

b
lu

e
ea

rl
ey

-b
o

ye
r

gb
em

u
m

an
d

re
el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s
O

ct
an

e
av

er
ag

e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e
ac

ce
ss

-b
in

ar
y-

tr
ee

s
ac

ce
ss

-f
an

n
ku

ch
ac

ce
ss

-n
b

o
d

y
cr

yp
to

-a
es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm
st

ri
n

g-
u

n
p

ac
k-

co
d

e
Su

n
Sp

id
er

 a
ve

ra
ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

5
6

-…
K

ra
ke

n
 a

ve
ra

ge

Whole Application Optimized Code

En
er

gy
 R

e
d

u
c t

io
n

 (
%

)

10

References

[1] C. Chambers and D. Ungar, 1989. Customization:
optimizing compiler technology for Self, a
dynamically-typed object-orientied programming
language. In Proceedings of the SIGPLAN’89.

[2] A. Gal, B. Eich, M. Shaver, D. Anderson, D.
Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare, B.
Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R.
Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based Just-in-Time Type Specialization for
Dynamic Languages. PLDI, 2009.

[3] C. Anderson. Type Inference for JavaScript. PhD
thesis, Department of Computing, Imperial College
London, March 2006.

[4] C. Anderson and P. Giannini. Type checking for
JavaScript. Electr. Notes Theor. Comput. Sci., 138(2),
2005.

[5] D. Ungar and R. B. Smith. Self: The power of
simplicity. In Proceedings OOPSLA ’87.

[6] Andy Wingo. inside full-codegen, v8's baseline
compiler.
http://wingolog.org/archives/2013/04/18/inside-full-
codegen-v8s-baseline-compiler.

[7] M. Chevalier-Boisvert and M. Feeley. Simple and
effective type check removal through lazy basic block
versioning. In Proceedings of the 2015 European
Conference on Object-Oriented Programming
(ECOOP). LIPIcs, 2015.

[8] ECMA 2011. ECMAScript Language Speci cation –
Fifth Edition. http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-
262.pdf.

[9] F. Schneider, High performance JavaScript with V8,
2012. http://cs.au.dk/~jmi/VM/IC-V8.pdf

[10] G. Dot, A. Martínez, A. González, “Analysis and
optimization of engines for dynamically typed
languages”, Proc. Of the 27th Int. Symposium on
Computer Architecture and High Performance
Computing (SBAC-PAD), IEEE (ISSN 1550-6533),
Florionopolis (Brasil), October 2015, pág. 41-48.

[11] Google. V8 JavaScript engine, 2009.
http://code.google.com/p/V8/.

[12] U. Holzle, Adaptive Optimization for Self:
Reconciling High Performance with Exploratory
Programming, PhD dissertation, Stanford Univ.,
Stanford, Calif., 1994.

[13] U. Holzle and D. Ungar. Optimizing Dynamically-
dispatched Calls with Run-time Type Feedback. In
Conference on Programming language Design and
Implementation (PLDI), 1994.

[14] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J.
Torrellas. Improving JavaScript performance by
deconstructing the type system. In PLDI, 2014.

[15] M. S. Ager, V8 internals,2009.
https://dl.google.com/io/2009/pres/W_1230_V8Buildi
ngaHighPerformanceJavaScriptEngine.pdf

[16] M. S. Ager, The V8 JavasCript engine, 2011.
http://websrv0a.sdu.dk/ups/SCM/slides/lecture_03_ma
ds_ager.pdf

[17] U. Hölzle , C. Chambers , D. Ungar, Optimizing
Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches, Proceedings of the
European Conference on Object-Oriented
Programming, p.21-38, July 15-19.

[18] E. Lee. Object Storage and Inheritance for SELF, a
Prototype-Based Object-Oriented Programming
Language. Engineer’s thesis, Stanford University,
1988.

[19] Mozilla. SpiderMonkey javascript engine.
https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey

[20] O. Anderson, E. Fortuna, L. Ceze, S. Eggers. Checked
Load: Architectural Support for JavaScript Type-
Checking on Mobile Processors. Computer Science
and Engineering, University of Washington, 2011.

[21] L. P. Deutsch and A. Schiffman, Efficient
Implementation of the Smalltalk-80 System.
Proceedings of the 11th Symposium on the Principles
of Programming Languages, Salt Lake City, UT. 1984.

[22] D.-M. Ungar. The Design and Evaluation of a High-
Performance Smalltalk System. Ph.D. dissertation, the
University of California at Berkeley, Feb., 1986. MIT
Press, Cambridge, MA, 1987.

[23] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi. CACTI 5.1. HP Laboratories, April 2008.

[24] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
Analysis of the Dynamic Behavior of JavaScript
Programs. In Conference on Programming language
Design and Implementation (PLDI), 2010.

[25] A. Patel, F. Afram, S. Chen, K. Ghose, MARSS: a full
system simulator for multicore x86 CPUs, Proceedings
of the 48th Design Automation Conference, June 05-
10, 2011, San Diego, California

[26] WebKit. Introducing SquirrelFish Extreme.
http://webkit.org/blog/214/introducing-squirrelfish-
xtreme/, 2008.

[27] WebKit. SunSpider JavaScript Benchmark.
http://webkit.org/perf/SunSpider-0.9/SunSpider.html ,
2008.

[28] White Paper: Intel® Next Generation
Microarchitecture (Nehalem), 2008.

[29] I. R. de Assis Costa, H. N. Santos, P. R. Alves, F. M.
Quintão Pereira. Just-in-Time value specialization.

11

Department of Computer Science, Federal University
of Minas Gerais (UFMG), Brazil. In Proceedings CGO
2013.

[30] Google Inc. Octane.
https://developers.google.com/octane, 2013.

[31] Mozilla. Kraken. https://krakenbenchmark.mozilla.org,
2013.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D.
M.Tullsen, and N. P. Jouppi. The McPAT framework
for multicore and manycore architectures:
Simultaneously modeling power, area, and timing.
ACM Transactions on Architecture and Code
Optimization (TACO), 10(1):5, Apr. 2013.

[33] Tiobe programming community Index.
http://www.tiobe.com/index.php/content/paperinfo/tpci
/index.html

[34] Chakra’s Technical review.
http://blogs.msdn.com/b/ie/archive/2014/10/09/announ
cing-key-advances-to-javascript-performance-in-
windows-10-technical-preview.aspx

[35] Andy Wingo. v8: a tale of two compilers.
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-
two-compilers , 2011.

[36] Andy Wingo. a closer look at crankshaft,v8's
optimizing compiler.
http://wingolog.org/archives/2011/08/02/a-closer-look-
at-crankshaft-v8s-optimizing-compiler,2011.

12

